WO2021098742A1 - 波导镜片及增强现实眼镜 - Google Patents

波导镜片及增强现实眼镜 Download PDF

Info

Publication number
WO2021098742A1
WO2021098742A1 PCT/CN2020/129873 CN2020129873W WO2021098742A1 WO 2021098742 A1 WO2021098742 A1 WO 2021098742A1 CN 2020129873 W CN2020129873 W CN 2020129873W WO 2021098742 A1 WO2021098742 A1 WO 2021098742A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
coupling
waveguide
gratings
image light
Prior art date
Application number
PCT/CN2020/129873
Other languages
English (en)
French (fr)
Inventor
罗明辉
乔文
成堂东
李玲
周振
杨明
陈林森
Original Assignee
苏州苏大维格科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州苏大维格科技集团股份有限公司 filed Critical 苏州苏大维格科技集团股份有限公司
Publication of WO2021098742A1 publication Critical patent/WO2021098742A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings

Definitions

  • the present invention relates to the field of AR display technology, in particular to a waveguide lens and augmented reality glasses.
  • AR Augmented Reality
  • AR Augmented Reality
  • users use the helmet-mounted display to re-synthesize the real world with computer graphics, and then they can see the real world surrounding it.
  • the waveguide lens is the key to realizing the more realistic and credible superposition of virtual objects into the real scene.
  • the coupling area 21 is conducted to the turning area 23 to form an x-direction field of view expansion, and the turning area 23 is conducted to the coupling.
  • the field of view is expanded in the y direction, that is, the pupil dilation is realized twice.
  • the first-order diffraction is used in the process of conducting from the coupling-in area 21 to the turning area 23 and from the turning area 23 to the coupling-out area 25.
  • multi-color diffraction there is a phenomenon of uneven diffraction in the field of view, resulting in Produce obvious chromatic aberration, which affects the visual experience.
  • the object of the present invention is to provide a waveguide lens and augmented reality glasses with reduced chromatic aberration.
  • the present invention provides a waveguide lens, comprising a waveguide substrate, a functional area composed of gratings arranged on the surface of the waveguide substrate, and the functional area includes a coupling area for coupling image light into the waveguide substrate, and A relay area for changing the direction of the image light transmitted through the coupling area and the waveguide substrate, and for projecting the image light transmitted from the relay area through the waveguide substrate into the outer space of the waveguide lens
  • the coupling-out area, the relay area includes a middle turning area for transmitting the image light conducted through the coupling-in area and the waveguide substrate to both sides, and a middle turning area distributed on both sides of the middle turning area for The image light transmitted from the middle turning area is transmitted to the two side turning areas of the coupling-out area.
  • the grating in the middle turning region is a two-dimensional array grating, so that the image light transmitted from the coupling region and the waveguide substrate is transmitted to the side turning regions on both sides.
  • the gratings of the two side turning areas are one-dimensional gratings symmetrically distributed on both sides of the middle turning area, so that the image light transmitted from the middle turning area is directed toward the Coupling area conduction.
  • the gratings in the coupling-in area and the coupling-out area are both one-dimensional gratings, and the grating orientation angles of the two are the same.
  • the grating orientation angle of the edge turning region is different from the grating orientation angle of the coupling region, and the angle between the grating orientation of the edge turning region and the grating orientation of the coupling region Is 45 degrees.
  • the gratings in the coupling-in area and the coupling-out area are inclined gratings, rectangular gratings, blazed gratings or volume gratings.
  • the coupling-in area, the relay area, and the coupling-out area are disposed on the same side surface of the waveguide substrate.
  • the coupling-in area, the relay area, and the coupling-out area are sequentially arranged in the same direction.
  • the relay area in the length direction of the waveguide substrate, is disposed between the coupling-in area and the coupling-out area.
  • the size and shape of the intermediate turning area are consistent with the size and shape of the coupling area.
  • the wide side of each side turning area is equal to the wide side of the middle turning area, and the long side of each side turning area is larger than the long side of the middle turning area.
  • the long side of the relay area is equal to the long side of the coupling-out area, and the wide side of the coupling-out area is larger than the wide side of the entire relay area.
  • the present invention also provides an augmented reality glasses, including the above-mentioned waveguide lens.
  • it further includes a spectacle frame, the spectacle frame is used to fix two symmetrical waveguide lenses, and the two symmetric waveguide lenses are used to match the left eye and the right eye, respectively.
  • it further includes two micro-projection devices and two image devices arranged on the mirror frame, the two image devices are respectively connected to the two micro-projection devices, and the two micro-projection devices
  • the left-right symmetrical waveguide lenses are respectively connected, the image device outputs image information to the micro-projection device, and the micro-projection device projects image light rays to the coupling area of the waveguide lens according to the image information.
  • the intermediate turning area used to transmit image light to both sides to achieve an increase in the horizontal field of view and the intermediate turning area distributed on both sides of the intermediate turning area for transmitting the intermediate turning area realizes symmetrical field expansion, compensates for insufficient unidirectional field expansion, achieves multi-color diffraction efficiency balance in the exit pupil range, and eliminates chromatic aberration effects.
  • Fig. 1 is a schematic diagram of image light transmission of a conventional waveguide lens
  • FIG. 2 is a schematic diagram of the structure of a waveguide lens according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of image light incident on the waveguide lens according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the transmission of image light in the waveguide lens according to the embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the transmission of image light in the waveguide substrate through the relay area according to the embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing the symmetrical diffraction of the waveguide lens according to the embodiment of the present invention.
  • the waveguide lens provided in the embodiment of the present invention includes a waveguide substrate 17 and a functional area formed on the surface of the waveguide substrate 17 and composed of gratings.
  • the functional area includes a coupling area 11 for coupling image light into the waveguide substrate 17, a relay area 13 for redirecting the image light transmitted through the coupling area 11 and the waveguide substrate 17, and The image light transmitted from the subsequent area 13 through the waveguide substrate 17 is projected to the out-coupling area 15 in the outer space of the waveguide lens.
  • the relay area 13 includes a middle turning area 131 for transmitting image light to both sides to achieve an increase in the horizontal field of view, and a middle turning area 131 distributed on both sides of the middle turning area 131 for transmitting the image light transmitted from the middle turning area 131 to the out-coupling area 15 Two edge turning areas 132 of conduction.
  • the waveguide lens 1 is a single-piece waveguide lens 1 containing red, green and blue image light incident.
  • the waveguide lens 1 can realize that the light of the three primary color mode is incident on the waveguide substrate 17 and can realize total reflection in the waveguide substrate 17.
  • the RGB color model also known as the RGB color model, is an additive color model that adds the color lights of the RGB three primary colors in different proportions to produce a variety of colors; for example, RGB colors are mixed together Will become white.
  • the three primary colors refer to R (Red), G (Green), and B (Blue).
  • the coupling-in area 11, the relay area 13 and the coupling-out area 15 are all rectangular. In other embodiments, three of the coupling-in area 11, the relay area 13 and the coupling-out area 15 may be circular, tapered or other shapes.
  • the coupling-in area 11, the relay area 13 and the coupling-out area 15 are arranged on the same side surface of the waveguide substrate 17 and arranged in the same direction (that is, the x direction) in sequence, that is, in the x direction ,
  • the relay area 13 is arranged between the coupling-in area 11 and the coupling-out area 15.
  • the x direction may be the length direction of the waveguide substrate 17
  • the y direction may be the width direction of the waveguide substrate 17
  • the z direction may be the thickness direction of the waveguide substrate 17.
  • the coupling area 11, the relay area 13 and the coupling out area 15 may be provided on different surfaces of the waveguide substrate 17; for example, the coupling area 11 and the relay area 13 are provided on the same waveguide substrate 17 On the surface of the side, the outcoupling region 15 is provided on the surface of the waveguide substrate 17 opposite to the other side.
  • the gratings in the coupling-in area 11 and the coupling-out area 15 are both one-dimensional gratings, and the grating orientation angles of the two are the same.
  • the image ray K is incident on the grating 41, and the angle between the z-axis square is the incident angle ⁇ , the projection of the incident ray on the xy plane and the x-axis are the azimuth angle ⁇ , and the angle between the grating 41 and the x-axis is The included angle is the orientation angle
  • the gratings of the coupling-in area 11 and the coupling-out area 15 include tilted gratings, rectangular gratings, blazed gratings, or volume gratings.
  • the two edge turning areas 132 are symmetrically distributed on both sides of the middle turning area 131.
  • the grating in the middle turning area 131 is a two-dimensional array grating
  • the grating in the side turning area 132 is a one-dimensional grating.
  • the grating orientation angles of the two edge turning regions 132 are different from the grating orientation angles of the coupling region 11. Specifically, the grating orientation of the two edge turning regions 132 and the grating orientation of the coupling region 11 are at an angle, and the angle is 45 degrees.
  • the coupling area 11, the middle turning area 131, and the coupling out area 15 are all rectangular; specifically, the size and shape of the middle turning area 131 are consistent with the size and shape of the coupling area 11, so that the coupling is The image light coupled into the area 11 can be completely transmitted to the middle turning area 131; the wide side (x direction) of each side turning area 132 is equal to the wide side (x direction) of the middle turning area 131, and each side turning The long side (y direction) of the area 132 is larger than the long side (y direction) of the middle turning area 131, so as to realize that the image light is transmitted from the self-coupling area 11 to the relay area 13 to form an expansion of the field of view in the y direction; The long side (y direction) is equal to the long side (y direction) of the coupling-out area 15, so that the image light transmitted to the relay area 13 can be completely transmitted to the coupling-out area 15, and the wide side of the coupling-out area 15 (x direction) ) Is larger than the wide
  • each region refers to the broad side of each region in the length direction (x direction) of the waveguide substrate 17, and the long side of each region refers to the width direction (y) of each region in the waveguide substrate 17 Direction).
  • a one-dimensional grating is composed of a plurality of one-dimensional grating units
  • a two-dimensional array grating is composed of a plurality of two-dimensional grating units
  • the plurality of two-dimensional grating units are arranged in an array manner.
  • the one-dimensional grating unit and the two-dimensional grating unit are arranged in an array.
  • the units are all nanostructures and can be prepared by holographic interference technology, photolithography technology or nanoimprint technology, that is, first coat a layer of photoresist on the waveguide substrate 17, and then perform etching or mold imprinting. It can be freely selected according to actual needs.
  • symmetric transmission mode uses both positive first-order diffracted light and negative first-order diffracted light generated, of which positive first-order diffracted light and negative first-order diffracted light are generated.
  • Each light is responsible for partial transmission of the entire field of view. For example, conducting blue positive first-order diffracted light only occupies part of the entire field of view, and cannot completely cover the entire field of view, resulting in unbalanced blue display in the entire field of view.
  • the blue negative first-order diffracted light is transmitted synchronously to make up for it. The blue part of the image missing from the entire field of view.
  • the blue balanced display of the entire field of view is realized.
  • the transmission principle of red light and green light is the same as the blue light above.
  • Each side turning area 132 can display most of the entire field of view.
  • the design of two symmetrical side turning areas 132 can achieve a composite field of view. While displaying the full effect of the entire field of view, it also compensates for the insufficient expansion of the unidirectional field of view, and enhances the equalizing effect of the multi-color diffraction efficiency in the exit pupil range, thereby reducing chromatic aberration and eliminating the effect of chromatic aberration.
  • the grating period of the edge turning area 132 is 420nm
  • the height is 250nm
  • the duty cycle is 0.3.
  • the incident wavelength is 450nm, which satisfies the incident angle of the positive first-order diffraction conduction of the waveguide lens 1. It is -6.6° ⁇ 20°, and the incident angle that satisfies the negative first-order diffraction conduction is -20° ⁇ 6.6°.
  • the present invention also provides an augmented reality glasses, including the above-mentioned waveguide lens 1 and the frame 3.
  • the lens frame 3 is used to fix two symmetrical waveguide lenses 1.
  • Two symmetrical waveguide lenses 1 are used to match the left eye and the right eye, respectively.
  • the augmented reality glasses also include two micro-projection devices (not shown in FIG. 7) and two image devices (not shown in FIG. 7) arranged on the spectacle frame.
  • the two image devices are respectively connected to two micro-projection devices, and the two micro-projection devices are respectively connected to the symmetrical waveguide lens 1.
  • the image device outputs image information to the micro-projection device.
  • the micro-projection device projects the image light to the coupling area 11 of the waveguide lens 1 according to the image information, and then diffracts it out through the coupling area 15, and the emitted light is converged and imaged by the human eye to achieve display.
  • two independent left and right micro-projection devices and image devices output different parallax images, which can realize stereoscopic three-dimensional display.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

一种波导镜片(1),包括波导基底(17)、设置在波导基底(17)表面由光栅组成的功能区域,功能区域包括用于将图像光线耦合进入波导基底(17)内的耦入区域(11)、用于将经耦入区域(11)及波导基底(17)传导过来的图像光线改变方向的中继区域(13),以及用于将中继区域(13)经波导基底(17)传导过来的图像光线投射到波导镜片外部空间中的耦出区域(15),中继区域(13)包括用于将经耦入区域(11)及波导基底(17)传导过来的图像光线向两侧传递的中间转折区(131)和分布在中间转折区(131)两侧用于将中间转折区(131)传递过来的图像光线向耦出区域(15)传导的两个边部转折区(132)。一种增强现实眼镜,包括波导镜片(1)。通过上述结构,实现对称式视场扩展,弥补单向视场扩展不足,达到出瞳范围多色衍射效率均衡,消除色差效应。

Description

波导镜片及增强现实眼镜 技术领域
本发明涉及AR显示技术领域,特别是涉及一种波导镜片及增强现实眼镜。
背景技术
AR(Augmented Reality,增强现实)技术,是一种将真实世界信息和虚拟世界信息“无缝”集成的新技术,不仅展现了真实世界的信息,而且将虚拟的信息同时显示出来,两种信息相互补充、叠加。在视觉化的增强现实中,用户利用头盔显示器,把真实世界与电脑图形重合成在一起,便可以看到真实的世界围绕着它。
对AR技术而言,由于用户大部分视野呈现真实场景,如何识别和理解现实场景和物体,并成为AR感知交互的首要任务。此外,AR技术的分辨率(清晰程度)、视场角(又称视场,指视野范围)也会成为AR显示领域的重大技术挑战。
波导镜片是实现将虚拟物体更为真实可信的叠加到现实场景中关键所在。现有技术中,为扩大视场,对其进行了水平或垂直方向的扩展,如图1所示,耦入区域21传导至转折区域23,形成x方向视场扩大,转折区域23传导至耦出区域25,形成y方向视场扩大,即实现两次扩瞳。然而,从耦入区域21传导至转折区域23和从转折区域23传导至耦出区域25的过程中,只利用了一级衍射,多色衍射情况下,存在视场范围衍射不均衡现象,导致产生明显色差,影响视觉体验。
前面的叙述在于提供一般的背景信息,并不一定构成现有技术。
发明内容
本发明的目的在于提供一种降低色差的波导镜片及增强现实眼镜。
本发明提供一种波导镜片,包括波导基底、设置在所述波导基底表面由光栅组成的功能区域,所述功能区域包括用于将图像光线耦合进入所述波导基底内的耦入区域、用于将经所述耦入区域及所述波导基底传导过来的图像光线改变方向的中继区域,以及用于将所述中继区域经所述波导基底传导过来的图像光线投射到波导镜片外部空间中的耦出区域,所述中继区域包括用于将经所述耦入区域及 所述波导基底传导过来的图像光线向两侧传递的中间转折区和分布在所述中间转折区两侧用于将所述中间转折区传递过来的所述图像光线向所述耦出区域传导的两个边部转折区。
在其中一实施例中,所述中间转折区的光栅为二维阵列光栅,使从所述耦入区域及所述波导基底传导过来的图像光线向两侧的边部转折区传递。
在其中一实施例中,所述两个边部转折区的光栅为在所述中间转折区两侧对称分布的一维光栅,使从所述中间转折区传递过来的所述图像光线向所述耦出区域传导。
在其中一实施例中,所述耦入区域和所述耦出区域的光栅均为一维光栅,且二者的光栅取向角相同。
在其中一实施例中,所述边部转折区的光栅取向角与所述耦入区域的光栅取向角不同,所述边部转折区的光栅取向与所述耦入区域的光栅取向的夹角为45度。
在其中一实施例中,所述耦入区域和所述耦出区域的光栅为倾斜光栅、矩形光栅、闪耀光栅或体光栅。
在其中一实施例中,所述两个边部转折区对称设置在所述中间转折区的两侧。
在其中一实施例中,所述耦入区域、所述中继区域和所述耦出区域三者设置在所述波导基底的同一侧表面上。
在其中一实施例中,所述耦入区域、所述中继区域和所述耦出区域三者在同一方向上依次设置。
在其中一实施例中,在所述波导基底的长度方向上,所述中继区域设置在所述耦入区域与所述耦出区域之间。
在其中一实施例中,所述中间转折区的大小、形状与所述耦入区域的大小、形状一致。
在其中一实施例中,每个边部转折区的宽边与所述中间转折区的宽边相等,每个边部转折区的长边大于所述中间转折区的长边,整个所述中继区域的长边与所述耦出区域的长边相等,所述耦出区域的宽边大于整个所述中继区域的宽边。
本发明还提供一种增强现实眼镜,包括上述波导镜片。
在其中一实施例中,还包括镜框,所述镜框用于固定左右对称的两个波导镜 片,左右对称的所述两个波导镜片分别用以匹配左眼和右眼。
在其中一实施例中,还包括设置在所述镜框上的两个微投影装置和两个图像装置,两个所述图像装置分别连接两个所述微投影装置,两个所述微投影装置分别连接左右对称的所述波导镜片,所述图像装置将图像信息输出至所述微投影装置,所述微投影装置根据所述图像信息投射图像光线至所述波导镜片的所述耦入区域。
本发明提供的波导镜片,通过用于将图像光线向两侧传递以实现水平视野增大的中间转折区和分布在所述中间转折区两侧用于将所述中间转折区传递过来的所述图像光线向所述耦出区域传导的两个边部转折区,实现对称式视场扩展,弥补单向视场扩展不足,达到出瞳范围多色衍射效率均衡,消除色差效应。
附图说明
图1为现有一种波导镜片图像光线传导的示意图;
图2为本发明实施例波导镜片的结构示意图;
图3为本发明实施例图像光线入射至波导镜片的示意图;
图4为本发明实施例图像光线在波导镜片中的传导示意图;
图5为本发明实施例图像光线经中继区域在波导基底中的传导示意图;
图6为本发明实施例波导镜片对称衍射的显示示意图;
图7为本发明实施例增强现实眼镜的结构示意图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
请参图2至图6,本发明实施例中提供的波导镜片,包括波导基底17、设置在波导基底17表面由光栅组成的功能区域。功能区域包括用于将图像光线耦合进入波导基底17内的耦入区域11、用于将经耦入区域11及波导基底17传导过来的图像光线改变方向的中继区域13,以及用于将中继区域13经波导基底17传导过来的图像光线投射到波导镜片外部空间中的耦出区域15。中继区域13包括用于将图像光线向两侧传递以实现水平视野增大的中间转折区131和分布在中间转折区131两侧用于将中间转折区131传递过来的图像光线向耦出区域15 传导的两个边部转折区132。
在本实施例中,该波导镜片1为包含红绿蓝三色图像光线入射的单片波导镜片1。该波导镜片1可以实现三原色光模式的光线入射至波导基底17,并能在波导基底17内实现全反射。三原色光模式(RGB color model),又称RGB颜色模式,是一种加色模型,将RGB三原色的色光以不同的比例相加,以产生多种多样的色光;例如,RGB三色混合在一起会变成白色。其中,三原色是指R(Red)、G(Green)、B(Blue)。
在本实施例中,耦入区域11、中继区域13和耦出区域15三者均呈矩形。在其他实施例中,耦入区域11、中继区域13和耦出区域15三者可以呈圆形、锥形或其他形状。
在本实施例中,耦入区域11、中继区域13和耦出区域15三者设置在波导基底17的同一侧表面上且按同一方向(即x方向)上依次设置,即在x方向上,中继区域13设置在耦入区域11与耦出区域15之间。在图中,x方向可以是波导基底17的长度方向,y方向可以是波导基底17的宽度方向,z方向可以是波导基底17的厚度方向。在其他实施例中,耦入区域11、中继区域13和耦出区域15三者可以设置在波导基底17的不同表面上;例如,耦入区域11和中继区域13设置在波导基底17同一侧的表面上,耦出区域15设置在波导基底17相对另一侧的表面上。
在本实施例中,耦入区域11和耦出区域15的光栅均为一维光栅,且二者的光栅取向角相同。如图3所示,图像光线K入射至光栅41,与z轴正方形夹角为入射角α,该入射光线在xy平面上的投影与x轴夹角为方位角θ,光栅41与x轴的夹角为取向角
Figure PCTCN2020129873-appb-000001
具体地,耦入区域11和耦出区域15的光栅包括倾斜光栅、矩形光栅、闪耀光栅或体光栅。
在本实施例中,两个边部转折区132对称分布在中间转折区131的两侧。其中,中间转折区131的光栅为二维阵列光栅,边部转折区132的光栅为一维光栅。利用中间转折区131的二维阵列光栅,实现传导至中间转折区131的图像光线向两侧传递,同时也增大水平视场角。
在本实施例中,两个边部转折区132的光栅取向角与耦入区域11的光栅取向角不同。具体地,两个边部转折区132的光栅取向与耦入区域11的光栅取向 呈夹角,其夹角度数为45度。
在本实施例中,耦入区域11、中间转折区131和耦出区域15均为矩形;具体地,中间转折区131的大小、形状与耦入区域11的大小、形状一致,使耦入至耦入区域11的图像光线能完整地传导至中间转折区131;每个边部转折区132的宽边(x方向)与中间转折区131的宽边(x方向)相等,每个边部转折区132的长边(y方向)大于中间转折区131的长边(y方向),从而实现图像光线自耦入区域11传导至中继区域13形成y方向视场扩大;整个中继区域13的长边(y方向)与耦出区域15的长边(y方向)相等,使传导至中继区域13的图像光线能完整地传导至耦出区域15,耦出区域15的宽边(x方向)大于整个中继区域13的宽边(x方向),从而实现图像光线自中继区域13传导至耦出区域15形成x方向视场扩大。
具体地,上述各个区域的宽边分别指每个区域在波导基底17的长度方向(x方向)上的边长,上述各个区域的长边分别指每个区域在波导基底17的宽度方向(y方向)上的边长。
具体地,一维光栅由多个一维光栅单元组成,二维阵列光栅由多个二维光栅单元组成,该多个二维光栅单元按阵列的方式排布,一维光栅单元和二维光栅单元均为纳米结构,可以采用全息干涉技术、光刻技术或纳米压印技术制备而成,即,先在波导基底17上涂布一层光刻胶后,再进行蚀刻或模具压印,具体根据实际需要可自由选择。
由于单向传导方式只利用正一级衍射光或负一级衍射光,对称传导方式同时利用了产生的正一级衍射光和负一级衍射光,其中正一级衍射光和负一级衍射光各自承担整个视场的部分传导。例如,传导蓝色的正一级衍射光只占整个视场的部分,无法全部覆盖整个视场,造成整个视场蓝色显示的不均衡,通过同步传导蓝色的负一级衍射光,弥补整个视场缺失的蓝色图像部分。实现了整个视场的蓝色均衡显示。同理,红色光线和绿色光线的传导原理如上面的蓝色光线。
因此,光栅在不同入射角度的衍射效率不同,每一边部转折区132可实现整个视场的大部分区域显示,而采用两个对称的边部转折区132的设计,在达到复合视场,实现整个视场的全部显示效果的同时,弥补单向视场扩展不足,增强出瞳范围多色衍射效率的均衡效果,从而降低色差,达到消除色差效应。例如,边部转折区132的光栅周期为420nm,高度为250nm,占空比为0.3,通过衍射角 度计算,得出入射波长在450nm情况下,满足该波导镜片1正一级衍射传导的入射角度为-6.6°~20°,满足负一级衍射传导的入射角度为-20°~6.6°。通过对称衍射,可实现视场角-20°~20°的全覆盖。
请参考图7,本发明还提供一种增强现实眼镜,包括上述波导镜片1和镜框3。镜框3用于固定左右对称的两个波导镜片1。左右对称的两个波导镜片1分别用以匹配左眼和右眼。
在本实施例中,增强现实眼镜还包括设置在镜框上的两个微投影装置(图7中未画出)和两个图像装置(图7中未画出)。两个图像装置分别连接两个微投影装置,两个微投影装置分别连接左右对称的波导镜片1。图像装置将图像信息输出至微投影装置,微投影装置根据图像信息投射图像光线至波导镜片1的耦入区域11,再经耦出区域15衍射出射,出射光线经人眼汇聚成像,实现显示。
在本发明中,通过左、右两个独立的微投影装置和图像装置输出不同视差图像,可实现立体三维显示。
本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。

Claims (15)

  1. 一种波导镜片,其特征在于,包括波导基底、设置在所述波导基底表面由光栅组成的功能区域,所述功能区域包括用于将图像光线耦合进入所述波导基底内的耦入区域、用于将经所述耦入区域及所述波导基底传导过来的图像光线改变方向的中继区域,以及用于将所述中继区域经所述波导基底传导过来的图像光线投射到波导镜片外部空间中的耦出区域,所述中继区域包括用于将经所述耦入区域及所述波导基底传导过来的图像光线向两侧传递的中间转折区和分布在所述中间转折区两侧用于将所述中间转折区传递过来的所述图像光线向所述耦出区域传导的两个边部转折区。
  2. 如权利要求1所述的波导镜片,其特征在于,所述中间转折区的光栅为二维阵列光栅,使从所述耦入区域及所述波导基底传导过来的图像光线向两侧的边部转折区传递。
  3. 如权利要求2所述的波导镜片,其特征在于,所述两个边部转折区的光栅为在所述中间转折区两侧对称分布的一维光栅,使从所述中间转折区传递过来的所述图像光线向所述耦出区域传导。
  4. 如权利要求3所述的波导镜片,其特征在于,所述耦入区域和所述耦出区域的光栅均为一维光栅,且二者的光栅取向角相同。
  5. 如权利要求4所述的波导镜片,其特征在于,所述边部转折区的光栅取向角与所述耦入区域的光栅取向角不同,所述边部转折区的光栅取向与所述耦入区域的光栅取向的夹角为45度。
  6. 如权利要求4所述的波导镜片,其特征在于,所述耦入区域和所述耦出区域的光栅为倾斜光栅、矩形光栅、闪耀光栅或体光栅。
  7. 如权利要求1所述的波导镜片,其特征在于,所述两个边部转折区对称设置在所述中间转折区的两侧。
  8. 如权利要求1所述的波导镜片,其特征在于,所述耦入区域、所述中继区域和所述耦出区域三者设置在所述波导基底的同一侧表面上。
  9. 如权利要求1所述的波导镜片,其特征在于,所述耦入区域、所述中继区域和所述耦出区域三者在同一方向上依次设置。
  10. 如权利要求9所述的波导镜片,其特征在于,在所述波导基底的长度方向上,所述中继区域设置在所述耦入区域与所述耦出区域之间。
  11. 如权利要求1所述的波导镜片,其特征在于,所述中间转折区的大小、形状与所述耦入区域的大小、形状一致。
  12. 如权利要求1所述的波导镜片,其特征在于,每个边部转折区的宽边与所述中间转折区的宽边相等,每个边部转折区的长边大于所述中间转折区的长边,整个所述中继区域的长边与所述耦出区域的长边相等,所述耦出区域的宽边大于整个所述中继区域的宽边。
  13. 一种增强现实眼镜,其特征在于,包括如权利要求1至12任一项所述的波导镜片。
  14. 如权利要求13所述的增强现实眼镜,其特征在于,还包括镜框,所述镜框用于固定左右对称的两个波导镜片,左右对称的两个所述波导镜片分别用以匹配左眼和右眼。
  15. 如权利要求14所述的增强现实眼镜,其特征在于,还包括两个微投影装置和两个图像装置,两个所述图像装置分别连接两个所述微投影装置,两个所述微投影装置分别连接左右对称的所述波导镜片,所述图像装置将图像信息输出至所述微投影装置,所述微投影装置根据所述图像信息投射图像光线至所述波导镜片的所述耦入区域。
PCT/CN2020/129873 2019-11-18 2020-11-18 波导镜片及增强现实眼镜 WO2021098742A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911127842.2 2019-11-18
CN201911127842.2A CN112817151A (zh) 2019-11-18 2019-11-18 一种波导镜片及ar显示装置

Publications (1)

Publication Number Publication Date
WO2021098742A1 true WO2021098742A1 (zh) 2021-05-27

Family

ID=75852470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129873 WO2021098742A1 (zh) 2019-11-18 2020-11-18 波导镜片及增强现实眼镜

Country Status (2)

Country Link
CN (1) CN112817151A (zh)
WO (1) WO2021098742A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4300142A1 (en) * 2022-06-27 2024-01-03 Rockwell Collins, Inc. Dual sided expansion waveguide

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116400501A (zh) * 2021-12-27 2023-07-07 歌尔股份有限公司 光传输结构和头戴显示设备
CN114428375A (zh) * 2022-02-14 2022-05-03 珠海莫界科技有限公司 衍射光波导及ar眼镜
CN115097631B (zh) * 2022-07-15 2023-10-17 友达光电股份有限公司 显示装置及其操作方法
CN115494578B (zh) * 2022-11-07 2023-10-13 杭州光粒科技有限公司 一种光波导器件和ar设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180074340A1 (en) * 2016-09-12 2018-03-15 Microsoft Technology Licensing, Llc Waveguides with improved intensity distributions
CN108681067A (zh) * 2018-05-16 2018-10-19 上海鲲游光电科技有限公司 一种扩展视场角的波导显示装置
CN108919493A (zh) * 2018-07-27 2018-11-30 京东方科技集团股份有限公司 一种ar显示装置及其控制方法、可穿戴设备
CN109073883A (zh) * 2016-04-13 2018-12-21 微软技术许可有限责任公司 具有扩展视场的波导
CN109521506A (zh) * 2017-09-20 2019-03-26 苏州苏大维格光电科技股份有限公司 纳米镜片、近眼显示方法及近眼显示装置
CN210720887U (zh) * 2019-11-18 2020-06-09 苏州苏大维格科技集团股份有限公司 一种波导镜片及ar显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101688977B (zh) * 2007-06-04 2011-12-07 诺基亚公司 衍射扩束器和基于衍射扩束器的虚拟显示器
GB2529003B (en) * 2014-08-03 2020-08-26 Wave Optics Ltd Optical device
JP6892213B2 (ja) * 2015-04-30 2021-06-23 ソニーグループ株式会社 表示装置及び表示装置の初期設定方法
CN107329261B (zh) * 2017-06-08 2019-04-30 东南大学 一种基于全息波导的头戴式显示器件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109073883A (zh) * 2016-04-13 2018-12-21 微软技术许可有限责任公司 具有扩展视场的波导
US20180074340A1 (en) * 2016-09-12 2018-03-15 Microsoft Technology Licensing, Llc Waveguides with improved intensity distributions
CN109521506A (zh) * 2017-09-20 2019-03-26 苏州苏大维格光电科技股份有限公司 纳米镜片、近眼显示方法及近眼显示装置
CN108681067A (zh) * 2018-05-16 2018-10-19 上海鲲游光电科技有限公司 一种扩展视场角的波导显示装置
CN108919493A (zh) * 2018-07-27 2018-11-30 京东方科技集团股份有限公司 一种ar显示装置及其控制方法、可穿戴设备
CN210720887U (zh) * 2019-11-18 2020-06-09 苏州苏大维格科技集团股份有限公司 一种波导镜片及ar显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4300142A1 (en) * 2022-06-27 2024-01-03 Rockwell Collins, Inc. Dual sided expansion waveguide

Also Published As

Publication number Publication date
CN112817151A (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
WO2021098742A1 (zh) 波导镜片及增强现实眼镜
US11619827B2 (en) Polarizing beam splitter with low light leakage
US10823968B2 (en) System for waveguide projector with wide field of view
WO2017080089A1 (zh) 指向性彩色滤光片和裸眼3d显示装置
US11269186B2 (en) Augmented reality apparatus and method, and optical engine component
WO2017181917A1 (zh) 一种裸眼3d显示装置及实现裸眼3d显示的方法
JP2022544637A (ja) 導波路ディスプレイのための様々な屈折率変調を有する空間多重化体積ブラッグ格子
WO2017107313A1 (zh) 一种裸眼3d激光显示装置
TW202013010A (zh) 基於繞射元件之3d顯示定向背光
WO2019179136A1 (zh) 显示装置及显示方法
TWI238286B (en) 2D/3D data projector
CN210720887U (zh) 一种波导镜片及ar显示装置
WO2021098744A1 (zh) 波导镜片及增强现实眼镜
CN106773057A (zh) 一种单片全息衍射波导三维显示装置
JP2007524111A (ja) カラープロジェクションディスプレイシステム
CN206431369U (zh) 一种单片全息衍射波导三维显示装置
US10317678B2 (en) Catadioptric on-axis virtual/augmented reality glasses system and method
CN113433612B (zh) 一种光波导显示器件以及ar显示设备
US20230176382A1 (en) Waveguide display with cross-polarized eye pupil expanders
WO2020248539A1 (zh) 纳米波导镜片和三维显示装置及眼镜
CN109521506A (zh) 纳米镜片、近眼显示方法及近眼显示装置
CN112415656A (zh) 一种全息衍射波导镜片及增强现实彩色显示装置
CN208805627U (zh) 用于实现三维图像近眼显示的装置
CN115004082A (zh) 用于宽视场显示器的眼镜设备
CN110531525A (zh) 用于实现三维图像近眼显示的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20890024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20890024

Country of ref document: EP

Kind code of ref document: A1