WO2021112215A1 - 車両サスペンション制御装置、車両制御装置および車両制御方法 - Google Patents

車両サスペンション制御装置、車両制御装置および車両制御方法 Download PDF

Info

Publication number
WO2021112215A1
WO2021112215A1 PCT/JP2020/045214 JP2020045214W WO2021112215A1 WO 2021112215 A1 WO2021112215 A1 WO 2021112215A1 JP 2020045214 W JP2020045214 W JP 2020045214W WO 2021112215 A1 WO2021112215 A1 WO 2021112215A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
vehicle
direction information
force
suspension
Prior art date
Application number
PCT/JP2020/045214
Other languages
English (en)
French (fr)
Inventor
山岡 史之
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2021112215A1 publication Critical patent/WO2021112215A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/02Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
    • B60G21/06Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected fluid
    • B60G21/073Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected fluid between wheels on the same axle but on different sides of the vehicle, i.e. the left and right wheel suspensions being interconnected

Definitions

  • the present disclosure relates to a vehicle suspension control device, a vehicle control device, and a vehicle control method used in, for example, a four-wheeled vehicle.
  • vehicles such as four-wheeled vehicles are equipped with a vehicle control device that controls the roll rigidity of the vehicle body by a suspension device, a stabilizer device, etc. to ensure stability during running.
  • a vehicle control device when the friction coefficient of the road surface with respect to the left and right wheels estimated based on the signals of the steering angle sensor, the vehicle speed sensor, etc. is different, the vehicle behavior is controlled by the active stabilizer and the vehicle behavior of each wheel is controlled. It is known that the steering force by the power steering device is controlled so as to cancel the change amount of the moment around the kingpin axis (see Patent Document 1).
  • the first roll rate calculated based on the steering torque acting on the steering when the frictional force on the road surface changes and the second roll rate calculated based on the steering angle and the vehicle speed of the vehicle.
  • those that control the roll rigidity based on the larger roll rate are known (see Patent Document 2).
  • An object of an embodiment of the present invention is to provide a vehicle suspension control device, a vehicle control device, and a vehicle control method capable of quickly controlling roll rigidity according to a running state of a vehicle.
  • One embodiment of the present invention is a vehicle suspension control device, which includes a force generating mechanism provided on the vehicle and capable of adjusting the force generated by the suspension device, and a control unit for controlling the generated force of the force generating mechanism.
  • the control unit acquires steering torque acting direction information in a steering mechanism directly or indirectly connected to the wheels, and acquires steering direction information based on a physical quantity relating to steering of the steering mechanism.
  • the generated force of the force generating mechanism is controlled so as to change the suspension rigidity according to the steering torque acting direction information and the steering direction information.
  • one embodiment of the present invention is a vehicle control device provided on the vehicle and having a force generating mechanism capable of adjusting the force generated by the suspension device and a control unit for controlling the generated force in the force generating mechanism.
  • the control unit acquires steering torque action direction information in the steering mechanism directly or indirectly connected to the wheels, acquires steering direction information based on a physical quantity related to steering of the steering mechanism, and obtains steering torque.
  • a command to change the suspension rigidity according to the action direction information and the steering direction information is output to the force generation mechanism.
  • one embodiment of the present invention is a vehicle control device provided in a vehicle and having a force generating mechanism capable of adjusting the generated force and a control unit for controlling the generated force of the force generating mechanism.
  • the control unit outputs a command to change the suspension rigidity including the roll rigidity to the force generating mechanism according to the difference between the steering command to the steering mechanism provided in the vehicle and the steering state by the steering mechanism.
  • one embodiment of the present invention is a vehicle control method executed by a control unit provided in a vehicle and for controlling the generated force in a force generating mechanism capable of adjusting the generated force, and is directly or indirectly with the wheels.
  • the steering torque acting direction information in the steering mechanism connected to the steering mechanism is acquired, the steering direction information based on the physical quantity related to the steering of the steering mechanism is acquired, and the acquired steering torque acting direction information and the steering direction information are used.
  • a command to change the suspension rigidity according to the above is output to the force generating mechanism.
  • the present invention it is possible to determine the running state of the vehicle at an early stage and quickly control the roll rigidity according to the running state.
  • FIG. 1 shows the system configuration of the suspension device according to the embodiment.
  • the suspension device 1 is provided between the vehicle body side and the four wheel sides (left front wheel FL, right front wheel FR, left rear wheel RL, right rear wheel RR), respectively.
  • Each suspension device 1 has a suspension spring (not shown) and four hydraulic cylinders (left front hydraulic cylinder 2, right front hydraulic cylinder 3) provided between the vehicle body side and each wheel side in parallel with the suspension spring. , Left rear hydraulic cylinder 4 and right rear hydraulic cylinder 5) are included.
  • each wheel position of the vehicle is shown as a left front wheel (FL), a right front wheel (FR), a left rear wheel (RL), and a right rear wheel (RR).
  • the left front hydraulic cylinder 2, the right front hydraulic cylinder 3, the left rear hydraulic cylinder 4, and the right rear hydraulic cylinder 5 are interposed between the vehicle body (upper spring) and each wheel (lower spring), and the vehicle body and each wheel. It constitutes a hydraulic damping force adjustment type shock absorber that cushions the vibration of the vehicle by expanding and contracting according to the relative movement of the wheel. That is, each of the hydraulic cylinders 2 to 5 constitutes a force generation mechanism capable of adjusting the force generated by the suspension device 1 between the vehicle body and each wheel.
  • the left front hydraulic cylinder 2 on the left front wheel side has a cylinder (hydraulic cylinder) 6 made of a bottomed tubular tube, a piston 7 slidably inserted in the cylinder 6, and one end side fixed to the piston 7. The other end side is configured to include a piston rod 7A protruding outside the cylinder 6.
  • the inside of the cylinder 6 is defined by a piston 7 into two chambers, an upper chamber A and a lower chamber B, upper and lower.
  • each cylinder 6 each include a piston 7, and a piston rod 7A.
  • the inside of each cylinder 6 is defined by a piston 7 into an upper chamber A and a lower chamber B.
  • the left front hydraulic cylinder 2 and the right front hydraulic cylinder 3 are connected by a cross between the first connection line 8 and the second connection line 9. That is, the first connection pipeline 8 extends left and right between the hydraulic cylinders 2 and 3 so as to communicate between the lower chamber B of the left front hydraulic cylinder 2 and the upper chamber A of the right front hydraulic cylinder 3. Is arranged.
  • the second connecting pipeline 9 is arranged so as to extend between the hydraulic cylinders 2 and 3 in the left and right directions so as to communicate between the upper chamber A of the left front hydraulic cylinder 2 and the lower chamber B of the right front hydraulic cylinder 3. Has been done. In this way, the left front hydraulic cylinder 2 and the right front hydraulic cylinder 3 form a related suspension device connected via cross pipes (first and second connecting pipes 8 and 9).
  • a left front compression side damping force control valve 10 is provided at a connection portion between the upper chamber A of the left front hydraulic cylinder 2 and the second connection line 9.
  • the left front compression side damping force control valve 10 variably adjusts the damping force of the oil liquid flowing out from the upper chamber A toward the second connecting pipe line 9 when the left front hydraulic cylinder 2 is compressed by electronic control, and the upper chamber A Attenuate the flow from.
  • the left front compression side damping force control valve 10 has a check valve 10A that allows the oil liquid to flow in from the second connecting pipe line 9 toward the upper chamber A and blocks the reverse flow. ..
  • a left front extension side damping force control valve 11 is provided at a connection portion between the lower chamber B of the left front hydraulic cylinder 2 and the first connection pipe line 8.
  • the left front extension side damping force control valve 11 variably adjusts the damping force of the oil liquid flowing out from the lower chamber B toward the first connecting pipe line 8 when the left front hydraulic cylinder 2 is extended by electronic control, and the lower chamber B Attenuate the flow from.
  • the left front extension side damping force control valve 11 has a check valve 11A that allows the oil liquid to flow in from the first connecting pipe line 8 toward the lower chamber B and blocks the flow in the opposite direction. ..
  • a right front compression side damping force control valve 12 is provided at a connection portion between the upper chamber A of the right front hydraulic cylinder 3 and the first connection line 8.
  • the right front compression side damping force control valve 12 variably adjusts the damping force of the oil liquid flowing out from the upper chamber A toward the first connecting pipe line 8 when the right front hydraulic cylinder 3 is compressed by electronic control, and the upper chamber A Attenuate the flow from.
  • the right front compression side damping force control valve 12 has a check valve 12A that allows the oil liquid to flow from the first connecting pipe line 8 toward the upper chamber A and blocks the flow in the opposite direction. ..
  • a damping force control valve 13 on the right front extension side is provided at a connection portion between the lower chamber B of the right front hydraulic cylinder 3 and the second connection pipe line 9.
  • the right front extension side damping force control valve 13 variably adjusts the damping force of the oil liquid flowing out from the lower chamber B toward the second connecting pipe line 9 when the right front hydraulic cylinder 3 is extended by electronic control, and the lower chamber B Attenuate the flow from.
  • the right front extension side damping force control valve 13 has a check valve 13A that allows the oil liquid to flow in from the second connecting pipe line 9 toward the lower chamber B and blocks the reverse flow. ..
  • damping force control valves 10, 11, 12, and 13 are controlled by drive signals from the controller 33, which will be described later, and the damping force during expansion and contraction of the left front hydraulic cylinder 2 and the right front hydraulic cylinder 3 is adjusted according to the traveling state of the vehicle. It will be adjusted.
  • the left rear hydraulic cylinder 4 and the right rear hydraulic cylinder 5 are connected by a cross by a third connecting pipe 14 and a fourth connecting pipe 15. That is, the third connecting pipeline 14 communicates between the lower chamber B of the left rear hydraulic cylinder 4 and the upper chamber A of the right rear hydraulic cylinder 5 in the left and right directions between the hydraulic cylinders 4 and 5. It is arranged extending to.
  • the fourth connecting pipeline 15 extends between the hydraulic cylinders 4 and 5 in the left and right directions so as to communicate between the upper chamber A of the left rear hydraulic cylinder 4 and the lower chamber B of the right rear hydraulic cylinder 5. Is arranged. In this way, the left rear hydraulic cylinder 4 and the right rear hydraulic cylinder 5 form a related suspension device connected via cross pipes (third and fourth connecting pipes 14 and 15).
  • a left rear compression side damping force control valve 16 is provided at a connection portion between the upper chamber A of the left rear hydraulic cylinder 4 and the fourth connection pipe line 15.
  • the left rear compression side damping force control valve 16 variably adjusts the damping force of the oil liquid flowing out from the upper chamber A toward the fourth connecting pipe line 15 when the left rear hydraulic cylinder 4 is compressed by electronic control, and the upper portion. Attenuates the flow from chamber A.
  • the left rear compression side damping force control valve 16 has a check valve 16A that allows the oil liquid to flow in from the fourth connecting pipe line 15 toward the upper chamber A and blocks the reverse flow. There is.
  • a damping force control valve 17 on the left rear extension side is provided at a connection portion between the lower chamber B of the left rear hydraulic cylinder 4 and the third connection pipe line 14.
  • the left rear extension side damping force control valve 17 variably adjusts the damping force of the oil liquid flowing out from the lower chamber B toward the third connecting pipe 14 when the left rear hydraulic cylinder 4 is extended by electronic control, and lowers the lower part. Attenuate the flow from chamber B.
  • the left rear extension side damping force control valve 17 has a check valve 17A that allows the oil liquid to flow in from the third connecting pipe line 14 toward the lower chamber B and blocks the reverse flow. There is.
  • a right rear compression side damping force control valve 18 is provided at a connection portion between the upper chamber A of the right rear hydraulic cylinder 5 and the third connection line 14.
  • the right rear compression side damping force control valve 18 variably adjusts the damping force of the oil liquid flowing out from the upper chamber A toward the third connecting pipe 14 when the right rear hydraulic cylinder 5 is compressed by electronic control, and the upper part. Attenuates the flow from chamber A.
  • the right rear compression side damping force control valve 18 has a check valve 18A that allows the oil liquid to flow in from the third connecting pipe line 14 toward the upper chamber A and blocks the reverse flow. There is.
  • a damping force control valve 19 on the right rear extension side is provided at a connection portion between the lower chamber B of the right rear hydraulic cylinder 5 and the fourth connection pipe line 15.
  • the right rear extension side damping force control valve 19 variably adjusts the damping force of the oil liquid flowing out from the lower chamber B toward the fourth connecting pipe line 15 by electronic control, and damps the flow from the lower chamber B. ..
  • the right rear extension side damping force control valve 19 has a check valve 19A that allows the oil liquid to flow in from the fourth connecting pipe line 15 toward the lower chamber B and blocks the reverse flow. There is.
  • These damping force control valves 16, 17, 18, and 19 are controlled by drive signals from the controller 33, and the damping force when the left rear hydraulic cylinder 4 and the right rear hydraulic cylinder 5 expand and contract according to the running state of the vehicle. It will be adjusted.
  • the front bridge passage 20 connects between the first connecting line 8 and the second connecting line 9.
  • a front bridge valve 21 is provided in the middle of the front bridge passage 20, and the front bridge passage 20 is communicated (opened) and blocked by the front bridge valve 21.
  • the front bridge valve 21 is, for example, a two-port, two-position switching valve, and is a normally closed type (normally closed type) solenoid valve that holds a closed valve position when no power is applied. While the front bridge valve 21 holds the valve closed position, the connection between the first connecting line 8 and the second connecting line 9 is cut off.
  • the front bridge valve 21 is switched from the valve closing position to the valve opening position by a drive signal from the controller 33, and communicates between the first and second connecting pipelines 8 and 9 via the front bridge passage 20.
  • the left front hydraulic cylinder 2 and the right front hydraulic cylinder 3 are in a state in which the upper chamber A and the lower chamber B communicate with each other.
  • the front bridge passage 20 is provided with a bypass passage 22 that bypasses the front bridge valve 21, and the bypass passage 22 is provided with an orifice 22A.
  • the orifice 22A has a minute size that does not affect the roll rigidity of the vehicle body by the suspension device 1, and is provided in parallel with the front bridge valve 21.
  • the orifice 22A gradually reduces the pressure difference when a pressure difference occurs in front of and behind the front bridge valve 21 (between the left side passage 25 and the right side passage 26, which will be described later) due to a temperature change or the like.
  • the rear bridge passage 23 connects between the third connecting pipe 14 and the fourth connecting pipe 15.
  • a rear bridge valve 24 is provided in the middle of the rear bridge passage 23, and the rear bridge valve 24 communicates with and shuts off the rear bridge passage 23.
  • the rear bridge valve 24 is, for example, a two-port, two-position switching valve, and is a normally closed type (normally closed type) solenoid valve that holds a closed valve position when no power is applied. While the rear bridge valve 24 holds the valve closed position, the connection between the third connecting line 14 and the fourth connecting line 15 is cut off.
  • the rear bridge valve 24 is switched from the valve closing position to the valve opening position by a drive signal from the controller 33, and communicates between the third and fourth connecting pipelines 14 and 15 via the rear bridge passage 23.
  • the left rear hydraulic cylinder 4 and the right rear hydraulic cylinder 5 are in a state in which the upper chamber A and the lower chamber B communicate with each other.
  • the left side communication passage 25 is connected to the first connection line 8 and the third connection line 14, and is always in communication between the first connection line 8 and the third connection line 14. ..
  • the right communication passage 26 is connected to the second connecting pipe 9 and the fourth connecting pipe 15, and is always in communication between the second connecting pipe 9 and the fourth connecting pipe 15 on the rear side. I'm letting you.
  • a left accumulator device 27 is provided in the middle of the left side passage 25.
  • the left accumulator device 27 is provided at the tip of the oil guide pipe 28 branched from the middle of the left side passage 25, and is connected to the first connection line 8 and the third connection line 14 via the left side passage 25. Has been done.
  • the left accumulator device 27 has a lower chamber B of the left front hydraulic cylinder 2, an upper chamber A of the right front hydraulic cylinder 3, and a lower portion of the left rear hydraulic cylinder 4. Compensate for volume changes in the four oil chambers of the chamber B and the upper chamber A of the right rear hydraulic cylinder 5.
  • a damping valve 29 is provided in the middle of the oil guide line 28.
  • the damping valve 29 is configured as a valve device in which the inflow control valve 29A, the outflow control valve 29B, and the orifice 29C are connected in parallel.
  • the damping valve 29 gives a throttle resistance to the oil liquid by the orifice 29C and the inflow control valve 29A to apply a predetermined damping force. Generate and suppress vibration.
  • the orifice 29C and the outflow control valve 29B give a throttle resistance to the oil liquid to generate a predetermined damping force to suppress vibration. ..
  • a right accumulator device 30 is provided in the middle of the right side passage 26.
  • the right accumulator device 30 is provided at the tip of the oil guide pipe 31 branched from the middle of the right side passage 26, and is connected to the second connection pipe 9 and the fourth connection pipe 15 via the right side passage 26. Has been done.
  • the upper chamber A of the left front hydraulic cylinder 2, the lower chamber B of the right front hydraulic cylinder 3, and the upper part of the left rear hydraulic cylinder 4 Compensate for volume changes in the four oil chambers of the chamber A and the lower chamber B of the right rear hydraulic cylinder 5.
  • a damping valve 32 in which the inflow control valve 32A, the outflow control valve 32B, and the orifice 32C are connected in parallel is provided in the middle of the oil guide line 31.
  • the damping valve 32 gives a throttle resistance to the oil liquid by the orifice 32C and the inflow control valve 32A to apply a predetermined damping force. Generate and suppress vibration.
  • the orifice 32C and the outflow control valve 32B give a throttle resistance to the oil liquid to generate a predetermined damping force to suppress vibration. ..
  • the oil liquid does not flow between the left side passage 25 and the right side passage 26, and when the vehicle turns in this state, the left side passage is connected.
  • a pressure difference is generated between the passage 25 and the right side passage 26.
  • the lower chamber B of the left front hydraulic cylinder 2 the upper chamber A of the right front hydraulic cylinder 3, the lower chamber B of the left rear hydraulic cylinder 4, and the right rear hydraulic cylinder.
  • the upper chamber A of No. 5 is compressed, an oil liquid flows into the left accumulator device 27, and the pressure in the left side communication passage 25 rises.
  • the volume of the oil liquid flowing into the left accumulator device 27 is (cross-sectional area of cylinder 6-cross-sectional area of piston rod 7A) ⁇ (cylinder stroke) in the left front hydraulic cylinder 2 and the left rear hydraulic cylinder 4, and the right front hydraulic cylinder.
  • the total volume is (cross-sectional area of cylinder 6) ⁇ (cylinder stroke) of the cylinder 3 and the right rear hydraulic cylinder 5. Therefore, in the left accumulator device 27, the gas volume decreases and the gas spring constant increases. Further, since the lower chamber B of the left front hydraulic cylinder 2 and the left rear hydraulic cylinder 4 becomes high pressure and the upper chamber A of the right front hydraulic cylinder 3 and the right rear hydraulic cylinder 5 becomes high pressure, rolling to the right side of the vehicle body is suppressed. Cylinder reaction force acts.
  • the volumes of the upper chamber A of the left front hydraulic cylinder 2, the lower chamber B of the right front hydraulic cylinder 3, the upper chamber A of the left rear hydraulic cylinder 4, and the lower chamber B of the right rear hydraulic cylinder 5 increase, and the volume increases from the right accumulator device 30.
  • the oil liquid flows out and the pressure in the right side passage 26 decreases.
  • the volumes of the oil liquid flowing out from the right accumulator device 30 are (cross-sectional area of cylinder 6) ⁇ (cylinder stroke) in the left front hydraulic cylinder 2 and the left rear hydraulic cylinder 4, and the right front hydraulic cylinder 3 and the right rear hydraulic cylinder.
  • the total volume is (cross-sectional area of cylinder 6-cross-sectional area of piston rod 7A) x (cylinder stroke) in No. 5. Therefore, in the right accumulator device 30, the gas volume increases and the gas spring constant decreases. Further, since the upper chamber A of the left front hydraulic cylinder 2 and the left rear hydraulic cylinder 4 has a low pressure and the lower chamber B of the right front hydraulic cylinder 3 and the right rear hydraulic cylinder 5 has a low pressure, rolling to the right side of the vehicle body is suppressed. Cylinder reaction force acts. As a result, the roll rigidity (suspension rigidity) of the vehicle body by the suspension device 1 can be increased, and the turning performance during turning running can be improved.
  • the left side passage 25 and the right side passage 26 communicate with each other via the front and rear bridge passages 20 and 23.
  • the upper chamber A and the lower chamber B of the hydraulic cylinders 2 to 5 are in communication with each other, and the hydraulic cylinders 2 to 5 smoothly expand and contract with a small resistance in an independent state with respect to the input from the road surface. can do.
  • the vibration of the vehicle body due to the change of the road surface is suppressed, the riding comfort is improved, and the followability of each wheel to the change of the road surface is also improved.
  • the controller 33 as a control unit that controls the damping force (generated force) of each of the hydraulic cylinders 2 to 5 will be described.
  • the controller 33 shown in FIG. 2 constitutes a control unit that controls the damping force (generated force) of each of the hydraulic cylinders 2 to 5.
  • the controller 33 includes compression side damping force control valves 10, 12, 16, 18, left front, right front, left rear, and right rear extension side damping force control valves 11, 13, 17, right rear, right front, left rear, and right rear.
  • An ECU (Electronic Control Unit) for a suspension device 1 that electronically controls the operations of 19, the front bridge valve 21, the rear bridge valve 24, and the like.
  • the controller 33 includes, for example, a microcomputer 34 (hereinafter referred to as a microcomputer 34) and a plurality of drive circuits 35, 36, 37, 38, 39, 40, 41, 42, 43, 44 and the like.
  • the drive circuit 35 outputs a drive signal to the front bridge valve 21, and the drive circuit 36 outputs a drive signal to the rear bridge valve 24.
  • the drive circuit 37 outputs a drive signal to the left front compression side damping force control valve 10, and the drive circuit 38 outputs a drive signal to the left front extension side damping force control valve 11.
  • the drive circuit 39 outputs a drive signal to the right front compression side damping force control valve 12, and the drive circuit 40 outputs a drive signal to the right front extension side damping force control valve 13.
  • the drive circuit 41 outputs a drive signal to the left rear compression side damping force control valve 16, and the drive circuit 42 outputs a drive signal to the left rear extension side damping force control valve 17.
  • the drive circuit 43 outputs a drive signal to the right rear compression side damping force control valve 18, and the drive circuit 44 outputs a drive signal to the right rear extension side damping force control valve 19.
  • CAN Controller Area Network
  • steering angle sensor 46 steering angle sensor 46
  • torque sensor 47 vehicle speed sensor 48
  • etc. are connected to the input side of the microcomputer 34.
  • a plurality of drive circuits 35 to 44 and the like are connected to the output side of the microcomputer 34.
  • the microcomputer 34 has a memory 34A including, for example, a ROM, a RAM, a non-volatile memory, or the like.
  • the memory 34A stores a processing program or the like for controlling the operation of the drive circuits 35 to 44 according to the traveling state of the vehicle.
  • CAN45 is a network necessary for data communication, and outputs various vehicle information including, for example, outside air temperature (ambient temperature), date and time information, load information such as load weight, and vehicle speed information.
  • the steering angle sensor 46 is provided on the steering wheel 49A or the like of the steering mechanism 49 shown in FIG.
  • the steering mechanism 49 has a steering wheel 49A, a steering shaft 49B, a steering gear, a tie rod (none of which are shown), and the like, and is directly (mechanically) connected to the left and right front wheels.
  • the steering angle sensor 46 detects the steering angle of the steering wheel 49A, which is a physical quantity related to the steering of the steering mechanism, and outputs a signal corresponding to the steering angle.
  • the torque sensor 47 is provided in the middle of the steering shaft 49B, detects the torque of the steering shaft 49B that is twisted when the steering wheel 49A is steered, and outputs a signal corresponding to the torque.
  • the vehicle speed sensor 48 detects the traveling speed of the vehicle as the vehicle speed and outputs a signal corresponding to the vehicle speed.
  • the output signal according to the steering angle of the steering wheel 49A, the output signal according to the torque of the steering shaft 49B, and the output signal according to the vehicle speed may be included in the vehicle information output from the CAN 45.
  • the microcomputer 34 Based on the output signals from the CAN 45, the steering angle sensor 46, the torque sensor 47, the vehicle speed sensor 48, etc., the microcomputer 34 is a vehicle such as whether the vehicle is in a straight running state or in a turning running state including a lane change operation. Detects or estimates the running state (vehicle behavior) of. Then, the microcomputer 34 selectively drives the drive circuits 35 to 44 according to the vehicle behavior to control the roll rigidity of the vehicle body by the suspension device 1 and control the damping force of each of the hydraulic cylinders 2 to 5.
  • the drive circuits 35 to 44 are configured by, for example, a PWM (Pulse Width Modulation) circuit, and output a drive current according to a control signal from the microcomputer 34.
  • the drive circuits 35 and 36 supply the front and rear bridge valves 21 and 24 with a drive current for opening the valve from the closed state and a holding current for holding the valve in the opened state.
  • the drive circuits 37 to 44 include compression side damping force control valves 10, 12, 16, 18 on the left front, right front, left rear, and right rear, and extension side damping force control valves 11, left front, right front, left rear, and right rear.
  • the damping force during expansion and contraction of the left front, right front, left rear, and right rear hydraulic cylinders 2, 3, 4, and 5 is arbitrarily adjusted according to the magnitude of the current values supplied to 13, 17, and 19. As a result, the ride quality, steering stability, and running stability of the vehicle are ensured according to the running state of the vehicle.
  • the front and rear bridge valves 21 and 24 are closed to increase the roll rigidity of the vehicle body, for example, when traveling at high speed on a highway or the like, the lane shift is performed twice in succession to avoid danger. Even when the traveling (double lane change) is performed, the roll angle of the vehicle body can be kept small as shown by the characteristic line 50 in FIG. As a result, the behavior of the vehicle at the time of double lane change is stable, and safety can be ensured. On the other hand, when the double lane change is performed with the front and rear bridge valves 21 and 24 open, the roll rigidity of the vehicle body becomes low, so that the vehicle body is shown as the characteristic line 51 in FIG. The roll angle of is large. As a result, the behavior of the vehicle at the time of double lane change becomes unstable.
  • the roll angle of the vehicle body is characteristic in FIG. It changes like line 52.
  • the front and rear bridge valves 21 and 24 are opened to reduce the roll rigidity of the vehicle body, the roll angle of the vehicle body changes as shown in the characteristic line 53 in FIG. In this case, focusing on the vertical vibration of the driver's seat floor of the vehicle, as shown in FIG. 6, when the front and rear bridge valves 21 and 24 are closed (characteristic line 54), the front and rear bridge valves 21 , 24, the vertical vibration of the driver's seat floor becomes larger than when the valve is opened (characteristic line 55).
  • the state in which the steering wheel 49A is steered by the driver's will is a case where the vehicle makes a turning run, a lane change, a double lane change for avoiding danger, etc., and the roll rigidity of the vehicle body is increased by the suspension device 1.
  • the state in which the steering wheel 49A is steered by the driver's will is defined as a positive input to the steering mechanism 49.
  • the steering mechanism 49 may be steered regardless of the driver's intention due to input (kickback) from the road surface due to unevenness or the like.
  • the suspension device 1 lowers the roll rigidity of the vehicle body to reduce the transmission of vibration to the vehicle body, improve the riding comfort, and improve the road surface of the wheels (tires). It is a situation where we want to improve the followability to. In this way, the state in which the steering wheel 49A is steered by the road surface input regardless of the driver's intention is defined as the reverse input to the steering mechanism 49.
  • the steering direction information included in the output signal from the steering angle sensor 46 and the steering torque acting direction information included in the output signal from the torque sensor 47 are the same.
  • the direction when the steering mechanism 49 is steered by the input from the road surface (torque acts on the steering shaft 49B), the steering direction information included in the output signal from the steering angle sensor 46 and the torque sensor The steering torque action direction information included in the output signal from 47 is in the opposite direction. Then, the controller 33 acquires the steering torque action direction information in the steering mechanism 49 from the torque sensor 47, and also acquires the steering angle direction information based on the physical quantity (steering angle) related to the steering of the steering mechanism 49 from the steering angle sensor 46.
  • the roll rigidity (suspension rigidity) of the vehicle body is changed according to the steering torque action direction information and the steering angle direction information. That is, the controller 33 outputs a command to change the suspension rigidity including the roll rigidity of the vehicle body according to the difference between the steering command to the steering mechanism 49 and the steering state by the steering mechanism 49.
  • the sign of the signal of the output signal from the torque sensor 47 differs depending on the twisting direction of the torque sensor 47, for example, the twisting direction is the clockwise direction (CW). ) Is positive (+), and counterclockwise (CCW) is negative (-).
  • the code discrimination table of FIG. 8 the code of the output signal from the steering angle sensor 46 (steering direction information) and the code of the output signal from the torque sensor 47 (steering torque acting direction information) are changed. By discriminating, it is possible to determine whether the steering mechanism 49 is in the normal input state or the reverse input state.
  • the output signal from the steering angle sensor 46 when the steering wheel 49A is steered in the right turning direction is positive (+), and the output signal when the steering wheel 49A is steered in the left turning direction is negative (-). .. Further, the signal output when the torque sensor 47 is twisted in the right turning direction is set to positive (+), and the signal output when the torque sensor 47 is twisted in the left turning direction is set to negative ( ⁇ ).
  • the determination of whether the steering mechanism 49 is in the normal input state or the reverse input state can be divided into four modes.
  • the first aspect in FIG. 8 is a case where the steering wheel 49A is steered in the right turning direction by the driver's will, and the sign (+) of the output signal from the torque sensor 47 and the output from the steering angle sensor 46.
  • the sign (+) of the signal matches.
  • control is performed to increase the roll rigidity of the vehicle body.
  • the second aspect is a case where the driver does not steer the steering wheel 49A (straight running state) and a torque is applied to the steering shaft 49B in the right turning direction by an input from the road surface, and the torque sensor
  • the sign (+) of the output signal from 47 and the sign ( ⁇ ) of the output signal from the steering angle sensor 46 do not match. In this case, since it is determined that the steering mechanism 49 is in the reverse input state, the roll rigidity of the vehicle body is controlled to be lowered.
  • the third aspect is a case where the driver has not steered the steering wheel 49A (straight running state), and a torque in the left turning direction is applied to the steering shaft 49B by an input from the road surface, and the torque sensor 47
  • the sign ( ⁇ ) of the output signal from the steering angle sensor 46 and the sign (+) of the output signal from the steering angle sensor 46 do not match.
  • the roll rigidity of the vehicle body is controlled to be lowered.
  • the fourth aspect is the case where the steering wheel 49A is steered in the left turning direction by the driver's will, and the sign (-) of the output signal from the torque sensor 47 and the sign (-) of the output signal from the steering angle sensor 46. ) Matches. In this case, since it is determined that the steering mechanism 49 is in a positive input state, control is performed to increase the roll rigidity of the vehicle body.
  • the direction of the steering torque action direction information included in the output signal from the torque sensor 47 and the direction of the steering direction information included in the output signal from the steering angle sensor 46 are the same.
  • the controller 33 determines that a positive input has been made to the steering mechanism 49, and closes the front and rear bridge valves 21 and 24 so that the roll rigidity (suspension rigidity) of the vehicle body becomes high. Let me. As a result, the oil liquid flows in and out of the left and right accumulator devices 27 and 30, and the roll rigidity of the vehicle body is increased, so that stable turning performance can be obtained.
  • the controller 33 determines the steering mechanism 49. It is determined that the reverse input has been performed with respect to the above, and the front and rear bridge valves 21 and 24 are opened so that the roll rigidity (suspension rigidity) of the vehicle body becomes low. As a result, the inflow and outflow of the oil liquid to the left and right accumulator devices 27 and 30 becomes a very small value only the sum of the inflow and outflow of the piston rod 7A to each cylinder 6, and the roll rigidity of the vehicle body becomes low. As a result, the vibration of the vehicle body due to the change of the road surface is suppressed, the riding comfort is improved, and the followability of each wheel to the change of the road surface is also improved.
  • the torque signal from the torque sensor 47 is first generated. It is output, the steering angle speed signal from another steering angle sensor (not shown) is output second, the steering angle signal from the steering angle sensor 46 is output third, and the lateral acceleration sensor (not shown) is output fourth.
  • the lateral acceleration signal from (not shown) is output, the roll rate signal from the spring vertical acceleration sensor (not shown) is output fifth, and the roll angle signal from the spring vertical acceleration sensor (not shown) is output sixth. It is output.
  • the torque signal from the torque sensor 47 is output first, the rudder angle speed signal from the other rudder angle sensor is output second, and the rudder is steered third.
  • the steering angle signal from the angle sensor 46 is output. Therefore, based on the sign discrimination between the output signal from the torque sensor 47 and the output signal from the steering angle sensor 46, it is possible to quickly and accurately determine whether the steering mechanism 49 is in the normal input state or the reverse input state. It is possible to quickly control the roll rigidity of the vehicle body according to the traveling state of the vehicle.
  • the controller 33 executes the suspension device 1 from a state in which the roll rigidity is low (a state in which the front and rear bridge valves 21 and 24 are opened) in order to increase the roll rigidity.
  • the control process will be described with reference to FIG.
  • the steps in the flow chart shown in FIG. 9 use the notation "S", and for example, step 1 is shown as "S1".
  • the front and rear bridge valves 21 and 24 are in the open state in S1.
  • the torque sensor signal T which is an output signal from the torque sensor 47, is read, and in S3, it is determined whether or not the absolute value of the read torque sensor signal T is equal to or greater than a preset torque threshold value.
  • the steering angle sensor signal ⁇ which is an output signal from the steering angle sensor 46, is read in S5, and the process proceeds to S6.
  • the cycle time ⁇ t is integrated with the counter n to calculate the time t during which the positive input state continues, and then in S14, the calculated time t is a predetermined determination time set in advance. It is determined whether or not it is t0 or more. If “NO” is determined in S14, the system returns to S2, and if "YES” is determined, the front and rear bridge valves 21 and 24 are closed in S15. As a result, the roll rigidity of the vehicle body is increased, and the steering stability and running stability of the vehicle during turning can be ensured.
  • the roll rigidity of the vehicle body is changed from a low roll rigidity to a high roll rigidity according to the damping force control for each of the hydraulic cylinders 2 to 5.
  • the suspension rigidity including the roll rigidity includes the transient rigidity when the vehicle is running.
  • the steering angle threshold value becomes smaller as the vehicle speed increases, and the steering angle threshold value becomes zero (0) at a predetermined vehicle speed or higher. As a result, it is considered that the higher the vehicle speed, the easier it is to control to increase the roll rigidity.
  • FIG. 11 shows changes over time in the steering angle of the steering wheel 49A and the roll rate of the vehicle body when the vehicle performs a double lane change assuming danger avoidance
  • FIG. 12 shows the XII portion in FIG. Is an enlargement of.
  • the characteristic line 58 in FIGS. 11 and 12 indicates the phase of the steering angle of the handle 49A
  • the characteristic line 59 is the roll rate (roll behavior of the vehicle body) when the front and rear bridge valves 21 and 24 are closed.
  • the characteristic line 60 shows the phase of the roll rate (roll behavior of the vehicle body) when the front and rear bridge valves 21 and 24 are opened.
  • the phase of the steering angle (characteristic line 58) of the steering wheel 49A is ahead of the phase of the roll behavior of the vehicle body (characteristic lines 59 and 60).
  • the front and rear bridge valves 21 and 24 have the front and rear bridge valves 21 and 24 with respect to the determination time t for closing the front and rear bridge valves 21 and 24 from the valve open state (increasing the roll rigidity).
  • the switching time t'from the valve open state to the valve closed state is sufficiently short. Therefore, the roll rigidity of the vehicle body can be quickly switched according to the traveling state of the vehicle.
  • the steering angle sensor 46 and the torque sensor 47 are standard equipment on vehicles equipped with an electric power steering system (Electric Power Steering). Therefore, the signals from the steering angle sensor 46 and the torque sensor 47 already mounted on the vehicle can be used, and there is no need to add new sensors. Therefore, it is possible to simplify the system for controlling the roll rigidity according to whether the steering mechanism 49 has a forward input or a reverse input, and it is possible to contribute to cost reduction.
  • Electric Power Steering Electric Power Steering
  • control process of FIG. 9 exemplifies a control for increasing the roll rigidity of the vehicle body when it is determined that the steering mechanism 49 is in a positive input state.
  • the controller 33 determines the road surface state based on, for example, the magnitudes of the torque sensor signal T and the steering angle sensor signal ⁇ , and controls each compression side damping force.
  • the valves 10, 12, 16, 18 and the extension side damping force control valves 11, 13, 17, 19 can be controlled. As a result, it is possible to suppress the fluttering of each wheel (unsprung mass) and improve the riding comfort when traveling on rough roads.
  • FIG. 13 shows the steering angle (characteristic line 61) of the steering wheel 49A and the roll rate (characteristic line 62) of the vehicle body when the vehicle is traveling straight on a rough road having a road surface shape with opposite phases.
  • the change with time of the cylinder stroke (characteristic line 63) of the hydraulic cylinder on the front wheel side (left front hydraulic cylinder 2 or right front hydraulic cylinder 3) is shown.
  • the value of the steering angle sensor signal ⁇ intermittently exceeds the threshold value (dead zone). This situation corresponds to the second or third aspect of the code discrimination table of FIG.
  • the present embodiment it is possible to quickly determine whether the steering mechanism 49 is subjected to the forward input or the reverse input based on the signals from the steering angle sensor 46 and the torque sensor 47. Can be done.
  • the front and rear bridge valves 21 and 24 are closed to control the roll rigidity by the left and right accumulator devices 27 and 30, and the damping force control valves 10, respectively.
  • the damping force By controlling the damping force by 11, 12, 13, 16, 17, 18, and 19, it is possible to improve the steering stability and running stability of the vehicle.
  • the front and rear bridge valves 21 and 24 are opened to lower the roll rigidity, improve the riding comfort, and follow the wheel to the road surface (rough road running performance). Can be enhanced.
  • the controller 33 executes control to reduce the roll rigidity from the state where the roll rigidity of the vehicle body is high (the front and rear bridge valves 21 and 24 are closed). The process will be described with reference to FIG.
  • S34 it is determined whether or not the absolute value of the torque sensor signal T2 when the vehicle speed is the second set speed V2 or less is less than the preset torque threshold value.
  • the operation of shifting the roll rigidity of the vehicle body from a high state to a low state is prohibited when the vehicle speed is higher than a predetermined speed (second set speed V2), and the vehicle steering stability and running stability are prohibited. Sex can be ensured. Further, when the roll rigidity of the vehicle body is changed from a high state to a low state, the degree of urgency related to safety is low. Therefore, in the control process described above, in order to reduce the control frequency, the sign discrimination between the steering angle sensor signal ⁇ and the torque sensor signal T is performed even when the direction of the steering torque acting direction information and the direction of the steering direction information are different. Instead, the damping force control is switched according to the magnitude of the absolute value of the torque sensor signal T and the absolute value of the rudder angle sensor signal ⁇ .
  • the front and rear bridge valves 21, 24 By opening the valve, the roll rigidity of the vehicle body can be lowered and the riding comfort can be improved.
  • the torque threshold value and the rudder angle threshold value are set according to the vehicle speed. For example, when the vehicle speed is larger than the first set speed V1 and is equal to or less than the second set speed V2, the torque threshold value and the rudder angle threshold are set. The angle threshold is set small. As a result, even when the vehicle speed is relatively high, when the torque sensor signal T2 and the steering angle sensor signal ⁇ 2 are small, the front and rear bridge valves 21 and 24 can be opened to improve the riding comfort.
  • the controller 33 executes the control process shown in FIG. 15 when the roll rigidity of the vehicle body is lowered from a high state, and the absolute values of the torque sensor signal and the steering angle sensor signal are each set to a predetermined threshold value.
  • the configuration in which the front and rear bridge valves 21 and 24 are opened when the state of less than or equal to is continued for a predetermined time or longer is illustrated.
  • the present invention is not limited to this, and for example, the steering angular velocity is detected in addition to the torque sensor signal and the steering angle sensor signal, and the absolute values of the torque sensor signal, the steering angle sensor signal, and the steering angular velocity are each less than a predetermined threshold value.
  • the front and rear bridge valves 21 and 24 may be opened when a certain state continues for a predetermined time or longer.
  • a vehicle provided with a steering mechanism 49 directly (mechanically) connected to the left and right front wheels is illustrated.
  • the present invention is not limited to this, and can be applied to a vehicle provided with a steering mechanism such as a steering wheel in which the steering wheel and the left and right front wheels are not indirectly connected.
  • a force generating mechanism capable of adjusting the force generated by the suspension device 1 a related suspension suspension in which the left and right sides of the damping force adjusting type hydraulic cylinders 2 to 5 are cross-piped will be described as an example.
  • the force generation mechanism may be configured by using, for example, a hydraulic active suspension, an active stabilizer, an air suspension, an electromagnetic suspension, or the like.
  • the first aspect is a vehicle suspension control device, which includes a force generating mechanism provided on the vehicle and capable of adjusting the force generated by the suspension device, and a control unit for controlling the generated force of the force generating mechanism.
  • the control unit acquires steering torque action direction information in a steering mechanism directly or indirectly connected to the wheels, acquires steering direction information based on a physical quantity related to steering of the steering mechanism, and obtains the steering direction information. It is characterized in that the generated force of the force generating mechanism is controlled so as to change the suspension rigidity according to the steering torque acting direction information and the steering direction information.
  • the force when the control unit is in the same direction state in which the directions of the steering torque action direction information and the steering direction information are the same, the force is increased so that the suspension rigidity is increased.
  • the generated force of the generating mechanism is increased and the directions of the steering torque acting direction information and the steering direction information are different, the generated force of the force generating mechanism is set to be the same as that in the same direction state so that the suspension rigidity is lowered. It is characterized by controlling it so that it is weaker than that.
  • the third aspect is a vehicle control device provided in the vehicle and having a force generating mechanism capable of adjusting the force generated by the suspension device and a control unit for controlling the generated force in the force generating mechanism.
  • the control unit acquires steering torque acting direction information in the steering mechanism directly or indirectly connected to the wheels, acquires steering direction information based on a physical quantity related to steering of the steering mechanism, and obtains the steering torque acting direction information. It is characterized in that a command for changing the suspension rigidity according to the steering direction information is output to the force generating mechanism.
  • a fourth aspect is a vehicle control method executed by a control unit for controlling the generated force in a force generating mechanism provided in the vehicle and capable of adjusting the generated force, which is directly or indirectly connected to the wheels.
  • the steering torque acting direction information in the steering mechanism is acquired, the steering direction information based on the physical quantity related to the steering of the steering mechanism is acquired, and according to the acquired steering torque acting direction information and the steering direction information. It is characterized in that a command for changing the suspension rigidity is output to the force generating mechanism.
  • a fifth aspect is a vehicle control device provided in the vehicle and having a force generating mechanism capable of adjusting the generated force and a control unit for controlling the generated force of the force generating mechanism. Is characterized in that a command for changing the suspension rigidity including the roll rigidity is output to the force generating mechanism according to the difference between the steering command to the steering mechanism provided in the vehicle and the steering state by the steering mechanism. ..
  • the suspension rigidity includes a transient rigidity due to damping force control.
  • the suspension rigidity includes a transient rigidity due to damping force control.
  • the damping force is applied according to the magnitude of the absolute value of the steering torque and / or the steering angle.
  • the damping force is applied according to the magnitude of the absolute value of the steering torque and / or the steering angle. It is characterized by switching the control.
  • Suspension device 2 Left front hydraulic cylinder (force generation mechanism) 3 Right front hydraulic cylinder (force generation mechanism) 4 Left rear hydraulic cylinder (force generation mechanism) 5 Right rear hydraulic cylinder (force generation mechanism) 33 Controller (control unit) 46 Steering angle sensor 47 Torque sensor 49 Steering mechanism

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

左前油圧シリンダ(2)と右前油圧シリンダ(3)との間を、第1の接続管路(8)と第2の接続管路(9)とによりクロスで接続し、左後油圧シリンダ(4)と右後油圧シリンダ(5)との間を、第3の接続管路(14)と第4の接続管路(15)とによりクロスで接続する。第1,第2の接続管路(8),(9)間は前側ブリッジ通路(20)で接続し、前側ブリッジ通路(20)には前側ブリッジバルブ(21)を設ける。第3,第4の接続管路(14),(15)間は後側ブリッジ通路(23)で接続し、後側ブリッジ通路(23)には後側ブリッジバルブ(24)を設ける。コントローラ(33)は、舵角センサ(46)及びトルクセンサ(47)からの信号により、運転者の意志による転舵か路面からの入力かを判断し、この判断に応じて前,後のブリッジバルブ(21),(24)を開弁または閉弁させ、車体のロール剛性を変化させる。

Description

車両サスペンション制御装置、車両制御装置および車両制御方法
 本開示は、例えば4輪自動車等に用いられる車両サスペンション制御装置、車両制御装置および車両制御方法に関する。
 一般に、4輪自動車等の車両には、サスペンション装置、スタビライザ装置等による車体のロール剛性を制御し、走行時の安定性を確保する車両制御装置が搭載されている。このような車両制御装置として、舵角センサ、車速センサ等の信号に基づいて推定した左,右の車輪に対する路面の摩擦係数が異なるときに、アクティブスタビライザによって車両挙動を制御すると共に、各車輪のキングピン軸回りのモーメントの変化量を打消すように、パワーステアリング装置による操舵力を制御するものが知られている(特許文献1参照)。また、路面の摩擦力が変化したときにステアリングに作用するステアリングトルクに基づいて算出された第1のロールレートと、車両の操舵角と車速とに基づいて算出された第2のロールレートとのうち、大きい方のロールレートに基づいてロール剛性を制御するものが知られている(特許文献2参照)。
特開2009-173169号公報 国際公開第2018/003828号
 従来技術によれば、車両の走行状態を判断するために複雑な制御が行われるため、車両の走行状態に応じたロール剛性の制御を迅速に行うのが難しいという問題がある。
 本発明の一実施形態の目的は、車両の走行状態に応じてロール剛性の制御を迅速に行うことができる車両サスペンション制御装置、車両制御装置および車両制御方法を提供することにある。
 本発明の一実施形態は、車両サスペンション制御装置であって、車両に設けられ、サスペンション装置にて発生する力を調整可能な力発生機構と、前記力発生機構の発生力を制御する制御部と、を有し、前記制御部は、車輪と直接または間接的に接続されるステアリング機構におけるステアリングトルク作用方向情報を取得し、前記ステアリング機構の転舵に関する物理量に基づく転舵方向情報を取得し、前記ステアリングトルク作用方向情報と前記転舵方向情報とに応じてサスペンション剛性を変更するように、前記力発生機構の発生力を制御する。
 また、本発明の一実施形態は、車両に設けられ、サスペンション装置にて発生する力を調整可能な力発生機構と、前記力発生機構における発生力を制御する制御部を有する車両制御装置であって、前記制御部は、車輪と直接または間接的に接続されるステアリング機構におけるステアリングトルク作用方向情報を取得し、前記ステアリング機構の転舵に関する物理量に基づく転舵方向情報を取得し、前記ステアリングトルク作用方向情報と前記転舵方向情報とに応じてサスペンション剛性を変更する指令を前記力発生機構に出力する。
 また、本発明の一実施形態は、車両に設けられ、発生する力を調整可能な力発生機構と、前記力発生機構の発生力を制御する制御部と、を有する車両制御装置であって、前記制御部は、前記車両に設けられるステアリング機構への操舵指令と前記ステアリング機構による転舵状態との相違に応じてロール剛性を含むサスペンション剛性を変更する指令を前記力発生機構に出力する。
 また、本発明の一実施形態は、車両に設けられ、発生する力を調整可能な力発生機構における発生力を制御するための制御部が実行する車両制御方法であって、車輪と直接または間接的に接続されるステアリング機構におけるステアリングトルク作用方向情報を取得し、前記ステアリング機構の転舵に関する物理量に基づく転舵方向情報を取得し、取得した前記ステアリングトルク作用方向情報と前記転舵方向情報とに応じてサスペンション剛性を変更する指令を前記力発生機構に出力する。
 本発明の一実施形態によれば、車両の走行状態を早期に判断し、走行状態に応じてロール剛性の制御を迅速に行うことができる。
本発明の一実施形態による車両サスペンション制御装置を示すシステム構成図である。 コントローラと各種センサおよび各種アクチュエータとの接続状態を示すブロック図である。 ステアリング機構、舵角センサ、トルクセンサ等を示す概略図である。 危険回避走行時におけるロール角の変化を示す特性線図である。 悪路直進走行時におけるロール角の変化を示す特性線図である。 走行時における運転席フロアの上下振動を示す特性線図である。 トルクセンサの出力特性を示す特性線図である。 トルクセンサ信号と舵角センサ信号の符号を判別する符号判別表である。 ロール剛性を高めるときにコントローラが実行する制御処理を示す流れ図である。 車速と舵角閾値との関係を示す特性線図である。 ロール剛性を切り替える判断のタイミングに関する舵角とロールレートとの関係を示す特性線図である。 図11中のXII部を拡大した特性線図である。 悪路走行時における舵角、ロールレート、シリンダストロークの関係を示す特性線図である。 悪路走行時における運転席フロアの上下振動を示す特性線図である。 ロール剛性を低くするときにコントローラが実行する制御処理を示す流れ図である。
 以下、本発明の実施形態による車両サスペンション制御装置、車両制御装置、車両制御方法を、4輪自動車に適用した場合を例に挙げ、添付図面に従って詳細に説明する。
 図1は、実施形態によるサスペンション装置のシステム構成を示している。サスペンション装置1は、車体側と4つの車輪側(左前輪FL、右前輪FR、左後輪RL、右後輪RR)との間にそれぞれ設けられている。各サスペンション装置1は、懸架ばね(図示せず)と、懸架ばねと並列関係をなして車体側と各車輪側との間に設けられた4つの油圧シリンダ(左前油圧シリンダ2、右前油圧シリンダ3、左後油圧シリンダ4、右後油圧シリンダ5)とを含んで構成されている。なお、図1中では、車両の各車輪位置を、左前輪(FL),右前輪(FR),左後輪(RL),右後輪(RR)として示している。
 これら左前油圧シリンダ2、右前油圧シリンダ3、左後油圧シリンダ4、右後油圧シリンダ5は、車両の車体(ばね上)と各車輪(ばね下)との間に介装され、車体と各車輪の相対的な動きに応じて伸縮することにより、車両の振動を緩衝する油圧式の減衰力調整式緩衝器を構成している。即ち、各油圧シリンダ2~5は、車体と各車輪との間でサスペンション装置1にて発生する力を調整可能な力発生機構を構成している。左前輪側の左前油圧シリンダ2は、有底筒状のチューブからなるシリンダ(液圧シリンダ)6と、該シリンダ6内に摺動可能に挿嵌されたピストン7と、一端側がピストン7に固定され他端側がシリンダ6外に突出したピストンロッド7Aを含んで構成されている。シリンダ6内は、ピストン7により上部室Aと下部室Bとの上,下の2室に画成されている。
 これと同様に、右前油圧シリンダ3、左後油圧シリンダ4、右後油圧シリンダ5についても、それぞれがシリンダ6、ピストン7およびピストンロッド7Aを含んで構成されている。そして、それぞれのシリンダ6内は、ピストン7により上部室Aと下部室Bとに画成されている。
 左前油圧シリンダ2と右前油圧シリンダ3との間は、第1の接続管路8と第2の接続管路9とによりクロスで接続されている。即ち、第1の接続管路8は、左前油圧シリンダ2の下部室Bと右前油圧シリンダ3の上部室Aとの間を連通させるように、油圧シリンダ2,3間を左,右方向に延びて配置されている。第2の接続管路9は、左前油圧シリンダ2の上部室Aと右前油圧シリンダ3の下部室Bとの間を連通させるように、油圧シリンダ2,3間を左,右方向に延びて配置されている。このように、左前油圧シリンダ2と右前油圧シリンダ3とは、クロス配管(第1,第2の接続管路8,9)を介して接続された関連懸架装置を構成している。
 左前油圧シリンダ2の上部室Aと第2の接続管路9との接続部位には、左前圧縮側減衰力制御バルブ10が設けられている。左前圧縮側減衰力制御バルブ10は、左前油圧シリンダ2の圧縮時に上部室Aから第2の接続管路9に向けて流出する油液の減衰力を電子制御で可変に調整し、上部室Aからの流れを減衰する。また、左前圧縮側減衰力制御バルブ10は、第2の接続管路9から上部室Aに向けて油液が流入するのを許し、逆向きの流れを阻止するチェック弁10Aを有している。
 一方、左前油圧シリンダ2の下部室Bと第1の接続管路8との接続部位には、左前伸長側減衰力制御バルブ11が設けられている。左前伸長側減衰力制御バルブ11は、左前油圧シリンダ2の伸長時に下部室Bから第1の接続管路8に向けて流出する油液の減衰力を電子制御で可変に調整し、下部室Bからの流れを減衰する。また、左前伸長側減衰力制御バルブ11は、第1の接続管路8から下部室Bに向けて油液が流入するのを許し、逆向きの流れを阻止するチェック弁11Aを有している。
 右前油圧シリンダ3の上部室Aと第1の接続管路8との接続部位には、右前圧縮側減衰力制御バルブ12が設けられている。右前圧縮側減衰力制御バルブ12は、右前油圧シリンダ3の圧縮時に上部室Aから第1の接続管路8に向けて流出する油液の減衰力を電子制御で可変に調整し、上部室Aからの流れを減衰する。また、右前圧縮側減衰力制御バルブ12は、第1の接続管路8から上部室Aに向けて油液が流入するのを許し、逆向きの流れを阻止するチェック弁12Aを有している。
 一方、右前油圧シリンダ3の下部室Bと第2の接続管路9との接続部位には、右前伸長側減衰力制御バルブ13が設けられている。右前伸長側減衰力制御バルブ13は、右前油圧シリンダ3の伸長時に下部室Bから第2の接続管路9に向けて流出する油液の減衰力を電子制御で可変に調整し、下部室Bからの流れを減衰する。また、右前伸長側減衰力制御バルブ13は、第2の接続管路9から下部室Bに向けて油液が流入するのを許し、逆向きの流れを阻止するチェック弁13Aを有している。これら各減衰力制御バルブ10,11,12,13は、後述するコントローラ33からの駆動信号によって制御され、車両の走行状態に応じて左前油圧シリンダ2、右前油圧シリンダ3の伸縮時の減衰力が調整される。
 左後油圧シリンダ4と右後油圧シリンダ5との間は、第3の接続管路14と第4の接続管路15とによりクロスで接続されている。即ち、第3の接続管路14は、左後油圧シリンダ4の下部室Bと右後油圧シリンダ5の上部室Aとの間を連通させるように、油圧シリンダ4,5間を左,右方向に延びて配置されている。第4の接続管路15は、左後油圧シリンダ4の上部室Aと右後油圧シリンダ5の下部室Bとの間を連通させるように、油圧シリンダ4,5間を左,右方向に延びて配置されている。このように、左後油圧シリンダ4と右後油圧シリンダ5とは、クロス配管(第3,第4の接続管路14,15)を介して接続された関連懸架装置を構成している。
 左後油圧シリンダ4の上部室Aと第4の接続管路15との接続部位には、左後圧縮側減衰力制御バルブ16が設けられている。左後圧縮側減衰力制御バルブ16は、左後油圧シリンダ4の圧縮時に上部室Aから第4の接続管路15に向けて流出する油液の減衰力を電子制御で可変に調整し、上部室Aからの流れを減衰する。また、左後圧縮側減衰力制御バルブ16は、第4の接続管路15から上部室Aに向けて油液が流入するのを許し、逆向きの流れを阻止するチェック弁16Aを有している。
 一方、左後油圧シリンダ4の下部室Bと第3の接続管路14との接続部位には、左後伸長側減衰力制御バルブ17が設けられている。左後伸長側減衰力制御バルブ17は、左後油圧シリンダ4の伸長時に下部室Bから第3の接続管路14に向けて流出する油液の減衰力を電子制御で可変に調整し、下部室Bからの流れを減衰する。また、左後伸長側減衰力制御バルブ17は、第3の接続管路14から下部室Bに向けて油液が流入するのを許し、逆向きの流れを阻止するチェック弁17Aを有している。
 右後油圧シリンダ5の上部室Aと第3の接続管路14との接続部位には、右後圧縮側減衰力制御バルブ18が設けられている。右後圧縮側減衰力制御バルブ18は、右後油圧シリンダ5の圧縮時に上部室Aから第3の接続管路14に向けて流出する油液の減衰力を電子制御で可変に調整し、上部室Aからの流れを減衰する。また、右後圧縮側減衰力制御バルブ18は、第3の接続管路14から上部室Aに向けて油液が流入するのを許し、逆向きの流れを阻止するチェック弁18Aを有している。
 一方、右後油圧シリンダ5の下部室Bと第4の接続管路15との接続部位には、右後伸長側減衰力制御バルブ19が設けられている。右後伸長側減衰力制御バルブ19は、下部室Bから第4の接続管路15に向けて流出する油液の減衰力を電子制御で可変に調整し、下部室Bからの流れを減衰する。また、右後伸長側減衰力制御バルブ19は、第4の接続管路15から下部室Bに向けて油液が流入するのを許し、逆向きの流れを阻止するチェック弁19Aを有している。これら各減衰力制御バルブ16,17,18,19は、コントローラ33からの駆動信号によって制御され、車両の走行状態に応じて左後油圧シリンダ4、右後油圧シリンダ5の伸縮時の減衰力が調整される。
 前側ブリッジ通路20は、第1の接続管路8と第2の接続管路9との間を接続している。前側ブリッジ通路20の途中には前側ブリッジバルブ21が設けられ、この前側ブリッジバルブ21によって前側ブリッジ通路20が連通(開通)、遮断される。前側ブリッジバルブ21は、例えば2ポート2位置の切換弁からなり、無通電時は閉弁位置を保持するノーマルクローズ型(常閉型)の電磁弁である。前側ブリッジバルブ21が閉弁位置を保持している間は、第1の接続管路8と第2の接続管路9との間は遮断されている。前側ブリッジバルブ21は、コントローラ33からの駆動信号によって閉弁位置から開弁位置に切換えられ、前側ブリッジ通路20を介して第1,第2の接続管路8,9間を連通させる。これにより、左前油圧シリンダ2と右前油圧シリンダ3とは、上部室Aと下部室Bとが互いに連通した状態となる。
 また、前側ブリッジ通路20には、前側ブリッジバルブ21を迂回するバイパス通路22が設けられ、バイパス通路22にはオリフィス22Aが設けられている。オリフィス22Aは、サスペンション装置1による車体のロール剛性に影響を与えない微小なサイズであり、前側ブリッジバルブ21と並列に設けられている。オリフィス22Aは、温度変化等により前側ブリッジバルブ21の前後(後述する左側連通路25と右側連通路26との間)に圧力差が生じたときに、この圧力差を徐々に減少させる。
 後側ブリッジ通路23は、第3の接続管路14と第4の接続管路15との間を接続している。後側ブリッジ通路23の途中には後側ブリッジバルブ24が設けられ、この後側ブリッジバルブ24によって後側ブリッジ通路23が連通、遮断される。後側ブリッジバルブ24は、例えば2ポート2位置の切換弁からなり、無通電時は閉弁位置を保持するノーマルクローズ型(常閉型)の電磁弁である。後側ブリッジバルブ24が閉弁位置を保持している間は、第3の接続管路14と第4の接続管路15との間は遮断されている。後側ブリッジバルブ24は、コントローラ33からの駆動信号によって閉弁位置から開弁位置に切換えられ、後側ブリッジ通路23を介して第3,第4の接続管路14,15間を連通させる。これにより、左後油圧シリンダ4と右後油圧シリンダ5とは、上部室Aと下部室Bとが互いに連通した状態となる。
 左側連通路25は、第1の接続管路8と第3の接続管路14とに接続され、第1の接続管路8と第3の接続管路14との間を常時連通させている。右側連通路26は、第2の接続管路9と第4の接続管路15とに接続され、第2の接続管路9と後側の第4の接続管路15との間を常時連通させている。
 左側連通路25の途中には、左アキュムレータ装置27が設けられている。左アキュムレータ装置27は、左側連通路25の途中から分岐した導油管路28の先端に設けられ、左側連通路25を介して第1の接続管路8と第3の接続管路14とに接続されている。左アキュムレータ装置27は、前,後のブリッジバルブ21,24が閉弁している場合には、左前油圧シリンダ2の下部室B、右前油圧シリンダ3の上部室A、左後油圧シリンダ4の下部室B、右後油圧シリンダ5の上部室Aの4つの油室の体積変化を補償する。
 導油管路28の途中には、減衰バルブ29が設けられている。減衰バルブ29は、流入制御バルブ29Aと流出制御バルブ29Bとオリフィス29Cとが並列接続された弁装置として構成されている。減衰バルブ29は、左側連通路25から左アキュムレータ装置27に向けて油液が流入するときに、この油液に対してオリフィス29Cと流入制御バルブ29Aとで絞り抵抗を与え、所定の減衰力を発生させて振動を抑制する。一方、左アキュムレータ装置27から左側連通路25に向けて油液が流出するときには、オリフィス29Cと流出制御バルブ29Bとにより油液に絞り抵抗を与え、所定の減衰力を発生させて振動を抑制する。
 右側連通路26の途中には、右アキュムレータ装置30が設けられている。右アキュムレータ装置30は、右側連通路26の途中から分岐した導油管路31の先端に設けられ、右側連通路26を介して第2の接続管路9と第4の接続管路15とに接続されている。右アキュムレータ装置30は、前,後のブリッジバルブ21,24が閉弁している場合には、左前油圧シリンダ2の上部室A、右前油圧シリンダ3の下部室B、左後油圧シリンダ4の上部室A、右後油圧シリンダ5の下部室Bの4つの油室の体積変化を補償する。
 導油管路31の途中には、流入制御バルブ32Aと流出制御バルブ32Bとオリフィス32Cとが並列接続された減衰バルブ32が設けられている。減衰バルブ32は、右側連通路26から右アキュムレータ装置30に向けて油液が流入するときに、この油液に対してオリフィス32Cと流入制御バルブ32Aとで絞り抵抗を与え、所定の減衰力を発生させて振動を抑制する。一方、右アキュムレータ装置30から右側連通路26に向けて油液が流出するときには、オリフィス32Cと流出制御バルブ32Bとにより油液に絞り抵抗を与え、所定の減衰力を発生させて振動を抑制する。
 従って、前,後のブリッジバルブ21,24が閉弁した状態では、左側連通路25と右側連通路26との間で油液の流通が無くなり、この状態で車両が旋回走行したときには、左側連通路25と右側連通路26との間に圧力差が生じる。例えば車両の左旋回時に車体が右側にローリングしようとする場合には、左前油圧シリンダ2の下部室B、右前油圧シリンダ3の上部室A、左後油圧シリンダ4の下部室B、右後油圧シリンダ5の上部室Aが圧縮され、左アキュムレータ装置27に油液が流入して左側連通路25内の圧力が上昇する。
 このとき、左アキュムレータ装置27に流入する油液の体積は、左前油圧シリンダ2および左後油圧シリンダ4における(シリンダ6の断面積-ピストンロッド7Aの断面積)×(シリンダストローク)と、右前油圧シリンダ3および右後油圧シリンダ5における(シリンダ6の断面積)×(シリンダストローク)とを合計した体積となる。このため、左アキュムレータ装置27は、ガスボリュームが減少し、ガスばね定数が上昇する。また、左前油圧シリンダ2および左後油圧シリンダ4の下部室Bが高圧となり、右前油圧シリンダ3および右後油圧シリンダ5の上部室Aが高圧となるため、車体の右側へのローリングを抑える方向にシリンダ反力が作用する。
 一方、左前油圧シリンダ2の上部室A、右前油圧シリンダ3の下部室B、左後油圧シリンダ4の上部室A、右後油圧シリンダ5の下部室Bの体積は増加し、右アキュムレータ装置30から油液が流出して右側連通路26内の圧力が低下する。このとき、右アキュムレータ装置30から流出する油液の体積は、左前油圧シリンダ2および左後油圧シリンダ4における(シリンダ6の断面積)×(シリンダストローク)と、右前油圧シリンダ3および右後油圧シリンダ5における(シリンダ6の断面積-ピストンロッド7Aの断面積)×(シリンダストローク)とを合計した体積となる。このため、右アキュムレータ装置30は、ガスボリュームが増加し、ガスばね定数が低下する。また、左前油圧シリンダ2および左後油圧シリンダ4の上部室Aが低圧となり、右前油圧シリンダ3および右後油圧シリンダ5の下部室Bが低圧となるため、車体の右側へのローリングを抑える方向にシリンダ反力が作用する。この結果、サスペンション装置1による車体のロール剛性(サスペンション剛性)を高めることができ、旋回走行時の旋回性能を高めることができる構成となっている。
 ここで、前,後のブリッジバルブ21,24が閉弁した状態で車両が直進走行しているときに、左,右の車輪に対して路面からの入力(キックバック)が作用することがある。この場合には、左,右のアキュムレータ装置27,30等の作用により、旋回走行時と同様に車体のロール剛性が高められる。この結果、路面の凹凸等の変化に応じて車体が振動してしまい、乗り心地が大きく損なわれる。
 これに対し、前,後のブリッジバルブ21,24が開弁した状態では、左側連通路25と右側連通路26とは、前,後のブリッジ通路20,23を介して連通する。この結果、各油圧シリンダ2~5の上部室Aと下部室Bとが連通した状態となり、各油圧シリンダ2~5は、路面からの入力に対し、互いに独立した状態で小さな抵抗でスムースに伸縮することができる。この結果、路面の変化に伴う車体の振動が抑制され、乗り心地が向上すると共に、路面の変化に対する各車輪の追従性も向上する。一方、前,後のブリッジバルブ21,24が開弁した状態では、左,右のアキュムレータ装置27,30に対する油液の流出入が各シリンダ6に対するピストンロッド7Aの出入の和のみの非常に小さな値となる。このため、サスペンション装置1による車体のロール剛性が低くなり、旋回性能は低下する。
 次に、各圧縮側減衰力制御バルブ10,12,16,18、各伸長側減衰力制御バルブ11,13,17,19、および前,後のブリッジバルブ21,24等の動作を制御することにより、各油圧シリンダ2~5の減衰力(発生力)を制御する制御部としてのコントローラ33について説明する。
 図2に示すコントローラ33は、各油圧シリンダ2~5の減衰力(発生力)を制御する制御部を構成している。コントローラ33は、左前,右前,左後,右後の圧縮側減衰力制御バルブ10,12,16,18、左前,右前,左後,右後の伸長側減衰力制御バルブ11,13,17,19、および前側ブリッジバルブ21,後側ブリッジバルブ24等の動作を電子制御するサスペンション装置1用のECU(Electronic Control Unit)である。
 コントローラ33は、例えばマイクロコンピュータ34(以下、マイコン34という)と、複数の駆動回路35,36,37,38,39,40,41,42,43,44等を含んで構成されている。駆動回路35は、前側ブリッジバルブ21に駆動信号を出力し、駆動回路36は、後側ブリッジバルブ24に駆動信号を出力する。駆動回路37は、左前圧縮側減衰力制御バルブ10に駆動信号を出力し、駆動回路38は、左前伸長側減衰力制御バルブ11に駆動信号を出力する。駆動回路39は、右前圧縮側減衰力制御バルブ12に駆動信号を出力し、駆動回路40は、右前伸長側減衰力制御バルブ13に駆動信号を出力する。駆動回路41は、左後圧縮側減衰力制御バルブ16に駆動信号を出力し、駆動回路42は、左後伸長側減衰力制御バルブ17に駆動信号を出力する。駆動回路43は、右後圧縮側減衰力制御バルブ18に駆動信号を出力し、駆動回路44は、右後伸長側減衰力制御バルブ19に駆動信号を出力する。
 マイコン34の入力側には、例えばCAN(Controller Area Network)45、舵角センサ46、トルクセンサ47、車速センサ48等が接続されている。マイコン34の出力側には、複数の駆動回路35~44等が接続されている。マイコン34は、例えばROM、RAM、不揮発性メモリ等からなるメモリ34Aを有している。メモリ34Aには、車両の走行状態に応じて駆動回路35~44の動作を制御するための処理プログラム等が格納されている。
 CAN45は、データ通信に必要な回線網であり、例えば外気温(周囲温度)、日時情報、積載重量等の荷重情報、車速情報を含む種々の車両情報を出力する。舵角センサ46は、図3に示すステアリング機構49のハンドル49A等に設けられている。ステアリング機構49は、ハンドル49A、ステアリングシャフト49B、ステアリングギヤ、タイロッド(いずれも図示せず)等を有し、左,右の前車輪に直接的(機械的)に接続されている。舵角センサ46は、ステアリング機構の転舵に関する物理量であるハンドル49Aの舵角を検出し、舵角に応じた信号を出力する。トルクセンサ47は、ステアリングシャフト49Bの途中に設けられ、ハンドル49Aが転舵されたときに捩じれるステアリングシャフト49Bのトルクを検出し、そのトルクに応じた信号を出力する。車速センサ48は、車両の走行速度を車速として検出し、車速に応じた信号を出力する。なお、ハンドル49Aの舵角に応じた出力信号、ステアリングシャフト49Bのトルクに応じた出力信号、車速に応じた出力信号は、CAN45から出力される車両情報に含める構成としてもよい。
 マイコン34は、CAN45、舵角センサ46、トルクセンサ47、車速センサ48等からの出力信号に基づいて、例えば車両が直進走行状態であるか、車線変更動作を含む旋回走行状態であるかといった車両の走行状態(車両挙動)を検出または推定する。そして、マイコン34は、車両挙動に応じて駆動回路35~44を選択的に駆動することにより、サスペンション装置1による車体のロール剛性の制御と、各油圧シリンダ2~5の減衰力制御を行う。
 駆動回路35~44は、例えばPWM(Pulse Width Modulation)回路によって構成され、マイコン34からの制御信号に応じた駆動電流を出力する。駆動回路35,36は、前,後のブリッジバルブ21,24に対し、閉弁状態から開弁させるための駆動電流と、開弁状態に保持するための保持電流を供給する。駆動回路37~44は、左前,右前,左後,右後の圧縮側減衰力制御バルブ10,12,16,18、および左前,右前,左後,右後の伸長側減衰力制御バルブ11,13,17,19に供給する電流値の大きさに応じて、左前,右前,左後,右後の油圧シリンダ2,3,4,5の伸縮時の減衰力を任意に調整する。これにより、車両の走行状態に応じた車両の乗り心地と操縦安定性および走行安定性が確保される構成となっている。
 ここで、前,後のブリッジバルブ21,24を閉弁して車体のロール剛性を高めた場合には、例えば高速道路等での高速走行時に危険回避のために車線移行を2回連続して行う走行(ダブルレーンチェンジ)を行った場合でも、図4中の特性線50のように、車体のロール角は小さく抑えられる。これにより、ダブルレーンチェンジの際の車両の挙動が安定し、安全性を確保することができる。これに対し、前,後のブリッジバルブ21,24を開弁した状態でダブルレーンチェンジを行った場合には、車体のロール剛性が低くなるため、図4中の特性線51のように、車体のロール角は大きくなる。これにより、ダブルレーンチェンジの際の車両の挙動が不安定となる。
 一方、路面変化の大きな悪路を直進走行する状態で、前,後のブリッジバルブ21,24を閉弁して車体のロール剛性を高めた場合には、車体のロール角は図5中の特性線52のように変化する。これに対し、前,後のブリッジバルブ21,24を開弁して車体のロール剛性を低くした場合には、車体のロール角は図5中の特性線53のように変化する。この場合、車両の運転席フロアの上下振動に着目すると、図6に示すように、前,後のブリッジバルブ21,24を閉弁した場合(特性線54)は、前,後のブリッジバルブ21,24を開弁した場合(特性線55)に比較して、運転席フロアの上下振動が大きくなる。特に、前,後のブリッジバルブ21,24を閉弁した場合には、振動に対する人間の感度が高い2(Hz)~8(Hz)の周波数帯域での振動が増大する。従って、悪路を直進走行する状態で、前,後のブリッジバルブ21,24を閉弁した場合には、乗り心地が悪化し、車輪(タイヤ)の路面に対する追従性も低下する。
 ここで、運転者の意志によってハンドル49Aが転舵される状態は、車両が旋回走行、車線変更、危険回避のダブルレーンチェンジ等を行う場合であり、サスペンション装置1によって車体のロール剛性を高めることにより、操縦安定性、安定した旋回性能を確保したい状況である。このように、運転者の意志によってハンドル49Aが転舵される状態を、ステアリング機構49に対する正入力とする。
 これに対し、悪路を直進走行しているときには、凹凸等による路面からの入力(キックバック)によってステアリング機構49が運転者の意志とは無関係に転舵されることがある。このような路面からの入力がある場合には、サスペンション装置1によって車体のロール剛性を低くすることにより、車体への振動の伝達を低減し、乗り心地を良くすると共に、車輪(タイヤ)の路面に対する追従性を高めたい状況である。このように、運転者の意志とは無関係に、路面入力によってハンドル49Aが転舵される状態を、ステアリング機構49に対する逆入力とする。
 従って、車両の走行時に、ステアリング機構49に対して正入力と逆入力のいずれが行われたかを判断することにより、サスペンション装置1による車体のロール剛性を高い状態とするか、低い状態とするかの制御を迅速に実行することができる。本実施形態では、ステアリング機構49に対して正入力と逆入力のいずれが行われたかを判断する方法として、舵角センサ46から出力されるハンドル49Aの舵角に応じた信号と、トルクセンサ47から出力されるステアリングシャフト49Bのトルクに応じた信号とを用いている。
 運転者の意志によってハンドル49Aが転舵された場合の舵角センサ46からの出力信号に含まれる転舵方向情報と、トルクセンサ47からの出力信号に含まれるステアリングトルク作用方向情報の符号を同一方向とすると、路面からの入力によってステアリング機構49が転舵された(ステアリングシャフト49Bにトルクが作用した)場合には、舵角センサ46からの出力信号に含まれる転舵方向情報と、トルクセンサ47からの出力信号に含まれるステアリングトルク作用方向情報とが逆方向となる。そして、コントローラ33は、トルクセンサ47からステアリング機構49におけるステアリングトルク作用方向情報を取得すると共に、舵角センサ46からステアリング機構49の転舵に関する物理量(舵角)に基づく舵角方向情報を取得し、これらステアリングトルク作用方向情報と舵角方向情報とに応じて車体のロール剛性(サスペンション剛性)を変更する。即ち、コントローラ33は、ステアリング機構49への操舵指令とステアリング機構49による転舵状態との相違に応じて、車体のロール剛性を含むサスペンション剛性を変更する指令を出力する。
 ここで、図7中に特性線56で示すように、トルクセンサ47からの出力信号は、トルクセンサ47の捩じり方向によって信号の符号が異なり、例えば捩じり方向が時計回り方向(CW)である場合には正(+)であり、反時計回り方向(CCW)である場合には負(-)となる。これにより、図8の符号判別表に示すように、舵角センサ46からの出力信号の符号(転舵方向情報)と、トルクセンサ47からの出力信号の符号(ステアリングトルク作用方向情報)とを判別することにより、ステアリング機構49に対する正入力状態か逆入力状態かを判断することができる。
 例えば、ハンドル49Aが右旋回方向に転舵されたときの舵角センサ46からの出力信号を正(+)とし、左旋回方向に転舵されたときの出力信号を負(-)とする。また、トルクセンサ47が右旋回方向に捩じれたときに出力する信号を正(+)とし、トルクセンサ47が左旋回方向に捩じれたときに出力する信号を負(-)とする。これにより、ステアリング機構49に対する正入力状態か逆入力状態かの判断は4つの態様に分けられる。
 図8中の第1の態様は、運転者の意志によってハンドル49Aが右旋回方向に転舵された場合で、トルクセンサ47からの出力信号の符号(+)と舵角センサ46からの出力信号の符号(+)とが一致する。この場合には、ステアリング機構49に対する正入力状態と判断されるので、車体のロール剛性を高める制御が行われる。第2の態様は、運転者がハンドル49Aを転舵していない状態(直進走行状態)で、路面からの入力によってステアリングシャフト49Bに右旋回方向へのトルクが作用した場合であり、トルクセンサ47からの出力信号の符号(+)と舵角センサ46からの出力信号の符号(-)とが不一致となる。この場合には、ステアリング機構49に対する逆入力状態と判断されるので、車体のロール剛性を低くする制御が行われる。
 第3の態様は、運転者がハンドル49Aを転舵していない状態(直進走行状態)で、路面からの入力によってステアリングシャフト49Bに左旋回方向へのトルクが作用した場合であり、トルクセンサ47からの出力信号の符号(-)と舵角センサ46からの出力信号の符号(+)とが不一致となる。この場合には、ステアリング機構49に対する逆入力状態と判断されるので、車体のロール剛性を低くする制御が行われる。第4の態様は、運転者の意志によってハンドル49Aが左旋回方向に転舵された場合で、トルクセンサ47からの出力信号の符号(-)と舵角センサ46からの出力信号の符号(-)とが一致する。この場合には、ステアリング機構49に対する正入力状態と判断されるので、車体のロール剛性を高める制御が行われる。
 このように、本実施形態では、トルクセンサ47からの出力信号に含まれるステアリングトルク作用方向情報の方向と、舵角センサ46からの出力信号に含まれる転舵方向情報の方向とが同じである同方向状態のときには、コントローラ33は、ステアリング機構49に対して正入力が行われたと判断し、車体のロール剛性(サスペンション剛性)が高くなるように前,後のブリッジバルブ21,24を閉弁させる。これにより、左,右のアキュムレータ装置27,30に対して油液が流入出し、車体のロール剛性が高まることにより、安定した旋回性能を得ることができる。
 一方、トルクセンサ47からの出力信号に含まれるステアリングトルク作用方向情報の方向と、舵角センサ46からの出力信号に含まれる転舵方向情報の方向とが異なるときには、コントローラ33は、ステアリング機構49に対して逆入力が行われたと判断し、車体のロール剛性(サスペンション剛性)が低くなるように前,後のブリッジバルブ21,24を開弁させる。これにより、左,右のアキュムレータ装置27,30に対する油液の流出入が各シリンダ6に対するピストンロッド7Aの出入の和のみの非常に小さな値となり、車体のロール剛性が低くなる。この結果、路面の変化に伴う車体の振動が抑制され、乗り心地が向上すると共に、路面の変化に対する各車輪の追従性も向上する。
 ここで、コントローラ33に接続された各種センサからの出力信号と車両挙動の位相の順序について着目すると、ステアリング機構49に対する正入力が行われた場合には、最初にトルクセンサ47からのトルク信号が出力され、2番目に他の舵角センサ(図示せず)からの舵角速度信号が出力され、3番目に舵角センサ46からの舵角信号が出力され、4番目に横加速度センサ(図示せず)からの横加速度信号が出力され、5番目にばね上下加速度センサ(図示せず)からのロールレート信号が出力され、6番目にばね上下加速度センサ(図示せず)からのロール角信号が出力される。
 一方、ステアリング機構49に対する逆入力が行われた場合には、最初にトルクセンサ47からのトルク信号が出力され、2番目に他の舵角センサからの舵角速度信号が出力され、3番目に舵角センサ46からの舵角信号が出力される。従って、トルクセンサ47からの出力信号と舵角センサ46からの出力信号の符号判別に基づいて、ステアリング機構49に対する正入力状態か逆入力状態かを早期に、かつ正確に判断することができ、車両の走行状態に応じた車体のロール剛性の制御を迅速に行うことができる。
 次に、車両の走行時に、サスペンション装置1のロール剛性が低い状態(前,後のブリッジバルブ21,24が開弁した状態)から、ロール剛性を高めるためにコントローラ33(マイコン34)が実行する制御処理について、図9を参照して説明する。なお、図9に示す流れ図のステップは、それぞれ「S」という表記を用い、例えばステップ1を「S1」として示している。
 図9に示す制御処理がスタートしたときには、S1において、前,後のブリッジバルブ21,24が開弁状態を保持している。S2では、トルクセンサ47からの出力信号であるトルクセンサ信号Tを読込み、S3において、読込んだトルクセンサ信号Tの絶対値が、予め設定されたトルク閾値以上であるか否かを判定する。S3で「NO」と判定したときには、S4でカウンタnをリセット(n=0)してS2に戻る。
 S3で「YES」と判定したときには、S5において、舵角センサ46からの出力信号である舵角センサ信号θを読込み、S6に移行する。S6では、読込んだ舵角センサ信号θの絶対値が、予め設定された舵角閾値以上であるか否かを判定する。この場合、図10中に特性線57で示すように、舵角閾値は車速が大きくなるに従って小さくなり、所定の車速以上では舵角閾値が零(0)となる。そして、S6で「NO」と判定した場合には、S7でカウンタnをリセット(n=0)してS2に戻る。
 S6で「YES」と判定した場合には、S8において、トルクセンサ信号Tの符号と、舵角センサ信号θの符号とが同符号であるか否かを判定する。S8で「NO」と判定した場合には、図8の符号判別表に示す第2または第3の態様となるので、S9において路面からの入力(逆入力)と判断し、S10でカウンタnをリセット(n=0)してS2に戻る。一方、S8で「YES」と判定した場合には、図8の符号判別表に示す第1または第4の態様となるので、S11において運転者の意志による転舵(正入力)と判断し、S12においてカウンタnを進める(n=n+1)。
 次に、S13において、カウンタnにサイクルタイムΔtを積算することにより、正入力状態が継続している時間tを算出した後、S14において、算出した時間tが、予め設定された所定の判断時間t0以上であるか否かを判定する。S14で「NO」と判定した場合にはS2に戻り、「YES」と判定した場合には、S15において前,後のブリッジバルブ21,24を閉弁させる。これにより、車体のロール剛性が高められ、旋回走行時における車両の操縦安定性、走行安定性を確保することができる。
 このように、車両が直進走行から旋回走行に移行するような過渡的な走行状態において、車体のロール剛性は、各油圧シリンダ2~5に対する減衰力制御に応じてロール剛性が低い状態から高い状態へと切り替えられる。即ち、ロール剛性を含むサスペンション剛性は、車両走行時の過渡的な剛性を含んでいる。この場合、図10中に特性線57で示すように、舵角閾値は車速が大きくなるに従って小さくなり、所定の車速以上では舵角閾値が零(0)となる。これにより、車速が大きいほどロール剛性を高める制御が行われ易くなるように考慮されている。
 ここで、図11は、車両が危険回避を想定してダブルレーンチェンジを行った場合の、ハンドル49Aの舵角と車体のロールレートの経時変化を示し、図12は、図11中のXII部を拡大したものである。図11および図12中の特性線58は、ハンドル49Aの舵角の位相を示し、特性線59は、前,後のブリッジバルブ21,24を閉弁したときのロールレート(車体のロール挙動)の位相を示し、特性線60は、前,後のブリッジバルブ21,24を開弁したときのロールレート(車体のロール挙動)の位相を示している。図11および図12に示すように、ハンドル49Aの舵角(特性線58)の位相は、車体のロール挙動の位相(特性線59,60)よりも進んでいる。
 このため、本実施形態は、トルクセンサ信号Tと舵角センサ信号θとに基づいて、ステアリング機構49に対する正入力状態か逆入力状態かを、迅速にかつ正確に判断することができる。しかも、図12に示すように、前,後のブリッジバルブ21,24を開弁状態から閉弁させる(ロール剛性を高める)ための判断時間tに対し、前,後のブリッジバルブ21,24の開弁状態から閉弁状態への切替時間t´は十分に短い。従って、車両の走行状態に応じた車体のロール剛性の切り替えを迅速に行うことができる。
 しかも、舵角センサ46とトルクセンサ47とは、電動パワーステアリングシステム (Electric Power Steering)が装備された車両には標準装備されている。従って、既に車両に搭載された舵角センサ46とトルクセンサ47からの信号を利用することができ、新たなセンサ類を追加する必要がない。このため、ステアリング機構49に対する正入力か逆入力かに応じてロール剛性を制御するシステムを簡素化することができ、低コスト化にも寄与することができる。
 なお、図9の制御処理は、ステアリング機構49に対する正入力状態であると判断した場合に、車体のロール剛性を高める制御を例示している。しかし、ステアリング機構49に対する逆入力状態であると判断した場合には、コントローラ33は、例えばトルクセンサ信号T、舵角センサ信号θの大きさ基づいて路面状態を判断し、各圧縮側減衰力制御バルブ10,12,16,18、および各伸長側減衰力制御バルブ11,13,17,19を制御することができる。これにより、各車輪(ばね下)のばたつきを抑え、悪路走行時の乗り心地を向上させることができる。
 ここで、図13は、車両が左右逆相の路面形状の悪路を直進走行している場合の、ハンドル49Aの舵角(特性線61)と、車体のロールレート(特性線62)と、前輪側の油圧シリンダ(左前油圧シリンダ2または右前油圧シリンダ3)のシリンダストローク(特性線63)の経時変化を示している。ここで、路面の変化によりステアリング機構49に対して路面からの逆入力があった場合等において、舵角センサ信号θの値は、断続的に閾値(不感帯)を超えるようになる。この状況は、図8の符号判別表の第2または第3の態様となり、トルクセンサ信号Tの符号と舵角センサ信号θの符号とが異なる。従って、車体のロール剛性を高める制御は行われず、前,後のブリッジバルブ21,24は開弁状態となってロール剛性は低く保たれる。この結果、走行状態に合わない不要なロール剛性の高まりを防止することができ、悪路走行時の乗り心地を向上させることができる。
 この場合、車両の運転席フロアの上下振動に着目すると、図14に示すように、前,後のブリッジバルブ21,24を開弁した場合(特性線64)は、前,後のブリッジバルブ21,24を閉弁した場合(特性線65)に比較して、運転席フロアの上下振動が小さくなる。特に、振動に対する人間の感度が高い2(Hz)~8(Hz)の周波数帯域での振動を小さく抑えることができる。従って、悪路を直進走行する場合には、前,後のブリッジバルブ21,24を開弁状態に保つことにより、乗り心地を向上させ、車輪(タイヤ)の路面に対する追従性を高めることができる。
 このように、本実施形態によれば、舵角センサ46およびトルクセンサ47からの信号に基づいて、ステアリング機構49に対し、正入力が行われたか逆入力が行われたかを迅速に判断することができる。そして、ステアリング機構49に対する正入力時には、前,後のブリッジバルブ21,24を閉弁させることにより、左,右のアキュムレータ装置27,30等によるロール剛性の制御、および各減衰力制御バルブ10,11,12,13,16,17,18,19による減衰力制御により、車両の操縦安定性、走行安定性を高めることができる。また、ステアリング機構49に対する逆入力時には、前,後のブリッジバルブ21,24を開弁させることによりロール剛性を低くし、乗り心地を向上させると共に、車輪の路面に対する追従性(悪路走破性)を高めることができる。
 次に、車両の走行時に、車体のロール剛性が高い状態(前,後のブリッジバルブ21,24が閉弁した状態)から、ロール剛性を低くするためにコントローラ33(マイコン34)が実行する制御処理について、図15を参照して説明する。
 図15に示す制御処理がスタートしたときには、S21において、前,後のブリッジバルブ21,24が閉弁状態を保持している。S22では、トルクセンサ47からの出力信号であるトルクセンサ信号Tと、舵角センサ46からの出力信号である舵角センサ信号θを読込む。S23では、トルクセンサ信号Tと舵角センサ信号θに対しLPF(Low Pass Filter)処理を行う。このLPF処理では、ばね上共振周波数とばね下共振周波数との中間値となる周波数(中間周波数)以上の高周波成分、即ち、運転者が転舵可能な周波数以上の高周波成分を除去する。続くS24では、車速が予め設定された第1の設定速度V1以下であるか否かを判定し、「YES」と判定した場合には、S25に移行する。
 S25では、車速が第1の設定速度V1以下の場合のトルクセンサ信号T1の絶対値が、予め設定されたトルク閾値未満であるか否かを判定する。S25で「NO」と判定した場合には、S26でカウンタnをリセット(n=0)してS22に戻る。S25で「YES」と判定した場合にはS27に移行し、車速が第1の設定速度V1以下の場合の舵角センサ信号θ1の絶対値が、予め設定された舵角閾値未満であるか否かを判定する。S27で「NO」と判定した場合には、S28でカウンタnをリセット(n=0)してS22に戻り、「YES」と判定した場合には、S29においてカウンタnを進める(n=n+1)。
 続くS30では、カウンタnにサイクルタイムΔtを積算することにより、車速が第1の設定速度V1以下で、トルクセンサ信号T1の絶対値がトルク閾値未満で、舵角センサ信号θ1の絶対値が舵角閾値未満である状態が継続している時間tを算出する。そして、S31において、算出した時間tが、予め設定された所定の判断時間t0以上であるか否かを判定する。S31で「NO」と判定した場合にはS22に戻り、「YES」と判定した場合には、S32において前,後のブリッジバルブ21,24を開弁させる。これにより、車体のロール剛性が低くなり、悪路走行時の乗り心地を向上させることができる。
 一方、S24において「NO」と判定した場合、即ち、車速が予め設定された第1の設定速度V1よりも大きい場合には、S33に移行し、車速が予め設定された第2の設定速度V2以下であるか否かを判定する。この場合、第2の設定速度V2は、第1の設定速度V1以上に設定されている(V1≦V2)。S33で「NO」と判定した場合にはS22に戻り、「YES」と判定した場合にはS34に移行する。
 S34では、車速が第2の設定速度V2以下の場合のトルクセンサ信号T2の絶対値が、予め設定されたトルク閾値未満であるか否かを判定する。この場合、トルクセンサ信号T2は、車速が第1の設定速度V1以下の場合のトルクセンサ信号T1以下に設定されている(T1≧T2)。そして、S34で「NO」と判定した場合には、S35でカウンタnをリセット(n=0)してS22に戻る。S34で「YES」と判定した場合にはS36に移行し、車速が第2の設定速度V2以下の場合の舵角センサ信号θ2の絶対値が、予め設定された舵角閾値未満であるか否かを判定する。この場合、舵角センサ信号θ2は、車速が第1の設定速度V1以下の場合の舵角センサ信号θ1以下に設定されている(θ1≧θ2)。そして、S36で「NO」と判定した場合には、S37でカウンタnをリセット(n=0)してS22に戻り、S36で「YES」と判定した場合には、S29に移行し、それ以降の制御処理を実行する。
 このように、車体のロール剛性を高い状態から低い状態に移行させる動作は、車速が所定の速度(第2の設定速度V2)よりも大きい場合には禁止され、車両の操縦安定性、走行安定性を確保することができる。また、車体のロール剛性を高い状態から低い状態に移行させる場合には、安全性に関わる緊急度が低い。このため、上述した制御処理では、制御頻度を低減するため、ステアリングトルク作用方向情報の方向と転舵方向情報の方向とが異なる場合でも、舵角センサ信号θとトルクセンサ信号Tの符号判別を行わず、トルクセンサ信号Tの絶対値と舵角センサ信号θの絶対値の大きさに応じて減衰力制御を切り替えている。
 具体的には、トルクセンサ信号Tの絶対値と舵角センサ信号θの絶対値が、それぞれの閾値未満となる時間が所定の時間以上となった場合に、前,後のブリッジバルブ21,24を開弁させることにより、車体のロール剛性を低くして乗り心地を向上させることができる。この場合、トルク閾値と舵角閾値とは車速に応じて設定されており、例えば車速が第1の設定速度V1よりも大きく、かつ第2の設定速度V2以下の場合には、トルク閾値および舵角閾値が小さく設定されている。これにより、車速が比較的大きい場合でも、トルクセンサ信号T2および舵角センサ信号θ2が小さい場合には、前,後のブリッジバルブ21,24を開弁させて乗り心地を向上させることができる。
 なお、実施形態では、コントローラ33は、車体のロール剛性を高い状態から低くするときに、図15に示す制御処理を実行し、トルクセンサ信号と舵角センサ信号の絶対値が、それぞれ所定の閾値未満である状態が所定の時間以上に継続した場合に、前,後のブリッジバルブ21,24を開弁する構成を例示している。しかし、本発明はこれに限らず、例えばトルクセンサ信号と舵角センサ信号に加えて舵角速度を検出し、トルクセンサ信号と舵角センサ信号と舵角速度の絶対値が、それぞれ所定の閾値未満である状態が所定の時間以上に継続した場合に、前,後のブリッジバルブ21,24を開弁する構成としてもよい。
 また、実施形態では、左,右の前車輪に直接的(機械的)に接続されたステアリング機構49を備えた車両を例示している。しかし、本発明はこれに限らず、例えばステアバイワイヤ等のハンドルと左,右の前車輪とが間接的に接続されていないステアリング機構を備えた車両にも適用することができる。
 また、実施形態では、サスペンション装置1にて発生する力を調整可能な力発生機構として、減衰力調整式の油圧シリンダ2~5の左右をクロス配管した関連懸架サスペンションを例に挙げて説明している。しかし、本発明はこれに限らず、例えば油圧アクティブサスペンション、アクティブスタビライザ、エアサスペンション、電磁サスペンション等を用いて力発生機構を構成してもよい。
 また、実施形態で記載した具体的な数値は、一例を示したものであり、例示した数値に限るものではない。
 次に、上記実施形態に含まれる車両サスペンション制御装置として、例えば、以下に述べる態様のものが考えられる。
 第1の態様としては、車両サスペンション制御装置であって、車両に設けられ、サスペンション装置にて発生する力を調整可能な力発生機構と、前記力発生機構の発生力を制御する制御部と、を有し、前記制御部は、車輪と直接または間接的に接続されるステアリング機構におけるステアリングトルク作用方向情報を取得し、前記ステアリング機構の転舵に関する物理量に基づく転舵方向情報を取得し、前記ステアリングトルク作用方向情報と前記転舵方向情報とに応じてサスペンション剛性を変更するように、前記力発生機構の発生力を制御することを特徴としている。
 第2の態様としては、第1の態様において、前記制御部は、前記ステアリングトルク作用方向情報と前記転舵方向情報の方向が同じである同方向状態のとき、サスペンション剛性が高くなるよう前記力発生機構の発生力を強くし、前記ステアリングトルク作用方向情報と前記転舵方向情報の方向が異なるとき、サスペンション剛性が低くなるように前記力発生機構の発生力を、前記同方向状態のときと比して弱くなるよう制御することを特徴としている。
 第3の態様としては、車両に設けられ、サスペンション装置にて発生する力を調整可能な力発生機構と、前記力発生機構における発生力を制御する制御部を有する車両制御装置であって、前記制御部は、車輪と直接または間接的に接続されるステアリング機構におけるステアリングトルク作用方向情報を取得し、前記ステアリング機構の転舵に関する物理量に基づく転舵方向情報を取得し、前記ステアリングトルク作用方向情報と前記転舵方向情報とに応じてサスペンション剛性を変更する指令を前記力発生機構に出力することを特徴としている。
 第4の態様としては、車両に設けられ、発生する力を調整可能な力発生機構における発生力を制御するための制御部が実行する車両制御方法であって、車輪と直接または間接的に接続されるステアリング機構におけるステアリングトルク作用方向情報を取得し、前記ステアリング機構の転舵に関する物理量に基づく転舵方向情報を取得し、取得した前記ステアリングトルク作用方向情報と前記転舵方向情報とに応じてサスペンション剛性を変更する指令を前記力発生機構に出力することを特徴としている。
 第5の態様としては、車両に設けられ、発生する力を調整可能な力発生機構と、前記力発生機構の発生力を制御する制御部と、を有する車両制御装置であって、前記制御部は、前記車両に設けられるステアリング機構への操舵指令と前記ステアリング機構による転舵状態との相違に応じてロール剛性を含むサスペンション剛性を変更する指令を前記力発生機構に出力することを特徴としている。
 第6の態様としては、第2の態様において、前記サスペンション剛性が減衰力制御による過渡的な剛性を含む。
 第7の態様としては、第3、第5の態様において前記サスペンション剛性が減衰力制御による過渡的な剛性を含む。
 第8の態様としては、第1の態様において、前記ステアリングトルク作用方向情報と前記転舵方向情報の方向が異なる際に、ステアリングトルクおよびまたは転舵角の絶対値の大きさに応じて減衰力制御を切り替える。
 第9の態様としては、第3の態様において、前記ステアリングトルク作用方向情報と前記転舵方向情報の方向が異なる際に、ステアリングトルクおよびまたは転舵角の絶対値の大きさに応じて減衰力制御を切り替えることを特徴としている。
 1 サスペンション装置
 2 左前油圧シリンダ(力発生機構)
 3 右前油圧シリンダ(力発生機構)
 4 左後油圧シリンダ(力発生機構)
 5 右後油圧シリンダ(力発生機構)
 33 コントローラ(制御部)
 46 舵角センサ
 47 トルクセンサ
 49 ステアリング機構

Claims (9)

  1.  車両サスペンション制御装置であって、
     車両に設けられ、サスペンション装置にて発生する力を調整可能な力発生機構と、
     前記力発生機構の発生力を制御する制御部と、を有し、
     前記制御部は、
     車輪と直接または間接的に接続されるステアリング機構におけるステアリングトルク作用方向情報を取得し、
     前記ステアリング機構の転舵に関する物理量に基づく転舵方向情報を取得し、
     前記ステアリングトルク作用方向情報と前記転舵方向情報とに応じてサスペンション剛性を変更するように、前記力発生機構の発生力を制御することを特徴とする車両サスペンション制御装置。
  2.  前記制御部は、前記ステアリングトルク作用方向情報と前記転舵方向情報の方向が同じである同方向状態のとき、サスペンション剛性が高くなるよう前記力発生機構の発生力を強くし、
     前記ステアリングトルク作用方向情報と前記転舵方向情報の方向が異なるとき、サスペンション剛性が低くなるように前記力発生機構の発生力を、前記同方向状態のときと比して弱くなるよう制御することを特徴とする請求項1に記載の車両サスペンション制御装置。
  3.  車両に設けられ、サスペンション装置にて発生する力を調整可能な力発生機構と、
     前記力発生機構における発生力を制御する制御部を有する車両制御装置であって、
     前記制御部は、
     車輪と直接または間接的に接続されるステアリング機構におけるステアリングトルク作用方向情報を取得し、
     前記ステアリング機構の転舵に関する物理量に基づく転舵方向情報を取得し、
     前記ステアリングトルク作用方向情報と前記転舵方向情報とに応じてサスペンション剛性を変更する指令を前記力発生機構に出力することを特徴とする車両制御装置。
  4.  車両に設けられ、発生する力を調整可能な力発生機構における発生力を制御するための制御部が実行する車両制御方法であって、
     車輪と直接または間接的に接続されるステアリング機構におけるステアリングトルク作用方向情報を取得し、
     前記ステアリング機構の転舵に関する物理量に基づく転舵方向情報を取得し、
     取得した前記ステアリングトルク作用方向情報と前記転舵方向情報とに応じてサスペンション剛性を変更する指令を前記力発生機構に出力することを特徴とする車両制御方法。
  5.  車両に設けられ、発生する力を調整可能な力発生機構と、
     前記力発生機構の発生力を制御する制御部と、を有する車両制御装置であって、
     前記制御部は、
     前記車両に設けられるステアリング機構への操舵指令と前記ステアリング機構による転舵状態との相違に応じてロール剛性を含むサスペンション剛性を変更する指令を前記力発生機構に出力することを特徴とする車両制御装置。
  6.  前記サスペンション剛性が減衰力制御による過渡的な剛性を含む、請求項2に記載の車両サスペンション制御装置。
  7.  前記サスペンション剛性が減衰力制御による過渡的な剛性を含む、請求項3または5に記載の車両制御装置。
  8.  前記ステアリングトルク作用方向情報と前記転舵方向情報の方向が異なる際に、ステアリングトルクおよびまたは転舵角の絶対値の大きさに応じて減衰力制御を切り替えることを特徴とする請求項1に記載の車両サスペンション制御装置。
  9.  前記ステアリングトルク作用方向情報と前記転舵方向情報の方向が異なる際に、ステアリングトルクおよびまたは転舵角の絶対値の大きさに応じて減衰力制御を切り替えることを特徴とする請求項3に記載の車両制御装置。
PCT/JP2020/045214 2019-12-06 2020-12-04 車両サスペンション制御装置、車両制御装置および車両制御方法 WO2021112215A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019221284 2019-12-06
JP2019-221284 2019-12-06

Publications (1)

Publication Number Publication Date
WO2021112215A1 true WO2021112215A1 (ja) 2021-06-10

Family

ID=76221759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045214 WO2021112215A1 (ja) 2019-12-06 2020-12-04 車両サスペンション制御装置、車両制御装置および車両制御方法

Country Status (1)

Country Link
WO (1) WO2021112215A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0585379A (ja) * 1991-09-25 1993-04-06 Toyota Motor Corp パワーステアリング装置
JPH082231A (ja) * 1994-06-17 1996-01-09 Tokico Ltd サスペンション制御装置
JP2005238972A (ja) * 2004-02-26 2005-09-08 Aisin Seiki Co Ltd スタビライザ制御装置
JP2007196869A (ja) * 2006-01-26 2007-08-09 Toyota Motor Corp 車両用サスペンションシステム及び制御装置
JP2009274661A (ja) * 2008-05-16 2009-11-26 Honda Motor Co Ltd 車両用電動パワーステアリング装置
JP2018161953A (ja) * 2017-03-24 2018-10-18 株式会社ショーワ 路面判定装置、サスペンション制御装置、および、サスペンション装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0585379A (ja) * 1991-09-25 1993-04-06 Toyota Motor Corp パワーステアリング装置
JPH082231A (ja) * 1994-06-17 1996-01-09 Tokico Ltd サスペンション制御装置
JP2005238972A (ja) * 2004-02-26 2005-09-08 Aisin Seiki Co Ltd スタビライザ制御装置
JP2007196869A (ja) * 2006-01-26 2007-08-09 Toyota Motor Corp 車両用サスペンションシステム及び制御装置
JP2009274661A (ja) * 2008-05-16 2009-11-26 Honda Motor Co Ltd 車両用電動パワーステアリング装置
JP2018161953A (ja) * 2017-03-24 2018-10-18 株式会社ショーワ 路面判定装置、サスペンション制御装置、および、サスペンション装置

Similar Documents

Publication Publication Date Title
JP6194902B2 (ja) スタビライザ装置
US8165749B2 (en) Control system for adjustable damping force damper
EP2022655B1 (en) Control apparatus of a variable damping force damper
US11708109B2 (en) Vehicle control system
JPS63263124A (ja) 油圧スタビライザ制御装置
JPS6299204A (ja) サスペンシヨン制御装置
WO2017022316A1 (ja) 緩衝器の制御装置およびサスペンション装置
JPS61146612A (ja) 車両用姿勢制御装置
WO2021112215A1 (ja) 車両サスペンション制御装置、車両制御装置および車両制御方法
WO2019230560A1 (ja) サスペンション装置
JPH04100724A (ja) 車両用能動型スタビライザ
JP4566898B2 (ja) 可変減衰力ダンパの制御装置
JP5043751B2 (ja) 減衰力可変ダンパの制御装置
JP7249933B2 (ja) サスペンション装置
JP2006312337A (ja) トーションビームサスペンション装置
JP5135023B2 (ja) サスペンション特性制御装置
JP2006335160A (ja) 車体の振動制御システムおよび振動制御方法
JP7085502B2 (ja) サスペンション装置
JPH10258627A (ja) 車両のスタビライザ制御装置及びその制御方法
JPS63162314A (ja) 車両のロ−ル剛性制御装置
JP2009137342A (ja) 減衰力可変ダンパの制御装置
JPH0443113A (ja) 車両用サスペンション装置
JP2535602B2 (ja) 車両用サスペンション制御装置
JP4987762B2 (ja) 減衰力可変ダンパの制御装置
WO2019212002A1 (ja) サスペンション装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20897416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP