WO2021093839A1 - 作为btk抑制剂的吡咯并嘧啶类化合物及其应用 - Google Patents

作为btk抑制剂的吡咯并嘧啶类化合物及其应用 Download PDF

Info

Publication number
WO2021093839A1
WO2021093839A1 PCT/CN2020/128597 CN2020128597W WO2021093839A1 WO 2021093839 A1 WO2021093839 A1 WO 2021093839A1 CN 2020128597 W CN2020128597 W CN 2020128597W WO 2021093839 A1 WO2021093839 A1 WO 2021093839A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
present
pharmaceutically acceptable
acid
reaction
Prior art date
Application number
PCT/CN2020/128597
Other languages
English (en)
French (fr)
Inventor
张杨
伍文韬
耿开骏
李秋
黎健
陈曙辉
Original Assignee
南京明德新药研发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京明德新药研发有限公司 filed Critical 南京明德新药研发有限公司
Priority to US17/776,873 priority Critical patent/US20230357248A1/en
Priority to EP20887944.5A priority patent/EP4059935A4/en
Priority to KR1020227018702A priority patent/KR20220097455A/ko
Priority to JP2022528124A priority patent/JP7473642B2/ja
Priority to CN202311079865.7A priority patent/CN117551103A/zh
Priority to CN202080078768.4A priority patent/CN114728974B/zh
Publication of WO2021093839A1 publication Critical patent/WO2021093839A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators

Definitions

  • the invention relates to a pyrrolopyrimidine compound and its application in the preparation of drugs for diseases related to BTK protein kinase inhibitors.
  • the pyrrolopyrimidine compound of the present invention is a new class of protein kinase inhibitors, has multiple therapeutic applications, and can be used to treat proliferation, inflammation, autoimmunity and other related disorders caused by protein kinases.
  • kinases are a class of enzymes that control the transfer of phosphate groups from phosphate donors (such as ATP) to specific substrates. Protein kinases are a large subset of kinases and play a central role in regulating a variety of cell signals and processes. BTK is one of them.
  • BTK belongs to the TEC family of tyrosine kinases (TFKs). There are 5 members in this family, in addition to BTK, there are ITK, TEC, BMX and TXK. TFKs have an evolutionary history of more than 600 million years, belong to a very ancient kinase family, and mainly play a role in the hematopoietic system.
  • BTK is mainly responsible for the conduction and amplification of various intracellular and extracellular signals in B lymphocytes, and is necessary for the maturation of B cells.
  • the inactivation of BTK in XLA patients can lead to a lack of peripheral B cells and immunoglobulins.
  • Signal receptors upstream of BTK include growth factor and cytokine receptors, G protein-coupled receptors such as chemokine receptors, antigen receptors (especially B cell receptor [BCR]) and integrins.
  • BTK in turn activates many major downstream signaling pathways, including phosphoinositide-3 kinase (PI3K)-AKT pathway, phosphoinositide-C (PLC), protein kinase C, and nuclear factor kappa B (NF- ⁇ B) and so on.
  • PI3K phosphoinositide-3 kinase
  • PLC phosphoinositide-C
  • NF- ⁇ B nuclear factor kappa B
  • ibrutinib and acatinib as BTK inhibitors. These two irreversible covalent inhibitors can form a covalent bond with protein C481, thereby inhibiting the activity of BTK.
  • Clinical studies have found that patients will develop resistance mutations after taking ibrutinib and acatinib, including C481S, C481Y, C481R, and C481F.
  • the present invention provides a compound represented by formula (III) or a pharmaceutically acceptable salt thereof,
  • R 1 is selected from halogen and a C 1-3 alkoxy group, a C 1-3 alkoxy said alkoxy optionally substituted with 1, 2 or 3 R a;
  • two R 1s can form a cyclopropyl group together with the bond to which they are connected;
  • Each R a is selected from D, halo and OH;
  • R 2 is selected from halogen, methyl, phenoxy and pyridyloxy, the phenoxy and pyridyloxy are optionally substituted with 1, 2 or 3 halogens;
  • R 3 is selected from -CH 2 OH, m is selected from 1 and 2;
  • R 3 is selected from CN and CH 2 CN, and m is selected from 0, 1 and 2;
  • n is selected from 1, 2 and 3;
  • E 1 is selected from O, S and NH;
  • Ring A is selected from tetrahydropyranyl.
  • each of the aforementioned Ras is selected from D, F and OH, and other variables are as defined in the present invention.
  • R 1 is selected from F, OCH 3 , OCD 3 and OCH 2 CH 2 OH, and other variables are as defined in the present invention.
  • R 2 is selected from F, Cl, methyl, phenoxy, 2-fluorophenoxy and 2-pyridyloxy, and other variables are as defined in the present invention.
  • the above-mentioned E 1 is selected from NH, and other variables are as defined in the present invention.
  • the above-mentioned ring A is selected from Other variables are as defined in the present invention.
  • the present invention provides a compound represented by formula (I) or a pharmaceutically acceptable salt thereof,
  • R 1 is selected from halogen
  • two R 1s can form a cyclopropyl group together with the bond to which they are connected;
  • R 2 is selected from halogen and phenoxy
  • n and n are independently selected from 1, 2 and 3;
  • E 1 is selected from O, S and NH;
  • Ring A is selected from a pyran ring.
  • the above-mentioned R 1 is selected from F; alternatively, two R 1 and the bond to which they are connected together form a cyclopropyl group, and other variables are as defined in the present invention.
  • R 2 is selected from Cl and phenoxy, and other variables are as defined in the present invention.
  • the above-mentioned E 1 is selected from NH, and other variables are as defined in the present invention.
  • the above-mentioned ring A is selected from Other variables are as defined in the present invention.
  • the present invention provides a compound represented by formula (III) or a pharmaceutically acceptable salt thereof,
  • R 1 is selected from halogen and C 1-3 alkoxy, the C 1-3 alkoxy is optionally substituted with 1, 2 or 3 halogens;
  • two R 1s can form a cyclopropyl group together with the bond to which they are connected;
  • R 2 is selected from halogen and phenoxy
  • R 3 is selected from -CH 2 OH, m is selected from 1 and 2;
  • R 3 is selected from CN, and m is selected from 0, 1 and 2;
  • n is selected from 1, 2 and 3;
  • E 1 is selected from O, S and NH;
  • Ring A is selected from tetrahydropyranyl.
  • R 1 is selected from H, F and OCH 3 , and the OCH 3 is optionally substituted with 1, 2 or 3 halogens, and other variables are as defined in the present invention.
  • R 1 is selected from H, F and OCH 3 , and other variables are as defined in the present invention.
  • R 2 is selected from Cl and phenoxy, and other variables are as defined in the present invention.
  • the above-mentioned E 1 is selected from NH, and other variables are as defined in the present invention.
  • the above-mentioned ring A is selected from Other variables are as defined in the present invention.
  • the present invention provides a compound represented by formula (III) or a pharmaceutically acceptable salt thereof,
  • R 1 is selected from halogen and a C 1-3 alkoxy group, a C 1-3 alkoxy said alkoxy optionally substituted with 1, 2 or 3 R a;
  • two R 1s can form a cyclopropyl group together with the bond to which they are connected;
  • Each R a is selected from halogen and OH;
  • R 2 is selected from halogen, methyl, phenoxy and pyridyloxy, the phenoxy and pyridyloxy are optionally substituted with 1, 2 or 3 halogens;
  • R 3 is selected from -CH 2 OH, m is selected from 1 and 2;
  • R 3 is selected from CN and CH 2 CN, and m is selected from 0, 1 and 2;
  • n is selected from 1, 2 and 3;
  • E 1 is selected from O, S and NH;
  • Ring A is selected from tetrahydropyranyl.
  • each of the aforementioned Ras is selected from F and OH, and other variables are as defined in the present invention.
  • R 1 is selected from F, OCH 3 , OCD 3 and OCH 2 CH 2 OH, and other variables are as defined in the present invention.
  • R 2 is selected from F, Cl, methyl, phenoxy, 2-fluorophenoxy and 2-pyridyloxy, and other variables are as defined in the present invention.
  • the above-mentioned E 1 is selected from NH, and other variables are as defined in the present invention.
  • the above-mentioned ring A is selected from Other variables are as defined in the present invention.
  • the above-mentioned compound or a pharmaceutically acceptable salt thereof is selected from
  • R 1 , R 2 and m are as defined in the present invention.
  • the present invention also provides the following compounds or pharmaceutically acceptable salts thereof, which are selected from:
  • the present invention also provides the following compounds or pharmaceutically acceptable salts thereof, which are selected from:
  • the present invention also provides the application of the above-mentioned compound or a pharmaceutically acceptable salt thereof in the preparation of drugs related to BTK protein kinase inhibitors.
  • the above application is characterized in that the BTK protein kinase inhibitor-related drug is a drug for hematoma.
  • the compound of the present invention has a strong inhibitory effect on BTK C481S mutation and a good inhibitory effect on TMD8 cells.
  • the free drug concentration of the compound 4 of the present invention in the plasma of mice and rats is higher than that of Reference Example 1, which inhibits tumors. The effect is significantly better than that of Reference Example 1.
  • pharmaceutically acceptable refers to those compounds, materials, compositions and/or dosage forms that are within the scope of reliable medical judgment and are suitable for use in contact with human and animal tissues. , Without excessive toxicity, irritation, allergic reactions or other problems or complications, commensurate with a reasonable benefit/risk ratio.
  • pharmaceutically acceptable salt refers to a salt of the compound of the present invention, which is prepared from the compound with specific substituents discovered in the present invention and a relatively non-toxic acid or base.
  • a base addition salt can be obtained by contacting the neutral form of the compound with a sufficient amount of base in a pure solution or a suitable inert solvent.
  • Pharmaceutically acceptable base addition salts include sodium, potassium, calcium, ammonium, organic amine or magnesium salt or similar salts.
  • the acid addition salt can be obtained by contacting the neutral form of the compound with a sufficient amount of acid in a pure solution or a suitable inert solvent.
  • Examples of pharmaceutically acceptable acid addition salts include inorganic acid salts including, for example, hydrochloric acid, hydrobromic acid, nitric acid, carbonic acid, hydrogen carbonate, phosphoric acid, monohydrogen phosphate, dihydrogen phosphate, sulfuric acid, Hydrogen sulfate, hydroiodic acid, phosphorous acid, etc.; and organic acid salts, the organic acid includes, for example, acetic acid, propionic acid, isobutyric acid, maleic acid, malonic acid, benzoic acid, succinic acid, suberic acid, Similar acids such as fumaric acid, lactic acid, mandelic acid, phthalic acid, benzenesulfonic acid, p-toluenesulfonic acid, citric acid, tartaric acid and methanesulfonic acid; also include amino acids (such as arginine, etc.) Salts, and salts of organic acids such as glucuronic acid. Certain specific compounds of the present invention contain basic and acidic
  • the pharmaceutically acceptable salt of the present invention can be synthesized from the parent compound containing acid or base by conventional chemical methods. In general, such salts are prepared by reacting these compounds in free acid or base form with a stoichiometric amount of appropriate base or acid in water or organic solvent or a mixture of both.
  • the compounds of the present invention may exist in specific geometric or stereoisomeric forms.
  • the present invention contemplates all such compounds, including cis and trans isomers, (-)- and (+)-enantiomers, (R)- and (S)-enantiomers, diastereomers Isomers, (D)-isomers, (L)-isomers, and their racemic mixtures and other mixtures, such as enantiomers or diastereomer-enriched mixtures, all of these mixtures belong to this Within the scope of the invention.
  • Additional asymmetric carbon atoms may be present in substituents such as alkyl groups. All these isomers and their mixtures are included in the scope of the present invention.
  • enantiomer or “optical isomer” refers to stereoisomers that are mirror images of each other.
  • cis-trans isomer or “geometric isomer” is caused by the inability to rotate freely because of double bonds or single bonds of ring-forming carbon atoms.
  • diastereomer refers to a stereoisomer in which the molecule has two or more chiral centers and the relationship between the molecules is non-mirror mirror image.
  • wedge-shaped solid line keys And wedge-shaped dashed key Represents the absolute configuration of a solid center, with a straight solid line key And straight dashed key Indicates the relative configuration of the three-dimensional center, using wavy lines Represents a wedge-shaped solid line key Or wedge-shaped dashed key Or use wavy lines Represents a straight solid line key And straight dashed key
  • the compound of the present invention may be specific.
  • tautomer or “tautomeric form” means that at room temperature, the isomers of different functional groups are in dynamic equilibrium and can be transformed into each other quickly. If tautomers are possible (such as in solution), the chemical equilibrium of tautomers can be reached.
  • proton tautomer also called prototropic tautomer
  • proton migration such as keto-enol isomerization and imine-ene Amine isomerization.
  • Valence isomers include some recombination of bonding electrons to carry out mutual transformation.
  • keto-enol tautomerization is the tautomerization between two tautomers of pentane-2,4-dione and 4-hydroxypent-3-en-2-one.
  • the terms “enriched in one isomer”, “enriched in isomers”, “enriched in one enantiomer” or “enriched in enantiomers” refer to one of the isomers or pairs of
  • the content of the enantiomer is less than 100%, and the content of the isomer or enantiomer is greater than or equal to 60%, or greater than or equal to 70%, or greater than or equal to 80%, or greater than or equal to 90%, or greater than or equal to 95%, or 96% or greater, or 97% or greater, or 98% or greater, or 99% or greater, or 99.5% or greater, or 99.6% or greater, or 99.7% or greater, or 99.8% or greater, or greater than or equal 99.9%.
  • the term “isomer excess” or “enantiomeric excess” refers to the difference between the relative percentages of two isomers or two enantiomers. For example, if the content of one isomer or enantiomer is 90%, and the content of the other isomer or enantiomer is 10%, the isomer or enantiomer excess (ee value) is 80% .
  • optically active (R)- and (S)-isomers and D and L isomers can be prepared by chiral synthesis or chiral reagents or other conventional techniques. If you want to obtain an enantiomer of a compound of the present invention, it can be prepared by asymmetric synthesis or derivatization with chiral auxiliary agents, in which the resulting diastereomeric mixture is separated and the auxiliary group is cleaved to provide pure The desired enantiomer.
  • the molecule when the molecule contains a basic functional group (such as an amino group) or an acidic functional group (such as a carboxyl group), it forms a diastereomeric salt with an appropriate optically active acid or base, and then passes through a conventional method known in the art The diastereoisomers are resolved, and then the pure enantiomers are recovered.
  • the separation of enantiomers and diastereomers is usually accomplished through the use of chromatography, which uses a chiral stationary phase and is optionally combined with chemical derivatization (for example, the formation of amino groups from amines). Formate).
  • the compound of the present invention may contain unnatural proportions of atomic isotopes on one or more of the atoms constituting the compound.
  • compounds can be labeled with radioisotopes, such as tritium ( 3 H), iodine-125 ( 125 I), or C-14 ( 14 C).
  • deuterium can be substituted for hydrogen to form deuterated drugs.
  • the bond formed by deuterium and carbon is stronger than the bond formed by ordinary hydrogen and carbon.
  • deuterated drugs can reduce toxic side effects and increase drug stability. , Enhance the efficacy, prolong the biological half-life of drugs and other advantages. All changes in the isotopic composition of the compounds of the present invention, whether radioactive or not, are included in the scope of the present invention.
  • C 1-3 alkoxy refers to those alkyl groups containing 1 to 3 carbon atoms that are attached to the rest of the molecule through an oxygen atom.
  • the C 1-3 alkoxy group includes C 1-2 , C 2-3 , C 3 and C 2 alkoxy groups and the like.
  • Examples of C 1-3 alkoxy include, but are not limited to, methoxy, ethoxy, propoxy (including n-propoxy and isopropoxy) and the like.
  • halogen or halogen by itself or as part of another substituent means a fluorine, chlorine, bromine or iodine atom.
  • substituted means that any one or more hydrogen atoms on a specific atom are replaced by substituents, and may include deuterium and hydrogen variants, as long as the valence of the specific atom is normal and the substituted compound is stable of.
  • oxygen it means that two hydrogen atoms are replaced. Oxygen substitution does not occur on aromatic groups.
  • optionally substituted means that it can be substituted or unsubstituted. Unless otherwise specified, the type and number of substituents can be arbitrary on the basis that they can be chemically realized.
  • any variable such as R
  • its definition in each case is independent.
  • the group can optionally be substituted with up to two Rs, and R has independent options in each case.
  • combinations of substituents and/or variants thereof are only permitted if such combinations result in stable compounds.
  • linking group When the number of a linking group is 0, such as -(CRR) 0 -, it means that the linking group is a single bond.
  • a substituent When a substituent is vacant, it means that the substituent is absent.
  • X in AX when X in AX is vacant, it means that the structure is actually A.
  • the listed linking group does not indicate its linking direction, its linking direction is arbitrary, for example, The middle linking group L is -MW-, at this time -MW- can be formed by connecting ring A and ring B in the same direction as the reading order from left to right It can also be formed by connecting ring A and ring B in the direction opposite to the reading order from left to right
  • Combinations of the linking groups, substituents, and/or variants thereof are only permitted if such combinations result in stable compounds.
  • the compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, the embodiments formed by combining them with other chemical synthesis methods, and those well known to those skilled in the art Equivalent alternatives, preferred implementations include but are not limited to the embodiments of the present invention.
  • the structure of the compound of the present invention can be confirmed by conventional methods well known to those skilled in the art. If the present invention relates to the absolute configuration of the compound, the absolute configuration can be confirmed by conventional technical means in the art.
  • the single crystal X-ray diffraction method uses the Bruker D8 venture diffractometer to collect the diffraction intensity data of the cultured single crystal.
  • the light source is CuK ⁇ radiation
  • the scanning method After scanning and collecting relevant data, the direct method (Shelxs97) is further used to analyze the crystal structure to confirm the absolute configuration.
  • the solvent used in the present invention is commercially available.
  • the present invention uses the following abbreviations: aq stands for water; eq stands for equivalent or equivalent; M stands for mol/L; DCM stands for dichloromethane; PE stands for petroleum ether; DMF stands for N,N-dimethylformamide; NMP Represents N-methylpyrrolidone; DMSO represents dimethyl sulfoxide; EtOAc represents ethyl acetate; EtOH represents ethanol; MeOH represents methanol; CBz represents benzyloxycarbonyl, which is an amine protecting group; Boc represents tert-butoxycarbonyl is a An amine protecting group; rt stands for room temperature; O/N stands for overnight; THF stands for tetrahydrofuran; Boc 2 O stands for di-tert-butyl dicarbonate; trifluoroacetic acid stands for trifluoroacetic acid; DIPEA stands for diisopropylethylamine; SOCl
  • the compound of the present invention has a strong inhibitory effect on BTK C481S mutation and a good inhibitory effect on TMD8 cells.
  • the free drug concentration of the compound 4 of the present invention in the plasma of mice and rats is higher than that of Reference Example 1, which inhibits tumors. The effect is significantly better than that of Reference Example 1.
  • Figure 1 The ellipsoid diagram of the bimolecular three-dimensional structure
  • Figure 2 The ellipsoid diagram of the three-dimensional structure of a single molecule
  • Figure 3 Unit cell packing along the a-axis direction
  • Figure 5 Effect of test substance on tumor volume of human diffuse large B lymphoma TMD8 mouse xenograft tumor (Day 14) (Mean ⁇ SEM).
  • the Bruker D8 Venture Photon II diffractometer was used to collect the diffraction intensity data, the light source was CuK ⁇ radiation, and the scanning method: Scanning, the total number of diffraction points collected is 31231, the number of independent diffraction points is 8390, and the number of observable points (I/sigma ⁇ 2) is 8135.
  • the direct method (Shelxs97) was used to analyze the crystal structure, and all 76 non-hydrogen atom positions were obtained.
  • the least square method was used to modify the structural parameters and distinguish the atom types.
  • the geometric calculation method and the difference Fourier method were used to obtain all the hydrogen atom positions.
  • R 1 0.0501
  • wR 2 0.1454
  • w 1/ ⁇
  • S 1.046.
  • the final stoichiometric formula is (C 26 H 25 ClN 4 O 5 ) 2 ⁇ C 3 H 6 O, the calculated molecular weight is 1075.97, and the calculated crystal density is 1.326 g/cm 3 .
  • the single crystal results show that the molecular arrangement in the crystalline state belongs to the first type of space group, and the compound should have optical activity, with a Flack coefficient of 0.049 (4), which can determine the absolute configuration of the compound in the crystal.
  • the compound In the crystalline state, there are hydrogen bonds between molecules, and hydrogen bonds and van der Waals forces maintain their stable arrangement in space.
  • Compound 005-1 (referred to as Reference Example 1) was prepared according to the method described in patent WO2017111787 Compound (I).
  • Test Example 1 BTK enzyme activity test
  • Buffer 20mM hydroxyethylpiperazine ethanesulfonic acid (Hepes) (pH 7.5), 10mM magnesium chloride, 1mM ethylene glycol diaminoethyl ether tetraacetic acid (EGTA), 0.02% polyoxyethylene lauryl ether (Brij35) , 0.02mg/mL BSA, 0.1mM sodium vanadate (Na 3 VO 4 ), 2mM dithiothreitol (DTT), 1% DMSO, 200 ⁇ M adenosine triphosphate (ATP).
  • Hepes 20mM hydroxyethylpiperazine ethanesulfonic acid (Hepes) (pH 7.5), 10mM magnesium chloride, 1mM ethylene glycol diaminoethyl ether tetraacetic acid (EGTA), 0.02% polyoxyethylene lauryl ether (Brij35) , 0.02mg/mL BSA, 0.1mM
  • the kinase activity data represents the percentage of the remaining kinase activity in the test sample compared to the reaction with the vehicle (dimethyl sulfoxide). Prism (GraphPad software) was used to obtain the IC 50 value and the fitted curve, and the results are shown in Table 6.
  • the compound of the present invention has a strong inhibitory effect on BTK C481S mutation.
  • Inhibition rate (%) (1-(sample value-100% inhibition average)/(0% inhibition average-100% inhibition average))*100;
  • the compound of the present invention has a good inhibitory effect on TMD8 cells.
  • test compound was dissolved in DMSO to prepare a stock solution of 10 mmol/L.
  • a pipette Eppendorf Research Company
  • 980 ⁇ L of dissolution medium to a 2 mL screw cap glass vial.
  • the final concentrations of the test compound and DMSO solution were 200 ⁇ M and 2%, respectively.
  • the theoretical value of the maximum concentration is 200 ⁇ M.
  • the mixture was rotated and shaken at a speed of 880 revolutions per minute at room temperature for 24 hours. Centrifuge the vial for 30 minutes at 13,000 revolutions per minute.
  • Use a digital pipette to add 200 ⁇ L of supernatant to a 96-well plate.
  • the solubility of the test compound was measured by high performance liquid chromatography spectroscopy. The results are shown in Table 8.
  • the frozen plasma was thawed in cold running tap water. After the plasma was completely thawed, centrifuged at 3220 ⁇ g for 5 min to remove suspended solids and sediments.
  • the control compound was dissolved in dimethyl sulfoxide to obtain a 10 mM stock solution. Dilute with dimethyl sulfoxide to obtain 400 ⁇ M working solution.
  • the preparation process of plasma samples Take 995 ⁇ L of blank plasma, add 5 ⁇ L of warfarin working solution and mix well to obtain a plasma sample with a concentration of 2 ⁇ M. The concentration of DMSO in the organic phase is 0.5%.
  • the dialysis plate was placed in a 5% CO 2 incubator, and incubated at 37° C. with shaking at about 100 rpm for 4 hours.
  • Compound 4 and Reference Example 1 were mixed with a solvent of 0.10 mg/mL in 10% NMP/60% PEG400/30% H 2 O, vortexed and sonicated to prepare a clear solution of 0.1 mg/mL.
  • CD-1 male mice aged 7 to 10 weeks were selected, and the candidate compound solution was administered intravenously at a dose of 0.21 mg/kg.
  • Collect whole blood for a certain period of time prepare plasma, analyze drug concentration by LC-MS/MS method, and use Phoenix WinNonlin software (Pharsight, USA) to calculate pharmacokinetic parameters. The results are shown in Table 11.
  • Compound 4 and Reference Example 1 (Compound 005-1) were mixed with a solvent of 10% NMP/60% PEG400/30% H 2 O, vortexed and sonicated to prepare a clear solution of 0.6 mg/mL.
  • CD-1 male mice aged 7 to 10 weeks were selected, and the candidate compound solution was administered intravenously at a dose of 3.1 mg/kg.
  • Compound 4 and Reference Example 1 were mixed with a solvent of 0.10 mg/mL in 10% NMP/60% PEG400/30% H 2 O, vortexed and sonicated to prepare a clear solution of 0.5 mg/mL.
  • CD-1 male mice aged 7 to 10 weeks were selected, and the candidate compound solution was administered intravenously at a dose of 0.5 mg/kg.
  • Collect whole blood for a certain period of time prepare plasma, analyze drug concentration by LC-MS/MS method, and calculate pharmacokinetic parameters with Phoenix WinNonlin software (Pharsight, USA). The results are shown in Table 13.
  • AUC u AUC 0-inf *Unbound PPB (Rat in vivo test PPB)
  • Compound 4 and Reference Example 1 were mixed with a solvent of 10% NMP/60% PEG400/30% H 2 O, vortexed and sonicated to prepare a 2 mg/mL clear solution.
  • CD-1 male mice aged 7 to 10 weeks were selected, and the candidate compound solution was administered intravenously at a dose of 2 mg/kg.
  • AUC u AUC 0-inf *Unbound PPB (Rat in vivo test PPB)
  • TMD8 SCID mouse xenograft tumor model TMD8 SCID mouse xenograft tumor model:
  • mice Establish a subcutaneous transplanted tumor model of human diffuse large B lymphoma in mice, collect tumor cells in logarithmic growth phase, count and resuspend in RPMI1640, adjust the cell suspension concentration to 4 ⁇ 107/mL, and mix with 1:1 Matrigel , Use a 1 mL syringe (4 gauge needle) to subcutaneously inoculate tumor cells on the right back of the mouse, 4 ⁇ 106 cells/mouse.
  • the tumor-bearing mice were divided into 6 groups according to the size of the tumor by the method of separating groups with preparation. On the day of the experiment, the animals were given corresponding drugs in groups.
  • the first group G1 was set up as a negative control group, and 10% NMP/60% PEG400/30% H 2 O was administered by gavage alone.
  • the second group G2 was given to Reference Example 1 (Compound 005-1) as a positive control group.
  • Dosage At 30 mg/kg, the third group G3 was given compound 4 at a dose of 30 mg/kg, once a day, for a total of 15 days.
  • PO oral
  • QD means once a day.
  • the animal's body weight and tumor size were measured 3 times a week, and the animal's clinical symptoms were observed and recorded every day. Each administration was performed with reference to the most recently weighed animal body weight.
  • Tumor measurement uses digital vernier calipers to determine the length (a) and width (b).
  • Reference example 1 and compound 4 have a certain inhibitory effect on human diffuse large B lymphoma TMD8 mouse xenograft tumors:
  • N/A means not tested.

Abstract

本发明公开了一种吡咯并嘧啶类化合物,及其在制备BTK蛋白激酶抑制剂相关疾病的药物中的应用。具体公开了式(III)所示化合物及其药学上可接受的盐。

Description

作为BTK抑制剂的吡咯并嘧啶类化合物及其应用
本申请主张如下优先权
CN201911109773.2,申请日:2019-11-13;
CN201911288492.8,申请日:2019-12-13;
CN202010096582.3,申请日:2020-02-17;
CN202010711270.9,申请日:2020-07-22。
技术领域
本发明涉及一种吡咯并嘧啶类化合物,及其在制备BTK蛋白激酶抑制剂相关疾病的药物中的应用。
背景技术
本发明的吡咯并嘧啶类化合物是一类新的蛋白激酶抑制剂,具有多种治疗应用,可以用于治疗由蛋白激酶引起的增殖、炎症及自身免疫等相关的紊乱。
激酶是一类控制磷酸基团从磷酸供体(如ATP)转移到特定底物的酶。蛋白激酶是激酶的一个大子集,在调节多种细胞信号和过程中发挥着核心作用,BTK就是其中之一。
BTK属于TEC胞质酪氨酸激酶家族(TEC family kinases,TFKs)的一员。该家族共有5个成员,除了BTK,还有ITK、TEC、BMX和TXK。TFKs的进化史超过6亿年,属于非常古老的激酶家族,主要在造血***起作用。
BTK主要负责B淋巴细胞中的各种细胞内外信号的传导与放大,是B细胞成熟所必需的。在XLA患者中BTK功能失活,会导致外周B细胞和免疫球蛋白的缺乏。BTK上游的信号受体包括生长因子和细胞因子受体、G蛋白偶联受体如趋化因子受体、抗原受体(尤其是B细胞受体[BCR])和整联蛋白等。BTK反过来激活许多主要的下游信号通路,包括磷酸肌醇-3激酶(PI3K)-AKT通路、磷脂酶-C(PLC)、蛋白激酶C和核因子κB(NF-κB)等等。BTK在BCR信号传导和细胞迁移中的作用已得到很好的证实,而这些功能似乎也是BTK抑制剂的主要靶点。在B细胞慢性淋巴细胞白血病(CLL)和套细胞淋巴瘤(MCL)等血癌细胞中均检测到BTK活性的增加。BTK功能异常活跃经常会导致B细胞恶性肿瘤或自体免疫疾病,使其成为一个热门的研发靶点。
目前FDA已批准上市的BTK抑制剂有依鲁替尼和阿卡替尼,这两个不可逆共价抑制剂能够与蛋白C481形成共价结合,从而很好的抑制BTK的活性。临床研究发现,患者在服用依鲁替尼和阿卡替尼后会出现耐药突变,包括C481S,C481Y,C481R,C481F。针对由蛋白半胱氨酸C481突变引起的耐药,我们设计合成了一系列吡咯并嘧啶类不可逆BTK抑制剂。
发明内容
本发明提供了式(III)所示化合物或其药学上可接受的盐,
Figure PCTCN2020128597-appb-000001
其中,
R 1选自卤素和C 1-3烷氧基,所述C 1-3烷氧基任选被1、2或3个R a取代;
或者,2个R 1可以和它们相连的键共同构成环丙基;
各R a选自D、卤素和OH;
R 2选自卤素、甲基、苯氧基和吡啶氧基,所述苯氧基和吡啶氧基任选被1、2或3个卤素取代;
R 3选自-CH 2OH,m选自1和2;
或者R 3选自CN和CH 2CN,m选自0、1和2;
n选自1、2和3;
E 1选自O、S和NH;
环A选自四氢吡喃基。
在本发明的一些方案中,上述各R a选自D、F和OH,其它变量如本发明所定义。
在本发明的一些方案中,上述R 1选自F、OCH 3、OCD 3和OCH 2CH 2OH,其它变量如本发明所定义。
在本发明的一些方案中,上述R 2选自F、Cl、甲基、苯氧基、2-氟苯氧基和2-吡啶氧基,其它变量如本发明所定义。
在本发明的一些方案中,上述E 1选自NH,其它变量如本发明所定义。
在本发明的一些方案中,上述环A选自
Figure PCTCN2020128597-appb-000002
其它变量如本发明所定义。
本发明提供了式(I)所示化合物或其药学上可接受的盐,
Figure PCTCN2020128597-appb-000003
R 1选自卤素;
或者,2个R 1可以和它们相连的键共同构成环丙基;
R 2选自卤素和苯氧基;
m、n分别独立地选自1、2和3;
E 1选自O、S和NH;
环A选自吡喃环。
在本发明的一些方案中,上述R 1选自F;或者,2个R 1可以和它们相连的键共同构成环丙基,其它变量如本发明所定义。
在本发明的一些方案中,上述R 2选自Cl和苯氧基,其它变量如本发明所定义。
在本发明的一些方案中,上述E 1选自NH,其它变量如本发明所定义。
在本发明的一些方案中,上述环A选自
Figure PCTCN2020128597-appb-000004
其它变量如本发明所定义。
本发明提供了式(III)所示化合物或其药学上可接受的盐,
Figure PCTCN2020128597-appb-000005
其中,
R 1选自卤素和C 1-3烷氧基,所述C 1-3烷氧基任选被1、2或3个卤素取代;
或者,2个R 1可以和它们相连的键共同构成环丙基;
R 2选自卤素和苯氧基;
R 3选自-CH 2OH,m选自1和2;
或者R 3选自CN,m选自0、1和2;
n选自1、2和3;
E 1选自O、S和NH;
环A选自四氢吡喃基。
在本发明的一些方案中,上述R 1选自H、F和OCH 3,所述OCH 3任选被1、2或3个卤素取代,其它变量如本发明所定义。
在本发明的一些方案中,上述R 1选自H、F和OCH 3,其它变量如本发明所定义。
在本发明的一些方案中,上述R 2选自Cl和苯氧基,其它变量如本发明所定义。
在本发明的一些方案中,上述E 1选自NH,其它变量如本发明所定义。
在本发明的一些方案中,上述环A选自
Figure PCTCN2020128597-appb-000006
其它变量如本发明所定义。
本发明提供了式(III)所示化合物或其药学上可接受的盐,
Figure PCTCN2020128597-appb-000007
其中,
R 1选自卤素和C 1-3烷氧基,所述C 1-3烷氧基任选被1、2或3个R a取代;
或者,2个R 1可以和它们相连的键共同构成环丙基;
各R a选自卤素和OH;
R 2选自卤素、甲基、苯氧基和吡啶氧基,所述苯氧基和吡啶氧基任选被1、2或3个卤素取代;
R 3选自-CH 2OH,m选自1和2;
或者R 3选自CN和CH 2CN,m选自0、1和2;
n选自1、2和3;
E 1选自O、S和NH;
环A选自四氢吡喃基。
在本发明的一些方案中,上述各R a选自F和OH,其它变量如本发明所定义。
在本发明的一些方案中,上述R 1选自F、OCH 3、OCD 3和OCH 2CH 2OH,其它变量如本发明所定义。
在本发明的一些方案中,上述R 2选自F、Cl、甲基、苯氧基、2-氟苯氧基和2-吡啶氧基,其它变量如本发明所定义。
在本发明的一些方案中,上述E 1选自NH,其它变量如本发明所定义。
在本发明的一些方案中,上述环A选自
Figure PCTCN2020128597-appb-000008
其它变量如本发明所定义。
在本发明的一些方案中,上述化合物或其药学上可接受的盐,其选自
Figure PCTCN2020128597-appb-000009
其中,R 1、R 2和m如本发明所定义。
本发明还有一些方案是由上述各变量任意组合而来。
本发明还提供下述化合物或其药学上可接受的盐,其选自:
Figure PCTCN2020128597-appb-000010
Figure PCTCN2020128597-appb-000011
本发明还提供下述化合物或其药学上可接受的盐,其选自:
Figure PCTCN2020128597-appb-000012
在本发明还提供了上述的化合物或其药学上可接受的盐,在制备BTK蛋白激酶抑制剂相关药物上的应用。
在本发明的一些方案中,上述的应用,其特征在于,所述BTK蛋白激酶抑制剂相关药物是用于血液瘤的药物。
技术效果
本发明化合物对BTK C481S突变具有很强的抑制作用,对TMD8细胞具有很好的抑制作用,本发明化合物4在小鼠和大鼠血浆中游离药物浓度均高于参考例1,对肿瘤的抑制效果要明显优于参考例1。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在具有下列含义。一个特定的术语或短语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文中出现商品名时,意在指代其对应的商品或其活性成分。
这里所采用的术语“药学上可接受的”,是针对那些化合物、材料、组合物和/或剂型而言,它们在可靠的医学判断的范围之内,适用于与人类和动物的组织接触使用,而没有过多的毒性、刺激性、过敏性反应或其它问题或并发症,与合理的利益/风险比相称。
术语“药学上可接受的盐”是指本发明化合物的盐,由本发明发现的具有特定取代基的化合物与相对无毒的酸或碱制备。当本发明的化合物中含有相对酸性的功能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的碱与这类化合物的中性形式接触的方式获得碱加成盐。药学上可接受的碱加成盐包括钠、钾、钙、铵、有机胺或镁盐或类似的盐。当本发明的化合物中含有相对碱性的官能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的酸与这类化合物的中性形式接触的方式获得酸加成盐。药学上可接受的酸加成盐的实例包括无机酸盐,所述无机酸包括例如盐酸、氢溴酸、硝酸、碳酸,碳酸氢根,磷酸、磷酸一氢根、磷酸二氢根、硫酸、硫酸氢根、氢碘酸、亚磷酸等;以及有机酸盐,所述有机酸包括如乙酸、丙酸、异丁酸、马来酸、丙二酸、苯甲酸、琥珀酸、辛二酸、反丁烯二酸、乳酸、扁桃酸、邻苯二甲酸、苯磺酸、对甲苯磺酸、柠檬酸、酒石酸和甲磺酸等类似的1酸;还包括氨基酸(如精氨酸等)的盐,以及如葡糖醛酸等有机酸的盐。本发明的某些特定的化合物含有碱性和酸性的官能团,从而可以被转换成任一碱或酸加成盐。
本发明的药学上可接受的盐可由含有酸根或碱基的母体化合物通过常规化学方法合成。一般情况下,这样的盐的制备方法是:在水或有机溶剂或两者的混合物中,经由游离酸或碱形式的这些化合物与化学计量的适当的碱或酸反应来制备。
除非另有说明,术语“异构体”意在包括几何异构体、顺反异构体、立体异构体、对映异构体、旋光异构体、非对映异构体和互变异构体。
本发明的化合物可以存在特定的几何或立体异构体形式。本发明设想所有的这类化合物,包括顺式和反式异构体、(-)-和(+)-对映体、(R)-和(S)-对映体、非对映异构体、(D)-异构体、(L)-异构体,及其外消旋混合物和其他混合物,例如对映异构体或非对映体富集的混合物,所有这些混合物都属于本发明的范围之内。烷基等取代基中可存在另外的不对称碳原子。所有这些异构体以及它们的混合物,均包括在本发明的范围之内。
除非另有说明,术语“对映异构体”或者“旋光异构体”是指互为镜像关系的立体异构体。
除非另有说明,术语“顺反异构体”或者“几何异构体”系由因双键或者成环碳原子单键不能自由旋转而 引起。
除非另有说明,术语“非对映异构体”是指分子具有两个或多个手性中心,并且分子间为非镜像的关系的立体异构体。
除非另有说明,“(+)”表示右旋,“(-)”表示左旋,“(±)”表示外消旋。
除非另有说明,用楔形实线键
Figure PCTCN2020128597-appb-000013
和楔形虚线键
Figure PCTCN2020128597-appb-000014
表示一个立体中心的绝对构型,用直形实线键
Figure PCTCN2020128597-appb-000015
和直形虚线键
Figure PCTCN2020128597-appb-000016
表示立体中心的相对构型,用波浪线
Figure PCTCN2020128597-appb-000017
表示楔形实线键
Figure PCTCN2020128597-appb-000018
或楔形虚线键
Figure PCTCN2020128597-appb-000019
或用波浪线
Figure PCTCN2020128597-appb-000020
表示直形实线键
Figure PCTCN2020128597-appb-000021
和直形虚线键
Figure PCTCN2020128597-appb-000022
本发明的化合物可以存在特定的。除非另有说明,术语“互变异构体”或“互变异构体形式”是指在室温下,不同官能团异构体处于动态平衡,并能很快的相互转化。若互变异构体是可能的(如在溶液中),则可以达到互变异构体的化学平衡。例如,质子互变异构体(proton tautomer)(也称质子转移互变异构体(prototropic tautomer))包括通过质子迁移来进行的互相转化,如酮-烯醇异构化和亚胺-烯胺异构化。价键异构体(valence tautomer)包括一些成键电子的重组来进行的相互转化。其中酮-烯醇互变异构化的具体实例是戊烷-2,4-二酮与4-羟基戊-3-烯-2-酮两个互变异构体之间的互变。
除非另有说明,术语“富含一种异构体”、“异构体富集”、“富含一种对映体”或者“对映体富集”指其中一种异构体或对映体的含量小于100%,并且,该异构体或对映体的含量大于等于60%,或者大于等于70%,或者大于等于80%,或者大于等于90%,或者大于等于95%,或者大于等于96%,或者大于等于97%,或者大于等于98%,或者大于等于99%,或者大于等于99.5%,或者大于等于99.6%,或者大于等于99.7%,或者大于等于99.8%,或者大于等于99.9%。
除非另有说明,术语“异构体过量”或“对映体过量”指两种异构体或两种对映体相对百分数之间的差值。例如,其中一种异构体或对映体的含量为90%,另一种异构体或对映体的含量为10%,则异构体或对映体过量(ee值)为80%。
可以通过的手性合成或手性试剂或者其他常规技术制备光学活性的(R)-和(S)-异构体以及D和L异构体。如果想得到本发明某化合物的一种对映体,可以通过不对称合成或者具有手性助剂的衍生作用来制备,其中将所得非对映体混合物分离,并且辅助基团裂开以提供纯的所需对映异构体。或者,当分子中含有碱性官能团(如氨基)或酸性官能团(如羧基)时,与适当的光学活性的酸或碱形成非对映异构体的盐,然后通过本领域所公知的常规方法进行非对映异构体拆分,然后回收得到纯的对映体。此外,对映异构体和非对映异构体的分离通常是通过使用色谱法完成的,所述色谱法采用手性固定相,并任选地与化学衍生法相结合(例如由胺生成氨基甲酸盐)。
本发明的化合物可以在一个或多个构成该化合物的原子上包含非天然比例的原子同位素。例如,可用 放射性同位素标记化合物,比如氚( 3H),碘-125( 125I)或C-14( 14C)。又例如,可用重氢取代氢形成氘代药物,氘与碳构成的键比普通氢与碳构成的键更坚固,相比于未氘化药物,氘代药物有降低毒副作用、增加药物稳定性、增强疗效、延长药物生物半衰期等优势。本发明的化合物的所有同位素组成的变换,无论放射性与否,都包括在本发明的范围之内。
除非另有规定,术语“C 1-3烷氧基”表示通过一个氧原子连接到分子的其余部分的那些包含1至3个碳原子的烷基基团。所述C 1-3烷氧基包括C 1-2、C 2-3、C 3和C 2烷氧基等。C 1-3烷氧基的实例包括但不限于甲氧基、乙氧基、丙氧基(包括正丙氧基和异丙氧基)等。
除非另有规定,术语“卤代素”或“卤素”本身或作为另一取代基的一部分表示氟、氯、溴或碘原子。
术语“任选”或“任选地”指的是随后描述的事件或状况可能但不是必需出现的,并且该描述包括其中所述事件或状况发生的情况以及所述事件或状况不发生的情况。
术语“被取代的”是指特定原子上的任意一个或多个氢原子被取代基取代,可以包括重氢和氢的变体,只要特定原子的价态是正常的并且取代后的化合物是稳定的。当取代基为氧(即=O)时,意味着两个氢原子被取代。氧取代不会发生在芳香基上。术语“任选被取代的”是指可以被取代,也可以不被取代,除非另有规定,取代基的种类和数目在化学上可以实现的基础上可以是任意的。
当任何变量(例如R)在化合物的组成或结构中出现一次以上时,其在每一种情况下的定义都是独立的。因此,例如,如果一个基团被0-2个R所取代,则所述基团可以任选地至多被两个R所取代,并且每种情况下的R都有独立的选项。此外,取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
当一个连接基团的数量为0时,比如-(CRR) 0-,表示该连接基团为单键。
当其中一个变量选自单键时,表示其连接的两个基团直接相连,比如A-L-Z中L代表单键时表示该结构实际上是A-Z。
当一个取代基为空缺时,表示该取代基是不存在的,比如A-X中X为空缺时表示该结构实际上是A。当所列举的连接基团没有指明其连接方向,其连接方向是任意的,例如,
Figure PCTCN2020128597-appb-000023
中连接基团L为-M-W-,此时-M-W-既可以按与从左往右的读取顺序相同的方向连接环A和环B构成
Figure PCTCN2020128597-appb-000024
也可以按照与从左往右的读取顺序相反的方向连接环A和环B构成
Figure PCTCN2020128597-appb-000025
所述连接基团、取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明的化合物可以通过本领域技术人员所熟知的常规方法来确认结构,如果本发明涉及化合物的绝对构型,则该绝对构型可以通过本领域常规技术手段予以确证。例如单晶X射线衍射法(SXRD),把培养出的单晶用Bruker D8 venture衍射仪收集衍射强度数据,光源为CuKα辐射,扫描方式:
Figure PCTCN2020128597-appb-000026
扫描,收集相关数据后,进一步采用直接法(Shelxs97)解析晶体结构,便可以确证绝对构型。
本发明所使用的溶剂可经市售获得。本发明采用下述缩略词:aq代表水;eq代表当量、等量;M代表mol/L;DCM代表二氯甲烷;PE代表石油醚;DMF代表N,N-二甲基甲酰胺;NMP代表N-甲基吡咯烷酮;DMSO代表二甲亚砜;EtOAc代表乙酸乙酯;EtOH代表乙醇;MeOH代表甲醇;CBz代表苄氧羰基,是一种胺保护基团;Boc代表叔丁氧羰基是一种胺保护基团;r.t.代表室温;O/N代表过夜;THF代表四氢呋喃;Boc 2O代表二叔丁基二碳酸酯;三氟乙酸代表三氟乙酸;DIPEA代表二异丙基乙基胺;SOCl 2代表氯化亚砜;mp代表熔点。
化合物依据本领域常规命名原则或者使用
Figure PCTCN2020128597-appb-000027
软件命名,市售化合物采用供应商目录名称。
技术效果
本发明化合物对BTK C481S突变具有很强的抑制作用,对TMD8细胞具有很好的抑制作用,本发明化合物4在小鼠和大鼠血浆中游离药物浓度均高于参考例1,对肿瘤的抑制效果要明显优于参考例1。
附图说明
图1:双分子立体结构椭球图;
图2:单分子立体结构椭球图;
图3:沿a轴方向的晶胞堆积图;
图4:化合物的绝对构型图;
图5:受试物对人弥漫大B淋巴瘤TMD8小鼠异种移植瘤肿瘤体积的影响(Day14)(Mean±SEM)。
具体实施方式
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本文已经详细地描述了本发明,其中也公开了其具体实施例方式,对本领域的技术人员而言,在不脱离本发明精神和范围的情 况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。
中间体A
Figure PCTCN2020128597-appb-000028
合成路线:
Figure PCTCN2020128597-appb-000029
步骤1:化合物A2的合成
将苯酚(7.49g,79.54mmol,7.00mL,1.5eq),化合物A1(10g,53.03mmol,1eq),碳酸铯(25.92g,79.54mmol,1.5eq)溶于N,N-二甲基甲酰胺(20mL)中,80℃反应3小时。反应结束后,将反应液过滤,加水,用乙酸乙酯萃取(100mL×3),合并有机相,无水硫酸钠干燥,旋干溶剂,经柱层析纯化(石油醚:乙酸乙酯=10:1),得到化合物A2。LCMS:(ESI)m/z:263.1[M+1]。
步骤2:化合物A的合成
将化合物B(6g,25.81mmol,1eq)加入到四氢呋喃(180mL)中,降温至-78℃(悬浮液,部分溶解),然后滴加正丁基锂(2.5M,21.68mL,2.1eq),滴毕,-78℃搅拌反应1小时,再向其中滴加化合物A2(7.12g,27.10mmol,1.05eq)的四氢呋喃(10mL)溶液,继续搅拌反应1小时。反应完后用饱和氯化铵淬灭反应并搅拌5分钟,分出有机相,水相用乙酸乙酯萃取(100mL×3)。合并有机相,浓缩得到粗品中间体A。LCMS:(ESI)m/z:384.2[M+1]。
实施例1
Figure PCTCN2020128597-appb-000030
合成路线:
Figure PCTCN2020128597-appb-000031
化合物001-1是按照已有文献Eur.J.Org.Chem.2003,2418-2427中化合物21的合成得到的。
步骤1:化合物001-2的合成
将二氯碘甲烷(779.65mg,2.91mmol,234.83μL,2eq)溶于二氯甲烷(10mL)中,0℃加入二乙基锌(1M,2.91mL,2eq),搅拌0.5小时后,加入三氟乙酸(331.91mg,2.91mmol,215.53μL,2eq),继续搅拌0.5小时,加入化合物001-1,加完后,20℃反应1小时。反应结束后,在反应液中加入饱和氯化铵淬灭反应,用乙酸乙酯萃取(10mL×3),有机相用饱和食盐水洗涤,无水硫酸钠干燥,真空浓缩得到化合物001-2。LCMS:(ESI)m/z:380.2[M+Na]。
步骤2:化合物001-3的合成
将化合物001-2(0.05g,139.84μmol,1eq)溶于1,4-二氧六环(1mL)中,加入盐酸/二氧六环(4M,349.59μL,10eq),加完后,20℃反应1小时。反应结束后,将反应液减压浓缩,得到化合物001-3,该化合物没有经过进一步纯化直接用于下一步反应。LCMS:(ESI)m/z:144.2[M+1]。
步骤3:化合物1的合成
将化合物001-3(20.02mg,139.84μmol,1eq)溶于异丙醇(5mL)中,加入中间体A(53.73mg,139.84μmol,1eq)和N,N-二异丙基乙胺(45.18mg,349.60μmol,60.89μL,2.5eq),加完后,130℃下微波反应2小时。反应结束后,真空浓缩得到粗产品。对粗品进行制备分离纯化(色谱柱:Welch Xtimate C18150mm*25mm*5μm;流动相:[水(0.225%FA)-ACN];B(乙腈)%:35%-65%,8min),得到化合物1。LCMS:(ESI)m/z:491.1[M+1]。 1H NMR(400MHz,CDCl 3)δ8.87(br d,J=7.78Hz,1H),8.27(s,1H),7.33-7.40(m,3H),7.28(s,1H),7.16(s,1H),7.00-7.05(m,3H),6.90(dd,J=2.13,8.41Hz,1H),4.80-4.95(m,1H),4.09(dd, J=6.53,11.54Hz,1H),3.65-3.80(m,2H),3.54-3.63(m,1H),2.79(t,J=10.92Hz,1H),1.04-1.31(m,2H),0.87-0.98(m,1H),0.74-0.85(m,1H)。
实施例2
Figure PCTCN2020128597-appb-000032
合成路线:
Figure PCTCN2020128597-appb-000033
步骤1:化合物002-2的合成
将化合物001-1(10g,29.11mmol,1eq)溶于二氯甲烷(100mL)中,0℃下加入间氯过氧化苯甲酸(7.53g,43.66mmol,1.5eq),然后20℃反应15小时。在反应液中加入饱和亚硫酸钠溶液淬灭反应,然后用乙酸乙酯萃取(50mL×3),饱和食盐水洗涤,无水硫酸钠干燥,浓缩得到粗产品。粗产品经柱层析纯化(石油醚:乙酸乙酯=10:1)得到化合物002-2。LCMS:(ESI)m/z:304.2[M- tBu+1]。
步骤2:化合物002-3的合成
将化合物002-2(5g,13.91mmol,1eq)溶于四氢呋喃(10mL)中,-20℃加入四氢铝锂(2.5M,8.34mL,1.5eq),加完后20℃反应3小时。反应结束后在反应液中加入氢氧化钠溶液淬灭反应,过滤,滤饼用乙酸乙酯洗涤,合并滤液,浓缩得到粗产品。粗产品经柱层析纯化(石油醚:乙酸乙酯=3:1)得到化合物002-3。LCMS:(ESI)m/z:306.1[M- tBu+1]。
步骤3:化合物002-4的合成
将化合物002-3(1.7g,4.70mmol,1eq)溶于二氯甲烷(3mL)中,0℃加入戴斯-马丁试剂(2.99g,7.05mmol,2.18mL,1.5eq),加完后20℃反应3小时。将反应液过滤,滤液旋干,得到粗产品。粗产品经柱层析纯化(石油醚:乙酸乙酯=10:1),得到化合物002-4。LCMS:(ESI)m/z:382.1[M+Na]。
步骤4:化合物002-5的合成
将化合物002-4(0.21g,584.09μmol,1eq)溶于二氯乙烷(10mL)中,-78℃加入二乙胺基三氟化硫(282.45mg,1.75mmol,231.51μL,3eq),加完后20℃反应2小时。反应液中加入饱和碳酸氢钠溶液淬灭反应,然后用乙酸乙酯萃取(10mL×3),有机相用饱和食盐水洗涤,无水硫酸钠干燥,过滤,滤液浓缩得到粗产品。粗产品经柱层析纯化(PE:EA=10:1),得到化合物002-5。LCMS:(ESI)m/z:326.1[M- tBu+1]。
步骤5:化合物002-6的合成
将化合物002-5(222.85mg,584.09μmol,1eq)溶于乙酸乙酯(4mL)中,加入盐酸/乙酸乙酯(584.09μmol,1eq),加完后20℃反应1小时,反应液旋干得到粗品化合物002-6,直接用于下一步。LCMS:(ESI)m/z:168.1[M+1]。
步骤6:化合物2的合成
将化合物002-6(97.63mg,584.09μmol,1eq),中间体A(179.53mg,467.27μmol,0.8eq)溶于异丙醇(5mL)中,加入N,N-二异丙基乙胺(188.72mg,1.46mmol,254.34μL,2.5eq),130℃下微波反应2小时。反应液旋干后得到粗产品。对粗品进行制备分离纯化(色谱柱:Welch Xtimate C18 150mm*25mm*5μm;流动相:[水(0.225%甲酸)-乙腈];B(乙腈)%:40%-70%,8.5min),得到化合物2。LCMS:(ESI)m/z:515.0[M+1]。 1H NMR(400MHz,CDCl 3)δ9.39(br d,J=8.4Hz,1H),8.38(br s,1H),7.39-7.53(m,4H),7.21-7.27(m,1H),7.12(br d,J=8.8Hz,3H),6.99(br d,J=8.3Hz,1H),5.03(br s,1H),4.23-4.40(m,1H),3.83(br d,J=10.1Hz,2H),3.54-3.73(m,2H),2.06-2.24ppm(m,2H)。
实施例3
Figure PCTCN2020128597-appb-000034
合成路线:
Figure PCTCN2020128597-appb-000035
步骤1:化合物003-1的合成
将二乙胺基三氟化硫(249.66mg,1.55mmol,204.64μL,1.4eq)溶于二氯甲烷(5mL)中,0℃加入化合物002-3(0.4g,1.11mmol,1eq),加完后0℃反应1小时。反应液中加入饱和氯化铵溶液,然后用乙酸乙酯萃取(10mL×3),合并有机相,饱和食盐水洗涤,无水硫酸钠干燥,得到粗产品。粗产品经柱层析纯化(石油醚:乙酸乙酯=10:1)得到化合物003-1。LCMS:(ESI)m/z:386.2[M+Na]。
步骤2:化合物003-2的合成
将化合物003-1(0.12g,330.09μmol,1eq)溶于乙酸乙酯(2mL)中,氮气保护下加入盐酸/乙酸乙酯(4M,2.40mL,29.08eq),20℃反应1小时。反应液旋干,得到化合物003-2。化合物003-2未经纯化,直接投下一步。LCMS:(ESI)m/z:149.9[M+H]。
步骤3:化合物3的合成
将化合物003-2(52.28mg,136.07μmol,0.8eq),中间体A(25.37mg,170.09μmol,1eq)溶于异丙醇(5mL)中,加入N,N-二甲基甲酰胺(54.96mg,425.23μmol,74.06μL,2.5eq),加完后130℃下微波反应2小时。反应液旋干后得到粗产品。对粗品进行制备分离纯化(色谱柱:Welch Xtimate C18 150mm*25mm*5μm;流动相:[水(0.225%甲酸)-乙腈];B(乙腈)%:40%-70%,8.5min),得到化合物3。LCMS:(ESI)m/z:497.1[M+H]。 1H NMR(400MHz,CDCl 3)δ9.14(br d,J=7.78Hz,1H),8.38(br s,1H),7.39-7.50(m,4H),7.23-7.27(m,1H),7.13(br d,J=8.28Hz,3H),6.99(br d,J=8.28Hz,1H),4.76-5.00(m,1H),4.65(br s,1H),4.33-4.50(m,1H),3.73-3.84(m,1H),3.64-3.73(m,2H),3.37(br t,J=11.04Hz,1H),2.23-2.30(m,1H),1.89(br d,J=11.29Hz,1H)。
实施例4
Figure PCTCN2020128597-appb-000036
合成路线:
Figure PCTCN2020128597-appb-000037
步骤1:化合物004-1的合成
将化合物002-3(0.117g,323.61μmol,1eq)溶于乙腈(2mL)中。氮气保护下,20℃依次加入氧化银(224.97mg,970.83μmol,3eq)和碘甲烷(459.33mg,3.24mmol,201.46μL,10eq)。然后加热至80℃反应12小时。冷却后,反应液过滤,滤液旋干得到化合物004-1。化合物004-1未经纯化直接投下一步。LCMS:(ESI)m/z:319.85[M- tBu+H]。
步骤2:化合物004-2的合成
将化合物004-1(121.54mg,323.61μmol,1eq)溶于二氯甲烷(2mL)中,加入三氟乙酸(30.80mg,270.12μmol,0.02mL,0.84eq),加完后20℃下反应1小时。反应液直接旋干得到化合物004-2。化合物004-2未经纯化,直接投下一步反应。LCMS:(ESI)m/z:276.20[M+H]。
步骤3:化合物4的合成
将化合物中间体A(99.47mg,258.89μmol,0.8eq)和化合物004-2(89.14mg,323.61μmol,1eq)溶于异丙醇(2mL)中,再加入N,N-二异丙基乙胺(104.56mg,809.03μmol,140.91μL,2.5eq)。然后在130℃下微波反应1小时。反应液旋干后得到粗产品。对粗品进行制备分离纯化(色谱柱:Phenomenex Gemini-NX 80mm*40mm*3μm;流动相:[水(0.05%NH 3H 2O+10mM NH 4HCO 3)-乙腈];B(乙腈)%:37%-57%,8min)。LCMS:(ESI)m/z:508.9[M]。 1H NMR(400MHz,CDCl 3)δ9.25(d,J=8.3Hz,1H),8.35(s,1H),7.50-7.39(m,3H),7.39-7.32(m,1H),7.28-7.22(m,1H),7.14-7.08(m,3H),6.98(dd,J=2.3,8.3Hz,1H),4.57(br d,J=5.5Hz,1H),4.08(dd,J=5.4,10.2Hz,1H),3.93-3.82(m,2H),3.81-3.69(m,2H),3.64-3.53(m,4H),2.03(br d,J=13.1Hz,1H),1.70(br s,1H)。
化合物4的单晶X射线衍射检测分析
仪器型号:Bruker D8Venture Photon II
测试方法:在丙酮件下,使用溶剂挥发法,室温经过5天培养获得,衍射用晶体尺寸为0.07×0.15×0.34mm,晶体属于三斜晶系,空间群为P1,晶胞参数:a=9.3283(6),b=12.0149(7),
Figure PCTCN2020128597-appb-000038
α=98.952(3),β=106.257(2)°,γ=92.178(3)°,晶胞体积
Figure PCTCN2020128597-appb-000039
晶胞内不对称单位数Z=1。
仪器参数:
用Bruker D8 Venture Photon II衍射仪收集衍射强度数据,光源为CuK α辐射,扫描方式:
Figure PCTCN2020128597-appb-000040
扫描,收集总衍射点数为31231个,独立衍射点数为8390个,可观察点数(I/sigma≥2)为8135个。
采用直接法(Shelxs97)解析晶体结构,获得全部76个非氢原子位置,使用最小二乘法修正结构参数和判别原子种类,使用几何计算法和差值Fourier法获得全部氢原子位置,精修后R 1=0.0501,wR 2=0.1454(w=1/σ|F| 2),S=1.046。最终确定化学计量式为(C 26H 25ClN 4O 5) 2·C 3H 6O,计算分子量为1075.97,计算晶体密度为1.326g/cm 3
单晶结果表明:晶态下分子排列属第一类空间群,化合物应具有旋光活性,Flack系数0.049(4),可 确定晶体中化合物的绝对构型。晶态下分子间存在氢键联系,分子间以氢键和范德华力维系其在空间的稳定排列。
化合物4的立体结构椭球图、沿a轴方向的晶胞堆积图以及化合物的绝对构型图见附图1、2、3和4。化合物4晶体结构数据和参数见表1、2、3、4和5。
表1.化合物4的晶体数据
Figure PCTCN2020128597-appb-000041
Figure PCTCN2020128597-appb-000042
表2化合物4晶体的原子坐标(×10 4)和等价各向同性移位参数
Figure PCTCN2020128597-appb-000043
Figure PCTCN2020128597-appb-000044
Figure PCTCN2020128597-appb-000045
Figure PCTCN2020128597-appb-000046
Figure PCTCN2020128597-appb-000047
Figure PCTCN2020128597-appb-000048
表3化合物4的键长
Figure PCTCN2020128597-appb-000049
和键角(°)
Figure PCTCN2020128597-appb-000050
Figure PCTCN2020128597-appb-000051
Figure PCTCN2020128597-appb-000052
Figure PCTCN2020128597-appb-000053
Figure PCTCN2020128597-appb-000054
Figure PCTCN2020128597-appb-000055
表4.化合物4的扭转角度(°)
Figure PCTCN2020128597-appb-000056
Figure PCTCN2020128597-appb-000057
Figure PCTCN2020128597-appb-000058
Figure PCTCN2020128597-appb-000059
Figure PCTCN2020128597-appb-000060
Figure PCTCN2020128597-appb-000061
表5化合物4的氢键[
Figure PCTCN2020128597-appb-000062
和°].
Figure PCTCN2020128597-appb-000063
用来产生等效原子的对称变换:#1x,y+1,z-1  #2x,y-1,z+1
实施例5
Figure PCTCN2020128597-appb-000064
合成路线:
Figure PCTCN2020128597-appb-000065
化合物005-1(即为参考例1)根据专利WO2017111787Compound(I)描述的方法制备得到。
步骤1:化合物005-2的合成
将化合物005-1(0.4g,835.20μmol,1eq)溶于乙腈(5mL)中,氮气保护下加入醋酸碘苯(941.55mg,2.92mmol,3.5eq),2,2,6,6-四甲基哌啶氧化物(26.27mg,167.04μmol,0.2eq),然后加入水(5mL)。加完后在30℃ 下反应12小时。将反应液旋干,得到化合物005-2,化合物005-2未经纯化直接投下一步反应。LCMS:(ESI)m/z:493.2[M+H]。
步骤2:化合物005-3的合成
将化合物005-2(205.54mg,417μmol,1eq)溶于二氯甲烷(5mL)中。20℃下,氮气保护下加入N,N’-羰基二咪唑(101.42mg,625.50μmol,1.5eq)。搅拌1小时后,往反应液中滴加氨水(146.14mg,4.17mmol,160.59μL,10eq),加完后剧烈搅拌0.5小时。将反应液旋干,得到化合物005-3,未经纯化直接投下一步。LCMS:(ESI)m/z:491.9[M+H]。
步骤3:化合物5的合成
将化合物005-3(0.1g,203.28μmol,1eq)溶于N.N-二甲基甲酰胺(1mL)中,加入三聚氯氰(56.23mg,304.92μmol,1.5eq)。加完后在20℃下反应1小时。将反应液旋干,得到粗产品。粗产品经制备分离纯化(色谱柱:Phenomenex Gemini-NX 80mm*40mm*3μm;流动相:[水(0.05%NH 3H 2O+10mM NH 4HCO 3)-乙腈];B(乙腈)%:47%-77%,8.5min)得到化合物5。LCMS:(ESI)m/z:473.9[M+H]。 1H NMR(400MHz,CDCl 3)δ9.32(br d,J=7.4Hz,1H),8.28(s,1H),7.41-7.34(m,2H),7.22-7.10(m,2H),7.07-6.98(m,3H),6.91(br d,J=8.3Hz,1H),4.71(br s,1H),4.43(br s,1H),4.15(br d,J=11.8Hz,1H),3.84(br d,J=11.6Hz,1H),2.36(br d,J=13.9Hz,1H),2.29-2.14(m,1H),1.98(br d,J=9.4Hz,1H),1.93-1.73(m,1H)。
实施例6
Figure PCTCN2020128597-appb-000066
合成路线:
Figure PCTCN2020128597-appb-000067
步骤1:化合物006-1的合成
将化合物005-1(0.35g,730.80μmol,1eq)溶于二氯甲烷(5mL)中,0℃下三乙胺(73.95mg,730.80μmol,1eq)和甲磺酰氯(117.20mg,1.02mmol,1.4eq),反应6小时。反应完后加水,用二氯甲烷萃取3次,每次20ml,合并有机相,无水硫酸钠干燥,旋干溶剂,粗产品经柱层析纯化(二氯甲烷:甲醇=50:1-20:1)得到化合物006-1。LCMS:(ESI)m/z:557.0[M+H]。
步骤2:化合物6的合成
将化合物006-1(100mg,179.53μmol,1eq)溶于N,N-二甲基甲酰胺(2mL),再加入***(130mg,2.65mmol,14.77eq),70℃反应8hr。反应完后加水,用乙酸乙酯萃取2次,每次15ml,合并有机相,无水硫酸钠干燥,旋干溶剂,粗产品经制备分离纯化(色谱柱:Phenomenex Gemini-NX 80mm*30mm*3μm;流动相:[水(10mM NH 4HCO 3)-乙腈];B(乙腈)%:44%-74%,9.5min)得到化合物6。LCMS:(ESI)m/z:488.0[M+H]。1H NMR(CDCl 3,400MHz):δ13.28(br s,1H),8.79(br d,J=7.5Hz,1H),8.28(s,1H),7.31-7.40(m,4H),7.14-7.18(m,1H),7.00-7.08(m,3H),6.90(dd,J=8.4,2.1Hz,1H),4.31(br d,J=9.5Hz,2H),3.55-3.65(m,1H),3.20-3.29(m,1H),2.53(d,J=5.8Hz,2H),2.29(br s,1H),1.90(br d,J=10.0Hz,1H),1.60-1.72ppm(m,2H)
实施例7
Figure PCTCN2020128597-appb-000068
合成路线:
Figure PCTCN2020128597-appb-000069
步骤1:化合物007-1的合成
将化合物002-3(830mg,2.30mmol,1eq),对硝基苯甲酸(613.84mg,3.67mmol,1.6eq),三苯基磷(2.41g,9.18mmol,4eq)溶于甲苯(14mL),再加入偶氮二甲酸二乙酯(1.60g,9.18mmol,1.67mL,4eq),65℃反应12小时,反应完后加水,用乙酸乙酯萃取3次,每次20mL,合并有机相,无水硫酸钠干燥,旋干溶剂,粗产品经柱层析纯化(石油醚:乙酸乙酯=50:1-20:1)得到化合物007-1。
步骤2:化合物007-2的合成
将化合物007-1(650mg,1.27mmol,1eq),碳酸钾(439.81mg,3.18mmol,2.5eq)溶于无水四氢呋喃(5mL)和甲醇(5mL),20℃反应12小时,反应完后过滤,旋干溶剂,粗产品经柱层析纯化(石油醚:乙酸乙酯=50:1-10:1)得到化合物007-2。LCMS:(ESI)m/z:306.1[M- tBu+H]。
步骤3:化合物007-3的合成
将化合物007-2(340mg,940.40μmol,1eq)溶于乙腈(5mL)中。氮气保护下,再加入氧化银(653.79mg,2.82mmol,3eq)和碘甲烷(1.33g,9.40mmol,10eq)。80℃封管反应40小时。反应结束后过滤,旋干,粗产品经柱层析纯化(石油醚:乙酸乙酯=50:1-20:1)得到化合物007-3。
步骤4:化合物007-4的合成
将化合物007-3(240mg,639.02μmol,1eq)溶于1,4-二氧六环(4mL),再加入HCl/dioxane(4M,4.79mL,30eq),20℃反应3小时,反应完后直接旋干得到007-4,粗品直接投下一步。LCMS:(ESI)m/z:161.8[M+H]。步骤4:化合物7的合成
将化合物007-4(100mg,620.35μmol,1eq),化合物A(143.01mg,372.21μmol,0.6eq)溶于异丙醇(2mL),再加入二异丙基乙胺(240.52mg,1.86mmol,3eq),130℃微波反应1小时,旋干溶剂,粗产品经制备分离纯化(色谱柱:Phenomenex Gemini-NX 75mm*30mm*3μm;流动相:[水(0.225%甲酸)-乙腈];B(乙腈)%:35%-55%,7min)得到化合物7。LCMS:(ESI)m/z:509.1[M+H]。 1H NMR(CDCl 3,400MHz):δ=9.10(br d,J=7.0Hz,1H),8.34(s,1H),7.37-7.49(m,4H),7.21-7.28(m,1H),7.07-7.16(m,3H),6.99(dd,J=8.3,2.3Hz,1H),4.30-4.52(m,2H),3.55-3.85(m,4H),3.50(s,3H),3.31(br t,J=10.8Hz,1H),2.22(br dd,J=12.7,3.6Hz,1H),1.54ppm(q,J=11.5Hz,1H)。
实施例8
Figure PCTCN2020128597-appb-000070
合成路线:
Figure PCTCN2020128597-appb-000071
步骤1:化合物008-1的合成
将化合物002-3(1g,2.77mmol,1eq)溶于1,2-二氯乙烷(10mL),再加入二聚醋酸铑(12.22mg,27.66μmol,0.01eq),80℃滴加重氮乙酸乙酯(315.59mg,2.77mmol,1eq),反应8小时,反应完后,加水,用乙酸乙酯萃取3次,每次30mL,合并有机相,无水硫酸钠干燥,旋干溶剂,粗产品经柱层析纯化(石油醚:乙酸乙酯=50:1-20:1)得到化合物008-1。LCMS:(ESI)m/z:348.2[M- tBu+H]。
步骤2:化合物008-2的合成
将化合物008-1(1.6g,3.57mmol,1eq)溶于无水乙醇(15mL),冰浴下加入硼氢化钠(405.68mg,10.72mmol,3eq),缓慢恢复到室温反应12小时,反应完后,加饱和氯化铵30mL,用乙酸乙酯萃取3次,每次30mL,合并有机相,无水硫酸钠干燥,旋干溶剂,粗产品经柱层析纯化(石油醚:乙酸乙酯=40:1-15:1)得到化合物008-2。LCMS:(ESI)m/z:306.2[M-Boc+H]。
步骤3:化合物008-3的合成
将化合物008-2(330.00mg,813.61μmol,1eq)溶于1,4-二氧六环(4mL),再加入HCl/dioxane(4M,6.10mL,30eq),20℃反应12小时,有固体析出,过滤,得到产物008-3。LCMS:(ESI)m/z:190.2[M+H]。
步骤4:化合物8的合成
将化合物008-3(40mg,175.68μmol,1eq),化合物A(67.50mg,175.68μmol,1eq溶于异丙醇(1.5mL),再加入二异丙基乙胺(68.12mg,527.04μmol,3eq),130℃微波反应1小时,旋干溶剂,粗产品经制备分离纯化(色谱柱:Phenomenex Gemini-NX 75mm*30mm*3μm;流动相:[水(0.225%甲酸)-乙腈];B(乙腈)%:30%-50%,7min)得到化合物8。LCMS:(ESI)m/z:539.1[M+H]。1H NMR(CDCl 3,400MHz):δ=9.46(d,J=8.3Hz,1H),8.33(s,1H),7.41-7.48(m,4H),7.23-7.28(m,1H),7.13(d,J=7.8Hz,2H),7.08(d,J=2.3Hz,1H),6.96(dd,J=8.5,2.3Hz,1H),4.54-4.67(m,1H),3.96-4.14(m,3H),3.83-3.92(m,2H),3.69-3.82(m,3H),3.49-3.64(m,2H),2.09(br d,J=14.6Hz,1H),1.71ppm(br t,J=12.2Hz,1H)。
实施例9
Figure PCTCN2020128597-appb-000072
合成路线:
Figure PCTCN2020128597-appb-000073
步骤1:化合物009-2合成
将化合物009-1(4.5g,26.76mmol,1eq),苯酚(2.52g,26.76mmol,1eq)加入到N,N-二甲基甲酰胺(50mL)中,加入碳酸铯(8.72g,26.76mmol,1eq),120℃反应5小时。将反应液过滤,加入水,用乙酸乙酯萃取3次,每次50mL,合并有机相,旋干得到粗产品。粗产品经柱层析纯化(石油醚:乙酸乙酯=50:1)得到化合物009-2。LCMS:(ESI)m/z:242.80[M+H]。
步骤2:化合物009-3合成
将化合物B(913.84mg,3.93mmol,1eq),加入到四氢呋喃(10mL)中,-78℃加入正丁基锂(2.5M,3.30mL,2.1eq),反应1.5小时。然后在-78℃下再向其中滴加化合物009-2(1g,4.13mmol,1.05eq)的四氢呋喃(5mL)溶液,滴毕搅拌反应6小时。用2mL水淬灭反应,分出有机相,水相用乙酸乙酯萃取2次,每次30ml,合并有机相,无水硫酸钠干燥,过滤,滤液旋干得到粗产品,粗产品经柱层析纯化(二氯甲烷:甲醇=10:1)得到化合物009-3。LCMS:(ESI)m/z:387.20[M+Na]。
步骤3:化合物9的合成
将化合物004-2(159.52mg,989.57μmol,1.2eq),化合物009-3(0.3g,824.64μmol,1eq)溶于异丙醇(5mL),加N,N-二异丙基乙胺(266.44mg,2.06mmol,2.5eq),130℃微波反应2小时。粗产品经制备分离(色谱柱:Phenomenex Gemini-NX 150mm*40mm*5μm;流动相:[水(0.225%甲酸)-乙腈];B(乙腈)%:37%-57%,8min)纯化,得到化合物9。LCMS:(ESI)m/z:489.15[M+H]。 1H NMR(400MHz,CDCl 3)δ=9.37(d,J=8.3Hz,1H),8.25-8.15(m,1H),7.39-7.26(m,4H),7.14-7.06(m,1H),7.00(dd,J=1.0,8.5Hz,2H),6.87-6.74(m,2H), 4.54-4.38(m,1H),3.98(dd,J=5.3,10.5Hz,1H),3.85-3.73(m,2H),3.71-3.62(m,2H),3.54-3.44(m,4H),2.30(s,3H),2.01-1.89(m,1H),1.69-1.56(m,1H)
实施例10
Figure PCTCN2020128597-appb-000074
合成路线:
Figure PCTCN2020128597-appb-000075
步骤1:化合物010-2合成
将化合物010-1(5g,29.05mmol,1eq),苯酚(2.73g,29.05mmol,1eq)溶于N,N-二甲基甲酰胺(50mL)中,加入碳酸铯(9.46g,29.05mmol,1eq),然后85℃反应12小时,将反应液过滤,加入水,用乙酸乙酯萃取3次,每次50mL,合并有机相,旋干得到粗产品。粗产品经制备分离纯化(色谱柱:Welch Xtimate C18 100*40mm*3μm;流动相:[水(0.075%甲酸)-乙腈];乙腈%:40%-70%,8min)得到化合物010-2。LCMS:(ESI)m/z:246.80[M+H]。1H NMR(400MHz,CDCl3)δ=7.84(t,J=8.6Hz,1H),7.38-7.27(m,2H),7.22-7.10(m,1H),7.05-6.95(m,2H),6.70(dd,J=2.3,8.8Hz,1H),6.59(dd,J=2.4,12.1Hz,1H),3.88-3.81(m,3H)。
步骤2:化合物010-3合成
将化合物B(858.26mg,3.69mmol,1eq)加入到四氢呋喃(10mL)中,-78℃加入正丁基锂(2.5M,3.10mL,2.1eq),反应1.5小时,,然后仍然在-78℃下再向其中滴加化合物010-2(1g,4.06mmol,1.1eq)的四氢呋喃(10mL)溶液,滴毕搅拌反应6小时。用2mL水淬灭反应,分出有机相,水相用乙酸乙酯30mL×2萃取,合并有机相,无水硫酸钠干燥,过滤,滤液旋干得到粗产品。粗产品经柱层析纯化(二氯甲烷:甲醇=10:1)得到化合物010-3。LCMS:(ESI)m/z:367.80[M+H]。
步骤3:化合物10的合成
将化合物004-2(146.11mg,906.39μmol,1eq),化合物010-3(0.3g,815.75μmol,0.9eq)溶于异丙醇(5mL),加N,N-二异丙基乙胺(292.85mg,2.27mmol,2.5eq),130℃微波反应2小时。粗产品经制备分离(色谱柱:Phenomenex Gemini-NX 150mm*40mm*5μm;流动相:[水(0.225%甲酸)-乙腈];B(乙腈)%:37%-57%,8min)纯 化,得到化合物10。LCMS:(ESI)m/z:493.20[M+H]。 1H NMR(400MHz,CDCl 3)δ=9.20(d,J=8.3Hz,1H),8.35(s,1H),7.62-7.42(m,4H),7.28-7.23(m,1H),7.14(d,J=7.5Hz,2H),6.88(dd,J=2.3,8.5Hz,1H),6.78(dd,J=2.3,11.0Hz,1H),4.62-4.49(m,1H),4.06(dd,J=5.1,10.9Hz,1H),3.85(br s,2H),3.81-3.71(m,2H),3.64-3.52(m,4H),2.03(br d,J=13.8Hz,1H),1.70(br s,1H)
实施例11
Figure PCTCN2020128597-appb-000076
合成路线:
Figure PCTCN2020128597-appb-000077
步骤1:化合物011-1合成
将化合物A1(4g,21.21mmol,1eq)和2-羟基吡啶(2.02g,21.21mmol,1eq)溶于N,N二甲基甲酰胺(15mL)中,再加入碳酸钾(3.52g,25.45mmol,1.2eq),70℃反应16小时。加入25mL水,乙酸乙酯萃取2次,每次50mL,合并有机相,20ml饱和氯化钠溶液洗一次,无水硫酸钠干燥,旋干溶剂,15mL乙酸乙酯室温打浆,过滤,得到化合物011-1。LCMS:(ESI)m/z:263.9[M+H]。1H NMR(400MHz,CDCl3-d)δ=7.99(d,J=8.0Hz,1H),7.57(d,1H),7.48-7.40(m,2H),7.32(d,1H),6.69(d,1H),6.30(t,1H),4.06-3.92(m,3H)。
步骤2:化合物011-2合成
将化合物B(839.65mg,3.61mmol,1eq)溶于四氢呋喃溶液(10mL)中,氮气保护下冷却到-78℃,然后向其中滴加正丁基锂(2.5M,2.89mL,2eq),反应1.5小时后,再加入化合物011-1(1.00g,3.79mmol,1.05eq),反应3小时。加入15mL水淬灭反应,乙酸乙酯萃取2次,每次30ml,合并有机相,无水硫酸钠干燥,旋干溶剂。柱层析纯化(二氯甲烷:甲醇=20:1-10:1),得到化合物011-2。LCMS:(ESI)m/z:385.0[M+H]。
步骤3:化合物11合成
将化合物004-2(35.15mg,218.07μmol,1.2eq)和化合物011-2(70mg,181.72μmol,1eq)投入异丙醇(3mL)中,再加入N,N-二异丙基乙胺(58.72mg,454.31μmol,2.5eq),微波125℃反应1.5小时,减压蒸发除 去溶剂。粗产品经制备分离(色谱柱:Phenomenex Gemini-NX 75mm*30mm*5μm;流动相:[水(0.225%甲酸)-乙腈];B(乙腈)%:15%-35%,7min)纯化,得到化合物11。LCMS:(ESI)m/z:510.1[M+H]。1H NMR(400MHz,CD 3OD)δ=9.26(d,J=8.0Hz,1H),8.25(s,1H),7.76-7.66(m,4H),7.60(s,1H),7.53(d,1H),6.71(d,1H),6.57(t,1H),4.49(s,1H),4.02(m,1H),3.89-3.75(m,2H),3.68(t,1H),2.16(d,1H),1.67-1.54(m,1H)。
实施例12
Figure PCTCN2020128597-appb-000078
合成路线:
Figure PCTCN2020128597-appb-000079
步骤1:化合物012-1合成
将化合物A1(5g,26.51mmol,1eq)和2-氟苯酚(3.57g,31.82mmol,1.2eq)溶于N,N二甲基甲酰胺(25mL)中,再加入碳酸铯(10.37g,31.82mmol,1.2eq),70℃反应3小时。加入25mL水,乙酸乙酯萃取2次,每次50mL,合并有机相,无水硫酸钠干燥,旋干溶剂,硅胶柱纯化(石油醚:乙酸乙酯=50:1-30:1)得到化合物012-1。LCMS:(ESI)m/z:280.9[M+H]。
步骤2:化合物012-2合成
将化合物B(720mg,3.10mmol,1eq)溶于四氢呋喃溶液(6mL)中,氮气保护下冷却到-78℃,然后向其中滴加正丁基锂(2.5M,2.60mL,2.1eq),反应1小时后,再加入化合物012-1(724.44mg,2.58mmol,1eq)的四氢呋喃溶液(4mL),反应4小时。加入15mL水淬灭反应,乙酸乙酯萃取2次,每次30mL,合并有机相,无水硫酸钠干燥,旋干溶剂。柱层析分(二氯甲烷:甲醇=50:1-30:1),得到化合物012-2。LCMS:(ESI)m/z:402.0[M+H]。
步骤3:化合物12合成
将化合物004-2(60mg,372.21μmol,1eq)和化合物012-2(119.76mg,297.77μmol,0.8eq)投入异丙醇(2mL)中,再加入N,N-二异丙基乙胺(144.31mg,1.12mmol,3eq),微波130℃反应1.5小时,减压蒸发除去溶剂。粗产品经制备分离(色谱柱:Phenomenex Gemini-NX 75mm*30mm*5μm;流动相:[水(0.225%甲酸)-乙腈];B(乙腈)%:35%-65%,7min)纯化,得到化合物12。LCMS:(ESI)m/z:527.1[M+H]。1H NMR(CDCl 3, 400MHz):δ=12.60-13.25(m,1H),9.28(br d,J=7.3Hz,1H),8.33(s,1H),7.43(br d,J=8.3Hz,1H),7.32-7.39(m,1H),7.16-7.27(m,4H),7.07(s,1H),6.96(br d,J=8.0Hz,1H),4.56(br s,1H),4.07(br d,J=5.0Hz,1H),3.84(br s,2H),3.74(br d,J=15.3Hz,2H),3.58(s,4H),2.03(br d,J=12.0Hz,1H),1.62-1.75ppm(m,1H)。
实施例13
Figure PCTCN2020128597-appb-000080
合成路线:
Figure PCTCN2020128597-appb-000081
步骤1:化合物013-1的合成
将化合物002-3(500mg,1.38mmol,1eq)溶于乙腈(5mL)中。氮气保护下,再加入氧化银(961.45mg,4.15mmol,3eq)和氘代碘甲烷(2.00g,13.83mmol,10eq)。80℃封管反应48小时。反应结束后过滤,旋干,粗产品经柱层析纯化(石油醚:乙酸乙酯=50:1-20:1)得到化合物013-1。LCMS:(ESI)m/z:279.1[M+H]。
步骤2:化合物013-2的合成
将化合物013-1(140mg,369.79μmol,1eq)溶于1,4-二氧六环(2mL),再加入盐酸/1,4-二氧六环(4M,2.77mL,30eq),20℃反应3小时,反应完后直接旋干得到013-2,粗品直接投下一步。
步骤3:化合物13的合成
将化合物013-2(60mg,365.37μmol,1eq),化合物A(140.38mg,365.37μmol,1eq)溶于异丙醇(1mL),再加入二异丙基乙胺(141.66mg,1.10mmol,190.92μL,3eq),130℃微波反应4小时,旋干溶剂,粗产品经制备分离纯化(色谱柱:Phenomenex Gemini-NX 75mm*30mm*3μm;流动相:[水(0.225%甲酸)-乙腈];B(乙腈)%:35%-55%,7min)得到化合物13。LCMS:(ESI)m/z:512.1[M+H]。1H NMR(CDCl 3,400MHz):δ=9.30(br d,J=7.3Hz,1H),8.32(br s,1H),7.35-7.49(m,4H),7.25(br d,J=7.5Hz,1H),7.11(br d,J=8.0Hz,3H),6.98(br d,J=7.5Hz,1H),4.56(br s,1H),4.07(br s,1H),3.69-3.94(m,4H),3.59(br d,J=6.5Hz,1H),2.02(br d,J=13.6Hz,1H),1.70ppm(br t,J=12.3Hz,1H)。
生物测试数据:
试验例1:BTK酶活性测试
BTK酶活测试的具体实验过程如下:
缓冲液:20mM羟乙基哌嗪乙硫磺酸(Hepes)(pH 7.5),10mM氯化镁,1mM乙二醇双氨乙基醚四乙酸(EGTA),0.02%聚氧乙烯十二烷醚(Brij35),0.02mg/mL BSA,0.1mM钒酸钠(Na 3VO 4),2mM二硫苏糖醇(DTT),1%DMSO,200μM三磷酸腺苷(ATP)。
1.在新制备的反应缓冲液中配置底物;
2.将所需要的辅因子加入到上述的底物溶液中;
3.将激酶BTK C481S加入到上述底物溶液中并混合均匀;
4.将溶解于DMSO中的化合物通过Echo550(Acoustic technology;nanoliter range)加入到激酶反应混合物中,室温下孵育20分钟;
5.将 33P-ATP(放射性比活度为10μCi/μL)加入至反应混合物中引发反应;
6.室温孵育2小时;
7.用过滤-结合法检测放射性;
8.激酶活性数据表示测试样品中剩余激酶活性与溶媒(二甲基亚砜)反应相比的百分比。使用Prism(GraphPad软件)得到IC 50值和拟合曲线,结果如表6所示。
表6 BTK体外活性测试结果
化合物编号 BTK C481S IC 50(nM) 化合物编号 BTK C481S IC 50(nM)
1 1.7 7 43.6
2 12.5 8 8.9
3 6.7 9 15.2
4 7.3 10 14.9
5 10.7 12 39.8
6 6.5 13 15.1
结论:本发明化合物对BTK C481S突变具有很强的抑制作用。
试验例2:BTK细胞活性测试
1.细胞培养及传代
将细胞传代过程中用到的培养基、胰酶以及1×PBS放到37℃水浴锅中预热。吸去上清。
加入1mL胰酶润洗,并吸去润洗液。各加入1mL胰酶,于37℃消化至细胞脱落。加入10mL培养液混匀。1000rpm离心5min,用10mL培养液重悬细胞。吸取0.7mL细胞悬液加入计数杯,在ViCell XR上计数,得到细胞密度分别为:0.327百万/mL,分别取细胞悬液1.17mL、培养基将细胞悬液稀释。按照下 面的微孔板布局图,向384微孔板的***孔中加入100μL磷酸盐缓冲液,分别向其它孔中加40μL的细胞悬液,然后将细胞板放到培养箱中培养。
2.加药
(1)化合物准备:
将待测化合物取9μL稀释液加到Pod用浅孔板(Labcyte,#LP-0200)中。2500rpm离心浅孔板30s。
(2)从培养箱中取出细胞板。
(3)按照下面的微孔板布局图,用Pod对化合物进行3倍梯度稀释,将其稀释10个浓度梯度并分别加100nL到细胞板中,然后将细胞板放回到培养箱中培养。
3.加好DMSO的Day0板加入20μL CellTiter Glo,避光震荡10分钟。用Envision读板。
4.第五天:加CTG并读板
(1)培养72h后,向细胞板中加入20μL Cell Titer Glo,避光震荡10分钟。
(2)在Envision上读板
实验结果
1.计算各组0%抑制(DMSO孔,MAX)和100%抑制(day0,DMSO)的平均值和标准差;
2.抑制率(%)=(1-(样品值-100%抑制的平均值)/(0%抑制的平均值-100%抑制的平均值))*100;
3.曲线由GraphPad 5.0软件拟合,结果如表7所示。
表7 BTK体外活性测试结果
化合物编号 relative IC 50(nM)
2 269.0
3 217.2
4 260.9
结论:本发明化合物对TMD8细胞具有很好的抑制作用。
实验例3:动力学溶解度的测定
将受试化合物溶解在DMSO中,以制备10mmol/L的原液。用移液管(Eppendorf Research公司)将980μL溶出介质加入到2mL的螺旋盖的玻璃管形瓶中。将20μL各受试化合物的原液以及QC样品添加到相当于pH 7.4的动力学检测溶液的缓冲溶液中。受试化合物和DMSO溶液的终浓度分别是为200μM和2%。药瓶压盖。最大浓度的理论值为200μM。室温下以每分钟880转的速度旋转摇动该混合物24小时。将小瓶离心30分钟,每分钟13000转。用数字移液管将200μL上清液加入到96-孔板中。用高效液相色谱法光谱测定的受试化合物的溶解度,结果如表8所示。
表8动力学溶解度测试结果
化合物 溶解度(μM)pH 6.5
4 1.1
参考例1(化合物005-1) 2.7
结论:本发明化合物4的溶解度要优于参考例1。
试验例4:血浆蛋白结合实验(PPB)实验
实验操作:取各种属的空白血浆995μL,加入5μL受试化合物工作溶液(400μM)或华法林工作溶液(400μM),使血浆样品中受试化合物与华法林终浓度均为2μM。将样品充分混合。有机相DMSO的终浓度为0.5%;移取50μL受试化合物和华法林血浆样品到样品接收板中(三个平行),立即加入相应体积的对应空白血浆或缓冲液,使得每个样品孔的终体积为100μL,血浆:透析缓冲液的体积比为1:1,然后向这些样品中加入500μL终止液,此样品将作为T 0样品用于回收率及稳定性测定。将T 0样品存储于2-8℃,等待与其它透析完的样品一起进行后续处理;将150μL受试化合物和华法林血浆样品加入到每个透析孔的给药端,在透析孔对应的接收端中加入150μL空白透析缓冲液。然后将透析板置于湿润的、5%CO 2的培养箱中,在37℃下、约100rpm振荡孵育4-hr。透析结束后,移取50μL透析后的缓冲液样品和透析后的血浆样品到新的样品接收板。在样品中加入相应体积的对应空白血浆或缓冲液,使得每个样品孔的终体积为100μL,血浆:透析缓冲液的体积比为1:1。所有样品经过蛋白沉淀后进行LC/MS/MS分析,并通过公式:%Unbound=100*F/T,%Bound=100-%Unbound,%Recovery=100*(F+T)/T 0计算蛋白结合率以及回收率(其中F是透析4h后透析液中化合物的峰面积比值;T是透析4h后血浆中化合物的峰面积比值;T 0是零时刻血浆样品中化合物的峰面积比值)。实验结果如表9所示:
表9 PPB测试结果
化合物编号 Unbound PPB H/D/C/R/M
4 0.4%/0.1%/0.1%/0.2%/0.4%
参考例1(化合物005-1) 0.3%/NA/NA/NA/0.2%
结论:本发明化合物4与血浆蛋白的结合弱于参考例1。
试验例5:大鼠体内血浆蛋白结合实验(PPB)实验
1.实验流程
1.1透析膜和基质的准备
在实验当天,将冻存的血浆在流动的冷自来水中解冻,待血浆完全解冻后,以3220×g离心5min并去除其中的悬浮物和沉淀物。
将双层透析膜在超纯水中浸泡约1h,取出后一分为二,再置于乙醇-水(20:80,v:v)溶液中浸泡20min或放置于2-8℃,有效期为1个月。在实验开始之前,将透析膜用超纯水漂洗两次,并继续在超纯水中浸泡20min备用。
1.2化合物样品混合步骤和对照化合物的稀释流程
1.2.1化合物样品混合步骤
取适量的原始样品转移至混合样品收集管,将混合样品收集管内的样品充分混匀。
1.2.2对照化合物的稀释流程
用二甲基亚砜溶解对照化合物得到10mM的储备液。用二甲基亚砜稀释得到400μM的工作液。血浆样品的配制过程:取995μL的空白血浆,加入5μL华法林的工作溶液并充分混合,得到浓度为2μM的血浆样品。有机相DMSO的浓度为0.5%。
1.3实验步骤
T0样品的配制过程:移取30μL华法林的血浆样品到样品接收板中(n=3),立即加入30μL空白缓冲液,使得每个样品孔的终体积为60μL,血浆与透析缓冲液的体积比为1:1。然后向待测化合物和华法林的T0样品中加入300μL终止液,并存储于2-8℃,等待与其它透析完的样品一起进行后续处理。
血浆样品的透析过程:将50μL含化合物的血浆样品(来自混合后的样品管)和50μL含对照化合物的血浆样品加入到每个透析孔的给药端(n=3),在透析孔对应的接收端中加入50μL空白透析缓冲液。将透析板置于5%CO 2的培养箱中,在37℃下、约100rpm振荡孵育4h。
透析结束后,移取30μL透析后的缓冲液样品(透析液)和透析后的血浆样品到新的96孔板中(样品接收板)。在样品中加入相应体积的对应空白血浆或缓冲液,使得每个样品孔的终体积为60μL,血浆与透析缓冲液的体积比为1:1。在所有样品中加入300μL终止液,充分摇匀。摇匀后的样品以4000rpm的条件离心20分钟。经过蛋白沉淀后,取100μL上清进行LC-MS/MS分析,结果如表10所示。
表10 PPB测试结果
化合物编号 Unbound PPB
4 0.2% a
参考例1(化合物005-1) 0.1% b
注:a:3次结果平均值,b:4次结果平均值
结论:本发明化合物4与大鼠血浆蛋白的结合弱于参考例1。
实验例6:化合物在小鼠中药代动力学评价
实验目的:测试化合物在CD-1小鼠体内药代动力学(静脉)
CD-1小鼠口服及静脉注射化合物4和参考例1(化合物005-1)的药代动力学研究
化合物4和参考例1与溶媒0.10mg/mL in 10%NMP/60%PEG400/30%H 2O混合,涡旋并超声,制备得到0.1mg/mL澄清溶液。选取7至10周龄的CD-1雄性小鼠,静脉注射给予候选化合物溶液,剂量为0.21mg/kg。收集一定时间的全血,制备得到血浆,以LC-MS/MS方法分析药物浓度,并用Phoenix WinNonlin软件(美 国Pharsight公司)计算药代参数,结果如表11所示。
表11静脉(IV)PK数据
Figure PCTCN2020128597-appb-000082
注:AUC u=AUC 0-inf*Unbound PPB(Mouse)
结论:本发明化合物4在小鼠血浆中游离药物浓度高于参考例1。
实验例6-1:化合物在小鼠中药代动力学评价
实验目的:测试化合物在CD-1小鼠体内药代动力学(口服)
CD-1小鼠口服及静脉注射化合物4和参考例1(化合物005-1)的药代动力学研究
化合物4和参考例1(化合物005-1)与溶媒10%NMP/60%PEG400/30%H 2O混合,涡旋并超声,制备得到0.6mg/mL澄清溶液。选取7至10周龄的CD-1雄性小鼠,静脉注射给予候选化合物溶液,剂量为3.1mg/kg。
收集一定时间的全血,制备得到血浆,以LC-MS/MS方法分析药物浓度,并用Phoenix WinNonlin软件(美国Pharsight公司)计算药代参数,结果如表12所示。
表12口服(PO)PK数据
Figure PCTCN2020128597-appb-000083
Figure PCTCN2020128597-appb-000084
注:AUC u=AUC 0-inf*Unbound PPB(Mouse)
结论:本发明化合物4在小鼠血浆中游离药物浓度高于参考例1。
实验例7:化合物在大鼠中药代动力学评价
实验目的:测试化合物在SD大鼠体内药代动力学(静脉)
SD大小鼠口服及静脉注射化合物4和参考例1的药代动力学研究
化合物4和参考例1与溶媒0.10mg/mL in 10%NMP/60%PEG400/30%H 2O混合,涡旋并超声,制备得到0.5mg/mL澄清溶液。选取7至10周龄的CD-1雄性小鼠,静脉注射给予候选化合物溶液,剂量为0.5mg/kg。收集一定时间的全血,制备得到血浆,以LC-MS/MS方法分析药物浓度,并用Phoenix WinNonlin软件(美国Pharsight公司)计算药代参数,结果如表13所示。
表13静脉(IV)PK数据
供试品 参考例1(化合物005-1) 4
给药剂量(mg/kg) 0.51 0.49
C 0(nM) 800 852
T 1/2(h) 2.02 1.82
Vd(L/kg) 1.57 1.42
Cl(mL/Kg/min) 9.08 9.80
AUC 0-inf(nM.h) 1922 1695
AUC u(nM.h) 1.9 3.4
注:AUC u=AUC 0-inf*Unbound PPB(Rat体内测试PPB)
结论:本发明化合物4在大鼠血浆中游离药物浓度高于参考例1。
实验例7-1:化合物在SD大鼠中药代动力学评价
实验目的:测试化合物在SD大鼠体内药代动力学(口服)
SD大鼠口服及静脉注射化合物4和参考例1的药代动力学研究
化合物4和参考例1与溶媒10%NMP/60%PEG400/30%H 2O混合,涡旋并超声,制备得到2mg/mL澄清溶液。选取7至10周龄的CD-1雄性小鼠,静脉注射给予候选化合物溶液,剂量为2mg/kg。
收集一定时间的全血,制备得到血浆,以LC-MS/MS方法分析药物浓度,并用Phoenix WinNonlin软件(美国Pharsight公司)计算药代参数,结果如表14所示。
表14口服(PO)PK数据
供试品 参考例1(化合物005-1) 4
给药剂量(mg/kg) 1.9 1.8
C max(nM) 607 587
Tmax 2.00 2.00
T 1/2(h) 2.41 2.33
AUC 0-inf(nM.h) 5033 3887
AUC u(nM.h) 5.0 7.8
F% 65.5 57.3
注:AUC u=AUC 0-inf*Unbound PPB(Rat体内测试PPB)
结论:本发明化合物4在大鼠血浆中游离药物浓度高于参考例1。
实验例8:体内研究
TMD8 SCID小鼠异种移植瘤模型:
实验方法:建立人弥漫大B淋巴瘤小鼠皮下移植瘤模型,收集对数生长期的肿瘤细胞,计数后重悬于RPMI1640,调整细胞悬液浓度至4×107/mL,1:1Matrigel混匀,用1mL注射器(4号针头)在小鼠右侧背部皮下接种肿瘤细胞,4×106cell/鼠。在动物肿瘤达到100-300mm 3左右时根据肿瘤体积大小采用随制备分离组法将荷瘤鼠分为6组,每组6只。实验当天动物按组别给予相对应的药物。第一组G1设阴性对照组,单独灌胃给予10%NMP/60%PEG400/30%H 2O,第二组G2给予给予参考例1(化合物005-1)做阳性对照组,给药剂量为30mg/kg,第三组G3给予化合物4,给药剂量为30mg/kg,每天一次,共给药15天。
表15.受试物对人弥漫大B淋巴瘤TMD8小鼠移植瘤的药效研究
Figure PCTCN2020128597-appb-000085
注:PO表示口服,QD表示每日一次。
实验期间每周测定3次动物的体重和肿瘤的大小,同时每天观察并记录动物的临床症状,每次给药均参考最近一次称量的动物体重。
肿瘤的测量用数显游标卡尺来测定长(a)和宽(b),肿瘤体积(Tumor volume,TV)的计算公式为:TV=a×b 2/2。
实验结果:
各受试物对人弥漫大B淋巴瘤TMD8小鼠肿瘤体积的影响
参考例1和化合物4对人弥漫大B淋巴瘤TMD8小鼠异种移植瘤均有一定抑制作用:
参考例1对人弥漫大B淋巴瘤小鼠异种移植瘤抑制作用在第10天时出现显著性差异,相对肿瘤增值率T/C为48.05%(P<0.01,双尾t-检验),在第14天时,相对肿瘤增值率为37.28%(P<0.001,双尾t-检验),肿瘤体积抑制率TGI(%)为61.70%。
化合物4对人弥漫大B淋巴瘤小鼠异种移植瘤抑制作用在第5天时出现显著性差异,相对肿瘤增值率T/C为66.33%(P<0.05,双尾t-检验),在第14天时,相对肿瘤增值率为21.53%(P<0.001,双尾t-检验),肿瘤体积抑制率TGI(%)为79.04%。详细结果见说明书附图5和表16。
表16受试物在人弥漫大B淋巴瘤TMD8小鼠异种移植瘤模型中对动物肿瘤大小的影响
Figure PCTCN2020128597-appb-000086
注:N/A表示未检测。
实验结论:在体内药效方面,本发明化合物4对肿瘤的抑制效果要明显优于参考例1。

Claims (11)

  1. 式(III)所示化合物或其药学上可接受的盐,
    Figure PCTCN2020128597-appb-100001
    其中,
    R 1选自卤素和C 1-3烷氧基,所述C 1-3烷氧基任选被1、2或3个R a取代;
    或者,2个R 1可以和它们相连的键共同构成环丙基;
    各R a选自D、卤素和OH;
    R 2选自卤素、甲基、苯氧基和吡啶氧基,所述苯氧基和吡啶氧基任选被1、2或3个卤素取代;
    R 3选自-CH 2OH,m选自1和2;
    或者R 3选自CN和CH 2CN,m选自0、1和2;
    n选自1、2和3;
    E 1选自O、S和NH;
    环A选自四氢吡喃基。
  2. 根据权利要求1所述化合物或其药学上可接受的盐,其中,各R a选自D、F和OH。
  3. 根据权利要求1所述化合物或其药学上可接受的盐,其中,R 1选自F、OCH 3、OCD 3和OCH 2CH 2OH。
  4. 根据权利要求1所述化合物或其药学上可接受的盐,其中,R 2选自F、Cl、甲基、苯氧基、2-氟苯氧基和2-吡啶氧基。
  5. 根据权利要求1所述化合物或其药学上可接受的盐,其中,E 1选自NH。
  6. 根据权利要求1所述化合物或其药学上可接受的盐,其中,环A选自
    Figure PCTCN2020128597-appb-100002
  7. 根据权利要求1~4任意一项所述化合物或其药学上可接受的盐,其选自
    Figure PCTCN2020128597-appb-100003
    其中,R 1、R 2和m如权利要求1~4任意一项所定义。
  8. 下式所示化合物或其药学上可接受的盐,其选自:
    Figure PCTCN2020128597-appb-100004
  9. 根据权利要求8所述化合物或其药学上可接受的盐,其选自:
    Figure PCTCN2020128597-appb-100005
    Figure PCTCN2020128597-appb-100006
  10. 根据权利要求1~9任意一项所述的化合物或其药学上可接受的盐在制备BTK蛋白激酶抑制剂相关药物上的应用。
  11. 根据权利要求10所述的应用,其特征在于,所述BTK蛋白激酶抑制剂相关药物是用于血液瘤药物。
PCT/CN2020/128597 2019-11-13 2020-11-13 作为btk抑制剂的吡咯并嘧啶类化合物及其应用 WO2021093839A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US17/776,873 US20230357248A1 (en) 2019-11-13 2020-11-13 Pyrrolopyrimidine compound as btk inhibitor and use thereof
EP20887944.5A EP4059935A4 (en) 2019-11-13 2020-11-13 PYRROLOPYRIMIDINE COMPOUND AS BTK INHIBITOR AND USE THEREOF
KR1020227018702A KR20220097455A (ko) 2019-11-13 2020-11-13 Btk 억제제로서의 피롤로피리미딘 화합물 및 이의 용도
JP2022528124A JP7473642B2 (ja) 2019-11-13 2020-11-13 Btk阻害剤としてのピロロピリミジン系化合物およびその使用
CN202311079865.7A CN117551103A (zh) 2019-11-13 2020-11-13 作为btk抑制剂的吡咯并嘧啶类化合物及其应用
CN202080078768.4A CN114728974B (zh) 2019-11-13 2020-11-13 作为btk抑制剂的吡咯并嘧啶类化合物及其应用

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201911109773 2019-11-13
CN201911109773.2 2019-11-13
CN201911288492.8 2019-12-13
CN201911288492 2019-12-13
CN202010096582.3 2020-02-17
CN202010096582 2020-02-17
CN202010711270.9 2020-07-22
CN202010711270 2020-07-22

Publications (1)

Publication Number Publication Date
WO2021093839A1 true WO2021093839A1 (zh) 2021-05-20

Family

ID=75912541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128597 WO2021093839A1 (zh) 2019-11-13 2020-11-13 作为btk抑制剂的吡咯并嘧啶类化合物及其应用

Country Status (6)

Country Link
US (1) US20230357248A1 (zh)
EP (1) EP4059935A4 (zh)
JP (1) JP7473642B2 (zh)
KR (1) KR20220097455A (zh)
CN (2) CN117551103A (zh)
WO (1) WO2021093839A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114761410A (zh) * 2021-04-06 2022-07-15 广州必贝特医药股份有限公司 吡咯并嘧啶酮类化合物及其应用
WO2022213932A1 (zh) * 2021-04-06 2022-10-13 广州必贝特医药股份有限公司 吡咯并嘧啶酮类化合物及其应用
WO2022237808A1 (zh) * 2021-05-12 2022-11-17 浙江龙传生物医药科技有限公司 吡咯并嘧啶类化合物的晶型及其制备方法
CN115894500A (zh) * 2022-11-02 2023-04-04 中国药科大学 一种作为btk激酶抑制剂的化合物及其制备方法与用途
WO2023110970A1 (en) 2021-12-14 2023-06-22 Netherlands Translational Research Center Holding B.V Macrocyclic btk inhibitors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103748096A (zh) * 2012-08-06 2014-04-23 美国艾森生物科学公司 作为蛋白激酶抑制剂的新型吡咯并嘧啶化合物
WO2017111787A1 (en) 2015-12-23 2017-06-29 Arqule, Inc. Tetrahydropyranyl amino-pyrrolopyrimidinone and methods of use thereof
CN109890821A (zh) * 2016-08-24 2019-06-14 艾科尔公司 氨基-吡咯并嘧啶酮化合物及其使用方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI398252B (zh) * 2006-05-26 2013-06-11 Novartis Ag 吡咯并嘧啶化合物及其用途
EP3042903B1 (en) * 2015-01-06 2019-08-14 Impetis Biosciences Ltd. Substituted hetero-bicyclic compounds, compositions and medicinal applications thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103748096A (zh) * 2012-08-06 2014-04-23 美国艾森生物科学公司 作为蛋白激酶抑制剂的新型吡咯并嘧啶化合物
WO2017111787A1 (en) 2015-12-23 2017-06-29 Arqule, Inc. Tetrahydropyranyl amino-pyrrolopyrimidinone and methods of use thereof
CN108699062A (zh) * 2015-12-23 2018-10-23 艾科尔公司 四氢吡喃基氨基-吡咯并嘧啶酮及其使用方法
CN109890821A (zh) * 2016-08-24 2019-06-14 艾科尔公司 氨基-吡咯并嘧啶酮化合物及其使用方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EUR. J. ORG. CHEM., 2003, pages 2418 - 2427
See also references of EP4059935A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114761410A (zh) * 2021-04-06 2022-07-15 广州必贝特医药股份有限公司 吡咯并嘧啶酮类化合物及其应用
WO2022213932A1 (zh) * 2021-04-06 2022-10-13 广州必贝特医药股份有限公司 吡咯并嘧啶酮类化合物及其应用
CN114761410B (zh) * 2021-04-06 2023-08-25 广州必贝特医药股份有限公司 吡咯并嘧啶酮类化合物及其应用
WO2022237808A1 (zh) * 2021-05-12 2022-11-17 浙江龙传生物医药科技有限公司 吡咯并嘧啶类化合物的晶型及其制备方法
WO2023110970A1 (en) 2021-12-14 2023-06-22 Netherlands Translational Research Center Holding B.V Macrocyclic btk inhibitors
CN115894500A (zh) * 2022-11-02 2023-04-04 中国药科大学 一种作为btk激酶抑制剂的化合物及其制备方法与用途

Also Published As

Publication number Publication date
KR20220097455A (ko) 2022-07-07
JP7473642B2 (ja) 2024-04-23
EP4059935A1 (en) 2022-09-21
CN117551103A (zh) 2024-02-13
CN114728974A (zh) 2022-07-08
US20230357248A1 (en) 2023-11-09
CN114728974B (zh) 2023-09-19
JP2023506691A (ja) 2023-02-20
EP4059935A4 (en) 2024-02-28

Similar Documents

Publication Publication Date Title
WO2021093839A1 (zh) 作为btk抑制剂的吡咯并嘧啶类化合物及其应用
WO2021249492A1 (zh) 甲基取代的苯并二噁唑类化合物及其应用
JP7290651B2 (ja) Atr阻害剤及びその応用
CN115335372A (zh) 八氢吡嗪并二氮杂萘啶二酮类化生物
WO2020035065A1 (zh) 作为ret抑制剂的吡唑衍生物
TWI793999B (zh) 嘧啶並吡喃化合物
WO2020259573A1 (zh) 作为kras g12c突变蛋白抑制剂的七元杂环类衍生物
JP7165270B2 (ja) 網膜疾患用化合物
KR20240004495A (ko) 이소퀴놀론 화합물과 이의 용도
WO2021098703A1 (zh) 作为高选择性ros1抑制剂的化合物及其应用
CN114096245B (zh) 作为ccr2/ccr5拮抗剂的杂环烷基类化合物
CN114008046B (zh) 作为cdk9抑制剂的氮杂吲哚连吡唑类化合物
WO2021129817A1 (zh) 具有果糖激酶(khk)抑制作用的嘧啶类化合物
WO2022253335A1 (zh) 含磺酰基的芳基类化合物及其应用
WO2021218912A1 (zh) 含苯基并内磺酰胺的化合物
WO2022199635A1 (zh) 苄氨基喹唑啉类衍生物
CN113811530B (zh) 作为糜酶抑制剂的嘧啶酮类化合物及其应用
WO2020156568A1 (zh) 作为pd-l1免疫调节剂的氟乙烯基苯甲酰胺基化合物
JP7313492B2 (ja) Dna-pk阻害剤としてのキノリン及びシンノリン誘導体
WO2020156564A1 (zh) 作为pd-l1免疫调节剂的乙烯基吡啶甲酰胺基化合物
JP2023523830A (ja) ピリミジン系三環式化合物及びその使用
TWI795129B (zh) 吡啶并嘧啶酮類化合物
RU2789450C1 (ru) Фторвинилбензамидное соединение в качестве иммуномодулятора PD-L1
EA046344B1 (ru) Соединение в качестве высокоселективного ингибитора ros1 и его применение
WO2020147842A1 (zh) 吡啶并嘧啶类化合物在制备治疗鼻咽癌药物中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20887944

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022528124

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227018702

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020887944

Country of ref document: EP

Effective date: 20220613