WO2021098562A1 - 麦克风与喇叭组合模组、耳机及终端设备 - Google Patents

麦克风与喇叭组合模组、耳机及终端设备 Download PDF

Info

Publication number
WO2021098562A1
WO2021098562A1 PCT/CN2020/128011 CN2020128011W WO2021098562A1 WO 2021098562 A1 WO2021098562 A1 WO 2021098562A1 CN 2020128011 W CN2020128011 W CN 2020128011W WO 2021098562 A1 WO2021098562 A1 WO 2021098562A1
Authority
WO
WIPO (PCT)
Prior art keywords
microphone
speaker
diaphragm
pcb
cavity
Prior art date
Application number
PCT/CN2020/128011
Other languages
English (en)
French (fr)
Inventor
李芳庆
徐昌荣
丁越
徐灏文
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20890501.8A priority Critical patent/EP4040799A4/en
Publication of WO2021098562A1 publication Critical patent/WO2021098562A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1083Reduction of ambient noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/04Structural association of microphone with electric circuitry therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/08Mouthpieces; Microphones; Attachments therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1058Manufacture or assembly
    • H04R1/1075Mountings of transducers in earphones or headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1091Details not provided for in groups H04R1/1008 - H04R1/1083
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/033Headphones for stereophonic communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use

Definitions

  • This application relates to the technical field of wireless earphones, in particular to a microphone and speaker combination module, earphones and terminal equipment.
  • TWS headsets include many sensors, resulting in higher and higher integration of headset components, and the internal space of the headset is becoming more and more tense.
  • a microphone is usually set between the speaker (also called a speaker) and the ear canal.
  • the microphone is used to pick up the surrounding noise signal, and the noise signal is reversed and transmitted to the horn through the circuit.
  • the reverse noise signal output by the horn is offset with the noise signal directly entering the ear, so as to achieve the purpose of reducing noise.
  • FIG. 1 it is a schematic cross-sectional view of an existing (noise reduction) earphone.
  • the earphone includes a first casing 11' and a second casing 12'.
  • the magnetic circuit system 21' of the speaker 2' is arranged in the first casing 11', and the diaphragm 22' of the speaker 2'and the second casing 12 'Form the front cavity 13' of the horn 2'.
  • the speaker 2'and the microphone 3' are separate components, the microphone 3'is fixed on the PCB4' (Printed Circuit Board, printed circuit board), the PCB4' is arranged outside the second housing 12', the speaker 2'and the PCB4' They are electrically connected through FPC (Flexible Printed Circuit, flexible circuit board) (not shown in the figure). Due to the arrangement of the microphone 3', the front cavity 13' of the speaker 2'is squeezed, and the cross-sectional area of the sound channel 131' of the front cavity 13' is reduced, thus affecting the high frequency of the speaker 2' Response, thereby sacrificing the high-frequency sound of the headset.
  • FPC Flexible Printed Circuit, flexible circuit board
  • the purpose of this application is to provide a microphone and speaker combination module, earphones and terminal equipment to solve the problem of the speaker and the microphone occupying a large space.
  • a microphone and speaker combination module including:
  • Microphone with microphone front cavity
  • the microphone and the speaker are arranged on the PCB, a signal processing unit is arranged on the PCB, and the microphone and the speaker are electrically connected to the signal processing unit unit respectively.
  • the microphone and the speaker are arranged separately.
  • they can be independent and staggered along the direction of sound output, or they can be independent and staggered along the direction of sound.
  • the microphone includes a housing, a first diaphragm arranged in the housing, and a first substrate for supporting the first diaphragm;
  • the microphone and speaker combination module includes a first PCB, the housing and the first substrate are fixed on the first PCB, the housing, the first diaphragm, the first substrate and the Forming the microphone front cavity between the first PCB;
  • the horn includes a second diaphragm and a second substrate for supporting the second diaphragm.
  • a rear cavity of the horn is formed between the second diaphragm and the second substrate, and the second diaphragm is opposite to the second diaphragm.
  • the opposite side of the rear cavity of the horn forms the front cavity of the horn;
  • the first PCB and the second substrate are arranged on the PCB.
  • the first PCB and the second substrate are arranged on the PCB, so that the signal transmission between the microphone and the speaker can be realized.
  • the first substrate and the second substrate are respectively made of silicon material
  • the first diaphragm is made of silicon material and piezoelectric material
  • the second diaphragm is made of silicon. Made of materials and piezoelectric materials.
  • the PCB includes:
  • the second PCB, the microphone and the signal processing unit are all arranged on the second PCB;
  • the third PCB, the speaker is arranged between the second PCB and the third PCB. In this way, the microphone and the speaker can be set independently and staggered along the sound output direction.
  • the speaker includes:
  • the bracket is arranged between the second PCB and the third PCB;
  • the diaphragm is arranged on the bracket, the second PCB is arranged in the sound output direction of the diaphragm, the front cavity of the speaker is formed between the diaphragm and the second PCB, and the second The PCB is provided with a sounding hole, and the speaker front cavity is in communication with the microphone front cavity through the sounding hole;
  • the driving system is arranged on the third PCB, and the driving system is used to drive the diaphragm to vibrate.
  • the bracket By arranging the second PCB in the sound output direction of the diaphragm, the bracket can protect the speaker and support the diaphragm.
  • the microphone and the speaker are integrally formed, so that the space utilization rate of the microphone and the speaker can be further improved compared to the separate arrangement of the two.
  • the microphone and the speaker form a first integrated body
  • the first integrated body includes:
  • the first bottom wall is arranged on the PCB
  • the first side wall is arranged on the first bottom wall and surrounds a cavity
  • a second side wall is disposed on the first bottom wall, the second side wall is located inside the first side wall, and the second side wall is connected to the first side wall and surrounds a cavity ;
  • the first diaphragm is arranged on the first side wall and the second side wall;
  • the second diaphragm has one end arranged on the first side wall, and the other end is a free end;
  • a microphone back cavity is formed between the first bottom wall, the first side wall, the second side wall and the first diaphragm.
  • the first bottom wall, the first side wall, the A rear horn cavity is formed between the second side wall and the second diaphragm, and there is a gap between the first diaphragm and the second diaphragm;
  • the side of the first diaphragm opposite to the back cavity of the microphone forms the front microphone cavity
  • the side of the second diaphragm opposite to the back cavity of the speaker forms the front speaker cavity.
  • first diaphragms there are multiple first diaphragms, and there is a gap between two adjacent first diaphragms, which can facilitate the vibration of the first diaphragms.
  • the microphone and the speaker form a second integrated body
  • the second integrated body includes:
  • the second bottom wall is arranged on the PCB
  • the third side wall is arranged on the second bottom wall and surrounds a cavity
  • a fourth side wall arranged on the second bottom wall and enclosing a cavity, the fourth side wall is located inside the third side wall;
  • the first diaphragm is arranged on the fourth side wall
  • One end of the second diaphragm is arranged on the third side wall, and the other end is a free end;
  • a microphone back cavity is formed between the second bottom wall, the fourth side wall and the first diaphragm, and the second bottom wall, the third side wall, the fourth side wall and the A rear horn cavity is formed between the second diaphragm, and there is a gap between the first diaphragm and the second diaphragm;
  • the side of the first diaphragm opposite to the back cavity of the microphone forms the front microphone cavity
  • the side of the second diaphragm opposite to the back cavity of the speaker forms the front speaker cavity.
  • the first diaphragm is one and arranged at the center of the second integrated body.
  • the microphone of the headset is mainly used to pick up external noise
  • the cross-sectional area of the first diaphragm does not need to be too large, for example, it may be at the center of the second integrated body.
  • the microphone and the speaker are made by MEMS technology respectively, which facilitates the integration of the microphone and the speaker.
  • the microphone, the speaker, and the signal processing unit are fixed on the PCB using SMT technology, which solves the inconsistency of sound effects caused by differences in manual assembly modules of the whole machine, and improves Improve the reliability of the product.
  • the signal processing unit includes:
  • the first signal processing unit is electrically connected to the microphone and the speaker, respectively;
  • the second signal processing unit is electrically connected to the first signal processing unit.
  • the output impedance of the microphone can be matched and the call and audio quality with a more balanced effect can be achieved, and the second signal processing unit can reversely process the noisy electrical signal to achieve active noise reduction.
  • the first signal processing unit includes an ASIC chip
  • the second signal processing unit includes a DSP chip.
  • the ASIC chip is used to drive the microphone and the speaker
  • the DSP chip is used to reverse the electrical signal of the noise.
  • the PCB is provided with a first through hole
  • the horn is provided with a second through hole
  • the first through hole is communicated with the second through hole, so as to ensure that the rear cavity of the speaker is connected to the second through hole. The pressure balance between the environment.
  • the technical solution of the present application provides a headset, including:
  • a second housing connected to the first housing
  • the microphone and speaker combination module is arranged between the first housing and the second housing, and the microphone and speaker combination module is the aforementioned microphone and speaker combination module;
  • a rear cavity of the microphone and the speaker is formed between the first housing and the PCB, and a front cavity of the microphone and the speaker is formed between the second housing and the PCB.
  • the second housing includes an ear inlet, a sound outlet is provided in the ear inlet, the sound outlet communicates with the front cavity, and a damping net is provided in the ear inlet.
  • the second housing further includes a first step part connected with the ear-in part, and the horn and the microphone are arranged in an internal cavity of the first step part;
  • the inner diameter of the first step part is larger than the inner diameter of the ear-in part, so that the volume of the front cavity can be increased to the greatest extent.
  • the second housing further includes a second step part connected to the first step part, and the second step part is fixed to the first housing;
  • the inner diameter of the second stepped portion is greater than the inner diameter of the first stepped portion, a step is provided in the second stepped portion, and the PCB is fixed on the step, so that it can be used for the microphone and speaker combination module. Containment role.
  • the technical solution of the present application provides a terminal device including the microphone and speaker combination module as described above, so as to reduce the space occupied by the microphone and the speaker in the terminal device.
  • the microphone and the speaker can share the front cavity, which can improve the space utilization of the microphone and the speaker, thereby solving the space occupied by the speaker and the microphone. Big problem.
  • Figure 1 is a schematic cross-sectional view of an existing (noise reduction) earphone
  • FIG. 2 is an exploded schematic diagram of the earphone shown in an embodiment of the application
  • FIG. 3 is a schematic cross-sectional view of a headset shown in an embodiment of the application.
  • 4a and 4b are schematic structural diagrams of a microphone and speaker combination module shown in Embodiment 1 of the application;
  • FIG. 5 is a schematic diagram of communication between the speaker, microphone, and signal processing chip in FIG. 4;
  • FIGS. 4a and 4b are schematic cross-sectional views of the microphone and speaker combination module shown in FIGS. 4a and 4b;
  • FIG. 7 is another schematic cross-sectional view of the microphone and speaker combination module 10 shown in FIGS. 4a and 4b;
  • Figure 8 is a schematic diagram of the structure of the microphone and the PCB
  • Figure 9 is a schematic diagram of the structure of the speaker and the PCB.
  • Figure 10 is a schematic diagram of another structure of the speaker and the PCB;
  • Fig. 11 is a top view of the second diaphragm of the horn shown in Fig. 10;
  • 12a and 12b are schematic diagrams of the structure of the microphone and speaker combination module shown in the second embodiment of the application;
  • FIG. 13a and 13b are schematic diagrams of the structure when the speaker and the microphone are integrated into a first integrated body
  • Fig. 14a is a schematic structural diagram of a part of the microphone in Fig. 13a;
  • Fig. 14b is a schematic structural diagram of a part of the horn in Fig. 13a;
  • FIG. 15 is a schematic diagram of the structure of the first diaphragm and the second diaphragm in FIG. 13a;
  • 16 is a schematic diagram of the structure when the speaker and the microphone are integrated into a second integrated body
  • Figure 17 is a schematic cross-sectional view of the second integrated body
  • Figure 18 is another schematic cross-sectional view of the second integrated body
  • FIGS. 12a and 12b are schematic cross-sectional views of the microphone and speaker combination module shown in FIGS. 12a and 12b;
  • FIGS. 12a and 12b are another schematic cross-sectional views of the microphone and speaker combination module shown in FIGS. 12a and 12b;
  • 21a and 21b are schematic diagrams of the structure of the microphone and speaker combination module shown in the third embodiment of the application.
  • FIGS. 21a and 21b are schematic cross-sectional views of the microphone and speaker combination module 10 shown in FIGS. 21a and 21b;
  • FIG. 23 is another schematic cross-sectional view of the microphone and speaker combination module 10 shown in FIGS. 21a and 21b;
  • FIG. 24 is an exploded schematic diagram of the microphone and speaker combination module 10 shown in the fourth embodiment of the application.
  • some terminal devices have the functions of picking up and emitting sounds, that is, have acoustic devices such as microphones and speakers. These acoustic devices are independent devices in the terminal equipment, occupying more internal space of the terminal equipment.
  • an embodiment of the present application provides a terminal device.
  • the terminal device is provided with a microphone and speaker combination module.
  • the microphone and speaker combination module can integrate the microphone and the speaker on the PCB at the same time to reduce The space occupied by microphones and speakers.
  • the terminal device can be, for example, a head-mounted device, specifically AR glasses, VR glasses; for example, it can also be a portable device, specifically headsets, mobile phones, and bracelets; of course, it can also be other devices that can pick up sounds and emit sounds. Functional products are not enumerated here.
  • the terminal device may be a headset as an example, in an implementation scheme, the headset may be a TWS (True Wirless Stereo, true wireless stereo) wireless Bluetooth headset.
  • TWS Truste Wirless Stereo, true wireless stereo
  • FIG. 2 it is an exploded schematic diagram of the earphone shown in an embodiment of the application.
  • the headset includes a first housing 11 and a second housing 12.
  • a space for accommodating a microphone and speaker assembly module 10 is formed between the first housing 11 and the second housing 12, and the microphone and speaker assembly module 10 includes a speaker 2.
  • Microphone 3 and PCB4, speaker 2 and microphone 3 are fixed on PCB4, PCB4 can also be provided with a signal processing unit for processing electrical signals, such as a signal processing chip, speaker 2 and microphone 3 are electrically connected to the signal processing unit through PCB4 connection.
  • the signal processing unit may include a first signal processing unit and a second signal processing unit, for example, the first signal processing unit is a first signal processing chip 41 and the second signal processing unit is a second signal processing chip 42 .
  • the speaker 2 and the microphone 3 are respectively electrically connected to the first signal processing chip 41 through the PCB 4, and the first signal processing chip 41 is electrically connected to the second signal processing chip 42 through the PCB 4.
  • the second signal processing unit can reversely process the noisy electrical signal to achieve active noise reduction. The detailed working process can be referred to the following description.
  • the speaker 2, the microphone 3, the first signal processing chip 41, and the second signal processing chip 42 are all soldered on the PCB 4, for example, SMT (Surface Mounted Technology) may be used for soldering.
  • SMT Surface Mounted Technology
  • the first signal processing chip 41 includes, but is not limited to, an ASIC (Application Specific Integrated Circuit, application specific integrated circuit) chip, for example, may also include an FPGA (Field-Programmable Gate Array, field programmable gate array) chip, or DSP (Digital Signal Processor, digital signal processing unit) chip, etc.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array, field programmable gate array
  • DSP Digital Signal Processor, digital signal processing unit
  • the second signal processing chip 42 includes but is not limited to a DSP chip.
  • a DSP chip may also include an FPGA chip, or a BT SOC (Bluetooth System on Chip) integrated with a DSP chip (or FPGA chip). That is, the Bluetooth chip).
  • FPGA chip or a BT SOC (Bluetooth System on Chip) integrated with a DSP chip (or FPGA chip). That is, the Bluetooth chip).
  • the first signal processing chip 41 may include an ASIC chip, which can match the output impedance of the microphone 3 and have a more balanced call. And audio quality. It is understandable that the first signal processing chip 41 may also include two ASIC chips. The first ASIC chip can match the output impedance of the microphone 3, and the latter ASIC chip can achieve more balanced call and audio quality.
  • FIG. 3 it is a schematic cross-sectional view of the earphone shown in an embodiment of the application.
  • the rear cavity 14 of the speaker 2 and the microphone 3 is formed between the first housing 11 and the PCB 4, and the front cavity 15 of the speaker 2 and the microphone 3 is formed between the second housing 12 and the PCB 4.
  • the PCB 4 divides the space forming the microphone and speaker assembly module 10 into a rear cavity 14 and a front cavity 15.
  • the speaker 2 and the microphone 3 share the front cavity 15, so that the space utilization of the speaker 2 and the microphone 3 can be improved; at the same time, because the speaker 2 is arranged in the front cavity 15, it will not squeeze the front cavity 15.
  • the cross-sectional area of the sound channel is reduced, so not only the internal space of the earphone is saved, but also the high-frequency sound effect of the speaker 2 can be ensured.
  • the second housing 12 includes an ear portion 121 for inserting into the ear canal of a human ear.
  • a sound hole 13 is provided inside the ear portion 121, and the sound emitted by the speaker 2 can pass through the front cavity 15 and the sound hole. 13 passed to human ears. Since the outer sleeve of the ear part 121 is provided with a soft rubber sleeve (not shown in the figure), there may be a gap between the soft rubber sleeve and the human ear due to insufficient sealing, and external noise will enter from the outside through this gap. In the hole 13, it enters the front cavity 15 and is picked up by the microphone 3. The external noise can also be picked up by the microphone 3 through the sound hole 13 and the front cavity 15.
  • the microphone 3 processes the sound signal. For example, it can convert the sound signal into an electric signal and transfer the electric signal to the first signal processing chip 41 for processing. , The audio electrical signal generated after processing by the first signal processing chip 41 is transferred to the second signal processing chip 42 for reverse processing, and the horn 2 converts the reverse processed electrical signal into a sound signal to be sent out, so as to achieve active reduction. noise.
  • the transmission of the above-mentioned electrical signals is accomplished through PCB4.
  • the second housing 12 further includes a first stepped portion 122 connected to the ear-in portion 121, and the speaker 2 and the microphone 3 are disposed in the internal cavity of the first stepped portion 122.
  • the position of the first step portion 122 is the part where the earphone is not inserted into the ear canal or the part just inserted into the ear canal.
  • the inner diameter of the first step portion 122 is greater than the inner diameter of the ear portion 121, and the front cavity 15 includes the inner cavity of the first step portion 122. In this way, the volume of the front cavity 15 can be maximized by providing the first step portion 122.
  • a damping net 124 is provided in the front cavity 15.
  • the damping net 124 can be fixed on the inner wall of the ear portion 123 by bonding, and the high-frequency sound emitted by the speaker 2 can be filtered out by setting the damping net 124 , So that the bass effect of the headset is more significant.
  • the damping net 124 may be made of an electromagnetic shielding material, for example, conductive rubber or conductive foam, which can improve the electromagnetic shielding capability of the microphone 3.
  • the damping net 124 is closer to one side of the human ear canal, so as to prevent dust from entering the side wall of the sound hole 13 and contaminate the sound hole 13 as much as possible.
  • the second housing 12 further includes a second stepped portion 123 connected to the first stepped portion 122, and the second stepped portion 123 is fixed to the first housing 11.
  • a step 123a is provided in the second step portion 123, and the PCB 4 is fixed on the step 123a, for example, by welding or bonding.
  • the inner diameter of the second stepped portion 123 is larger than the inner diameter of the first stepped portion 122, so that the microphone and speaker assembly module 10 can be accommodated.
  • FIGS. 4a and 4b are schematic structural diagrams of the microphone and speaker assembly module shown in Embodiment 1 of the application
  • FIG. 4a is a schematic structural diagram of the microphone and speaker assembly module 10 from a first perspective
  • 4b is a schematic diagram of the structure of the microphone and speaker assembly module 10 from a second perspective.
  • the microphone and speaker combination module includes a speaker 2, a microphone 3 and a PCB4.
  • the speaker 2 and the microphone 3 are respectively fixed on the PCB4.
  • the PCB4 is provided with a signal processing unit for processing electrical signals, such as a signal processing chip, the speaker 2 and the microphone 3. They are respectively electrically connected to the signal processing chip through the PCB4.
  • the signal processing unit may include a first signal processing unit and a second signal processing unit, such as a first signal processing chip 41 and a second signal processing chip 42.
  • the speaker 2 and the microphone 3 are electrically connected to the first signal processing chip 41 through the PCB 4 respectively, and the first signal processing chip 41 is electrically connected to the second signal processing chip 42 through the PCB 4.
  • the PCB 4 is also provided with a first through hole 43 communicating with the speaker 2 so that the pressure balance between the rear cavity of the speaker and the environment can be ensured (see FIG. 9 for the specific process).
  • both the speaker 2 and the microphone 3 are made by MEMS (Micro-Electro-Mechanical System) process, and the speaker 2 and the microphone 3 made by the MEMS process have small size, light weight, and power consumption.
  • MEMS Micro-Electro-Mechanical System
  • the advantages of low, high reliability, high sensitivity and easy integration make it easy to integrate the speaker 2 and the microphone 3.
  • the first signal processing chip 41 integrates a microphone driving module 411, a signal processing module 412, and a speaker driving module 413.
  • the microphone driving module 411 is electrically connected to the microphone 3, and is used to receive the electric signal sent by the microphone 3 (because the microphone 3 can be piezoelectric, the noise can be converted into an electric signal by the microphone 3); the microphone driving module 411 is connected with The signal processing module 412 is electrically connected.
  • the signal processing module 412 can process the electrical signal sent by the microphone driving module 411 (for example, including matching the output impedance of the microphone 3); the signal processing module 412 is electrically connected to the second signal processing chip 42, The second signal processing chip 42 reverse-processes the electrical signals sent by the signal processing module 412; the speaker driving module 413 is electrically connected to the second signal processing chip 42 and the speaker 2 respectively, and the speaker driving module 413 is used to connect the second signal processing chip
  • the electric signal sent by 42 is transmitted to the horn 2, and the horn 2 is used to convert the electric signal sent by the horn driving module 413 into a sound signal, so as to realize active noise reduction.
  • FIG. 6 it is a schematic cross-sectional view of the microphone and speaker assembly module 10 shown in FIGS. 4a and 4b.
  • the speaker 2 and the microphone 3 may be located on the second side of the PCB 4
  • the first signal processing chip 41 and the second signal processing chip 42 may be located on the first side of the PCB 4.
  • FIG. 7 it is another schematic cross-sectional view of the microphone and speaker assembly module 10 shown in FIGS. 4a and 4b.
  • the speaker 2, the microphone 3 and the first signal processing chip 41 may be located on the second side of the PCB 4
  • the second signal processing chip 42 may be located on the first side of the PCB 4.
  • the microphone 3 and the speaker 2 are arranged separately, wherein the two are independent and staggered along the direction perpendicular to the sound output direction, so that the space utilization of the microphone 3 and the speaker 2 can be improved.
  • the transmission of the electrical signal and/or the electrical signal can be completed through the PCB4.
  • the microphone 3 includes a housing 31, a first diaphragm 32, and a first base 33 for supporting the first diaphragm 32.
  • the housing 31 and the first base 33 are fixed on the first PCB 401, for example, the housing 31 is fixed on the first base 33,
  • the first substrate 33 is fixed on the first PCB 401; for another example, the housing 31 is fixed on the first PCB 401, and the first substrate 33 is fixed on the first PCB 401, for example, by welding.
  • the microphone 3 is fixed on the PCB 4 through the first PCB 401, for example, by welding.
  • the first diaphragm 32 and the first substrate 33 may be integrally etched with a single crystal or polycrystalline silicon material, and a piezoelectric material (for example, a ceramic material) is sprayed on the etched first diaphragm 32 , Or cover a layer of piezoelectric ceramics on the etched first diaphragm 32 to make a piezoelectric microphone in this way.
  • a piezoelectric material for example, a ceramic material
  • a microphone front cavity 34 is formed between the housing 31, the first diaphragm 32, the first substrate 33 and the first PCB 401, and a microphone back cavity 35 is formed between the first diaphragm 32, the first substrate 33 and the first PCB 401.
  • the housing 31 is provided with a sound hole 311 communicating with the microphone front cavity 34, and the sound is transmitted to the first diaphragm 32 of the microphone 3 through the sound hole 311, so that the first diaphragm 32 bends as the air pressure changes.
  • the first diaphragm 32 and the first substrate 33 can be made of single crystal or polycrystalline silicon material, and the first diaphragm 32 can also be sprayed with piezoelectric material (for example, ceramic material) on its surface, or etched A layer of piezoelectric ceramics is covered on the rear first vibrating membrane 32.
  • the first diaphragm 32 When the first diaphragm 32 is bent, the first diaphragm 32 generates an electrical signal; the first signal processing chip 41 electrically connected to the microphone 3 can process such electrical signals.
  • the transmission of the electrical signal is accomplished through the first substrate 33, the first PCB 401 and the PCB 4. In this way, the use of wire connections can be avoided, and a channel for passing the wires can be avoided on the housing 31, which is simpler and more convenient.
  • the electrical connection between the first signal processing chip 41 and the microphone 3 can also be achieved by using wires.
  • the housing 31 is roughly arranged in the shape of a straight quadrangular prism with a rectangular top.
  • the material of the housing 31 can be made of metal (the metal can be made of stainless steel, aluminum, aluminum alloy, copper, etc.) Copper alloy materials, ferrous materials, ferroalloy materials, etc.), plastics (plastics can be selected from hard plastics, such as ABS, POM, PS, PMMA, PC, PET, PBT, PPO, etc.) and other alloy materials.
  • the housing 31 may be made of a metal material, so that the electromagnetic shielding effect of the microphone 3 can be more significant, thereby improving the electromagnetic anti-interference ability of the microphone 3.
  • external noise enters the earphone from the sound hole 13 (see Figure 3) and is picked up by the microphone 3.
  • the microphone 3 converts the picked up noise signal into an electrical signal, which is processed by the first signal
  • the chip 41 sends the processing to the second signal processing chip 42 after processing.
  • the second signal processing chip 42 first reverse-processes this noise electrical signal, and then transmits it to the speaker 2 through the first signal processing chip 41, and the speaker 2 is based on the reverse noise electrical signal transmitted from the first signal processing chip 41
  • the sound signal opposite to the noise is output outward. This sound signal opposite to the noise and the noise directly entering the ear cancel each other out, thus playing a good noise reduction effect.
  • the horn 2 includes a second diaphragm 21 and a second substrate 22 for supporting the second diaphragm 21.
  • the second substrate 22 is fixed on the PCB 4, for example, by welding.
  • the second substrate 22 includes a bottom wall 221 and a side wall 222.
  • the second diaphragm 21, the bottom wall 221 and the side wall 222 (that is, between the second diaphragm 21 and the second substrate 22) form a rear horn cavity 23.
  • a front horn cavity 24 is formed on the side of the two diaphragm 21 opposite to the back horn cavity 23.
  • the speaker front cavity 24 is connected to the microphone front cavity 34 (see FIG. 8), so that the microphone 3 and the speaker 2 can share the front cavity, which can improve the space utilization of the microphone 3 and the speaker 2, thereby solving the space occupied by the speaker and the microphone. Big problem.
  • the second diaphragm 21 and the second substrate 22 may be formed by etching monocrystalline or polycrystalline silicon materials together, and a piezoelectric material (for example, ceramic material) is sprayed on the etched second diaphragm 21 , Or cover a layer of piezoelectric ceramics on the etched first diaphragm 32, so that the first signal processing chip 41 electrically connected to the horn 2 can excite the second diaphragm 21, so that the second diaphragm 21 Vibrates relative to the second base 22 to produce sound, that is, the horn 2 can first convert an electrical signal into a mechanical deformation, and then convert the mechanical deformation into a sound signal, so as to achieve sound.
  • a piezoelectric material for example, ceramic material
  • the bottom wall 221 is provided with one or more second through holes 43 communicating with the first through hole 43.
  • Hole 223, the first through hole 43 penetrates the first side surface 441 and the second side surface 442 of the PCB 4.
  • the air can pass from the speaker back cavity 23 through the second through hole 223 and the first through hole 43 to the outside of the first side 441 of the PCB4 (this is because the first side of the PCB4 441 is connected to the environment) outflow.
  • air can also flow from the outside of the first side surface 441 of the PCB 4 through the first through hole 43 and the second through hole 223 into the speaker rear cavity 23.
  • FIG. 10 is another schematic diagram of the structure of the speaker 2 and the PCB 4, and FIG. 11 is a top view of the second diaphragm 21 of the speaker 2 shown in FIG. 10.
  • the horn 2 is different from the horn 2 shown in FIG. 9 in that one end of the second diaphragm 21 is fixed on the side wall 222, and the other end is a free end (that is, a cantilever beam structure).
  • the vibration amplitude of the second diaphragm 21 can be greater than the vibration amplitude of the first diaphragm 32.
  • the second diaphragm 21 with the structure shown in FIG. 10 and FIG. 11 has a larger bending amplitude than the second diaphragm 21 with the structure shown in FIG. 9, so that the second diaphragm 21 can emit sound.
  • the size range is larger.
  • the second diaphragm 21 is a fan-shaped structure with the same cross-sectional area, and the total The number can be six to fill the circular area to a greater extent.
  • the circular area may also have other shapes, such as a rectangle.
  • the second diaphragm 21 may have a triangular structure, and the number may be four, so as to occupy the rectangular area to a greater extent.
  • the microphone 3 is fixed by the first PCB401 and the PCB4. Specifically, the microphone 3 can be fixed on the PCB4 by means of SMT patch. Similarly, the first signal processing chip 41 and the speaker 2 are also fixed. It can be fixed on PCB4 by means of SMT patch, so as to solve the inconsistency of sound effects caused by differences in manual assembly modules of the whole machine, and improve the reliability of the product.
  • the second diaphragm 21 of the horn 2 is made of monocrystalline or polycrystalline silicon material (using the high temperature resistance characteristics of silicon material), the horn 2 can also be fixed by means of SMT patches.
  • the speaker is fixed on the PCB by ordinary welding or bonding. This is because the diaphragm of the microphone in the related technology is made of PET, PEN or PEI materials, which are not resistant to high temperatures, so It may not be possible to use the SMT patch process.
  • both the first diaphragm 32 and the second diaphragm 21 are made of piezoelectric materials (for example, ceramic materials), which improves the waterproof and dustproof capabilities of the earphone.
  • the speaker 2 and the microphone 3 provided in this embodiment can pick up and emit sound respectively due to the characteristics of piezoelectric materials, so that there is no coupling between the speaker 2 and the microphone 3 Noise can solve the problem of electrical signal interference caused by the close-range combination of traditional dynamic speakers and microphones.
  • FIGS. 12a and 12b are schematic structural diagrams of the microphone and speaker combination module 10 shown in the second embodiment of the application, wherein FIG. 12a is a schematic structural diagram of the microphone and speaker combination module 10 from a first perspective.
  • FIG. 12b is a schematic diagram of the structure of the microphone and speaker combination module 10 from a second perspective.
  • the difference between the microphone and speaker assembly module 10 shown in this embodiment and the first embodiment is that the speaker 2 and the microphone 3 are integrated into one component (hereinafter referred to as "first integrated body").
  • Figures 13a and 13b which are schematic diagrams of the structure when the speaker 2 and the microphone 3 are integrated into a first integrated body
  • Figure 13a is a schematic structural diagram of the first integrated body from a first perspective
  • Figure 13b is a first integrated body.
  • the first integrated body includes a first bottom wall 201, a first side wall 202 and a second side wall 203 respectively connected to the first bottom wall 201 (see FIG. 14a), a first diaphragm 32 and a second diaphragm 21.
  • first side wall 202 is disposed on the first bottom wall 201 and encloses a cavity
  • second side wall 203 is disposed on the first bottom wall 201
  • the second side wall 203 is located inside the first side wall 202.
  • the two side walls 203 are connected to the first side wall 202 and surround a cavity.
  • both the first diaphragm 32 and the second diaphragm 21 may be one or more, and the number of the first diaphragm 32 and the second diaphragm 21 shown in FIG. 13a is only an example. It can be understood that the first integrated body has at least one first diaphragm 32 and a second diaphragm 21.
  • two adjacent diaphragms ie, the first diaphragm 32 and the second diaphragm 21, the first diaphragm 32 and the first diaphragm 32, or the second diaphragm 21 and the second diaphragm 21
  • a gap 204 between them.
  • FIG. 14a it is a schematic diagram of a part of the microphone 3 in FIG. 13a; as shown in FIG. 14b, it is a schematic diagram of a part of the speaker 2 in FIG. 13a.
  • the first side wall 202 is disposed outside the second side wall 203 and connected to the second side wall 203, the first diaphragm 32 is fixed on the first side wall 202 and the second side wall 203, One end of the second diaphragm 21 is fixed on the first side wall 202, and the other end is a free end (that is, a cantilever beam structure).
  • a microphone back cavity is formed between the first bottom wall 201, the first side wall 202, the second side wall 203, and the first diaphragm 32, and the first diaphragm 32 is formed on the opposite side of the microphone back cavity.
  • Microphone front cavity; the first bottom wall 201, the first side wall 202, the second side wall 203 and the second diaphragm 21 form a speaker back cavity, and the second diaphragm 21 forms a speaker front cavity on the side opposite to the speaker back cavity Cavity. Since the amplitude of the vibration of the second diaphragm 21 may be greater than that of the first diaphragm 32, the change in air pressure caused by the vibration of the second diaphragm 21 is also more significant.
  • the first bottom wall 201 is provided with a first through hole 43 (see FIGS. 9 and 10). ) The connected second through hole 223.
  • the first bottom wall 201, the first side wall 202 and the second side wall 203 respectively connected to the first bottom wall 201 may all be made of single crystal or polycrystalline silicon material, so that the first diaphragm 32
  • the generated electrical signal is transferred to the PCB 4 or the electrical signal received from the PCB 4 is transferred to the second diaphragm 21.
  • the first bottom wall 201 may have a circular structure (see FIG. 13b), the first side wall 202 may be a cylindrical cavity (see FIG. 13a), and the second side wall 203 may have a broken line shape. Structure, the second side wall 203 and the first side wall 202 enclose a fan-shaped cavity (see FIG. 13b), the first side wall 202 may be a cylindrical cavity (see FIG. 13a), and the second side wall 203 may have a broken line shape. Structure, the second side wall 203 and the first side wall 202 enclose a fan-shaped cavity (see FIG.
  • the first diaphragm 32 formed on the first side wall 202 and the second side wall 203 may have a fan-shaped structure ( Refer to Figures 13a and 14a), the second diaphragm 21 formed on the first side wall 202 can be a fan-shaped structure (see Figures 13a and 14b), in which the first diaphragm 32 and the second diaphragm 21
  • the total number can be six to evenly divide the circle into six fan-shaped structures.
  • first bottom wall 201 can also be a square structure or other shapes, and the specific shapes of the first side wall 202, the second side wall 203, the first diaphragm 32, and the second diaphragm 21 can be based on The specific shape of the first bottom wall 201 is correspondingly designed, which is not specifically limited in this application.
  • FIG. 15 it is a schematic diagram of the structure of the first diaphragm 32 and the second diaphragm 21 in FIG. 13a.
  • the six sector structures are defined as: the first sector structure 20a, the second sector structure 20b, the third sector structure 20c, the fourth sector structure 20d, the fifth sector structure 20e, and the sixth sector structure 20f.
  • the combination of the first diaphragm 32 and the second diaphragm 21 may be: the first sector structure 20a is the first diaphragm 32, and the remaining sector structures are the second diaphragm 21; the first sector structure 20a and the fourth sector structure 20d Is the first diaphragm 32, and the rest of the sector structure is the second diaphragm 21; the first sector structure 20a, the third sector structure 20c, and the fifth sector structure 20e are the first diaphragm 32, and the remaining sector structures are the second diaphragm 21
  • the first fan-shaped structure 20a and the second fan-shaped structure 20b are the first diaphragm 32, and the remaining fan-shaped structures are the second diaphragm 21; of course, it also includes other combinations, which are not exhaustively listed in this application. As long as it is ensured that one or more of the fan-shaped structures are the first diaphragm 32, and the remaining fan-shaped structures are the second diaphragm 21.
  • the microphone 3 and the speaker 2 are integrally formed, so that the space utilization rate of the microphone 3 and the speaker 2 can be further improved compared to the separate arrangement of the two.
  • FIG. 16 it is a schematic diagram of the structure when the speaker 2 and the microphone 3 are integrated into a second integrated body.
  • FIG. 17 it is a schematic cross-sectional view of the second integrated body.
  • FIG. 18 it is another schematic cross-sectional view of the second integrated body. 16 to 18, the second integrated body includes a second bottom wall 205, a third side wall 206 and a fourth side wall 207 connected to the second bottom wall 205, a first diaphragm 32 and a second vibration ⁇ 21 ⁇ Film 21.
  • the third side wall 206 is disposed on the second bottom wall 205 and encloses the cavity; the fourth side wall 207 is disposed on the second bottom wall 205 and encloses the cavity, and the fourth side wall 207 is located on the third side wall Inside 206; one end of the second diaphragm 21 is fixed on the third side wall 206 and the other end is a free end (that is, the cantilever beam structure); the first diaphragm 32 is fixed on the fourth side wall 207.
  • there is one first diaphragm 32, six second diaphragms 21, and six second diaphragms 21 are evenly distributed on the outer circumference of the first diaphragm 32.
  • the second bottom wall 205 may have a circular structure
  • the third side wall 206 may be a cylindrical cavity
  • the fourth side wall 207 may be a polyhedral (for example, hexahedral) cavity formed on the fourth side wall.
  • the first diaphragm 32 on the 207 may have a polygonal (for example, hexagonal) structure
  • the second diaphragm 21 formed on the third side wall 206 may have a fan-like ring shape (for example, the fan ring shape is close to the first diaphragm 32).
  • the side is changed from a curve to a straight line) structure, wherein the number of the first diaphragm 32 can be one, and the number of the second diaphragm 21 can be six, so as to divide the circle into a hexagonal structure and evenly distribute the six shapes.
  • the second bottom wall 205 may have a circular structure
  • the third side wall 206 may be a cylindrical cavity
  • the fourth side wall 207 may also be a cylindrical cavity formed on the fourth side wall 207
  • the first diaphragm 32 can also have a circular structure
  • the second diaphragm 21 formed on the third side wall 206 can also have a fan ring structure, where the number of the first diaphragm 32 can be one, and the second diaphragm
  • the number of 21 can be six to divide the circle into a circular structure and six fan ring structures evenly distributed around the circular structure.
  • the second bottom wall 205 can also be a square structure or a structure of other shapes, and the specific shapes of the third side wall 206, the fourth side wall 207, the first diaphragm 32 and the second diaphragm 21 can be based on The specific shape of the second bottom wall 205 is correspondingly designed, which is not specifically limited in this application.
  • the second bottom wall 205, the fourth side wall 207, and the first diaphragm 32 form a microphone back cavity, and the first diaphragm 32 forms a microphone front cavity on the side opposite to the microphone back cavity;
  • the bottom wall 205, the third side wall 206, the fourth side wall 207 and the second diaphragm 21 form a horn rear cavity, and the second diaphragm 21 forms a horn front cavity on the opposite side of the horn rear cavity.
  • the first diaphragm 32 is arranged at the center of the second integrated body. This is because considering that the microphone 3 of the headset is mainly used to pick up external noise, the main purpose of the headset is to make the speaker 2 emit sound.
  • the cross-sectional area of the second diaphragm 21 of the speaker 2 needs to be larger than the cross-sectional area of the first diaphragm 32 of the microphone 3.
  • the microphone 3 and the speaker 2 are integrally formed, so that the space utilization rate of the microphone 3 and the speaker 2 can be further improved compared to the separate arrangement of the two.
  • FIG. 19 it is a schematic cross-sectional view of the microphone and speaker assembly module 10 shown in FIGS. 12a and 12b.
  • the speaker 2 and the microphone 3 in FIG. 19 are shown in the form of the second integrated body shown in FIG. 16.
  • the second integrated body is disposed on the second side surface 442 of the PCB 4
  • the first signal processing chip 41 and the second signal processing chip 42 are disposed on the first side surface 441 of the PCB 4.
  • the first signal processing chip 41 and the second signal processing chip 42 may be arranged separately.
  • FIG. 20 it is another schematic cross-sectional view of the microphone and speaker assembly module 10 shown in FIGS. 12a and 12b.
  • the speaker 2 and the microphone 3 in FIG. 20 are shown in the form of the second integrated body shown in FIG. 16.
  • the second integrated body is disposed on the second side surface 442 of the PCB 4
  • the first signal processing chip 41 and the second signal processing chip 42 are disposed on the first side surface 441 of the PCB 4.
  • the first signal processing chip 41 and the second signal processing chip 42 may be integrally arranged, and the two are integrated in a cover 40.
  • the first signal processing chip 41 and the second signal processing chip 42 may be packaged in the cover 40 by SIP (System in Package) packaging.
  • the combined microphone and speaker module 10 shown in FIGS. 6 and 7 can also be packaged in SIP.
  • the first signal processing chip 41 and the second signal processing chip 42 in the microphone and speaker combination module 10 shown in FIG. 6 may be SIP packaged, or the microphone 3 and the speaker 2 may be packaged; for another example, FIG. 7
  • the microphone 3, the speaker 2 and the first signal processing chip 41 in the microphone and speaker combination module 10 shown are SIP packaged.
  • external noise enters the earphone from the sound hole 12 (see FIG. 3) and is picked up by the microphone 3, so that the first diaphragm 32 bends as the air pressure changes.
  • An electrical signal will be generated, and the generated electrical signal will be transmitted to the PCB4 through the second side wall 203 and the first bottom wall 201 (or through the fourth side wall 207 and the second bottom wall 205), and then to the first on the PCB4 Signal processing chip 41.
  • the first signal processing chip 41 processes the electrical signal and transmits it to the second signal processing chip 42 for reverse processing.
  • the electrical signal after reverse processing is transmitted to the PCB 4 and the first bottom wall 201 through the first signal processing chip 41.
  • the first side wall 202 and the second diaphragm 21 (or PCB4, the second bottom wall 205, the third side wall 206 and the second diaphragm 21), the second diaphragm 21 is transmitted from the first signal processing chip 41
  • the reversed noise electrical signal outputs a sound signal opposite to the noise. This sound signal opposite to the noise and the noise directly entering the ear cancel each other out, thereby playing a good noise reduction effect.
  • FIGS. 21a and 21b are schematic structural diagrams of the microphone and speaker combination module 10 shown in the third embodiment of the application, wherein FIG. 21a is a schematic structural diagram of the microphone and speaker combination module 10 from a first perspective.
  • FIG. 21b is a schematic diagram of the structure of the microphone and speaker combination module 10 from a second perspective.
  • the difference between the microphone and speaker combination module 10 shown in this embodiment and the second embodiment is that the speaker 2, the microphone 3 and the first signal processing chip 41 are integrated into one component. Specifically, in this embodiment, the speaker 2, the microphone 3 and the first signal processing chip 41 are all located on the second side of the PCB 4.
  • the speaker 2 and the microphone 3 in the third embodiment are integrated into the first integrated body or the second integrated body, and then combined with the first signal processing chip 41 Electrical connection.
  • FIG. 22 it is a schematic cross-sectional view of the microphone and speaker combination module 10 shown in FIGS. 21a and 21b.
  • Fig. 22 shows the positional relationship between the speaker 2 and the microphone 3 and the first signal processing chip 41 after the speaker 2 and the microphone 3 are integrated into a second integrated body. That is, the speaker 2, the microphone 3 and the first signal processing chip 41 are all located on the second side of the PCB4.
  • FIG. 23 it is another schematic cross-sectional view of the microphone and speaker combination module 10 shown in FIGS. 21a and 21b.
  • FIG. 23 shows the positional relationship between the speaker 2 and the microphone 3 and the first signal processing chip 41 after the speaker 2 and the microphone 3 are integrated into a second integrated body, that is, the speaker 2, the microphone 3 and the first signal processing chip 41 are all located on the second side of the PCB 4.
  • the microphone and speaker combination module 10 shown in FIG. 23 performs SIP packaging on the microphone 3, the speaker 2, and the first signal processing chip 41.
  • the cover 40 since the cover 40 is arranged outside the microphone and speaker assembly module 10, it is necessary to provide a third channel on the cover 40 that communicates with the microphone and speaker assembly module 10.
  • the hole 40a allows gas to flow into or out of the cover body 40 through the third through hole 40a.
  • the way of integrating the speaker 2 and the microphone 3 ie, the way of integrating into the first integrated body or the second integrated body
  • the way of integrating into the first integrated body or the second integrated body is the same as that of the second embodiment, and will not be repeated here.
  • the speaker 2 and the microphone 3 are integrated into one body, that is, the first integrated body or the second integrated body is integrated, which can be more enlarged than that in the first embodiment.
  • the volume of the front cavity of the speaker can further provide favorable conditions for functions such as sound pickup, active noise reduction and uplink noise reduction in the ear canal.
  • the PCB4 includes a second PCB402 and a third PCB403, that is, the microphone and speaker combination module 10 includes a speaker 2, a microphone 3, a signal processing unit, a second PCB402, and a third PCB403, where the signal processing unit may include The first signal processing unit and the second signal processing unit, for example, the first signal processing chip 41 and the second signal processing chip 42 (the second signal processing chip 42 is not shown in FIG. 22).
  • the specific structure of the microphone 3 can be seen in FIG. 8.
  • the microphone 3 is fixed on the second PCB 402 through the first PCB 401, and the signal processing unit (for example, the first signal processing chip 41) is fixed on the second PCB 402.
  • the microphone 3 and the signal processing unit are both fixed on the second PCB 402 through the SMT process.
  • the speaker 2 is arranged between the second PCB 402 and the third PCB 403, so that the microphone 3 and the speaker 2 are assembled and formed, that is, the microphone 3 and the speaker 2 can be realized independently and staggered along the sound output direction.
  • the horn 2 includes a driving system 20, a diaphragm 25 and a bracket 26, wherein:
  • the bracket 26 is arranged between the second PCB 402 and the third PCB 403, and the bracket 26 plays a role of protecting the speaker 2 and supporting the diaphragm 25.
  • the bracket 26 can be made of iron, aluminum alloy, or ABS plastic to ensure good strength.
  • the diaphragm 25 is arranged on the bracket 26, and the second PCB 402 is arranged in the sound output direction of the diaphragm 25 (that is, in front of the diaphragm 25).
  • the second PCB 402 can not only integrate the microphone 3 and the first signal processing chip 41, but also Since it is installed in front of the diaphragm 25, it plays a role of protecting the diaphragm 25.
  • a speaker front cavity is formed between the diaphragm 25 and the second PCB 402.
  • the second PCB 402 is provided with a sound hole 16 through which the speaker front cavity communicates with the microphone front cavity. At the same time, the sound hole 16 can also communicate with the front cavity 15 (see FIG. 3).
  • the driving system 20 is arranged on the third PCB 403, and the driving system 20 is used to drive the diaphragm 25 to vibrate.
  • the driving system 20 may adopt a moving coil type or a piezoelectric type. Wherein, when the driving system 20 adopts a moving coil type, the driving system 20 is a magnetic circuit system (not shown in the specific structure diagram), and the voice coil (not shown in the diagram) of the diaphragm 25 is inserted into the driving system 20.
  • the driving mode may be the prior art, and the specific composition of the magnetic circuit system and the setting mode of the voice coil and the second diaphragm 21 will not be repeated here.
  • the specific structure of the driving system 20 can be seen in FIG. 9 or FIG. 10.
  • the center (ie, the bottom end) of the diaphragm 25 is attached to the second diaphragm 21, thus passing through the second diaphragm.
  • the vibration of the diaphragm 21 drives the diaphragm 25 to vibrate to emit sound, and the sound is emitted from the sound hole 16 provided at the center of the second PCB 402.
  • the second PCB 402 and the third PCB 403 are respectively fixed to the two ends of the bracket 26, and the driving system 20 is fixed to the third PCB 403.
  • the driving system 20 is a piezoelectric type
  • the driving system 20 can be fixed to the third PCB 403 by the SMT process .
  • the microphone 3 and the speaker 2 are arranged separately, wherein the two are independent and are arranged staggered along the sound output direction, so that the space utilization of the microphone 3 and the speaker 2 can be improved.
  • the microphone and speaker combination module 10 provided in the first to fourth embodiments of the present application, in which the first and fourth embodiments show a structure in which the microphone 3 and the speaker 2 are separately arranged, and the second embodiment And the third embodiment shows a structure in which the microphone 3 and the speaker 2 are integrally formed.
  • the speaker 2, the microphone 3, and the signal processing unit are integrated to reduce the space occupied by the three. Since the speaker 2 is arranged in the front cavity 15, the front cavity 15 will not be squeezed, and the sound channel will not be disturbed. The cross-sectional area is reduced, thereby improving the high-frequency sound of the headset.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Manufacturing & Machinery (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Abstract

本申请实施例提供了一种麦克风与喇叭组合模组、耳机及终端设备。该麦克风与喇叭组合模组包括麦克风、喇叭和PCB,其中,麦克风具有麦克风前腔,喇叭具有喇叭前腔,麦克风前腔和喇叭前腔连通;麦克风和喇叭设置于PCB上,PCB上设置有信号处理单元,麦克风和喇叭分别与信号处理芯片电连接。本申请通过将麦克风和喇叭设置于PCB上且使麦克风前腔和喇叭前腔连通,从而使得麦克风和喇叭能够共用前腔,如此可提高麦克风和喇叭的空间利用率,进而解决了喇叭与麦克风占用空间大的问题。

Description

麦克风与喇叭组合模组、耳机及终端设备 技术领域
本申请涉及无线耳机技术领域,尤其涉及一种麦克风与喇叭组合模组、耳机及终端设备。
背景技术
随着TWS(True Wirless Stereo,真正无线立体声)无线蓝牙耳机技术的发展,TWS耳机包括众多传感器,因此导致耳机元件的集成度越来越高,耳机的内部空间也越来越紧张。
为了获得良好的上行通话效果以及ANC(Active Noise Cancellation,主动降噪)的反馈信号拾取需求,通常在喇叭(又称为扬声器)与耳道间设置有麦克风。利用麦克风拾取周围的噪声信号,并通过电路将此噪声信号反向后传输给喇叭,由喇叭输出的反向噪声信号与直接进入耳朵的噪声信号相抵消,从而达到降低噪声的目的。
如图1所示,其为现有(降噪)耳机的剖面示意图。该耳机包括第一壳体11'和第二壳体12',喇叭2'的磁路***21'设置于第一壳体11'内,喇叭2'的振膜22'与第二壳体12'形成喇叭2'的前腔13'。喇叭2'与麦克风3'为独立设置的器件,麦克风3'固定于PCB4'(Printed Circuit Board,印刷电路板)上,PCB4'设置于第二壳体12'的外部,喇叭2'和PCB4'之间通过FPC(Flexible Printed Circuit,柔性电路板)(图中未示出)电连接。由于麦克风3'的设置方式,导致了喇叭2'的前腔13'被挤压,而使得前腔13'的出声通道131'的横截面积减小,因此会影响喇叭2'的高频响应,从而牺牲了耳机的高频音效。
因此,目前亟待需要一种麦克风与喇叭组合模组、耳机及终端设备来解决上述问题。
申请内容
鉴于背景技术中存在的问题,本申请的目的在提供一种麦克风与喇叭组合模组、耳机及终端设备,以解决喇叭与麦克风占用空间大的问题。
第一方面,本申请技术方案提供了一种麦克风与喇叭组合模组,包括:
麦克风,具有麦克风前腔;
喇叭,具有喇叭前腔,所述麦克风前腔和所述喇叭前腔连通;
PCB,所述麦克风和所述喇叭设置于所述PCB上,所述PCB上设置有信号处理单元,所述麦克风和所述喇叭分别与所述信号处理单元单元电连接。通过将麦克风的麦克风前腔和喇叭的喇叭前腔连通,使得麦克风和喇叭能够共用前腔,如此可提高麦克风和喇叭的空间利用率。
在一种可能的设计中,所述麦克风和所述喇叭为分体设置,例如可以是独立且沿垂直于出音方向错开设置,还可以是独立且沿出音方向错开设置,如此均可提高麦克风和喇叭的空间利用率。
在一种可能的设计中,所述麦克风包括外壳、设置于所述外壳内的第一振膜和用于支撑所述第一振膜的第一基底;
所述麦克风与喇叭组合模组包括第一PCB,所述外壳和所述第一基底固定于所述第一PCB上,所述外壳、所述第一振膜、所述第一基底和所述第一PCB之间形成所述麦克风前腔;
所述喇叭包括第二振膜和用于支撑所述第二振膜的第二基底,所述第二振膜和所述第二基底之间形成喇叭后腔,所述第二振膜相对所述喇叭后腔相反的一侧形成所述喇叭前腔;
所述第一PCB和所述第二基底设置于所述PCB上。通过第一PCB和第二基底设置于所述PCB上,如此能够实现麦克风和喇叭中信号的传递。
在一种可能的设计中,所述第一基底和所述第二基底分别采用硅材料制成,所述第一振膜采用硅材料和压电材料制成,所述第二振膜采用硅材料和压电材料制成。如此设置,当第一振膜和第二振膜产生振动时,第一振膜能将机械形变转换为电信号,并通过第一基底进行传递;第一振膜也能将机械形变转换为电信号,并通过第二基底进行传递。
在一种可能的设计中,所述PCB包括:
第二PCB,麦克风和所述信号处理单元均设置于所述第二PCB上;
第三PCB,所述喇叭设置于第二PCB和所述第三PCB之间。如此设置方式,可实现麦克风和喇叭为独立且沿出音方向错开设置。
在一种可能的设计中,所述喇叭包括:
支架,设置于所述第二PCB和所述第三PCB之间;
膜片,设置于所述支架上,所述第二PCB设置于所述膜片的出音方向上,所述膜片和所述第二PCB之间形成所述喇叭前腔,所述第二PCB设置有发声孔,所述喇叭前腔通过所述发声孔与所述麦克风前腔连通;
驱动***,设置于所述第三PCB上,所述驱动***用于驱动所述膜片振动。通过将第二PCB设置于膜片的出音方向上,使得支架可以起到保护喇叭和支撑膜片的作用。
在一种可能的设计中,所述麦克风和所述喇叭为一体成型设置,如此相比二者分体设置可进一步提高麦克风和喇叭的空间利用率。
在一种可能的设计中,所述麦克风和所述喇叭形成第一集成体,所述第一集成体包括:
第一底壁,设置于所述PCB上;
第一侧壁,设置于所述第一底壁上并围合成腔体;
第二侧壁,设置于所述第一底壁上,所述第二侧壁位于所述第一侧壁的内部,所述第二侧壁与所述第一侧壁连接并围合成腔体;
第一振膜,设置于所述第一侧壁和所述第二侧壁上;
第二振膜,一端设置于所述第一侧壁上,另一端为自由端;
所述第一底壁、所述第一侧壁、所述第二侧壁和所述第一振膜之间形成麦克风后腔,所述第一底壁、所述第一侧壁、所述第二侧壁和所述第二振膜之间形成喇叭后腔,所述第一振膜和所述第二振膜之间具有间隙;
所述第一振膜相对所述麦克风后腔相反的一侧形成所述麦克风前腔,所述第二振膜相对所述喇叭后腔相反的一侧形成所述喇叭前腔。如此可通过第一振膜实现噪音的拾取,通过第二振膜实现声音的发出;且由于第二振膜的另一端为自由端,因此第二振膜相比第一振膜振动的幅度更大。
在一种可能的设计中,所述第一振膜为多个,相邻的两个所述第一振膜之间具有间隙,如此可利于第一振膜的振动。
在一种可能的设计中,所述第二振膜为多个,相邻的两个所述第二振膜之间具有间隙,如此可利于第二振膜的振动。
在一种可能的设计中,所述麦克风和所述喇叭形成第二集成体,所述第二集成体包括:
第二底壁,设置于所述PCB上;
第三侧壁,设置于所述第二底壁上并围合成腔体;
第四侧壁,设置于所述第二底壁上并围合成腔体,所述第四侧壁位于所述第三侧壁的内部;
第一振膜,设置于所述第四侧壁上;
第二振膜,一端设置于所述第三侧壁上,另一端为自由端;
所述第二底壁、所述第四侧壁和所述第一振膜之间形成麦克风后腔,所述第二底壁、所述第三侧壁、所述第四侧壁和所述第二振膜之间形成喇叭后腔,所述第一振膜和所述第二振膜之间具有间隙;
所述第一振膜相对所述麦克风后腔相反的一侧形成所述麦克风前腔,所述第二振膜相对所述喇叭后腔相反的一侧形成所述喇叭前腔。如此可通过第一振膜实现噪音的拾取,通过第二振膜实现声音的发出;且由于第二振膜的另一端为自由端,因此第二振膜相比第一振膜振动的幅度更大。
在一种可能的设计中,所述第一振膜为一个且设置于所述第二集成体的中心处。考虑到耳机的麦克风主要用于拾取外界噪声,因此第一振膜设置的横截面积不需过大,例如可以是第二集成体的中心处。
在一种可能的设计中,所述第二振膜为多个,相邻的两个所述第二振膜之间具有间隙,如此可利于第二振膜的振动。
在一种可能的设计中,所述麦克风和所述喇叭分别采用MEMS工艺制成,如此方便对麦克风和喇叭的集成。
在一种可能的设计中,所述麦克风、所述喇叭和所述信号处理单元采用SMT工艺固定于所述PCB上,如此解决了因手工整机组装模组存在差异而导致的音效不一致,提高了产品的可靠性。
在一种可能的设计中,所述信号处理单元包括:
第一信号处理单元,分别与所述麦克风和所述喇叭电连接;
第二信号处理单元,与所述第一信号处理单元电连接。通过第一信号处理单元能够实现对麦克风的输出阻抗进行匹配和具有更加均衡效果的通话和音频质量,通过第二信号处理单元将噪音的电信号进行反向处理,以实现主动降噪。
在一种可能的设计中,所述第一信号处理单元包括ASIC芯片,所述第二信号处理单元包括DSP芯片。通过ASIC芯片实现对麦克风和喇叭的驱动,通过DSP芯片实现将噪音的电信号进行反向处理。
在一种可能的设计中,所述PCB设置有第一通孔,所述喇叭设置有第二通孔,所述第一通孔与所述第二通孔连通,如此可保证喇叭后腔与环境之间的压力平衡。
第二方面,本申请技术方案提供了一种耳机,包括:
第一壳体;
第二壳体,与所述第一壳体连接;
麦克风与喇叭组合模组,设置于所述第一壳体和所述第二壳体之间,所述麦克风与喇叭组合模组为如上述的麦克风与喇叭组合模组;
所述第一壳体和所述PCB之间形成所述麦克风和所述喇叭的后腔,所述第二壳体和所述PCB之间形成所述麦克风和所述喇叭的前腔。如此设置可实现麦克风和喇叭共用前腔,进而可提高麦克风和喇叭的空间利用率。
在一种可能的设计中,所述第二壳体包括入耳部,所述入耳部内设置有出声孔,所述出声孔与所述前腔连通,所述入耳部内设置有阻尼网。通过设置阻尼网可以过滤掉喇叭发出的高频声音,从而使得耳机的低音效果更显著。
在一种可能的设计中,所述第二壳体还包括与所述入耳部连接的第一阶梯部,所述喇叭和所述麦克风设置于所述第一阶梯部的内部腔体中;
所述第一阶梯部的内径大于所述入耳部的内径,如此可以最大程度地增大前腔的体积。
在一种可能的设计中,所述第二壳体还包括与所述第一阶梯部连接的第二阶梯部,所述第二阶梯部和所述第一壳体固定;
所述第二阶梯部的内径大于所述第一阶梯部的内径,所述第二阶梯部内设置有台阶,所述PCB固定于所述台阶上,如此可起到对麦克风与喇叭组合模组的收容作用。
第三方面,本申请技术方案提供了一种终端设备,包括如上述所述的麦克风与喇叭组合模组,以降低麦克风和喇叭占用终端设备的空间。
可见,在以上各个方面,通过将麦克风的麦克风前腔和喇叭的喇叭前腔连通,使得麦克风和喇叭能够共用前腔,如此可提高麦克风和喇叭的空间利用率,从而解决了喇叭与麦克风占用空间大的问题。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本申请。
附图说明
图1为现有(降噪)耳机的剖面示意图;
图2为本申请实施例示出的耳机的分解示意图;
图3为本申请实施例示出的耳机的剖面示意图;
图4a、图4b为本申请实施例一所示的麦克风与喇叭组合模组的结构示意图;
图5为图4中喇叭、麦克风和信号处理芯片的通信示意图;
图6为图4a和图4b所示的麦克风与喇叭组合模组的一种剖面示意图;
图7为图4a和图4b所示的麦克风与喇叭组合模组10的另一种剖面示意图;
图8为麦克风与PCB配合的结构示意图;
图9为喇叭与PCB配合的一种结构示意图;
图10为喇叭与PCB配合的另一种结构示意图;
图11为图10所示喇叭的第二振膜的俯视图;
图12a、图12b为本申请实施例二所示的麦克风与喇叭组合模组的结构示意图;
图13a、图13b为喇叭与麦克风集成为第一集成体时的结构示意图;
图14a为图13a中的麦克风其中一部分的结构示意图;
图14b为图13a中的喇叭其中一部分的结构示意图;
图15为图13a中的第一振膜和第二振膜的结构示意图;
图16为喇叭与麦克风集成为第二集成体时的结构示意图;
图17为第二集成体的一种剖面示意图;
图18为第二集成体的另一种剖面示意图;
图19为图12a和图12b所示的麦克风与喇叭组合模组的一种剖面示意图;
图20为图12a和图12b所示的麦克风与喇叭组合模组的另一种剖面示意图;
图21a、图21b为本申请实施例三所示的麦克风与喇叭组合模组的结构示意图;
图22为图21a和图21b所示的麦克风与喇叭组合模组10的一种剖面示意图;
图23为图21a和图21b所示的麦克风与喇叭组合模组10的另一种剖面示意图;
图24为本申请实施例四所示的麦克风与喇叭组合模组10的分解示意图。
附图标记:
11'-第一壳体;
12'-第二壳体;
13'-前腔;
131'-出声通道;
2'-喇叭;
21'-磁路***;
22'-振膜;
3'-麦克风;
4'-PCB;
10-麦克风与喇叭组合模组;
11-第一壳体;
12-第二壳体;
121-入耳部;
122-第一阶梯部;
123-第二阶梯部;
123a-台阶;
124-阻尼网;
13-出声孔;
14-后腔;
15-前腔;
16-发声孔;
2-喇叭;
20-驱动***;
21-第二振膜;
211-间隙;
22-第二基底;
221-底壁;
222-侧壁;
223-第二通孔;
23-喇叭后腔;
24-喇叭前腔;
25-膜片;
201-第一底壁;
202-第一侧壁;
203-第二侧壁;
204-间隙;
205-第二底壁;
206-第三侧壁;
207-第四侧壁;
20a-第一扇形结构;
20b-第二扇形结构;
20c-第三扇形结构;
20d-第四扇形结构;
20e-第五扇形结构;
20f-第六扇形结构;
3-麦克风;
31-外壳;
311-音孔;
32-第一振膜;
33-第一基底;
34-麦克风前腔;
35-麦克风后腔;
4-PCB;
40-罩体;
40a-第三通孔;
41-第一信号处理芯片;
42-第二信号处理芯片;
43-第一通孔;
441-第一侧面;
442-第二侧面;
401-第一PCB;
402-第二PCB;
403-第三PCB。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
具体实施方式
为了更好的理解本申请的技术方案,下面结合附图对本申请实施例进行详细描述。
应当明确,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的 “一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
需要注意的是,本申请实施例所描述的“上”、“下”、“左”、“右”等方位词是以附图所示的角度来进行描述的,不应理解为对本申请实施例的限定。此外,在上下文中,还需要理解的是,当提到一个元件连接在另一个元件“上”或者“下”时,其不仅能够直接连接在另一个元件“上”或者“下”,也可以通过中间元件间接连接在另一个元件“上”或者“下”。
相关技术中,一些终端设备具有拾取声音和发出声音的功能,即具有麦克风和喇叭等声学器件。而这些声学器件在终端设备内为独立设置的器件,占用了终端设备较多的内部空间。
为了解决上述技术问题,本申请实施例提供了一种终端设备,该终端设备内设置有麦克风与喇叭组合模组,该麦克风与喇叭组合模组能够将麦克风和喇叭同时集成在PCB上,以降低麦克风和喇叭占用的空间。其中,该终端设备例如可以是头戴式设备,具体可以是AR眼镜、VR眼镜;例如还可以是便携式设备,具体可以是耳机、手机和手环;当然还可以是其它具有拾取声音和发出声音功能的产品,在此不进行枚举。
例如以终端设备可以是耳机为例,在一种实现方案中,该耳机可以是TWS(TrueWirlessStereo,真正无线立体声)无线蓝牙耳机。
如图2所示,其为本申请实施例示出的耳机的分解示意图。该耳机包括第一壳体11和第二壳体12,第一壳体11和第二壳体12之间形成容纳麦克风与喇叭组合模组10的空间,该麦克风与喇叭组合模组10包括喇叭2、麦克风3和PCB4,喇叭2和麦克风3固定于PCB4上,PCB4上还可以设置有用于处理电信号的信号处理单元,例如信号处理芯片,喇叭2和麦克风3分别通过PCB4与信号处理单元电连接。在一种实施方式中,信号处理单元可以包括第一信号处理单元和第二信号处理单元,例如第一信号处理单元为第一信号处理芯片41和第二信号处理单元为第二信号处理芯片42。其中,喇叭2 和麦克风3分别通过PCB4与第一信号处理芯片41实现电连接,第一信号处理芯片41通过PCB4与第二信号处理芯片42实现电连接。通过第一信号处理单元能够实现对麦克风3的输出阻抗进行匹配和具有更加均衡效果的通话和音频质量。第二信号处理单元可以将噪音的电信号进行反向处理,以实现主动降噪,详细工作过程可参见下文描述。
在一些实施方式中,喇叭2、麦克风3、第一信号处理芯片41和第二信号处理芯片42均焊接于PCB4上,例如可以采用SMT(Surface Mounted Technology,表面贴装技术)进行焊接。
在一些实施方式中,第一信号处理芯片41包括但不限于ASIC(Application Specific Integrated Circuit,专用集成电路)芯片,例如还可以包括FPGA(Field-Programmable Gate Array,现场可编程门阵列)芯片、或DSP(Digital Signal Processor,数字信号处理单元)芯片等。
在一些实施方式中,第二信号处理芯片42包括但不限于DSP芯片,例如还可以包括FPGA芯片、、或集成有DSP芯片(或FPGA芯片)的BT SOC(Bluetooth System on Chip,蓝牙片上***,即蓝牙芯片)。
需要说明的是,以第一信号处理芯片41包括ASIC芯片为例,第一信号处理芯片41可以包括一个ASIC芯片,该ASIC芯片能够实现对麦克风3的输出阻抗进行匹配和具有更加均衡效果的通话和音频质量。可以理解的,第一信号处理芯片41也可以包括两个ASIC芯片,其中,前一个ASIC芯片能够实现对麦克风3的输出阻抗进行匹配,后一个ASIC芯片能够实现更加均衡效果的通话和音频质量。
如图3所示,其为本申请实施例示出的耳机的剖面示意图。第一壳体11和PCB4之间形成喇叭2和麦克风3的后腔14,第二壳体12和PCB4之间形成喇叭2和麦克风3的前腔15。也就是说,PCB4将形成容纳麦克风与喇叭组合模组10的空间分隔为后腔14和前腔15。其中,喇叭2和麦克风3共用前腔15,如此可提高喇叭2和麦克风3的空间利用率;同时,由于喇叭2设置于前腔15内,不会挤压前腔15,进而不会造成出声通道的横截面积减小,因此不仅节省了耳机的内部空间,还可以保证喇叭2的高频音效。
在一些实施方式中,第二壳体12包括用于***人耳耳道中的入耳部121,入耳部121的内部设置有出声孔13,喇叭2发出的声音能通过前腔15和出 声孔13传递至人耳中。由于入耳部121的外部套设有软胶套(图中未示出),软胶套和人耳之间可能因密封性不够而具有间隙,外界噪声则会通过此间隙从外界进入到出声孔13内,进而进入到前腔15后被麦克风3拾取。外界噪声也能通过出声孔13和前腔15被麦克风3拾取,麦克风3将声音信号进行处理,例如可以将声音信号转换为电信号,并将电信号传递至第一信号处理芯片41进行处理,第一信号处理芯片41处理后生成的音频电信号传递至第二信号处理芯片42中进行反向处理,并由喇叭2将反向处理后的电信号转换为声音信号发出,以实现主动降噪。在一种实现方式中,上述电信号的传递通过PCB4来完成。
在一些实施方式中,第二壳体12还包括与入耳部121连接的第一阶梯部122,喇叭2和麦克风3设置于第一阶梯部122的内部腔体中。其中,第一阶梯部122所在位置为耳机未***耳道的部分或者刚刚***耳道的部分。第一阶梯部122的内径大于入耳部121的内径,前腔15包括第一阶梯部122的内部腔体,如此通过设置第一阶梯部122,可以最大程度地增大前腔15的体积。
在一些实施方式中,前腔15内设置有阻尼网124,例如阻尼网124可以采用粘结的方式固定在入耳部123的内壁上,通过设置阻尼网124可以过滤掉喇叭2发出的高频声音,从而使得耳机的低音效果更显著。在一种实现方式中,阻尼网124可以采用含电磁屏蔽材料制成,例如采用导电橡胶或导电泡棉制成,如此可提升麦克风3的电磁屏蔽能力。在一种实现方式中,阻尼网124更靠近人耳耳道的一侧,如此可尽可能地防止灰尘进入到出声孔13的侧壁而玷污出声孔13。
在一些实施方式中,第二壳体12还包括与第一阶梯部122连接的第二阶梯部123,第二阶梯部123和第一壳体11固定。在一种实现方式中,第二阶梯部123内设置有台阶123a,PCB4固定于台阶123a上,例如通过焊接或粘结的方式。第二阶梯部123的内径大于第一阶梯部122的内径,如此可起到对麦克风与喇叭组合模组10的收容作用。
下面对麦克风与喇叭组合模组10的具体结构和设计方式进行描述。
如图4a和图4b所示,其为本申请实施例一所示的麦克风与喇叭组合模组的结构示意图,其中图4a为麦克风与喇叭组合模组10在第一视角下的结构示意图,图4b为麦克风与喇叭组合模组10在第二视角下的结构示意图。 该麦克风与喇叭组合模组包括喇叭2、麦克风3和PCB4,喇叭2和麦克风3分别固定于PCB4上,PCB4上设置有用于处理电信号的信号处理单元,例如信号处理芯片,喇叭2和麦克风3分别通过PCB4与信号处理芯片电连接。在一种实施方式中,信号处理单元可以包括第一信号处理单元和第二信号处理单元,例如第一信号处理芯片41和第二信号处理芯片42。其中,喇叭2和麦克风3分别通过PCB4与第一信号处理芯片41实现电连接,第一信号处理芯片41通过PCB4与第二信号处理芯片42实现电连接。PCB4上还设置有与喇叭2连通的第一通孔43,如此可保证喇叭后腔与环境之间的压力平衡(具体过程可见图9描述)。
在一些实施方式中,喇叭2和麦克风3均采用MEMS(Micro-Electro-Mechanical System,微机电***)工艺制成,采用MEMS工艺制成的喇叭2和麦克风3具有体积小、重量轻、功耗低、可靠性高、灵敏度高和易于集成的优点,如此方便对喇叭2和麦克风3的集成。
如图5所示,其为图4中喇叭2、麦克风3和信号处理芯片的通信示意图。具体地,第一信号处理芯片41内集成有麦克风驱动模块411、信号处理模块412和喇叭驱动模块413。其中:麦克风驱动模块411与麦克风3电连接,用于接收由麦克风3发送的电信号(由于该麦克风3可以是压电式,因此噪声可以通过麦克风3转换为电信号);麦克风驱动模块411与信号处理模块412电连接,信号处理模块412能够将由麦克风驱动模块411发送的电信号进行处理(例如包括对麦克风3的输出阻抗进行匹配);信号处理模块412与第二信号处理芯片42电连接,第二信号处理芯片42将由信号处理模块412发送的电信号进行反向处理;喇叭驱动模块413分别与第二信号处理芯片42和喇叭2电连接,喇叭驱动模块413用于将由第二信号处理芯片42发送的电信号传输至喇叭2,喇叭2用于将由喇叭驱动模块413发送的电信号转化为声音信号发出,以实现主动降噪。
如图6所示,其为图4a和图4b所示的麦克风与喇叭组合模组10的一种剖面示意图。在本实施方式中,喇叭2和麦克风3可以位于PCB4的第二侧,第一信号处理芯片41和第二信号处理芯片42可以位于PCB4的第一侧。
如图7所示,其为图4a和图4b所示的麦克风与喇叭组合模组10的另一种剖面示意图。在本实施方式中,喇叭2、麦克风3和第一信号处理芯片41可以位于PCB4的第二侧,第二信号处理芯片42可以位于PCB4的第一侧。
在本实施方式中,麦克风3和喇叭2为分体设置,其中,二者为独立且沿垂直于出音方向错开设置,如此可提高麦克风3和喇叭2的空间利用率。
需要说明的是,只要保证第一信号处理芯片41分别与喇叭2和麦克风3电连接即可,而对第一信号处理芯片41是否与喇叭2和麦克风3位于相同一侧还是相反一侧,本申请对其不进行具体限定。在一种实现方式中,电信号和/或电信号的传递可以通过PCB4来完成。
下面对图6或图7所示喇叭2和麦克风3的具体结构分别进行描述。
如图8所示,其为麦克风3与PCB配合的结构示意图。麦克风3包括外壳31、第一振膜32和用于支撑第一振膜32的第一基底33,外壳31和第一基底33固定于第一PCB401上,例如外壳31固定在第一基底33,第一基底33固定在第一PCB401上;再例如,外壳31固定在第一PCB401上,第一基底33固定在第一PCB401上,例如通过焊接的方式进行固定。然后,麦克风3通过第一PCB401固定于PCB4上,例如通过焊接的方式进行固定。在一种实现方式中,第一振膜32和第一基底33可以采用单晶或多晶硅材料一体蚀刻而成,并在蚀刻后的的第一振膜32上喷涂压电材料(例如陶瓷材料),或在蚀刻后的的第一振膜32上盖设一层压电陶瓷片,如此制成压电式麦克风。
其中,外壳31、第一振膜32、第一基底33和第一PCB401之间形成麦克风前腔34,第一振膜32、第一基底33和第一PCB401之间形成麦克风后腔35。外壳31上设置有与麦克风前腔34连通的音孔311,声音通过音孔311传递到麦克风3的第一振膜32上,以使第一振膜32随着气压变化而弯曲。
在本实施方式中,第一振膜32和第一基底33可以采用单晶或多晶硅材料制成,且第一振膜32还可以在其表面喷涂压电材料(例如陶瓷材料),或在蚀刻后的的第一振膜32上盖设一层压电陶瓷片。第一振膜32弯曲时,第一振膜32会产生电信号;与麦克风3电连接的第一信号处理芯片41可以将这种电信号进行处理。在一种实现方式中,电信号的传递通过第一基底33、第一PCB401和PCB4来完成。这样可以避免使用导线连接,也可以避免在外壳31上开设用于穿过导线的通道,更加简单方便。
另外,实现第一信号处理芯片41与麦克风3电连接的方式还可以是采用导线。
在本实施方式中,该外壳31大致呈顶部为矩形的直四棱柱状设置,该外壳31的材质可以采用金属(金属的材质可选择不锈钢材料、铝质材料,铝合金材料、铜质材料、铜合金材料、铁质材料、铁合金材料等)、塑料(塑料可选择硬质塑料,如ABS、POM、PS、PMMA、PC、PET、PBT、PPO等)以及其他合金材料等。如此,可以有利于提升外壳31的设置稳定性,从而有效提升外壳31的实用性、可靠性及耐久性。在一种实现方式中,外壳31可以由金属材料制成,如此可使麦克风3的电磁屏蔽的效果更为显著,从而改善了麦克风3的电磁抗干扰能力。
在本实施方式中,外界噪声从出声孔13(可参见图3)进入到耳机内,被麦克风3拾取,麦克风3将拾取到的噪声信号转化为电信号,该电信号通过第一信号处理芯片41进行处理后发送给第二信号处理芯片42。第二信号处理芯片42将此噪声的电信号先反向处理后,再通过第一信号处理芯片41传输给喇叭2,喇叭2根据第一信号处理芯片41传输过来的反向后的噪声电信号向外输出与噪声相反的声音信号,这种与噪声相反的声音信号和直接进入耳朵的噪声相互抵消,从而起到了很好的降噪作用。
如图9所示,其为喇叭2与PCB4配合的一种结构示意图。喇叭2包括第二振膜21和用于支撑第二振膜21的第二基底22,第二基底22固定于PCB4上,例如通过焊接的方式进行固定。第二基底22包括底壁221和侧壁222,第二振膜21、底壁221和侧壁222之间(即第二振膜21和第二基底22之间)形成喇叭后腔23,第二振膜21相对喇叭后腔23相反的一侧形成有喇叭前腔24。该喇叭前腔24与麦克风前腔34(可参见图8)连通,使得麦克风3和喇叭2能够共用前腔,如此可提高麦克风3和喇叭2的空间利用率,从而解决了喇叭与麦克风占用空间大的问题。
在一种实现方式中,第二振膜21和第二基底22可以采用单晶或多晶硅材料一体蚀刻而成,并在蚀刻后的的第二振膜21上喷涂压电材料(例如陶瓷材料),或在蚀刻后的的第一振膜32上盖设一层压电陶瓷片,如此使得与喇叭2电连接的第一信号处理芯片41能够激励第二振膜21,以使第二振膜21 相对第二基底22发生振动而发出声音,即喇叭2能够先将电信号转换为机械形变,再将机械形变转换为声音信号,从而实现发声。
在本实施方式中,为了在第二振膜21振动时能够保证喇叭后腔23与环境之间的压力平衡,底壁221上设置有一个或多个与第一通孔43连通的第二通孔223,该第一通孔43贯穿于PCB4的第一侧面441和第二侧面442。为了压力平衡,在第二振膜21下降时,空气可以从喇叭后腔23通过第二通孔223和第一通孔43向PCB4的第一侧面441的外部(这是因为PCB4的第一侧面441与环境连通)流出。类似地,在第二振膜21上升时,空气也可以从PCB4的第一侧面441的外部通过第一通孔43和第二通孔223流入到喇叭后腔23中。
如图10和图11所示,其中图10为喇叭2与PCB4配合的另一种结构示意图,图11为图10所示喇叭2的第二振膜21的俯视图。该喇叭2与图9所示的喇叭2的不同点在于:第二振膜21的一端固定于侧壁222上,另一端为自由端(即为悬臂梁结构)。
如图11所示,在本实施方式中,相邻的两个第二振膜21之间具有间隙211,如此可方便每一个第二振膜21振动。其中,喇叭2用于发出声音,而麦克风3主要用于拾取外界噪声,因此第二振膜21振动幅度可以大于第一振膜32振动幅度。作为一种实施方式,采用图10和图11所示结构的第二振膜21相比图9所示结构的第二振膜21弯曲的幅度更大,如此能够使第二振膜21发出声音大小的范围更大。
请继续参阅图11,在一个圆形的区域内,为了保证每一个第二振膜21发生振动幅度一致,在一种实现方式中,第二振膜21为截面积相同的扇形结构,且总数量可以为六个,以更大程度地占满圆形区域。当然,该圆形区域也可以是其它形状,例如矩形,为了与矩形区域匹配,第二振膜21可以为三角形结构,数量可以为四个,以更大程度地占满矩形区域。
请继续参阅图6至图10,在实施一中,麦克风3通过第一PCB401与PCB4进行固定,具体可以采用SMT贴片的方式固定在PCB4上,同理第一信号处理芯片41和喇叭2也可以采用SMT贴片的方式固定在PCB4上,从而解决了因手工整机组装模组存在差异而导致的音效不一致,提高了产品的可靠性。
需要指出的是,由于喇叭2的第二振膜21采用单晶或多晶硅材料制成(利用硅材料耐高温的特性),可以使得喇叭2也能采用SMT贴片的方式进行固定。而相关技术中,喇叭采用的是普通焊接或粘结的方式固定在PCB上,这是因为相关技术中的麦克风的振膜采用的是PET、PEN或PEI的材料,该材料不耐高温,因此可能不能采用SMT贴片的工艺。
此外,第一振膜32和第二振膜21均采用压电材料(例如陶瓷材料)制成,提升了耳机的防水和防尘能力。另外,相对动圈驱动式的麦克风或喇叭,本实施例提供的喇叭2和麦克风3由于利用压电材料的特性分别能够拾取声音和发出声音,从而使得喇叭2和麦克风3之间不会产生耦合噪声,可以解决传统动圈喇叭与麦克风近距离组合产生的电信号干扰的问题。
如图12a和图12b所示,其为本申请实施例二所示的麦克风与喇叭组合模组10的结构示意图,其中图12a为麦克风与喇叭组合模组10在第一视角下的结构示意图,图12b为麦克风与喇叭组合模组10在第二视角下的结构示意图。该实施例所示的麦克风与喇叭组合模组10与实施例一的不同点在于:喇叭2与麦克风3集成为一个部件(此后称为“第一集成体”)。
如图13a和图13b所示,其为喇叭2与麦克风3集成为第一集成体时的结构示意图,其中图13a为第一集成体在第一视角下的结构示意图,图13b为第一集成体在第二视角下的结构示意图。该第一集成体包括第一底壁201、分别与第一底壁201连接的第一侧壁202和第二侧壁203(参见图14a)、第一振膜32和第二振膜21。其中,第一侧壁202设置于第一底壁201上并围合成腔体,第二侧壁203设置于第一底壁201上,第二侧壁203位于第一侧壁202的内部,第二侧壁203与第一侧壁202连接并围合成腔体。在一种实现方式中,第一振膜32和第二振膜21均可为一个或多个,图13a中示出的第一振膜32和第二振膜21的个数仅为示例,可以理解的是,第一集成体中至少具有一个第一振膜32和第二振膜21。在本实施方式中,相邻的两个振膜(即第一振膜32和第二振膜21、第一振膜32和第一振膜32、或第二振膜21和第二振膜21)之间具有间隙204。
如图14a所示,其为图13a中的麦克风3其中一部分的结构示意图;如图14b所示,其为图13a中的喇叭2其中一部分的结构示意图。在本实施方式中,第一侧壁202设置于第二侧壁203的外部且与第二侧壁203连接,第 一振膜32固定于第一侧壁202和第二侧壁203上,第二振膜21的一端固定于第一侧壁202上,另一端为自由端(即为悬臂梁结构)。
在本实施方式中,第一底壁201、第一侧壁202、第二侧壁203和第一振膜32之间形成麦克风后腔,第一振膜32相对麦克风后腔相反的一侧形成麦克风前腔;第一底壁201、第一侧壁202、第二侧壁203和第二振膜21之间形成喇叭后腔,第二振膜21相对喇叭后腔相反的一侧形成喇叭前腔。由于第二振膜21振动的幅度可以大于第一振膜32,因此第二振膜21振动时带来气压的变化也是较为显著的。为了在第二振膜21振动时能够保证喇叭后腔与环境之间的压力平衡,作为一种实施方式,第一底壁201上设置有与第一通孔43(可参见图9和图10)连通的第二通孔223。
在本实施方式中,第一底壁201、分别与第一底壁201连接的第一侧壁202和第二侧壁203均可以采用单晶或多晶硅材料制成,以将第一振膜32产生的电信号传递至PCB4,或将从PCB4接收到的电信号传递至第二振膜21。
在本实施方式中,第一底壁201可以为圆形结构(可参见图13b),第一侧壁202可以为柱形腔体(可参见图13a),第二侧壁203可以为折线形结构,第二侧壁203和第一侧壁202围合成扇形腔体(可参见图14a),形成在第一侧壁202和第二侧壁203上的第一振膜32可以为扇形结构(可参见图13a和图14a),形成在第一侧壁202上的第二振膜21可以为扇形结构(可参见图13a和图14b),其中第一振膜32与第二振膜21的总数可以为六个,以将圆形均匀地分割成六个扇形结构。可以理解的是,第一底壁201还可以为方形结构或其它形状的结构,而第一侧壁202、第二侧壁203、第一振膜32和第二振膜21的具体形状可以根据第一底壁201的具体形状而进行相对应的设计,在此本申请对其不进行具体限定。
如图15所示,其为图13a中的第一振膜32和第二振膜21的结构示意图。当第一底壁201为圆形结构,且第一振膜32与第二振膜21的总数为六个扇形结构时,分别定义六个扇形结构为:第一扇形结构20a、第二扇形结构20b、第三扇形结构20c、第四扇形结构20d、第五扇形结构20e和第六扇形结构20f。形成第一振膜32和第二振膜21的组合可以为:第一扇形结构20a为第一振膜32,其余扇形结构为第二振膜21;第一扇形结构20a和第四扇形结构20d为第一振膜32,其余扇形结构为第二振膜21;第一扇形结构20a、第三 扇形结构20c和第五扇形结构20e为第一振膜32,其余扇形结构为第二振膜21;第一扇形结构20a和第二扇形结构20b为第一振膜32,其余扇形结构为第二振膜21;当然还包括其它的组合形式,在此本申请不进行穷举。只要保证其中一个或多个扇形结构为第一振膜32,其余扇形结构为第二振膜21即可。
在本实施方式中,麦克风3和喇叭2为一体成型设置,如此相比二者分体设置可进一步提高麦克风3和喇叭2的空间利用率。
如图16所示,其为喇叭2与麦克风3集成为第二集成体时的结构示意图。如图17所示,其为第二集成体的一种剖面示意图。如图18所示,其为第二集成体的另一种剖面示意图。请参阅图16至图18,该第二集成体包括第二底壁205、分别与第二底壁205连接的第三侧壁206和第四侧壁207、第一振膜32和第二振膜21。其中,第三侧壁206设置于第二底壁205上并围合成腔体;第四侧壁207设置于第二底壁205上并围合成腔体,第四侧壁207位于第三侧壁206的内部;第二振膜21一端固定于第三侧壁206上另一端为自由端(即为悬臂梁结构);第一振膜32固定于第四侧壁207上。在一中实现方式中,第一振膜32为一个,第二振膜21为六个,六个第二振膜21均匀分布于第一振膜32的外周。在本实施方式中,相邻的两个第二振膜21之间、第一振膜32和第二振膜21之间均具有间隙204。
在本实施方式中,第二底壁205可以为圆形结构,第三侧壁206可以为柱形腔体,第四侧壁207可以为多面体(例如六面体)腔体,形成在第四侧壁207上的第一振膜32可以为多边形(例如六边形)结构,形成在第三侧壁206上的第二振膜21可以为类扇环形(例如将扇环形靠近第一振膜32的边由曲线改为直线)结构,其中第一振膜32的数量可以为一个,第二振膜21的数量可以为六个,以将圆形分割成一个六边形结构和均匀分布在该六边形结构周围的六个类扇环形结构。
作为一种实施方式,第二底壁205可以为圆形结构,第三侧壁206可以为柱形腔体,第四侧壁207还可以为柱形腔体,形成在第四侧壁207上的第一振膜32还可以为圆形结构,形成在第三侧壁206上的第二振膜21还可以为扇环形结构,其中第一振膜32的数量可以为一个,第二振膜21的数量可以为六个,以将圆形分割成一个圆形结构和均匀分布在该圆形结构周围的六 个扇环形结构。可以理解的是,第二底壁205还可以为方形结构或其它形状的结构,而第三侧壁206、第四侧壁207、第一振膜32和第二振膜21的具体形状可以根据第二底壁205的具体形状而进行相对应的设计,在此本申请对其不进行具体限定。
在本实施方式中,第二底壁205、第四侧壁207和第一振膜32之间形成麦克风后腔,第一振膜32相对麦克风后腔相反的一侧形成麦克风前腔;第二底壁205、第三侧壁206、第四侧壁207和第二振膜21之间形成喇叭后腔,第二振膜21相对喇叭后腔相反的一侧形成喇叭前腔。
在本实施方式中,将第一振膜32设置在第二集成体的中心处,这是因为考虑到耳机的麦克风3主要用于拾取外界噪声,耳机的主要目的是使喇叭2发出声音,因此需要使得喇叭2的第二振膜21的横截面积大于麦克风3的第一振膜32的横截面积。
可以理解的是,只要保证第二振膜21的横截面积大于第一振膜32的横截面积,对于具体的第一振膜32和第二振膜21的设计形状和固定方式不进行具体限定。
在本实施方式中,麦克风3和喇叭2为一体成型设置,如此相比二者分体设置可进一步提高麦克风3和喇叭2的空间利用率。
如图19所示,其为图12a和图12b所示的麦克风与喇叭组合模组10的一种剖面示意图。例如,图19中的喇叭2和麦克风3采用的是图16所示第二集成体的方式进行示出。在本实施方式中,第二集成体设置于PCB4的第二侧面442,第一信号处理芯片41和第二信号处理芯片42设置于PCB4的第一侧面441。在一些实现方案中,第一信号处理芯片41和第二信号处理芯片42可以是分体设置。
如图20所示,其为图12a和图12b所示的麦克风与喇叭组合模组10的另一种剖面示意图。例如,图20中的喇叭2和麦克风3采用的是图16所示第二集成体的方式进行示出。在本实施方式中,第二集成体设置于PCB4的第二侧面442,第一信号处理芯片41和第二信号处理芯片42设置于PCB4的第一侧面441。在一些实现方案中,第一信号处理芯片41和第二信号处理芯片42可以是一体设置,且二者集成于一罩体40中。例如,第一信号处理芯片 41和第二信号处理芯片42可以通过SIP(System in Package,***级封装)封装的方式封装于罩体40中。
可以理解的是,如图6和图7所示的麦克风与喇叭组合模组10也可以采用SIP封装的方式。例如,可以对图6所示麦克风与喇叭组合模组10中第一信号处理芯片41和第二信号处理芯片42进行SIP封装,也可以对麦克风3和喇叭2进行封装;再例如可以对图7所示麦克风与喇叭组合模组10中麦克风3、喇叭2和第一信号处理芯片41进行SIP封装。
在本实施方式中,外界噪声从出声孔12(可参见图3)进入到耳机内,被麦克风3拾取,以使第一振膜32随着气压变化而弯曲,第一振膜32弯曲时会产生电信号,产生的电信号会通过第二侧壁203和第一底壁201(或通过第四侧壁207和第二底壁205)传输给PCB4,然后再传输给PCB4上的第一信号处理芯片41。第一信号处理芯片41将该电信号进行处理后传输给第二信号处理芯片42进行反向处理,反向处理后的电信号再通过第一信号处理芯片41传输给PCB4、第一底壁201、第一侧壁202和第二振膜21(或PCB4、第二底壁205、第三侧壁206和第二振膜21),第二振膜21根据第一信号处理芯片41传输过来的反向后的噪声电信号向外输出与噪声相反的声音信号,这种与噪声相反的声音信号和直接进入耳朵的噪声相互抵消,从而起到了很好的降噪作用。
如图21a和图21b所示,其为本申请实施例三所示的麦克风与喇叭组合模组10的结构示意图,其中图21a为麦克风与喇叭组合模组10在第一视角下的结构示意图,图21b为麦克风与喇叭组合模组10在第二视角下的结构示意图。该实施例所示的麦克风与喇叭组合模组10与实施例二的不同点在于:喇叭2、麦克风3和第一信号处理芯片41集成为一个部件。具体来说,该实施例中,喇叭2、麦克风3和第一信号处理芯片41均位于PCB4的第二侧。
相比实施例一(例如图6)所示的麦克风与喇叭组合模组10,实施例三中的喇叭2和麦克风3集成为第一集成体或第二集成体之后,与第一信号处理芯片41电连接。
例如,如图22所示,其为图21a和图21b所示的麦克风与喇叭组合模组10的一种剖面示意图。图22示出了喇叭2和麦克风3集成为第二集成体后 与第一信号处理芯片41的位置关系,即喇叭2、麦克风3和第一信号处理芯片41均位于PCB4的第二侧。
再例如,如图23所示,其为图21a和图21b所示的麦克风与喇叭组合模组10的另一种剖面示意图。图23示出了喇叭2和麦克风3集成为第二集成体后与第一信号处理芯片41的位置关系,即喇叭2、麦克风3和第一信号处理芯片41均位于PCB4的第二侧。在一些实现方案中,图23所示的麦克风与喇叭组合模组10对麦克风3、喇叭2和第一信号处理芯片41进行SIP封装。需要指出的是,在本实施方式中,由于罩体40是罩设在麦克风与喇叭组合模组10的外部,因此需要在罩体40上开设与麦克风与喇叭组合模组10连通的第三通孔40a,以使气体通过第三通孔40a流入到罩体40内或从罩体40内流出。
可以理解的是,在本实施例中,喇叭2和麦克风3的集成方式(即集成为第一集成体或第二集成体的方式)与实施例二一致,在此不进行赘述。
请参阅图12a至图23,在实施例二和实施例三中,喇叭2和麦克风3集成为一体,即集成为第一集成体或第二集成体,如此相比实施例一更能增大喇叭前腔的体积,从而可进一步为耳道内的拾音、主动降噪和上行降噪等功能提供有利的条件。
如图24所示,其为本申请实施例四所示的麦克风与喇叭组合模组10的分解示意图。在本实施方式中,PCB4包括第二PCB402和第三PCB403,即该麦克风与喇叭组合模组10包括喇叭2、麦克风3、信号处理单元、第二PCB402和第三PCB403,其中信号处理单元可以包括第一信号处理单元和第二信号处理单元,例如第一信号处理芯片41和第二信号处理芯片42(第二信号处理芯片42未在图22中示出)。
麦克风3的具体结构可以参见图8,麦克风3通过第一PCB401固定于第二PCB402上,信号处理单元(例如第一信号处理芯片41)固定于第二PCB402上,在一种实现方式中,麦克风3和信号处理单元均通过SMT工艺固定于第二PCB402上。喇叭2设置于第二PCB402和第三PCB403之间,如此使得麦克风3和喇叭2组装成型,也就是说,可实现麦克风3和喇叭2为独立且沿出音方向错开设置。在本实施方式中,喇叭2包括驱动***20、膜片25和支架26,其中:
支架26设置于第二PCB402和第三PCB403之间,该支架26起到保护喇叭2和支撑膜片25的作用。在一种实现方式中,该支架26可以采用铁、铝合金或ABS塑料等材料制成,以保证良好的强度。
膜片25设置于支架26上,第二PCB402设置于膜片25的出音方向上(即膜片25的前方),第二PCB402不仅能够将麦克风3和第一信号处理芯片41进行集成,还因设置于膜片25的前方而起到保护膜片25的作用。
膜片25和第二PCB402之间形成喇叭前腔,第二PCB402设置有发声孔16,喇叭前腔通过发声孔16与麦克风前腔连通。同时,发声孔16也可以与前腔15(可参见图3)连通。
驱动***20设置于第三PCB403上,驱动***20用于驱动膜片25振动。驱动***20可以采用动圈式,也可以采用压电式。其中,当驱动***20采用动圈式时,驱动***20为磁路***(具体结构图中未示出),膜片25的音圈(图中未示出)***到驱动***20内,该驱动方式可以为现有技术,具体的磁路***组成和音圈与第二振膜21的设置方式在此不进行赘述。当驱动***20采用压电式时,驱动***20的具体结构可参见图9或图10,膜片25的中心处(即底端部位)与第二振膜21相贴合,如此通过第二振膜21的振动来带动膜片25振动,从而发出声音,声音从设置在第二PCB402中心处的发声孔16发出。
第二PCB402和第三PCB403分别固定于支架26的两端,驱动***20固定于第三PCB403上,当驱动***20采用压电式时,可以采用SMT工艺将驱动***20固定于第三PCB403上。
在本实施方式中,麦克风3和喇叭2为分体设置,其中,二者为独立且沿出音方向错开设置,如此可提高麦克风3和喇叭2的空间利用率。
综上所述,本申请实施例一至实施例四提供的麦克风与喇叭组合模组10,其中实施例一和实施例四示出了麦克风3和喇叭2为分体设置的结构形式,实施例二和实施例三示出了麦克风3和喇叭2为一体成型设置的结构形式。本申请通过将喇叭2、麦克风3和信号处理单元进行集成,减少了三者的占用空间,由于喇叭2设置于前腔15内,不会挤压前腔15,进而不会造成出声通道的横截面积减小,因此提高了耳机的高频音效。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (23)

  1. 一种麦克风与喇叭组合模组,其特征在于,包括:
    麦克风,具有麦克风前腔;
    喇叭,具有喇叭前腔,所述麦克风前腔和所述喇叭前腔连通;
    PCB,所述麦克风和所述喇叭设置于所述PCB上,所述PCB上设置有信号处理单元,所述麦克风和所述喇叭分别与所述信号处理单元电连接。
  2. 根据权利要求1所述的麦克风与喇叭组合模组,其特征在于,所述麦克风和所述喇叭为分体设置。
  3. 根据权利要求1或2所述的麦克风与喇叭组合模组,其特征在于,所述麦克风包括外壳、设置于所述外壳内的第一振膜和用于支撑所述第一振膜的第一基底;
    所述麦克风与喇叭组合模组包括第一PCB,所述外壳和所述第一基底固定于所述第一PCB上,所述外壳、所述第一振膜、所述第一基底和所述第一PCB之间形成所述麦克风前腔;
    所述喇叭包括第二振膜和用于支撑所述第二振膜的第二基底,所述第二振膜和所述第二基底之间形成喇叭后腔,所述第二振膜相对所述喇叭后腔相反的一侧形成所述喇叭前腔;
    所述第一PCB和所述第二基底设置于所述PCB上。
  4. 根据权利要求3所述的麦克风与喇叭组合模组,其特征在于,所述第一基底和所述第二基底分别采用硅材料制成,所述第一振膜采用硅材料和压电材料制成,所述第二振膜采用硅材料和压电材料制成。
  5. 根据权利要求1-4任一所述的麦克风与喇叭组合模组,其特征在于,所述PCB包括:
    第二PCB,所述麦克风和所述信号处理单元均设置于所述第二PCB上;
    第三PCB,所述喇叭设置于所述第二PCB和所述第三PCB之间。
  6. 根据权利要求5所述的麦克风与喇叭组合模组,其特征在于,所述喇叭包括:
    支架,设置于所述第二PCB和所述第三PCB之间;
    膜片,设置于所述支架上,所述第二PCB设置于所述膜片的出音方向上,所述膜片和所述第二PCB之间形成所述喇叭前腔,所述第二PCB设置有发声孔,所述喇叭前腔通过所述发声孔与所述麦克风前腔连通;
    驱动***,设置于所述第三PCB上,所述驱动***用于驱动所述膜片振动。
  7. 根据权利要求1所述的麦克风与喇叭组合模组,其特征在于,所述麦克风和所述喇叭为一体成型设置。
  8. 根据权利要求7所述的麦克风与喇叭组合模组,其特征在于,所述麦克风和所述喇叭形成第一集成体,所述第一集成体包括:
    第一底壁,设置于所述PCB上;
    第一侧壁,设置于所述第一底壁上并围合成腔体;
    第二侧壁,设置于所述第一底壁上,所述第二侧壁位于所述第一侧壁的内部,所述第二侧壁与所述第一侧壁连接并围合成腔体;
    第一振膜,设置于所述第一侧壁和所述第二侧壁上;
    第二振膜,一端设置于所述第一侧壁上,另一端为自由端;
    所述第一底壁、所述第一侧壁、所述第二侧壁和所述第一振膜之间形成麦克风后腔,所述第一底壁、所述第一侧壁、所述第二侧壁和所述第二振膜之间形成喇叭后腔,所述第一振膜和所述第二振膜之间具有间隙;
    所述第一振膜相对所述麦克风后腔相反的一侧形成所述麦克风前腔,所述第二振膜相对所述喇叭后腔相反的一侧形成所述喇叭前腔。
  9. 根据权利要求8所述的麦克风与喇叭组合模组,其特征在于,所述第一振膜为多个,相邻的两个所述第一振膜之间具有间隙。
  10. 根据权利要求8所述的麦克风与喇叭组合模组,其特征在于,所述第二振膜为多个,相邻的两个所述第二振膜之间具有间隙。
  11. 根据权利要求7所述的麦克风与喇叭组合模组,其特征在于,所述麦克风和所述喇叭形成第二集成体,所述第二集成体包括:
    第二底壁,设置于所述PCB上;
    第三侧壁,设置于所述第二底壁上并围合成腔体;
    第四侧壁,设置于所述第二底壁上并围合成腔体,所述第四侧壁位于所述第三侧壁的内部;
    第一振膜,设置于所述第四侧壁上;
    第二振膜,一端设置于所述第三侧壁上,另一端为自由端;
    所述第二底壁、所述第四侧壁和所述第一振膜之间形成麦克风后腔,所述第二底壁、所述第三侧壁、所述第四侧壁和所述第二振膜之间形成喇叭后腔,所述第一振膜和所述第二振膜之间具有间隙;
    所述第一振膜相对所述麦克风后腔相反的一侧形成所述麦克风前腔,所述第二振膜相对所述喇叭后腔相反的一侧形成所述喇叭前腔。
  12. 根据权利要求11所述的麦克风与喇叭组合模组,其特征在于,所述第一振膜为一个且设置于所述第二集成体的中心处。
  13. 根据权利要求11所述的麦克风与喇叭组合模组,其特征在于,所述第二振膜为多个,相邻的两个所述第二振膜之间具有间隙。
  14. 根据权利要求1-13中任一项所述的麦克风与喇叭组合模组,其特征在于,所述麦克风和所述喇叭分别采用MEMS工艺制成。
  15. 根据权利要求1-13中任一项所述的麦克风与喇叭组合模组,其特征在于,所述麦克风、所述喇叭和所述信号处理单元采用SMT工艺固定于所述PCB上。
  16. 根据权利要求1-15中任一项所述的麦克风与喇叭组合模组,其特征在于,所述信号处理单元包括:
    第一信号处理单元,分别与所述麦克风和所述喇叭电连接;
    第二信号处理单元,与所述第一信号处理单元电连接。
  17. 根据权利要求16所述的麦克风与喇叭组合模组,其特征在于,所述第一信号处理单元包括ASIC芯片,所述第二信号处理单元包括DSP芯片。
  18. 根据权利要求1-17中任一项所述的麦克风与喇叭组合模组,其特征在于,所述PCB设置有第一通孔,所述喇叭设置有第二通孔,所述第一通孔与所述第二通孔连通。
  19. 一种耳机,其特征在于,包括:
    第一壳体;
    第二壳体,与所述第一壳体连接;
    麦克风与喇叭组合模组,设置于所述第一壳体和所述第二壳体之间,所述 麦克风与喇叭组合模组为如权利要求1-18中任一项所述的麦克风与喇叭组合模组;
    所述第一壳体和所述PCB之间形成所述麦克风和所述喇叭的后腔,所述第二壳体和所述PCB之间形成所述麦克风和所述喇叭的前腔。
  20. 根据权利要求19所述的耳机,其特征在于,所述第二壳体包括入耳部,所述入耳部内设置有出声孔,所述出声孔与所述前腔连通,所述入耳部内设置有阻尼网。
  21. 根据权利要求20所述的耳机,其特征在于,所述第二壳体还包括与所述入耳部连接的第一阶梯部,所述喇叭和所述麦克风设置于所述第一阶梯部的内部腔体中;
    所述第一阶梯部的内径大于所述入耳部的内径。
  22. 根据权利要求21所述的耳机,其特征在于,所述第二壳体还包括与所述第一阶梯部连接的第二阶梯部,所述第二阶梯部和所述第一壳体固定;
    所述第二阶梯部的内径大于所述第一阶梯部的内径,所述第二阶梯部内设置有台阶,所述PCB固定于所述台阶上。
  23. 一种终端设备,其特征在于,包括如权利要求1-18中任一项所述的麦克风与喇叭组合模组。
PCT/CN2020/128011 2019-11-22 2020-11-11 麦克风与喇叭组合模组、耳机及终端设备 WO2021098562A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20890501.8A EP4040799A4 (en) 2019-11-22 2020-11-11 COMBINED MICROPHONE AND SPEAKER MODULE, HEADPHONES, AND TERMINAL DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911157650.6A CN112839276B (zh) 2019-11-22 2019-11-22 麦克风与喇叭组合模组、耳机及终端设备
CN201911157650.6 2019-11-22

Publications (1)

Publication Number Publication Date
WO2021098562A1 true WO2021098562A1 (zh) 2021-05-27

Family

ID=75922549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128011 WO2021098562A1 (zh) 2019-11-22 2020-11-11 麦克风与喇叭组合模组、耳机及终端设备

Country Status (3)

Country Link
EP (1) EP4040799A4 (zh)
CN (1) CN112839276B (zh)
WO (1) WO2021098562A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113556664A (zh) * 2021-08-11 2021-10-26 东莞市敏信电子科技有限公司 全封闭实心倒模的无线耳道式耳机及其制作方法
US11172277B2 (en) * 2020-03-10 2021-11-09 Cotron Corporation Speaker unit with microphone

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113328811B (zh) * 2021-05-28 2023-03-31 歌尔微电子股份有限公司 声波收发装置及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7466838B1 (en) * 2003-12-10 2008-12-16 William T. Moseley Electroacoustic devices with noise-reducing capability
TW201306607A (zh) * 2011-07-25 2013-02-01 Lu-Cheng Chen 整合有麥克風的耳機
CN104602156A (zh) * 2015-01-27 2015-05-06 歌尔声学股份有限公司 耳机喇叭及安装有该喇叭的耳机
CN204539427U (zh) * 2015-04-20 2015-08-05 李永南 降噪喇叭
US20150358708A1 (en) * 2014-06-06 2015-12-10 Cirrus Logic, Inc. Noise cancellation microphones with shared back volume
CN111800686A (zh) * 2019-04-02 2020-10-20 惠州迪芬尼声学科技股份有限公司 具有有源噪声控制的入耳式耳机装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2844405B1 (fr) * 2002-09-05 2004-12-03 Cit Alcatel Agencement structurel pour terminal de radiocommunication comportant un haut-parleur et un ecouteur
CN101742373A (zh) * 2008-11-13 2010-06-16 美律实业股份有限公司 制噪耳机
US20120314882A1 (en) * 2009-11-23 2012-12-13 Incus Laboratories Limited Production of ambient noise-cancelling earphones
US9516428B2 (en) * 2013-03-14 2016-12-06 Infineon Technologies Ag MEMS acoustic transducer, MEMS microphone, MEMS microspeaker, array of speakers and method for manufacturing an acoustic transducer
US9521499B2 (en) * 2013-06-26 2016-12-13 Infineon Technologies Ag Electronic device with large back volume for electromechanical transducer
US9181080B2 (en) * 2013-06-28 2015-11-10 Infineon Technologies Ag MEMS microphone with low pressure region between diaphragm and counter electrode
CN108778984B (zh) * 2016-03-14 2023-05-23 奥特斯奥地利科技与***技术有限公司 电子装置以及制造电子装置的方法和包括电子装置的面板
TWM553910U (zh) * 2017-09-20 2018-01-01 固昌通訊股份有限公司 具有微機電麥克風的耳道式耳機麥克風

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7466838B1 (en) * 2003-12-10 2008-12-16 William T. Moseley Electroacoustic devices with noise-reducing capability
TW201306607A (zh) * 2011-07-25 2013-02-01 Lu-Cheng Chen 整合有麥克風的耳機
US20150358708A1 (en) * 2014-06-06 2015-12-10 Cirrus Logic, Inc. Noise cancellation microphones with shared back volume
CN104602156A (zh) * 2015-01-27 2015-05-06 歌尔声学股份有限公司 耳机喇叭及安装有该喇叭的耳机
CN204539427U (zh) * 2015-04-20 2015-08-05 李永南 降噪喇叭
CN111800686A (zh) * 2019-04-02 2020-10-20 惠州迪芬尼声学科技股份有限公司 具有有源噪声控制的入耳式耳机装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11172277B2 (en) * 2020-03-10 2021-11-09 Cotron Corporation Speaker unit with microphone
CN113556664A (zh) * 2021-08-11 2021-10-26 东莞市敏信电子科技有限公司 全封闭实心倒模的无线耳道式耳机及其制作方法

Also Published As

Publication number Publication date
EP4040799A1 (en) 2022-08-10
CN112839276A (zh) 2021-05-25
CN112839276B (zh) 2022-09-09
EP4040799A4 (en) 2022-12-21

Similar Documents

Publication Publication Date Title
WO2021098562A1 (zh) 麦克风与喇叭组合模组、耳机及终端设备
CN104219607B (zh) 扬声器模组
WO2020140540A1 (zh) 扬声器箱
CN109413554B (zh) 一种指向性mems麦克风
EP4383749A1 (en) Sound output device
WO2003007651A1 (fr) Terminal de communications mobile et son transducteur electroacoustique
JPS60248098A (ja) マイクロホン組立体
WO2023050984A1 (zh) 一种耳机
CN209072736U (zh) 一种指向性mems麦克风
CN110958509A (zh) 一种发声装置模组和电子产品
WO2023160719A1 (zh) 振动传感器、电子设备和振动检测方法
WO2023051005A1 (zh) 圈铁喇叭组件及耳机
CN217770282U (zh) 聆听设备、支架及扬声器
US9332336B2 (en) Headphone device
CN115314816A (zh) 一种扬声器以及电子设备
WO2021129333A1 (zh) 扬声器内核、扬声器模组及电子设备
JP2022105287A (ja) 音響フィルタを有するマイクロホンアセンブリ
JP3927782B2 (ja) 電気音響変換装置
CN110418259B (zh) 发声装置单体、发声模组及电子终端
KR102029076B1 (ko) 종속 진동부를 구비한 마이크로스피커 모듈을 채용한 넥밴드 스피커
WO2022041458A1 (zh) 发声器件
WO2021000104A1 (zh) 扬声器箱
JP2006217518A (ja) 電気音響変換装置
KR102673332B1 (ko) 마이크의 수음필터 구조
CN217116396U (zh) Mems扬声器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20890501

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020890501

Country of ref document: EP

Effective date: 20220506

NENP Non-entry into the national phase

Ref country code: DE