WO2021085292A1 - 発光素子駆動回路 - Google Patents

発光素子駆動回路 Download PDF

Info

Publication number
WO2021085292A1
WO2021085292A1 PCT/JP2020/039685 JP2020039685W WO2021085292A1 WO 2021085292 A1 WO2021085292 A1 WO 2021085292A1 JP 2020039685 W JP2020039685 W JP 2020039685W WO 2021085292 A1 WO2021085292 A1 WO 2021085292A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
current
drive circuit
emitting element
node
Prior art date
Application number
PCT/JP2020/039685
Other languages
English (en)
French (fr)
Inventor
裕也 岩崎
世那 堤
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to EP20882958.0A priority Critical patent/EP4016845A4/en
Priority to CN202080075716.1A priority patent/CN114616733A/zh
Priority to US17/637,487 priority patent/US11729885B2/en
Priority to KR1020227007840A priority patent/KR20220092854A/ko
Publication of WO2021085292A1 publication Critical patent/WO2021085292A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/78Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • H05B45/46Details of LED load circuits with an active control inside an LED matrix having LEDs disposed in parallel lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/52Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits in a parallel array of LEDs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0428Electrical excitation ; Circuits therefor for applying pulses to the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present disclosure relates to a light emitting element drive circuit.
  • Patent Document 1 discloses a technique relating to a current generation circuit for an array element.
  • This circuit includes one reference voltage input and transistors, each of which constitutes a constant current generation circuit for each channel.
  • the reference voltage input is connected to the base of each transistor via a passive circuit.
  • the emitter of each transistor is connected to a common ground line via a resistor.
  • the constant current generation circuits of each channel are centrally arranged in a specific region on the integrated circuit chip.
  • the collector output current of each transistor is individually supplied to the array functional circuit blocks distributed in the integrated circuit chip.
  • Patent Document 2 discloses a technique relating to a light source device for an optical head.
  • This device has a common package, a semiconductor laser for single-mode oscillation and a semiconductor laser for multi-mode oscillation, and a high-frequency oscillation circuit built in this package.
  • the high-frequency oscillator circuit generates a high-frequency current superimposed on the drive current of the semiconductor laser in order to convert the single-mode oscillation semiconductor laser into multi-mode oscillation.
  • This device has means for preventing unwanted radiation due to high frequency currents.
  • This means includes a high frequency component absorption circuit provided in a feeding line of a semiconductor laser with multimode oscillation.
  • the high frequency component absorption circuit is a bandpass filter, a choke coil, or a ferrite bead.
  • an independent drive circuit unit is usually used for each semiconductor light emitting element.
  • the cathodes may be set to the same potential (the cathode of each semiconductor light emitting element is connected to the common wiring).
  • a plurality of drive circuit units are short-circuited to each other via the common wiring, and when each semiconductor light emitting element is driven individually, a device for preventing the drive current from wrapping around to another semiconductor light emitting element through the common wiring. Is required.
  • the present disclosure has been made to solve the above-mentioned problems, and includes a structure for individually pulse-driving a plurality of semiconductor light emitting devices each having a cathode electrically connected via a common wiring. It is an object of the present invention to provide a light emitting element drive circuit.
  • the light emitting element drive circuit is a circuit configured to individually perform drive control for a plurality of semiconductor light emitting elements, and is a plurality of circuits that are one-to-one associated with the plurality of semiconductor light emitting elements. It is equipped with a drive circuit unit.
  • the cathodes of the plurality of semiconductor light emitting elements may be cathode electrodes shared by a monolithic structure, or may be electrically connected via common wiring and / or common terminals. As a result, the cathodes of the plurality of semiconductor light emitting elements are set to the same potential.
  • the plurality of drive circuit units individually pulse drive the corresponding semiconductor light emitting elements.
  • each of the plurality of drive circuit units has a current control element, a first power storage element, and a switching element.
  • the current control element was electrically connected to the cathode of the corresponding semiconductor light emitting device via the first node and the anode of the corresponding semiconductor light emitting device via the second node. It has a second terminal. Further, the current control element causes a current to flow from the first node to the second node while the corresponding semiconductor light emitting element is in the non-light emitting state, and limits the current during the period when the corresponding semiconductor light emitting element is in the light emitting state. ..
  • the first power storage element has a first electrode electrically connected to the first node and a second electrode.
  • the switching element is electrically connected to a control terminal into which a control signal for driving a corresponding semiconductor light emitting element is input, a first current terminal electrically connected to a second electrode of the first power storage element, and a second node. It has a connected second current terminal.
  • each of the second electrodes of the first power storage element in the plurality of drive circuit units is electrically connected to the first constant potential line.
  • Each of the second nodes in the plurality of drive circuit units is electrically connected to the second constant potential line via the first current cutoff element or directly.
  • the first current cutoff element is arranged on the wiring between the two adjacent second nodes adjacent to each other and avoids a short circuit between the two adjacent second nodes adjacent to each other.
  • the second constant potential line is set to a lower potential than the first constant potential line.
  • the control target of the first current cutoff element is at least a current of a specific frequency or a current of a specific period.
  • the first current cutoff element cuts off or suppresses this controlled object.
  • the first current cutoff element cuts off or suppresses the current at least during the period when the switching element is on.
  • a light emitting element drive circuit capable of individually driving a plurality of semiconductor light emitting devices each having a cathode set to the same potential.
  • FIG. 8 it is a figure which shows the current which flows in the period when a certain transistor 3 is an on state. It is a circuit diagram which conceptually shows the power-source system included in the light emitting element drive circuit 1 of one Embodiment. It is a figure which shows the current path from a capacitor 7 during the period when a transistor 3 is an on state (that is, when the light emitting element 4 emits light).
  • the light emitting element drive circuit is, as one embodiment, a circuit configured to individually perform drive control for a plurality of semiconductor light emitting elements, and is paired with the plurality of semiconductor light emitting elements. It includes a plurality of drive circuit units associated with one.
  • the cathodes of the plurality of semiconductor light emitting elements may be cathode electrodes shared by a monolithic structure, or may be electrically connected via common wiring and / or common terminals. As a result, the cathodes of the plurality of semiconductor light emitting elements are set to the same potential.
  • the plurality of drive circuit units individually pulse drive the corresponding semiconductor light emitting elements.
  • each of the plurality of drive circuit units has a current control element, a first power storage element, and a switching element.
  • the current control element was electrically connected to the cathode of the corresponding semiconductor light emitting device via the first node and the anode of the corresponding semiconductor light emitting device via the second node. It has a second terminal. Further, the current control element causes a current to flow from the first node to the second node while the corresponding semiconductor light emitting element is in the non-light emitting state, and limits the current during the period when the corresponding semiconductor light emitting element is in the light emitting state. ..
  • the first power storage element has a first electrode electrically connected to the first node and a second electrode.
  • the switching element is electrically connected to a control terminal into which a control signal for driving a corresponding semiconductor light emitting element is input, a first current terminal electrically connected to a second electrode of the first power storage element, and a second node. It has a connected second current terminal.
  • each of the second electrodes of the first power storage element in the plurality of drive circuit units is electrically connected to the first constant potential line.
  • Each of the second nodes in the plurality of drive circuit units is electrically connected to the second constant potential line via the first current cutoff element or directly.
  • the first current cutoff element is arranged on the wiring between the two adjacent second nodes adjacent to each other and avoids a short circuit between the two adjacent second nodes adjacent to each other.
  • the second constant potential line is set to a lower potential than the first constant potential line.
  • the control target of the first current cutoff element is at least a current of a specific frequency or a current of a specific period.
  • the first current cutoff element cuts off or suppresses this controlled object.
  • the first current cutoff element cuts off or suppresses the current at least during the period when the switching element is on.
  • the first electrode is electrically connected to the first node
  • the second electrode is electrically connected to the first constant potential line (for example, positive power supply wiring).
  • a current control element is connected to the first node, and the current control element causes a current to flow from the first node to the second node when the semiconductor light emitting element does not emit light.
  • the second node is electrically connected to a second constant potential line (for example, ground wiring) having a lower potential than the first constant potential line.
  • the electric charge accumulated in the first storage element of the drive circuit unit is emitted from the second electrode of the first storage element to the second node, semiconductor light emission. It returns to the first electrode of the first power storage element through the element and the first node.
  • the semiconductor light emitting element having a one-to-one correspondence with the drive circuit unit emits light (drives).
  • the current control element limits the current, the electric charge can flow to the semiconductor light emitting element without bypassing.
  • the first current blocking element If the first current blocking element is not provided, a part of the electric charge flows from the second node to the second node of the other drive circuit unit, and the semiconductor light emitting element of the other drive circuit unit and the semiconductor element. It returns to the first power storage element of the drive circuit unit through the cathode of. In this case, the semiconductor light emitting elements of other drive circuit units also emit light, and individual driving of the semiconductor light emitting elements cannot be realized.
  • the first current cutoff element is interposed between the two adjacent second nodes of the second nodes in the plurality of drive circuit units. The two second nodes adjacent to each other are not short-circuited.
  • each of the plurality of drive circuit units further has a second current blocking element arranged on the wiring between the first constant potential line and the second electrode of the first power storage element.
  • the control target of the second current cutoff element is at least a current of a specific frequency or a current of a specific period.
  • the second current cutoff element is an element that cuts off or suppresses the controlled object.
  • the second current cutoff element cuts off or suppresses the current at least during the period when the switching element is on.
  • the current from the first constant potential line is prevented from flowing to the second node through the switching element while the switching element is in the ON state (the potential rise of the second node can be suppressed).
  • the potential difference between the control terminal of the switching element and the second current terminal in one example, the gate-source voltage of the FET
  • the second current terminal in one example, the gate-source voltage of the FET
  • each of the plurality of drive circuit units has a first electrode electrically connected to a third node between the second electrode of the first power storage element and the second current cutoff element.
  • a second storage element having a first electrode electrically connected to the second node, and the second electrode may be further provided.
  • the electric charge accumulated in the second electric storage element is used for the first electric charge regardless of whether the current is cut off or suppressed by the second current blocking element.
  • the element can be recharged instantly.
  • the capacity of the second power storage element is larger than the capacity of the first power storage element.
  • the first power storage element can be recharged each time the light is emitted regardless of whether the current is cut off or suppressed by the second current blocking element. ..
  • the first current cutoff element may include an inductor.
  • the inductor acts as a low-pass filter and can cut off or suppress high frequency currents in pulse drive. Therefore, it is possible to cut off or suppress the current that tries to pass when the switching element is turned on.
  • the current control element may include a resistance element.
  • the impedance of the current control element since the impedance of the current control element is higher than the impedance in the forward direction of the semiconductor light emitting element, the current can be limited when the semiconductor light emitting element emits light. Further, since the impedance of the current control element is lower than the impedance in the reverse direction of the semiconductor light emitting element, a current can flow when the semiconductor light emitting element does not emit light.
  • the plurality of drive circuit units may individually drive a plurality of semiconductor light emitting elements integrated on a common semiconductor substrate.
  • a semiconductor layer including an active layer is provided on a semiconductor substrate, and a cathode electrode serving as a common cathode for a plurality of semiconductor light emitting elements is provided on the back surface of the semiconductor layer.
  • a plurality of anode electrodes corresponding to the anodes of the plurality of semiconductor light emitting elements are provided on the upper surface of the semiconductor layer.
  • the cathodes (cathode electrodes) of the plurality of semiconductor light emitting elements may be electrically connected via common wiring and / or common terminals.
  • the semiconductor substrate can be made smaller, which can contribute to the miniaturization of the light emitting device.
  • FIG. 1 is a circuit diagram showing a configuration of a light emitting element drive circuit 1 according to an embodiment of the present disclosure.
  • the light emitting element drive circuit 1 includes a plurality of drive circuit units 2A to 2D.
  • the drive circuit units 2A to 2D are a circuit that individually pulse-drives a plurality of semiconductor light emitting elements 4 (hereinafter, simply referred to as light emitting elements 4) having cathodes set to the same potential.
  • light emitting elements 4 hereinafter, simply referred to as light emitting elements 4 having cathodes set to the same potential.
  • the light emitting element 4 is, for example, a laser diode.
  • the output wavelength of the light emitting element 4 is included in, for example, the near infrared region.
  • the peak oscillation wavelength of each light emitting element 4 is 905 nm, and the peak output of each light emitting element 4 is, for example, 100 W.
  • the peak oscillation wavelength of each light emitting element 4 is 905 nm, and the peak output of each light emitting element 4 is, for example, 100 W.
  • FIG. 2 is a plan view schematically showing the semiconductor light emitting device array 14.
  • the semiconductor light emitting element array 14 has a monolithic structure in which a plurality of light emitting elements 4 are integrated on a common semiconductor substrate 17.
  • the material of the semiconductor substrate 17 is, for example, GaAs or InP
  • the material of the semiconductor layer provided on the semiconductor substrate 17 and including the active layer is, for example, AlGaAs. , InGaAs or InGaAsP.
  • a cathode electrode (common cathode) in which the cathodes of the plurality of light emitting elements 4 are shared is provided, and on the upper surface of the semiconductor layer, the cathodes corresponding to the anodes of the plurality of light emitting elements 4 are separated from each other.
  • a plurality of anode electrodes are provided.
  • the semiconductor light emitting device array 14 has a plurality of anode terminals 15 connected to a plurality of anode electrodes, and one cathode terminal 16 connected to a common cathode electrode.
  • the drive circuit units 2A to 2D each have the same circuit configuration as each other.
  • Each of the drive circuit units 2A to 2D includes a transistor 3 (switching element), a capacitor 5 (first power storage element), a current control element 6, a capacitor 7 (second power storage element), and a current cutoff element 8 (first storage element). It has a current cutoff element), a current cutoff element 9 (second current cutoff element), and a resistance element 13.
  • the transistor 3 is an example of a switching element in this embodiment, and is a selection means for individually driving each light emitting element 4.
  • the transistor 3 is, for example, a field effect transistor (FET).
  • FET field effect transistor
  • the transistor 3 is not limited to the FET, and may be, for example, a bipolar transistor.
  • the transistor 3 has a control terminal and a pair of current terminals. When the transistor 3 is an FET, the control terminal is a gate and the pair of current terminals is a source and a drain. When the transistor 3 is a bipolar transistor, the control terminals are the base and the pair of current terminals are the collector and the emitter. Note that FIG. 1 clearly shows the parasitic diode 12 contained in the transistor 3.
  • the current control element 6 is connected in parallel with the light emitting element 4 driven by the drive circuit to which the current control element 6 belongs. Specifically, the current control element 6 and the light emitting element 4 are arranged in parallel between the node N 1 (first node) on the cathode side of the light emitting element 4 and the node N 2 (second node) on the anode side. It is connected.
  • the current control element 6 causes a current to flow from the node N 1 to the node N 2 during the non-light emitting period of the light emitting element 4, and limits the current from the node N 2 to the node N 1 during the light emitting period of the light emitting element 4.
  • the current control element 6 can include various electronic components such as a resistance element and a diode individually or in combination.
  • a resistance element is exemplified as the current control element 6.
  • the current direction from the node N 1 to the node N 2 is opposite to that of the light emitting element 4, so that the current flows through the resistance element, and the current direction from the node N 2 to the node N 1 emits light. Since it is in the forward direction of the element 4, a current flows through the light emitting element 4.
  • the current control element 6 is a resistance element, its resistance value is, for example, 5 ⁇ or more and 1k ⁇ or less.
  • the connection direction of the diode is opposite to that of the light emitting element 4 (node N 1 is on the anode side and node N 2 is on the cathode side).
  • node N 1 is on the anode side and node N 2 is on the cathode side.
  • the capacitor 5 is, for example, a chip capacitor mounted on a circuit board.
  • the capacitor 5 has a pair of electrodes and stores electric charges between the pair of electrodes.
  • the capacitance value of the capacitor 5 is, for example, 500 pF or more and 1500 pF or less.
  • the capacitance value of the capacitor 5 affects the peak output and pulse width of the pulsed light output from the light emitting element 4.
  • One electrode of the capacitor 5 is electrically connected to the node N 1.
  • the other electrode of the capacitor 5 is electrically connected to one current terminal (for example, drain) of the transistor 3 in a state where the resistance value is substantially zero.
  • the other current terminal (eg, source) of the transistor 3 is electrically connected to the node N 2 with a resistance value of substantially zero.
  • the potential of the node N 2 is a reference potential of the voltage applied to the control terminal of the transistor 3 (the terminal into which the driving pulse signal of the light emitting element 4 is input).
  • the other electrode of the capacitor 5 is electrically connected to the power supply line 10 (first constant potential line) via a resistance element 13 and a current blocking element 9 connected in series with each other.
  • the power supply line 10 is a positive potential power supply line provided as common wiring for the drive circuit units 2A to 2D.
  • the power supply line 10 supplies a predetermined power supply voltage between the power supply line 10 and the reference potential line 11 (second constant potential line) having a lower potential than the power supply line 10.
  • the reference potential line 11 is also provided as common wiring for the drive circuit units 2A to 2D.
  • the current cutoff element 8 is electrically connected between the node N 2 and the reference potential line 11. Specifically, one end of the current cutoff element 8 is electrically connected to the node N 2, and the other end is electrically connected to the reference potential line 11. That is, the adjacent nodes of the nodes N 2 of the drive circuit units 2A to 2D are electrically connected via the current cutoff element 8, but are not short-circuited. Further, the nodes N 2 of the drive circuit units 2A to 2D are always electrically connected to the reference potential line 11 via the current cutoff element 8.
  • the resistance value between the node N 2 and the current cutoff element 8 and the resistance value between the current cutoff element 8 and the reference potential line 11 are substantially zero.
  • the current cutoff element 8 is an element that cuts off or suppresses at least a current of a specific frequency or a current of a specific period.
  • the specific frequency is the rising and falling frequencies of the pulse drive current
  • the specific period is the period from the rise to the fall of the pulse drive current. That is, the current cutoff element 8 cuts off or suppresses the current at least while the transistor 3 is in the ON state.
  • Examples of the element that cuts off or suppresses the current of a specific frequency include an inductor such as a ferrite bead, a resistance element, and the like.
  • Examples of the element that cuts off or suppresses the current for a specific period include a transistor.
  • the current blocking element 8 can include these electronic components individually or in combination.
  • FIG. 1 illustrates a circuit including only an inductor as the current cutoff element 8. In that case, the current cutoff element 8 functions as a low-pass filter.
  • the current cutoff element 9 is connected between the power supply line 10 and the other electrode of the capacitor 5 (that is, the electrode on the power supply line 10 side). In other words, the other electrode of the capacitor 5 is electrically connected to the power supply line 10 via the current blocking element 9.
  • the current cutoff element 9 is an element that cuts off or suppresses a current of at least a specific frequency or a specific period, and cuts off or suppresses the current at least when the transistor 3 is in the ON state. ..
  • Examples of the element that cuts off or suppresses the current of a specific frequency include an inductor and a resistance element. Examples of the element that cuts off or suppresses the current for a specific period include a transistor.
  • the current blocking element 9 can include these electronic components individually or in combination.
  • FIG. 1 illustrates a circuit including only an inductor as the current cutoff element 9. In that case, the current cutoff element 9 functions as a low-pass filter.
  • the current cutoff elements 8 and 9 are low-pass filters, their cutoff frequencies may be equal to each other or different from each other. Further, when the current blocking elements 8 and 9 are both inductors, their inductances may be equal to each other or different from each other.
  • the capacitor 7 is, for example, a chip capacitor mounted on a circuit board.
  • the capacitor 7 has a pair of electrodes and stores electric charges between the pair of electrodes.
  • the capacitance value of the capacitor 7 is larger than the capacitance value of the capacitor 5, for example, 0.1 ⁇ F or more. In other words, the capacitance value of the capacitor 7 is, for example, 100 times or more the capacitance value of the capacitor 5.
  • One electrode of the capacitor 7 is electrically connected to the node N 3 (third node).
  • the node N 3 is a node between the electrode on the power supply line 10 side of the capacitor 5 and the current cutoff element 9 (in this embodiment, between the resistance element 13 and the current cutoff element 9).
  • the other electrode of the capacitor 7 is electrically connected to the node N 2.
  • one electrode of the capacitor 5 is electrically connected to the node N 1, and the other electrode is electrically connected to the power supply line 10. Further, a current control element 6 is connected to the node N 1, and the current control element 6 causes a current to flow from the node N 1 to the node N 2 when the light emitting element 4 does not emit light.
  • Node N 2 is electrically connected to a reference potential line 11 which has a lower potential than the power supply line 10. Therefore, during the period when the transistors 3 of the drive circuit units 2A to 2D are off (that is, when the light emitting element 4 is not emitting light), as shown in FIG. 3, the drive circuit units 2A to 2D are respectively from the power supply line 10. The current Ia is supplied to the capacitor 5, and the electric charge is accumulated in the capacitor 5.
  • a drive circuit unit 2A the electric charge accumulated in the capacitor 5 of the drive circuit unit 2A is as shown in FIG.
  • a drive current Ib it instantly flows from the electrode on the power supply line 10 side of the capacitor 5 through the transistor 3, the node N 2 , the light emitting element 4 and the node N 1 , and returns to the electrode on the opposite side of the capacitor 5.
  • the light emitting element 4 of the drive circuit unit 2A is pulse-driven to emit light.
  • the current control element 6 limits the current, the drive current Ib can flow to the light emitting element 4 without bypassing.
  • the resistance element 13 prevents the electric charge accumulated in the capacitor 7 from flowing to the transistor 3.
  • the same operation can be performed in any of the drive circuit units 2B, 2C, and 2D.
  • FIG. 5 is a circuit diagram showing the configuration of the drive circuit 20A according to the first comparative example.
  • This drive circuit 20A is a circuit for driving a single light emitting element 4A, and is a transistor 21 connected in series between the cathode of the light emitting element 4A and the reference potential line 11, and the power supply line 10 and the reference. It has a resistance element 23 and a capacitor 22 connected in series with the potential line 11 and connected in series with each other. The anode of the light emitting element 4 is connected to a node between the resistance element 23 and the capacitor 22.
  • FIG. 6 is a circuit diagram showing a configuration of a drive circuit 20B according to a second comparative example for driving four light emitting elements 4 each having a cathode electrically connected via a common wiring.
  • the drive circuit 20B includes a resistance element 23 and a capacitor 22 provided for each light emitting element 4, and a transistor 21 commonly provided for the four light emitting elements 4.
  • the connection mode of each light emitting element 4 with the resistance element 23 and the capacitor 22 is the same as in FIG.
  • the transistor 21 is connected in series between the common cathode of the four light emitting elements 4 and the reference potential line 11.
  • the power supply line 10 is common to each light emitting element 4.
  • FIG. 7 is a circuit diagram showing a drive circuit 20C according to an improved third comparative example.
  • the drive circuit 20C further includes four transistors 24, four transistors 25, and a resistance element 26 in addition to the configuration of the drive circuit 20B of FIG.
  • Transistors 24 and 25 form a switching circuit provided for each light emitting element 4.
  • the transistor 24 is connected in series between the common power supply line 10 and the capacitor 22 and the light emitting element 4, and controls the current supplied to the capacitor 22.
  • the transistor 25 forms a series circuit with the resistance element 27, and one end of the series circuit on the resistance element 27 side is connected to the power supply line 10 and the other end is connected to the reference potential line 11.
  • the node between the transistor 25 and the resistance element 27 is connected to the control terminal of the transistor 24, and the potential (driving control signal) of the node is applied to the control terminal of the transistor 24. That is, the on / off of the transistor 24 is switched according to the on / off of the transistor 25.
  • the transistor 24 is, for example, a p-channel MOSFET, and the transistor 25 is, for example, an n-channel MOSFET. According to such a configuration, a high withstand voltage switching circuit can be configured.
  • the resistance element 26 is connected in series between the four capacitors 22 and the common reference potential line 11.
  • this drive circuit 20C first, in order to accumulate an electric charge in the capacitor 22 corresponding to the light emitting element 4 to be made to emit light, the transistor 25 corresponding to the light emitting element 4 is turned on. As a result, the transistor 24 corresponding to the light emitting element 4 is turned on, and the electric charge is accumulated in the capacitor 22. After that, when the transistor 21 is turned on, a current is instantaneously supplied from the capacitor 22 to the light emitting element 4, and the light emitting element 4 is pulse-driven to emit light.
  • this drive circuit 20C has the following problems. That is, when an electric charge is accumulated in the capacitor 22 corresponding to the light emitting element 4 to be made to emit light, the voltage across the capacitor 22 rises. During the period when the transistor 21 is off, the voltage across this is applied as a reverse bias to the cathodes of the other three light emitting elements 4 via the light emitting element 4, and a reverse current having a magnitude proportional to the reverse bias is generated. It flows through the light emitting element 4 and is supplied to the other three capacitors 22. As a result, electric charges are also accumulated in the other three capacitors 22.
  • FIG. 8 is a circuit diagram showing a drive circuit 30 according to a fourth comparative example.
  • the drive circuit 30 includes a transistor 3, a capacitor 5, and a current control element 6 provided for each light emitting element 4.
  • the interconnection relationship between the transistor 3, the capacitor 5, and the current control element 6 is the same as that of the present embodiment shown in FIG.
  • the electrode on the power supply line 10 side of the capacitor 5 is connected to the common power supply line 10 only via the resistance element 13, and the node N 2 is short-circuited to the reference potential line 11. Further, the capacitor 7 (see FIG. 1) is not provided.
  • the drive circuit 30 current is supplied from the power supply line 10 to each capacitor 5 while each transistor 3 is in the off state (that is, during the non-emission period of the light emitting element 4), and electric charge is accumulated in the capacitor 5. Then, when a certain transistor 3 (for example, the leftmost transistor 3) is turned on, the electric charge accumulated in the capacitor 5 connected to the transistor 3 becomes a transistor as a drive current Ib as shown in FIG. 3. Instantly flows through node N 2 , light emitting element 4 and node N 1 and returns to capacitor 5. As a result, the light emitting element 4 is pulse-driven to emit light. At this time, since the current control element 6 limits the current, the drive current Ib can flow to the light emitting element 4 without bypassing.
  • Iba part of the driving current Ib flows from the node N 2 to the node N 2 of the other light-emitting element 4, the original capacitors through the other light-emitting elements 4 and the common cathode Return to 5.
  • the other light emitting elements 4 also emit light, and individual driving of the light emitting elements 4 cannot be realized.
  • a current cutoff element 8 is interposed between the nodes N 2 of each of the drive circuit units 2A to 2D, and the drive circuit units 2A to 2A to The 2D nodes N 2 are not short-circuited with each other.
  • the current cutoff element 8 is an element that cuts off or suppresses a current of at least a specific frequency or a specific period, and cuts off or suppresses the current at least while the transistor 3 is on. Therefore, part of the driving current Ib is blocked or prevented from flowing from the node N 2 to the node N 2 of the other drive circuit, the light-emitting element 4 of the other drive circuit to realize the individual driving it prevents the emission be able to.
  • each of the drive circuit units 2A to 2D may have a current cutoff element 9 connected between the common power supply line 10 and the electrode on the power supply line 10 side of the capacitor 5.
  • the current cutoff element 9 is an element that cuts off or suppresses a current of at least a specific frequency or a specific period, and at least cuts off or suppresses the current while the transistor 3 is in the ON state. To do. In this case, when the transistor 3 is in the ON state, the current from the power supply line 10 is prevented from flowing to the node N 2 through the transistor 3. Therefore, it is possible to suppress the potential increase of the node N 2 due to the current passing through the current blocking element 8. As a result, the potential difference (gate-source voltage) between the control terminal (for example, gate) of the transistor 3 and the other current terminal (for example, source) can be maintained, and the transistor 3 can be turned on / off stably. ..
  • one electrode is connected to the node N 3 between the electrode on the power supply line 10 side of the capacitor 5 and the current cutoff element 9, and the other is connected to the node N 2 .
  • a capacitor 7 as a bypass capacitor to which the electrodes of the above are connected may be provided. In this case, when the transistor 3 is in the off state (that is, when the light emitting element 4 is not emitting light), a current is supplied from the power supply line 10 to the capacitor 7, and an electric charge is accumulated in the capacitor 7.
  • the light emitting element 4 is made to emit light and the electric charge of the capacitor 5 is discharged, the capacitor 5 is instantly recharged with the electric charge accumulated in the capacitor 7 regardless of whether the current is cut off or suppressed by the current blocking element 9. can do. Therefore, the light emitting element 4 can be made to emit light again in a short time, and each light emitting element 4 can be driven at high speed.
  • FIG. 10 is a circuit diagram conceptually showing the power supply system included in the light emitting element drive circuit 1 of the present embodiment.
  • the capacitor 7, the inductor as the current cutoff element 8, and the current cutoff element 9 included in each of the two drive circuit units 2A and 2D of the drive circuit units 2A to 2D are shown.
  • Inductors are shown.
  • FIG. 10 also shows a common power supply line 10 and a common reference potential line 11.
  • a filter circuit is composed of a plurality of inductors constituting the current cutoff elements 8 and 9, and the power supply systems of the drive circuit units 2A and 2B are virtually separated from each other by the filter circuit. ing.
  • FIG. 10 shows a virtual power supply line 10a and a reference potential line 11a for supplying a power supply voltage to the drive circuit unit 2A, and a virtual power supply line 10b and a reference potential line 11b for supplying a power supply voltage to the drive circuit unit 2B. It is shown.
  • each inductor functions as a low-pass filter that cuts off the high frequency range including the rising and falling frequencies of the pulse drive current.
  • the capacitor 7 functions as a bypass capacitor for lowering the power supply impedance (impedance on the power supply side as seen from the position where the load is connected) at the frequency.
  • FIG. 11 is a diagram showing a current path from the capacitor 7 while the transistor 3 is in the ON state (that is, during the light emitting period of the light emitting element 4).
  • the current Ic output from the electrode on the power supply line 10 side of the capacitor 7 passes through the transistor 3 and then returns to the electrode on the reference potential line 11 side of the capacitor 7 via the node N 2. ..
  • the light emitting element 4 emits light, all the current Ic output from the capacitor 7 returns to the capacitor 7 and does not go to the current blocking element 8, so that it does not cause an increase in the potential of the node N 2.
  • FIG. 12 is a graph showing the result of simulating the operation of the light emitting element drive circuit that drives the two light emitting elements 4 individually (that is, includes only the drive circuit units 2A and 2B). In this simulation, one light emitting element 4 was made to emit light, and during that time, the extinguished state of the other light emitting element 4 was maintained.
  • the horizontal axis of FIG. 12 represents time (unit: nanoseconds), and the vertical axis represents the magnitude of the current flowing through the light emitting element 4.
  • the current (graph G1) of one of the light emitting elements 4 changes in a pulse shape, and it can be seen that the pulse drive current Ib is supplied to one of the light emitting elements 4.
  • the current (graph G2) of the other light emitting element 4 has not changed at all, and the pulse drive current Ib is hardly supplied to the other light emitting element 4. That is, according to the light emitting element drive circuit 1 of the present embodiment, the ratio (Pb / Pa) of the light output Pa of the light emitting element 4 that emits light and the light output Pb of the light emitting element 4 that does not emit light can be made extremely small. ..
  • FIG. 13 is an image of the state of light emission in the light emitting element drive circuit actually manufactured as the light emitting element drive circuit 1 of the present embodiment in which the four light emitting elements 4 are individually driven.
  • FIG. 13 shows a region A 2 corresponding to one light emitting element 4 that emits light, and regions A 1 and A 3 corresponding to two light emitting elements 4 that do not emit light adjacent to each other. As shown in FIG. 13, it can be seen that the degree of darkness in the non-emission regions A 1 and A 3 is extremely high as compared with the bright region A 2 that emits light.
  • the capacity of the capacitor 7 may be larger than the capacity of the capacitor 5.
  • the capacitor 5 can be recharged each time the light is emitted regardless of whether the current is cut off or suppressed by the current blocking element 9.
  • the current cutoff element 8 may include an inductor.
  • the inductor acts as a low-pass filter and can cut off or suppress high frequency currents in pulse drive. Therefore, the current that the transistor 3 is about to pass during the ON state can be cut off or suppressed.
  • the current control element 6 may include a resistance element.
  • the impedance of the current control element 6 since the impedance of the current control element 6 is higher than the impedance in the forward direction of the light emitting element 4, the current can be limited to the light emitting period of the light emitting element 4. Further, since the impedance of the current control element 6 is lower than the impedance in the opposite direction of the light emitting element 4, a current can flow during the non-light emitting period of the light emitting element 4. Therefore, the current control element 6 that allows a current to flow from the node N 1 to the node N 2 during the non-light emitting period of the light emitting element 4 and limits the current during the light emitting period of the light emitting element 4 can be easily realized. Further, by appropriately selecting the resistance value of the resistance element (more preferably, together with the resistance value of the resistance element 13), the rate at which the electric charge is accumulated in the capacitor 5 can be controlled.
  • the plurality of light emitting elements 4 may be integrated on a common semiconductor substrate 17.
  • sharing the cathodes of the plurality of light emitting elements 4 using one cathode electrode as the cathode of the plurality of light emitting elements 4) can make the semiconductor substrate 17 smaller and contribute to the miniaturization of the light emitting device. ..
  • FIG. 14 is a circuit diagram showing a light emitting element drive circuit 1A according to a modification of the above embodiment.
  • the node N 2 of one of the drive circuit units 2A to 2D (for example, the drive circuit unit 2D) is directly (with substantially zero resistance) without the intervention of the current cutoff element 8. ) It is electrically connected to the reference potential line 11. Further, the nodes N 2 of the drive circuit units 2A to 2D are connected to each other via the current cutoff element 8 without short-circuiting with each other.
  • the node N 2 of the drive circuit unit 2C is electrically connected to the reference potential line 11 via one current cutoff element 8
  • the node N 2 of the drive circuit unit 2B is electrically connected to the reference potential line 11 via two current cutoff elements 8.
  • the node N 2 of the drive circuit unit 2A is electrically connected to the reference potential line 11 via three current blocking elements 8.
  • connection mode between the nodes N 2 of the drive circuit units 2A to 2D and the reference potential line 11 is not limited to the form shown in FIG. 1, and may be, for example, a form as in this modification. Also in this modification, the nodes N 2 of the drive circuit units 2A to 2D are connected to each other via the current cutoff element 8 without short-circuiting to each other, and the reference potential line is connected to each other via the current cutoff element 8 or directly. Since it is electrically connected to 11, the same effect as that of the above embodiment can be obtained.
  • the light emitting element drive circuit of the present disclosure is not limited to the above-described embodiment and modification, and various other modifications are possible.
  • an inductor is illustrated as a filter constituting the current blocking elements 8 and 9, but as a filter constituting the current blocking elements 8 and 9, a high frequency (for example, GHz band) AC current in pulse drive is used.
  • a high frequency (for example, GHz band) AC current in pulse drive is used.
  • various other elements such as chip ferrite beads and an RC filter circuit can be applied.
  • the chip ferrite beads need only be a single chip for each drive circuit, and the light emitting element drive circuit 1 can be easily configured.
  • the current blocking elements 8 and 9 does not necessarily have to be a filter.
  • the current blocking elements 8 and 9 shown in FIG. 1 may include a resistance element instead of (or in addition to the inductor) as an element that cuts off or suppresses a current of at least a specific frequency.
  • the current blocking elements 8 and 9 may be composed of only the resistance element.
  • one end of the resistance element as the current cutoff element 8 is electrically connected to the node N 2, and the other end is electrically connected to the reference potential line 11.
  • the other electrode of the capacitor 5 is electrically connected to the power supply line 10 via a resistance element as a current blocking element 9.
  • the power loss becomes large and it takes time to recharge the capacitor 5.
  • the current cutoff elements 8 and 9 are composed of a filter, the power loss can be reduced and the time for recharging the capacitor 5 can be shortened.
  • At least one of the current interrupting elements 8 and 9 in FIG. 1 switches a transistor or the like instead of the inductor (or in addition to the inductor) as an element that interrupts or suppresses the current for at least a specific period.
  • the element may be included.
  • the switching element may be turned off during a certain period including the period in which the transistor 3 is on (that is, the light emitting period of the light emitting element 4), and the switching element may be turned on in other periods. Even in such a case, the same effect as that of the above embodiment can be obtained.
  • switching elements for the number of drive circuits and control circuits for driving those switching elements are further required.
  • the current cutoff elements 8 and 9 are composed of a filter, a control circuit is not required and the current cutoff elements can be configured at a lower cost than a switching element, which is advantageous in terms of reduction of manufacturing cost and miniaturization of the device. ..
  • each of the drive circuit units 2A to 2D drives one light emitting element 4
  • the number of light emitting elements 4 may be larger than the number of drive circuit units 2A to 2D.
  • each light emitting element 4 shown in FIG. 1 is replaced with two or more light emitting elements 4 connected in parallel or in series with each other.
  • 1,1A ... light emitting element drive circuit 1,1A ... light emitting element drive circuit, 2A to 2D ... drive circuit unit, 3 ... transistor, 4,4A ... light emitting element (semiconductor light emitting element), 5 ... capacitor (first power storage element), 6 ... current control element, 7 ... Capsule (second power storage element), 8 ... Current cutoff element (first current cutoff element), 9 ... Current cutoff element (second current cutoff element), 10 ... Power supply line (first constant potential line), 10a, 10b ... Virtual power supply line, 11 ... Reference current line (second constant current line), 11a, 11b ... Virtual reference current line, 12 ... Parasitic diode, 13 ... Resistance element, 14 ... Semiconductor light emitting device array, 15 ...

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Led Devices (AREA)
  • Electronic Switches (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本開示は、同電位のカソードを有する複数の半導体発光素子に対して個別に駆動制御を行う発光素子駆動回路に関する。当該発光素子駆動回路(1)は、複数の半導体発光素子(4)に一対一に対応して設けられた複数の駆動回路ユニット(2A~2D)を備える。各駆動回路ユニット(2A~2D)は、スイッチング素子(3)、第1蓄電素子(5)、電流制御要素(6)、および電流遮断要素(8)を有する。電流制御要素(6)は、半導体発光素子(4)と並列に接続される。第1蓄電素子(5)において、第1電極は第1ノード(N)に接続され、第2電極は第1定電位線(10)に接続される。スイッチング素子(3)において、第1電流端子は第2電極に接続され、第2電流端子は第2ノード(N)に接続される。複数の駆動回路ユニット(2A~2D)の第2ノード(N)は、電流遮断要素(8)により互いに短絡することなく、第2定電位線(11)に接続される。電流遮断要素(8)は、スイッチング素子(3)がオン状態の期間中に電流を遮断もしくは抑制する。

Description

発光素子駆動回路
 本開示は、発光素子駆動回路に関するものである。
 特許文献1には、アレイ素子用の電流発生回路に関する技術が開示されている。この回路は、一つの基準電圧入力と、それぞれがチャネル別に定電流発生回路を構成するトランジスタと、を備える。基準電圧入力は、各トランジスタのベースに受動回路を介して接続される。各トランジスタのエミッタは、抵抗を介して共通の接地ラインに接続される。各チャネルの定電流発生回路は、集積回路チップ上の特定領域に集中的に配置される。各トランジスタのコレクタ出力電流は、集積回路チップ内に分散したアレイ機能回路ブロックに個別に供給される。
 特許文献2には、光ヘッドの光源装置に関する技術が開示されている。この装置は、共通のパッケージと、このパッケージに内蔵されているシングルモード発振の半導体レーザおよびマルチモード発振の半導体レーザと、高周波発振回路と、を有する。高周波発振回路は、シングルモード発振の半導体レーザをマルチモード発振に変換するために、当該半導体レーザの駆動電流に重畳する高周波電流を発生する。この装置は、高周波電流に起因する不要輻射を防止する手段を有する。この手段は、マルチモード発振の半導体レーザの給電ラインに設けられた高周波成分吸収回路を含む。高周波成分吸収回路は、バンドパスフィルタ、チョークコイル、またはフェライトビーズである。
特開平9-270554号公報 特開2002-288864号公報
 発明者らは、上述の従来技術について検討した結果、以下のような課題を発見した。すなわち、複数の半導体発光素子を個別に駆動する場合、通常であれば、半導体発光素子ごとに独立した駆動回路ユニットが用いられる。しかしながら、例えば共通の基板上にモノリシック集積された複数の半導体発光素子などにおいては、カソードが同電位に設定される場合がある(各半導体発光素子のカソードが共通配線に接続された構成)。そのような場合、複数の駆動回路ユニットが共通配線を介して互いに短絡することとなり、各半導体発光素子を個別に駆動する場合、駆動電流が共通配線を通じて他の半導体発光素子に回り込まないための工夫が必要になる。
 本開示は、上述の課題を解決するためになされたものであり、それぞれが共通配線を介して電気的に接続されたカソードを有する複数の半導体発光素子を個別にパルス駆動するための構造を備えた発光素子駆動回路を提供することを目的としている。
 本実施形態に係る発光素子駆動回路は、複数の半導体発光素子に対して個別に駆動制御を行うよう構成された回路であって、該複数の半導体発光素子に一対一に対応付けられた複数の駆動回路ユニットを備える。複数の半導体発光素子のカソードは、モノリシック構造により共通化されたカソード電極であってもよく、また、共通配線および/または共通端子を介して電気的に接続されてもよい。これにより、複数の半導体発光素子のカソードは、同電位に設定される。複数の駆動回路ユニットは、それぞれが対応する半導体発光素子を個別にパルス駆動する。また、複数の駆動回路ユニットそれぞれは、電流制御要素と、第1蓄電素子と、スイッチング素子と、を有する。電流制御要素は、対応する半導体発光素子のカソードと第1ノードを介して電気的に接続された第1端子と、対応する半導体発光素子のアノードと第2ノードを介して電気的に接続された第2端子と、を有する。また、電流制御要素は、対応する半導体発光素子が非発光状態の期間中には第1ノードから第2ノードへ電流を流し、対応する半導体発光素子が発光状態の期間中には電流を制限する。第1蓄電素子は、第1ノードに電気的に接続された第1電極と、第2電極と、を有する。スイッチング素子は、対応する半導体発光素子の駆動用制御信号が入力される制御端子と、第1蓄電素子の第2電極に電気的に接続された第1電流端子と、第2ノードに電気的に接続された第2電流端子と、を有する。
 さらに、当該発光素子駆動回路において、複数の駆動回路ユニットにおける第1蓄電素子の第2電極それぞれは、第1定電位線に電気的に接続される。複数の駆動回路ユニットにおける第2ノードそれぞれは、第1電流遮断要素を介して、または、直接に、第2定電位線に電気的に接続される。ただし、第1電流遮断要素は、互いに隣接する2つの第2ノード間の配線上に配置されるとともに互いに隣接する該2つの隣接第2ノード間の短絡を回避する。また、第2定電位線は、第1定電位線よりも低電位に設定されている。第1電流遮断要素の制御対象は、少なくとも特定周波数の電流または特定期間の電流である。第1電流遮断要素は、この制御対象を遮断または抑制する。第1電流遮断要素は、少なくとも、スイッチング素子がオン状態の期間中に電流を遮断もしくは抑制する。
 本開示によれば、同電位に設定されるカソードをそれぞれが有する複数の半導体発光素子を個別に駆動できる発光素子駆動回路を提供し得る。
本開示の一実施形態に係る発光素子駆動回路1の構成を示す回路図である。 半導体発光素子アレイ14を概略的に示す平面図である。 駆動回路ユニット2A~2Dそれぞれのトランジスタ3がオフ状態の期間中(すなわち発光素子4の非発光時)に流れる電流Iaを示す図である。 駆動回路ユニット2Aのトランジスタ3がオン状態の期間中に流れる駆動電流Ibを示す図である。 第1比較例に係る発光素子駆動回路ユニット20Aの構成を示す回路図である。 第2比較例に係る発光素子駆動回路ユニット20Bの構成を示す回路図である。 第3比較例に係る発光素子駆動回路ユニット20Cの構成を示す回路図である。 第4比較例に係る発光素子駆動回路ユニット30の構成を示す回路図である。 図8に示された回路において、或るトランジスタ3がオン状態の期間中に流れる電流を示す図である。 一実施形態の発光素子駆動回路1が備える電源系統を概念的に示す回路図である。 トランジスタ3がオン状態の期間中(すなわち発光素子4の発光時)の、キャパシタ7からの電流経路を示す図である。 2つの発光素子4を個別に駆動する(すなわち駆動回路ユニット2A,2Bのみを備える)発光素子駆動回路の動作をシミュレーションした結果を示すグラフである。 4つの発光素子4を個別に駆動する一実施形態の発光素子駆動回路1として実際に作製された発光素子駆動回路において、発光の様子を撮った画像である。 一変形例に係る発光素子駆動回路1Aの構成を示す回路図である。
 [本願発明の実施形態の説明]
  最初に本願発明の実施形態の内容をそれぞれ個別に列挙して説明する。
 (1) 本実施形態に係る発光素子駆動回路は、その一態様として、複数の半導体発光素子に対して個別に駆動制御を行うよう構成された回路であって、該複数の半導体発光素子に一対一に対応付けられた複数の駆動回路ユニットを備える。複数の半導体発光素子のカソードは、モノリシック構造により共通化されたカソード電極であってもよく、また、共通配線および/または共通端子を介して電気的に接続されてもよい。これにより、複数の半導体発光素子のカソードは、同電位に設定される。複数の駆動回路ユニットは、それぞれが対応する半導体発光素子を個別にパルス駆動する。また、複数の駆動回路ユニットそれぞれは、電流制御要素と、第1蓄電素子と、スイッチング素子と、を有する。電流制御要素は、対応する半導体発光素子のカソードと第1ノードを介して電気的に接続された第1端子と、対応する半導体発光素子のアノードと第2ノードを介して電気的に接続された第2端子と、を有する。また、電流制御要素は、対応する半導体発光素子が非発光状態の期間中には第1ノードから第2ノードへ電流を流し、対応する半導体発光素子が発光状態の期間中には電流を制限する。第1蓄電素子は、第1ノードに電気的に接続された第1電極と、第2電極と、を有する。スイッチング素子は、対応する半導体発光素子の駆動用制御信号が入力される制御端子と、第1蓄電素子の第2電極に電気的に接続された第1電流端子と、第2ノードに電気的に接続された第2電流端子と、を有する。
 さらに、当該発光素子駆動回路において、複数の駆動回路ユニットにおける第1蓄電素子の第2電極それぞれは、第1定電位線に電気的に接続される。複数の駆動回路ユニットにおける第2ノードそれぞれは、第1電流遮断要素を介して、または、直接に、第2定電位線に電気的に接続される。ただし、第1電流遮断要素は、互いに隣接する2つの第2ノード間の配線上に配置されるとともに互いに隣接する該2つの隣接第2ノード間の短絡を回避する。また、第2定電位線は、第1定電位線よりも低電位に設定されている。第1電流遮断要素の制御対象は、少なくとも特定周波数の電流または特定期間の電流である。第1電流遮断要素は、この制御対象を遮断または抑制する。第1電流遮断要素は、少なくとも、スイッチング素子がオン状態の期間中に電流を遮断もしくは抑制する。
 上述のように、第1蓄電素子において、第1電極は第1ノードに電気的に接続され、第2電極は第1定電位線(例えは正の電源配線)に電気的に接続される。さらに、第1ノードには電流制御要素が接続され、電流制御要素は半導体発光素子の非発光時に第1ノードから第2ノードへ電流を流す。第2ノードは、第1定電位線よりも低電位である第2定電位線(例えばグランド配線)と電気的に接続される。したがって、各駆動回路ユニットのスイッチング素子がオフ状態の期間中(すなわち半導体発光素子の非発光期間)、第1定電位線から各駆動回路ユニットの第1蓄電素子に電流が供給され、第1蓄電素子において電荷が蓄積される。
 そして、或る駆動回路ユニットのスイッチング素子がオン状態となった期間中、当該駆動回路ユニットの第1蓄電素子に蓄積された電荷は、第1蓄電素子の第2電極から第2ノード、半導体発光素子、および第1ノードを通って第1蓄電素子の第1電極へ戻る。これにより、当該駆動回路ユニットに一対一に対応している半導体発光素子が発光する(駆動される)。このとき、電流制御要素は電流を制限するので、電荷は迂回することなく半導体発光素子へ流れることができる。また、仮に第1電流遮断要素が設けられていない場合、電荷の一部は、第2ノードから他の駆動回路ユニットの第2ノードへ流れ、他の駆動回路ユニットの半導体発光素子および該半導体素子のカソードを通って当該駆動回路ユニットの第1蓄電素子へ戻る。この場合、他の駆動回路ユニットの半導体発光素子も発光してしまい、半導体発光素子の個別駆動が実現できない。これに対し、上述のような構造を備えた発光素子駆動回路では、複数の駆動回路ユニットにおける第2ノードのうち互いに隣接する2つの第2ノード間に第1電流遮断要素が介在しており、互いに隣接する2つの第2ノードは短絡していない。そのため、電荷の一部が第2ノードから他の駆動回路ユニットの第2ノードへ流れることが遮断または抑制される。結果、他の駆動回路ユニットの半導体発光素子が発光することを防いで個別駆動を実現することができる。
 (2) 本開示の一態様として、複数の駆動回路ユニットそれぞれは、第1定電位線と第1蓄電素子の第2電極との間の配線上に配置された第2電流遮断要素をさらに有してもよい。第2電流遮断要素の制御対象は、少なくとも特定周波数の電流または特定期間の電流である。第2電流遮断要素は、この制御対象に対し、遮断または抑制を行う要素である。第2電流遮断要素は、少なくとも、スイッチング素子がオン状態の期間中に電流を遮断または抑制する。この場合、スイッチング素子がオン状態の期間中に第1定電位線から電流がスイッチング素子を通って第2ノードに流れることが防止される(第2ノードの電位上昇の抑制が可能になる)。これにより、スイッチング素子の制御端子と第2電流端子との間の電位差(一例ではFETのゲート-ソース間電圧)が保たれる(スイッチング素子における安定したオン/オフ動作が可能になる)。
 (3) 本開示の一態様として、複数の駆動回路ユニットそれぞれは、第1蓄電素子の第2電極と第2電流遮断要素との間の第3ノードに電気的に接続された第1電極と、第2ノードに電気的に接続された第1電極と、を有する第2蓄電素子をさらに有してもよい。この場合、各駆動回路ユニットのスイッチング素子がオフ状態の期間中(すなわち半導体発光素子の非発光時)、第1定電位線から各駆動回路ユニットの第2蓄電素子に電流が供給され、第2蓄電素子において電荷が蓄積される。そして、半導体発光素子を発光させて第1蓄電素子の電荷が排出された後、第2電流遮断要素による電流の遮断または抑制にかかわらず、第2蓄電素子に蓄積されている電荷で第1蓄電素子を瞬時に再充電することができる。
 (4) 本開示の一態様として、第2蓄電素子の容量は、第1蓄電素子の容量よりも大きいのが好ましい。この場合、例えば短い時間間隔でもって半導体発光素子を複数回発光させる場合に、第2電流遮断要素による電流の遮断または抑制にかかわらず、第1蓄電素子を発光のたびに再充電することができる。
 (5) 本開示の一態様として、第1電流遮断要素はインダクタを含んでもよい。この場合、インダクタはローパスフィルタとして機能し、パルス駆動における高い周波数の電流を遮断または抑制することができる。従って、スイッチング素子がオン状態とされる際に通過しようとする電流を遮断もしくは抑制することができる。
 (6) 本開示の一態様として、電流制御要素は抵抗素子を含んでもよい。この場合、電流制御要素のインピーダンスが半導体発光素子の順方向のインピーダンスよりも高くなるので、半導体発光素子の発光時に電流を制限することができる。また、電流制御要素のインピーダンスが半導体発光素子の逆方向のインピーダンスよりも低くなるので、半導体発光素子の非発光時には電流を流すことができる。
 (7) 本開示の一態様として、複数の駆動回路ユニットは、共通の半導体基板上に集積された複数の半導体発光素子を個別に駆動してもよい。一例として、半導体基板上に活性層を含む半導体層が設けられ、複数の半導体発光素子の共通カソードとなるカソード電極が該半導体層の裏面に設けられる。一方、複数の半導体発光素子のアノードとして、該半導体層の上面には、複数の半導体発光素子のアノードにそれぞれ対応した複数のアノード電極が設けられる。なお、複数の半導体発光素子のカソード(カソード電極)が共通配線および/または共通端子を介して電気的に接続された構成であってもよい。いずれの構成も、半導体基板を小さくでき、発光装置の小型化に寄与し得る。
 以上、この[本願発明の実施形態の説明]の欄に列挙された各態様は、残りの全ての態様のそれぞれに対して、または、これら残りの態様の全ての組み合わせに対して適用可能である。
 [本願発明の実施形態の詳細]
  以下、本実施形態に係る発光素子駆動回路の具体的な構造を、添付図面を参照しながら詳細に説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。また、図面の説明において同一の要素には同一符号を付して重複する説明を省略する。なお、下記の説明において、電気的に接続されるとは、特に明示がない限り、抵抗が実質的にゼロである導電線によって接続されている場合、および、抵抗等の電子部品を介して接続されている場合の双方を含む。また、短絡するとは、実質的にゼロの電気抵抗でもって互いに接続されることをいう。
 図1は、本開示の一実施形態に係る発光素子駆動回路1の構成を示す回路図である。図1に示されたように、この発光素子駆動回路1は、複数の駆動回路ユニット2A~2Dを備える。なお、図1の例では、4つの駆動回路ユニットが示されている。駆動回路ユニット2A~2Dそれぞれは、同電位に設定されるカソードを有する複数の半導体発光素子4(以下、単に発光素子4という)を個別にパルス駆動する回路である。なお、図1の例では、4つの発光素子が示されている。発光素子4は、例えばレーザダイオードである。発光素子4の出力波長は、例えば近赤外域に含まれる。一実施例では、各発光素子4のピーク発振波長は905nmであり、各発光素子4のピーク出力は例えば100Wである。この場合、例えばLiDAR(Light Detection and Ranging)に好適な半導体発光素子アレイの提供が可能になる。
 図2は、半導体発光素子アレイ14を概略的に示す平面図である。半導体発光素子アレイ14は、共通の半導体基板17上に複数の発光素子4が集積されたモノリシック構造を有する。出力波長が近赤外域である場合、半導体基板17の材料は、例えばGaAsまたはInPなどであり、半導体基板17上に設けられた半導体層であって活性層を含む半導体層の材料は、例えばAlGaAs、InGaAsまたはInGaAsPである。半導体層の裏面には、複数の発光素子4のカソードが共通化されたカソード電極(共通カソード)が設けられ、半導体層の上面には、複数の発光素子4のアノードに対応した、互いに分離された複数のアノード電極が設けられている。半導体発光素子アレイ14は、複数のアノード電極にそれぞれ接続された複数のアノード端子15と、共通のカソード電極に接続された一つのカソード端子16とを有する。
 再び図1を参照する。駆動回路ユニット2A~2Dそれぞれは、互いに同一の回路構成を有する。駆動回路ユニット2A~2Dそれぞれは、トランジスタ3(スイッチング素子)と、キャパシタ5(第1蓄電素子)と、電流制御要素6と、キャパシタ7(第2蓄電素子)と、電流遮断要素8(第1電流遮断要素)と、電流遮断要素9(第2電流遮断要素)と、抵抗素子13とを有する。
 トランジスタ3は、本実施形態におけるスイッチング素子の例であって、各発光素子4を個別に駆動するための選択手段である。トランジスタ3は、例えば電界効果トランジスタ(FET)である。以下においては、トランジスタ3がエンハンスメント型のnチャネルMOSFETである場合を例示するが、トランジスタ3はこれに限られるものではない。また、トランジスタ3はFETに限られず、例えばバイポーラトランジスタであってもよい。トランジスタ3は、制御端子および一対の電流端子を有する。トランジスタ3がFETである場合、制御端子はゲートであり、一対の電流端子はソースおよびドレインである。トランジスタ3がバイポーラトランジスタである場合、制御端子はベースであり、一対の電流端子はコレクタおよびエミッタである。なお、図1には、トランジスタ3が内部に有する寄生ダイオード12が明示されている。
 電流制御要素6は、該電流制御要素6が属する駆動回路が駆動する発光素子4と並列に接続されている。具体的には、発光素子4のカソード側のノードN1(第1ノード)と、アノード側のノードN2(第2ノード)との間において、電流制御要素6と発光素子4とが並列に接続されている。電流制御要素6は、発光素子4の非発光期間中にはノードN1からノードN2へ電流を流し、発光素子4の発光期間にはノードN2からノードN1への電流を制限する。電流制御要素6は、例えば抵抗素子、ダイオード等の種々の電子部品を個別にまたは複合して含むことができる。図1の例では、電流制御要素6として抵抗素子が例示されている。この場合、ノードN1からノードN2への電流方向に関しては、発光素子4の逆方向になるため抵抗素子を介して電流が流れ、ノードN2からノードN1への電流方向に関しては、発光素子4の順方向になるため、発光素子4を介して電流が流れる。電流制御要素6が抵抗素子である場合、その抵抗値は例えば5Ω以上1kΩ以下である。なお、電流制御要素6がダイオードである場合、該ダイオードの接続方向は、発光素子4とは逆向き(ノードN1がアノード側、ノードN2がカソード側)となる。なお、電流制御要素6の抵抗値が小さいほど、後述するキャパシタ5への蓄電速度を速めることができる。
 キャパシタ5は、例えば回路基板上に実装されたチップコンデンサである。キャパシタ5は、一対の電極を有し、該一対の電極間に電荷を蓄積する。キャパシタ5の容量値は、例えば500pF以上1500pF以下である。なお、キャパシタ5の容量値は、発光素子4から出力されるパルス光のピーク出力およびパルス幅に影響する。キャパシタ5の容量値が大きいほど、パルス光のピーク出力およびパルス幅が大きくなる。キャパシタ5の一方の電極は、ノードN1と電気的に接続されている。キャパシタ5の他方の電極は、トランジスタ3の一方の電流端子(例えばドレイン)と、抵抗値が実質的にゼロの状態で電気的に接続されている。トランジスタ3の他方の電流端子(例えばソース)は、ノードN2と、抵抗値が実質的にゼロの状態で電気的に接続されている。なお、ノードN2の電位は、トランジスタ3の制御端子(発光素子4の駆動用パルス信号が入力される端子)に印加される電圧の基準電位とされる。
 キャパシタ5の他方の電極は、互いに直列に接続された抵抗素子13および電流遮断要素9を介して、電源線10(第1定電位線)と電気的に接続されている。電源線10は、駆動回路ユニット2A~2Dのための共通配線として設けられた、正電位の電源線である。電源線10は、電源線10よりも低電位である基準電位線11(第2定電位線)との間に所定の電源電圧を供給する。基準電位線11もまた、駆動回路ユニット2A~2Dの共通配線として設けられている。
 電流遮断要素8は、ノードN2と基準電位線11との間に電気的に接続されている。具体的には、電流遮断要素8の一端がノードN2と電気的に接続され、他端が基準電位線11と電気的に接続されている。すなわち、駆動回路ユニット2A~2DのノードN2のうち隣接するノードは、電流遮断要素8を介して電気的に接続されているが、短絡していない。また、駆動回路ユニット2A~2DのノードN2は、必ず電流遮断要素8を介して基準電位線11と電気的に接続されている。ノードN2と電流遮断要素8との間の抵抗値、および、電流遮断要素8と基準電位線11との間の抵抗値は、実質的にゼロである。
 電流遮断要素8は、少なくとも特定周波数の電流または特定期間の電流に対し、遮断または抑制を行う要素である。本明細書において、特定周波数とは、パルス駆動電流の立ち上がりおよび立ち下がりの周波数であり、特定期間とは、パルス駆動電流の立ち上がりから立ち下がりまでの期間をいう。すなわち、電流遮断要素8は、少なくともトランジスタ3がオン状態の期間中に電流を遮断もしくは抑制する。特定周波数の電流を遮断または抑制する要素としては、例えばフェライトビーズなどのインダクタ、抵抗素子等が挙げられる。特定期間の電流を遮断または抑制する要素としては、例えばトランジスタが挙げられる。電流遮断要素8は、これらの電子部品を個別にまたは複合して含むことができる。図1は、電流遮断要素8としてインダクタのみからなる回路を例示する。その場合、電流遮断要素8はローパスフィルタとして機能する。
 電流遮断要素9は、電源線10と、キャパシタ5の上記他方の電極(すなわち電源線10側の電極)との間に接続されている。換言すれば、キャパシタ5の他方の電極は、電流遮断要素9を介して電源線10と電気的に接続されている。電流遮断要素9は、電流遮断要素8と同様に、少なくとも特定周波数もしくは特定期間の電流に対し、遮断または抑制する要素であって、少なくともトランジスタ3がオン状態であるときに電流を遮断もしくは抑制する。特定周波数の電流を遮断または抑制する要素としては、例えばインダクタ、抵抗素子等が挙げられる。特定期間の電流を遮断または抑制する要素としては、例えばトランジスタが挙げられる。電流遮断要素9は、これらの電子部品を個別にまたは複合して含むことができる。図1は、電流遮断要素9としてインダクタのみからなる回路を例示する。その場合、電流遮断要素9はローパスフィルタとして機能する。なお、電流遮断要素8,9がローパスフィルタである場合、それらのカットオフ周波数は互いに等しくてもよく、互いに異なってもよい。また、電流遮断要素8,9が共にインダクタである場合、それらのインダクタンスは互いに等しくてもよく、互いに異なってもよい。
 キャパシタ7は、例えば回路基板上に実装されたチップコンデンサである。キャパシタ7は、一対の電極を有し、該一対の電極間に電荷を蓄積する。キャパシタ7の容量値は、キャパシタ5の容量値よりも大きく、例えば0.1μF以上である。換言すれば、キャパシタ7の容量値は、例えばキャパシタ5の容量値の100倍以上である。キャパシタ7の一方の電極は、ノードN3(第3ノード)と電気的に接続されている。ノードN3は、キャパシタ5の電源線10側の電極と電流遮断要素9との間(本実施形態では、抵抗素子13と電流遮断要素9との間)のノードである。キャパシタ7の他方の電極は、ノードN2と電気的に接続されている。
 以上のような構造を有する発光素子駆動回路1において、キャパシタ5の一方の電極はノードN1と電気的に接続され、他方の電極は電源線10と電気的に接続されている。更に、ノードN1には電流制御要素6が接続され、電流制御要素6は発光素子4の非発光時にノードN1からノードN2へ電流を流す。ノードN2は、電源線10よりも低電位である基準電位線11と電気的に接続されている。したがって、駆動回路ユニット2A~2Dそれぞれのトランジスタ3がオフ状態の期間中(すなわち発光素子4の非発光時)、図3に示されたように、電源線10から駆動回路ユニット2A~2Dそれぞれのキャパシタ5に電流Iaが供給され、キャパシタ5において電荷が蓄積される。
 そして、或る駆動回路ユニット(以下、駆動回路ユニット2Aとして説明する)のトランジスタ3がオン状態の期間において、当該駆動回路ユニット2Aのキャパシタ5に蓄積された電荷は、図4に示されたように、駆動電流Ibとしてキャパシタ5の電源線10側の電極からトランジスタ3、ノードN2、発光素子4およびノードN1を通って瞬時に流れ、キャパシタ5の逆側の電極に戻る。これにより、当該駆動回路ユニット2Aの発光素子4がパルス駆動されて発光する。このとき、電流制御要素6は電流を制限するので、駆動電流Ibは迂回することなく発光素子4へ流れることができる。また、抵抗素子13は、キャパシタ7に蓄積された電荷がトランジスタ3へ流れることを阻害する。なお、同様の動作は駆動回路ユニット2B,2C,2Dのいずれにおいても可能である。
 ここで、本実施形態に係る発光素子駆動回路1によって得られる作用効果について、比較例とともに説明する。図5は、第1比較例に係る駆動回路20Aの構成を示す回路図である。この駆動回路20Aは、単一の発光素子4Aを駆動するための回路であって、発光素子4Aのカソードと基準電位線11との間に直列に接続されたトランジスタ21と、電源線10と基準電位線11との間に直列に接続され、且つ互いに直列に接続された抵抗素子23およびキャパシタ22とを有する。発光素子4のアノードは、抵抗素子23とキャパシタ22との間のノードに接続されている。
 この駆動回路20Aにおいて、トランジスタ21がオフ状態の期間中、電源線10からの電流がキャパシタ22に供給され、キャパシタ22に電荷が蓄積される。そして、トランジスタ21がオン状態になると、キャパシタ22に蓄積された電荷は、発光素子4Aおよびトランジスタ21を通って基準電位線11へ瞬時に流れる。これにより、発光素子4Aがパルス駆動されて発光する。
 図6は、それぞれが共通配線を介して電気的に接続されたカソードを有する4つの発光素子4を駆動するための第2比較例に係る駆動回路20Bの構成を示す回路図である。この駆動回路20Bは、発光素子4ごとに設けられた抵抗素子23およびキャパシタ22と、4つの発光素子4に対して共通に設けられたトランジスタ21とを備える。各発光素子4と抵抗素子23およびキャパシタ22との接続態様は、図5と同様である。トランジスタ21は、4つの発光素子4の共通カソードと基準電位線11との間に直列に接続されている。電源線10は、各発光素子4に対して共通である。
 この駆動回路20Bにおいて、トランジスタ21がオフ状態の期間中、電源線10からの電流が各キャパシタ22に供給され、各キャパシタ22に電荷が蓄積される。そして、トランジスタ21がオン状態になると、各キャパシタ22に蓄積された電荷は、各発光素子4およびトランジスタ21を通って基準電位線11へ瞬時に流れる。これにより、4つの発光素子4が同時にパルス駆動されて発光する。したがって、この駆動回路20Bでは4つの発光素子4を個別に駆動することはできない。
 そこで、それぞれが共通配線を介して電気的に接続されたカソードを有する4つの発光素子4を個別に駆動するための改良を検討する。図7は、改良された第3比較例に係る駆動回路20Cを示す回路図である。この駆動回路20Cは、図6の駆動回路20Bの構成に加えて、4つのトランジスタ24、4つのトランジスタ25、および抵抗素子26をさらに備える。
 トランジスタ24,25は、発光素子4ごとに設けられたスイッチング回路を構成する。トランジスタ24は、共通の電源線10とキャパシタ22および発光素子4との間に直列に接続され、キャパシタ22へ供給される電流を制御する。トランジスタ25は、抵抗素子27と直列回路を構成し、該直列回路の抵抗素子27側の一端は電源線10に接続され、他端は基準電位線11に接続されている。トランジスタ25と抵抗素子27との間のノードはトランジスタ24の制御端子に接続されており、該ノードの電位(駆動用制御信号)がトランジスタ24の制御端子に印加される。すなわち、トランジスタ25のオン/オフに対応してトランジスタ24のオン/オフが切り替えられる。トランジスタ24は例えばpチャネルMOSFETであり、トランジスタ25は例えばnチャネルMOSFETである。このような構成によれば、高耐圧のスイッチング回路を構成することができる。抵抗素子26は、4つのキャパシタ22と共通の基準電位線11との間に直列に接続されている。
 この駆動回路20Cにおいて、まず、発光させたい発光素子4に対応するキャパシタ22に電荷を蓄積するために、当該発光素子4に対応するトランジスタ25がオン状態になる。これにより、当該発光素子4に対応するトランジスタ24がオン状態となり、当該キャパシタ22に電荷が蓄積される。その後、トランジスタ21がオン状態になると、当該キャパシタ22から当該発光素子4に電流が瞬時に供給され、当該発光素子4がパルス駆動されて発光する。
 しかしながら、この駆動回路20Cには次の問題がある。すなわち、発光させたい発光素子4に対応するキャパシタ22に電荷を蓄積すると、当該キャパシタ22の両端電圧が上昇する。トランジスタ21がオフ状態の期間中、この両端電圧は、当該発光素子4を介して他の3つの発光素子4のカソードに逆バイアスとして印加され、この逆バイアスに比例した大きさの逆電流が、発光素子4を流れて他の3つのキャパシタ22に供給される。これにより、他の3つのキャパシタ22にも電荷が蓄積されてしまう。したがって、トランジスタ21をオン状態にすると、各キャパシタ22から各発光素子4に電流が瞬時に供給され、4つの発光素子4が同時にパルス駆動されて発光することとなる。すなわち、この駆動回路20Cでも、4つの発光素子4を個別に駆動することは難しい。
 そこで、本発明者らは、それぞれが共通配線を介して電気的に接続されたカソードを有する4つの発光素子4を個別に駆動するための回路についてさらに検討を重ねた。図8は、第4比較例に係る駆動回路30を示す回路図である。この駆動回路30は、発光素子4ごとに設けられたトランジスタ3、キャパシタ5、および電流制御要素6を備える。なお、トランジスタ3、キャパシタ5、および電流制御要素6の相互接続関係は図1に示された本実施形態と同様である。ただし、駆動回路30では、キャパシタ5の電源線10側の電極は抵抗素子13のみを介して共通の電源線10と接続されており、ノードN2は基準電位線11に短絡している。また、キャパシタ7(図1を参照)は設けられていない。
 この駆動回路30において、各トランジスタ3がオフ状態の期間中(すなわち発光素子4の非発光期間中)、電源線10から各キャパシタ5に電流が供給され、キャパシタ5において電荷が蓄積される。そして、或るトランジスタ3(例として左端のトランジスタ3)がオン状態になると、当該トランジスタ3に接続されたキャパシタ5に蓄積された電荷は、図9に示されたように、駆動電流Ibとしてトランジスタ3、ノードN2、発光素子4およびノードN1を通って瞬時に流れ、キャパシタ5に戻る。これにより、当該発光素子4がパルス駆動されて発光する。このとき、電流制御要素6は電流を制限するので、駆動電流Ibは迂回することなく発光素子4へ流れることができる。
 しかしながら、図9に示されたように、駆動電流Ibの一部Ibaは、ノードN2から他の発光素子4のノードN2へ流れ、他の発光素子4および共通カソードを通って元のキャパシタ5へ戻る。この場合、他の発光素子4も発光してしまい、発光素子4の個別駆動を実現できない。
 これに対し、図1に示された本実施形態の発光素子駆動回路1では、駆動回路ユニット2A~2DそれぞれのノードN2の間に電流遮断要素8が介在しており、駆動回路ユニット2A~2DのノードN2は互いに短絡していない。電流遮断要素8は、少なくとも特定周波数もしくは特定期間の電流に対し、遮断または抑制する要素であって、少なくとも、トランジスタ3がオン状態の期間中に電流を遮断もしくは抑制する。そのため、駆動電流Ibの一部がノードN2から他の駆動回路のノードN2へ流れることが遮断または抑制され、他の駆動回路の発光素子4が発光することを防いで個別駆動を実現することができる。
 また、本実施形態のように、駆動回路ユニット2A~2Dそれぞれは、共通の電源線10とキャパシタ5の電源線10側の電極との間に接続された電流遮断要素9を有してもよい。電流遮断要素9は、電流遮断要素8と同様に、少なくとも特定周波数もしくは特定期間の電流に対し、遮断または抑制する要素であって、少なくとも、トランジスタ3がオン状態の期間中に電流を遮断もしくは抑制する。この場合、トランジスタ3がオン状態であるときに電源線10から電流がトランジスタ3を通ってノードN2に流れることを防ぐ。故に、該電流が電流遮断要素8を通過することによるノードN2の電位上昇を抑制することができる。これにより、トランジスタ3の制御端子(例えばゲート)と他方の電流端子(例えばソース)との間の電位差(ゲート-ソース間電圧)を保ち、トランジスタ3のオン/オフを安定して行うことができる。
 本実施形態のように、駆動回路ユニット2A~2Dそれぞれは、キャパシタ5の電源線10側の電極と電流遮断要素9との間のノードN3に一方の電極が接続され、ノードN2に他方の電極が接続されたバイパスコンデンサとしてのキャパシタ7を有してもよい。この場合、トランジスタ3がオフ状態であると(すなわち発光素子4の非発光時)、電源線10からキャパシタ7に電流が供給され、キャパシタ7において電荷が蓄積される。そして、発光素子4を発光させてキャパシタ5の電荷が排出された後、電流遮断要素9による電流の遮断または抑制にかかわらず、キャパシタ7に蓄積されている電荷でもってキャパシタ5を瞬時に再充電することができる。従って、短時間で再び発光素子4を発光させることができ、各発光素子4の高速駆動が可能となる。
 ここで、図10は、本実施形態の発光素子駆動回路1が備える電源系統を概念的に示す回路図である。図10には、説明の簡単化のため、駆動回路ユニット2A~2Dのうち2つの駆動回路ユニット2A,2Bそれぞれが有する、キャパシタ7と、電流遮断要素8としてのインダクタと、電流遮断要素9としてのインダクタとが示されている。また、図10には、共通の電源線10と、共通の基準電位線11とが併せて示されている。発光素子駆動回路1では、電流遮断要素8,9を構成する複数のインダクタによってフィルタ回路が構成されており、駆動回路ユニット2A,2Bそれぞれの電源系統は、このフィルタ回路によって互いに仮想的に分離されている。図10には、駆動回路ユニット2Aに電源電圧を供給する仮想的な電源線10aおよび基準電位線11aと、駆動回路ユニット2Bに電源電圧を供給する仮想的な電源線10bおよび基準電位線11bとが示されている。
 このフィルタ回路において、各インダクタは、パルス駆動電流の立ち上がりおよび立ち下がりの周波数を含む高周波数域を遮断するローパスフィルタとして機能する。また、キャパシタ7は、当該周波数における電源インピーダンス(負荷が接続されている箇所から見た電源側のインピーダンス)を下げるためのバイパスコンデンサとして機能する。
 図11は、トランジスタ3がオン状態の期間中(すなわち発光素子4の発光期間中)の、キャパシタ7からの電流経路を示す図である。図11に示されたように、キャパシタ7の電源線10側の電極から出力された電流Icは、トランジスタ3を通ったのち、ノードN2を経てキャパシタ7の基準電位線11側の電極へ戻る。このように、発光素子4の発光時、キャパシタ7から出力された電流Icは全てキャパシタ7へ戻り、電流遮断要素8へは向かわないので、ノードN2の電位を上昇させる要因にはならない。
 図12は、2つの発光素子4を個別に駆動する(すなわち駆動回路ユニット2A,2Bのみを備える)発光素子駆動回路の動作をシミュレーションした結果を示すグラフである。このシミュレーションでは、一方の発光素子4を発光させ、その間、他方の発光素子4の消光状態が維持された。図12の横軸は時間(単位:ナノ秒)を表し、縦軸は発光素子4を流れる電流の大きさを表す。図12に示されたように、一方の発光素子4の電流(グラフG1)はパルス状に変化しており、一方の発光素子4にはパルス駆動電流Ibが供給されたことが分かる。また、他方の発光素子4の電流(グラフG2)は全く変化しておらず、他方の発光素子4にはパルス駆動電流Ibが殆ど供給されないことが分かる。すなわち、本実施形態の発光素子駆動回路1によれば、発光させる発光素子4の光出力Paと、発光させない発光素子4の光出力Pbとの比(Pb/Pa)を極めて小さくすることができる。
 図13は、4つの発光素子4を個別に駆動する本実施形態の発光素子駆動回路1として実際に作製された発光素子駆動回路において、発光の様子を撮った画像である。図13には、発光する一つの発光素子4に対応する領域A2と、その両隣に隣接する発光しない2つの発光素子4に対応する領域A1,A3とが示されている。図13に示されたように、発光する明るい領域A2と比較して、発光しない領域A1,A3の暗さの度合いが極めて高いことが分かる。
 本実施形態のように、キャパシタ7の容量はキャパシタ5の容量より大きくてもよい。この場合、例えば短い時間間隔でもって発光素子4を複数回発光させる場合に、電流遮断要素9による電流の遮断または抑制にかかわらず、キャパシタ5を発光のたびに再充電することができる。
 本実施形態のように、電流遮断要素8はインダクタを含んでもよい。この場合、インダクタはローパスフィルタとして機能し、パルス駆動における高い周波数の電流を遮断または抑制することができる。したがって、トランジスタ3がオン状態の期間に通過しようとする電流を遮断もしくは抑制することができる。
 本実施形態のように、電流制御要素6は抵抗素子を含んでもよい。この場合、電流制御要素6のインピーダンスが発光素子4の順方向のインピーダンスよりも高くなるので、発光素子4の発光期間に電流が制限され得る。また、電流制御要素6のインピーダンスが発光素子4の逆方向のインピーダンスよりも低くなるので、発光素子4の非発光期間中には電流が流れ得る。そのため、発光素子4の非発光期間中にはノードN1からノードN2へ電流を流し、発光素子4の発光期間中には電流を制限する電流制御要素6が容易に実現され得る。また、抵抗素子の抵抗値を(より好ましくは、抵抗素子13の抵抗値と併せて)適切に選択することにより、キャパシタ5に電荷が蓄積される速度が制御され得る。
 本実施形態のように、複数の発光素子4は共通の半導体基板17上に集積されてもよい。この場合、複数の発光素子4のカソードを共通化すること(複数の発光素子4のカソードとして1つのカソード電極を利用する)は、半導体基板17を小さくでき、発光装置の小型化に寄与し得る。
 (変形例)
  図14は、上記実施形態の一変形例に係る発光素子駆動回路1Aを示す回路図である。この変形例では、駆動回路ユニット2A~2Dのうち一の駆動回路ユニット(例えば駆動回路ユニット2D)のノードN2が、電流遮断要素8を介することなく直接に(実質的にゼロの抵抗にて)基準電位線11と電気的に接続されている。また、駆動回路ユニット2A~2DのノードN2は、互いに短絡することなく電流遮断要素8を介して接続されている。したがって、駆動回路ユニット2CのノードN2は1つの電流遮断要素8を介して基準電位線11と電気的に接続されており、駆動回路ユニット2BのノードN2は2つの電流遮断要素8を介して基準電位線11と電気的に接続されており、駆動回路ユニット2AのノードN2は3つの電流遮断要素8を介して基準電位線11と電気的に接続されている。
 駆動回路ユニット2A~2DのノードN2と基準電位線11との接続態様は図1に示された形態に限られず、例えば本変形例のような形態であってもよい。本変形例においても、駆動回路ユニット2A~2DのノードN2が互いに短絡することなく電流遮断要素8を介して互いに接続されており、且つ、電流遮断要素8を介してまたは直接に基準電位線11と電気的に接続されているので、上記実施形態と同様の効果を奏することができる。
 本開示の発光素子駆動回路は、上述の実施形態および変形例に限られるものではなく、他に種々の変形が可能である。例えば、図1では電流遮断要素8,9を構成するフィルタとしてインダクタを例示しているが、電流遮断要素8,9を構成するフィルタとしては、パルス駆動における高い周波数(例えばGHz帯)のAC電流を遮断または抑制し、低い周波数(例えばDC~kHz帯)の電流を通すローパスフィルタまたはバンドパスフィルタであれば、例えばチップフェライトビーズ、RCフィルタ回路など他の種々の要素を適用することができる。特に、チップフェライトビーズは駆動回路ごとに単一のチップで済み、発光素子駆動回路1を簡易に構成できる。
 また、電流遮断要素8,9のうち少なくとも一方は、必ずしもフィルタである必要はない。上述のように、図1に示された電流遮断要素8,9は、少なくとも特定周波数の電流を遮断または抑制する要素として、インダクタに代えて(あるいはインダクタに加えて)抵抗素子を含んでもよい。特に、発光素子4の駆動周期が比較的長い場合には、電流遮断要素8,9は抵抗素子のみによって構成されてもよい。この場合、電流遮断要素8としての抵抗素子の一端がノードN2と電気的に接続され、他端が基準電位線11と電気的に接続される。また、キャパシタ5の他方の電極は、電流遮断要素9としての抵抗素子を介して電源線10と電気的に接続される。ただし、この場合、全ての周波数帯域において電流を抑制するので、電力損失が大きくなり、また、キャパシタ5の再充電に時間を要する。これに対し、電流遮断要素8,9がフィルタにより構成される場合、電力損失の低減が可能になり、また、キャパシタ5の再充電の時間短縮が可能になる。
 また、上述のように、図1の電流遮断要素8,9のうち少なくとも一方は、少なくとも特定期間の電流を遮断または抑制する要素として、インダクタに代えて(あるいはインダクタに加えて)トランジスタ等のスイッチング素子を含んでもよい。この場合、トランジスタ3がオン状態の期間(すなわち発光素子4の発光期間)を含む一定の期間中、スイッチング素子をオフ状態とし、他の期間においてはスイッチング素子をオン状態とするとよい。このような場合であっても、上記実施形態と同様の効果を奏することができる。ただし、駆動回路の個数分のスイッチング素子と、それらのスイッチング素子を駆動するための制御回路などがさらに必要となる。これに対し、電流遮断要素8,9がフィルタにより構成される場合、制御回路が必要なく、またスイッチング素子よりも安価に構成できるので、製造コストの削減や装置の小型化の点で有利である。
 また、図1では駆動回路ユニット2A~2Dがそれぞれ1個の発光素子4を駆動する場合が例示されているが、駆動回路ユニット2A~2Dはそれぞれ2個以上の発光素子4を駆動してもよい。換言すれば、発光素子4の個数は、駆動回路ユニット2A~2Dの個数より多くてもよい。その場合、図1に示された各発光素子4は、互いに並列または直列に接続された2個以上の発光素子4にそれぞれ置き換えられる。
 1,1A…発光素子駆動回路、2A~2D…駆動回路ユニット、3…トランジスタ、4,4A…発光素子(半導体発光素子)、5…キャパシタ(第1蓄電素子)、6…電流制御要素、7…キャパシタ(第2蓄電素子)、8…電流遮断要素(第1電流遮断要素)、9…電流遮断要素(第2電流遮断要素)、10…電源線(第1定電位線)、10a,10b…仮想的な電源線、11…基準電位線(第2定電位線)、11a,11b…仮想的な基準電位線、12…寄生ダイオード、13…抵抗素子、14…半導体発光素子アレイ、15…アノード端子、16…カソード端子、17…半導体基板、20A,20B,20C…駆動回路、21…トランジスタ、22…キャパシタ、23…抵抗素子、24,25…トランジスタ、26,27…抵抗素子、30…駆動回路、N1…ノード(第1ノード)、N2…ノード(第2ノード)、N3…ノード(第3ノード)。

Claims (7)

  1.  同電位に設定されるカソードをそれぞれが有する複数の半導体発光素子に対して個別に駆動制御を行うよう構成された発光素子駆動回路であって、
     前記複数の半導体発光素子に一対一に対応して設けられ、かつ、それぞれが対応する前記半導体発光素子を個別に駆動する複数の駆動回路ユニットを備え、
     前記複数の駆動回路ユニットそれぞれは、
     対応する前記半導体発光素子の前記カソードと第1ノードを介して電気的に接続された第1端子と、対応する前記半導体発光素子のアノードと第2ノードを介して電気的に接続された第2端子と、を有する電流制御要素であって、対応する前記半導体発光素子が非発光状態の期間中には前記第1ノードから前記第2ノードへ電流を流し、対応する前記半導体発光素子が発光状態の期間中には電流を制限する電流制御要素と、
     前記第1ノードに電気的に接続された第1電極と、第2電極と、を有する第1蓄電素子と、
     対応する前記半導体発光素子の駆動用制御信号が入力される制御端子と、前記第1蓄電素子の前記第2電極に電気的に接続された第1電流端子と、前記第2ノードに電気的に接続された第2電流端子と、を有するスイッチング素子と、
     を有し、
     前記複数の駆動回路ユニットにおける前記第1蓄電素子の前記第2電極それぞれは、第1定電位線に電気的に接続され、
     前記複数の駆動回路ユニットにおける前記第2ノードそれぞれは、互いに隣接する2つの第2ノード間の配線上に配置されるとともに互いに隣接する前記2つの第2ノード間の短絡を回避するための第1電流遮断要素を介して、または、直接に、前記第1定電位線よりも低電位に設定された第2定電位線に電気的に接続され、
     前記第1電流遮断要素は、少なくとも特定周波数の電流または特定期間の電流に対し、遮断または抑制を行う要素であって、前記第1電流遮断要素は、少なくとも、前記スイッチング素子がオン状態の期間中に前記電流を遮断または抑制する、
     発光素子駆動回路。
  2.  前記複数の駆動回路ユニットそれぞれは、前記第1定電位線と前記第1蓄電素子の前記第2電極との間の配線上に配置された第2電流遮断要素をさらに有し、
     前記第2電流遮断要素は、少なくとも特定周波数の電流または特定期間の電流に対し、遮断または抑制を行う要素であって、前記第2電流遮断要素は、少なくとも、前記スイッチング素子がオン状態の期間中に前記電流を遮断または抑制する、
     請求項1に記載の発光素子駆動回路。
  3.  前記複数の駆動回路ユニットそれぞれは、前記第1蓄電素子の前記第2電極と前記第2電流遮断要素との間の配線上に位置する第3ノードに電気的に接続された第1電極と、前記第2ノードに電気的に接続された第2電極と、を有する第2蓄電素子をさらに有する、
     請求項2に記載の発光素子駆動回路。
  4.  前記第2蓄電素子の容量は、前記第1蓄電素子の容量よりも大きい、
     請求項3に記載の発光素子駆動回路。
  5.  前記第1電流遮断要素は、インダクタを含む、
     請求項1~4のいずれか一項に記載の発光素子駆動回路。
  6.  前記電流制御要素は、抵抗素子を含む、
     請求項1~5のいずれか一項に記載の発光素子駆動回路。
  7.  前記複数の駆動回路ユニットは、共通の半導体基板上に集積された前記複数の半導体発光素子を個別に駆動する、
     請求項1~6のいずれか一項に記載の発光素子駆動回路。
PCT/JP2020/039685 2019-10-31 2020-10-22 発光素子駆動回路 WO2021085292A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20882958.0A EP4016845A4 (en) 2019-10-31 2020-10-22 DRIVE CIRCUIT FOR A LIGHT EMITTING ELEMENT
CN202080075716.1A CN114616733A (zh) 2019-10-31 2020-10-22 发光元件驱动电路
US17/637,487 US11729885B2 (en) 2019-10-31 2020-10-22 Light-emitting element driving circuit
KR1020227007840A KR20220092854A (ko) 2019-10-31 2020-10-22 발광 소자 구동 회로

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-198559 2019-10-31
JP2019198559A JP7428500B2 (ja) 2019-10-31 2019-10-31 発光素子駆動回路

Publications (1)

Publication Number Publication Date
WO2021085292A1 true WO2021085292A1 (ja) 2021-05-06

Family

ID=75713547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039685 WO2021085292A1 (ja) 2019-10-31 2020-10-22 発光素子駆動回路

Country Status (6)

Country Link
US (1) US11729885B2 (ja)
EP (1) EP4016845A4 (ja)
JP (1) JP7428500B2 (ja)
KR (1) KR20220092854A (ja)
CN (1) CN114616733A (ja)
WO (1) WO2021085292A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002288864A (ja) 2001-03-28 2002-10-04 Sankyo Seiki Mfg Co Ltd 光ヘッドの光源装置
JP2002335038A (ja) * 2001-03-05 2002-11-22 Fuji Xerox Co Ltd 発光素子駆動装置および発光素子駆動システム
JP2005340774A (ja) * 2004-04-28 2005-12-08 Renesas Technology Corp レーザーダイオードの駆動回路及び半導体装置
US20090187925A1 (en) * 2008-01-17 2009-07-23 Delta Electronic Inc. Driver that efficiently regulates current in a plurality of LED strings
JP2011199220A (ja) * 2010-03-24 2011-10-06 Sharp Corp 発光素子駆動装置
US20130187561A1 (en) * 2010-09-29 2013-07-25 Felix Franck Circuit Arrangement for Operating at Least Two Semiconductor Light Sources
US20170085057A1 (en) * 2015-09-22 2017-03-23 Analog Devices, Inc. Pulsed laser diode driver
US20180278017A1 (en) * 2017-03-23 2018-09-27 Infineon Technologies Ag Circuit and method for driving a laser diode
JP2019068528A (ja) * 2017-09-28 2019-04-25 株式会社リコー 昇圧回路、電源回路、光源駆動回路及び距離計測装置
JP2019135740A (ja) * 2018-02-05 2019-08-15 住友電気工業株式会社 レーザ駆動回路及び光送信器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51147983A (en) 1975-06-14 1976-12-18 Fujitsu Ltd Driving circuit for light emission diode
JP3313571B2 (ja) 1996-03-29 2002-08-12 株式会社東芝 アレイ素子用電流発生回路
KR20150141396A (ko) 2014-06-10 2015-12-18 김경일 잔상을 제거할 수 있는 led 모듈
US10097908B2 (en) 2014-12-31 2018-10-09 Macom Technology Solutions Holdings, Inc. DC-coupled laser driver with AC-coupled termination element

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002335038A (ja) * 2001-03-05 2002-11-22 Fuji Xerox Co Ltd 発光素子駆動装置および発光素子駆動システム
JP2002288864A (ja) 2001-03-28 2002-10-04 Sankyo Seiki Mfg Co Ltd 光ヘッドの光源装置
JP2005340774A (ja) * 2004-04-28 2005-12-08 Renesas Technology Corp レーザーダイオードの駆動回路及び半導体装置
US20090187925A1 (en) * 2008-01-17 2009-07-23 Delta Electronic Inc. Driver that efficiently regulates current in a plurality of LED strings
JP2011199220A (ja) * 2010-03-24 2011-10-06 Sharp Corp 発光素子駆動装置
US20130187561A1 (en) * 2010-09-29 2013-07-25 Felix Franck Circuit Arrangement for Operating at Least Two Semiconductor Light Sources
US20170085057A1 (en) * 2015-09-22 2017-03-23 Analog Devices, Inc. Pulsed laser diode driver
US20180278017A1 (en) * 2017-03-23 2018-09-27 Infineon Technologies Ag Circuit and method for driving a laser diode
JP2019068528A (ja) * 2017-09-28 2019-04-25 株式会社リコー 昇圧回路、電源回路、光源駆動回路及び距離計測装置
JP2019135740A (ja) * 2018-02-05 2019-08-15 住友電気工業株式会社 レーザ駆動回路及び光送信器

Also Published As

Publication number Publication date
JP7428500B2 (ja) 2024-02-06
US11729885B2 (en) 2023-08-15
JP2021072377A (ja) 2021-05-06
EP4016845A1 (en) 2022-06-22
EP4016845A4 (en) 2023-07-26
US20220279638A1 (en) 2022-09-01
KR20220092854A (ko) 2022-07-04
CN114616733A (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
US6292500B1 (en) Semiconductor laser device
US20020064198A1 (en) Semiconductor laser device having a circuit for protecting semiconductor laser element from static electricity
US12010774B2 (en) PWM controlled power source and method
US20060118877A1 (en) Vertical cavity surface emitting laser with integrated electrostatic discharge protection
EP3859392A1 (en) Light source system
EP0678982B1 (en) Semiconductor light emitting element driving circuit
CN112117635A (zh) 发光装置
US11600967B2 (en) Pulsed resonant laser diode array driver
JPS625543B2 (ja)
WO2021085292A1 (ja) 発光素子駆動回路
JP7318305B2 (ja) 発光装置
WO2021079611A1 (ja) レーザダイオード駆動回路
EP3943976A1 (en) Light source system
JP2007266493A (ja) レーザモジュール
EP1311040B1 (en) Light-emitting device drive circuit
JPH11233876A (ja) レーザモジュール
US20220224076A1 (en) Laser diode drive circuit
JP2005093742A (ja) 面発光レーザおよびこれを用いたレーザモジュール
JPH071803B2 (ja) 光半導体素子の駆動回路
JP2004241505A (ja) E/o変換回路
JP7485097B2 (ja) 発光装置
CN111948625A (zh) 一种垂直腔面发射激光的集成芯片及激光发射器
US11990838B2 (en) Driver circuit and method for providing a pulse
JP2011238821A (ja) 半導体レーザ素子駆動装置
WO2021039542A1 (ja) 駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20882958

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020882958

Country of ref document: EP

Effective date: 20220318

NENP Non-entry into the national phase

Ref country code: DE