WO2021103311A1 - 电子设备及其控制方法、装置、可读存储介质 - Google Patents

电子设备及其控制方法、装置、可读存储介质 Download PDF

Info

Publication number
WO2021103311A1
WO2021103311A1 PCT/CN2020/074179 CN2020074179W WO2021103311A1 WO 2021103311 A1 WO2021103311 A1 WO 2021103311A1 CN 2020074179 W CN2020074179 W CN 2020074179W WO 2021103311 A1 WO2021103311 A1 WO 2021103311A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
module
electronic device
driving
voltage
Prior art date
Application number
PCT/CN2020/074179
Other languages
English (en)
French (fr)
Inventor
陈朝喜
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to KR1020207007403A priority Critical patent/KR102419658B1/ko
Priority to JP2020515683A priority patent/JP2022514994A/ja
Publication of WO2021103311A1 publication Critical patent/WO2021103311A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/024Synchronous motors controlled by supply frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/032Reciprocating, oscillating or vibrating motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • H02P25/064Linear motors of the synchronous type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/46Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/02Arrangements for regulating or controlling the speed or torque of electric DC motors the DC motors being of the linear type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72403User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M19/00Current supply arrangements for telephone systems
    • H04M19/02Current supply arrangements for telephone systems providing ringing current or supervisory tones, e.g. dialling tone or busy tone
    • H04M19/04Current supply arrangements for telephone systems providing ringing current or supervisory tones, e.g. dialling tone or busy tone the ringing-current being generated at the substations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/22Details of telephonic subscriber devices including a touch pad, a touch sensor or a touch detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/11Transducers incorporated or for use in hand-held devices, e.g. mobile phones, PDA's, camera's

Definitions

  • the embodiments of the present disclosure relate to the field of control technology, and in particular, to an electronic device and a control method, device, and readable storage medium thereof.
  • the embodiments of the present disclosure provide an electronic device and its control method, device, and readable storage medium to solve the deficiencies of related technologies.
  • an electronic device including a middle frame, a first motor, a second motor, and a drive module; the first motor and the second motor are respectively fixed to the middle frame The first designated position and the second designated position; the drive module is electrically connected to the first motor and the second motor, and is used to drive the first motor or the second motor individually according to a control signal Vibrate, or drive the first motor and the second motor to vibrate synchronously.
  • the middle frame is integrally formed with the housing of the first motor and the housing of the second motor, respectively.
  • it further includes a main board, on which two sets of elastic sheets are arranged; the first motor is provided with a power terminal, and the power terminal is in elastic contact with one of the sets of elastic sheets; the second motor is provided with a power terminal, The power terminal is in elastic contact with another set of elastic pieces.
  • the first motor and the second motor are linear motors with the same vibration direction.
  • the drive module includes a first drive chip for driving the first motor and a second drive chip for driving the second motor, the first drive chip and the second drive
  • the chip uses the clock signal provided by the same clock source.
  • a phase locked loop is provided in the first driving chip and the second driving chip respectively; the phase locked loop is used to lock the phase of the clock signal.
  • the drive module pre-stores a preset waveform; the drive module is connected to the touch button, and is used for when the touch button is operated according to the The preset waveform controls the first motor and the second motor to vibrate synchronously.
  • a boost circuit is provided in the driving module; the boost circuit is used to boost the input voltage to obtain a driving voltage that exceeds a set voltage threshold; the driving voltage is used to drive the first The amplitude of the vibration of one motor and/or the second motor exceeds the set amplitude threshold.
  • the processor is configured to obtain the input voltage of the first motor and the input voltage of the second motor respectively, and according to the input voltage of the first motor and the second motor The input voltage generates a control signal, and the control signal is used to make the drive module adjust the output voltage to reduce the vibration amplitude of the first motor and the second motor.
  • it also includes a magnetic field detection module; wherein,
  • the magnetic field detection module is used to detect the alternating magnetic field generated by the first motor to obtain a first voltage set, and to detect the alternating magnetic field generated by the second motor to obtain a second voltage set;
  • the processor is connected to the magnetic field detection module, and is configured to obtain the current first resonance frequency of the first motor according to the first voltage set in response to the detection of the trigger vibration reminder operation, and according to the second Obtaining the current second resonant frequency of the second motor by voltage collection, and sending the first resonant frequency and the second resonant frequency to the driving module;
  • the driving module is configured to drive the first motor and the second motor to vibrate synchronously based on the first resonance frequency and the second resonance frequency, respectively, to perform a vibration reminder operation.
  • the audio module is used to obtain an envelope signal of audio data and send it to the processor; the processor is used to generate a driving signal according to the envelope signal and send it to the The driving module controls the first motor and/or the second motor to vibrate following the audio data.
  • a method for controlling a motor in an electronic device which is suitable for the electronic device according to any one of the first aspects, and the method includes:
  • the first resonance frequency and the second resonance frequency are sent to the driving module, so that the driving module drives the first motor based on the first resonance frequency and the second resonance frequency, respectively Vibrate synchronously with the second motor, and perform a shock reminder operation.
  • the method includes:
  • a control signal is generated according to the comparison result and the control signal is sent to the driving module, so that the driving module drives the first motor and the second motor to maintain synchronous vibration according to the control signal.
  • the method further includes:
  • the envelope signal is acquired from an audio module in an electronic device
  • the driving signal is sent to a driving module, so that the driving module drives the first motor and/or the second motor to vibrate following the audio data.
  • a device for controlling a motor in an electronic device which is suitable for the electronic device according to any one of the first aspects, and the device includes:
  • a voltage set obtaining module configured to obtain the detection voltages output by the first motor and the second motor detected by the magnetic field detection module within a preset time period, to obtain the first voltage set and the second voltage set;
  • the resonance frequency acquisition module is configured to acquire the current first resonance frequency of the first motor according to the first voltage set, and acquire the second motor according to the second voltage set in response to detecting the triggering of the shock reminder operation The current second resonance frequency;
  • the resonance frequency sending module is configured to send the first resonance frequency and the second resonance frequency to the driving module, so that the driving module is based on the first resonance frequency and the second resonance frequency
  • the first motor and the second motor are respectively driven to vibrate synchronously, and the vibration reminding operation is performed.
  • the device includes:
  • An input voltage obtaining module configured to obtain the input voltage of the first motor and the input voltage of the second motor respectively;
  • a change trend acquisition module configured to respectively acquire a change trend of the input voltage of the first motor and the input voltage of the second motor
  • a comparison result obtaining module configured to compare the change trend of the input voltage of the first motor and the input voltage of the second motor to obtain a comparison result
  • the control signal generation module is configured to generate a control signal according to the comparison result and send the control signal to the driving module, so that the driving module drives the first motor and the The second motor maintains synchronous vibration.
  • the device includes:
  • An envelope signal acquisition module configured to acquire an envelope signal of audio data; the envelope signal is acquired from an audio module in the electronic device;
  • a drive signal acquisition module configured to generate a drive signal according to the envelope signal
  • the driving signal sending module is configured to send the driving signal to the driving module, so that the driving module drives the first motor and/or the second motor to vibrate following the audio data.
  • an electronic device including:
  • a memory for storing executable instructions of the processor
  • the processor is configured to execute executable instructions in the memory to implement the steps of the method described above.
  • a readable storage medium having executable instructions stored thereon, and the executable instructions are executed by a processor to implement the steps of the above-mentioned method.
  • the first motor is fixed at the first designated position and the second motor is fixed at the second designated position, and then the drive module controls the first motor and the second motor to vibrate separately or separately according to the control signal.
  • Synchronous vibration Taking synchronous vibration as an example, in this embodiment, the entire electronic device can be moved up and down or left and right, so as to make the entire electronic device vibrate and avoid a balance point. This is beneficial to increase the amplitude of the electronic device, enhance the effect of shock reminder, and improve the user’s experience. Use experience.
  • Fig. 1 is a block diagram showing an electronic device according to an exemplary embodiment.
  • Fig. 2 is a block diagram showing a driving module according to an exemplary embodiment.
  • Fig. 3 is a block diagram showing another electronic device according to an exemplary embodiment.
  • Fig. 4 is a timing diagram showing a vibration of a driving motor according to an exemplary embodiment.
  • Fig. 5 is a circuit diagram of a boost circuit according to an exemplary embodiment.
  • Fig. 6 is a schematic diagram showing the positions of a magnetic field detection module and a linear motor according to an exemplary embodiment.
  • Fig. 7 is a block diagram showing a magnetic field detection module according to an exemplary embodiment.
  • Fig. 8 is a circuit diagram of a magnetic field detection module according to an exemplary embodiment.
  • Fig. 9 is a flow chart showing the control of motor vibration based on audio signals according to an exemplary embodiment.
  • 10 to 12 are flowcharts showing a method of controlling a motor in an electronic device according to an exemplary embodiment.
  • Figs. 13-15 are block diagrams showing a device for controlling a motor in an electronic device according to an exemplary embodiment.
  • Fig. 16 is a block diagram showing an electronic device according to an exemplary embodiment.
  • FIG. 1 is a block diagram of an electronic device according to an exemplary embodiment.
  • an electronic device 100 includes a middle frame 40, The first motor 20, the second motor 30 and the drive module 10 are provided.
  • the first motor 20 and the second motor 30 are respectively fixed at the first designated position and the second designated position of the middle frame 40.
  • the driving module 10 is electrically connected to the first motor 20 and the second motor 30 respectively, and is used to drive the first motor 20 or the second motor 30 to vibrate independently or to drive the first motor 20 and the second motor 30 to vibrate synchronously according to a control signal.
  • the electronic device 100 adopts two motors, which can achieve a vibration effect that cannot be achieved by one motor.
  • two motors can be controlled to vibrate synchronously, so that the entire electronic device 100 can be translated up and down or left and right to avoid a balance point, which is beneficial to increase the amplitude of the electronic device 100 and improve the effect of shock reminder.
  • one of the two motors can be controlled to vibrate greatly, and the other motor can vibrate in a small amplitude to achieve a three-dimensional vibration effect.
  • the vibration amplitude near the gun motor can be controlled to be larger, and the vibration amplitude far away from the gun motor is smaller, to achieve a three-dimensional vibration effect, so that the hands can experience the difference in vibration, and improve use The experience of playing games on the electronic device 100.
  • the first designated position and the second designated position may be different.
  • the first designated position may be the top of the frame 40 in the electronic device 100 and a left or right position
  • the second designated position may be the bottom of the frame 40 in the electronic device 100 , And the position to the left or right. In this way, when the first motor 20 and the second motor 30 vibrate, a better vibration effect can be formed.
  • the housing of the first motor 20 and the housing of the second motor 30 are integrally formed with the middle frame 40, which can prevent the motor and the middle frame 40 from being hard hit by the gap and eliminate vibration; and the integral molding can also avoid The problem of noise due to resonance.
  • each of the first motor 20 and the second motor 30 may be provided with a power terminal, and the power terminal is used to input a driving voltage.
  • the electronic device 100 also includes a main board (not shown in the figure).
  • the motherboard is fixed on the side of the middle frame away from the display screen.
  • the drive module 10 is arranged on a main board.
  • the main board is provided with two sets of elastic pieces corresponding to the first designated position and the second designated position respectively.
  • the power terminal of the first motor 20 is in elastic contact with one set of elastic sheets, and the second motor 30
  • the power supply end of the device is in elastic contact with another set of shrapnel.
  • the driving module 10 can be electrically connected to the first motor 20 and the second motor 30 through two sets of elastic pieces, and output voltage and current to the first motor 20 and the second motor 30 to achieve the effect of controlling the vibration of the motor.
  • linear motors with the same vibration direction are selected in this embodiment.
  • the vibration direction of the linear motor may be front and rear vibration, or left and right vibration.
  • a technician can also select a rotating motor according to a specific scenario, and when the rotation phase and the initial phase can be detected, the two motors can be controlled to rotate synchronously, and the corresponding solution falls within the protection scope of the embodiments of the present disclosure.
  • the driving module 10 may include a first driving chip 11 and a second driving chip 12.
  • the first driving chip 11 is used to drive the first motor 20
  • the second driving chip 12 is used to drive the second motor 30.
  • the first driving chip 11 and the second driving chip 12 use the clock signal (clk) provided by the same clock source, which can avoid clock signal drift.
  • the driving signals of the two motors are different by ⁇ phases, thereby avoiding the cancellation of the vibration of the two motors.
  • the first driver chip 11 and the second driver chip 12 are respectively provided with phase-locked loops (Not shown in the figure), the phase-locked loop can lock the phase of the clock signal, so as to ensure that the same clock signal still has the same phase after passing through the two driving chips, which is beneficial for the two motors to realize synchronous vibration.
  • the first motor 20 and the second motor 30 can achieve the transient effect of short vibration, where the driving signal required for the short vibration is about tens of milliseconds.
  • the driving module 10 may be pre-stored with a preset waveform (pattern), and the preset waveform may be stored in the memory RAM.
  • the first driver chip 11 and the second driver chip 12 may be provided with pins, and the pins may be electrically connected to the touch buttons (not shown in the figure) on the electronic device 100.
  • the first driving chip 11 and the second driving chip 12 can directly read the preset waveform from the memory to control the first motor 20 and the second driving chip in response to the above-mentioned touch operation.
  • the second motor 30 achieves the effect of short-term vibration. Since the touch operation signal directly reaches the first driving chip 11 and the second driving chip 12, no software processing is required, thereby reducing the interval between triggering and vibration, and improving the shock effect.
  • the drive signal input from the drive chip (11, 12) to the motor (20, 30) is a pair of differential signals, which are first input to the first power terminal (haptic+) and the second power terminal (haptics-) of the motor. After making a difference, carry out the internal coil of the motor so that the internal coil can generate an alternating magnetic field.
  • the internal structure of the first driving chip 11 is shown in FIG. 3, and the internal structure of the second driving chip 12 is the same as the internal structure of the first driving chip 11 and is not shown.
  • the first driving chip 11 is electrically connected to the processor CPU through a communication bus such as I2C or SPI.
  • the processor may configure and initialize the first driving chip 11 through the communication bus, for example, store the preset waveform in the memory RAM.
  • a touch signal trig is generated when the touch button is triggered by an operation (Event), which can be stored in the memory.
  • Event an operation
  • the first driving chip 11 receives the trig signal, a preset waveform can be obtained to control the first motor 20 to vibrate, and the timing sequence is shown in FIG. 4. After the driving signal disappears, the first motor 20 enters a free decay motion, and the vibration will continue for several cycles.
  • the output voltage of the first drive chip 11 is increased in this embodiment, that is, a boost circuit is provided in the first drive chip 11, and the circuit As shown in Figure 5.
  • the working process of the boost circuit is as follows: in the first stage, the switching device Q1 is turned on, the switching device Q2 is turned off, current flows in the L1 loop, and the power supply charges the inductor L. At this time, the voltage of the inductor is positive and negative. In the second stage, the switching device Q1 is turned off, the switching device Q2 is turned on, and the current flows in the L2 loop.
  • equation (1) the relationship between the input voltage Vout and the output voltage Vin is shown in equation (1):
  • Vout Vin/(1-D)
  • D is the duty cycle, that is, the ratio of the high level of a pulse to a periodic signal, 0 ⁇ D ⁇ 1, 0 ⁇ (1-D) ⁇ 1, so Vout>Vin, to achieve boost effect.
  • the driving force of the first motor 20 can be made greater, so the vibration amplitude will increase, but the damping is also greater at this time, so the rise and fall times are reduced.
  • the output voltage of the driving module 10 is about 11V
  • the resistance of the first motor 20 and the second motor 30 is about a few ohms when the motor vibrates, especially when the short-vibration transient occurs. 10.
  • the transient current of the first motor 20 and the second motor 30 can exceed 10 amperes, so the voltage drop of the battery in the electronic device 100 will suddenly increase, which may cause battery power failure protection and cause the electronic device 100 to suddenly shut down. To this end, continue to refer to FIG.
  • this embodiment is provided with a voltage detection circuit and an analog-to-digital conversion circuit, so that the voltage detection circuit can detect the input voltage of the first motor 20 and the second motor 30, after the conversion of the analog-to-digital conversion circuit Send to the processor through the controller.
  • the processor can obtain the input voltage of the first motor 20 and the input voltage of the second motor 30 respectively, and generate a control signal according to the input voltage of the first motor 20 and the input voltage of the second motor 30, and the control signal is used to drive the driving mode.
  • the group 10 adjusts the output voltage to reduce the vibration amplitude of the first motor 20 and the second motor 30. In this way, the current in the first motor 20 and the second motor 30 will be reduced, which is beneficial to reduce the voltage drop of the battery and ensure that the battery supplies power to other components of the electronic device 100 normally.
  • the vibrator 12 in the motor (20, 30) is subjected to the combined action of the spring force and the magnetic field force.
  • the motor resonates, the induced electromotive force U generated by it is the largest, namely:
  • L is the length of the coil inside the motor
  • V is the speed of the vibrator
  • k is the stiffness coefficient of the spring in the motor
  • m is the mass of the vibrator.
  • the electronic device 100 in this embodiment may include a magnetic field detection module 60, which is disposed at a surrounding position of the first motor 20, wherein the surrounding position It means that the magnetic field detection module 60 can detect the position of the alternating magnetic field generated by the first motor 20.
  • the position of the magnetic field detection module 60 can be the two head positions of the motor, that is, the left side of position a and the right side of position b; or the position of the magnetic field detection module 60 can be a linear motor The inside of, that is, the position between position a and position b.
  • the magnetic sensor in the magnetic field detection module 60 can also be arranged outside or inside the linear motor, and output the detection voltage to the outside of the linear motor. It is understandable that in the case of being able to detect the alternating magnetic field, the corresponding solution falls within the protection scope of the embodiments of the present disclosure.
  • Fig. 7 is a block diagram showing an electronic device according to an exemplary embodiment.
  • the magnetic field detection module 60 includes a magnetic sensor 61, a first amplifying circuit 62, a second amplifying circuit 63, an integrating circuit 64, and a modulus. Converter 65. among them,
  • the magnetic sensor 61 is used for sensing and detecting the alternating magnetic field generated by the first motor 20 to generate a first voltage
  • the first amplifying circuit 62 is used to amplify the first voltage to obtain the second voltage
  • the second amplifying circuit 63 is used to amplify the second voltage to obtain a third voltage
  • the integrating circuit 64 is configured to integrate the third voltage within the sampling period to obtain an integrated voltage
  • the analog-to-digital converter 65 is used to convert the integrated voltage to obtain the detection voltage.
  • the magnetic sensor 61 can be implemented by a Hall sensor.
  • the magnetic sensor 61 can also be implemented by an electromagnetic coil made of the principle of an electromagnet. The corresponding solution falls within the protection scope of the embodiment of the present disclosure.
  • the first amplifying circuit 62 includes a first resistor R1, a second resistor R2, a third resistor R3, a fourth resistor R4, a first capacitor C1, and a first operational amplifier U1A. among them,
  • the first resistor R1 is connected in series between the magnetic sensor 61 and the non-inverting input terminal (indicated by "+") of the first operational amplifier U1A;
  • the fourth resistor R4 is connected in series between the non-inverting input terminal and the output terminal of the first operational amplifier U1A;
  • the first capacitor C1 is connected in series between the non-inverting input terminal and the output terminal of the first operational amplifier U1A;
  • the inverting input terminal (indicated by "-") of the first operational amplifier U1A is grounded to GND through the third resistor R3 and connected to the preset power supply VDD through the second resistor R2.
  • the output terminal of the first operational amplifier U1A is connected to the first amplifier.
  • the output terminal of the circuit is connected.
  • the fourth resistor R4 and the first capacitor C1 form a low-pass filter, and its passband cut-off frequency is
  • the second resistor R2 and the third resistor R3 form a voltage divider circuit, and the voltage divider is used to eliminate the deflection voltage of the first operational amplifier U1A.
  • the first operational amplifier U1A, the first resistor R1, the second resistor R2, the third resistor R3, and the fourth resistor R4 can form a forward proportional circuit, and the amplification factor is Moreover, in this embodiment, the forward proportional circuit can improve the signal-to-noise ratio.
  • the working principle of the first amplifying circuit 62 is: the magnetic sensor 61 outputs the first voltage V1 after detecting the alternating magnetic field generated by the motor, and the first amplifying circuit 62 amplifies the first voltage V1 to obtain the second voltage V2, which is
  • the second amplifying circuit 63 includes a second operational amplifier U2A, a fifth resistor R5, a sixth resistor R6, a second capacitor C2, a seventh resistor R7, an eighth resistor R8, and a third capacitor C3. among them,
  • the first end of the fifth resistor R5 (the left end of R5 in Fig. 8) is connected to the output end of the first amplifying circuit 62, and the second end of the fifth resistor R5 (the right end of R5 in Fig. 8) is connected to the first end of the fifth resistor R5 via the sixth resistor R6.
  • the non-inverting input end (represented by “+”) of the second operational amplifier U2A is connected; the output end of the second operational amplifier U2A is connected to the output end of the second amplifying circuit 63.
  • the first end (the upper end of C2 in FIG. 8) of the second capacitor C2 is connected to the second end of the fifth resistor R5, and the second end (the lower end of C2 in FIG. 8) is grounded to GND.
  • the inverting input terminal (indicated by "-") of the second operational amplifier U2A is grounded to GND via the seventh resistor R7.
  • the eighth resistor R8 is connected in series between the inverting input terminal and the output terminal of the second operational amplifier U2A.
  • the third capacitor C3 is connected in series between the inverting input terminal and the output terminal of the second operational amplifier U2A.
  • the fifth resistor R5 and the second capacitor C2 form a low-pass filter, and its cut-off frequency is:
  • the second operational amplifier U2A, the seventh resistor R7, the eighth resistor R8, and the sixth resistor R6 form a forward proportional circuit, and its amplification factor is
  • the second amplifying circuit 63 can amplify the first voltage V1 by A2 times to obtain the third voltage, namely
  • the integration circuit 64 includes a third operational amplifier U3A, a ninth resistor R9, a tenth resistor R10, a first switch M1 and a timer.
  • the first end of the first switch M1 (represented by the label “1") is connected to the output end of the second amplifier circuit 63 via the ninth resistor R9, and the second end (represented by the label “2") is connected to the third operational amplifier U3A.
  • the non-inverting input terminal (representing the label “+”) is connected, and the control terminal (representing the label "3") is connected to the timer.
  • the tenth resistor R10 is connected in series between the non-inverting input terminal and the output terminal of the third operational amplifier U3A.
  • the fourth capacitor C4 is connected in series between the non-inverting input terminal and the output terminal of the third operational amplifier U3A.
  • the output terminal of the third operational amplifier U3A is connected to the output terminal of the integrating circuit 64.
  • the timer outputs a pulse signal according to the preset sampling period, so that the first switch M1 is turned on and off.
  • the fourth capacitor C4 is charged; during the period when the first switch M1 is off, the fourth capacitor C4 is discharged through the tenth resistor R10.
  • the resistance value of the tenth resistor R10 can be set to be relatively large, thereby reducing the discharge speed of the fourth capacitor C4. In this way, the integrated voltage V4 output by the integrating circuit 64 is equal to the third voltage V3.
  • the analog-to-digital converter 65 can convert the integrated voltage V4 into a digital voltage.
  • the analog-to-digital converter 65 can adopt a high-speed sampling method. The period can be us level, which is much smaller than the ms level of the magnetic field change, so that the detection voltage Count is obtained.
  • the detection voltage Count may be represented by an 8-bit binary system.
  • the processor 50 may obtain the detection voltage Count output by the analog-to-digital converter 65. After acquiring the detection voltage Count output by the analog-to-digital converter 65 within the preset time period, a detection voltage set is formed, which will be referred to as the first voltage set to distinguish it from the detection voltage set corresponding to the second motor 30.
  • the processor 50 can determine the current resonant frequency of the first motor 20 according to the oscillation period according to the relationship between the period and the frequency, which is later referred to as the first resonant frequency to distinguish it from the current resonant frequency of the second motor 30.
  • the processor 50 may send the first resonance frequency to the first driving chip 11 and the second resonance frequency to the second driving chip 12.
  • the first drive chip 11 can read the preset waveform from the local memory to drive the first motor 20 to vibrate
  • the second drive chip 12 can read the preset waveform from the local memory to drive the second motor 30 to vibrate, thereby ensuring
  • the motor has the largest vibration amplitude and performs vibration reminding operation.
  • the first motor 20 and the second motor 30 may vibrate synchronously or independently.
  • the preset waveform can be obtained based on a large number of experiments, and a preset waveform can be set for each resonance frequency, which will not be repeated here.
  • the resonance frequency of the first motor 20 can be updated at intervals, such as one week, one month, etc., which are not limited here.
  • the electronic device 100 further includes an audio module (not shown in the figure).
  • the audio module is used to obtain an envelope signal of audio data and send it to the processor 50; the processor 50 is used to generate a drive signal according to the envelope signal and send it to the drive module, and the drive module controls the first motor and/or The second motor vibrates following the audio data.
  • the audio signal can be divided into two channels, one of which is output to the speaker, and the other is processed as follows: input the audio signal to the amplifier for amplification, and then pass the filter for processing Filtering to filter out the noise introduced by the amplifier when it is amplified. Get the envelope signal f(t) and frequency of the filtered audio signal. At the same time, the frequency of the envelope signal is filtered to ensure that the frequency of the signal selected to drive the motor is the same frequency as the audio frequency. After that, ADC sampling, calculation and comparison are performed on the selected envelope signal amplitude, and the numerical relationship between the amplitude An at this time and the next time An+1 is compared.
  • the maximum driving voltage that the first driving chip 11 and the second driving chip 12 can output is Vmax
  • the maximum amplitude of the original audio signal is V1
  • the maximum magnification is F.
  • the amplification factor is determined to form the envelope signal f(t).
  • the amplified envelope signal must be restored to the original audio f signal, that is, the amplified envelope signal and the extracted frequency signal are multiplied to obtain the final drive
  • the signal drives the motor to vibrate. At this time, the effect of the vibration will vibrate with the audio data.
  • the audio signal of the first motor and the second motor may be slightly different. At this time, the synchronous vibration of the first motor and the second motor can achieve the effect of three-dimensional vibration. Can enhance the use experience.
  • the first motor is fixed at the first designated position and the second motor is fixed at the second designated position, and then the drive module controls the first motor and the second motor to vibrate separately or synchronously according to the control signal.
  • the entire electronic device can be moved up and down or left and right, so as to make the entire electronic device vibrate and avoid a balance point. This is beneficial to increase the amplitude of the electronic device, enhance the effect of shock reminder, and improve the user’s experience. Use experience.
  • an embodiment of the present disclosure also provides a method for controlling a motor in an electronic device, which is suitable for the electronic device shown in the embodiments shown in FIGS. 1-9.
  • a method of controlling a motor in an electronic device includes:
  • a method of controlling a motor in an electronic device further includes:
  • a method for controlling a motor in an electronic device further includes:
  • a device for controlling a motor in an electronic device includes:
  • the voltage set acquisition module 1301 is configured to acquire the detection voltages output by the first motor and the second motor detected by the magnetic field detection module within a preset time period to obtain the first voltage set and the second voltage set;
  • the resonance frequency acquisition module 1302 is configured to acquire the current first resonance frequency of the first motor according to the first voltage set, and acquire the second resonance frequency according to the second voltage set in response to the detection of the triggering shock reminder operation.
  • the current second resonance frequency of the motor is configured to acquire the current first resonance frequency of the first motor according to the first voltage set, and acquire the second resonance frequency according to the second voltage set in response to the detection of the triggering shock reminder operation.
  • the resonance frequency sending module 1303 is configured to send the first resonance frequency and the second resonance frequency to the driving module, so that the driving module is based on the first resonance frequency and the second resonance
  • the frequency drives the first motor and the second motor to vibrate synchronously, and executes the vibration reminding operation.
  • an apparatus for controlling a motor in an electronic device further includes:
  • the input voltage obtaining module 1401 is configured to obtain the input voltage of the first motor and the input voltage of the second motor respectively;
  • the change trend obtaining module 1402 is configured to obtain the change trend of the input voltage of the first motor and the input voltage of the second motor respectively;
  • the comparison result obtaining module 1403 is configured to compare the change trend of the input voltage of the first motor and the input voltage of the second motor to obtain a comparison result
  • the control signal generation module 1404 is configured to generate a control signal according to the comparison result and send the control signal to the drive module, so that the drive module drives the first motor and the drive module according to the control signal.
  • the second motor maintains synchronous vibration.
  • a device for controlling a motor in an electronic device further includes:
  • Envelope signal acquisition module 1501 configured to acquire an envelope signal of audio data; the envelope signal is acquired from an audio module in an electronic device;
  • the drive signal acquisition module 1502 is configured to generate a drive signal according to the envelope signal
  • the driving signal sending module 1503 is configured to send the driving signal to the driving module, so that the driving module drives the first motor and/or the second motor to vibrate following the audio data.
  • Fig. 16 is a block diagram showing an electronic device according to an exemplary embodiment.
  • the electronic device 1600 may be a smart phone, a computer, a digital broadcasting terminal, a tablet device, a medical device, a fitness device, a personal digital assistant, etc., including the circuits shown in FIGS. 1-9.
  • the electronic device 1600 may include one or more of the following components: a processing component 1602, a memory 1604, a power supply component 1606, a multimedia component 1608, an audio component 1610, an input/output (I/O) interface 1612, a sensor component 1614, Communication component 1616;
  • the electronic device 1600 also includes an image capture component.
  • the processing component 1602 generally performs overall operations of the electronic device 1600, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 1602 may include one or more processors 1620 to execute instructions.
  • the processing component 1602 may include one or more modules to facilitate the interaction between the processing component 1602 and other components.
  • the processing component 1602 may include a multimedia module to facilitate the interaction between the multimedia component 1608 and the processing component 1602.
  • the memory 1604 is configured to store various types of data to support operations in the electronic device 1600. Examples of these data include instructions for any application or method operating on the electronic device 1600, contact data, phone book data, messages, pictures, videos, and so on.
  • the memory 1604 can be implemented by any type of volatile or non-volatile storage devices or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable read-only memory (EPROM), programmable read-only memory (PROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable read-only memory
  • PROM programmable read-only memory
  • the power supply component 1606 provides power for various components of the electronic device 1600.
  • the power supply component 1606 may include: a power management system, one or more power supplies, and other components associated with the generation, management, and distribution of power for the electronic device 1600.
  • the multimedia component 1608 includes a screen that provides an output interface between the electronic device 1600 and the target object.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the target object.
  • the touch panel includes one or more touch sensors to sense touch, sliding, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure related to the touch or slide operation.
  • the audio component 1610 is configured to output and/or input audio signals.
  • the audio component 1610 includes a microphone (MIC).
  • the microphone is configured to receive external audio signals.
  • the received audio signal may be further stored in the memory 1604 or transmitted via the communication component 1616.
  • the audio component 1610 further includes a speaker for outputting audio signals.
  • the I/O interface 1612 provides an interface between the processing component 1602 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, and the like.
  • the sensor component 1614 includes one or more sensors for providing the electronic device 1600 with various aspects of state evaluation.
  • the sensor component 1614 can detect the on/off status of the electronic device 1600 and the relative positioning of the components.
  • the component is the display screen and the keypad of the electronic device 1600, and the sensor component 1614 can also detect the electronic device 1600 or a component.
  • the position changes, the presence or absence of contact between the target object and the electronic device 1600, the orientation or acceleration/deceleration of the electronic device 1600, and the temperature change of the electronic device 1600.
  • the communication component 1616 is configured to facilitate wired or wireless communication between the electronic device 1600 and other devices.
  • the electronic device 1600 can access a wireless network based on a communication standard, such as WiFi, 2G, or 3G, or a combination thereof.
  • the communication component 1616 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 1616 further includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the electronic device 1600 may be implemented by one or more application-specific integrated circuits (ASIC), digital signal processors (DSP), digital signal processing devices (DSPD), programmable logic devices (PLD), field-available Program gate array (FPGA), controller, microcontroller, microprocessor or other electronic components to achieve.
  • ASIC application-specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing devices
  • PLD programmable logic devices
  • FPGA field-available Program gate array
  • controller microcontroller, microprocessor or other electronic components to achieve.
  • a non-transitory readable storage medium including executable instructions, such as a memory 1604 including instructions, and the foregoing executable instructions can be executed by the processor 1620 of the electronic device 1600.
  • the readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • the first motor is fixed at the first designated position and the second motor is fixed at the second designated position, and then the drive module controls the first motor and the second motor to vibrate separately or separately according to the control signal.
  • Synchronous vibration Taking synchronous vibration as an example, in this embodiment, the entire electronic device can be moved up and down or left and right, so as to make the entire electronic device vibrate and avoid a balance point. This is beneficial to increase the amplitude of the electronic device, enhance the effect of shock reminder, and improve the user’s experience. Use experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • User Interface Of Digital Computer (AREA)
  • Control Of Multiple Motors (AREA)
  • Control Of Electric Motors In General (AREA)
  • Automatic Disk Changers (AREA)

Abstract

一种电子设备及其控制方法、装置、可读存储介质。电子设备包括中框(40)、第一马达(20)、第二马达(30)和驱动模组(10);第一马达(20)和第二马达(30)分别固定在中框(40)的第一指定位置和第二指定位置;驱动模组(10)分别与第一马达(20)和第二马达(30)电连接,用于根据控制信号驱动第一马达(20)或第二马达(30)单独振动,或者驱动第一马达(20)或第二马达(30)同步振动。

Description

电子设备及其控制方法、装置、可读存储介质
相关申请的交叉引用
本申请基于申请号为201911184534.3、申请日为2019年11月27日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开实施例涉及控制技术领域,尤其涉及一种电子设备及其控制方法、装置、可读存储介质。
背景技术
目前,用户在使用电子设备时,可以进行触摸、滑动、语音等操作;在操作完成后,电子设备中的马达可以根据控制信号来进行振动,从而给予上述操作一个反馈,该反馈即是常说的震感提醒。
实际应用中,电子设备上仅设置一颗马达,该马达设置在电子设备的顶部或者底部。马达在振动时会存在一个平衡点,该平衡点处的区域几乎不动(即震感相当弱),使得用户双手持电子设备或者其他应用场景时震感提醒效果减弱,降低使用体验。
发明内容
本公开实施例提供一种电子设备及其控制方法、装置、可读存储介质,以解决相关技术的不足。
根据本公开实施例的第一方面,提供一种电子设备,包括中框、第一马达、第二马达和驱动模组;所述第一马达和所述第二马达分别固定在所述中框的第一指定位置和第二指定位置;所述驱动模组分别与所述第一马达和所述第二马达电连接,用于根据控制信号驱动所述第一马达或所述第二马达单独振动,或者驱动所述第一马达和所述第二马达同步振动。
可选地,所述中框分别与所述第一马达的外壳和所述第二马达的外壳一体成型。
可选地,还包括主板,所述主板上设置有两组弹片;所述第一马达设有电源端,所述电源端与其中一组弹片弹性接触;所述第二马达设有电源端,所述电源端与另一组弹片弹性接触。
可选地,所述第一马达和所述第二马达为振动方向相同的线性马达。
可选地,所述驱动模组包括用于驱动所述第一马达的第一驱动芯片和用于驱动所述第二马达的第二驱动芯片,所述第一驱动芯片和所述第二驱动芯片采用同一时钟源提供的时钟信号。
可选地,所述第一驱动芯片和所述第二驱动芯片内分别设置有锁相环;所述锁相环用于锁定所述时钟信号的相位。
可选地,还包括触控按键,所述驱动模组内预先存储有预设波形;所述驱动模组与所述触控按键连接,用于在所述触控按键***作时根据所述预设波形控制所述第一马达和所述第二马达同步振动。
可选地,所述驱动模组内设置有升压电路;所述升压电路用于对输入电压进行升压以得到超过设定电压阈值的驱动电压;所述驱动电压用于驱动所述第一马达和/或所述第二马达进行振动的幅度超过设定幅度阈值。
可选地,还包括处理器;所述处理器用于分别获取所述第一马达的输入电压以及所述第二马达的输入电压,并根据所述第一马达的输入电压和所述第二马达的输入电压生成控制信号,所述控制信号用于使所述驱动模组调整输出电压,以降低所述第一马达和所述第二马达的振动幅度。
可选地,还包括磁场检测模组;其中,
所述磁场检测模组,用于检测所述第一马达所产生的交变磁场得到第一电压集合,以及检测所述第二马达所产生的交变磁场得到第二电压集合;
所述处理器与所述磁场检测模组连接,用于响应于检测到触发震感提醒操作,根据所述第一电压集合获取所述第一马达当前的第一共振频率,以及根据所述第二电压集合获取所述第二马达当前的第二共振频率,并将所述第一共振频率和所述第二共振频率发送给所述驱动模组;
所述驱动模组,用于基于所述第一共振频率和所述第二共振频率分别驱动所述第一马达和所述第二马达同步振动,执行震感提醒操作。
可选地,还包括音频模组;所述音频模组用于获取音频数据的包络信号,并发送给处理器;所述处理器用于根据所述包络信号生成驱动信号并发送给所述驱动模组,由驱动模组控制所述第一马达和/或所述第二马达跟随所述音频数据振动。
根据本公开实施例的第二方面,提供一种控制电子设备内马达的方法,适于第一方面任一项所述的电子设备,所述方法包括:
获取预设时间段内磁场检测模组检测第一马达和第二马达所输出的检测电压,得到第一电压集合和第二电压集合;
响应于检测到触发震感提醒操作,根据所述第一电压集合获取所述第一马达当前的第一共振频率,以及根据所述第二电压集合获取所述第二马达当前的第二共振频率;
将所述第一共振频率和所述第二共振频率发送给所述驱动模组,以使所述驱动模组基于所述第一共振频率和所述第二共振频率分别驱动所述第一马达和所述第二马达同步振动,执行震感提醒操作。
可选地,所述方法包括:
分别获取所述第一马达的输入电压和所述第二马达的输入电压;
分别获取所述第一马达的输入电压和所述第二马达的输入电压的变化趋势;
对比所述第一马达的输入电压和所述第二马达的输入电压的变化趋势,得到对比结果;
根据所述对比结果生成控制信号并将所述控制信号发送给所述驱动模组,以使所述驱动模组根据所述控制信号驱动所述第一马达和所述第二马达保持同步振动。
可选地,所述方法还包括:
获取音频数据的包络信号;所述包络信号从电子设备内的音频模组获取;
根据所述包络信号生成驱动信号;
将所述驱动信号发送给驱动模组,以使所述驱动模组驱动所述第一马达和/或所述第二马达跟随所述音频数据振动。
根据本公开实施例的第三方面,提供一种控制电子设备内马达的装置,适于第一方面任一项所述的电子设备,所述装置包括:
电压集合获取模块,配置为获取预设时间段内磁场检测模组检测第一马达和第二马达所输出的检测电压,得到第一电压集合和第二电压集合;
共振频率获取模块,配置为响应于检测到触发震感提醒操作,根据所述第一电压集合获取所述第一马达当前的第一共振频率,以及根据所述第二电压集合获取所述第二马达当前的第二共振频率;
共振频率发送模块,配置为将所述第一共振频率和所述第二共振频率发送给所述驱动模组,以使所述驱动模组基于所述第一共振频率和所述第二共振频率分别驱动所述第一马达和所述第二马达同步振动,执行震感提醒操作。
可选地,所述装置包括:
输入电压获取模块,配置为分别获取所述第一马达的输入电压和所述第二马达的输入电压;
变化趋势获取模块,配置为分别获取所述第一马达的输入电压和所述第二马达的输入电压的变化趋势;
对比结果获取模块,配置为对比所述第一马达的输入电压和所述第二马达的输入电压的变化趋势,得到对比结果;
控制信号生成模块,配置为根据所述对比结果生成控制信号并将所 述控制信号发送给所述驱动模组,以使所述驱动模组根据所述控制信号驱动所述第一马达和所述第二马达保持同步振动。
可选地,所述装置包括:
包络信号获取模块,配置为获取音频数据的包络信号;所述包络信号从电子设备内的音频模组获取;
驱动信号获取模块,配置为根据所述包络信号生成驱动信号;
驱动信号发送模块,配置为将所述驱动信号发送给驱动模组,以使所述驱动模组驱动所述第一马达和/或所述第二马达跟随所述音频数据振动。
根据本公开实施例的第四方面,提供一种电子设备,包括:
处理器;
用于存储所述处理器可执行指令的存储器;
所述处理器被配置为执行所述存储器中的可执行指令以实现上述所述方法的步骤。
根据本公开实施例的第七方面,提供一种可读存储介质,其上存储有可执行指令,该可执行指令被处理器执行时以实现上述所述方法的步骤。
本公开的实施例提供的技术方案可以包括以下有益效果:
由上述实施例可知,本公开实施例中通过在第一指定位置固定第一马达且第二指定位置固定第二马达,然后由驱动模组根据控制信号控制第一马达和第二马达单独振动或者同步振动。以同步振动为例,本实施例中可以使整个电子设备上下平移或者左右平移,从而使整个电子设备振动,避免出现平衡点,这样有利于增加电子设备的振幅,提升震感提醒效果,提高用户的使用体验。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开实施例的原理。
图1是根据一示例性实施例示出的一种电子设备的框图。
图2是根据一示例性实施例示出的一种驱动模组的框图。
图3是根据一示例性实施例示出的另一种电子设备的框图。
图4是根据一示例性实施例示出的驱动马达振动的时序图。
图5是根据一示例性实施例示出的升压电路的电路图。
图6是根据一示例性实施例示出的磁场检测模组与线性马达的位置示意图。
图7是根据一示例性实施例示出的磁场检测模组的框图。
图8是根据一示例性实施例示出的磁场检测模组的电路图。
图9是根据一示例性实施例示出的基于音频信号控制马达振动的流程图。
图10~图12是根据一示例性实施例示出的一种控制电子设备内马达的方法的流程图。
图13~图15是根据一示例性实施例示出的一种控制电子设备内马达的装置的框图。
图16是根据一示例性实施例示出的一种电子设备的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置例子。
目前,用户在使用电子设备时,可以进行触摸、滑动、语音等操作;在操作完成后,电子设备中的马达可以根据控制信号来进行振动,从而给予上述操作一个反馈,该反馈即是常说的震感提醒。
实际应用中,电子设备上仅设置一颗马达,该马达设置在电子设备的顶部或者底部。马达在振动时会存在一个平衡点,该平衡点处的区域几乎不动(即震感相当弱),使得用户双手持电子设备或者其他应用场景时震感提醒效果减弱,降低使用体验。
为解决上述技术问题,本公开实施例提供了一种电子设备,图1是根据一示例性实施例示出的一种电子设备的框图,参见图1,一种电子设备100,包括中框40、第一马达20、第二马达30和驱动模组10。第一马达20和第二马达30分别固定在中框40的第一指定位置和第二指定位置。驱动模组10分别与第一马达20和第二马达30电连接,用于根据控制信号驱动第一马达20或第二马达30单独振动,或者驱动第一马达20和第二马达30同步振动。
需要说明的是,电子设备100采用两颗马达,可以达到一颗马达无法达到的振动效果。例如,可以在一些场景(点击、滑动等)中控制两颗马达同步振动,使整个电子设备100上下平移或者左右平移,避免出现平衡点,这样有利于增加电子设备100的振幅,提升震感提醒效果,提高用户的使用体验。又如,可以在一些场景(战争类游戏中开枪、驾驶类游戏中碰撞)中,控制两颗马达中一颗马达大幅度振动,另一颗马达小幅度振动,可以达到立体振动效果。如在战争类游戏中开枪时,结合***位置,可以控制靠近***马达的振动幅度大一些,远离***马达的振动幅度小一些,达到立体振动效果,使双手能够体会出振动的不同, 提升使用电子设备100玩游戏的体验。
在一实施例中,第一指定位置和第二指定位置可以不同。以电子设备100的显示屏面向用户为例,第一指定位置可以为电子设备100中框40的顶部,且偏左或者偏右的位置,第二指定位置可以为电子设备100中框40的底部,且偏左或者偏右的位置。这样,第一马达20和第二马达30在振动时,能够形成更佳的振动效果。
在一实施例中,第一马达20的外壳和第二马达30的外壳与中框40一体成型,这样可以避免马达与中框40因存在间隙而硬碰硬,消除振动;并且,一体成型还可以避免共振而出现噪音的问题。
在一实施例中,第一马达20和第二马达30各马达可以设有电源端,该电源端用于输入驱动电压。电子设备100还包括主板(图中未示出)。该主板固定在中框上远离显示屏的一侧。驱动模组10设置在主板上,该主板上设置有两组弹片,分别对应第一指定位置和第二指定位置,这样第一马达20的电源端与其中一组弹片弹性接触,第二马达30的电源端与另一组弹片弹性接触。驱动模组10可以通过两组弹片与第一马达20和第二马达30形成电连接,向第一马达20和第二马达30输出电压和电流,达到控制马达振动的效果。
在一实施例中,考虑到不同应用场景的振动效果,尤其是第一马达20和第二马达30同步振动的场景,本实施例中选用振动方向相同的线性马达。以图1所示电子设备100的位置为例,线性马达的振动方向可以为前后振动,或者左右振动。当然,技术人员还可以根据具体场景选用旋转马达,在能够检测到旋转相位和初始相位的情况下,可以控制两个马达同步旋转,相应方案落入本公开实施例的保护范围。
在一实施例中,如图2所示,驱动模组10可以包括第一驱动芯片11和第二驱动芯片12。其中,第一驱动芯片11用于驱动第一马达20,第二驱动芯片12用于驱动第二马达30。考虑到第一马达20和第二马达30同时振动的情况,本实施例中,第一驱动芯片11和第二驱动芯片12采用同一时钟源提供的时钟信号(clk),可以避免因时钟信号漂移而出现两个马达的驱动信号相差π个相位的情况,进而避免两颗马达振动抵消的情况。
考虑到时钟信号传输线会存在寄生电容或者所处环境温度会发生变化,导致时钟信号的相位发生变化,本实施例中,第一驱动芯片11和第二驱动芯片12内分别设置有锁相环(图中未示出),该锁相环可以锁定时钟信号的相位,从而保证同一时钟信号在经过两个驱动芯片后仍然具有相同的相位,有利于两个马达实现同步振动。
实际应用中,第一马达20和第二马达30可以达到短振的瞬态效果,其中短振所需要的驱动信号约数十毫秒。考虑到电子设备100内处理器在根据触控操作生成控制信号,再将控制信号发送给驱动模组时,这个 过程会远大于数十毫秒。在一实施例中,驱动模组10可以预先存储有预设波形(pattern),该预设波形可以存储到存储器RAM内。这样,第一驱动芯片11和第二驱动芯片12上可以设置有引脚,该引脚可以与电子设备100上的触控按键(图中未示出)电连接。以同步驱动为例,在触控按键***作时,第一驱动芯片11和第二驱动芯片12可以响应于上述触控操作,直接从存储器内读取预设波形来控制第一马达20和第二马达30,达到短时振动的效果。由于触控操作信号直接到达第一驱动芯片11和第二驱动芯片12,无需软件处理,从而减少触发和振动之间的间隔,提升震感效果。
实际应用中,驱动芯片(11,12)输入到马达(20,30)的驱动信号为一对差分信号,先输入到马达的第一电源端(haptic+)和第二电源端(haptics-),经过做差进行马达的内部线圈,这样内部线圈可以产生交变磁场。图3中示出了第一驱动芯片11的内部结构,第二驱动芯片12的内部结构与第一驱动芯片11的内部结构相同未画出。参见图3,第一驱动芯片11通过I2C或者SPI等通信总线与处理器CPU电连接。处理器可以通过通信总线配置并初始化第一驱动芯片11,例如,将预设波形存储到存储器RAM内。
继续参见图3,触控按键被触发操作(Event)时生成触控信号trig,可以存储到存储器内。当第一驱动芯片11接收到trig信号时可以获取预设波形控制第一马达20振动,时序如图4所示。在驱动信号消失后,第一马达20进入自由衰减运动,振动会继续几个周期。为使得第一马达20具有更大振动幅度和更小的上升时间与下降时间,本实施例中提升了第一驱动芯片11的输出电压,即第一驱动芯片11内设置有升压电路,电路如图5所示。
参见图5,升压电路的工作过程如下:第一阶段,开关器件Q1导通,开关器件Q2关闭,电流在L1回路流通,电源给电感L充电,此时电感的电压为左正右负。第二阶段,开关器件Q1关闭,开关器件Q2导通,电流在L2回路流通。根据楞次定律,电感L的电压为左负右正,并且此时电感L等效为一个电源,即电容C两端电压为电源电压Vin叠加电感电压VL,且Vout=Vin+VL>Vin。假设,输入电压Vout和输出电压Vin的关系如式(1)所示:
Vout=Vin/(1-D)
式(1)中,D是占空比,即一个脉冲的高电平占一个周期信号的比例,0<D<1,0<(1-D)<1,故Vout>Vin,达到升压效果。
这样,本实施例中通过设置升压电路,可以使得第一马达20的驱动力更大,所以振动幅度会增大,但是此时阻尼也更大,所以上升和下降时间减小。
考虑到采用升压电路后,马达振动尤其是短振瞬态时,驱动模组10 的输出电压约为11V,而第一马达20和第二马达30的电阻约为数欧姆,此时驱动模组10、第一马达20和第二马达30的瞬态电流可以超过10安培,这样电子设备100内电池的电压降会突然变大,有可能会引起电池掉电保护,导致电子设备100突然关机。为此,继续参见图3,本实施例中设置有电压检测电路和模数转换电路,这样电压检测电路可以检测第一马达20和第二马达30的输入电压,经过模数转换电路的转换后通过控制器发送给处理器。处理器可以分别获取到第一马达20的输入电压以及第二马达30的输入电压,并根据第一马达20的输入电压和第二马达30的输入电压生成控制信号,控制信号用于使驱动模组10调整输出电压,以降低第一马达20和第二马达30的振动幅度。这样,第一马达20和第二马达30内的电流会降低,有利于降低电池的电压降,保证电池为电子设备100的其他部件正常供电。
实际应用中,马达(20,30)中振子12受到弹簧弹力和磁场力共同作用,在马达共振时,其所产生的感生电动势U最大,即:
Figure PCTCN2020074179-appb-000001
式中,
Figure PCTCN2020074179-appb-000002
表示交变磁场强度,L表示马达内部线圈长度,V表示振子速度,k表示马达内弹簧的劲度系数,m表示振子质量。
基于上述原理,以第一马达20为例,参见图6,本实施例中电子设备100可以包括磁场检测模组60,该磁场检测模组60设置在第一马达20的周围位置,其中周围位置是指磁场检测模组60能够检测到第一马达20所产生交变磁场的位置。以线性马达为例,磁场检测模组60的设置位置可以为马达两个头部位置,即位置a的左侧和位置b的右侧;或者,磁场检测模组60的设置位置可以为线性马达的内部,即位置a和位置b之间的位置。当然,本实施例还可以将磁场检测模组60中的磁传感器设置在线性马达的外部或者内部,并将检测电压输出到线性马达的外部。可理解的是,在能够检测交变磁场的情况下,相应方案落入本公开实施例的保护范围。
图7是根据一示例性实施例示出的一种电子设备的框图,参见图7,磁场检测模组60包括磁传感器61、第一放大电路62、第二放大电路63、积分电路64和模数转换器65。其中,
磁传感器61用于感应检测第一马达20所产生的交变磁场,生成第一电压;
第一放大电路62用于放大第一电压,得到第二电压;
第二放大电路63用于放大所述第二电压,得到第三电压;
积分电路64用于在采样周期内对所述第三电压进行积分,得到积分电压;
模数转换器65用于对积分电压进行转换,得到检测电压。
本实施例中,磁传感器61可以采用霍尔传感器实现,当然,该磁传感器61还可以采用电磁铁原理制成的电磁线圈实现,相应方案落入本公开实施例的保护范围。
本实施例中,参见图8,第一放大电路62包括第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4、第一电容C1和第一运算放大器U1A。其中,
第一电阻R1串接在磁传感器61和第一运算放大器U1A的同相输入端(采用“+”表示)之间;
第四电阻R4串接在第一运算放大器U1A的同相输入端和其输出端之间;
第一电容C1串接在第一运算放大器U1A的同相输入端和其输出端之间;
第一运算放大器U1A的反相输入端(采用“-”表示)经过第三电阻R3接地GND且经过第二电阻R2与预先设置的电源VDD连接,第一运算放大器U1A的输出端与第一放大电路的输出端连接。
本实施例中,第四电阻R4和第一电容C1形成低通滤波器,其通带截止频率为
Figure PCTCN2020074179-appb-000003
本实施例中,第二电阻R2和第三电阻R3形成分压电路,其分压用于消除第一运算放大器U1A的偏转电压。
本实施例中,第一运算放大器U1A、第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4可以构成正向比例电路,其放大倍数为
Figure PCTCN2020074179-appb-000004
并且,本实施例中,正向比例电路可以提高信噪比。
第一放大电路62的工作原理为:磁传感器61在检测到马达所产生的交变磁场后会输出第一电压V1,第一放大电路62对第一电压V1放大后,得到第二电压V2,即
Figure PCTCN2020074179-appb-000005
继续参见图8,第二放大电路63包括第二运算放大器U2A、第五电阻R5、第六电阻R6、第二电容C2、第七电阻R7、第八电阻R8和第三电容C3。其中,
第五电阻R5的第一端(图8中R5的左端)与第一放大电路62的输出端连接,第五电阻R5的第二端(图8中R5的右端)经由第六电阻R6与第二运算放大器U2A的同相输入端(采用“+”表示)连接;第二运算放大器U2A的输出端与第二放大电路63的输出端连接。
第二电容C2的第一端(图8中C2的上端)与第五电阻R5的第二端连接,第二端(图8中C2的下端)接地GND。
第二运算放大器U2A的反相输入端(采用“-”表示)经第七电阻 R7接地GND。
第八电阻R8串接在第二运算放大器U2A的反相输入端和其输出端之间。
第三电容C3串接在第二运算放大器U2A的反相输入端和其输出端之间。
本实施例中,第五电阻R5和第二电容C2构成低通滤波器,其截止频率为:
Figure PCTCN2020074179-appb-000006
本实施例中,第二运算放大器U2A、第七电阻R7、第八电阻R8和第六电阻R6构成正向比例电路,其放大倍数为
Figure PCTCN2020074179-appb-000007
这样,第二放大电路63可以将第一电压V1放大A2倍后,得到第三电压,即
Figure PCTCN2020074179-appb-000008
继续参见图8,积分电路64包括第三运算放大器U3A、第九电阻R9、第十电阻R10、第一开关M1和定时器。
第一开关M1的第一端(表示标号“1”表示)经由第九电阻R9与第二放大电路63的输出端连接,第二端(表示标号“2”表示)与第三运算放大器U3A的同相输入端(表示标号“+”表示)连接,控制端(表示标号“3”表示)与定时器连接。
第十电阻R10串接在第三运算放大器U3A的同相输入端和其输出端之间。
第四电容C4串接在第三运算放大器U3A的同相输入端和其输出端之间。
第三运算放大器U3A的输出端与积分电路64的输出端连接。
这样,定时器按照预先设置的采样周期输出脉冲信号,从而使第一开关M1导通和关断。在第一开关M1导通期间,向第四电容C4充电;在第一开关M1关断期间,第四电容C4通过第十电阻R10放电。可理解的是,第十电阻R10的电阻值可以设置的比较大,从而降低第四电容C4的放电速度。这样,积分电路64输出的积分电压V4等于第三电压V3。
本实施例中,积分电路64输出积分电压V4后,模数转换器65可以将该积分电压V4转换成数字式的电压,在一示例中,该模数转换器65可以采用高速采样方式,采样周期可以为us级别,远小于磁场变化ms级别,从而得到检测电压Count。在一示例中,该检测电压Count可以采用8位二进制进行表示。
本实施例中,处理器50可以获取到模数转换器65输出的检测电压Count。在获取到预设时间段内模数转换器65输出的检测电压Count, 形成一个检测电压集合,后称之为第一电压集合以区别于第二马达30对应的检测电压集合。
然后,用户在使用电子设备时,可以触发震感提醒操作(如touch、滑动、手势等)。在检测到上述触发震感提醒操作后,处理器50可以响应于检测到触发震感提醒操作,根据第一电压集合可以获取马达当前的共振频率。例如,结合马达共振时其磁传感器的感生电动势变大,处理器50可以获取该预设时间段内第一电压集合内检测电压的最大值以及最大检测电压相邻的峰值检测电压。并且,处理器50可以获取最大检测电压和峰值检测电压之间检测电压的数量,结合该数量和相邻两个检测电压之间的检测时间可以确定出马达的震荡周期。如最大检测电压和峰值检测电压之间检测电压的数量为3个,采样周期为10ms,则震荡周期为(3+1)*10ms=40ms。
最后,处理器50可以根据周期和频率的关系,根据震荡周期确定出第一马达20当前的共振频率,后称之为第一共振频率以区别于第二马达30当前的共振频率。
本实施例中,处理器50可以将第一共振频率发送给第一驱动芯片11以及将第二共振频率发送给第二驱动芯片12。这样,第一驱动芯片11可以从本地存储器内读取预设波形来驱动第一马达20振动,第二驱动芯片12可以从本地存储器内读取预设波形来驱动第二马达30振动,从而保证马达具有最大的振动幅度,执行震感提醒操作。需要说明的是,第一马达20和第二马达30可以同步振动也可以单独振动。其中,预设波形可以基于大量实验得到,每个共振频率可以设置一个预设波形,在此不再赘述。
需要说明的是,考虑到第一马达20的共振频率偏移比较缓慢,因此可以间隔一段时间更新其共振频率,如一周,一个月等,在此不作限定。
在一实施例中,电子设备100还包括音频模组(图中未示出)。音频模组用于获取音频数据的包络信号,并发送给处理器50;处理器50用于根据包络信号生成驱动信号并发送给驱动模组,由驱动模组控制第一马达和/或第二马达跟随音频数据振动。
参见图9,获取音源信息,并分离出音频信号,其中音频信号可以分为两路,其中一路输出给扬声器,另一路做如下处理:将该音频信号输入到放大器进行放大,再经过滤波器进行滤波,以滤除放大器放大时所引入的噪声。获取滤波后音频信号的包络信号f(t)和频率。同时,对包络信号的频率进行滤波,保证选择出来驱动马达的信号频率与音频频率同频率。之后,对选择出来的包络信号幅度进行ADC采样、计算、比较,比较此时刻幅度An和下一时刻An+1时刻数值关系。当An<An+1时,放大该频率f的信号幅度,即放大倍数F>1;当An=An+1,其放大倍数F=1,不放大;当An>An+1时,放大倍数F<1,不对该频率f的驱 动信号放大。
假设第一驱动芯片11和第二驱动芯片12能够输出的最大驱动电压为Vmax,设原始音频信号最大幅值为V1,则音频驱动信号最大的放大倍数为F=Vmax/V1,设ADC的采样频率为f1,则放大或者缩小只是在信号1/4周期放大或者缩小即放大或者缩小只有f1/4频率,那么ADC每采样一次放大或者衰减倍数为<=F,对频率为f的音频信号如果进行逼近Vmax,则其最大的放大倍数为F。根据ADC采样的结果决定放大倍数形成包络信号f(t),放大过后的包络信号要恢复成原始音频f的信号,即放大后的包络信号与提取的频率信号相乘得到最后的驱动信号去驱动马达振动,此时振动的效果会随着音频数据振动。结合音源在显示屏画面中的位置,第一马达和第二马达所处位置的音频信号可以存在些许差别,此时通过第一马达和第二马达不同幅度的同步振动可以达到立体振动的效果,可以提升使用体验。
本公开实施例中通过在第一指定位置固定第一马达且第二指定位置固定第二马达,然后由驱动模组根据控制信号控制第一马达和第二马达单独振动或者同步振动。以同步振动为例,本实施例中可以使整个电子设备上下平移或者左右平移,从而使整个电子设备振动,避免出现平衡点,这样有利于增加电子设备的振幅,提升震感提醒效果,提高用户的使用体验。
在上述电子设备的基础上,本公开实施例还提供了一种控制电子设备内马达的方法,适于图1~图9所示实施例示出的电子设备。参见图10,一种控制电子设备内马达的方法包括:
1001,获取预设时间段内磁场检测模组检测第一马达和第二马达所输出的检测电压,得到第一电压集合和第二电压集合;
1002,响应于检测到触发震感提醒操作,根据所述第一电压集合获取所述第一马达当前的第一共振频率,以及根据所述第二电压集合获取所述第二马达当前的第二共振频率;
1003,将所述第一共振频率和所述第二共振频率发送给所述驱动模组,以使所述驱动模组基于所述第一共振频率和所述第二共振频率分别驱动所述第一马达和所述第二马达同步振动,执行震感提醒操作。
在一实施例中,参见图11,一种控制电子设备内马达的方法还包括:
1101,分别获取所述第一马达的输入电压和所述第二马达的输入电压;
1102,分别获取所述第一马达的输入电压和所述第二马达的输入电压的变化趋势;
1103,对比所述第一马达的输入电压和所述第二马达的输入电压的变化趋势,得到对比结果;
1104,根据所述对比结果生成控制信号并将所述控制信号发送给所 述驱动模组,以使所述驱动模组根据所述控制信号驱动所述第一马达和所述第二马达保持同步振动。
在一实施例中,参见图12,一种控制电子设备内马达的方法还包括:
1201,获取音频数据的包络信号;所述包络信号从电子设备内的音频模组获取;
1202,根据所述包络信号生成驱动信号;
1203,将所述驱动信号发送给驱动模组,以使所述驱动模组驱动所述第一马达和/或所述第二马达跟随所述音频数据振动。
需要说明的是,本实施例中示出方法实施例的内容在图1~图9所示电子设备的工作过程中已经详细描述,可以参考上述电子设备的内容,在此不再赘述。
在上述一种控制电子设备内马达的方法的基础上,本公开实施例还提供了一种控制电子设备内马达的装置。参见图13,一种控制电子设备内马达的装置包括:
电压集合获取模块1301,用于获取预设时间段内磁场检测模组检测第一马达和第二马达所输出的检测电压,得到第一电压集合和第二电压集合;
共振频率获取模块1302,用于响应于检测到触发震感提醒操作,根据所述第一电压集合获取所述第一马达当前的第一共振频率,以及根据所述第二电压集合获取所述第二马达当前的第二共振频率;
共振频率发送模块1303,用于将所述第一共振频率和所述第二共振频率发送给所述驱动模组,以使所述驱动模组基于所述第一共振频率和所述第二共振频率分别驱动所述第一马达和所述第二马达同步振动,执行震感提醒操作。
在一实施例中,参见图14,一种控制电子设备内马达的装置还包括:
输入电压获取模块1401,用于分别获取所述第一马达的输入电压和所述第二马达的输入电压;
变化趋势获取模块1402,用于分别获取所述第一马达的输入电压和所述第二马达的输入电压的变化趋势;
对比结果获取模块1403,用于对比所述第一马达的输入电压和所述第二马达的输入电压的变化趋势,得到对比结果;
控制信号生成模块1404,用于根据所述对比结果生成控制信号并将所述控制信号发送给所述驱动模组,以使所述驱动模组根据所述控制信号驱动所述第一马达和所述第二马达保持同步振动。
在一实施例中,参见图15,一种控制电子设备内马达的装置还包括:
包络信号获取模块1501,用于获取音频数据的包络信号;所述包络信号从电子设备内的音频模组获取;
驱动信号获取模块1502,用于根据所述包络信号生成驱动信号;
驱动信号发送模块1503,用于将所述驱动信号发送给驱动模组,以使所述驱动模组驱动所述第一马达和/或所述第二马达跟随所述音频数据振动。
需要说明的是,本实施例中示出的装置实施例的内容可以参考上述方法实施例的内容,在此不再赘述。
图16是根据一示例性实施例示出的一种电子设备的框图。例如,电子设备1600可以是包括图1~图9所示电路的智能手机、计算机、数字广播终端、平板设备、医疗设备、健身设备、个人数字助理等。
参照图16,电子设备1600可以包括以下一个或多个组件:处理组件1602,存储器1604,电源组件1606,多媒体组件1608,音频组件1610,输入/输出(I/O)接口1612,传感器组件1614,通信组件1616;电子设备1600还包括图像采集组件。
处理组件1602通常电子设备1600的整体操作,诸如与显示、电话呼叫、数据通信、相机操作和记录操作相关联的操作。处理组件1602可以包括一个或多个处理器1620来执行指令。此外,处理组件1602可以包括一个或多个模块,便于处理组件1602和其他组件之间的交互。例如,处理组件1602可以包括多媒体模块,以方便多媒体组件1608和处理组件1602之间的交互。
存储器1604被配置为存储各种类型的数据以支持在电子设备1600的操作。这些数据的示例包括用于在电子设备1600上操作的任何应用程序或方法的指令,联系人数据、电话簿数据、消息、图片、视频等。存储器1604可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM)、电可擦除可编程只读存储器(EEPROM)、可擦除可编程只读存储器(EPROM)、可编程只读存储器(PROM)、磁存储器、快闪存储器、磁盘或光盘。
电源组件1606为电子设备1600的各种组件提供电力。电源组件1606可以包括:电源管理***,一个或多个电源,及其他与为电子设备1600生成、管理和分配电力相关联的组件。
多媒体组件1608包括在所述电子设备1600和目标对象之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示屏(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自目标对象的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。
音频组件1610被配置为输出和/或输入音频信号。例如,音频组件1610包括一个麦克风(MIC),当电子设备1600处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信 号。所接收的音频信号可以被进一步存储在存储器1604或经由通信组件1616发送。在一些实施例中,音频组件1610还包括一个扬声器,用于输出音频信号。
I/O接口1612为处理组件1602和***接口模块之间提供接口,上述***接口模块可以是键盘、点击轮、按钮等。
传感器组件1614包括一个或多个传感器,用于为电子设备1600提供各个方面的状态评估。例如,传感器组件1614可以检测到电子设备1600的打开/关闭状态,组件的相对定位,例如所述组件为电子设备1600的显示屏和小键盘,传感器组件1614还可以检测电子设备1600或一个组件的位置改变,目标对象与电子设备1600接触的存在或不存在,电子设备1600方位或加速/减速和电子设备1600的温度变化。
通信组件1616被配置为便于电子设备1600和其他设备之间有线或无线方式的通信。电子设备1600可以接入基于通信标准的无线网络,如WiFi、2G或3G、或它们的组合。在一个示例性实施例中,通信组件1616经由广播信道接收来自外部广播管理***的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1616还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术、红外数据协会(IrDA)技术、超宽带(UWB)技术、蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,电子设备1600可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现。
在示例性实施例中,还提供了一种包括可执行指令的非临时性可读存储介质,例如包括指令的存储器1604,上述可执行指令可由电子设备1600的处理器1620执行。其中,可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开实施例的其它实施方案。本公开实施例旨在涵盖上述各实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开实施例的一般性原理并包括本公开实施例未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开实施例的范围仅由所附的权利要求来限制。
工业实用性
由上述实施例可知,本公开实施例中通过在第一指定位置固定第一马达且第二指定位置固定第二马达,然后由驱动模组根据控制信号控制第一马达和第二马达单独振动或者同步振动。以同步振动为例,本实施例中可以使整个电子设备上下平移或者左右平移,从而使整个电子设备振动,避免出现平衡点,这样有利于增加电子设备的振幅,提升震感提醒效果,提高用户的使用体验。

Claims (19)

  1. 一种电子设备,包括中框、第一马达、第二马达和驱动模组;所述第一马达和所述第二马达分别固定在所述中框的第一指定位置和第二指定位置;所述驱动模组分别与所述第一马达和所述第二马达电连接,用于根据控制信号驱动所述第一马达或所述第二马达单独振动,或者驱动所述第一马达和所述第二马达同步振动。
  2. 根据权利要求1所述的电子设备,其中,所述中框分别与所述第一马达的外壳和所述第二马达的外壳一体成型。
  3. 根据权利要求1所述的电子设备,其中,还包括主板,所述主板上设置有两组弹片;所述第一马达设有电源端,所述电源端与其中一组弹片弹性接触;所述第二马达设有电源端,所述电源端与另一组弹片弹性接触。
  4. 根据权利要求1所述的电子设备,其中,所述第一马达和所述第二马达为振动方向相同的线性马达。
  5. 根据权利要求1所述的电子设备,其中,所述驱动模组包括用于驱动所述第一马达的第一驱动芯片和用于驱动所述第二马达的第二驱动芯片,所述第一驱动芯片和所述第二驱动芯片采用同一时钟源提供的时钟信号。
  6. 根据权利要求5所述的电子设备,其中,所述第一驱动芯片和所述第二驱动芯片内分别设置有锁相环;所述锁相环用于锁定所述时钟信号的相位。
  7. 根据权利要求1所述的电子设备,其中,还包括触控按键,所述驱动模组内预先存储有预设波形;所述驱动模组与所述触控按键连接,用于在所述触控按键***作时根据所述预设波形控制所述第一马达和所述第二马达同步振动。
  8. 根据权利要求1所述的电子设备,其中,所述驱动模组内设置有升压电路;所述升压电路用于对输入电压进行升压以得到超过设定电压阈值的驱动电压;所述驱动电压用于驱动所述第一马达和/或所述第二马达进行振动的幅度超过设定幅度阈值。
  9. 根据权利要求1~8任一项所述的电子设备,其中,还包括处理器;所述处理器用于分别获取所述第一马达的输入电压以及所述第二马达的输入电压,并根据所述第一马达的输入电压和所述第二马达的输入电压生成控制信号,所述控制信号用于使所述驱动模组调整输出电压,以降低所述第一马达和所述第二马达的振动幅度。
  10. 根据权利要求9所述的电子设备,其中,还包括磁场检测模组;其中,
    所述磁场检测模组,用于检测所述第一马达所产生的交变磁场得到第一电压集合,以及检测所述第二马达所产生的交变磁场得到第二电压 集合;
    所述处理器与所述磁场检测模组连接,用于响应于检测到触发震感提醒操作,根据所述第一电压集合获取所述第一马达当前的第一共振频率,以及根据所述第二电压集合获取所述第二马达当前的第二共振频率,并将所述第一共振频率和所述第二共振频率发送给所述驱动模组;
    所述驱动模组,用于基于所述第一共振频率和所述第二共振频率分别驱动所述第一马达和所述第二马达同步振动,执行震感提醒操作。
  11. 根据权利要求9所述的电子设备,其中,还包括音频模组;所述音频模组用于获取音频数据的包络信号,并发送给处理器;所述处理器用于根据所述包络信号生成驱动信号并发送给所述驱动模组,由驱动模组控制所述第一马达和/或所述第二马达跟随所述音频数据振动。
  12. 一种控制电子设备内马达的方法,适于权利要求1~11任一项所述的电子设备,所述方法包括:
    获取预设时间段内磁场检测模组检测第一马达和第二马达所输出的检测电压,得到第一电压集合和第二电压集合;
    响应于检测到触发震感提醒操作,根据所述第一电压集合获取所述第一马达当前的第一共振频率,以及根据所述第二电压集合获取所述第二马达当前的第二共振频率;
    将所述第一共振频率和所述第二共振频率发送给所述驱动模组,以使所述驱动模组基于所述第一共振频率和所述第二共振频率分别驱动所述第一马达和所述第二马达同步振动,执行震感提醒操作。
  13. 根据权利要求12所述的方法,其中,所述方法包括:
    分别获取所述第一马达的输入电压和所述第二马达的输入电压;
    分别获取所述第一马达的输入电压和所述第二马达的输入电压的变化趋势;
    对比所述第一马达的输入电压和所述第二马达的输入电压的变化趋势,得到对比结果;
    根据所述对比结果生成控制信号并将所述控制信号发送给所述驱动模组,以使所述驱动模组根据所述控制信号驱动所述第一马达和所述第二马达保持同步振动。
  14. 根据权利要求12所述的方法,其中,所述方法还包括:
    获取音频数据的包络信号;所述包络信号从电子设备内的音频模组获取;
    根据所述包络信号生成驱动信号;
    将所述驱动信号发送给驱动模组,以使所述驱动模组驱动所述第一马达和/或所述第二马达跟随所述音频数据振动。
  15. 一种控制电子设备内马达的装置,适于权利要求1~11任一项所述的电子设备,所述装置包括:
    电压集合获取模块,配置为获取预设时间段内磁场检测模组检测第一马达和第二马达所输出的检测电压,得到第一电压集合和第二电压集合;
    共振频率获取模块,配置为响应于检测到触发震感提醒操作,根据所述第一电压集合获取所述第一马达当前的第一共振频率,以及根据所述第二电压集合获取所述第二马达当前的第二共振频率;
    共振频率发送模块,配置为将所述第一共振频率和所述第二共振频率发送给所述驱动模组,以使所述驱动模组基于所述第一共振频率和所述第二共振频率分别驱动所述第一马达和所述第二马达同步振动,执行震感提醒操作。
  16. 根据权利要求15所述的装置,其中,所述装置包括:
    输入电压获取模块,配置为分别获取所述第一马达的输入电压和所述第二马达的输入电压;
    变化趋势获取模块,配置为分别获取所述第一马达的输入电压和所述第二马达的输入电压的变化趋势;
    对比结果获取模块,配置为对比所述第一马达的输入电压和所述第二马达的输入电压的变化趋势,得到对比结果;
    控制信号生成模块,配置为根据所述对比结果生成控制信号并将所述控制信号发送给所述驱动模组,以使所述驱动模组根据所述控制信号驱动所述第一马达和所述第二马达保持同步振动。
  17. 根据权利要求15所述的装置,其中,所述装置包括:
    包络信号获取模块,配置为获取音频数据的包络信号;所述包络信号从电子设备内的音频模组获取;
    驱动信号获取模块,配置为根据所述包络信号生成驱动信号;
    驱动信号发送模块,配置为将所述驱动信号发送给驱动模组,以使所述驱动模组驱动所述第一马达和/或所述第二马达跟随所述音频数据振动。
  18. 一种电子设备,所述电子设备包括:
    处理器;
    用于存储所述处理器可执行指令的存储器;
    所述处理器被配置为执行所述存储器中的可执行指令以实现权利要求12~14任一项所述方法的步骤。
  19. 一种可读存储介质,其上存储有可执行指令,该可执行指令被处理器执行时以实现权利要求12~14任一项所述方法的步骤。
PCT/CN2020/074179 2019-11-27 2020-02-03 电子设备及其控制方法、装置、可读存储介质 WO2021103311A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207007403A KR102419658B1 (ko) 2019-11-27 2020-02-03 전자 기기 및 이의 제어 방법, 장치, 판독 가능한 저장 매체
JP2020515683A JP2022514994A (ja) 2019-11-27 2020-02-03 電子装置およびその制御方法、装置、読み取り可能な記憶媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911184534.3 2019-11-27
CN201911184534.3A CN112865612B (zh) 2019-11-27 2019-11-27 电子设备及其控制方法、装置、可读存储介质

Publications (1)

Publication Number Publication Date
WO2021103311A1 true WO2021103311A1 (zh) 2021-06-03

Family

ID=69953873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074179 WO2021103311A1 (zh) 2019-11-27 2020-02-03 电子设备及其控制方法、装置、可读存储介质

Country Status (6)

Country Link
US (1) US11652915B2 (zh)
EP (1) EP3829145B1 (zh)
JP (1) JP2022514994A (zh)
KR (1) KR102419658B1 (zh)
CN (1) CN112865612B (zh)
WO (1) WO2021103311A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11132062B2 (en) * 2017-11-08 2021-09-28 General Vibration Corporation Coherent phase switching and modulation of a linear actuator array
CN115473961B (zh) * 2021-06-11 2024-07-16 华为技术有限公司 一种振动控制方法、电子设备、存储介质及计算机程序产品
CN113840023B (zh) * 2021-09-13 2024-04-02 维沃移动通信有限公司 电子设备、控制方法及控制装置
CN113992106B (zh) * 2021-10-29 2024-07-02 歌尔股份有限公司 马达控制方法、装置、设备及计算机可读存储介质
CN114123848B (zh) * 2021-11-23 2024-01-30 歌尔股份有限公司 一种多维立体振动装置的控制方法和控制装置
CN114221596B (zh) * 2021-12-22 2023-12-22 歌尔股份有限公司 基于马达的振感调整方法、设备和计算机可读存储介质
CN115357124B (zh) * 2022-09-20 2023-09-05 武汉市聚芯微电子有限责任公司 一种振动控制方法、装置、设备及存储介质
CN116699388B (zh) * 2022-11-22 2024-05-24 荣耀终端有限公司 一种线性马达校准方法及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150289043A1 (en) * 2012-01-12 2015-10-08 Aac Acoustic Technologies (Shenzhen) Co., Ltd. Vibration speaker
CN105549777A (zh) * 2015-12-04 2016-05-04 联想(北京)有限公司 一种电子设备及控制方法
CN106849781A (zh) * 2017-03-31 2017-06-13 珠海市魅族科技有限公司 一种马达驱动电路、方法及电子设备
CN108347525A (zh) * 2018-01-12 2018-07-31 广东欧珀移动通信有限公司 电子设备震动控制方法、装置及电子设备
CN208820835U (zh) * 2018-10-30 2019-05-03 Oppo广东移动通信有限公司 电子设备
CN109756159A (zh) * 2019-02-21 2019-05-14 信利光电股份有限公司 一种线性马达组振动***、控制方法及电子设备
CN110266856A (zh) * 2019-06-28 2019-09-20 Oppo(重庆)智能科技有限公司 电子设备及振动装置、方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63123476A (ja) * 1986-11-12 1988-05-27 株式会社カイジョー 超音波洗浄機
JP2647713B2 (ja) * 1989-04-07 1997-08-27 オリンパス光学工業株式会社 超音波駆動装置
JPH09201079A (ja) * 1996-01-18 1997-07-31 Nikon Corp 連結形振動アクチュエータ及びその駆動装置
JP3152650B2 (ja) * 1999-08-04 2001-04-03 シーアイ化成株式会社 超小型ブラシモータにおけるスプリング導電体、スプリング導電体を取り付けるエンドプレート、およびエンドプレート組立体、並びに振動発生装置
JP3344385B2 (ja) * 1999-10-22 2002-11-11 ヤマハ株式会社 振動源駆動装置
JP2004267936A (ja) * 2003-03-10 2004-09-30 Yamaha Corp バイブレータ駆動回路
US8044623B2 (en) 2007-07-03 2011-10-25 Seiko Epson Corporation Drive control circuit for electric motor
KR20110074333A (ko) * 2009-12-24 2011-06-30 삼성전자주식회사 휴대 단말의 진동 발생 방법 및 장치
JP2011152533A (ja) * 2010-01-28 2011-08-11 Sanyo Electric Co Ltd リニア振動モータの駆動制御回路
JP2013050920A (ja) * 2011-08-31 2013-03-14 Minebea Co Ltd 入力装置
US9746921B2 (en) * 2014-12-31 2017-08-29 Sony Interactive Entertainment Inc. Signal generation and detector systems and methods for determining positions of fingers of a user
CN106254580B (zh) 2016-07-18 2019-06-04 青岛海信移动通信技术股份有限公司 移动终端
CN106208890A (zh) * 2016-07-21 2016-12-07 瑞声科技(新加坡)有限公司 线性电机振动一致性的补偿装置及其补偿方法
CN109901703B (zh) * 2017-12-11 2022-05-06 北京小米移动软件有限公司 一种终端、终端的振动方法及存储介质
JP2019130462A (ja) * 2018-01-30 2019-08-08 日本電産セイミツ株式会社 振動デバイス、振動装置、振動デバイスの制御方法
KR102167410B1 (ko) * 2018-02-21 2020-10-20 주식회사 이엠텍 하이브리드 액추에이터 및 이를 구비하는 멀티 미디어 장치
CN108683761B (zh) * 2018-05-17 2020-01-14 Oppo广东移动通信有限公司 发声控制方法、装置、电子装置及计算机可读介质
CN209313874U (zh) 2018-12-29 2019-08-27 瑞声科技(南京)有限公司 移动终端
CN110312038B (zh) * 2019-06-28 2020-10-02 Oppo(重庆)智能科技有限公司 信息提示方法及装置、电子设备、计算机可读存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150289043A1 (en) * 2012-01-12 2015-10-08 Aac Acoustic Technologies (Shenzhen) Co., Ltd. Vibration speaker
CN105549777A (zh) * 2015-12-04 2016-05-04 联想(北京)有限公司 一种电子设备及控制方法
CN106849781A (zh) * 2017-03-31 2017-06-13 珠海市魅族科技有限公司 一种马达驱动电路、方法及电子设备
CN108347525A (zh) * 2018-01-12 2018-07-31 广东欧珀移动通信有限公司 电子设备震动控制方法、装置及电子设备
CN208820835U (zh) * 2018-10-30 2019-05-03 Oppo广东移动通信有限公司 电子设备
CN109756159A (zh) * 2019-02-21 2019-05-14 信利光电股份有限公司 一种线性马达组振动***、控制方法及电子设备
CN110266856A (zh) * 2019-06-28 2019-09-20 Oppo(重庆)智能科技有限公司 电子设备及振动装置、方法

Also Published As

Publication number Publication date
US20210160364A1 (en) 2021-05-27
US11652915B2 (en) 2023-05-16
JP2022514994A (ja) 2022-02-17
CN112865612B (zh) 2023-05-16
KR20210068315A (ko) 2021-06-09
KR102419658B1 (ko) 2022-07-08
EP3829145B1 (en) 2023-09-27
EP3829145A1 (en) 2021-06-02
CN112865612A (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
WO2021103311A1 (zh) 电子设备及其控制方法、装置、可读存储介质
US10191717B2 (en) Method and apparatus for triggering execution of operation instruction
CN105980961B (zh) 确定由用户执行的手势的方法和手势检测装置
US20230229254A1 (en) Device and Method for Processing User Input
WO2016112727A1 (zh) 触摸屏和指纹识别实现装置及终端设备
JP6990743B2 (ja) 携帯端末、振動制御方法、装置及び記憶媒体
EP3016236A1 (en) Power supply circuit and electronic equipment
CN107370899A (zh) 一种发出震动信号的方法和装置
CN108040171A (zh) 语音操作方法、装置及计算机可读存储介质
RU2701456C1 (ru) Скользящая конструкция переднего узла, способ и устройство управления, терминал и носитель данных
CN108121631A (zh) 屏幕异常状态提醒方法及装置
CN108304078A (zh) 一种输入方法、装置及电子设备
CN109743129A (zh) 电磁干扰控制方法及相关产品
CN110618763B (zh) 一种触控方法及电子设备
EP3848780B1 (en) Electronic device
CN103869982A (zh) 操作项选择方法及装置
CN111262989A (zh) 通知提醒方法、装置及存储介质
CN109561642A (zh) 电磁干扰控制方法及相关产品
CN105892751B (zh) 控制触控屏触发的方法及装置、电子设备
CN105653027B (zh) 页面缩放方法及装置
CN112748337B (zh) 电子设备、控制电子设备内马达的方法和装置
CN113885693A (zh) 触控反馈模组及方法、电子设备、计算机存储介质
EP2660695B1 (en) Device and method for processing user input
CN219978506U (zh) 触控笔的检测模组以及电子设备
CN112748436B (zh) 电子设备、距离检测方法及装置、存储介质

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020515683

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20893452

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20893452

Country of ref document: EP

Kind code of ref document: A1