WO2021110182A2 - 一种聚酯酰胺及其制备方法 - Google Patents

一种聚酯酰胺及其制备方法 Download PDF

Info

Publication number
WO2021110182A2
WO2021110182A2 PCT/CN2021/075900 CN2021075900W WO2021110182A2 WO 2021110182 A2 WO2021110182 A2 WO 2021110182A2 CN 2021075900 W CN2021075900 W CN 2021075900W WO 2021110182 A2 WO2021110182 A2 WO 2021110182A2
Authority
WO
WIPO (PCT)
Prior art keywords
polyester amide
ring
opening
diamine
catalyst
Prior art date
Application number
PCT/CN2021/075900
Other languages
English (en)
French (fr)
Other versions
WO2021110182A3 (zh
Inventor
屠迎锋
万雪婷
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Priority to US17/782,704 priority Critical patent/US20230024746A1/en
Publication of WO2021110182A2 publication Critical patent/WO2021110182A2/zh
Publication of WO2021110182A3 publication Critical patent/WO2021110182A3/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/44Polyester-amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2230/00Compositions for preparing biodegradable polymers

Definitions

  • the invention belongs to the field of polymer material preparation, and emphatically relates to a preparation method of polyester amide.
  • polyester amides The common synthetic methods of polyester amides are condensation polymerization and ring-opening polymerization.
  • the condensation polymerization method has many side reactions, and it is necessary to strictly control the stoichiometric ratio, increase the reaction temperature, extend the reaction time, and increase the vacuum to obtain high molecular weight polymers.
  • the ring-opening polymerization method has the advantages of fast reaction speed, mild reaction conditions, and high polymer molecular weight.
  • monomers that can undergo ring-opening polymerization generally ABAB type cyclic monomers, which require several complex synthesis steps to obtain the monomers, which increases the complexity of the method and the cost is high.
  • the present invention aims to provide a preparation method of polyester amide. That is to say, diamines such as 1,6-hexanediamine, 1,8-octanediamine, 1,10-decanediamine, 1,12-dodecyldiamine, 1,3-cyclohexanediamine, 1,4-xylylenediamine or amino alcohols such as 6-amino-1-hexanol, isobutanolamine and other amino-containing alcohols are used as initiators, using diacid diol-based macrolides such as aliphatic macrocycles Lactone musk T, cyclic oligoethylene adipate or aromatic macrolide cyclic oligobutylene terephthalate are monomers, which are cascaded through ring opening-condensation in the presence of a catalyst Polymerization (PROP) to synthesize polyester amide.
  • diamines such as 1,6-hexanediamine, 1,8-octanediamine, 1,10-decan
  • the ring-opening-condensation cascade polymerization method By adopting the ring-opening-condensation cascade polymerization method, the ring-opening polymerization reaction and the condensation polymerization reaction are cascaded in the same system, thereby synthesizing the polyester amide in one step.
  • the polyester amide copolymer of the present invention has both good biocompatibility and biodegradability and excellent mechanical properties, solvent resistance and thermal stability; by changing the ratio of ester bonds and amide bonds, polymer molecular weight and distribution Factors such as those can control the properties of polyester amide materials, making them widely used in engineering plastics, thermoplastic elastomers, tissue engineering, and controlled release.
  • a polyester amide the chemical structure of which is as follows.
  • R 1 is -(CH 2 ) n NH-, -(CH 2 ) 6 O- or -C(CH 3 ) 2 CH 2 O-; or R 1 is the following group.
  • R 2 is -(CH 2 ) m -or .
  • R 1 is -(CH 2 ) 6 NH-, -(CH 2 ) 8 NH-, -(CH 2 ) 10 NH-, -(CH 2 ) 12 NH-, -(CH 2 ) 6 O- or -C(CH 3 ) 2 CH 2 O-; or R 1 is the following group.
  • R 2 is -(CH 2 ) 11 -, -(CH 2 ) 4 -or .
  • the preparation method of the above polyester amide includes the following steps, using diamine or amino alcohol as initiator, using diacid diol-based macrolide as monomer, in the presence of a catalyst, through ring-opening-condensation cascade polymerization The reaction produces polyester amide.
  • the polyester amide of the invention has excellent mechanical properties, solvent resistance and thermal stability.
  • the present invention further discloses that n-butyl titanate or isobutyl titanate is used as a catalyst to catalyze diamines or amino alcohols as initiators to initiate the ring-opening-condensation cascade polymerization reaction of macrolides based on diacid diols to prepare poly Application in ester amides.
  • the diamine is 1,6-hexamethylenediamine, 1,8-octanediamine, 1,10-decanediamine, 1,12-diaminododecane, 1,3-cyclohexanediamine Or 1,4-xylylenediamine; amino alcohol is 6-amino-1-hexanol, isobutanolamine and other alcohols containing amino groups.
  • the diacid diol-based macrolide is an aliphatic macrolide or an aromatic macrolide; preferably, the aliphatic macrolide is musk T (1,13-tridecane two Acid glycol lactone), cyclic oligopolyethylene adipate, and aromatic macrocyclic lactone is cyclic oligobutylene terephthalate.
  • the catalyst is a titanate compound, preferably n-butyl titanate or isobutyl titanate.
  • the molar ratio of monomer to initiator is 2-100; the amount of catalyst is 0.03% to 1% of the total mass of monomer and initiator.
  • the temperature of the ring-opening-condensation cascade polymerization reaction is 200-280°C, and the time is 10-240 minutes; the ring-opening-condensation cascade polymerization reaction is carried out under nitrogen atmosphere or vacuum conditions; no purification is required after the reaction.
  • the product polyester amide can be obtained.
  • the preparation method of the polyester amide of the present invention can be specifically as follows: at room temperature, add diamine or amino alcohol, diacid diol-based macrolides into the reaction device, vent nitrogen, perform mechanical stirring, and heat to 200 ⁇ 200. 280°C, then add catalyst, continue to ventilate nitrogen or vacuum, and polymerize for 30-240 minutes to obtain polyester amide. Or at room temperature, add diamine or amino alcohol, macrolide based on diacid diol into the reaction device, then add catalyst, perform mechanical stirring, heat to 200-280°C, blow nitrogen or vacuum, and polymerize for 10 ⁇ The polyester amide can be obtained in 120 minutes.
  • the polymerization mechanism is a ring-opening-condensation cascade polymerization process, that is, the diamine or amino alcohol initiator first reacts to musk T, cyclic oligoethylene adipate or cyclic oligobutyl terephthalate.
  • Macrocyclic lactones such as glycol esters undergo ring-opening polymerization to obtain polyester amides with hydroxyl end groups.
  • Polyester amides can continue to initiate the ring-opening polymerization of macrolides, or they can undergo condensation polymerization with each other to generate higher molecular weights.
  • the reaction product is polyester amide, without purification and separation.
  • the preparation method of the polyester amide of the present invention effectively solves the problem that the prior art is difficult to adjust the properties (molecular weight, structure and performance) of the polyester amide in a large range, and broadens the application range of the polyester amide.
  • the present invention synthesizes polyester amide through a ring-opening-condensation cascade polymerization method.
  • the polymerization method has the advantages of simple reaction steps, high molecular weight and controllable, no need for post-treatment, and large-scale synthesis.
  • the initiator used is 1,6-hexane.
  • the polyester amide synthesized by this method has excellent mechanical properties, solvent resistance and thermal stability. The introduction of polyamide improves the solvent resistance and heat resistance of polyester, and has great application value.
  • Figure 1 is a synthetic route diagram of the polyester amide of the present invention.
  • Figure 2 is a volume exclusion chromatogram of PEBHA in Example 1 (solvent: tetrahydrofuran concentration: 1.00 mg/ml).
  • Figure 3 is a volume exclusion chromatogram of Example 2 PEBOA-1 (solvent: tetrahydrofuran concentration: 1.00 mg/ml).
  • Figure 4 is the thermal gravity curve diagram of Example 3 PEBOA-2 (heating rate: 10°C per minute, atmosphere: nitrogen).
  • Fig. 5 is the stress-strain curve diagram of Example 3 PEBOA-2 (tensile rate: 10 mm per minute, temperature: 25.7° C., humidity: 79.0%).
  • Figure 6 is a differential scanning calorimetry curve diagram of Example 4 PEBOA-3 (heating rate: 10°C per minute, atmosphere: nitrogen).
  • Figure 7 is a volume exclusion chromatogram of PEBDA in Example 7 (solvent: tetrahydrofuran concentration: 1.00 mg/ml).
  • Figure 8 is a volume exclusion chromatogram of Example 8 PEBDDA (solvent: tetrahydrofuran concentration: 1.00 mg/ml).
  • Figure 9 is a volume exclusion chromatogram of Example 9 PEAHA (solvent: tetrahydrofuran concentration: 1.00 mg/ml).
  • Figure 10 is the volume exclusion chromatogram of Example 10 PEBCHA (solvent: tetrahydrofuran concentration: 1.00 mg/ml).
  • Figure 11 is a volume exclusion chromatogram of Example 11 PEBXA (solvent: tetrahydrofuran concentration: 1.00 mg/ml).
  • Figure 12 is a volume exclusion chromatogram of Example 12 PEBAHA (solvent: tetrahydrofuran concentration: 1.00 mg/ml).
  • Figure 13 is a comparison chart of the solubility of aliphatic polyester and polyester amide.
  • Figure 14 is a volume exclusion chromatogram of Example 13 PEBDA-2 (solvent: tetrahydrofuran concentration: 1.00 mg/ml).
  • Figure 15 shows the aliphatic polyester amide poly(1,13-tridecanedioic acid ethylene glycol ester copolymerization 1,13-tridecanedioyl 1,10-decanediamine) (PEBDA-2) whose quality is 37 Degradation curves over time in phosphate buffered saline solutions without lipase and containing lipase in degrees Celsius.
  • PEBDA-2 aliphatic polyester amide poly(1,13-tridecanedioic acid ethylene glycol ester copolymerization 1,13-tridecanedioyl 1,10-decanediamine
  • Figure 16 shows the aliphatic polyester amide poly(ethylene glycol 1,13-tridecanedioate copolymer 1,13-tridecanedioyl 1,10-decanediamine) (PEBDA-2) at 37 degrees Celsius Degradation curves of molecular weight in lipase-containing and lipase-containing phosphate buffered saline solutions over time.
  • PEBDA-2 aliphatic polyester amide poly(ethylene glycol 1,13-tridecanedioate copolymer 1,13-tridecanedioyl 1,10-decanediamine)
  • polyester amide The preparation method of the above-mentioned polyester amide is as follows. Diamine or amino alcohol is used as the initiator, and the macrolide based on diacid diol is used as the monomer. In the presence of a catalyst, it is prepared by a ring-opening-condensation cascade polymerization reaction. Polyesteramide has excellent mechanical properties, solvent resistance and thermal stability. It effectively solves the disadvantages of the prior art, such as low glass transition temperature and crystallization temperature of polyester, poor heat resistance, low polyamide modulus, poor rigidity, and easy creep.
  • Example 1 Synthesis of aliphatic polyester amide poly(1,13-tridecanedioic acid ethylene glycol ester copolymer 1, 6-hexamethylene diamine and Musk T under nitrogen conditions by ring-opening-condensation cascade polymerization 13-Tridecane diacyl 1,6-hexamethylene diamine) (PEBHA).
  • thermogravimetric curve of PEBOA-2 is shown in Figure 4.
  • the initial (5%) thermal decomposition temperature of the polymer is 382°C, indicating that the aliphatic polyester amide has good thermal stability.
  • the stress-strain curve of PEBOA-2 is shown in Figure 5.
  • the Young's modulus of the polymer is 145 MPa
  • the breaking strength is 26.8 MPa
  • the elongation at break is 101%, indicating that the polymer has good mechanical properties.
  • Example 4 Aliphatic polyester amide (PEBOA-3) was synthesized from 1,8-octanediamine and Musk T under vacuum conditions through ring-opening-condensation cascade polymerization.
  • the differential scanning calorimetry curve of PEBOA-3 is shown in Figure 6. It can be seen from the figure that the polymer has two melting points, where 35.6°C corresponds to the melting point of the polyester part of the polyester amide, 137°C corresponds to the melting point of the polyamide part of the polyester amide, and pure polyester (poly(poly( The melting point of 1,13-tridecanedioic acid ethylene glycol ester)) is only 69°C, indicating that the polymer of the present invention has a higher melting point and proving the successful synthesis of the target product.
  • the viscosity of the polymer measured by the viscosity method was 0.77 deciliters per gram (the solvent is a mixture of phenol and tetrachloroethane with a mass ratio of 3:2), which proved the successful synthesis of the target product.
  • Example 6 Synthesis of semi-aromatic polyester amide poly(p-phenylene) by ring-opening-condensation cascade polymerization of 1,8-octane diamine and cyclic oligobutylene terephthalate (COBTs) under vacuum conditions
  • COBTs 1,8-octane diamine and cyclic oligobutylene terephthalate
  • PBTOA Butylene glycol dicarboxylate copolymerized with 1,8-octane diamine terephthaloyl
  • the viscosity of the polymer measured by the viscosity method is 0.94 deciliters per gram (the solvent is a mixture of phenol and tetrachloroethane with a mass ratio of 3:2), which proves the successful synthesis of the target product.
  • Example 7 Synthesis of aliphatic polyester amide poly(1,13-tridecanedioic acid ethylene glycol ester copolymer 1,10-decanediamine and musk T under vacuum conditions by ring-opening-condensation cascade polymerization 13-Tridecane diacyl 1,10-decane diamine) (PEBDA).
  • Example 8 Synthesis of aliphatic polyester amide poly(1,13-tridecanedioic acid ethylene glycol ester copolymer) by ring-opening-condensation cascade polymerization of 1,12-diaminododecane and musk T under vacuum conditions 1,13-Tridecane diacyl 1,12-dodecane diamine) (PEBDDA).
  • PEBDDA 1,13-Tridecane diacyl 1,12-dodecane diamine
  • Example 9 Synthesis of aliphatic polyester amide poly(ethylene adipate) by ring-opening-condensation cascade polymerization of 1,6-hexamethylene diamine and cyclic oligomeric glycol adipate under nitrogen conditions Copolymerization of 1,6-hexamethylene adipamide) (PEAHA).
  • Example 11 Synthesis of semi-aromatic polyester amide poly(1,13-tridecanedioic acid glycol ester) from 1,4-xylylenediamine and Musk T under nitrogen conditions by ring-opening-condensation cascade polymerization Copolymerization of 1,13-tridecane diacyl 1,4-xylylenediamine) (PEBXA).
  • Example 12 Synthesis of aliphatic polyester amide poly(1,13-tridecanedioic acid ethylene glycol ester copolymer 6) by ring-opening-condensation cascade polymerization of 6-amino-1-hexanol and musk T under nitrogen conditions -Amino-1-hexanol ester) (PEBAHA).
  • the polyester amide polymer obtained in the present invention is insoluble in commonly used organic solvents such as tetrahydrofuran, toluene, chloroform, etc., while the corresponding aliphatic polyester is soluble in these solvents (the polymer is the polymer used in Example 4).
  • Polymer add 1 mg of polymer per ml of solvent), indicating that polyester amide has good solvent resistance.
  • Example 13 Synthesis of aliphatic polyester amide poly(1,13-tridecanedioic acid ethylene glycol ester copolymer 1) from 1,10-decanediamine and musk T under vacuum conditions for ring-opening-condensation cascade polymerization ,13-Tridecane diacyl 1,10-decane diamine) (PEBDA-2).
  • Example 14 Aliphatic polyester amide poly(ethylene glycol 1,13-tridecanedioate copolymer 1,13-tridecanedioyl 1,10-decanediamine) (PEBDA-2) at 37 degrees Celsius Degradation test in phosphate buffered saline solution.
  • the pH of the phosphate buffered saline solution is 7.2 ⁇ 7.4, and the ingredients include sodium chloride at a concentration of 80.0 grams per liter, 2.00 grams per liter potassium chloride, 36.3 grams per liter disodium hydrogen phosphate dodecahydrate, 2.40 grams per liter Potassium dihydrogen phosphate; phosphate buffered saline solution is divided into lipase-free group and lipase-containing group (lipase name: Pseudomonas cepacia lipase, enzyme activity: 30.0 ⁇ 10 3 units per gram, optimal pH value: 7.0 )group.
  • the aliphatic polyester amide poly(1,13-tridecanedioic acid ethylene glycol ester) with a mass of about 10.0 mg (about 5.00 mm in diameter) was copolymerized with 1,13-tridecanedioyl 1,10- Decanediamine) (PEBDA-2) sample (prepared in Example 13, with an initial molecular weight of 30.0 kg/mol) is immersed in about 1.00 ml of phosphate buffered saline solution containing lipase (concentration: 1.00 mg/ml), Place the sample in an environment of 37 degrees Celsius for degradation experiments. Another set of control experiments were set up in a phosphate buffered saline solution without lipase, with other conditions unchanged.
  • the aliphatic polyester amide poly(ethylene glycol 1,13-tridecanedioate copolymer 1,13-tridecanedioyl 1,10-decanediamine) (PEBDA-2) is at 37 degrees Celsius
  • the mass does not decrease without lipase; however, its mass becomes smaller and smaller under the action of lipase, and the remaining mass after degradation for 5 days is about 91.4% (mass after degradation/initial mass ⁇ 100%) .
  • the aliphatic polyester amide poly(1,13-tridecanedioic acid ethylene glycol ester copolymer 1,13-tridecanedioyl 1,10-decanediamine) (PEBDA-2) is insoluble in water after degradation
  • Figure 16 shows the degradation curve of the molecular weight of the remaining part of the sample over time.
  • the aliphatic polyester amide poly(1,13-tridecanedioic acid ethylene glycol ester copolymer 1,13-tridecanedioyl 1,10-decanediamine) (PEBDA-2) is at 37 degrees Celsius
  • the degradation rate is very slow without lipase, and the molecular weight decreases slightly. Under the action of lipase, the degradation rate increases. Within 5 days, the molecular weight decreases from 30.0 kg per mole to 24.3 kg per mole.
  • Mole. Description of the aliphatic copolyesters (PEB- b -PEO- b -PPO- b -PEO- b -PEB) n has good degradability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyamides (AREA)

Abstract

本发明公开了一种聚酯酰胺及其制备方法,以二胺或氨基醇作为引发剂,以基于二酸二醇的大环内酯作为单体,在催化剂存在下,通过开环-缩合级联聚合反应制备得到聚酯酰胺。本发明制备的聚酯酰胺共聚物兼具良好的生物相容性和可生物降解性及优异的机械性能、耐溶剂性能和热稳定性;通过改变酯键和酰胺键的比例、聚合物分子量及分布等因素可以调控聚酯酰胺材料的性能,使其在工程塑料、热塑性弹性体、组织工程以及控制释放等领域得到广泛应用。

Description

一种聚酯酰胺及其制备方法 技术领域
本发明属于高分子材料制备领域,着重涉及的是一种聚酯酰胺的制备方法。
背景技术
聚酯酰胺常见的合成方法有缩合聚合法和开环聚合法。其中,缩合聚合法副反应多,并且需要通过严格控制化学计量比,提高反应温度,延长反应时间,提高真空度等条件才能获得高分子量聚合物。相比于缩合聚合法,开环聚合法具有反应速度快,反应条件温和,聚合物分子量高等优势。但能够发生开环聚合的单体种类较少,一般是ABAB型环状单体,需要通过几步复杂的合成步骤来获得单体,增加了方法的复杂性,并且成本较高。
目前对于通过绿色经济的合成手段制备高性能的聚酯酰胺的报道较少。为了适应社会的发展脚步,急需开发一种普适的方法来制备环境友好型聚酯酰胺高分子材料,使其满足更多应用领域的需求。
技术问题
本发明旨在提供一种聚酯酰胺的制备方法。即以二胺如1,6-己二胺、1,8-辛二胺、1,10-癸二胺、1,12-十二烷基二胺、1,3-环己二甲胺、1,4-苯二甲胺或氨基醇如6-氨基-1-己醇、异丁醇胺等含有氨基的醇为引发剂,采用基于二酸二醇的大环内酯如脂肪族大环内酯麝香T、环状寡聚己二酸乙二醇酯或芳香族大环内酯环状寡聚对苯二甲酸丁二醇酯为单体,在催化剂存在下通过开环-缩合级联聚合(PROP)合成聚酯酰胺。通过采用开环-缩合级联聚合法,使得开环聚合反应和缩合聚合反应在同一个体系中级联进行,从而一步合成了聚酯酰胺。本发明的聚酯酰胺共聚物兼具良好的生物相容性和可生物降解性及优异的机械性能、耐溶剂性能和热稳定性;通过改变酯键和酰胺键的比例、聚合物分子量及分布等因素可以调控聚酯酰胺材料的性能,使其在工程塑料、热塑性弹性体、组织工程以及控制释放等领域得到广泛应用。
技术解决方案
为实现上述目的和效果,本发明通过以下技术方案实现:一种聚酯酰胺,其化学结构式如下。
Figure 219094dest_path_image001
其中,R 1为-(CH 2) nNH-、-(CH 2) 6O-或-C(CH 3) 2CH 2O-;或者R 1为以下基团。
Figure 128144dest_path_image002
Figure 539010dest_path_image003
 R 2为-(CH 2) m-或
Figure 533511dest_path_image004
n为4~16;m为4~11;t为 2~4;x为10~250;y为2~200。
比如,R 1为-(CH 2) 6NH-、-(CH 2) 8NH-、-(CH 2) 10NH-、-(CH 2) 12NH-、-(CH 2) 6O-或-C(CH 3) 2CH 2O-;或者R 1为以下基团。
Figure 815587dest_path_image005
Figure 579144dest_path_image006
 R 2为-(CH 2) 11-,-(CH 2) 4-或
Figure 350791dest_path_image007
上述聚酯酰胺的制备方法,包括以下步骤,以二胺或氨基醇作为引发剂,以基于二酸二醇的大环内酯作为单体,在催化剂存在下,通过开环-缩合级联聚合反应制备得到聚酯酰胺。本发明聚酯酰胺具有优异的机械性能、耐溶剂性能和热稳定性。
本发明进一步公开了钛酸正丁酯或钛酸异丁酯作为催化剂在催化二胺或氨基醇作为引发剂,引发基于二酸二醇的大环内酯开环-缩合级联聚合反应制备聚酯酰胺中的应用。
本发明中,二胺为1,6-己二胺、1,8-辛二胺、1,10-癸二胺、1,12-二氨基十二烷、1,3-环己二甲胺或1,4-苯二甲胺;氨基醇为6-氨基-1-己醇、异丁醇胺等含有氨基的醇。
本发明中,基于二酸二醇的大环内酯为脂肪族大环内酯或者芳香族大环内酯;优选的,脂肪族大环内酯为麝香T(1,13-十三烷二酸乙二醇内酯)、环状寡聚己二酸乙二醇酯,芳香族大环内酯为环状寡聚对苯二甲酸丁二醇酯。
本发明中,所述催化剂为钛酸酯化合物,优选为钛酸正丁酯或钛酸异丁酯。
本发明中,单体与引发剂的投料摩尔比为2~100;催化剂的量为单体、引发剂总投料质量的0.03%~1%。
本发明中,开环-缩合级联聚合反应的温度为200~280℃,时间为10~240分钟;开环-缩合级联聚合反应在氮气氛围或真空条件下进行;反应结束后无需提纯,即可得到产物聚酯酰胺。
本发明的聚酯酰胺,其制备方法可以具体如下:室温下,在反应装置中加入二胺或氨基醇、基于二酸二醇的大环内酯,通氮气,进行机械搅拌,加热至200~280℃,然后加入催化剂,继续通氮气或抽真空,聚合30~240分钟即可得到聚酯酰胺。或者室温下,在反应装置中加入二胺或氨基醇、基于二酸二醇的大环内酯,然后加入催化剂,进行机械搅拌,加热至200~280℃,通氮气或抽真空,聚合10~120分钟即可得到聚酯酰胺。
本发明中,聚合机理为开环-缩合级联聚合过程,即二胺或氨基醇引发剂先对麝香T、环状寡聚己二酸乙二醇酯或环状寡聚对苯二甲酸丁二醇酯等大环内酯进行开环聚合得到端基为羟基的聚酯酰胺,聚酯酰胺可继续引发大环内酯的开环聚合,也可相互之间进行缩合聚合,生成更高分子量的聚酯酰胺,反应产物即为聚酯酰胺,无需提纯分离。
本发明聚酯酰胺的制备方法有效解决了现有技术较难在很大范围内调节聚酯酰胺性质(分子量、结构和性能)的问题,拓宽了聚酯酰胺的应用范围。
有益效果
本发明通过开环-缩合级联聚合方法合成了聚酯酰胺,本聚合方法具有反应步骤简单,分子量高且可控,无需后处理,可以大量合成等优点;采用的引发剂1,6-己二胺、1,8-辛二胺、1,10-癸二胺、1,12-二氨基十二烷、1,3-环己二甲胺、1,4-苯二甲胺、6-氨基-1-己醇或异丁醇胺,单体麝香T、环状寡聚己二酸乙二醇酯或环状寡聚对苯二甲酸丁二醇酯可以大量购得,价格非常便宜,因而合成的聚酯酰胺成本很低。利用此法合成的聚酯酰胺兼具优异的机械性能、耐溶剂性能和热稳定性,通过聚酰胺的引入提高了聚酯的耐溶剂性能和耐热性能,具有较大的应用价值。
上述说明仅是本发明技术方案的概述。为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下为本发明的具体实施例并配合附图详细说明。
附图说明
图1为本发明聚酯酰胺的合成路线图。
图2为实施例一PEBHA的体积排除色谱图(溶剂:四氢呋喃 浓度:1.00 毫克每毫升)。
图3为实施例二PEBOA-1的体积排除色谱图(溶剂:四氢呋喃 浓度:1.00 毫克每毫升)。
图4为实施例三PEBOA-2的热示重曲线图(升温速率:10℃每分钟 气氛:氮气)。
图5 为实施例三PEBOA-2的应力-应变曲线图(拉伸速率:10毫米每分钟 温度:25.7℃ 湿度:79.0%)。
图6 为实施例四PEBOA-3的差式扫描量热曲线图(升温速率:10℃每分钟 气氛:氮气)。
图7为实施例七PEBDA的体积排除色谱图(溶剂:四氢呋喃 浓度:1.00 毫克每毫升)。
图8为实施例八PEBDDA的体积排除色谱图(溶剂:四氢呋喃 浓度:1.00 毫克每毫升)。
图9为实施例九PEAHA的体积排除色谱图(溶剂:四氢呋喃 浓度:1.00 毫克每毫升)。
图10为实施例十PEBCHA的体积排除色谱图(溶剂:四氢呋喃 浓度:1.00 毫克每毫升)。
图11为实施例十一PEBXA的体积排除色谱图(溶剂:四氢呋喃 浓度:1.00 毫克每毫升)。
图12为实施例十二PEBAHA的体积排除色谱图(溶剂:四氢呋喃 浓度:1.00 毫克每毫升)。
图13为脂肪族聚酯与聚酯酰胺溶解性能对比图。
图14为实施例十三PEBDA-2的体积排除色谱图 (溶剂:四氢呋喃 浓度:1.00 毫克每毫升)。
图15为脂肪族聚酯酰胺聚(1,13-十三烷二酸乙二醇酯共聚1,13-十三烷二酰1,10-癸二胺)(PEBDA-2)的质量在37摄氏度不含脂肪酶和含脂肪酶条件下的磷酸缓冲盐溶液中随时间变化的降解曲线图。
图16为脂肪族聚酯酰胺聚(1,13-十三烷二酸乙二醇酯共聚1,13-十三烷二酰1,10-癸二胺)(PEBDA-2)在37摄氏度不含脂肪酶和含脂肪酶条件下的磷酸缓冲盐溶液中的分子量随时间变化的降解曲线图。
本发明的实施方式
下面将参考附图并结合实例来详细说明本发明。
上述聚酯酰胺的制备方法如下,以二胺或氨基醇作为引发剂,以基于二酸二醇的大环内酯作为单体,在催化剂存在下,通过开环-缩合级联聚合反应制备得到聚酯酰胺,具有优异的机械性能、耐溶剂性能和热稳定性。有效解决了现有技术中,聚酯玻璃化转变温度和结晶温度较低、耐热性能较差以及聚酰胺模量低、刚性差、易产生蠕变等不足。
参见图1所示,为本发明聚酯酰胺的制备方法,即通过开环-缩合级联聚合方法,得到一系列脂肪族聚酯酰胺和半芳香族聚酯酰胺。
实施例一 由1,6-己二胺和麝香T在氮气条件下进行开环-缩合级联聚合合成脂肪族聚酯酰胺聚(1,13-十三烷二酸乙二醇酯共聚1,13-十三烷二酰1,6-己二胺)(PEBHA)。
室温下,在250毫升的单口烧瓶中加入1,6-己二胺(1.00克)和麝香T(9.00克),通过微量进样器缓慢地加入20.0微升的钛酸正丁酯;然后将单口烧瓶置于盐浴锅中加热至240℃,并机械搅拌,抽真空聚合60分钟,最终生成相应的聚合物PEBHA。体积排除色谱图见图2,测得的分子量为36.1千克每摩尔,证明了目标产物的成功合成。
实施例二 由1,8-辛二胺和麝香T在氮气条件下进行开环-缩合级联聚合合成脂肪族聚酯酰胺聚(1,13-十三烷二酸乙二醇酯共聚1,13-十三烷二酰1,8-辛二胺)(PEBOA-1)。
室温下,在100毫升的三口烧瓶中加入1,8-辛二胺(0.50克)和麝香T(9.50克),通氮气除去氧气后将三口烧瓶置于盐浴锅中加热至220℃,并机械搅拌,随后通过微量进样器缓慢地加入20.0微升的钛酸正丁酯,在氮气氛围下进行开环-缩合级联聚合反应60分钟,生成相应的聚合物PEBOA-1。体积排除色谱图见图3,测得的分子量为8.30千克每摩尔,证明了目标产物的成功合成。
实施例三 由1,8-辛二胺和麝香T在真空条件下进行开环-缩合级联聚合合成脂肪族聚酯酰胺聚(1,13-十三烷二酸乙二醇酯共聚1,13-十三烷二酰1,8-辛二胺)(PEBOA-2)。
室温下,在250毫升的单口烧瓶中加入1,8-辛二胺(7.50克)和麝香T(22.5克),通过微量进样器缓慢地加入60.0微升的钛酸正丁酯;然后将单口烧瓶置于盐浴锅中加热至240℃,并机械搅拌,抽真空聚合60分钟,最终生成相应的聚合物PEBOA-2。
PEBOA-2的热示重曲线图见图4,聚合物的初始(5%)热分解温度为382℃,说明脂肪族聚酯酰胺具有很好的热稳定性。
PEBOA-2的应力-应变曲线图见图5,聚合物的杨氏模量为145兆帕,断裂强度为26.8兆帕,断裂伸长率为101%,说明聚合物具有很好的机械性能。
实施例四 由1,8-辛二胺和麝香T在真空条件下进行开环-缩合级联聚合合成脂肪族聚酯酰胺(PEBOA-3)。
室温下,在250毫升的单口烧瓶中加入1,8-辛二胺(3.00克)和麝香T(27.0克),通过微量进样器缓慢地加入60.0微升的钛酸正丁酯;然后将单口烧瓶置于盐浴锅中加热至240℃,并机械搅拌,抽真空聚合60分钟,最终生成相应的聚合物聚(1,13-十三烷二酸乙二醇酯共聚1,13-十三烷二酰1,8-辛二胺)(PEBOA-3)。
PEBOA-3的差式扫描量热曲线见图6。由图可得该聚合物具有两个熔点,其中35.6℃对应的是聚酯酰胺中聚酯部分的熔点,137℃对应的是聚酯酰胺中聚酰胺部分的熔点,而纯聚酯(聚(1,13-十三烷二酸乙二醇酯))的熔点仅为69℃,说明本发明聚合物具有更高的熔点,并证明了目标产物的成功合成。
实施例五 由1,8-辛二胺和麝香T在真空条件下进行开环-缩合级联聚合合成脂肪族聚酯酰胺聚(1,13-十三烷二酸乙二醇酯共聚1,13-十三烷二酰1,8-辛二胺)(PEBOA-4)。
室温下,在250毫升的单口烧瓶中加入1,8-辛二胺(9.00克)和麝香T(21.0克),通过微量进样器缓慢地加入60.0微升的钛酸正丁酯;然后将单口烧瓶置于盐浴锅中加热至240℃,并机械搅拌,抽真空聚合60分钟,最终生成相应的聚合物PEBOA-4。
在25℃的条件下,利用粘度法测得聚合物粘度为0.77分升每克(溶剂为苯酚与四氯乙烷质量比为3:2的混合溶液),证明了目标产物的成功合成。
实施例六 由1,8-辛二胺和环状寡聚对苯二甲酸丁二醇酯(COBTs)在真空条件下进行开环-缩合级联聚合合成半芳香族聚酯酰胺聚(对苯二甲酸丁二醇酯共聚对苯二甲酰1,8-辛二胺)(PBTOA)。
室温下,在250毫升的单口烧瓶中加入1,8-辛二胺(4.00克)和对苯二甲酸丁二醇酯(36.0克),通过微量进样器缓慢地加入80.0微升的钛酸正丁酯;然后将单口烧瓶置于盐浴锅中加热至270℃,并机械搅拌,抽真空聚合60分钟,最终生成相应的聚合物PBTOA。
在25℃的条件下,利用粘度法测得聚合物粘度为0.94分升每克(溶剂为苯酚与四氯乙烷质量比为3:2的混合溶液),证明了目标产物的成功合成。
实施例七 由1,10-癸二胺和麝香T在真空条件下进行开环-缩合级联聚合合成脂肪族聚酯酰胺聚(1,13-十三烷二酸乙二醇酯共聚1,13-十三烷二酰1,10-癸二胺)(PEBDA)。
室温下,在250毫升的单口烧瓶中加入1,10-癸二胺(1.00克)和麝香T(9.00克),通过微量进样器缓慢地加入20.0微升的钛酸正丁酯;然后将单口烧瓶置于盐浴锅中加热至240℃,并机械搅拌,抽真空聚合60分钟,最终生成相应的聚合物PEBDA。体积排除色谱图见图7,测得的分子量为39.2千克每摩尔,证明了目标产物的成功合成。
实施例八 由1,12-二氨基十二烷和麝香T在真空条件下进行开环-缩合级联聚合合成脂肪族聚酯酰胺聚(1,13-十三烷二酸乙二醇酯共聚1,13-十三烷二酰1,12-十二烷二胺)(PEBDDA)。
室温下,在250毫升的单口烧瓶中加入1,12-二氨基十二烷(1.00克)和麝香T(9.00克),通过微量进样器缓慢地加入20.0微升的钛酸正丁酯。将单口烧瓶置于盐浴锅中加热至240℃,并机械搅拌,抽真空聚合60分钟,最终生成相应的聚合物PEBDDA。体积排除色谱图见图8,测得的分子量为25.9千克每摩尔,证明了目标产物的成功合成。
实施例九由1,6-己二胺和环状寡聚己二酸乙二醇酯在氮气条件下进行开环-缩合级联聚合合成脂肪族聚酯酰胺聚(己二酸乙二醇酯共聚己二酰1,6-己二胺)(PEAHA)。
室温下,在100毫升的三口烧瓶中加入1,6-己二胺(0.10克)和环状寡聚己二酸乙二醇酯(1.90克),通氮气除去氧气后将三口烧瓶置于盐浴锅中加热至220℃,并机械搅拌,随后通过微量进样器缓慢地加入4.00微升的钛酸正丁酯,在氮气氛围下进行开环-缩合级联聚合反应150分钟,生成相应的聚合物PEAHA。体积排除色谱图见图9,测得的分子量为12.1千克每摩尔,证明了目标产物的成功合成。
实施例十 由1,3-环己二甲胺和麝香T在氮气条件下进行开环-缩合级联聚合合成脂肪族聚酯酰胺聚(1,13-十三烷二酸乙二醇酯共聚1,13-十三烷二酰1,3-环己二甲胺)(PEBCHA)。
室温下,在100毫升的三口烧瓶中加入1,3-环己二甲胺(0.50克)和麝香T(9.50克),通氮气除去氧气后三口烧瓶置于盐浴锅中加热至220℃,并机械搅拌,随后通过微量进样器缓慢地加入20.0微升的钛酸正丁酯,在氮气氛围下进行开环-缩合级联聚合反应60分钟,生成相应的聚合物PEBCHA。体积排除色谱图见图10,测得的分子量为9.53千克每摩尔,证明了目标产物的成功合成。
实施例十一 由1,4-苯二甲胺和麝香T在氮气条件下进行开环-缩合级联聚合合成半芳香族聚酯酰胺聚(1,13-十三烷二酸乙二醇酯共聚1,13-十三烷二酰1,4-苯二甲胺)(PEBXA)。
室温下,在100毫升的三口烧瓶中加入1,4-苯二甲胺(0.50克)和麝香T(9.50克),通氮气除去氧气后三口烧瓶置于盐浴锅中加热至220℃,并机械搅拌,随后通过微量进样器缓慢地加入20.0微升的钛酸正丁酯,在氮气氛围下进行开环-缩合级联聚合反应60分钟,生成相应的聚合物PEBXA。体积排除色谱图见图11,测得的分子量为6.03千克每摩尔,证明了目标产物的成功合成。
实施例十二 由6-氨基-1-己醇和麝香T在氮气条件下进行开环-缩合级联聚合合成脂肪族聚酯酰胺聚(1,13-十三烷二酸乙二醇酯共聚6-氨基-1-己醇酯)(PEBAHA)。
室温下,在100毫升的三口烧瓶中加入6-氨基-1-己醇(0.50克)和麝香T(9.50克),通氮气除去氧气后三口烧瓶置于盐浴锅中加热至220℃,并机械搅拌,随后通过微量进样器缓慢地加入20.0微升的钛酸正丁酯,在氮气氛围下进行开环-缩合级联聚合反应60分钟,生成相应的聚合物PEBAHA。体积排除色谱图见图12,测得的分子量为13.7千克每摩尔,证明了目标产物的成功合成。
如图13所示,本发明获得的聚酯酰胺聚合物不溶于常用的有机溶剂如四氢呋喃、甲苯、三氯甲烷等,而相应的脂肪族聚酯溶于这些溶剂(聚合物为实施例四的聚合物,每毫升溶剂中加入1毫克聚合物),说明聚酯酰胺具有良好的耐溶剂性能。
实施例十三 由1,10-癸二胺和麝香T在真空条件下进行开环-缩合级联聚合合成脂肪族聚酯酰胺聚(1,13-十三烷二酸乙二醇酯共聚1,13-十三烷二酰1,10-癸二胺)(PEBDA-2)。
室温下,在250毫升的单口烧瓶中加入1,10-癸二胺(1.50克)和麝香T(28.5克),通过微量进样器缓慢地加入60.0微升的钛酸正丁酯;然后将单口烧瓶置于盐浴锅中加热至240℃,并机械搅拌,抽真空聚合60分钟,最终生成相应的聚合物PEBDA-2。体积排除色谱图见图14,测得的分子量为30.0千克每摩尔,证明了目标产物的成功合成。
实施例十四 脂肪族聚酯酰胺聚(1,13-十三烷二酸乙二醇酯共聚1,13-十三烷二酰1,10-癸二胺)(PEBDA-2)在37摄氏度下磷酸缓冲盐溶液中的降解测试。
磷酸缓冲盐溶液pH 7.2 ~ 7.4,其中成分包括浓度为80.0克每升的氯化钠、2.00克每升的氯化钾、36.3克每升的十二水合磷酸氢二钠、2.40克每升的磷酸二氢钾;磷酸缓冲盐溶液分为不含脂肪酶组和含脂肪酶(脂肪酶名称:洋葱假单胞菌脂肪酶,酶活:30.0×10 3单位每克,最佳pH值:7.0)组。
将质量为10.0毫克左右圆片状(直径约5.00毫米)的脂肪族聚酯酰胺聚(1,13-十三烷二酸乙二醇酯共聚1,13-十三烷二酰1,10-癸二胺)(PEBDA-2)样品(实施例十三制备,样品起始分子量为30.0千克每摩尔)浸没至1.00毫升左右含脂肪酶(浓度:1.00毫克每毫升)的磷酸缓冲盐溶液中,将试样放置在37摄氏度的环境下进行降解实验。另设置一组对照实验,在不含脂肪酶的磷酸缓冲盐溶液中进行,其它条件不变。待其达到预定天数时,取出样品,用蒸馏水淋洗、过滤、晾干,利用电子天平称量其质量变化以及利用凝胶渗透色谱仪测试其分子量;脂肪族聚酯酰胺聚(1,13-十三烷二酸乙二醇酯共聚1,13-十三烷二酰1,10-癸二胺)(PEBDA-2)降解的质量随时间变化的降解曲线图见图15。由图可知,脂肪族聚酯酰胺聚(1,13-十三烷二酸乙二醇酯共聚1,13-十三烷二酰1,10-癸二胺)(PEBDA-2)在37摄氏度磷酸缓冲盐溶液中,不含脂肪酶的条件下质量没有减少;而在脂肪酶的作用下其质量越来越小,降解5天时剩余质量约91.4%(降解后质量/初始质量×100%)。另外,脂肪族聚酯酰胺聚(1,13-十三烷二酸乙二醇酯共聚1,13-十三烷二酰1,10-癸二胺)(PEBDA-2)降解后不溶于水的剩余部分样品的分子量随时间变化的降解曲线图见图16。由图可知,脂肪族聚酯酰胺聚(1,13-十三烷二酸乙二醇酯共聚1,13-十三烷二酰1,10-癸二胺)(PEBDA-2)在37摄氏度磷酸缓冲盐溶液中,不含脂肪酶的条件下降解速度很慢,分子量略有下降,而在脂肪酶的作用下其降解速度加快,5天时间内分子量由30.0千克每摩尔降低到24.3千克每摩尔。说明脂肪族共聚酯(PEB- b-PEO- b-PPO- b-PEO- b-PEB) n具有良好的可降解性。
以上所述仅为发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修饰、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种聚酯酰胺,其化学结构式如下:
    Figure 999329dest_path_image001
    其中,R 1为-(CH 2) nNH-、-(CH 2) 6O-或-C(CH 3) 2CH 2O-;
    或者R 1为以下基团:
    Figure 788294dest_path_image002
    Figure 421400dest_path_image003
     R 2为-(CH 2) m-或
    Figure 663026dest_path_image004
    n为4~16;m为4~11;t为 2~4;x为10~250;y为2~200。
  2. 权利要求1所述聚酯酰胺的制备方法,其特征在于,包括以下步骤,以二胺或氨基醇作为引发剂,以基于二酸二醇的大环内酯作为单体,在催化剂存在下,通过开环-缩合级联聚合反应制备得到聚酯酰胺。
  3. 根据权利要求2所述聚酯酰胺的制备方法,其特征在于,二胺为1,6-己二胺、1,8-辛二胺、1,10-癸二胺、1,12-二氨基十二烷、1,3-环己二甲胺或1,4-苯二甲胺;氨基醇为6-氨基-1-己醇或者异丁醇胺;基于二酸二醇的大环内酯为脂肪族大环内酯或者芳香族大环内酯;所述催化剂为钛酸酯化合物。
  4. 根据权利要求2所述聚酯酰胺的制备方法,其特征在于,开环-缩合级联聚合反应在氮气氛围或抽真空条件下进行;反应结束后无需后处理直接得到聚合产物。
  5. 根据权利要求2所述聚酯酰胺的制备方法,其特征在于,开环-缩合级联聚合反应的温度为200~280℃,时间为10~240分钟。
  6. 根据权利要求2所述聚酯酰胺的制备方法,其特征在于,单体与引发剂的投料摩尔比为2~100;催化剂的量为单体、引发剂总投料质量的0.03%~1%。
  7. 根据权利要求2所述聚酯酰胺的制备方法,其特征在于,将引发剂、单体混合加热后再加入催化剂,进行开环-缩合级联聚合反应制备得到聚酯酰胺;或者将引发剂、单体、催化剂混合后加热,进行开环-缩合级联聚合反应制备得到聚酯酰胺。
  8. 权利要求1所述聚酯酰胺在制备聚酯酰胺材料中的应用。
  9. 钛酸正丁酯或钛酸异丁酯作为催化剂在催化二胺或氨基醇作为引发剂,引发基于二酸二醇的大环内酯开环-缩合级联聚合反应制备聚酯酰胺中的应用。
  10. 根据权利要求9所述的应用,其特征在于,二胺为1,6-己二胺、1,8-辛二胺、1,10-癸二胺、1,12-二氨基十二烷、1,3-环己二甲胺或1,4-苯二甲胺;氨基醇为6-氨基-1-己醇或者异丁醇胺;基于二酸二醇的大环内酯为脂肪族大环内酯或者芳香族大环内酯。
PCT/CN2021/075900 2019-12-06 2021-02-07 一种聚酯酰胺及其制备方法 WO2021110182A2 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/782,704 US20230024746A1 (en) 2019-12-06 2021-02-07 Poly(ester amide)s and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911244454.2A CN111019126B (zh) 2019-12-06 2019-12-06 一种聚酯酰胺及其制备方法
CN201911244454.2 2019-12-06

Publications (2)

Publication Number Publication Date
WO2021110182A2 true WO2021110182A2 (zh) 2021-06-10
WO2021110182A3 WO2021110182A3 (zh) 2021-07-29

Family

ID=70207446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075900 WO2021110182A2 (zh) 2019-12-06 2021-02-07 一种聚酯酰胺及其制备方法

Country Status (3)

Country Link
US (1) US20230024746A1 (zh)
CN (1) CN111019126B (zh)
WO (1) WO2021110182A2 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111019126B (zh) * 2019-12-06 2022-04-15 苏州大学 一种聚酯酰胺及其制备方法
CN112920403B (zh) * 2021-01-26 2022-03-11 安徽农业大学 可再加工的热固性聚酯酰胺的制备方法、制得的热固性聚酯酰胺
CN115260460B (zh) * 2022-09-26 2023-02-10 苏州大学 一种共聚酯及其制备方法
CN116425983B (zh) * 2023-06-14 2023-09-29 苏州大学 一种高抗冲聚醚酯酰胺热塑性弹性体及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5883156A (en) * 1993-08-20 1999-03-16 Nippon Paint Co., Ltd. Biodegradable resin composition ADN antifouling paint composition
CN1298765C (zh) * 2005-07-01 2007-02-07 清华大学 含有异山梨醇单元的聚酯酰胺及其制备方法
WO2012132084A1 (ja) * 2011-03-28 2012-10-04 宇部興産株式会社 ポリエーテルアミドエラストマーの製造方法及びその製造方法により得られるポリエーテルアミドエラストマー
CN104892934A (zh) * 2014-03-04 2015-09-09 上海凯赛生物技术研发中心有限公司 聚酯酰胺及其制备方法以及由该聚酯酰胺制得的纤维
CN109988292B (zh) * 2019-03-28 2021-04-13 苏州大学 一种可降解脂肪族共聚酯的制备方法
CN111019126B (zh) * 2019-12-06 2022-04-15 苏州大学 一种聚酯酰胺及其制备方法

Also Published As

Publication number Publication date
WO2021110182A3 (zh) 2021-07-29
CN111019126B (zh) 2022-04-15
CN111019126A (zh) 2020-04-17
US20230024746A1 (en) 2023-01-26

Similar Documents

Publication Publication Date Title
WO2021110182A2 (zh) 一种聚酯酰胺及其制备方法
JP7223691B2 (ja) ペンタブロックコポリマーを含む多孔質膜及びその製造方法
CN109988292B (zh) 一种可降解脂肪族共聚酯的制备方法
JP5675108B2 (ja) 少なくとも一種の環状モノマーのコポリマーの製造方法
US5461139A (en) Biodegradable optically active copolymers and processes for producing the same
US10781279B2 (en) Pentablock copolymers
Rutnakornpituk et al. Synthesis, characterization and properties of chitosan modified with poly (ethylene glycol)–polydimethylsiloxane amphiphilic block copolymers
KR101456343B1 (ko) 하나 이상의 시클릭 단량체로부터 중합체를 제조하는 방법
CN102660032A (zh) 脂肪族聚酯接枝聚氨基酸共聚物及其制备方法
CN101255234B (zh) 一种温度敏感型三嵌段共聚物及其制备方法和用途
Varela et al. Synthesis of chiral polyamides from carbohydrate-derived monomers
CN110291124B (zh) 三嵌段共聚物
Masutani et al. Macromolecular design of specialty polylactides by means of controlled copolymerization and stereocomplexation
JPH01108226A (ja) ブロック共重合体およびその製造方法
CN111349233B (zh) 一种生物可降解交替型脂肪族聚酯酰胺及其制备方法
CN101519494B (zh) 高分子量聚吗啉-2,5-二酮衍生物的制备方法及共聚物的制备方法
CN109749065A (zh) 一种二元催化剂催化的大环内酯共聚物高效制备方法
JP2011149021A (ja) ステレオブロック共重合体組成物、ステレオコンプレックス共重合体組成物、及びステレオブロック共重合体組成物の合成方法
JP2875346B2 (ja) ポリアミドイミドエラストマーの製造方法
CN102898636B (zh) 含可控侧链羧基数目的聚酯类材料及其制备方法
JP2868116B2 (ja) 生分解性ブロック共重合体およびこの生分解性ブロック共重合体の製造方法
Shang et al. Synthesis and characterization of biodegradable thermoplastic elastomers derived from N′, N-bis (2-carboxyethyl)-pyromellitimide, poly (butylene succinate) and polyethylene glycol
JP2612597B2 (ja) 透明なポリアミド系エラストマーの製造方法
CN111393617A (zh) 一种性能可调控的热塑性聚酯弹性体及其制备方法
CN118027374A (zh) 一种高阻隔可降解聚合物的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21729786

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21729786

Country of ref document: EP

Kind code of ref document: A2