WO2021097891A1 - 显示面板及显示面板的制备方法 - Google Patents

显示面板及显示面板的制备方法 Download PDF

Info

Publication number
WO2021097891A1
WO2021097891A1 PCT/CN2019/121582 CN2019121582W WO2021097891A1 WO 2021097891 A1 WO2021097891 A1 WO 2021097891A1 CN 2019121582 W CN2019121582 W CN 2019121582W WO 2021097891 A1 WO2021097891 A1 WO 2021097891A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
display panel
emitting device
optical modulation
layer
Prior art date
Application number
PCT/CN2019/121582
Other languages
English (en)
French (fr)
Inventor
刘明
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US16/624,325 priority Critical patent/US20210408415A1/en
Publication of WO2021097891A1 publication Critical patent/WO2021097891A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means

Definitions

  • the invention relates to the field of display technology, in particular to a display panel and a method for manufacturing the display panel.
  • Quantum Dot (QD)-Organic Light Emitting Diode uses Blue Organic Light-Emitting Diode (B-OLED) as the light source, adding a quantum dot film in the direction of light emission, and then using the blue light of OELD to excite the quantum dot film to emit light.
  • B-OLED Blue Organic Light-Emitting Diode
  • QD-OLED has the characteristics of wide color gamut of quantum dots, bright and distinct colors. At the same time, it also has the advantages of low cost of OELD and can be made into flexible and wound devices. Therefore, QD-OLED has huge potential and broad development prospects.
  • QD-OLED is the photoluminescence of blue light + quantum dots emitted by blue OLED.
  • the photoluminescence of quantum dots has the characteristic of isotropy. After being excited, photons are emitted dispersedly in all directions, and a considerable part of the photons are emitted into the OLED, or are absorbed or trapped, resulting in a waste of energy.
  • the current QD-OLED has a technical problem that the light utilization rate is not high due to the dispersed emission of photons in all directions after being excited.
  • the embodiments of the present invention provide a display panel and a display device, which are used to solve the technical problem that the existing QD-OLED has a low utilization rate of light due to the dispersed emission of photons after being excited in all directions.
  • the present invention provides a display panel, including:
  • the substrate, the light-emitting device layer and the cover plate are stacked in sequence;
  • the quantum dot light conversion film is arranged on the side of the substrate away from the light-emitting device layer;
  • an optical modulation film is provided between the substrate and the quantum dot light conversion film.
  • the optical modulation film is formed by alternately stacking a plurality of refractive units, and each of the refractive units includes a first material layer with a refractive index of n1 and a second material layer with a refractive index of n2.
  • the refractive index n1 of the first material layer is less than 1.6, and the refractive index n2 of the second material layer is greater than 2.0.
  • the material of the first material layer is at least one of magnesium fluoride, calcium fluoride, and silicon oxide
  • the material of the second material layer is zinc stannum, zinc sulfide, oxide At least one of zirconium.
  • the quantum dot light conversion film is doped with quantum dots that can emit red light, green light, or yellow light.
  • the light-emitting device layer is a blue light-emitting device layer.
  • the reflectance of the optical modulation film is higher than 90%.
  • the reflectance of the optical modulation film is less than 10%.
  • the light-emitting device layer includes a transparent electrode, an organic layer, and a reflective electrode.
  • the present invention also provides a method for manufacturing a display panel, including:
  • the light-emitting device layer and the cover plate are sequentially prepared on the substrate;
  • the method for preparing the optical modulation film is one of vacuum evaporation, magnetron sputtering, chemical deposition or atomic layer deposition.
  • the method for preparing the light-emitting device layer is vacuum evaporation
  • the method for preparing the quantum dot light conversion film is coating method or separate preparation and then bonding.
  • the display panel includes:
  • the substrate, the light-emitting device layer and the cover plate are stacked in sequence;
  • the quantum dot light conversion film is arranged on the side of the substrate away from the light-emitting device layer;
  • an optical modulation film is provided between the substrate and the quantum dot light conversion film.
  • the optical modulation film is formed by alternately stacking a plurality of refractive units, and each of the refractive units includes a first material layer with a refractive index of n1 and a second material layer with a refractive index of n2.
  • the refractive index n1 of the first material layer is less than 1.6, and the refractive index n2 of the second material layer is greater than 2.0.
  • the material of the first material layer is at least one of magnesium fluoride, calcium fluoride, and silicon oxide
  • the material of the second material layer is zinc stannum, zinc sulfide, oxide At least one of zirconium.
  • the quantum dot light conversion film is doped with quantum dots that can emit red light, green light, or yellow light.
  • the light-emitting device layer is a blue light-emitting device layer.
  • the reflectance of the optical modulation film is higher than 90%.
  • the reflectance of the optical modulation film is less than 10%.
  • the light-emitting device layer includes a transparent electrode, an organic layer, and a reflective electrode.
  • the present invention adds a layer of optical modulation film between the substrate and the quantum dot light conversion film.
  • the film has a specific structure, has special light reflection-transmission, can selectively transmit the blue light emitted by the light-emitting device layer, and reflect the red light, green light or yellow light emitted by the quantum dots in the light emitting direction. Improve light utilization.
  • FIG. 1 is a schematic diagram of the structure of a display panel in an embodiment of the present invention
  • Fig. 2 is a reflectance spectrum diagram of an optical modulation film in an embodiment of the present invention.
  • FIG. 3 is a flow chart of a manufacturing method of a display panel in an embodiment of the present invention.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • the features defined with “first” and “second” may explicitly or implicitly include one or more of the features.
  • “plurality” means two or more than two, unless otherwise specifically defined.
  • the "on" or “under” of the first feature of the second feature may include direct contact between the first and second features, or may include the first and second features. Not in direct contact but through other features between them.
  • “above”, “above” and “above” the second feature of the first feature include the first feature being directly above and obliquely above the second feature, or it simply means that the level of the first feature is higher than that of the second feature.
  • the “below”, “below” and “below” the first feature of the second feature include the first feature directly below and obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • the current QD-OLED has a technical problem that the light utilization rate is not high due to the dispersed emission of photons in all directions after being excited.
  • the embodiment of the present invention provides a display panel and a manufacturing method of the display panel. Detailed descriptions are given below.
  • an embodiment of the present invention provides a display panel, as shown in FIG. 1, which is a schematic diagram of the structure of the display panel in an embodiment of the present invention.
  • the display panel includes: a substrate 10, a light emitting device layer 20, and a cover plate 30 that are stacked in sequence; a quantum dot light conversion film 40 is provided on a side of the substrate 10 away from the light emitting device layer 20; An optical modulation film 50 is provided between the substrate 10 and the quantum dot light conversion film 40.
  • the substrate 10 is a transparent substrate, preferably glass or PET plastic film;
  • the light-emitting device layer 20 includes a transparent electrode 201, an organic layer 202 and a reflective electrode 203, wherein the transparent electrode 201 is disposed on the surface of the substrate 10, the organic layer 202 is disposed on the surface of the transparent electrode 201, and the reflective electrode 203 is disposed on the surface of the organic layer 202;
  • the transparent electrode 201 is preferably Indium Tin Oxide (Indium Tin Oxides, ITO);
  • the organic layer 202 is a general term for each film layer made of organic materials, the organic layer 202 includes a hole blocking layer, a hole transport layer, a hole injection layer, a light emitting layer, and an electron blocking layer , At least one of the electron transport layer and the electron injection layer.
  • each film layer can exist in the form of a conventional single node or in a tandem structure.
  • the reflective electrode 203 is made of a metal material, which is preferably a metal material with excellent conductivity, most preferably aluminum, silver or magnesium-silver alloy.
  • the light-emitting device layer 20 is preferably a blue light-emitting device layer, and the light-emitting layer in the organic layer 202 emits blue light. It is worth mentioning that the light-emitting layer A part of the emitted blue light is directly emitted through the transparent electrode 201 in the light-emitting direction, and the other part of the blue light is emitted in the opposite direction, but is reflected by the reflective electrode 203, and then emitted in the light-emitting direction, which improves the utilization rate of light.
  • the quantum dot light conversion film 40 is disposed on the side of the substrate 10 away from the light emitting device layer 20, and the quantum dot light conversion film 40 is doped with quantum dots that can emit red light, green light, or yellow light. .
  • the quantum dots can be excited by blue light to emit red light, green light or yellow light, and the red light, green light or yellow light can be combined with blue light to form white light.
  • an optical modulation film 50 is provided between the substrate 10 and the quantum dot light conversion film 40, and the optical modulation film 50 is composed of a plurality of The refractive units are alternately stacked, and each of the refractive units includes a first material layer with a refractive index of n1 and a second material layer with a refractive index of n2.
  • Such an optical modulation film 50 has special light reflection-transmission properties. As shown in FIG. 2, it is a reflectance spectrum of the optical modulation film in an embodiment of the present invention. It can be seen from the figure that the optical modulation film 50 in this embodiment has the following characteristics.
  • the reflectance of the optical modulation film 50 is higher than 90%; when the wavelength of the incident light is less than 490nm , The reflectance of the optical modulation film 50 is less than 10%.
  • the wavelengths corresponding to the colors of various visible light are: red light corresponds to a wavelength of 622 ⁇ 770nm, yellow light corresponds to a wavelength of 577 ⁇ 597m, green light corresponds to a wavelength of 592 ⁇ 577nm, and blue light corresponds to a wavelength of 455. ⁇ 492nm, therefore, in the embodiment of the present invention, the optical modulation film 50 has a strong reflectivity for red light, green light, and yellow light, and a good transmittance for blue light.
  • the specific light path analysis is as follows: blue light is emitted from the organic layer 202, a part of the blue light is emitted directly in the light emitting direction, and the other part of the blue light is emitted in the opposite direction, but is reflected by the reflective electrode 203 and then directed toward Both parts of blue light can penetrate the transparent electrode 201 when emitted in the light emitting direction, that is, the light emitting device layer 20 emits blue light in the light emitting direction.
  • the blue light emitted from the light-emitting device layer 20 penetrates the optical modulation film 50, a part of the blue light directly reaches the outside, and the other part of the blue light is used to excite the quantum dots in the quantum dot light conversion film 40, and the quantum dots are Part of the red, green or yellow light emitted after excitation is directly emitted in the direction of light emission, and the other part is emitted in the direction of the light-emitting device layer 20, but is reflected by the optical modulation film 50, and the two parts of red light and green light Light or yellow light is emitted in the direction of light emission.
  • the red light, green light or yellow light emitted in the light emitting direction and the blue light directly reaching the outside are combined into white light.
  • the shaded arrow indicates the blue light emission direction
  • the white arrow indicates the white light emission direction. This design improves the utilization of light.
  • the optical modulation film 50 can also be continuously optimized.
  • the first said refractive unit includes a first material layer with a refractive index of n1, a thickness of dA, and a second material layer with a refractive index of n2 and a thickness of dB.
  • the wavelengths that will be reflected cover the region of 490 to 670 nm, that is, the optical modulation film 50 has strong resistance to red, green, and yellow light. Reflective ability, and has good transmittance to blue light.
  • the refractive index of the first material layer is preferably n1 ⁇ 1.6, and the refractive index of the second material layer is preferably n2>2.0;
  • the material of the first material layer is most preferably magnesium fluoride, At least one of calcium fluoride and silicon oxide, and the material of the second material layer is most preferably at least one of zinc tin oxide, zinc sulfide, and zirconium oxide. Since the required reflection wavelength range, the refractive index of the first material layer, and the refractive index of the second material layer are known, the different preset thicknesses of the plurality of refractive units can be known by calculation, and will not be repeated here.
  • the embodiment of the present invention also provides a method for manufacturing the display panel, as shown in FIG. 3, which is an embodiment of the present invention.
  • the flow chart of the manufacturing method of the display panel include:
  • the light-emitting device layer and the cover plate are sequentially prepared on the substrate;
  • the method for preparing the optical modulation film is one of vacuum evaporation, magnetron sputtering, chemical deposition or atomic layer deposition.
  • the light-emitting device layer includes a transparent electrode, an organic layer, and a reflective electrode layer.
  • the step S1 further includes: preparing the transparent electrode on a substrate, preparing the organic layer on the surface of the transparent electrode by vacuum evaporation, and preparing a reflective electrode on the surface of the organic layer by vacuum evaporation.
  • the method of preparing the quantum dot light conversion film is a coating method or a separate preparation and then bonding.
  • the vacuum evaporation, coating method, and separate preparation and then bonding are all preferred solutions. In actual production, other conventional methods can also be used to achieve this objective.
  • a layer of optical modulation film is added between the substrate and the quantum dot light conversion film.
  • the film has a specific structure, has special light reflection-transmission, can selectively transmit the blue light emitted by the light-emitting device layer, and reflect the red light, green light or yellow light emitted by the quantum dots in the light emitting direction. Improve light utilization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示面板及显示面板的制备方法,显示面板包括:依次层叠设置的基底(10)、发光器件层(20)和盖板(30);量子点光转换膜(40),设置于基底(10)远离发光器件层(20)的一侧;其中,在基底(10)和量子点光转换膜(40)之间设置有光学调制膜(50)。

Description

显示面板及显示面板的制备方法
本申请要求于2019年11月21日提交中国专利局、申请号为201911146664.8、发明名称为“显示面板及显示面板的制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及显示技术领域,具体涉及一种显示面板及显示面板的制备方法。
背景技术
新一代照明显示技术,量子点(Quantum Dot,QD)-有机发光二极管(Organic Light-Emitting Diode,OLED)以蓝色有机发光二极管(Blue Organic Light-Emitting Diode,B-OLED)为光源,出光方向处加入量子点薄膜,再利用OELD的蓝光激发量子点薄膜发光。
从效果上来看,QD-OLED具备量子点广色域,色彩鲜艳且分明的特点。同时,它同样拥有OELD的成本低,可制备成柔性,卷绕器件的优点。因此QD-OLED具有巨大的潜力广阔的发展前景。从原理上来说,QD-OLED系通过蓝光OLED发射出的蓝光+量子点的光致发光。而量子点的光致发光存在各向同性的特点,受激发后光子向四面八方分散式发射,相当一部分的光子射向OLED内部,或被吸收,或被困陷,造成能量的浪费。
技术问题
目前的QD-OLED存在因受激发后的光子向四面八方分散式发射,造成光的利用率不高的技术问题。
技术解决方案
本发明实施例提供一种显示面板及显示装置,用于解决现有QD-OLED存在因受激发后的光子向四面八方分散式发射,造成光的利用率不高的技术问题。
为解决上述问题,第一方面,本发明提供一种显示面板,包括:
依次层叠设置的基底、发光器件层和盖板;
量子点光转换膜,设置于所述基底远离所述发光器件层的一侧;
其中,在所述基底和所述量子点光转换膜之间设置有光学调制膜。
在本发明一些实施例中,所述光学调制膜由多个折光单元交替堆叠而成,每个所述折光单元包括折光系数为n1的第一材料层和折光系数为n2的第二材料层。
在本发明一些实施例中,所述第一材料层的折光系数n1<1.6,所述第二材料层的折光系数n2>2.0。
在本发明一些实施例中,所述第一材料层的材料为氟化镁,氟化钙,氧化硅中的至少一种,所述第二材料层的材料为锡化锌,硫化锌,氧化锆中的至少一种。
在本发明一些实施例中,所述量子点光转换膜内掺杂有可发射红光、绿光或黄光的量子点。
在本发明一些实施例中,所述发光器件层为蓝色发光器件层。
在本发明一些实施例中,当入射光的波长为490~670nm时,所述光学调制膜的反射率高于90%。
在本发明一些实施例中,当入射光的波长小于490nm时,所述光学调制膜的反射率低于10%。
在本发明一些实施例中,所述发光器件层包括透明电极、有机层和反射电极。
第二方面,本发明还提供一种显示面板的制备方法,包括:
在基底上依次制备发光器件层和盖板;
在所述基底的另一侧制备光学调制膜;及
在所述光学调制膜表面制备量子点光转化膜得到所述显示面板;
其中,制备所述光学调制膜的方法为真空蒸镀,磁控溅射,化学沉积或原子层沉积中的一种。
在本发明一些实施例中,制备发光器件层的方法为真空蒸镀,制备量子点光转化膜的方法为涂布法或单独制备然后进行贴合。
在本发明一些实施例中,所述显示面板包括:
依次层叠设置的基底、发光器件层和盖板;
量子点光转换膜,设置于所述基底远离所述发光器件层的一侧;
其中,在所述基底和所述量子点光转换膜之间设置有光学调制膜。
在本发明一些实施例中,所述光学调制膜由多个折光单元交替堆叠而成,每个所述折光单元包括折光系数为n1的第一材料层和折光系数为n2的第二材料层。
在本发明一些实施例中,所述第一材料层的折光系数n1<1.6,所述第二材料层的折光系数n2>2.0。
在本发明一些实施例中,所述第一材料层的材料为氟化镁,氟化钙,氧化硅中的至少一种,所述第二材料层的材料为锡化锌,硫化锌,氧化锆中的至少一种。
在本发明一些实施例中,所述量子点光转换膜内掺杂有可发射红光、绿光或黄光的量子点。
在本发明一些实施例中,所述发光器件层为蓝色发光器件层。
在本发明一些实施例中,当入射光的波长为490~670nm时,所述光学调制膜的反射率高于90%。
在本发明一些实施例中,当入射光的波长小于490nm时,所述光学调制膜的反射率低于10%。
在本发明一些实施例中,所述发光器件层包括透明电极、有机层和反射电极。
有益效果
相较于现有技术,本发明通过在所述基底和所述量子点光转换膜之间加入一层光学调制膜。该膜具有特定结构,具有特殊的光反射-透射性,能够选择性地将发光器件层所发射的蓝光透过,将量子点所发射出的红光、绿光或黄光向出光方向反射,提高光的利用率。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。
图1为本发明一个实施例中的显示面板结构示意图;
图2为本发明一个实施例中的光学调制膜的反射率谱图;及
图3为本发明一个实施例中的显示面板的制备方法流程图。
(10-基底;20-发光器件层;201-透明电极;202-有机层;203-反射电极;30-盖板;40-量子点光转换膜;50-光学调制膜)
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
目前的QD-OLED存在因受激发后的光子向四面八方分散式发射,造成光的利用率不高的技术问题。
基于此,本发明实施例提供一种显示面板及显示面板的制备方法。以下分别进行详细说明。
首先,本发明实施例提供一种显示面板,如图1所示,为本发明一个实施例中的显示面板结构示意图。所述显示面板包括:依次层叠设置的基底10、发光器件层20和盖板30;量子点光转换膜40,设置于所述基底10远离所述发光器件层20的一侧;其中,在所述基底10和所述量子点光转换膜40之间设置有光学调制膜50。
在本发明实施例中,所述基底10为透明基底,优选的为玻璃,或PET塑料薄膜;所述发光器件层20包括透明电极201,有机层202和反射电极203,其中,所述透明电极201设置在所述基底10的表面,所述有机层202设置在所述透明电极201的表面以及所述反射电极203设置在所述有机层202的表面;具体的,所述透明电极201优选的为氧化铟锡(Indium Tin Oxides,ITO);所述有机层202为采用有机材料制成的各个膜层的总称,所述有机层202包括空穴阻挡层、空穴传输层、空穴注入层、发光层、电子阻挡层、电子传输层与电子注入层中的至少一层,当所述有机层202包括多层有机膜层时,各个膜层之间可以以常规单节的形式存在,也可以以串联结构的形式存在;所述反射电极203由金属材料制成,其中优选的为导电性能优良的金属材料,最优选的为铝、银或镁银合金。
一般情况下,由于蓝光的能级一般较大,所述发光器件层20优选的为蓝色发光器件层,所述有机层202中的发光层发射蓝光,值得一提的是,所述发光层发射的蓝光一部分直接透过所述透明电极201向出光方向射出,另一部分蓝光向反方向射出,但被所述反射电极203反射,然后向出光方向射出,提高了光的利用率。所述量子点光转换膜40设置于所述基底10远离所述发光器件层20的一侧,所述量子点光转换膜40内掺杂有可发射红光、绿光或黄光的量子点。所述量子点可被蓝光激发,从而发射出红光、绿光或黄光,所述红光、绿光或黄光可以与蓝光共同组合成白光。
在上述实施例的基础上,在本发明的另一实施例中,在所述基底10和所述量子点光转换膜40之间设置有光学调制膜50,所述光学调制膜50由多个折光单元交替堆叠而成,每个所述折光单元包括折光系数为n1的第一材料层和折光系数为n2的第二材料层。这样的光学调制膜50具有特殊的光反射-透射性,如图2所示,为本发明一个实施例中的光学调制膜的反射率谱图。由图可知,本实施例中的光学调制膜50具有如下特性,当入射光的波长为490~670nm时,所述光学调制膜50的反射率高于90%;当入射光的波长小于490nm时,所述光学调制膜50的反射率低于10%。事实上,各种可见光的颜色对应的波长分别是:红光对应的波长为622~770nm、黄光对应的波长为577~597m、绿光对应的波长为592~577nm、蓝光对应的波长为455~492nm,因此,在本发明实施例中,所述光学调制膜50对于红光、绿光以及黄光具有很强的反射能力,而对于蓝光具有很好的透过性。
在本实施例中,具体的光路分析如下:从所述有机层202发射出蓝光,一部分蓝光直接向出光方向射出,另一部分蓝光向反方向射出,但经由所述反射电极203的反射,然后向出光方向射出,两部分蓝光均可穿透所述透明电极201,即所述发光器件层20向出光方向射出蓝光。从所述发光器件层20射出的蓝光穿透所述光学调制膜50后,一部分蓝光直接抵达外部,另一部分蓝光用于激发所述量子点光转换膜40中的量子点,所述量子点被激发后发射出的红光、绿光或黄光一部分直接向出光方向射出,另一部分朝向所述发光器件层20的方向上射出,但经由所述光学调制膜50反射,两部分红光、绿光或黄光均向出光方向上射出。同时,向出光方向射出的红光、绿光或黄光与上述直接抵达外部的蓝光共同组合成白光。如图1所示中,阴影箭头表示蓝光射出方向,白色箭头表示白光射出方向。该设计提高了光的利用率。
当然,在本发明实施例中,还可以对所述光学调制膜50继续优化。第一个所述折光单元包括折光系数为n1、厚度为dA的第一材料层和折光系数为n2、厚度为dB的第二材料层。所述光学调制膜50由多个厚度不同的所述折光单元交替堆叠而成,所述光学调制膜50的第n个单元可反射特定波长的光,满足如下关系:当波长l=2(n1´dAn+n2´dBn),则会被该折光单元反射。在本实施例中,通过设置多个不同预设厚度的折光单元,使得会被反射的波长覆盖490~670nm区域,即所述光学调制膜50对于红光、绿光以及黄光具有很强的反射能力,而对于蓝光具有很好的透过性。同时,所述第一材料层的折光系数优选的为n1<1.6,所述第二材料层的折光系数优选的为n2>2.0;所述第一材料层的材料最优选的为氟化镁,氟化钙,氧化硅中的至少一种,所述第二材料层的材料最优选的为锡化锌,硫化锌,氧化锆中的至少一种。由于所需反射波长范围、第一材料层折光系数和第二材料层折光系数已知,所述多个折光单元的不同预设厚度经计算可知,此处不再赘述。
为了更好地制得本发明实施例中的显示面板,在显示面板的基础上,本发明实施例中还提供一种显示面板的制备方法,如图3所示,为本发明一个实施例中的显示面板的制备方法流程图。包括:
S1、在基底上依次制备发光器件层和盖板;
S2、在所述基底的另一侧制备光学调制膜;及
S3、在所述光学调制膜表面制备量子点光转化膜得到所述显示面板;
其中,制备所述光学调制膜的方法为真空蒸镀,磁控溅射,化学沉积或原子层沉积中的一种。
具体的,所述发光器件层包括透明电极、有机层以及反射电极层。所述步骤S1还包括:在基底上制备所述透明电极,采用真空蒸镀在所述透明电极的表面制备所述有机层,利用真空蒸镀在所述有机层表面制备反射电极。制备量子点光转化膜的方法为涂布法或单独制备然后进行贴合。此处的真空蒸镀、涂布法和单独制备然后进行贴合均为优选方案,在实际生产中,采用其他常规方法也可以实现该目的。
本发明通过在所述基底和所述量子点光转换膜之间加入一层光学调制膜。该膜具有特定结构,具有特殊的光反射-透射性,能够选择性地将发光器件层所发射的蓝光透过,将量子点所发射出的红光、绿光或黄光向出光方向反射,提高光的利用率。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上对本发明实施例进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例的技术方案的范围。

Claims (20)

  1. 一种显示面板,包括:
    依次层叠设置的基底、发光器件层和盖板;
    量子点光转换膜,设置于所述基底远离所述发光器件层的一侧;
    其中,在所述基底和所述量子点光转换膜之间设置有光学调制膜。
  2. 根据权利要求1所述的显示面板,其中,所述光学调制膜由多个折光单元交替堆叠而成,每个所述折光单元包括折光系数为n1的第一材料层和折光系数为n2的第二材料层。
  3. 根据权利要求2所述的显示面板,其中,所述第一材料层的折光系数n1<1.6,所述第二材料层的折光系数n2>2.0。
  4. 根据权利要求2所述的显示面板,其中,所述第一材料层的材料为氟化镁,氟化钙,氧化硅中的至少一种,所述第二材料层的材料为锡化锌,硫化锌,氧化锆中的至少一种。
  5. 根据权利要求2所述的显示面板,其中,所述量子点光转换膜内掺杂有可发射红光、绿光或黄光的量子点。
  6. 根据权利要求1所述的显示面板,其中,所述发光器件层为蓝色发光器件层。
  7. 根据权利要求1所述的显示面板,其中,当入射光的波长为490~670nm时,所述光学调制膜的反射率高于90%。
  8. 根据权利要求1所述的显示面板,其中,当入射光的波长小于490nm时,所述光学调制膜的反射率低于10%。
  9. 根据权利要求1所述的显示面板,其中,所述发光器件层包括透明电极、有机层和反射电极。
  10. 一种显示面板的制备方法,包括:
    在基底上依次制备发光器件层和盖板;
    在所述基底的另一侧制备光学调制膜;及
    在所述光学调制膜表面制备量子点光转化膜得到所述显示面板;
    其中,制备所述光学调制膜的方法为真空蒸镀,磁控溅射,化学沉积或原子层沉积中的一种。
  11. 根据权利要求10所述的制备方法,其中,制备发光器件层的方法为真空蒸镀,制备量子点光转化膜的方法为涂布法或单独制备然后进行贴合。
  12. 根据权利要求10所述的制备方法,其中,所述显示面板包括:
    依次层叠设置的基底、发光器件层和盖板;
    量子点光转换膜,设置于所述基底远离所述发光器件层的一侧;
    其中,在所述基底和所述量子点光转换膜之间设置有光学调制膜。
  13. 根据权利要求12所述的制备方法,其中,所述光学调制膜由多个折光单元交替堆叠而成,每个所述折光单元包括折光系数为n1的第一材料层和折光系数为n2的第二材料层。
  14. 根据权利要求13所述的制备方法,其中,所述第一材料层的折光系数n1<1.6,所述第二材料层的折光系数n2>2.0。
  15. 根据权利要求13所述的制备方法,其中,所述第一材料层的材料为氟化镁,氟化钙,氧化硅中的至少一种,所述第二材料层的材料为锡化锌,硫化锌,氧化锆中的至少一种。
  16. 根据权利要求10所述的制备方法,其中,所述量子点光转换膜内掺杂有可发射红光、绿光或黄光的量子点。
  17. 根据权利要求10所述的制备方法,其中,所述发光器件层为蓝色发光器件层。
  18. 根据权利要求10所述的制备方法,其中,当入射光的波长为490~670nm时,所述光学调制膜的反射率高于90%。
  19. 根据权利要求10所述的制备方法,其中,当入射光的波长小于490nm时,所述光学调制膜的反射率低于10%。
  20. 根据权利要求10所述的制备方法,其中,所述发光器件层包括透明电极、有机层和反射电极。
PCT/CN2019/121582 2019-11-21 2019-11-28 显示面板及显示面板的制备方法 WO2021097891A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/624,325 US20210408415A1 (en) 2019-11-21 2019-11-28 Display panel and manufacturing method of display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911146664.8 2019-11-21
CN201911146664.8A CN110993816A (zh) 2019-11-21 2019-11-21 显示面板及显示面板的制备方法

Publications (1)

Publication Number Publication Date
WO2021097891A1 true WO2021097891A1 (zh) 2021-05-27

Family

ID=70085485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121582 WO2021097891A1 (zh) 2019-11-21 2019-11-28 显示面板及显示面板的制备方法

Country Status (3)

Country Link
US (1) US20210408415A1 (zh)
CN (1) CN110993816A (zh)
WO (1) WO2021097891A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080042552A1 (en) * 2006-08-18 2008-02-21 Cok Ronald S Color-change material layer
CN104466026A (zh) * 2014-12-29 2015-03-25 北京维信诺科技有限公司 一种具有颜色转换功能的光转换单元及其应用
CN105070802A (zh) * 2015-08-14 2015-11-18 Tcl集团股份有限公司 白光qled器件及制备方法
CN109449309A (zh) * 2018-10-30 2019-03-08 合肥鑫晟光电科技有限公司 一种oled器件、oled显示面板及oled显示装置
CN109545832A (zh) * 2018-11-29 2019-03-29 京东方科技集团股份有限公司 有机发光二极管显示基板及其制备方法、显示装置
CN110224012A (zh) * 2019-06-18 2019-09-10 京东方科技集团股份有限公司 显示面板及显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102015907B1 (ko) * 2013-01-24 2019-08-29 삼성전자주식회사 반도체 발광소자
CN104576961B (zh) * 2014-12-03 2017-09-15 深圳丹邦投资集团有限公司 一种基于量子点的oled白光器件及其制作方法
CN105609656B (zh) * 2016-01-06 2017-05-17 京东方科技集团股份有限公司 一种有机电致发光器件及显示装置
CN108957844A (zh) * 2017-05-25 2018-12-07 张家港康得新光电材料有限公司 量子点膜、背光模组及液晶显示装置
KR102429881B1 (ko) * 2017-11-02 2022-08-05 삼성전자주식회사 디스플레이 장치
TWI688805B (zh) * 2018-12-14 2020-03-21 友達光電股份有限公司 背光模組

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080042552A1 (en) * 2006-08-18 2008-02-21 Cok Ronald S Color-change material layer
CN104466026A (zh) * 2014-12-29 2015-03-25 北京维信诺科技有限公司 一种具有颜色转换功能的光转换单元及其应用
CN105070802A (zh) * 2015-08-14 2015-11-18 Tcl集团股份有限公司 白光qled器件及制备方法
CN109449309A (zh) * 2018-10-30 2019-03-08 合肥鑫晟光电科技有限公司 一种oled器件、oled显示面板及oled显示装置
CN109545832A (zh) * 2018-11-29 2019-03-29 京东方科技集团股份有限公司 有机发光二极管显示基板及其制备方法、显示装置
CN110224012A (zh) * 2019-06-18 2019-09-10 京东方科技集团股份有限公司 显示面板及显示装置

Also Published As

Publication number Publication date
US20210408415A1 (en) 2021-12-30
CN110993816A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
JP4951130B2 (ja) 有機発光素子及びその製造方法
CN111063826B (zh) 一种显示面板
JP4769068B2 (ja) 有機発光素子及びその製造方法
US10446798B2 (en) Top-emitting WOLED display device
CN106409876A (zh) 一种显示器件
JP2015523689A (ja) 有機発光ダイオード(oled)素子用積層体、その製造方法、及びこれを備える有機発光ダイオード(oled)素子
JP2007273397A (ja) 有機el多色ディスプレイパネル
KR102642250B1 (ko) 마이크로 발광장치 및 그 디스플레이
JP2008251217A (ja) 有機エレクトロルミネセンス素子
CN110212109B (zh) Oled显示面板
KR101268532B1 (ko) 유기 발광 소자
TW201010501A (en) Organic electroluminescence element and method of manufacturing the same
KR101268543B1 (ko) 유기 발광 소자
JP4644938B2 (ja) 有機電界発光素子
JP2000277266A (ja) 有機電界発光素子
WO2017173692A1 (zh) Oled显示面板及其制备方法
WO2017173693A1 (zh) Oled显示面板及其制备方法
WO2021097891A1 (zh) 显示面板及显示面板的制备方法
CN114050220B (zh) 透明显示面板、显示装置、发光显示器件及制备方法
KR101048796B1 (ko) 투과발광형 디스플레이 소자
JP2007294438A (ja) 有機el素子
JP4990587B2 (ja) 発光素子及びその製造方法
CN201638819U (zh) 一种amoled显示器件
CN108987604B (zh) 一种红光有机电致发光器件
CN109004101B (zh) 一种有机电致发光器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953070

Country of ref document: EP

Kind code of ref document: A1