WO2017181917A1 - 一种裸眼3d显示装置及实现裸眼3d显示的方法 - Google Patents

一种裸眼3d显示装置及实现裸眼3d显示的方法 Download PDF

Info

Publication number
WO2017181917A1
WO2017181917A1 PCT/CN2017/080701 CN2017080701W WO2017181917A1 WO 2017181917 A1 WO2017181917 A1 WO 2017181917A1 CN 2017080701 W CN2017080701 W CN 2017080701W WO 2017181917 A1 WO2017181917 A1 WO 2017181917A1
Authority
WO
WIPO (PCT)
Prior art keywords
nano
light
grating
projection screen
eye
Prior art date
Application number
PCT/CN2017/080701
Other languages
English (en)
French (fr)
Inventor
陈林森
万文强
乔文
黄文彬
朱鸣
叶燕
浦东林
方宗豹
朱鹏飞
Original Assignee
苏州苏大维格光电科技股份有限公司
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州苏大维格光电科技股份有限公司, 苏州大学 filed Critical 苏州苏大维格光电科技股份有限公司
Publication of WO2017181917A1 publication Critical patent/WO2017181917A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/33Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving directional light or back-light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/34Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers
    • G02B30/36Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers using refractive optical elements, e.g. prisms, in the optical path between the images and the observer

Definitions

  • the invention belongs to the field of peripheral naked-eye 3D display, and particularly relates to a pixelized pointing projection screen and a method for implementing naked-eye 3D display by a peripheral naked-eye 3D display device based on the screen.
  • 3D display technology In order to improve the display quality of images and videos, 3D display technology has been rapidly developed and widely used in daily entertainment, medical and military applications. 3D display technology mainly includes glasses-type 3D technology and naked-eye 3D technology. With the continuous emergence of new technologies, the future will bring more comfortable and immersive feelings to the observers. In addition to the above display modes, researchers are actively researching 4D displays and holographic images. In addition to visual and auditory, 4D displays provide a full range of tactile and olfactory sensations. Holographic images allow observers to see better stereoscopic images. effect.
  • a hologram is an image that carries amplitude and phase information. It can reproduce three-dimensional information without any visual fatigue. The stereo effect is independent of the distance of the observer.
  • the principle of holographic display can be summarized as follows: a hologram can reproduce a three-dimensional virtual image or a three-dimensional real image in space. Each point on the hologram transmits information in all directions of the space, and the entire image can be seen at each observation point in the space. . In other words, the image information is concentrated on the observation point through the light field transmission. Therefore, in different observation points in space, the entire image of different viewing angles should be seen without mutual interference.
  • holographic displays have not become the mainstream of naked-eye 3D displays.
  • the 3D display technology based on the parallax principle has been in existence for more than 100 years. Although domestic and foreign companies continue to have 3D display prototypes, the naked-eye 3D display has not really entered the consumer field due to limitations in image resolution and visual fatigue.
  • 3D display device with visual obstacle method and micro-column lens method based on parallax principle, with finger A directional backlight, covering the surface of the liquid crystal display with a visually impaired screen or a micro-cylindrical lens plate.
  • the visually impaired screen or the cylindrical lens array realizes the spatial angle separation of different viewing angle images.
  • the image is not unique at different angles in space, and therefore, when the human eye observes the 3D image, it is easy to cause visual fatigue. .
  • the above method can not achieve arbitrary control of the light, it is impossible to realize the naked-eye 3D display effect of the weekly view.
  • the body 3D display technology is a good three-dimensional display method for the naked eye, and the display mode is mostly driven by the high-speed rotation or high-speed scanning of the device, which requires high operation equipment and high cost, and is difficult to realize industrialization at present. consumption.
  • the dot matrix holography technology can provide a large viewing angle and reduce the amount of information, and the nanostructures can arbitrarily regulate the direction of the light.
  • Chinese patent CN201510778086.5 discloses a pointing projection screen based on nano grating pixels, which can realize multi-view naked eyes. 3D display.
  • Patent US20140300960A1 proposes a directional backlight structure, which adopts a pixelated grating to modulate the outgoing light field distribution, and proposes to use a hexagonal or triangular waveguide structure to couple R, G, B three-color light to realize directional modulation of colored light.
  • Patent US20140293759A1 proposes a multi-view 3D wrist watch structure, which adopts a pixelated grating structure to modulate the light field, and cooperates with the refresh of the LCD image to realize the 3D effect display.
  • the structure also adopts a hexagonal or triangular waveguide structure coupling R, G, B three-color light for color display.
  • Hewlett-Packard discloses the use of an integrated hybrid laser waveguide array directional backlight to realize multi-view display, a waveguide array to couple red, green and blue light, and a directional output of light through a pixel type grating. This method enables color 3D display.
  • the above patent can realize multi-view naked-eye 3D display, the weekly viewing effect is still not realized.
  • the present invention aims to direct projection through a nanostructure based on the holographic principle.
  • the screen is combined with display technology to provide a naked eye 3D display device without visual fatigue and peripheral vision.
  • a naked eye 3D display device comprising:
  • the light source being located below the window generating device
  • Window generation device including:
  • phase information modulation device for phase modulation that is, changing the angle of the light irradiated by the light source and converge to different viewpoints in the space above the window generating device
  • a viewing angle image information modulating device for amplitude modulation that is, loading multi-view image information
  • pixels on the viewing angle image modulation device are aligned with the pixels on the phase modulation device
  • the multi-view image information loaded on the viewing angle image information modulating device is loaded, and the phase information modulating device converges the respective viewing angle images projected by the light and the light into the space above the window generating device. And in the space to generate a viewpoint to achieve a circular separation, forming a circumferential observation light field, that is, a window, to achieve naked-eye 3D display.
  • the video display can be realized when the loaded multi-view image information is refreshed at an appropriate frequency.
  • the phase information modulation device is skillfully utilized for phase modulation, and the view image information modulation device is used for amplitude modulation, wherein the pixel of the view image generated by the view image information modulation device and the phase information modulation device are generated.
  • the viewpoint pixels match the alignment. It means that the component with phase modulation function is combined with the display technology with amplitude modulation function to realize naked-eye 3D aurora display and present 3D image information.
  • the phase information modulation device is a pointing projection screen on which nanometer-sized nano-gratings are processed, and a single nano-grating constitutes a nano-grating pixel, that is, To the pixels of the projection screen, all of the nano-gratings constitute a nano-grating pixel array, which serves to make the pointing projection screen have a peripheral function.
  • the viewing angle image information modulating device is a liquid crystal display unit, wherein the viewing angle image pixels are combined into a multi-view image, the liquid crystal display unit is attached to the pointing projection screen, and the pixels on the liquid crystal display unit and the pointing projection
  • the nano-grating pixel array provided on the screen corresponds to matching alignment, and the light source is diffracted by a set of nano-grating pixel arrays to generate a concentrated light field, ie, a viewpoint, in each space of the multi-view image in the space above the naked-eye 3D display device.
  • Each of the different viewing angle images forms a set of circularly arranged convergent light fields, that is, multi-viewpoints, which are combined into a window for observation, and the respective converging light fields do not overlap each other. Even after a certain distance is propagated, the respective viewing angle images do not cross each other. .
  • the light source is as parallel light or point light source as possible.
  • the existing liquid crystal panel since the LED backlight on the existing liquid crystal panel is a surface light source, it cannot be used, and the liquid crystal panel is required.
  • the rear LED light source is removed, and a directional projection screen (back or front) is attached to form a window generating device, and then a parallel light source or a point light source is added under the window generating device to form a 3D peripheral display, and other liquid crystal components such as a driving circuit, color A filter, a package glass, or the like can be used, and of course, a viewing angle image information modulation device that meets the requirements can be separately produced as needed.
  • the liquid crystal display unit can also use devices such as LCD or LCOS, or other devices that can realize image viewing angle modulation.
  • the pointing projection screen is a transmissive pointing projection screen, and the pointing projection screen is located above or below the viewing angle graphic information modulation device, or directly prepares a nano grating pixel structure on one side of the viewing angle graphic information modulation device.
  • the nano pixel array forms an integrated window generating device.
  • the nano-grating pixel array is designed according to a holographic principle, and the nanometer thereof
  • the function of the grating pixel array is to perform wavefront conversion on the incident view image, and to form a converging viewpoint in a space above or around the screen.
  • the light source is directed to the perspective image information of the vertical or near-vertical projection image of the projection screen, and the respective perspective images projected vertically or approximately vertically by the pointing projection screen are respectively concentrated into the space above the naked-eye 3D display device, and The space produces a viewpoint that achieves a circular separation, forming a circumferentially observed light field, or a window.
  • the light-emitting surface of the projection screen is provided with a plurality of sets of nano-grating pixel arrays, and each set of nano-grating pixel arrays is configured to fit the respective pixel arrays according to the holographic imaging principle, and the light is distributed on the projection screen.
  • the light emitted by the pixels in the same group of nano-grating pixel arrays points to the same viewing angle, and the overall viewing angle image is imaged at the surrounding space above the screen to form a convergence viewpoint; different sets of nano-grating pixel arrays have different positions of convergence view, The circular circumferential view distribution is formed together; wherein the nano-grating pixel contains a nano-grating structure, and the period and orientation of the nano-grating inside the nano-grating pixel satisfy the holographic principle.
  • the nano-grating structure corresponding to the nano-grating pixels has a one-to-one relationship.
  • the pointing projection screen is composed of pixels, which is the same as the LCD, except that the pixels in the projection screen have a nano-grating structure inside, and one pixel corresponds to a nano-grating structure, and the period and orientation of the nano-gratings in each pixel are Calculated according to the principle of holography (determined according to the coordinates of the pixel and the position coordinates of the image projection)
  • the angle between the light source and the normal of the display panel is smaller than the angle between the viewing angle and the normal of the display panel: the incident at the vertical angle is optimal.
  • the angle of view here refers to the angle between the human eye and the normal.
  • the plurality of nano-grating pixel arrays are arranged on the light-emitting surface of the projection screen, and each group of nano-grating pixel arrays has respective images according to the holographic imaging principle.
  • the pixel arrays are mutually fitted and distributed on the light-emitting surface of the projection screen; the light emitted by the pixels in the same group of nano-grating pixel arrays point to the same viewing angle, and the overall viewing angle image is imaged at the surrounding space above the screen to form a convergence viewpoint;
  • Different sets of nano-grating pixel arrays have converging viewpoints at different positions, which together form a circular circumferential view distribution; wherein the relationship between the period and orientation of the nano-gratings satisfies the holographic principle.
  • the light source comprises three primary color point light sources or parallel light sources disposed at the back of the projection screen, or a white light point light source or a parallel light source composed of three colors, and the light emitted by the light source is incident from bottom to top.
  • the liquid crystal display unit is attached to the top or bottom of the projection screen, and provides phase information of the multi-view image by phase modulation, and the amplitude information of the multi-view image is provided by the liquid crystal display unit, and the point source is diffused.
  • the pixels of the multi-view composite image are corresponding to the nano-grating pixels on the projection screen, and after being pointed to the projection screen and the liquid crystal display unit, after a spatial distance propagation, in the window
  • the upper space of the generating device forms an exiting light field of different viewpoints, that is, an exiting light field of multiple viewpoints, and the exiting light field of the multi-viewpoint forms a circular ring window, thereby realizing a three-dimensional display of the naked eye.
  • the period and the orientation angle of the nano-grating pixels on the projection screen satisfy the following relationship:
  • the light is incident on the XY plane at a certain angle
  • ⁇ 1 represents the diffraction angle of the diffracted light, that is, the angle between the diffracted ray and the positive direction of the z-axis
  • Indicates the azimuth of the diffracted light that is, the angle between the diffracted ray and the positive x-axis
  • represents the incident angle of the light source, that is, the angle between the incident ray and the positive z-axis
  • represents the wavelength
  • represents the period of the nano-diffraction grating
  • Indicates the orientation angle that is, the angle between the groove shape and the positive direction of the y-axis
  • n indicates the refractive index of the light wave in the medium; that is, after specifying the wavelength of the incident light, the incident angle, and the diffraction angle and the diffraction azimuth of the diffracted light,
  • the formula calculates the period and orientation angle of the desired nanograting pixels.
  • each nano-grating pixel is a nano-grating, and the same piece is directed to the surface of the projection screen to produce a plurality of nano-gratings with different orientation angles and periods as required, to modulate the required number, different viewpoints, and positions of the viewpoints.
  • the circular arrangement is formed, and the color control and the gray control device are used to control the color and the gray scale to realize the naked-eye 3D display of the weekly vision.
  • the ratio of the point light sources or the parallel light sources of the three primary colors is adjusted by the LCD panel.
  • the liquid crystal display unit is provided with a color filter, and the light source is a white light source or a light source including three primary color light sources, and the light source is incident on a corresponding nano grating pixel on the projection screen, and after being modulated, combined with the liquid crystal
  • the color viewing angle image loaded on the display unit focuses the viewing angle image into the corresponding viewing angle to realize color display.
  • the nano-grating pixels that are directed to the projection screen that form a single viewpoint convergence are composed of rectangular pixels, or circular pixels, or hexagonal pixel structures, and correspond to pixel shapes provided on the viewing angle image information modulation device.
  • the pointing projection screen wherein the nano grating pixel is fabricated by ultraviolet continuous space frequency lithography and nano imprinting, the ultraviolet continuous variable space lithography technology is described in Chinese Patent Application No. CN201310166341.1 Lithographic apparatus and lithography methods.
  • a photolithographic method can be used to etch a differently oriented nano-grating on the surface of the projection screen, and then a template that can be used for imprinting is prepared, and then imprinted by nanoimprinting. A pixel array of nano-gratings is formed.
  • the feature of the invention is that the observed image has a convergence effect on the spatial viewpoint, and carries the amplitude and phase information, and there is no crosstalk between the different perspective images. Therefore, no visual fatigue is generated during the observation, and no limitation is placed on the observation position.
  • the nano-grating pixels on the projection screen satisfy the holographic principle, and the wavefront conversion imaging of the light is realized by diffracting the light passing therethrough.
  • the resulting view window is rounded to form a perimeter view.
  • red, green and blue three-color point light sources are used to project onto the three groups of pixel arrays pointing to the projection screen, the multi-view images of red, green and blue are combined on the exit surface by using the nano-grating to control the light independently.
  • Color peripheral view naked eye 3D display When red, green and blue three-color point light sources are used to project onto the three groups of pixel arrays pointing to the projection screen, the multi-view images of red, green and blue are combined on the exit surface by using the nano-grating to control the light independently.
  • the liquid crystal display unit such as the LCD can be used to refresh the image to realize the naked-eye 3D video display.
  • the present invention adopts a nano-grating projection screen to adjust the direction of the outgoing light, and cooperates with the display technology of the liquid crystal display unit to realize low-cost three-dimensional display of the naked eye, and the obtained image has high resolution and no visual fatigue.
  • a nano-grating pixel array composed of nano-grating pixels has a circumferentially-oriented pointing projection screen, which is matched with the liquid crystal display unit, and the liquid crystal display unit provides a multi-view image and corresponds to the nano-grating pixel array on the screen, and each viewing angle image
  • a set of nano-grating pixel arrays creates a converging light field (viewpoint) in the space around the screen, and different views of the image form a set of circularly arranged convergent light fields (multi-viewpoints), which are combined into a window for observation.
  • Each of the converging light fields (viewpoints) does not overlap each other, and even if a certain distance is propagated, the images of the respective angles of view do not cross each other. Therefore, observation in the vicinity of the window or in the front and rear positions does not cause visual fatigue, and the stereoscopic effect of the image is true, and the stereoscopic effect is similar to the principle of holographic reproduction.
  • the pointing projection screen of the nano-grating pixel array composed of the nano-grating pixels respectively converges the respective viewing angle images of the vertical projection to the vicinity of the position of the projection device, and generates a viewpoint for achieving circular separation in the space to form a circumference.
  • the pixels that point to the projection screen include sub-pixels corresponding to the respective view images, and the sub-pixels contain nano-grating combinations designed according to the holographic principle.
  • the function of the nano-grating pixel array is to perform wavefront conversion on the incident view image, which will be parallel. Point lighting
  • Point lighting forms a circular converging viewpoint in the space above the screen. In essence, this is a holographic wavefront conversion imaging that converts the viewing angle information provided by the LCD into a phase viewpoint, ensuring that there is no crosstalk between the various viewing angle images.
  • the light source for example, there are three single colors (such as red, green, and blue primary colors, or red, green, blue, yellow, or four colors) at the back of the projection screen, so as to modulate white light.
  • the light from the light source is incident from bottom to top and points to the back of the projection screen.
  • a liquid crystal display unit (LCD) is attached to the projection screen, a multi-view composite image is provided by spatial modulation, and a multi-view plane composite image is provided by the LCD.
  • the pixels of the multi-view composite image are Points to the nano-grating pixels on the projection screen.
  • the pointing projection screen provides spatial information (phase) modulation
  • the liquid crystal display unit provides viewing angle image information (amplitude) modulation, which combines to provide all the information of the holographic display.
  • a pixel array composed of nano-gratings essentially functions as a wavefront transform imaging. Converting the multi-view image on the screen into a wavefront with convergence function, corresponding to different perspective images, forming a separate viewpoint (directional light field) around the space, due to the phase (viewing angle) and amplitude (image) information carried by the spatial wavefront Independent propagation, each wavefront (viewpoint) does not cross each other. When the human eye observes, there is no visual fatigue, and the stereoscopic effect of observation is independent of the position of the observer.
  • the incident angle of the light proposed by the present invention refers to the angle between the center beam of the light and the normal to the plane of the projection screen.
  • the relationship between the incident angle and the wavelength of the three monochromatic light sources of red, green, and blue (or other combinations of colors and numbers of light sources) satisfies the grating diffraction equation.
  • RGB three colors (or four primary colors, six primary colors) through a piece of pointing to the projection screen to form the same diffraction angle and the same spatial viewpoint, that is, RGB three colors at a specific angle and
  • the position is incident on the projection screen to form a viewpoint having the same position of the light field of different wavelengths, that is, a convergence point, that is, three sets of monochromatic light sources are incident at a certain incident angle, and are directed to different sub-pixel arrays on the projection screen, through the nano-grating
  • the red, green and blue wavelengths are combined in the same direction to form a color stereoscopic image.
  • the present invention also provides a method for realizing a naked-eye 3D display, in which a parallel light source or a point light source is incident vertically or nearly perpendicularly to the window generating device, and the light phase information modulating device in the window generating device is used to converge the light in a space above the window generating device.
  • the light rays load the view image information when passing through the view image information modulation device, and converge to the above viewpoint, thereby achieving naked-eye 3D display.
  • Figure 1 is a structural diagram of the nano-grating inside the pixel on the screen in the XY plane.
  • FIG. 2 is a structural diagram of the pixel-introduced nano-grating on the screen in FIG. 1 under the XZ plane.
  • FIG 3 is a schematic diagram of the structure of the pointing screen under the XZ plane in the embodiment of the present invention.
  • FIG. 4 is a schematic view showing the structure of the left-eye view 3D display device of the present invention.
  • FIG. 5 is a schematic structural view of a color display device of a 3D display of a naked-eye view of the present invention.
  • Fig. 6 is a schematic view showing the structure of another color display device of the 3D display of the naked eye of the present invention.
  • Figure 7 is a nanostructure distribution map of a pointing screen that achieves a single view convergence.
  • a naked eye 3D display device comprising:
  • the light source being located below the window generating device
  • Window generation device including:
  • phase information modulation device for phase modulation that is, changing the angle of the light irradiated by the light source and converge to different viewpoints in the space above the window generating device
  • a viewing angle image information modulating device for amplitude modulation that is, loading multi-view image information
  • pixels on the viewing angle image modulation device are aligned with the pixels on the phase modulation device
  • the multi-view image information loaded on the viewing angle image information modulating device is loaded, and the phase information modulating device respectively converges the respective viewing angle images projected by the light and the light into the space above the window generating device. And in the space to generate a viewpoint to achieve a circular separation, forming a circumferential observation light field, that is, a window, to achieve naked-eye 3D display.
  • the video display can be realized when the loaded multi-view image information is refreshed at an appropriate frequency.
  • the phase information modulation device is skillfully utilized for phase modulation, and the view image information modulation device is used for amplitude modulation, wherein the pixel of the view image generated by the view image information modulation device and the phase information modulation device are generated.
  • the viewpoint pixels match the alignment. Intended to have components with phase modulation
  • the display technology with amplitude modulation function combines to realize naked-eye 3D aurora display and present 3D image information.
  • the light projected by the light source is modulated by the phase information modulation device, the exit angle is changed, and then the image information is transmitted through the viewing angle image information modulation device, and finally the image information is collected and finally concentrated in the space above the naked eye 3D display device.
  • a 3D image that is visible to the naked eye is illustrated by some specific embodiments.
  • the spatial information modulating device may employ a peri-projection pointing projection screen having a nano-grating pixel array composed of nano-grating pixels.
  • the so-called nano-grating pixel is essentially a diffraction grating (or referred to as a diffraction grating pixel) of a nanometer-scale structure size processed on a directional screen.
  • FIG. 1 and FIG. 2 are A structural diagram of a diffraction grating with a structural scale at the nanometer level in the XY plane and the XZ plane. According to the grating equation, the period and the orientation angle of the diffraction grating pixel 101 satisfy the following relationship:
  • ⁇ 1 and ⁇ sequentially indicate the incident angle of the light source 201 (incident).
  • the angle between the light and the positive direction of the z-axis) and the wavelength, ⁇ and The period and the orientation angle of the nano-diffraction grating 101 are sequentially shown, and n represents the refractive index of the light wave in the medium.
  • the period and orientation angle of the desired nanograting can be calculated by the above two formulas. For example, a red light of 650 nm wavelength is incident at 60°, a light diffraction angle is 10°, and a diffraction azimuth angle is 45°.
  • the corresponding nano-diffraction grating period is 550 nm, and the orientation angle is ⁇ 5.96°.
  • each nano-grating is regarded as one pixel (it can also be called For nano-grating pixels or nano-pixels, after making a plurality of nano-gratings with different orientation angles and periods set on a screen surface (ie, a plurality of nano-grating pixels are arranged into a required nano-grating pixel array), the theory
  • the viewing angle image information modulating device may adopt a liquid crystal display unit and be attached to the pointing projection screen to provide a multi-view image, pixels of the liquid crystal unit and nanometers disposed on the pointing projection screen.
  • the raster pixel array corresponds to the matching alignment.
  • the light source is diffracted by a set of nano-grating pixel arrays to generate a converging light field, ie, a viewpoint, in each space of the screen.
  • the image forms a set of circularly arranged convergent light fields, that is, multi-viewpoints, which are combined into a window for observation.
  • the converging light fields do not overlap each other. Even after a certain distance is propagated, the respective viewing angle images do not cross each other.
  • the pointing projection screen is located above or below the viewing angle graphic information modulating device, or directly prepare a nano grating pixel structure on one side of the viewing angle graphic information modulating device. That is, the nano pixel array forms an integrated window generating device.
  • the light source is directed to the perspective image information of the vertical or near-vertical projection image of the projection screen, and the respective perspective images projected vertically or approximately vertically by the pointing projection screen are respectively concentrated into the space near the upper portion of the projection device.
  • the pixel pointing to the projection screen includes sub-pixels corresponding to the respective perspective images, and the sub-pixels are designed according to the holographic principle.
  • the nano-grating combination, the function of the nano-grating pixel array is to perform wavefront conversion on the incident view image, and the parallel or point-like illumination light field forms a convergence viewpoint on the periphery of the screen.
  • the plurality of nano-grating pixel arrays are disposed on the light-emitting surface of the projection screen, and each of the nano-grating pixel arrays is configured to fit the respective pixel arrays according to the holographic imaging principle, and is distributed on the pointing projection screen.
  • the light emitted by the pixels in the same group of nano-grating pixel arrays points to the same viewing angle, and the overall viewing angle image is imaged at the surrounding space above the screen to form a convergence viewpoint; different sets of nano-grating pixel arrays have different positions of convergence
  • the viewpoints jointly form a circular circumferential view distribution; wherein the nano-grating pixels contain a nano-grating structure, and the period and orientation of the nano-gratings inside the nano-grating pixels satisfy the holographic principle.
  • the light source is three monochromatic light sources (such as red, green, and blue primary colors) disposed at the back of the projection screen, and the light emitted by the light source is incident from the top to the bottom.
  • a projection screen a projection screen; the liquid crystal display unit (such as LCD) is attached to the projection screen; the phase information of the multi-view 3D display is provided by phase modulation, and the image information of the multi-view 3D display is provided by the LCD.
  • the multi-view image information loaded thereon is projected by the light source, and after the light passes through the projection screen, after a spatial distance propagation, the pointing projection
  • the exiting light field of different viewpoints is formed around the space above the screen, and the light field of the multi-view point forms a circular ring window to realize the 3D display of the naked eye.
  • the directional projection screen only provides the phase information required in the 3D display, and the LCD provides image information, which is composed of multiple viewing angle images, and the function of the directional projection screen is to separate the images to form a viewpoint. .
  • the LCD image can be refreshed for video display.
  • the period and orientation angle of the nano-grating pixels on the projection screen satisfy the following relationship:
  • the light is incident on the XY plane at a certain angle
  • ⁇ 1 represents the diffraction angle of the diffracted light, that is, the angle between the diffracted ray and the positive direction of the z-axis
  • Indicates the azimuth of the diffracted light that is, the angle between the diffracted ray and the positive x-axis
  • represents the incident angle of the light source, that is, the angle between the incident ray and the positive z-axis
  • represents the wavelength
  • represents the period of the nano-diffraction grating
  • Indicates the orientation angle that is, the angle between the groove shape and the positive direction of the y-axis
  • n indicates the refractive index of the light wave in the medium; that is, after specifying the wavelength of the incident light, the incident angle, and the diffraction angle and the diffraction azimuth of the diffracted light,
  • the formula calculates the period and orientation angle of the desired nanograting pixels.
  • the phase information modulating device is a pointing projection screen (or a plurality of pointing projection screen splicing), wherein the nanometer-sized nano grating is processed, and the single nano grating forms a nano grating pixel, that is, a viewpoint pixel. All nano-gratings constitute a nano-grating pixel array, which serves to make the pointing projection screen have a peripheral function.
  • the viewing angle image information modulating device may select a liquid crystal display unit or other display device that can load the viewing angle image information, wherein the viewing angle image pixels are combined into a multi-view image, and the liquid crystal display unit is attached to the pointing projection screen.
  • the pixels of the liquid crystal display unit are matched and aligned with the nano-grating pixel array disposed on the pointing projection screen, and the light source is diffracted by the nano-grating pixel array to image each of the multi-view images on the naked-eye 3D display device.
  • a converging light field that is, a viewpoint, is generated in the space, and the different viewing angle images form a set of circular converging light fields, that is, multi-view points, which are combined into a window for weekly observation, and the respective collecting light fields do not overlap each other even if a distance is propagated. After that, the images of the respective angles of view are also not crosstalked.
  • the light source is as parallel light or point light source as possible.
  • the existing liquid crystal panel since the LED backlight on the existing liquid crystal panel is a surface light source, it cannot be used, and the liquid crystal panel is required.
  • the rear LED light source is removed, and a directional projection screen (back or front) is attached to form a window generating device, and then a parallel light source or a point light source is formed under the window generating device to form a 3D peripheral visual display.
  • other liquid crystal components such as a driving circuit, a color filter, a package glass, and the like can be used.
  • a viewing angle image information modulating device that meets the requirements can be separately produced as needed.
  • the liquid crystal display unit can also use devices such as LCD or LCOS, or other devices that can realize image viewing angle modulation.
  • the pointing projection screen is a transmissive pointing projection screen
  • the pointing projection screen is located above or below the viewing angle graphic information modulation device, or is directly prepared on one side of the viewing angle graphic information modulation device.
  • the nano-grating pixel structure is a nano-pixel array to form an integrated window generating device.
  • the nano-grating pixel array is designed according to the holographic principle, and the function of the nano-grating pixel array is to perform wavefront conversion on the incident view image, and the parallel or point-like illumination light field forms a convergence view point in the space above the screen.
  • the light source is directed to the perspective image information of the vertical or near-vertical projection image of the projection screen, and the respective perspective images projected vertically or approximately vertically by the pointing projection screen are respectively concentrated into the space above the naked-eye 3D display device, and The space produces a viewpoint that achieves a circular separation, forming a circumferentially observed light field, or a window.
  • the angle between the light source and the normal of the display panel is smaller than the angle between the viewing angle and the normal of the display panel: the incident at the vertical angle is optimal.
  • a plurality of sets of nano-grating pixel arrays may be disposed on the light-emitting surface of the projection screen, and the respective sets of nano-grating pixel arrays are mutually fitted according to the holographic imaging principle, and are distributed on the pointing projection screen.
  • the light emitted by the pixels in the same group of nano-grating pixel arrays points to the same viewing angle, and the overall viewing angle image is imaged at the surrounding space above the screen to form a convergence viewpoint; different sets of nano-grating pixel arrays have different positions of convergence The viewpoints together form a circular circumferential view distribution; wherein the relationship between the period and the orientation of the nano grating satisfies the holographic principle.
  • the light source includes three primary color point light sources or parallel light sources disposed at the back of the projection screen, and the light emitted by the light source is incident from the bottom to the pointing projection.
  • the liquid crystal display unit Above the screen and the liquid crystal panel, the liquid crystal display unit is attached to the top or bottom of the projection screen, and provides phase information of the multi-view image by phase modulation, and the amplitude information of the multi-view image is provided by the liquid crystal display unit, and the point source diffuses or collimates the light.
  • the pixels of the multi-view composite image are corresponding to the nano-grating pixels on the projection screen, and after being directed to the projection screen and the liquid crystal display unit, after a spatial distance propagation, in the window generating device
  • the upper space forms an exiting light field of different viewpoints, that is, an exiting light field of multiple viewpoints, and the exiting light field of the multi-viewpoint forms a circular ring window, thereby realizing a three-dimensional display of the naked eye.
  • the ratio of the point light source or the parallel light source of the three primary colors is adjusted by the LCD panel.
  • the liquid crystal display unit itself is provided with a color filter, and then the light source is incident on a corresponding nano-grating pixel on the projection screen, whether the light source is a white light source or a light source including three primary color light sources.
  • the color display can be realized by combining the color view image loaded on the liquid crystal display unit and focusing the view image into the corresponding view angle.
  • nano-grating pixels that point to a projection screen that form a single viewpoint convergence are composed of rectangular pixels, or circular pixels, or hexagonal pixel structures, but their shapes and perspective images are required.
  • the shape of the pixel provided on the information modulation device (such as a liquid crystal display unit) corresponds to each other.
  • the nano-grating pixels pointing to the projection screen can be continuously changed by ultraviolet light.
  • a lithography apparatus and a lithography method are described in the Chinese patent application No. CN201310166341.1.
  • a photolithographic method can be used to etch a differently oriented nano-grating on the surface of the projection screen, and then a template that can be used for imprinting is prepared, and then imprinted by nanoimprinting. A pixel array of nano-gratings is formed.
  • the feature of the invention is that the observed image has a convergence effect on the spatial viewpoint, and carries the amplitude and phase information, and there is no crosstalk between the different perspective images. Therefore, no visual fatigue is generated during the observation, and no limitation is placed on the observation position.
  • the nano-grating pixels on the projection screen satisfy the holographic principle, and the wavefront conversion imaging of the light is realized by diffracting the light passing therethrough.
  • the resulting view window is rounded to form a perimeter view.
  • red, green and blue three-color point light sources are used to project onto the three groups of pixel arrays pointing to the projection screen
  • the multi-view images of red, green and blue are combined on the exit surface by using the nano-grating to control the light independently.
  • Color peripheral view naked eye 3D display The relationship between the incident angle and the wavelength of the three monochromatic light sources of red, green, and blue (or other combinations of colors and numbers of light sources) satisfies the grating diffraction equation.
  • RGB three colors (or four primary colors, six primary colors) form the same diffraction angle and the same spatial viewpoint through one piece pointing to the projection screen, that is, three colors of RGB are incident at a specific angle and position to the projection screen to form different wavelength light fields.
  • a viewpoint having the same position that is, a convergence point, that is, three sets of monochromatic light sources are incident at a certain incident angle, and are directed to different sub-pixel arrays on the projection screen, and after being combined by the nano-grating, after exiting from the screen, red and green
  • the blue wavelength light is combined in the same direction to form a color stereoscopic image.
  • the light source for example, there are three single colors (such as red, green, and blue primary colors, or red, green, blue, yellow, four or more colors) behind the pointing projection screen.
  • the white light is modulated as a principle, and the light source (or parallel light source) is selected as needed.
  • the light from the light source is incident from the bottom to the back of the projection screen.
  • a liquid crystal display unit (LCD) is attached to the projection screen, a multi-view composite image is provided by spatial modulation, and a multi-view plane composite image is provided by the LCD.
  • the pixels of the multi-view composite image are Points to the nano-grating pixels on the projection screen.
  • the liquid crystal display unit such as the LCD can be used to refresh the image to realize the naked-eye 3D video display.
  • the present invention adopts a nano-grating projection screen to adjust the direction of the outgoing light, and cooperates with the display technology of the liquid crystal display unit to realize low-cost three-dimensional display of the naked eye, and the obtained image has high resolution and no visual fatigue.
  • a nano-grating pixel array composed of nano-grating pixels has a circumferentially-oriented pointing projection screen, which is matched with the liquid crystal display unit, and the liquid crystal display unit provides a multi-view image and corresponds to the nano-grating pixel array on the screen, and each viewing angle image
  • a set of nano-grating pixel arrays creates a converging light field (viewpoint) in the space around the screen, and different views of the image form a set of circularly arranged convergent light fields (multi-viewpoints), which are combined into a window for observation.
  • Each of the converging light fields (viewpoints) does not overlap each other, and even if a certain distance is propagated, the images of the respective angles of view do not cross each other. Therefore, observation in the vicinity of the window or in the front and rear positions does not cause visual fatigue, and the stereoscopic effect of the image is true, and the stereoscopic effect is similar to the principle of holographic reproduction.
  • the pointing projection screen of the nano-grating pixel array composed of the nano-grating pixels respectively converges the respective viewing angle images of the vertical projection to the vicinity of the position of the projection device, and generates a viewpoint for realizing the circular separation in the space to form a viewpoint.
  • the pixels that point to the projection screen are included in the sub-image corresponding to each view image.
  • a pixel whose sub-pixel contains a nano-grating combination designed according to the holographic principle, and the function of the nano-grating pixel array is to perform wavefront conversion on the incident view image, and to form a circular or parallel illumination field in the space above the screen.
  • Convergence point of view In essence, this is a holographic wavefront conversion imaging that converts the viewing angle information provided by the LCD into a phase viewpoint, ensuring that there is no crosstalk between the various viewing angle images.
  • the pointing projection screen provides spatial information (phase) modulation
  • the liquid crystal display unit provides viewing angle image information (amplitude) modulation, which combines to provide all the information of the holographic display.
  • a pixel array composed of nano-gratings essentially functions as a wavefront transform imaging. Converting the multi-view image on the screen into a wavefront with convergence function, corresponding to different perspective images, forming a separate viewpoint (directional light field) around the space, due to the phase (viewing angle) and amplitude (image) information carried by the spatial wavefront Independent propagation, each wavefront (viewpoint) does not cross each other. When the human eye observes, there is no visual fatigue, and the stereoscopic effect of observation is independent of the position of the observer.
  • the incident angle of the light proposed by the present invention refers to the angle between the center beam of the light and the normal to the plane of the projection screen.
  • the present invention also provides a method for realizing a naked-eye 3D display, in which a parallel light source or a point light source is incident vertically or nearly perpendicularly to the window generating device, and the light phase information modulating device in the window generating device is used to converge the light in a space above the window generating device.
  • the light rays load the view image information when passing through the view image information modulation device, and converge to the above viewpoint, thereby achieving naked-eye 3D display.
  • FIG. 3 is a schematic diagram of the structure of the pointing projection screen under the XZ plane in the embodiment of the present invention.
  • a pointing projection screen 301, a red light source 311, a green light source 312, and a blue light source 313 having a nano-diffraction grating pixel (ie, a nano-grating pixel or a nano-pixel, substantially a nano-sized diffraction grating) are included.
  • the three light sources 311, 312, 313 are incident on the three nano-diffraction grating pixels 321, 322, 323 pointing above the projection screen 301 at a certain incident angle, and are diffracted by the nano-grating pixels. Thereafter, the outgoing light 331, 332, 333 converges at the same viewpoint 1.
  • FIG 4 is a schematic view showing the structure of a naked-eye 3D display device of the present invention.
  • the 3D display device includes a pointing projection screen 410 having nano-grating pixels as described above, a light source 401, and an LCD panel 420, wherein (the position between the projection screen 410 and the LCD panel 420 can be reversed, which is not shown in the drawing. ).
  • the incident light source 401 is subjected to light field modulation directed to the projection screen 410, and the multi-view image loaded on the LCD is separately focused into respective viewpoints in the peripheral field of view or the incident light source 401 passes through the LCD first, and after passing through the pointing projection screen 410, the LCD will be The multi-view image loaded on the separation is focused into each viewpoint in the peripheral field of view (not shown).
  • the nano-grating pixels 411, 412, 413 and 414 pointing on the projection screen respectively correspond to the viewing angle 431, the viewing angle 433, the viewing angle 435 and the viewing angle 437, so that the viewpoint separation of the four viewing angle images can be realized, each The viewpoint corresponds to an image.
  • the nano-grating pixels 411, 412, 413, 414 pointing to the projection screen focus the pixels 421, 422, 423, 424 in the view image 1, image 2, image 3, image 4 to the observation windows 431, 433, 435, 437, respectively.
  • each view constitutes a circular observation window that is viewed from a weekly perspective.
  • an infinite number of viewing angles can be distributed.
  • a 3D stereoscopic effect will be generated, and at the same time, the LCD refreshes the image display, and the naked eye can be realized. 3D display effect.
  • FIG. 5 is a schematic structural view of a color display device of a 3D display of a naked-eye view of the present invention.
  • three sets of sub-pixel nano-gratings are fabricated in the same pointing projection screen, corresponding to the RGB three-color light sources, respectively.
  • the device is composed of RGB three-color light sources 501-503, a pointing projection screen 410, and an LCD panel 420.
  • the red, green and blue RGB three-color light sources 501-503 are respectively incident on the corresponding sub-pixel nano-glasses 511-513, and after being modulated by the nano-gratings directed onto the projection screen, combined with the color viewing angle images loaded on the LCD, the viewing angle images are focused to corresponding In the perspective of the.
  • sub-pixel nano-gratings 511-513 corresponding to RGB on projection screen 410 correspond to RGB sub-pixels 521-523 on LCD 420, respectively.
  • the three sub-pixels are modulated by the sub-pixel nano-grating to the viewing angle 433 to achieve color display.
  • the ratio of each RGB color can be adjusted by the LCD.
  • the device includes a white light source 601, a color filter 640, a pointing projection screen 410, and an LCD panel 420.
  • the white light source forms RGB light through the color filter 640, is incident on the corresponding nano-grating pixels 511-513, and is modulated by the nano-grating directed onto the projection screen, and combined with the color viewing angle image loaded on the LCD, the viewing angle image is focused to corresponding In the perspective of the.
  • the RGB pixels 511-513 pointing to the projection screen 410 correspond to the RGB pixels 521-523 on the LCD 420, respectively.
  • the three sub-pixels of the LCD are modulated by the nano-grating to the viewing angle 433 to realize color display.
  • the ratio of each RGB color can be adjusted by the LCD.
  • the color filters can be mounted separately in the appropriate locations.
  • Figure 7 is a nanostructure distribution diagram of a pointing projection screen that achieves a single viewpoint convergence.
  • the pixels on the figure are not limited to rectangular pixels, and may be composed of a pixel structure such as a circle or a hexagon.
  • the number of nano-gratings in the above embodiments is set according to the actual required resolution, and preferably matches the resolution of the liquid crystal display unit or other display that loads multi-view image information.
  • the present invention discloses the use of a pixelated pointing projection screen and the use of the pointing projection screen to implement a peripheral naked eye 3D display device.
  • a point light source or a parallel light source is used to form a same outgoing light field on a pointing projection screen having nano-grating pixels at a specific angle and position, and image amplitude modulation is realized by the liquid crystal display unit, thereby realizing color 3D display.
  • the periocular naked-eye 3D display device has the characteristics of a naked-eye 3D display without visual fatigue.
  • the invention creatively proposes a naked eye 3D display with low cost, easy industrialization, no visual fatigue and the like, and a naked eye 3D display technical solution.
  • the naked eye 3D technology is the dominant direction of the future display technology, and the prospect and value cannot be Estimate. Ben
  • Ben The invention has the advantages of being easy to implement, low in cost, high in comfort, capable of achieving significant technical advantages such as weekly vision, easy to realize industrialization, and may bring revolutionary changes to the entire industry, and has high economic value and social value.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Holo Graphy (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Liquid Crystal (AREA)

Abstract

一种裸眼3D显示装置及实现裸眼3D显示的方法,包括:光源(401,501-503,601),光源(401,501-503,601)位于视窗生成装置的下方,视窗生成装置,包括:位相信息调制装置(410),用于位相调制;视角图像信息调制装置(420),用于振幅调制;其中视角图像信息调制装置(420)产生的视角图像的像素(421-424,521-523)与位相信息调制装置(410)产生的视点像素(411-414,511-513)匹配对准。利用全息成像与波前转换原理,巧妙利用位相信息调制装置(410)用于位相调制,同时利用视角图像信息调制装置(420)用于振幅调制,其中视角图像信息调制装置(420)产生的视角图像的像素(421-424,521-523)与位相信息调制装置(410)产生的视点像素(411-414,511-513)匹配对准。意即将具有相位调制功能的组件与具有振幅调制功能的显示技术相结合,实现裸眼3D显示,呈现3D图像信息。

Description

一种裸眼3D显示装置及实现裸眼3D显示的方法 技术领域
本发明属于周视裸眼3D显示领域,特别涉及一种像素化指向投影屏幕和基于该屏幕的周视裸眼3D显示装置实现裸眼3D显示的方法。
背景技术
为了提高图像及视频等的显示质量,3D显示技术快速发展,广泛应用于日常娱乐、医疗及军事等多个方面。3D显示技术主要包含眼镜式3D技术以及裸眼式3D技术,随着新技术的不断涌现,未来将给观察者带来更加舒适和身临其境的感受。在上述显示模式之外,研究者还在积极研究4D显示及全息影像,4D显示除了视觉、听觉外还能提供触觉、嗅觉等全方位的感受,全息影像可以让观察者看到更佳的立体效果。
全息图是一种携带振幅与位相信息的图像,能真实再现三维信息,不产生视觉疲劳,立体效果与观察者的距离无关。全息显示的原理可概括为:全息图可在空间再现三维虚像或者三维实像,全息图上的每一点均在向空间各个方向传输信息,空间中的每一观察点均可看到整幅的图像。或者说,图像信息通过光场传输会聚在观察点上。因此,在空间不同观察点,应看到不同视角的整幅图像,相互不干扰。但是,数十年来,受到全息记录材料、信息量和技术工艺的限制,全息显示未能成为裸眼3D显示的主流。
基于视差原理发明的3D显示技术已100多年,虽然国内外企业不断有3D显示的样机展示,但由于图像分辨率和视觉疲劳等问题的限制,裸眼3D显示一直未能真正进入消费领域。
基于视差原理有视障法与微柱透镜法的3D显示装置,设有指 向性背光源,将视障屏或微柱透镜板覆盖在液晶显示LCD表面。视障屏或柱透镜阵列将不同视角图像实现空间角度分离,光学原理上,由于光源的扩散作用,在空间不同角度上图像并不唯一,因此,在人眼观察3D图像时,易引起视觉疲劳。同时由于上述方法对光线不能实现任意的调控,因此也无法实现周视的裸眼3D显示效果。
体3D显示技术是一种很好的周视裸眼3D显示方法,其显示方式多借助装置的高速旋转或者高速扫描的方式,对运行设备要求高,成本大,目前难以实现产业化,面向大众的消费。
点阵全息技术能够提供大视角,减小信息量,且其中的纳米结构能够任意的调控光线的方向,中国专利CN201510778086.5公布了一种基于纳米光栅像素的指向投影屏幕,可以实现多视角裸眼3D显示。专利US20140300960A1提出一种指向性背光结构,采用像素化光栅调制出射光场分布,同时提出采用六边形或者三角形波导结构耦合R、G、B三色光,实现彩色光的定向调制。专利US20140293759A1提出一种多视角3D手腕手表结构,采用像素化光栅结构调制光场,配合LCD图像的刷新,实现3D效果显示,然而结构同样采用的是六边形或者三角形波导结构耦合R、G、B三色光,实现彩色显示。惠普公司在国际专利WO2014/051624 A1上公开了利用集成混合激光波导阵列指向性背光来实现多视角显示,用波导阵列来耦合红、绿、蓝三色光,通过像素型光栅实现光线的定向导出,这种方法可实现彩色3D显示。上述专利虽然可以实现多视角裸眼3D显示,但仍没有实现周视效果。
如果能提供一种无视觉疲劳、周视的裸眼3D显示装置,将是一项极具价值的发明创造。
发明内容
鉴于此,本发明旨在基于全息原理,通过纳米结构的指向投影 屏幕与显示技术相结合,提供一种无视觉疲劳、周视的裸眼3D显示装置。
为达到上述目的,本发明的技术方案如下:
一种裸眼3D显示装置,包括:
光源,所述光源位于视窗生成装置的下方;
视窗生成装置,包括:
位相信息调制装置,用于位相调制,即将光源照射来的光改变角度,并在视窗生成装置上方空间中汇聚到不同的视点;
视角图像信息调制装置,用于振幅调制,即加载多视角图像信息;
其中视角图像调制装置上的像素与位相信息调制装置上的像素匹配对准;
光源的光经过视角图像信息调制装置时,加载视角图像信息调制装置上加载的多视角图像信息,位相信息调制装置将光以及光投影而来的各视角图像分别会聚到视窗生成装置上方空间中,并在空间产生实现圆环形分离的视点,形成周视观察光场,即视窗,实现裸眼3D显示。当加载的多视角图像信息按照适当的频率刷新,就可以实现视频显示。
利用全息成像与波前转换原理,巧妙利用位相信息调制装置用于位相调制,同时利用视角图像信息调制装置用于振幅调制,其中视角图像信息调制装置产生的视角图像的像素与位相信息调制装置产生的视点像素匹配对准。意即将具有相位调制功能的组件与具有振幅调制功能的显示技术相结合,实现裸眼3D极光显示,呈现3D图像信息。
进一步的,所述位相信息调制装置为一指向投影屏幕,其上加工有纳米尺寸的纳米光栅,单个纳米光栅构成纳米光栅像素,即指 向投影屏幕的像素,所有纳米光栅构成纳米光栅像素阵列,其作用是使指向投影屏幕具有周视功能。
进一步的,所述视角图像信息调制装置为液晶显示单元,其上的视角图像像素组合成多视角图像,液晶显示单元与所述指向投影屏幕贴合,液晶显示单元上的像素与所述指向投影屏幕上设有的纳米光栅像素阵列对应匹配对准,光源通过一组纳米光栅像素阵列衍射后将多视角图像中的每一幅视角图像在裸眼3D显示装置上方空间中产生一个会聚光场即视点,各不同视角图像形成一组圆环形排列的会聚光场即多视点,共同组合成周视观察的视窗,各会聚光场相互不重叠,即使传播一段距离后,各视角图像也互不串扰。
一般情形下,为了保证投影效果,光源尽可能是平行光或者点光源,在采用现有的液晶面板时,因为现有的液晶面板上的LED背光是面光源,因此不能使用,需要将液晶面板后面的LED光源去掉,贴上指向性投影屏幕(背面或者正面),组成视窗生成装置,然后在视窗生成装置下面加上平行光源或点光源形成3D周视显示,其他液晶部件如驱动电路,彩色滤光片,封装玻璃等等可以沿用,当然也可以根据需要,单独生产符合要求的视角图像信息调制装置。液晶显示单元也可以采用LCD或者LCOS等器件,或者其他能实现图像视角调制功能的器件。
进一步的,所述指向投影屏幕为透过型指向投影屏幕,所述指向投影屏幕位于视角图形信息调制装置的上方或下方,或者在所述视角图形信息调制装置的一面直接制备纳米光栅像素结构即纳米像素阵列,而形成一体化的视窗生成装置。
进一步的,所述纳米光栅像素阵列按照全息原理设计,其纳米 光栅像素阵列的功能是对入射的视角图像进行波前转换,将平行或点状照明光场,在屏幕的四周上方空间形成会聚视点。
所述光源向指向投影屏幕垂直或近似垂直投影图像的视角图像信息,由所述指向投影屏幕将垂直或近似垂直投影而来的各视角图像分别会聚到裸眼3D显示装置上方的空间中,并在空间产生实现圆环形分离的视点,形成周视观察光场,或称为视窗。
进一步的,所述指向投影屏幕的出光面上设有多组纳米光栅像素阵列,各组纳米光栅像素阵列之间根据全息成像原理将各自像素阵列互相嵌合,分布在所述指向投影屏幕的出光面上;同组纳米光栅像素阵列中的像素发出的光指向同一视角,将整体视角图像成像在屏幕上方的四周空间处形成会聚视点;不同组的纳米光栅像素阵列具有不同的位置的会聚视点,共同组成圆环形周视视点分布;其中,纳米光栅像素内部含有纳米光栅结构,纳米光栅像素内部的纳米光栅的周期、取向的相互间关系满足全息原理。
纳米光栅像素对应的纳米光栅结构是一对一的关系。指向投影屏幕是由像素组成的,和LCD是一样的,只不过,指向投影屏幕中的像素内部有纳米光栅结构,一个像素对应一个纳米光栅结构,每个像素中纳米光栅的周期和取向都是根据全息的原理进行计算的(根据像素的坐标,以及图像投影的位置坐标进行确定)
一般情况下,光源与显示面板法线的夹角要小于视角与显示面板法线的夹角:以垂直角度入射为最佳。这里的视角是指人眼与法线的夹角。
进一步的,所述指向投影屏幕的出光面上设有多组纳米光栅像素阵列,各组纳米光栅像素阵列之间根据全息成像原理将各自像 素阵列互相嵌合,分布在所述指向投影屏幕的出光面上;同组纳米光栅像素阵列中的像素发出的光指向同一视角,将整体视角图像成像在屏幕上方的四周空间处形成会聚视点;不同组的纳米光栅像素阵列具有不同的位置的会聚视点,共同组成圆环形周视视点分布;其中纳米光栅的周期、取向的相互间关系满足全息原理。
进一步的,所述光源包括设于指向投影屏幕的背后的红、绿、蓝三个基色点光源或者平行光源,或者三色组成的白光点光源或者平行光源,光源发出的光从下而上入射到指向投影屏幕与液晶面板上面,所述液晶显示单元贴合在指向投影屏幕上面或者下面,通过位相调制提供多视角图像的位相信息,由液晶显示单元提供多视角图像的振幅信息,点光源扩散或平行光照明指向投影屏幕与液晶显示单元后,将多视角合成图像的像素与指向投影屏幕上的纳米光栅像素对应,经指向投影屏幕及液晶显示单元后,经过一段空间距离的传播,在视窗生成装置的上方空间形成不同视点的出射光场,即多视点的出射光场,多视点的出射光场形成圆环形视窗,实现周视裸眼3D显示。
进一步的,所述指向投影屏幕上的纳米光栅像素的周期、取向角满足以下关系:
(1)tan φ1=sinφ/(cosφ-n sinθ(Λ/λ))
(2)sin21)=(λ/Λ)2+(n sinθ)2-2n sinθcosφ(λ/Λ)
其中,光线以一定的角度入射到XY平面,θ1表示衍射光的衍射角,即衍射光线与z轴正方向夹角;
Figure PCTCN2017080701-appb-000001
表示衍射光的方位角,即衍射光线与x轴正方向夹角);θ表示光源的入射角,即入射光线与z轴正方向夹角;λ表示波长;Λ表示纳米衍射光栅的周期;
Figure PCTCN2017080701-appb-000002
表示取向角,即槽型方向与y轴正方向夹角;n表示光波在介质中的折射率;即在规定好入射光线波长、入射角以及衍射光线衍射角 和衍射方位角之后,通过上述两个公式计算出所需的纳米光栅像素的周期和取向角。
进一步的,每一个纳米光栅像素即一个纳米光栅,同一块指向投影屏幕表面制作有多个按需设定的不同取向角和周期的纳米光栅,调制出所需数量、具有不同视点,视点的位置形成圆形排布,配合颜色控制装置和灰度控制装置对颜色和灰度的控制,实现周视的裸眼3D显示。
进一步的,三个基色的点光源或平行光源的比例由LCD面板进行调节。
进一步的,所述液晶显示单元设有彩色滤光片,光源为白光光源或包含三基色光源的光源,所述光源入射到指向投影屏幕上对应的纳米光栅像素上,经其调制后,结合液晶显示单元上加载的彩色视角图像,将视角图像聚焦到相应的视角中,实现了彩色显示。
进一步的,形成单个视点汇聚的指向投影屏幕的纳米光栅像素由矩形像素,或圆形像素,或六边形像素结构组成,并与视角图像信息调制装置上设有的像素形状相对应。
进一步的,所述指向投影屏幕,其中纳米光栅像素采用紫外连续变空频光刻技术以及纳米压印进行制作,该紫外连续变空频光刻技术参照申请号为CN201310166341.1的中国专利申请记载的光刻设备和光刻方法。
需要指出的是,在本发明中,可以采用光刻方法在指向投影屏幕表面刻蚀制作出各个不同指向的纳米光栅,再做出能够用于压印的模板,然后通过纳米压印批量压印出纳米光栅的构成的像素阵列。
本发明的特点是,观察的图像在空间视点上具有会聚效应,同时携带振幅与位相信息,不同视角图像间不存在串扰,因此,观察时不产生视觉疲劳,也不对观察位置形成限制。
当点光源由由下而上投射到指向投影屏幕与液晶显示面板上,指向投影屏幕上的纳米光栅像素满足全息原理,对通过其上的光线以衍射的方式实现光的波前转换成像,所成的视点窗口围成圆形,形成周视观察。
当采用红、绿、蓝三色点光源投射到指向投影屏幕三组像素阵列上,利用纳米光栅对光线的任意调控作用,将红、绿、蓝的多视角图像在出射面合成在一起,实现彩色周视裸眼3D显示。
并可采用液晶显示单元如LCD配合图像的刷新,实现周视裸眼3D视频显示。
因此,本发明采用纳米光栅投影屏幕对出射光方向进行调控,配合液晶显示单元的显示技术,可实现低成本的周视裸眼3D显示,得到的图像分辨率高,观看无视觉疲劳。
将由纳米光栅像素构成的纳米光栅像素阵列的具有周视功能的指向投影屏幕,与液晶显示单元贴合,液晶显示单元提供多视角图像,并与屏幕上纳米光栅像素阵列对应,每一幅视角图像均由一组纳米光栅像素阵列在屏幕周围空间上产生一个会聚光场(视点),各不同视角图像形成一组圆环形排列的会聚光场(多视点),共同组合成周视观察的视窗,各会聚光场(视点)相互不重叠,即使传播一段距离后,各视角图像也互不串扰。因此,在视窗附近或前后位置进行观察,不会产生视觉疲劳,影像的立体感真实,其立体效果类似于全息再现原理。
具体来说,比如由纳米光栅像素构成的纳米光栅像素阵列的指向投影屏幕,将从垂直投影的各视角图像分别会聚到投影装置位置附近,并在空间产生实现圆环形分离的视点,形成周视观察光场(视窗)。周视指向投影屏幕的像素包含对应于各视角图像的亚像素,其亚像素含有按照全息原理设计的纳米光栅组合,其纳米光栅像素阵列的功能是对入射的视角图像进行波前转换,将平行或点状照明 光场,在屏幕的上方空间形成环形的会聚视点。本质上,这是进行全息波前转换成像,将LCD提供的视角信息转变成位相视点,确保各视角图像间在空间互不串扰。
关于光源的设置方式,例如在指向投影屏幕的背后设有三个单色(如红、绿、蓝三基色,或红、绿、蓝、黄四色或更多色,以能调制出白光为原则,根据需要进行选择)点光源,光源发出的光从下而上入射到指向投影屏幕背。将液晶显示单元(LCD)贴合在指向投影屏幕上面,通过空间调制提供多视角合成图像,由LCD提供多视角平面合成图像,点光源扩散照明指向投影屏幕后,将多视角合成图像的像素与指向投影屏幕上的纳米光栅像素对应。投影经指向投影屏幕后,经过一段空间距离的传播后,在屏幕四周形成不同视点的出射光场,多视点的光场形成圆环形视窗,围绕着屏幕观看,将看到逼真的全立体影像,形成一种周视裸眼3D显示方式。
指向投影屏幕提供了空间信息(位相)调制,液晶显示单元提供视角图像信息(振幅)调制,两者结合,具备了全息显示的全部信息。
由纳米光栅构成的像素阵列,本质上起到波前变换成像的作用。将在屏幕多视角图像,转换成具有会聚功能的波前,对应不同视角图像,在空间四周形成分离视点(指向性光场),由于空间波前携带的位相(视角)与振幅(图像)信息的独立传播,各波前(视点)间互不串扰。人眼观察时,不会产生视觉疲劳,观察的立体效果与观察者的位置无关。
本发明提出的光线的入射角是指光线中心光束与指向投影屏幕平面法线的夹角。红、绿、蓝三个单色光源(或其他色彩及数量的光源组合)的入射角度与波长的关系满足光栅衍射方程。RGB三种颜色(或者四基色、六基色)通过一块指向投影屏幕后形成相同的衍射角度和相同的空间视点,即RGB三种颜色以特定角度和 位置入射到指向投影屏幕,形成不同波长光场具有相同位置的视点,即会聚点,即三组单色光源以一定的入射角入射后,通过指向投影屏幕上不同亚像素阵列,经过纳米光栅的合束作用,从屏幕出射后,红、绿、蓝波长的光合成在同一方向,形成彩色立体图像。
本发明还提供一种实现裸眼3D显示的方法,将平行光源或点光源垂直或近乎垂直入射上述视窗生成装置,利用视窗生成装置中的位相信息调制装置将光线在视窗生成装置上方的空间中汇聚到多个视点,这些光线在经过视角图像信息调制装置时加载视角图像信息,并汇聚到上述视点,从而实现裸眼3D显示。
附图说明
为了更清楚地说明本发明实施例技术中的技术方案,下面将对实施例技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是指向屏幕上像素内部纳米光栅在XY平面下的结构图。
图2是图1中的指向屏幕上像素内部纳米光栅在XZ平面下的结构图。
图3是本发明实施方式下的指向屏幕的结构在XZ平面下的示意图。
图4是本发明的指向屏幕模组成周视裸眼3D显示器件之后的结构示意图。
图5是本发明周视裸眼3D显示的一种彩色显示装置的结构示意图。
图6是本发明周视裸眼3D显示的另一种彩色显示装置的结构示意图。
图7是实现单个视点汇聚的指向屏幕的纳米结构分布图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
一种裸眼3D显示装置,包括:
光源,所述光源位于视窗生成装置的下方;
视窗生成装置,包括:
位相信息调制装置,用于位相调制,即将光源照射来的光改变角度,并在视窗生成装置上方空间中汇聚到不同的视点;
视角图像信息调制装置,用于振幅调制,即加载多视角图像信息;
其中视角图像调制装置上的像素与位相信息调制装置上的像素匹配对准;
光源的光经过视角图像信息调制装置时,加载视角图像信息调制装置上加载的多视角图像信息,位相信息调制装置将光以及光投影投影而来的各视角图像分别会聚到视窗生成装置上方空间中,并在空间产生实现圆环形分离的视点,形成周视观察光场,即视窗,实现裸眼3D显示。当加载的多视角图像信息按照适当的频率刷新,就可以实现视频显示。
利用全息成像与波前转换原理,巧妙利用位相信息调制装置用于位相调制,同时利用视角图像信息调制装置用于振幅调制,其中视角图像信息调制装置产生的视角图像的像素与位相信息调制装置产生的视点像素匹配对准。意即将具有相位调制功能的组件与具 有振幅调制功能的显示技术相结合,实现裸眼3D极光显示,呈现3D图像信息。
实质上,是光源投射出来的光,经过位相信息调制装置调制后,改变了出射角度,再经过视角图像信息调制装置,从而携带图像信息,最后在裸眼3D显示装置的上方空间中汇聚,呈现出裸眼可见的3D图像。具体工作原理利用一些具体的实施例加以说明。
在具体的实施方案中,所述空间信息调制装置可采用由纳米光栅像素构成的纳米光栅像素阵列的具有周视功能的指向投影屏幕。
所谓的纳米光栅像素,实质上是在指向性屏幕上加工的结构尺寸在纳米级别的衍射光栅(或称为衍射光栅像素),参见附图1和附图2,附图1和附图2是结构尺度在纳米级别的衍射光栅在XY平面和XZ平面下的结构图。根据光栅方程,衍射光栅像素101的周期、取向角满足以下关系:
(1)tan φ1=sinφ/(cosφ-n sinθ(Λ/λ))
(2)sin21)=(λ/Λ)2+(n sinθ)2-2n sinθcosφ(λ/Λ)
其中,光线以一定的角度入射到XY平面,θ1和
Figure PCTCN2017080701-appb-000003
依次表示衍射光202的衍射角(衍射光线与z轴正方向夹角)和衍射光202的方位角(衍射光线与x轴正方向夹角),θ和λ依次表示光源201的入射角(入射光线与z轴正方向夹角)和波长,Λ和
Figure PCTCN2017080701-appb-000004
依次表示纳米衍射光栅101的周期和取向角(槽型方向与y轴正方向夹角),n表示光波在介质中的折射率。换言之,在规定好入射光线波长、入射角以及衍射光线衍射角和衍射方位角之后,就可以通过上述两个公式计算出所需的纳米光栅的周期和取向角了。例如,650nm波长红光以60°入射,光衍射角为10°、衍射方位角为45°,通过计算,对应的纳米衍射光栅周期为550nm,取向角为-5.96°。
按照上述原理,将每一个纳米光栅视为一个像素(也可将其称 为纳米光栅像素或纳米像素),在一块屏幕表面制作出多个按需设定的不同取向角和周期的纳米光栅之后(即多个纳米光栅像素排布成需要的纳米光栅像素阵列),理论上就可以调制足够多的、具有不同视点,视点的位置可以形成圆形排布的纳米光栅像素阵列,配合颜色和灰度的控制,就能实现周视的裸眼3D显示。
在实际应用中,所述视角图像信息调制装置可以采用液晶显示单元,并与所述指向投影屏幕贴合,用以提供多视角图像,液晶单元的像素与所述指向投影屏幕上设有的纳米光栅像素阵列对应匹配对准,液晶显示单元加载多视角图像信息后,光源通过一组纳米光栅像素阵列衍射后将每一幅视角图像在屏幕周围空间上产生一个会聚光场即视点,各不同视角图像形成一组圆环形排列的会聚光场即多视点,共同组合成周视观察的视窗,各会聚光场相互不重叠,即使传播一段距离后,各视角图像也互不串扰。
在实际应用中,需要选择将光源安排在视窗生成装置的下方,所述指向投影屏幕位于视角图形信息调制装置的上方或下方,或者在所述视角图形信息调制装置的一面直接制备纳米光栅像素结构即纳米像素阵列,而形成一体化的视窗生成装置。
一般而言,所述光源向指向投影屏幕垂直或近似垂直投影图像的视角图像信息,由所述指向投影屏幕将垂直或近似垂直投影而来的各视角图像分别会聚到投影装置上方附近空间中,并在空间产生实现圆环形分离的视点,形成周视观察光场,或称为视窗;所述指向投影屏幕的像素包含对应于各视角图像的亚像素,其亚像素含有按照全息原理设计的纳米光栅组合,其纳米光栅像素阵列的功能是对入射的视角图像进行波前转换,将平行或点状照明光场,在屏幕的四周上形成会聚视点。
根据实际需要,,所述指向投影屏幕的出光面上设有多组纳米光栅像素阵列,各组纳米光栅像素阵列之间根据全息成像原理将各自像素阵列互相嵌合,分布在所述指向投影屏幕的出光面上;同组纳米光栅像素阵列中的像素发出的光指向同一视角,将整体视角图像成像在屏幕上方的四周空间处形成会聚视点;不同组的纳米光栅像素阵列具有不同的位置的会聚视点,共同组成圆环形周视视点分布;其中,纳米光栅像素内部含有纳米光栅结构,纳米光栅像素内部纳米光栅的周期、取向的相互间关系满足全息原理。
为了实现彩色显示,一种方案是,所述光源为设于指向投影屏幕的背后的三个单色(如红、绿、蓝三基色)点光源,光源发出的光从上而下入射到指向投影屏幕;所述液晶显示单元(如LCD)贴合在指向投影屏幕上面;通过位相调制提供多视角3D显示的位相信息,由LCD提供多视角3D显示的图像信息点光源扩散照明指向投影屏幕后,由于LCD像素与指向投影屏幕上的纳米光栅像素是对应匹配对准的,因此其上加载的多视角图像信息被光源投影,光通过指向投影屏幕后,经过一段空间距离的传播,在指向投影屏幕上方空间四周形成不同视点的出射光场,多视点的光场形成圆环形视窗,实现周视裸眼3D显示。其中,指向性投影屏幕只是提供3D显示中所需要的位相信息,LCD提供图像信息,这种图像是由多幅视角图像组合在一起的,指向性投影屏幕的作用就是将这些图像分离,形成视点。LCD图像可以刷新,从而实现视频显示。
在实际应用中,所述指向投影屏幕上的纳米光栅像素的周期、取向角满足以下关系:
(1)tan φ1=sinφ/(cosφ-n sinθ(Λ/λ))
(2)sin21)=(λ/Λ)2+(n sinθ)2-2n sinθcosφ(λ/Λ)
其中,光线以一定的角度入射到XY平面,θ1表示衍射光的衍 射角,即衍射光线与z轴正方向夹角;
Figure PCTCN2017080701-appb-000005
表示衍射光的方位角,即衍射光线与x轴正方向夹角);θ表示光源的入射角,即入射光线与z轴正方向夹角;λ表示波长;Λ表示纳米衍射光栅的周期;
Figure PCTCN2017080701-appb-000006
表示取向角,即槽型方向与y轴正方向夹角;n表示光波在介质中的折射率;即在规定好入射光线波长、入射角以及衍射光线衍射角和衍射方位角之后,通过上述两个公式计算出所需的纳米光栅像素的周期和取向角。
在上述的实施方式中,所述位相信息调制装置为一指向投影屏幕(或多个指向投影屏幕拼接),其上加工有纳米尺寸的纳米光栅,单个纳米光栅构成纳米光栅像素,即视点像素,所有纳米光栅构成纳米光栅像素阵列,其作用是使指向投影屏幕具有周视功能。
实际应用中,所述视角图像信息调制装置可选用液晶显示单元或其他可以加载视角图像信息的显示设备,其上的视角图像像素组合成多视角图像,液晶显示单元与所述指向投影屏幕贴合,液晶显示单元的像素与所述指向投影屏幕上设有的纳米光栅像素阵列对应匹配对准,光源通过纳米光栅像素阵列衍射后将多视角图像中的每一幅视角图像在裸眼3D显示装置上方空间中产生一个会聚光场即视点,各不同视角图像形成一组圆环形排列的会聚光场即多视点,共同组合成周视观察的视窗,各会聚光场相互不重叠,即使传播一段距离后,各视角图像也互不串扰。
一般情形下,为了保证投影效果,光源尽可能是平行光或者点光源,在采用现有的液晶面板时,因为现有的液晶面板上的LED背光是面光源,因此不能使用,需要将液晶面板后面的LED光源去掉,贴上指向性投影屏幕(背面或者正面),组成视窗生成装置,然后在视窗生成装置下面加上平行光源或点光源形成3D周视显 示,其他液晶部件如驱动电路,彩色滤光片,封装玻璃等等可以沿用,当然也可以根据需要,单独生产符合要求的视角图像信息调制装置。液晶显示单元也可以采用LCD或者LCOS等器件,或者其他能实现图像视角调制功能的器件。
较易实现的一种方式,所述指向投影屏幕为透过型指向投影屏幕,所述指向投影屏幕位于视角图形信息调制装置的上方或下方,或者在所述视角图形信息调制装置的一面直接制备纳米光栅像素结构即纳米像素阵列,而形成一体化的视窗生成装置。
所述纳米光栅像素阵列按照全息原理设计,其纳米光栅像素阵列的功能是对入射的视角图像进行波前转换,将平行或点状照明光场,在屏幕的四周上方空间形成会聚视点。
所述光源向指向投影屏幕垂直或近似垂直投影图像的视角图像信息,由所述指向投影屏幕将垂直或近似垂直投影而来的各视角图像分别会聚到裸眼3D显示装置上方的空间中,并在空间产生实现圆环形分离的视点,形成周视观察光场,或称为视窗。
一般情况下,光源与显示面板法线的夹角要小于视角与显示面板法线的夹角:以垂直角度入射为最佳。
在一些实施例中,指向投影屏幕的出光面上可设有多组纳米光栅像素阵列,各组纳米光栅像素阵列之间根据全息成像原理将各自像素阵列互相嵌合,分布在所述指向投影屏幕的出光面上;同组纳米光栅像素阵列中的像素发出的光指向同一视角,将整体视角图像成像在屏幕上方的四周空间处形成会聚视点;不同组的纳米光栅像素阵列具有不同的位置的会聚视点,共同组成圆环形周视视点分布;其中纳米光栅的周期、取向的相互间关系满足全息原理。
一般情形,一种实现彩色显示的方案是:所述光源包括设于指向投影屏幕的背后的红、绿、蓝三个基色点光源或者平行光源,光源发出的光从下而上入射到指向投影屏幕与液晶面板上面,所述液晶显示单元贴合在指向投影屏幕上面或者下面,通过位相调制提供多视角图像的位相信息,由液晶显示单元提供多视角图像的振幅信息,点光源扩散或平行光照明指向投影屏幕与液晶显示单元后,将多视角合成图像的像素与指向投影屏幕上的纳米光栅像素对应,经指向投影屏幕及液晶显示单元后,经过一段空间距离的传播,在视窗生成装置的上方空间形成不同视点的出射光场,即多视点的出射光场,多视点的出射光场形成圆环形视窗,实现周视裸眼3D显示。
我们将每一个一个纳米光栅看着一个纳米光栅像素,同一块指向投影屏幕表面制作有多个按需设定的不同取向角和周期的纳米光栅,调制出所需数量、具有不同视点,视点的位置形成圆形排布,配合颜色控制装置和灰度控制装置对颜色和灰度的控制,实现周视的裸眼3D显示。
同时三个基色的点光源或平行光源的比例由LCD面板进行调节。
一般情形下,液晶显示单元本身就设有彩色滤光片,那么不论光源为白光光源或包含三基色光源的光源,所述光源入射到指向投影屏幕上对应的纳米光栅像素上,经其调制后,结合液晶显示单元上加载的彩色视角图像,将视角图像聚焦到相应的视角中,都可实现彩色显示。
由于纳米光栅可以具有不同的形状,在实际应用中,形成单个视点汇聚的指向投影屏幕的纳米光栅像素由矩形像素,或圆形像素,或六边形像素结构组成,但其形状需要与视角图像信息调制装置(比如液晶显示单元)上设有的像素形状相对应。
实际上,指向投影屏幕上的纳米光栅像素可以采用紫外连续变 空频光刻技术以及纳米压印进行制作,该紫外连续变空频光刻技术参照申请号为CN201310166341.1的中国专利申请记载的光刻设备和光刻方法。
需要指出的是,在本发明中,可以采用光刻方法在指向投影屏幕表面刻蚀制作出各个不同指向的纳米光栅,再做出能够用于压印的模板,然后通过纳米压印批量压印出纳米光栅的构成的像素阵列。
本发明的特点是,观察的图像在空间视点上具有会聚效应,同时携带振幅与位相信息,不同视角图像间不存在串扰,因此,观察时不产生视觉疲劳,也不对观察位置形成限制。
当点光源由由下而上投射到指向投影屏幕与液晶显示面板上,指向投影屏幕上的纳米光栅像素满足全息原理,对通过其上的光线以衍射的方式实现光的波前转换成像,所成的视点窗口围成圆形,形成周视观察。
当采用红、绿、蓝三色点光源投射到指向投影屏幕三组像素阵列上,利用纳米光栅对光线的任意调控作用,将红、绿、蓝的多视角图像在出射面合成在一起,实现彩色周视裸眼3D显示。红、绿、蓝三个单色光源(或其他色彩及数量的光源组合)的入射角度与波长的关系满足光栅衍射方程。RGB三种颜色(或者四基色、六基色)通过一块指向投影屏幕后形成相同的衍射角度和相同的空间视点,即RGB三种颜色以特定角度和位置入射到指向投影屏幕,形成不同波长光场具有相同位置的视点,即会聚点,即三组单色光源以一定的入射角入射后,通过指向投影屏幕上不同亚像素阵列,经过纳米光栅的合束作用,从屏幕出射后,红、绿、蓝波长的光合成在同一方向,形成彩色立体图像。
关于光源的设置方式,例如在指向投影屏幕的背后设有三个单色(如红、绿、蓝三基色,或红、绿、蓝、黄四色或更多色,以能 调制出白光为原则,根据需要进行选择)点光源(或平行光源),光源发出的光从下而上入射到指向投影屏幕背。将液晶显示单元(LCD)贴合在指向投影屏幕上面,通过空间调制提供多视角合成图像,由LCD提供多视角平面合成图像,点光源扩散照明指向投影屏幕后,将多视角合成图像的像素与指向投影屏幕上的纳米光栅像素对应。投影经指向投影屏幕后,经过一段空间距离的传播后,在屏幕四周形成不同视点的出射光场,多视点的光场形成圆环形视窗,围绕着屏幕观看,将看到逼真的全立体影像,形成一种周视裸眼3D显示方式。
并可采用液晶显示单元如LCD配合图像的刷新,实现周视裸眼3D视频显示。
因此,本发明采用纳米光栅投影屏幕对出射光方向进行调控,配合液晶显示单元的显示技术,可实现低成本的周视裸眼3D显示,得到的图像分辨率高,观看无视觉疲劳。
将由纳米光栅像素构成的纳米光栅像素阵列的具有周视功能的指向投影屏幕,与液晶显示单元贴合,液晶显示单元提供多视角图像,并与屏幕上纳米光栅像素阵列对应,每一幅视角图像均由一组纳米光栅像素阵列在屏幕周围空间上产生一个会聚光场(视点),各不同视角图像形成一组圆环形排列的会聚光场(多视点),共同组合成周视观察的视窗,各会聚光场(视点)相互不重叠,即使传播一段距离后,各视角图像也互不串扰。因此,在视窗附近或前后位置进行观察,不会产生视觉疲劳,影像的立体感真实,其立体效果类似于全息再现原理。
具体来说,比如由纳米光栅像素构成的纳米光栅像素阵列的指向投影屏幕,将从垂直投影的各视角图像分别会聚到投影装置位置上方附近,并在空间产生实现圆环形分离的视点,形成周视观察光场(视窗)。周视指向投影屏幕的像素包含对应于各视角图像的亚 像素,其亚像素含有按照全息原理设计的纳米光栅组合,其纳米光栅像素阵列的功能是对入射的视角图像进行波前转换,将平行或点状照明光场,在屏幕的上方空间形成环形的会聚视点。本质上,这是进行全息波前转换成像,将LCD提供的视角信息转变成位相视点,确保各视角图像间在空间互不串扰。
指向投影屏幕提供了空间信息(位相)调制,液晶显示单元提供视角图像信息(振幅)调制,两者结合,具备了全息显示的全部信息。
由纳米光栅构成的像素阵列,本质上起到波前变换成像的作用。将在屏幕多视角图像,转换成具有会聚功能的波前,对应不同视角图像,在空间四周形成分离视点(指向性光场),由于空间波前携带的位相(视角)与振幅(图像)信息的独立传播,各波前(视点)间互不串扰。人眼观察时,不会产生视觉疲劳,观察的立体效果与观察者的位置无关。
本发明提出的光线的入射角是指光线中心光束与指向投影屏幕平面法线的夹角。
本发明还提供一种实现裸眼3D显示的方法,将平行光源或点光源垂直或近乎垂直入射上述视窗生成装置,利用视窗生成装置中的位相信息调制装置将光线在视窗生成装置上方的空间中汇聚到多个视点,这些光线在经过视角图像信息调制装置时加载视角图像信息,并汇聚到上述视点,从而实现裸眼3D显示。
参见附图3,附图3是本发明实施方式下的指向投影屏幕的结构在XZ平面下的示意图。包括一块具有纳米衍射光栅像素(即纳米光栅像素或纳米像素,实质是纳米尺寸的衍射光栅)的指向投影屏幕301、红光光源311、绿光光源312、蓝光光源313。三种光源311,312,313以一定的入射角度入射到指向投影屏幕301上面的三个纳米衍射光栅像素321,322,323上,经过纳米光栅像素衍射 后,出射光331,332,333会聚于相同的视点1处。
参见附图4,附图4是本发明裸眼3D显示器件的一种结构示意图。该3D显示器件包括如上所述的一块具有纳米光栅像素的指向投影屏幕410、光源401、LCD面板420,(其中指向投影屏幕410与LCD面板420之间的位置可以调换,附图中未给出)。入射光源401经过指向投影屏幕410的光场调制,将LCD上加载的多视角图像分离聚焦到周视场中的各个视点中或者入射光源401先经过LCD,在经过指向投影屏幕410,将将LCD上加载的多视角图像分离聚焦到周视场中的各个视点中(图中未给出)。以图示为例,指向投影屏幕上的纳米光栅像素411、412、413以及414,分别对应着视角431、视角433、视角435和视角437,这样可以实现4个视角图像的视点分离,每个视点对应一幅图像。例如指向投影屏幕的纳米光栅像素411、412、413、414分别将视角图像1、图像2、图像3、图像4中的像素421、422、423、424聚焦到观察窗口431、433、435、437中,各视角组成一个周视观看的圆形观察窗口。理论上可以实现无限个视角的分布,每两个视角之间都存在视觉差,人眼观看时由于视觉差的原因,将会产生3D立体感,同时LCD刷新图像显示,将能够实现周视裸眼3D显示效果。
参见附图5,附图5是本发明周视裸眼3D显示的一种彩色显示装置的结构示意图。采用空间复用的方法,在相同指向投影屏幕中制作三组亚像素纳米光栅,分别对应于RGB三色光源。如图,装置由RGB三色光源501-503、指向投影屏幕410、LCD面板420组成。红绿蓝RGB三色光源501-503分别入射到对应的亚像素纳米光栅511-513上,经过指向投影屏幕上的纳米光栅调制后,结合LCD上加载的彩色视角图像,将视角图像聚焦到相应的视角中。如图所示,指向投影屏幕410上的对应RGB的亚像素纳米光栅511-513分别对应着LCD420上的RGB亚像素521-523。LCD上 的三个亚像素经过了亚像素纳米光栅的调制聚焦到了视角433上,实现了彩色显示。彩色各RGB的比例可以通过LCD进行调节。
附图6是本发明周视裸眼3D显示的另一种彩色显示装置的结构示意图。其装置包括白光光源601、彩色滤光片640、指向投影屏幕410和LCD面板420。白光光源经过彩色滤光片640形成RGB光,入射到对应的纳米光栅像素511-513上,经过指向投影屏幕上的纳米光栅调制后,结合LCD上加载的彩色视角图像,将视角图像聚焦到相应的视角中。如图所示,指向投影屏幕410上的RGB像素511-513分别对应着LCD420上的RGB像素521-523。LCD三个亚像素经过了纳米光栅的调制聚焦到了视角433上,实现了彩色显示。彩色各RGB的比例可以通过LCD进行调节。彩色滤光片可以单独装设在适当的位置。
附图7,图7是实现单个视点汇聚的指向投影屏幕的纳米结构分布图。图上像素不限于矩形像素,也可以是圆形,六边形等像素结构组成。
上述实施例中的纳米光栅的数量,根据实际需要的分辨率来设置,最好与液晶显示单元或其他加载多视角图像信息的显示器的分辨率匹配。
综上所述,本发明公开了使用像素化指向投影屏幕以及使用该指向投影屏幕实现周视裸眼3D显示装置。在本发明中,利用点光源或者平行光源以特定角度和位置入射在具有纳米光栅像素的指向投影屏幕上形成相同出射光场,通过液晶显示单元实现图像振幅调制,实现了彩色3D显示,这种周视裸眼3D显示装置具有无视觉疲劳的裸眼3D显示的特点。
本发明创造性的提出了成本较低、易于实现产业化、无视觉疲劳等优点的裸眼3D显示,以及裸眼周视3D显示的技术方案,裸眼3D技术是未来显示技术的主导方向,前景及价值不可估量。本 发明具有易于实现、成本较低、舒适性高、能实现周视等显著的技术优点,易于实现产业化,可能为整个产业带来革命性的变化,具有极高的经济价值和社会价值。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (14)

  1. 一种裸眼3D显示装置,其特征在于,包括:
    光源,所述光源位于视窗生成装置的下方;
    视窗生成装置,包括:
    位相信息调制装置,用于位相调制,即将光源照射来的光改变出射角度,并在视窗生成装置上方空间中汇聚到不同的视点;
    视角图像信息调制装置,用于振幅调制,加载多视角图像信息;
    其中视角图像调制装置的像素与位相信息调制装置的像素匹配对准;
    光源的光经过视角图像信息调制装置时,加载视角图像信息调制装置上加载的多视角图像信息,位相信息调制装置将光以及光投影而来的各视角图像分别会聚到视窗生成装置上方空间中,并在空间产生实现圆环形分离的视点,形成周视观察光场,即视窗,实现裸眼3D显示。
  2. 如权利要求1所述的裸眼3D显示装置,其特征在于,所述位相信息调制装置为一指向投影屏幕,其上加工有纳米尺寸的纳米光栅,单个纳米光栅构成纳米光栅像素,即指向投影屏幕的像素,所有纳米光栅构成纳米光栅像素阵列,并使指向投影屏幕具有周视功能。
  3. 如权利要求2所述的裸眼3D显示装置,其特征在于,所述视角图像信息调制装置为液晶显示单元,其上的视角图像像素组合成多视角图像,液晶显示单元与所述指向投影屏幕贴合,液晶显示单元的像素与所述指向投影屏幕上设有的纳米光栅像素阵列对应匹配对准,光源通过一组纳米光栅像素阵列衍射后将多视角图像中的每一幅视角图像在裸眼3D显示装置上方空间中产生一个会聚光场即视点,各不同视角图像形成一组圆环形排列的会聚光场即多 视点,共同组合成周视观察的视窗,各会聚光场相互不重叠。
  4. 如权利要求2所述的裸眼3D显示装置,其特征在于,所述指向投影屏幕为透过型指向投影屏幕,所述指向投影屏幕位于视角图形信息调制装置的上方或下方,或者在所述视角图形信息调制装置的一面直接制备纳米光栅像素结构即纳米像素阵列,而形成一体化的视窗生成装置。
  5. 如权利要求2-4任一所述的裸眼3D显示装置,其特征在于,所述指向投影屏幕的出光面上设有多组纳米光栅像素阵列,各组纳米光栅像素阵列之间根据全息成像原理将各自像素阵列互相嵌合,分布在所述指向投影屏幕的出光面上;同组纳米光栅像素阵列中的像素发出的光指向同一视角,将整体视角图像成像在屏幕上方的四周空间处形成会聚视点;不同组的纳米光栅像素阵列具有不同的位置的会聚视点,共同组成圆环形周视视点分布;其中,纳米光栅像素的内部含有纳米光栅结构,纳米光栅像素内部纳米光栅的周期、取向的相互间关系满足全息原理。
  6. 如权利要求2-4任一所述的裸眼3D显示装置,其特征在于,所述纳米光栅像素阵列按照全息原理设计,其纳米光栅像素阵列的功能是对入射的视角图像进行波前转换,将平行或点状照明光场,在屏幕的四周上方空间形成会聚视点。
  7. 如权利要求3所述的裸眼3D显示装置,其特征在于,所述光源包括设于指向投影屏幕的背后的红、绿、蓝三个基色点光源或者平行光源,或者三色组成的白光点光源或者平行光源,光源发出的光从下而上入射到指向投影屏幕与液晶面板上面,所述液晶显示单元贴合在指向投影屏幕上面或者下面,通过位相调制提供多视角图像的位相信息,由液晶显示单元提供多视角图像的振幅信息, 点光源扩散或平行光照明指向投影屏幕与液晶显示单元后,将多视角合成图像的像素与指向投影屏幕上的纳米光栅像素对应,经指向投影屏幕及液晶显示单元后,经过一段空间距离的传播,在视窗生成装置的上方空间形成不同视点的出射光场,即多视点的出射光场,多视点的出射光场形成圆环形视窗,实现周视裸眼3D显示。
  8. 如权利要求5所述的裸眼3D显示装置,其特征在于,所述指向投影屏幕上的纳米光栅像素的周期、取向角满足以下关系:
    (1)tanφ1=sinφ/(cosφ-n sinθ(Λ/λ))
    (2)sin21)=(λ/Λ)2+(n sinθ)2-2n sinθcosφ(λ/Λ)
    其中,光线以一定的角度入射到XY平面,θ1表示衍射光的衍射角,即衍射光线与z轴正方向夹角;
    Figure PCTCN2017080701-appb-100001
    表示衍射光的方位角,即衍射光线与x轴正方向夹角);θ表示光源的入射角,即入射光线与z轴正方向夹角;λ表示波长;Λ表示纳米衍射光栅的周期;
    Figure PCTCN2017080701-appb-100002
    表示取向角,即槽型方向与y轴正方向夹角;n表示光波在介质中的折射率;即在规定好入射光线波长、入射角以及衍射光线衍射角和衍射方位角之后,通过上述两个公式计算出所需的纳米光栅像素的周期和取向角。
  9. 如权利要求8所述的裸眼3D显示装置,其特征在于,每一个纳米光栅像素即一个纳米光栅,同一块指向投影屏幕表面制作有多个按需设定的不同取向角和周期的纳米光栅,调制出所需数量、具有不同视点,视点的位置形成圆形排布,配合液晶显示中的颜色控制装置和灰度控制装置对颜色和灰度的控制,实现周视的裸眼3D显示。
  10. 如权利要求9所述的裸眼3D显示装置,其特征在于,三个基色的点光源或平行光源的比例由LCD面板进行调节。
  11. 如权利要求5所述的裸眼3D显示装置,其特征在于,所述液晶显示单元设有彩色滤光片,光源为白光光源或包含三基色光 源的光源,所述光源入射到指向投影屏幕上对应的纳米光栅像素上,经其调制后,结合液晶显示单元上加载的彩色视角图像,将视角图像聚焦到相应的视角中,实现了彩色显示。
  12. 如权利要求9所述的裸眼3D显示装置,其特征在于,形成单个视点汇聚的指向投影屏幕的纳米光栅像素由矩形像素,或圆形像素,或六边形像素结构组成,并与视角图像信息调制装置上设有的像素形状相对应。
  13. 如权利要求9所述的裸眼3D显示装置,其特征在于,所述指向投影屏幕,其中纳米光栅像素采用紫外连续变空频光刻技术以及纳米压印进行制作,该紫外连续变空频光刻技术参照申请号为CN201310166341.1的中国专利申请记载的光刻设备和光刻方法。
  14. 一种实现裸眼3D显示的方法,其特征在于,将平行光源或点光源垂直或近乎垂直入射权利要求1所述的视窗生成装置,利用视窗生成装置中的位相信息调制装置将光线在视窗生成装置上方的空间中汇聚到多个视点,这些光线在经过视角图像信息调制装置时加载视角图像信息,并汇聚到上述视点,从而实现裸眼3D显示。
PCT/CN2017/080701 2016-04-18 2017-04-17 一种裸眼3d显示装置及实现裸眼3d显示的方法 WO2017181917A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610239265.6A CN105676473B (zh) 2016-04-18 2016-04-18 一种裸眼3d显示装置
CN201610239265.6 2016-04-18

Publications (1)

Publication Number Publication Date
WO2017181917A1 true WO2017181917A1 (zh) 2017-10-26

Family

ID=56309193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080701 WO2017181917A1 (zh) 2016-04-18 2017-04-17 一种裸眼3d显示装置及实现裸眼3d显示的方法

Country Status (2)

Country Link
CN (1) CN105676473B (zh)
WO (1) WO2017181917A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110889905A (zh) * 2019-11-21 2020-03-17 宁波财经学院 基于裸眼3d的产品展示方法和***
CN112666785A (zh) * 2019-09-30 2021-04-16 宁波舜宇车载光学技术有限公司 定向投影设备及定向投影方法
CN114815234A (zh) * 2021-01-18 2022-07-29 京东方科技集团股份有限公司 显示装置、现实增强设备以及显示方法
CN117097879A (zh) * 2023-08-28 2023-11-21 山东天竞电子科技有限公司 一种像素化的裸眼3d显示方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105676473B (zh) * 2016-04-18 2019-05-03 苏州苏大维格光电科技股份有限公司 一种裸眼3d显示装置
CN106154800B (zh) 2016-09-09 2018-12-25 京东方科技集团股份有限公司 全息显示装置及其全息显示方法
KR102654870B1 (ko) * 2016-11-09 2024-04-05 삼성전자주식회사 3차원 영상 디스플레이용 백라이트 유닛 및 그 제조방법
CN106773057A (zh) * 2017-01-13 2017-05-31 苏州苏大维格光电科技股份有限公司 一种单片全息衍射波导三维显示装置
EP3916465B1 (en) * 2017-05-17 2023-03-08 Vuzix Corporation Fixed focus image light guide with zoned diffraction gratings
CN107436494A (zh) * 2017-09-19 2017-12-05 苏州苏大维格光电科技股份有限公司 3d显示装置
CN107783215B (zh) * 2017-10-20 2020-05-05 浙江工业大学 一种pdms材料柔性变角度阵列衍射光学器件的制作方法
CN108363210A (zh) * 2018-02-28 2018-08-03 江苏冠达通电子科技有限公司 智能裸眼3d屏幕及其显示方法
CN109831661A (zh) * 2019-01-11 2019-05-31 东南大学 一种空间可编程的复合立体显示***
CN109581731B (zh) * 2019-01-23 2022-04-12 京东方科技集团股份有限公司 一种显示面板、其视点标的方法及可读性存储介质
CN110082960B (zh) * 2019-05-15 2020-08-04 合肥工业大学 一种基于高亮分区背光的光场显示装置及其光场优化算法
CN112114440A (zh) * 2019-06-20 2020-12-22 格相科技(北京)有限公司 手机屏保膜实现3d显示的方法
CN113138471A (zh) * 2020-01-19 2021-07-20 苏州苏大维格科技集团股份有限公司 裸眼三维显示***、拼接显示装置和生成方法
CN113311593A (zh) * 2020-02-27 2021-08-27 苏州苏大维格科技集团股份有限公司 三维显示装置
CN111812858A (zh) * 2020-09-02 2020-10-23 华东交通大学 桌面式3d光场显示装置
CN112866676B (zh) * 2021-01-06 2022-06-03 东南大学 一种基于单像素多视点重建的裸眼三维显示算法
CN112995644A (zh) * 2021-02-25 2021-06-18 孙彬杰 裸眼3d显示装置和电子设备
CN114167620A (zh) * 2021-12-07 2022-03-11 苏州大学 一种裸眼3d显示装置
CN114167621A (zh) * 2021-12-07 2022-03-11 苏州大学 一种裸眼3d显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014051624A1 (en) * 2012-09-28 2014-04-03 Hewlett-Packard Development Company, L. P. Directional waveguide-based backlight with integrated hybrid lasers for use in a multivew display screen
CN104272199A (zh) * 2013-01-31 2015-01-07 镭亚股份有限公司 多视图3d腕表
CN104460115A (zh) * 2014-12-31 2015-03-25 苏州大学 一种多视角像素指向型背光模组及裸眼3d显示装置
CN104503094A (zh) * 2014-12-16 2015-04-08 北京邮电大学 基于体布拉格光栅的全视角三维显示***及方法
CN105372824A (zh) * 2015-12-22 2016-03-02 苏州苏大维格光电科技股份有限公司 一种裸眼3d激光显示装置
CN105487239A (zh) * 2015-11-13 2016-04-13 苏州苏大维格光电科技股份有限公司 指向性彩色滤光片和裸眼3d显示装置
CN105676473A (zh) * 2016-04-18 2016-06-15 苏州苏大维格光电科技股份有限公司 一种裸眼3d显示装置及实现裸眼3d显示的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2865127T3 (es) * 2012-05-31 2021-10-15 Leia Inc Retroiluminación direccional

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014051624A1 (en) * 2012-09-28 2014-04-03 Hewlett-Packard Development Company, L. P. Directional waveguide-based backlight with integrated hybrid lasers for use in a multivew display screen
CN104272199A (zh) * 2013-01-31 2015-01-07 镭亚股份有限公司 多视图3d腕表
CN104503094A (zh) * 2014-12-16 2015-04-08 北京邮电大学 基于体布拉格光栅的全视角三维显示***及方法
CN104460115A (zh) * 2014-12-31 2015-03-25 苏州大学 一种多视角像素指向型背光模组及裸眼3d显示装置
CN105487239A (zh) * 2015-11-13 2016-04-13 苏州苏大维格光电科技股份有限公司 指向性彩色滤光片和裸眼3d显示装置
CN105372824A (zh) * 2015-12-22 2016-03-02 苏州苏大维格光电科技股份有限公司 一种裸眼3d激光显示装置
CN105676473A (zh) * 2016-04-18 2016-06-15 苏州苏大维格光电科技股份有限公司 一种裸眼3d显示装置及实现裸眼3d显示的方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112666785A (zh) * 2019-09-30 2021-04-16 宁波舜宇车载光学技术有限公司 定向投影设备及定向投影方法
CN112666785B (zh) * 2019-09-30 2022-07-15 宁波舜宇车载光学技术有限公司 定向投影设备及定向投影方法
CN110889905A (zh) * 2019-11-21 2020-03-17 宁波财经学院 基于裸眼3d的产品展示方法和***
CN110889905B (zh) * 2019-11-21 2023-06-06 宁波财经学院 基于裸眼3d的产品展示方法和***
CN114815234A (zh) * 2021-01-18 2022-07-29 京东方科技集团股份有限公司 显示装置、现实增强设备以及显示方法
CN117097879A (zh) * 2023-08-28 2023-11-21 山东天竞电子科技有限公司 一种像素化的裸眼3d显示方法
CN117097879B (zh) * 2023-08-28 2024-03-12 山东天竞电子科技有限公司 一种像素化的裸眼3d显示方法

Also Published As

Publication number Publication date
CN105676473A (zh) 2016-06-15
CN105676473B (zh) 2019-05-03

Similar Documents

Publication Publication Date Title
WO2017181917A1 (zh) 一种裸眼3d显示装置及实现裸眼3d显示的方法
WO2017080089A1 (zh) 指向性彩色滤光片和裸眼3d显示装置
US10429567B2 (en) Multi-view pixel directional backlight module and naked-eye 3D display device
WO2017107313A1 (zh) 一种裸眼3d激光显示装置
WO2018076661A1 (zh) 一种三维显示装置
CN106443867A (zh) 一种波导器件及三维显示装置
CN106556966B (zh) 一种含纳米光栅像素结构的超视角指向投影屏幕
CN206431369U (zh) 一种单片全息衍射波导三维显示装置
CN106773057A (zh) 一种单片全息衍射波导三维显示装置
CN104777622A (zh) 基于视觉***特性的多层液晶近眼显示权重优化方法和装置
WO2021098742A1 (zh) 波导镜片及增强现实眼镜
CN208818950U (zh) 大视场角三维显示装置
CN208805627U (zh) 用于实现三维图像近眼显示的装置
Wan et al. Super multi-view display based on pixelated nanogratings under an illumination of a point light source
CN106255915B (zh) 透射型屏幕和平视显示器
CN108770384A (zh) 用折射光束映射器减少包括多个显示器的显示***中的莫尔干涉的方法和***
CN110531526A (zh) 大视场角三维显示装置
CN210982932U (zh) 三维显示装置
CN110531525A (zh) 用于实现三维图像近眼显示的装置
CN112835205B (zh) 三维显示装置
CN208984892U (zh) 三维显示装置
Deng et al. True-color restoration of reconstructed image in naked-eye 3D LED display based on eliminating optical dispersion
EP1988420A1 (en) Volumetric display device
CN114167620A (zh) 一种裸眼3d显示装置
CN210072223U (zh) 裸眼增强现实显示装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785402

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17785402

Country of ref document: EP

Kind code of ref document: A1