WO2021084942A1 - 多孔質物質の乾燥装置及びこれを備えた水素製造装置並びに多孔質物質の乾燥方法 - Google Patents

多孔質物質の乾燥装置及びこれを備えた水素製造装置並びに多孔質物質の乾燥方法 Download PDF

Info

Publication number
WO2021084942A1
WO2021084942A1 PCT/JP2020/034665 JP2020034665W WO2021084942A1 WO 2021084942 A1 WO2021084942 A1 WO 2021084942A1 JP 2020034665 W JP2020034665 W JP 2020034665W WO 2021084942 A1 WO2021084942 A1 WO 2021084942A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous substance
hydrogen
drying
lignite
hydrogen production
Prior art date
Application number
PCT/JP2020/034665
Other languages
English (en)
French (fr)
Inventor
眞一 下瀬
Original Assignee
株式会社下瀬微生物研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社下瀬微生物研究所 filed Critical 株式会社下瀬微生物研究所
Priority to US17/769,488 priority Critical patent/US20240230224A9/en
Priority to CN202080054877.2A priority patent/CN114207371B/zh
Priority to AU2020376194A priority patent/AU2020376194B2/en
Publication of WO2021084942A1 publication Critical patent/WO2021084942A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B11/00Machines or apparatus for drying solid materials or objects with movement which is non-progressive
    • F26B11/12Machines or apparatus for drying solid materials or objects with movement which is non-progressive in stationary drums or other mainly-closed receptacles with moving stirring devices
    • F26B11/16Machines or apparatus for drying solid materials or objects with movement which is non-progressive in stationary drums or other mainly-closed receptacles with moving stirring devices the stirring device moving in a vertical or steeply-inclined plane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/52Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with liquids; Regeneration of used liquids
    • C01B3/54Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with liquids; Regeneration of used liquids including a catalytic reaction
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/02Apparatus for enzymology or microbiology with agitation means; with heat exchange means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P3/00Preparation of elements or inorganic compounds except carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B11/00Machines or apparatus for drying solid materials or objects with movement which is non-progressive
    • F26B11/12Machines or apparatus for drying solid materials or objects with movement which is non-progressive in stationary drums or other mainly-closed receptacles with moving stirring devices
    • F26B11/14Machines or apparatus for drying solid materials or objects with movement which is non-progressive in stationary drums or other mainly-closed receptacles with moving stirring devices the stirring device moving in a horizontal or slightly-inclined plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/06Controlling, e.g. regulating, parameters of gas supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • F26B23/10Heating arrangements using tubes or passages containing heated fluids, e.g. acting as radiative elements; Closed-loop systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • F26B25/005Treatment of dryer exhaust gases
    • F26B25/006Separating volatiles, e.g. recovering solvents from dryer exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • F26B25/04Agitating, stirring, or scraping devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/02Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air
    • F26B3/06Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/04Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B7/00Drying solid materials or objects by processes using a combination of processes not covered by a single one of groups F26B3/00 and F26B5/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry

Definitions

  • the present invention relates to a drying device for a porous substance such as lignite and activated carbon, a hydrogen production device equipped with the drying device, and a method for drying the porous substance.
  • lignite which is a porous substance, has a low carbon content and a large amount of water, so its power generation efficiency is not as good as that of bituminous coal used for thermal power generation. For this reason, it was used only for power generation in the vicinity of coal mines, but recently, a technology for producing hydrogen by gasifying lignite is being developed. In this hydrogen production technology, lignite is dried in advance and put into a gasification furnace. Then, in this drying treatment of lignite, conventionally, hot air drying or drying using a carbonization device is performed.
  • the applicant of the present application is efficient by first storing the organic waste in a closed container such as a tank and stirring it while heating it to a predetermined temperature range under reduced pressure, as described in Patent Document 1, for example.
  • a patent application has been filed for a vacuum fermentation dryer capable of removing water and drying the waste, and adding a predetermined microorganism to the organic waste to be treated in this way to promote fermentation of the organic matter.
  • the present invention has been made in consideration of the above-mentioned circumstances, and an object of the present invention is to dry a porous substance such as brown charcoal containing a large amount of water without generating a combustion gas. It is an object of the present invention to provide a drying apparatus for a porous substance capable of sufficiently drying up to the central portion of the above, a hydrogen producing apparatus using the same, and a method for drying the porous substance.
  • the present invention constitutes means for solving the above-mentioned problems as follows. That is, in the porous substance drying apparatus of the present invention, the porous substance containing water is housed in a closed container, the porous substance is stirred while being heated to a predetermined temperature range under reduced pressure, and the microorganisms are mixed. It is characterized by being provided with a vacuum fermentation dryer which is put into a closed container, the microorganism is allowed to enter the pores of the porous substance, and the water content of the porous substance is evaporated by the fermentation heat of the microorganism to dry it. To do.
  • a porous substance in a closed container of a vacuum fermentation dryer, a porous substance is initially fermented in a state where microorganisms have entered a large number of pores on the surface portion of the porous substance, and the fermentation thereof is performed.
  • the heat evaporates the water around it.
  • the microorganisms enter the pores on the central side of the porous substance from the surface portion and ferment, and the heat of fermentation repeatedly evaporates the water existing around the porous substance, and finally the porous substance.
  • the water present in the central part of the microorganism evaporates due to the heat of fermentation of microorganisms. Therefore, it is possible to sufficiently dry the central portion of the porous substance without generating combustion gas as in the conventional case.
  • the porous substance is preferably lignite. According to this configuration, it is possible to obtain lignite sufficiently dried up to the central portion as a raw material for hydrogen production.
  • the hydrogen production apparatus of the present invention gasifies the dried brown coal obtained by the drying apparatus for brown coal, which is the porous substance, and the vacuum fermentation dryer of the drying apparatus, and contains carbon monoxide and hydrogen as main components. It is characterized by being equipped with a gasifier that produces gas to be produced.
  • lignite sufficiently dried to the central portion contains extremely small amount of water, generates a large amount of heat, and becomes hot at the time of heating. Therefore, the lignite can be efficiently gasified and carbon monoxide can be converted from lignite. A mixed gas containing carbon and hydrogen can be satisfactorily produced.
  • a gas purification device that removes impurities contained in the gas generated by the gasification device.
  • a carbon dioxide separation device that shifts carbon monoxide in the gas from which impurities have been removed by the gas purification device to generate carbon dioxide and separates the carbon dioxide from the hydrogen.
  • the present invention it is preferable to further include a storage device for storing liquid hydrogen obtained by liquefying hydrogen separated from carbon dioxide by the carbon dioxide separation device.
  • a storage device for storing liquid hydrogen obtained by liquefying hydrogen separated from carbon dioxide by the carbon dioxide separation device According to this configuration, the produced hydrogen is stored as liquid hydrogen, so that hydrogen can be stored efficiently and in a small space.
  • the carbon dioxide separated by the carbon dioxide separation device is contained in the stratum on land or the seabed. According to this configuration, carbon dioxide separated during hydrogen production from lignite can be contained in the strata of depleted gas fields and oil fields to effectively utilize carbon dioxide, which is substantially carbon dioxide. Can be eliminated.
  • a transport engine for transporting the liquid hydrogen stored in the storage device to a predetermined location. According to this configuration, it is possible to transport liquid hydrogen to an area or country far away from the lignite mining site and use the liquid hydrogen for manufacturing fuel cells, for example, in those areas or countries.
  • a porous substance containing water is housed in a closed container, the porous substance is stirred while being heated to a predetermined temperature range under reduced pressure, and a microorganism is put into the closed container to cause the microorganism.
  • It is a method for drying a porous substance which comprises a vacuum fermentation drying step of allowing the porous substance to enter the pores and evaporating the water content of the porous substance by the heat of fermentation of the microorganism to dry the porous substance. , The same effect as the drying device for the porous substance can be expected.
  • the hydrogen production apparatus provided with the apparatus for drying a porous substance, and the method for drying a porous substance, a porous substance sufficiently dried to the central portion can be obtained by utilizing the fermentation heat of microorganisms. be able to. Further, if the porous substance is lignite, the lignite that has been sufficiently dried up to its central portion becomes hot at the time of heating, and the reaction rate of gasification becomes fast, so that hydrogen can be efficiently produced. Fuel cells and the like can be manufactured using the produced hydrogen.
  • FIG. 1 is a block diagram showing an overall configuration of a hydrogen production apparatus provided with a vacuum fermentation dryer as a lignite drying apparatus.
  • FIG. 2 is a diagram schematically showing a schematic configuration of the vacuum fermentation dryer.
  • FIG. 3 shows the progress of drying of lignite when the lignite is dried using the vacuum fermentation dryer,
  • FIG. 3A shows the state before the drying treatment, and
  • FIG. 3B shows the surface of lignite.
  • the figure (c) shows the state where only the part is dried, the figure (c) shows the state where about half of the surface part to the center part of the lignite is dried, and the figure (d) shows the state where the lignite is dried to the vicinity of the center.
  • FIG. 4 is a schematic configuration diagram showing a configuration of a gasifier provided in a hydrogen production apparatus and its surroundings.
  • FIG. 5 shows the degree of drying of lignite when it is dried by a conventional method
  • FIG. 5A shows a state before the drying treatment
  • FIG. 5B shows a state after the drying is completed.
  • FIG. 1 is a block diagram showing the overall configuration of a hydrogen production device equipped with a vacuum fermentation dryer as a lignite drying device.
  • the hydrogen production apparatus 1 shown in FIG. 1 includes a vacuum fermentation dryer 3 that dries brown coal, which is a porous substance, as a source of hydrogen.
  • the configuration of the vacuum fermentation dryer 3 is known as described in, for example, Patent Document 1, and the object to be treated is stirred while being heated to a predetermined temperature range under reduced pressure, and fermentation of microorganisms is performed.
  • the object to be treated is dried using the above, and a dried product having a reduced volume is obtained.
  • the vacuum fermentation dryer 3 includes a substantially cylindrical pressure-resistant tank 30 formed airtightly so as to keep the inside at atmospheric pressure or lower, as schematically shown in FIG.
  • the tank 30 is a closed container for accommodating a processing object to be charged from the charging port 30a, that is, brown charcoal which is a porous substance.
  • a heating jacket 31 is provided on the peripheral wall portion of the tank 30, and heating steam is supplied to the heating jacket 31 from the steam control device 92.
  • the heating steam of the steam circulation path 92a is a heating jacket. It circulates through 31 and becomes drain water, which is collected by the steam control device 92.
  • the temperature of the steam supplied from the steam control device 92 is preferably, for example, about 140 ° C.
  • a stirring shaft 32 extending in the longitudinal direction (left-right direction in FIG. 2) is provided inside the tank 30 so as to be surrounded by the heating jacket 31.
  • the stirring shaft 32 is rotated at a predetermined rotation speed by the electric motor 32a.
  • the stirring shaft 32 is provided with a plurality of stirring plates 32b spaced apart from each other in the axial direction, and the brown charcoal is stirred by these stirring plates 32b, and a dried product fermented and dried from the brown charcoal (described later).
  • the pulverized lignite 48) is fed in the longitudinal direction of the tank 30.
  • a lignite charging port 30a is provided on the upper side of the longitudinal side of the tank 30, and the lignite charged from the charging port 30a is agitated by the rotation of the stirring shaft 32 while being heated by the heating jacket 31. To. Then, after a lapse of a predetermined time, the treated dried product (pulverized charcoal 48) is discharged from the discharge port 30b provided in the lower part of the tank 30.
  • a hydraulic motor may be used instead of the electric motor 32a.
  • a guide portion 30c that guides steam generated from heated lignite to the condensing portion 33 is projected above the tank 30.
  • two guide portions 30c are provided, and the guide portions 30c are arranged at a predetermined distance in the longitudinal direction of the tank 30.
  • a plurality of cooling pipes 33b supported by a pair of heads 33a are provided inside the condensing portion 33 supported by the connecting path 34 via the guide portion 30c, and the plurality of cooling pipes 33b and the cooling tower
  • a cooling water path 38a is provided between the 38 and the cooling water path 38a.
  • the condensing portion 33 extends in parallel along the longitudinal direction of the tank 30 and is arranged on the rear side of the guide portion 30c.
  • the cooling water that circulates in the cooling pipe 33b in the condensing portion 33 and whose temperature rises due to heat exchange with the high-temperature steam circulates in the cooling water path 38a as schematically shown by an arrow in FIG. 2 and flows through the cooling tower. It flows into the water receiving tank 38b of 38.
  • the cooling tower 38 is provided with a pump 38c for pumping cooling water from the water receiving tank 38b and a nozzle 38d for injecting the pumped cooling water.
  • the cooling water injected from the nozzle 38d receives air from the fan 38f while flowing down the lower stream 38e, the temperature drops, and the cooling water flows into the water receiving tank 38b again.
  • the cooling water cooled by the cooling tower 38 is sent by the cooling water pump 38g, sent to the condensing portion 33 by the cooling water path 38a, and circulates in the plurality of cooling pipes 33b again. Then, after the temperature rises due to heat exchange with the steam generated inside the tank 30 as described above, it flows through the cooling water path 38a again and flows into the water receiving tank 38b of the cooling tower 38. That is, the cooling water circulates in the cooling water path 38a between the condensing portion 33 and the cooling tower 38.
  • condensed water in which steam generated from heated lignite is condensed in the condensing portion 33 is also injected.
  • condensed water generated by heat exchange with high-temperature steam is collected below the condensing portion 33.
  • a vacuum pump 36 is connected to the condensing portion 33 via a communication passage 35 to reduce the pressure in the tank 30. That is, by the operation of the vacuum pump 36, air and condensed water are sucked out from the condensing portion 33 through the communication passage 35, and further, air and steam in the tank 30 are sucked out through the connecting path 34 and the guide portion 30c. .. In this way, the condensed water is sucked out from the condensing portion 33 to the vacuum pump 36, and is guided from the vacuum pump 36 to the water receiving tank 38b of the cooling tower 38 by the water pipe.
  • An opening / closing valve 30d is provided in the connection path 34 so that air or the like is not sucked from the inside of the vacuum fermentation dryer 3 when the vacuum fermentation dryer 3 is stopped. Further, although not shown, an atmospheric release valve for opening the inside of the tank 30 to the atmosphere is arranged in the vicinity of the vacuum pump 36.
  • the condensed water led to the water receiving tank 38b of the cooling tower 38 is mixed with the cooling water, pumped into the pump 38c as described above, injected from the nozzle 38d, and then cooled while flowing down the lower stream 38e. ..
  • the condensed water contains the same microorganisms as those added to the lignite in the tank 30, and the odorous components and the like contained in the condensed water are decomposed, so that the odor is emitted to the outside of the tank 30. It is designed not to.
  • the brown coal contained in the tank 30 is agitated as the stirring shaft 32 rotates while being heated by the heating steam supplied to the heating jacket 31 in a state where the microorganisms described later are added. Then, the brown coal contained in the tank 30 is effectively heated and heated by receiving the heating from the outside by the heating jacket 31 surrounding the inside of the tank 30 and the heating from the inside by the stirring shaft 32 or the like. At the same time, the lignite is stirred by the stirring shaft 32.
  • the added microorganisms enter the pores of the lignite and ferment the organic substances contained in the lignite, the dead microorganisms (organic substances) and a part of the water in the lignite as a nutrient source, and the heat of fermentation causes the fermentation heat.
  • the water content of the lignite is repeatedly evaporated, and the lignite is sufficiently dried to the central part.
  • the pressure in the tank 30 is reduced by the operation of the vacuum pump 36, the boiling point in the tank 30 is lowered, the evaporation of the water contained in the lignite due to the heat of fermentation is accelerated, and the drying of the lignite is promoted. Since the water content of the lignite that has been sufficiently dried to the central portion has almost disappeared, the amount of heat generated is high and the lignite becomes a high temperature when heated.
  • one step (1 cycle) is preferably, for example, 3 hours.
  • the lignite is charged over 30 minutes, and the lignite passes through the pores of the lignite over 2 hours.
  • a drying step of drying the lignite to the central part by the fermentation heat of the microorganisms is provided.
  • the lignite is crushed by the stirring plate 32b, and the crushed coals collide with each other to make fine particles. It is crushed and discharged from the discharge port 30b as finely crushed charcoal over another 30 minutes.
  • the water temperature in the tank 30 is maintained at 76 to 69 ° C. (saturated steam temperature).
  • microorganisms are actively active in this temperature range.
  • lignite is fermented and dried by microorganisms described later.
  • a plurality of types of indigenous bacteria are used as a base, and the microorganisms are cultured in advance.
  • the complex effective microorganism group is preferable, and the so-called SHIMOSE 1/2/3 group is the center of the colony.
  • SHIMOSE1 was sent to FERM BP-7504 (Ministry of Economy, Trade and Industry, National Institute of Advanced Industrial Science and Technology, National Institute of Advanced Industrial Science and Technology, Patent Microorganisms Depositary Center (1-1-3 Higashi, Tsukuba City, Ibaraki Prefecture, Japan), March 14, 2003. It was deposited internationally in Japan).
  • SHIMOSE2 is a microorganism belonging to FERMBP-7505 (which was deposited internationally like SHIMOSE1) and Pichiafarinosa, which has salt resistance
  • SHIMOSE3 is a microorganism belonging to FERMBP-7506 (SHIMOSE1). Similarly, it is a microorganism belonging to Staphylococcus (which was deposited internationally).
  • lignite is charged into the inlet 30a of the tank 30 of the vacuum fermentation dryer 3. Then, the inside of the tank 30 is sealed in an atmospheric pressure state.
  • the atmosphere opening valve provided in the vicinity of the vacuum pump 36 is closed to seal the inside of the tank 30. Then, heating steam is supplied from the steam control device 92 described later, and the inside of the tank 30 is heated under reduced pressure.
  • the inside of the tank 30 is heated by the steam for heating, and the inside of the tank 30 is operated by the operation of the vacuum pump 36 while rotating the stirring shaft 32 at a predetermined rotation speed (for example, about 8 rpm) to stir the lignite.
  • a predetermined rotation speed for example, about 8 rpm
  • the rotation speed (8 rpm) of the stirring shaft 32 is an example, and may be another value as long as the organic matter can be decomposed.
  • FIG. 3A shows the state before the lignite 40 is added.
  • the water content is shaded and shown, and the water content is distributed throughout the lignite 40.
  • FIG. 3B microorganisms enter the pores 40a on the surface portion of the lignite 40, metabolize the organic matter of the lignite 40 and a part of the surrounding water as a nutrient source to ferment, and the heat of fermentation is used to ferment the surface of the lignite 40.
  • the water in the part is evaporating.
  • the pores 40a are schematically shown in FIG. 3, innumerable pores 40a are present inside the lignite 40.
  • the microorganism further enters the pores 40a from the surface portion to the central portion of the lignite 40, and metabolizes the organic matter of the lignite 40, the dead microorganism (organic matter), and a part of the surrounding water as a nutrient source.
  • the fermentation heat evaporates the water existing on the inner side (central part side) of the surface part of the lignite 40, and about half of the surface part to the central part of the lignite 40 is dried. It has become.
  • the microorganism further advances in the pores 40a and reaches the vicinity of the central portion of the lignite 40, and in the vicinity of the central portion, the organic matter of the lignite 40, the dead microorganisms, and a part of the surrounding water are used as a nutrient source. It is metabolized and fermented, and the heat of fermentation evaporates the water present in the vicinity of the central portion of the lignite 40. Then, in FIG. 3E, the microorganism further advances in the pores 40a and ferments in the central portion of the lignite 40 in the same manner as described above, and the heat of fermentation also evaporates the water present in the central portion of the lignite 40.
  • the lignite 40 put into the tank 30 is fermented while the microorganisms enter the pores 40a from the surface portion and proceed toward the central portion, and the water content of the lignite 40 is removed by the fermentation heat. Gradually and gradually evaporating from the surface portion to the central portion is repeated, and finally, the water content is sufficiently evaporated to the central portion of the lignite 40 and dried to obtain the finely pulverized coal 48. Will be.
  • the charged brown coal 40 is dried to the central portion and finely pulverized to become the finely pulverized coal 48, after which the vacuum is applied.
  • the supply of heating steam from the pump 36 and the steam control device 92 is stopped, and the atmosphere release valve is opened to bring the atmospheric pressure into an atmospheric pressure state.
  • the stirring shaft 32 is rotated in the reverse direction, the lid of the discharge port 30b of the tank 30 is opened, and the dried product from the tank 30, that is, the brown charcoal (finely pulverized charcoal 48) that has been sufficiently dried and finely pulverized to the central portion. Discharge.
  • the internal configuration of the gasifier 50 is shown in FIG.
  • the figure is a block diagram showing a schematic concept of the inside of the gasifier 50.
  • the gasification furnace 50 has a gasification chamber 51 inside, and an upper burner 52a and a lower burner 52b are provided on the upper side and the lower side of the gasification chamber 51, and these burners.
  • the 52a and 52b each have a two-stage configuration in which the pulverized coal 48 and the oxygen 49 as an oxidizing agent (gasifying agent) are supplied.
  • the pulverized coal 48 and oxygen 49 have a jet bed type configuration in which they are supplied to the upper and lower burners 52a and 52b and then heated in the gasification chamber 51 while being given a swirling flow. Due to this swirling flow, the pulverized coal 48 has a long residence time in the gasification chamber 51, the gasification reaction is promoted, and high gasification efficiency can be obtained.
  • the ratio of oxygen supplied to the upper burner 52a and the lower burner 52b is set low on the upper burner 52a side and high on the lower burner 52b side.
  • the temperature is high in the upper portion of the gasification chamber 51 (for example, about 1600 ° C.) and somewhat lower in the lower portion (for example, 1200 ° C.).
  • the pulverized coal 48 reacts with oxygen (gasifying agent) 49 to generate carbon dioxide CO 2 and water vapor H 2 O gas.
  • pulverized coal 48 and oxygen (gasifying agent) 49 are supplied and burned, further heated to a high temperature, and under the gasification chamber 51 under this high temperature heating.
  • Carbon dioxide CO 2 and water vapor H 2 O generated in the side portion rise to the upper portion of the gasification chamber 51 and are thermally decomposed to generate gas of carbon monoxide CO and hydrogen H 2.
  • Carbon monoxide CO and hydrogen H 2 in the generated gas are taken out upward from the outlet 50a at the upper end by riding on the ascending stream, and then cooled by a gas cooler (not shown). Further, the generated slag is discharged from the lower end portion and stored in the discharge container 55 (see FIG. 1).
  • the gas including a gasifier carbon monoxide CO and hydrogen H 2 produced in 50 is cooled from the outlet 50a is supplied to the gas cooler and is then supplied to the gas purification unit 70.
  • the gas purifier 70 impurities other than the main components of the product gas, for example to remove such sulfur compounds (hydrogen sulphide H 2 S and carbonyl sulfide COS).
  • it mainly has a COS converter and an H 2 S absorber for removing hydrogen sulfide H 2 S.
  • the COS transducer converts carbonyl sulfide COS to hydrogen sulfide H 2 S by a catalytic reaction.
  • the H 2 S absorber stores an alkaline solution such as an amine solution as an absorbing liquid, and allows the generated gas to pass through the alkaline solution to absorb hydrogen sulfide H 2 S.
  • alkaline solution such as an amine solution as an absorbing liquid
  • Other configurations are well known and will be omitted.
  • the gas from which the impurities have been removed is then supplied to the CO 2 separation / recovery device 75.
  • the CO 2 separation / recovery device (carbon dioxide separation device) 75 causes a shift reaction to convert carbon monoxide CO from which impurities have been removed into carbon dioxide CO 2 , and then separates carbon dioxide CO 2 from the gas. And collect it.
  • the CO 2 separation / recovery device 75 is a membrane separation type that separates carbon dioxide CO 2 and hydrogen H 2 using a ceramic film or the like.
  • a pipeline (not shown) is connected to the CO 2 separation / recovery device 75, and this pipeline communicates with the stratum of a depleted oil field or gas field on land or sea floor, and this oil field or gas The separated carbon dioxide CO 2 is transported to the field and contained in the strata of this oil field and gas field. Furthermore, it is also possible to resupply oil and gas from the oil and gas fields that have been revived by the supply of carbon dioxide CO 2 in this way.
  • the CO 2 separation / recovery device 75 only hydrogen H 2 is obtained by separating and recovering carbon dioxide CO 2 , and this hydrogen H 2 is supplied to the hydrogen liquefier 79.
  • Hydrogen liquefier 79 is to liquefy the supplied hydrogen H 2 is converted to liquid hydrogen LH 2, stores the liquid hydrogen LH 2 liquid hydrogen tank (mining areas) of brown coal mining areas to 80.
  • the liquid hydrogen tank (mining site) (storage device) 80 has a heat insulating property that suppresses evaporation of liquid hydrogen LH 2.
  • Liquid hydrogen LH 2 is hundreds of times more volumetrically efficient than hydrogen H 2 in atmospheric pressure. Therefore, by converting hydrogen H 2 into liquid hydrogen LH 2 and storing it in the liquid hydrogen tank (mining site) 80 in this way, it is possible to store hydrogen H 2 on a small scale.
  • the liquid hydrogen LH 2 stored in the liquid hydrogen tank (mining site) 80 is transported by the liquid hydrogen carrier 85.
  • the liquid hydrogen carrier (transportation engine) 85 transports the liquid hydrogen LH 2 to other regions, countries, etc. across the sea. For example, when brown coal is mined in a coal mine area of a predetermined country, hydrogen H 2 is produced from brown coal using this hydrogen production device 1 in this designated country and stored in a liquid hydrogen tank (mining site) 80. Later, the liquid hydrogen LH 2 in the liquid hydrogen tank 80 (mining site) is transported to another country, which is the country where the hydrogen H 2 is used, by using the liquid hydrogen carrier 85. When transporting liquid hydrogen LH 2 from land to land in a predetermined country, a vehicle is used instead of the liquid hydrogen carrier 85.
  • the liquid hydrogen LH 2 transported by the liquid hydrogen carrier 85 is stored in, for example, a liquid hydrogen tank (other country) 90 of another country installed in another country different from the lignite mining site.
  • the liquid hydrogen LH 2 stored in the liquid hydrogen tank (other country) 90 is transported to a predetermined place in other countries for the production of, for example, a fuel cell, if necessary.
  • lignite 40 is used as the porous material, the lignite 40 is put into the tank 30 of the vacuum fermentation dryer 3, and the lignite 40 is stirred while stirring the lignite 40 in the tank 30.
  • Microorganisms were allowed to enter the pores, and the brown coal 40 was sufficiently dried to the central portion by the fermentation heat of the microorganisms to obtain finely pulverized coal 48.
  • the brown coal 40 before the drying treatment shown in FIG. 5A is dried with hot air, it burns. Therefore, when it is dried so as not to burn, the surface of the brown coal 40 is shown in FIG. 5B. As a result, only the portion is dried, and a large amount of water is still present on the central side of the surface portion.
  • the extracted hydrogen H 2 is liquefied by the hydrogen liquefier 79 and stored in the liquid hydrogen tank (mining site) 80 as liquid hydrogen LH 2 having high volume efficiency, so that the storage scale of hydrogen H 2 is reduced. It is possible to do.
  • liquid hydrogen LH 2 stored in the liquid hydrogen tank (mining site) 80 can be transported to hydrogen-using countries in other countries by the liquid hydrogen carrier 85, Japan can manufacture fuel cells and the like at low cost as a hydrogen-using country. Becomes possible.
  • brown charcoal was charged and stored in the vacuum fermentation dryer 3, but the vacuum fermentation dryer 3 as a drying device for the porous substance contained water in addition to brown charcoal as the porous substance.
  • a porous substance such as activated carbon or coffee slag and dry the activated carbon or the like.
  • activated carbon containing water if the vacuum fermentation dryer 3 is used, it is not necessary to use a combustion device for regeneration.
  • the gasification furnace 50 of the hydrogen production apparatus 1 uses a fluidized bed type configuration, but other types, for example, pulverized coal 48 is charged from the upper end of the gasification furnace.
  • a fixed bed type gasification furnace that supplies an oxidizing agent such as oxygen from the lower end of the gasification furnace is used, or a fluidized bed type gasification furnace that gasifies the pulverized coal 48 by fluidizing it with air or the like. May be used.
  • the present invention can be used for a drying device for a porous substance such as lignite, a hydrogen production device equipped with the drying device, and a method for drying the porous substance.
  • Hydrogen production equipment 3 Decompression fermentation dryer 30 Tank (closed container) 40 Lignite (porous material) 48 Milled coal 50 Gasifier (gasifier) 70 Gas purification equipment 75 CO 2 separation / recovery equipment (carbon dioxide separation equipment) 79 Hydrogen liquefier 80 Liquid hydrogen tank (mining site) (storage device) 85 Liquid hydrogen carrier (transportation engine)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Combustion & Propulsion (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Sustainable Development (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Drying Of Solid Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

多孔質物質の乾燥装置は、水分を含んだ多孔質物質を密閉容器(30)に収容し、該多孔質物質を減圧下において所定の温度範囲に加熱しながら撹拌するとともに、微生物を前記密閉容器に投入し、該微生物を前記多孔質物質の細孔に入り込ませて、該微生物の発酵熱によって前記多孔質物質の水分を蒸発させて乾燥する減圧発酵乾燥機(3)を備える。

Description

多孔質物質の乾燥装置及びこれを備えた水素製造装置並びに多孔質物質の乾燥方法
 本発明は、褐炭や活性炭のような多孔質物質の乾燥装置、及びこれを備えた水素製造装置並びに多孔質物質の乾燥方法に関するものである。
 従来、多孔質物質である褐炭は、炭素の含有量が少なく、水分を多く含むため、火力発電に使用する瀝青炭に比べて、発電効率が良くない。このため、炭鉱近傍での発電のみに使用されていたが、昨今、褐炭をガス化して水素を製造する技術が開発されつつある。この水素製造技術では、褐炭を予め乾燥してガス化炉に投入している。そして、この褐炭の乾燥処理では、従来、熱風乾燥や炭化装置を用いた乾燥が行われる。
 しかしながら、褐炭の熱風乾燥では、褐炭の燃焼が生じないよう乾燥させると、褐炭の表面部分のみが乾燥し、中心部分まで十分に乾燥できない欠点があった。また、炭化装置を用いた乾燥では、燃焼ガスが発生する欠点があった。
 本願出願人は、先に、例えば特許文献1に記載するように、有機性廃棄物をタンクなどの密閉容器に収容し、減圧下において所定の温度範囲に加熱しながら撹拌することによって、効率的に水分を除去し乾燥させるとともに、こうして処理する有機性廃棄物に所定の微生物を添加し、有機物の発酵を促進させることができる減圧発酵乾燥機を特許出願している。
特開2007-319738号公報 特許第4153685号公報
 本発明は、上述したような実情を考慮してなされたものであって、その目的は、水分を多く含んだ褐炭などの多孔質物質の乾燥に際し、燃焼ガスを発生することなく、多孔質物質の中心部分まで十分に乾燥させることが可能な多孔質物質の乾燥装置、及びこれを利用した水素製造装置並びに多孔質物質の乾燥方法を提供することにある。
 本発明は、上述の課題を解決するための手段を以下のように構成している。すなわち、本発明の多孔質物質の乾燥装置は、水分を含んだ多孔質物質を密閉容器に収容し、該多孔質物質を減圧下において所定の温度範囲に加熱しながら撹拌するとともに、微生物を前記密閉容器に投入し、該微生物を前記多孔質物質の細孔に入り込ませて、該微生物の発酵熱によって前記多孔質物質の水分を蒸発させて乾燥する減圧発酵乾燥機を備えたことを特徴とする。
 本発明によれば、減圧発酵乾燥機の密閉容器内では、多孔質物質が撹拌されながら、当初はその多孔質物質の表面部分において微生物が多数の細孔に入り込んだ状態で発酵し、その発酵熱でその周囲に存在する水分が蒸発する。更に、微生物は前記表面部分よりも多孔質物質の中心側の細孔に入り込んで発酵し、その発酵熱でその周囲に存在する水分が蒸発することが繰り返されて、最終的には多孔質物質の中心部分に存在する水分が微生物の発酵熱で蒸発する。従って、従来のように燃焼ガスを発生することなく、多孔質物質の中心部分まで十分に乾燥させることが可能である。
 本発明では、前記多孔質物質は褐炭であることが好ましい。この構成によれば、水素製造用の原料として、中心部分まで十分に乾燥した褐炭を得ることが可能である。
 また、本発明の水素製造装置は、前記多孔質物質である褐炭の乾燥装置と、前記乾燥装置の減圧発酵乾燥機により得られた乾燥した褐炭をガス化し、一酸化炭素と水素を主成分とするガスを生成するガス化装置とを備えたことを特徴とする。
 本発明によれば、中心部分まで十分に乾燥した褐炭は、含まれる水分量が極めて少なくて発生熱量が高く、加熱時には高温となるので、その褐炭を効率良くガス化できて、褐炭から一酸化炭素及び水素を含む混合ガスを良好に生成することができる。
 本発明では、前記ガス化装置により生成されたガスに含まれる不純物を除去するガス精製装置を備えることが好ましい。また、前記ガス精製装置により不純物を除去されたガス中の一酸化炭素をシフト反応して二酸化炭素を生成し、該二酸化炭素を前記水素から分離する二酸化炭素分離装置を備えることが好ましい。これらの構成によれば、一酸化炭素及び水素を含むガスから水素を良好に取り出すことが可能である。
 本発明では、更に、前記二酸化炭素分離装置により二酸化炭素と分離された水素を液化した液体水素を貯留する貯留装置を備えることが好ましい。この構成によれば、製造された水素を液体水素として貯留するので、水素を効率良くまた省スペースで貯留できる。
 本発明では、前記二酸化炭素分離装置により分離された二酸化炭素は、陸又は海底の地層中に封じ込められることが好ましい。この構成によれば、褐炭からの水素製造に際して分離された二酸化炭素を、枯渇したガス田や油田の地層中に封じ込めて、二酸化炭素の有効利用を図ることが可能であり、実質的に二酸化炭素の排出を無くすことができる。
 本発明では、前記貯留装置に貯留された液体水素を所定場所に運搬する運搬機関を備えることが好ましい。この構成によれば、褐炭の採掘地とは距離の離れた地域や国に液体水素を運搬して、それら地域や国で液体水素を例えば燃料電池などの製造に利用することが可能である。
 本発明は、水分を含んだ多孔質物質を密閉容器に収容し、該多孔質物質を減圧下において所定の温度範囲に加熱しながら撹拌するとともに、微生物を前記密閉容器に投入し、該微生物を前記多孔質物質の細孔に入り込ませて、該微生物の発酵熱によって前記多孔質物質の水分を蒸発させて乾燥する減圧発酵乾燥工程を備えたことを特徴とする多孔質物質の乾燥方法であり、前記多孔質物質の乾燥装置と同じ効果を期待することができる。
 本発明に係る多孔質物質の乾燥装置及びこれを備えた水素製造装置並びに多孔質物質の乾燥方法によれば、微生物の発酵熱を利用して、中心部分まで十分に乾燥した多孔質物質を得ることができる。また、多孔質物質を褐炭とすれば、その中心部分まで十分に乾燥した褐炭は加熱時に高温となって、ガス化の反応速度が速くなるので、効率良く水素を製造することが可能であり、その製造した水素を利用して燃料電池などを製造することができる。
図1は褐炭の乾燥装置としての減圧発酵乾燥機を備えた水素製造装置の全体構成を示すブロック図である。 図2は同減圧発酵乾燥機の概略構成を模式的に示す図である。 図3は同減圧発酵乾燥機を使用して褐炭を乾燥する際での褐炭の乾燥の進行度合いを示し、同図(a)は乾燥処理前の状態を、同図(b)は褐炭の表面部分のみが乾燥された状態を、同図(c)は褐炭の表面部分から中心部分までの約半分程度までが乾燥された状態を、同図(d)は褐炭の中心近傍まで乾燥された状態を、同図(e)は褐炭の中心部分まで乾燥された状態を、同図(f)は十分乾燥されて粉砕された粉砕炭となった状態を示す図、同図(g)は最終的に微粉砕されて微粉砕炭となった状態を示す図である。 図4は水素製造装置に備えるガス化炉及びその周辺の構成を示す概略構成図である。 図5は従来の手法で乾燥させる際の褐炭の乾燥度合いを示し、同図(a)は乾燥処理前の状態を、同図(b)は乾燥終了後の状態を示す図である。
 以下、本発明の実施形態について図面を参照しながら説明する。
 図1は、褐炭の乾燥装置として減圧発酵乾燥機を備えた水素製造装置の全体構成を示すブロック図である。
 図1に示した水素製造装置1は、水素の発生源として多孔質物質の褐炭を乾燥させる減圧発酵乾燥機3を備える。
 <減圧発酵乾燥機>
 図1において、減圧発酵乾燥機3は、多孔質物質として褐炭が投入口30aから内部に投入される。この投入口30aから投入される褐炭は、瀝青炭に比べて、石炭化度が低く、炭素含有量も少ない一方、水分含有量が30~60%と多く、発電効率が悪いため、未利用資源として残る場合が多いものである。
 前記減圧発酵乾燥機3の構成は、例えば特許文献1などに記載されているように公知のものであり、処理対象物を減圧下において所定の温度範囲に加熱しながら撹拌するとともに、微生物の発酵を利用して処理対象物を乾燥させ、減容した乾燥物を得るものである。
 具体的に、減圧発酵乾燥機3は、図2に模式的に示すように、内部を大気圧以下に保持するように気密に形成された略円筒状の耐圧のタンク30を備えている。このタンク30は、投入口30aから投入される処理対象物、すなわち多孔質物質である褐炭を収容する密閉容器である。このタンク30の周壁部には、加熱ジャケット31が設けられ、蒸気制御装置92から加熱用蒸気が加熱ジャケット31に供給されるようになっており、この蒸気循環経路92aの加熱用蒸気は加熱ジャケット31を循環し、ドレン水となって蒸気制御装置92に回収される。尚、蒸気制御装置92から供給される蒸気の温度は、例えば140℃程度が好ましい。
 また、加熱ジャケット31に取り囲まれるようにして、タンク30の内部にはその長手方向(図2の左右方向)に延びる撹拌シャフト32が設けられている。撹拌シャフト32は、電動モーター32aによって所定の回転速度で回転される。撹拌シャフト32には、その軸方向に離間して複数の撹拌板32bが設けられており、これら撹拌板32bによって、褐炭が撹拌されるとともに、この褐炭から発酵乾燥処理された乾燥物(後述する微粉砕炭48)がタンク30の長手方向に送られるようになっている。
 タンク30の長手方向側部の上側には、褐炭の投入口30aが設けられており、この投入口30aから投入された褐炭が、加熱ジャケット31によって加熱されながら、撹拌シャフト32の回転によって撹拌される。そして、所定時間経過した後、処理後の乾燥物(微粉砕炭48)がタンク30の下部に設けられた排出口30bから排出される。尚、電動モーター32aの代わりに、油圧モーターを用いてもよい。
 タンク30の上部には、加熱された褐炭から発生する蒸気を凝縮部33へ案内する案内部30cが突設されている。本実施形態では、案内部30cは2つ設けられており、各案内部30cは、タンク30の長手方向に所定距離離れて配置されている。前記案内部30cを介して接続路34に支持された凝縮部33の内部には、一対のヘッド33aによって支持された複数の冷却管33bが備えられており、これら複数の冷却管33bと、クーリングタワー38との間には、冷却水経路38aが設けられている。本実施形態では、凝縮部33は、タンク30の長手方向に沿って平行に延びており、案内部30cの後方側に配置されている。
 そして、凝縮部33において冷却管33b内を流通し、高温の蒸気との熱交換によって温度が上昇した冷却水は、図2に模式的に矢印で示すように冷却水経路38aを流通してクーリングタワー38の受水槽38bに流入する。クーリングタワー38には、その受水槽38bから冷却水を汲み上げる汲み上げポンプ38cと、汲み上げた冷却水を噴射するノズル38dとが設けられている。このノズル38dから噴射された冷却水は、流下部38eを流下する間にファン38fからの送風を受けて温度が低下し、再び受水槽38bに流入するようになっている。
 クーリングタワー38で冷却された冷却水は、冷却水ポンプ38gによって送水され、冷却水経路38aによって凝縮部33に送られて、再び複数の冷却管33b内を流通する。そして、上述のようにタンク30の内部で発生した蒸気との熱交換によって温度が上昇した後に、再び冷却水経路38aを流通して、クーリングタワー38の受水槽38bに流入する。つまり、冷却水は凝縮部33とクーリングタワー38との間の冷却水経路38aを循環する。
 上述のように循環する冷却水の他に、クーリングタワー38では、加熱された褐炭から発生する蒸気が凝縮部33において凝縮した凝縮水も注水される。尚、図示しないが、凝縮部33の下方に、高温の蒸気と熱交換することによって生成した凝縮水が集められるようになっている。
 更に、前記凝縮部33には、連通路35を介して真空ポンプ36が接続され、タンク30内を減圧するようになっている。すなわち、真空ポンプ36の作動によって、連通路35を介して凝縮部33から空気及び凝縮水が吸い出され、更に接続路34及び案内部30cを介してタンク30内の空気及び蒸気が吸い出される。こうして、凝縮部33からは凝縮水が真空ポンプ36に吸い出され、この真空ポンプ36から導水管によって、クーリングタワー38の受水槽38bに導かれる。尚、前記接続路34には、開閉バルブ30dが設けられており、減圧発酵乾燥機3を停止している際には、その内部から空気などが吸引されないようにしている。また、前記真空ポンプ36の近傍には、図示しないが、タンク30内を大気に開放する大気開放バルブが配置されている。
 こうしてクーリングタワー38の受水槽38bに導かれた凝縮水は、冷却水と混ざり合って上述のように汲み上げポンプ38cに汲み上げられ、ノズル38dから噴射された後に、流下部38eを流下しながら冷却される。尚、凝縮水には、タンク30内の褐炭に添加されたものと同じ微生物が含まれており、この凝縮水に含まれる臭気成分等が分解されているので、臭気はタンク30の外部へ発散しないようになっている。
 次に、前記構成の減圧発酵乾燥機3の作動について説明する。タンク30内に収容された褐炭は、後述する微生物を添加された状態で、加熱ジャケット31に供給される加熱用蒸気によって加熱されながら、撹拌シャフト32の回転に伴い撹拌される。そして、タンク30内を取り囲む加熱ジャケット31による外側からの加熱と、撹拌シャフト32などによる内側からの加熱とを受けて、タンク30内に収容された褐炭が効果的に昇温して加熱されるとともに、撹拌シャフト32によって褐炭が撹拌される。この褐炭の撹拌に伴い、添加された微生物が褐炭の細孔に入り込み、褐炭に含まれる有機物や死滅した微生物(有機物)及び褐炭中の一部水分を栄養源として発酵して、その発酵熱によって褐炭の水分が蒸発することが繰り返されて、褐炭は中心部分まで十分に乾燥する。加えて、タンク30内は真空ポンプ36の作動によって減圧されているため、タンク30内では沸点が低下して、褐炭に含まれる水分の発酵熱による蒸発が早まり、褐炭の乾燥が促進される。そして、このように中心部分まで十分に乾燥した褐炭は、水分がほとんど消失しているため、発生熱量が高くて、加熱時には高温になる乾燥物となっている。
 尚、減圧発酵乾燥機3による減圧発酵乾燥工程では1工程(1サイクル)が、例えば3時間であることが好ましく、先ず30分かけて褐炭が投入され、2時間かけて褐炭の細孔を経て微生物を発酵させる発酵工程と同時に、その微生物の発酵熱によって褐炭を中心部分まで乾燥させる乾燥工程とを設け、この間に褐炭は攪拌板32bにより粉砕され、またこれら粉砕炭同士が衝突し合って微粉砕され、更に30分かけて微粉砕炭として排出口30bから排出している。その間、タンク30内を-0.06~-0.07MPa(ゲージ圧;以下、ゲージ圧は省略する)に減圧すると、タンク30内の水分温度は76~69℃(飽和蒸気温度)に維持される。尚、この温度領域では微生物が活発に活動する。その結果、褐炭は、後述する微生物によって発酵、乾燥が促進される。そして、そのような発酵乾燥処理を行う際に、タンク30内の褐炭に添加する微生物としては、例えば特許文献2に記載されているように、複数種類の土着菌をベースとし、これを予め培養した複合有効微生物群が好ましく、通称、SHIMOSE 1/2/3群がコロニーの中心になる。
 尚、SHIMOSE 1は、FERM BP-7504(経済産業省産業技術総合研究所生命工学工業技術研究所特許微生物寄託センター(日本国茨城県つくば市東1丁目1-3)に、2003年3月14日に国際寄託されたもの)である。また、SHIMOSE 2は、FERM BP-7505(SHIMOSE 1と同様に国際寄託されたもの)、塩に耐性を有するピチアファリノサ(Pichiafarinosa)に属する微生物であり、SHIMOSE 3は、FERM BP-7506(SHIMOSE 1と同様に国際寄託されたもの)、スタフィロコッカス(Staphylococcus)に属する微生物である。
 ここで、前記減圧発酵乾燥機3による褐炭の減圧発酵乾燥処理の手順(減圧発酵乾燥工程)について説明する。
 先ず、褐炭を減圧発酵乾燥機3のタンク30の投入口30aに投入する。そして、タンク30内を大気圧状態で密閉する。
 その後、タンク30内の褐炭に所定の微生物を添加した後に、真空ポンプ36近傍に設けた大気開放バルブを閉じてタンク30内を密閉する。そして、後述する蒸気制御装置92から加熱用蒸気を供給し、タンク30内を減圧下で加熱する。
 具体的には、加熱用蒸気によってタンク30内を加熱するとともに、撹拌シャフト32を所定の回転速度(例えば、8rpm程度)で回転させて褐炭を撹拌しながら、真空ポンプ36の作動によってタンク30内を減圧する。この減圧により、タンク30内の温度が微生物の活動至適環境となり、微生物による有機物の分解が好適に促進される状態となる。尚、撹拌シャフト32の回転速度(8rpm)は一例であって、有機物の分解が可能であれば他の値であってもよい。
 その結果、減圧下のタンク30内では、撹拌シャフト32の撹拌によって褐炭の細孔に微生物が入り込んで発酵すると、その発酵熱によって褐炭の水分が蒸発することが繰り返されて、褐炭の乾燥が行われる。以下、その乾燥の進行の様子を図3に基づいて説明する。
 図3において、同図(a)は褐炭40の投入前の状態を示している。同図では、含まれる水分に斜線を施して図示しており、褐炭40の全体中に水分が分布している。同図(b)では、褐炭40の表面部分において微生物が細孔40a内に入り込み、褐炭40の有機物や周囲の一部水分を栄養源に代謝して発酵し、その発酵熱で褐炭40の表面部分の水分が蒸発している。尚、細孔40aは、図3では模式的に記載しているが、褐炭40の内部には無数の細孔40aが存在している。同図(c)では、微生物は更に褐炭40の表面部分から中心部分に向かって細孔40a内に入り込み、褐炭40の有機物や死滅した微生物(有機物)及び周囲の一部水分を栄養源に代謝して発酵し、その発酵熱で褐炭40の表面部分よりも内方側(中心部分側)に存在する水分が蒸発し、褐炭40の表面部分から中心部分までの約半分程度までが乾燥した状態となっている。同図(d)では、微生物は更に細孔40a内を進んで褐炭40の中心部分近傍にまで到達し、この中心部分近傍において褐炭40の有機物や死滅した微生物及び周囲の一部水分を栄養源に代謝して発酵し、その発酵熱で褐炭40の中心部分近傍に存在する水分が蒸発している。そして、同図(e)では、微生物は細孔40a内を一層進んで、褐炭40の中心部分で前記と同様に発酵し、その発酵熱で褐炭40の中心部分に存在する水分も蒸発して、褐炭40の全体からほぼ水分が蒸発して、その全てが乾燥した状態となる。この状態では、微生物の発酵は停止する。同図(f)では、褐炭40はその中心部分まで乾燥して脆くなっており、この褐炭40が撹拌シャフト32の撹拌によって容易に粉砕されて粉砕炭47となっている。更に、同図(g)では粉砕炭47同士が衝突し合って更に微粉砕された微粉砕炭48となっている。この粉微砕炭48の粒径は例えば0.1mm以下である。また、この微粉砕炭48は、微生物の発酵によって褐炭40から改質しており、瀝青炭よりも良質の石炭となっている。
 このように、タンク30内に投入された褐炭40は、その表面部分から微生物が細孔40a内に入り込み、中心部分に向かって進行しつつ、発酵して、その発酵熱によって褐炭40の水分が次第に表面部分から中心部分に向かって徐々に蒸発することが繰り返されて、最終的に、褐炭40の中心部分まで水分が十分に蒸発し、乾燥して、微粉砕された微粉砕炭48が得られることになる。
 このようにしてタンク30内の温度及び圧力を維持しつつ、所定の時間が経過して、投入した褐炭40が中心部分まで乾燥し、微粉砕されて微粉砕炭48となった後は、真空ポンプ36及び蒸気制御装置92からの加熱用蒸気の供給を停止し、大気開放バルブを開放して大気圧状態とする。一方、撹拌シャフト32を逆回転させ、タンク30の排出口30bの蓋を開いて、タンク30から乾燥物、すなわち、中心部分まで十分に乾燥して微粉砕された褐炭(微粉砕炭48)を排出する。
 <水素製造装置>
 図1の水素製造装置1において、減圧発酵乾燥機3で得られた微粉砕炭48は、ガス化炉(ガス化装置)50に供給される。
 前記ガス化炉50の内部構成を図4に示す。同図は、ガス化炉50の内部の概略概念を示す構成図である。同図において、ガス化炉50は、内部にガス化室51を有し、該ガス化室51の側部には、その上側及び下側に上段バーナ52a及び下段バーナ52bが設けられ、これらバーナ52a、52bに、各々、微粉砕炭48と、酸化剤(ガス化剤)としての酸素49とが供給される2段構成となっている。微粉砕炭48及び酸素49は上段及び下段のバーナ52a、52bに供給された後、ガス化室51内で旋回流を与えられながら加熱される噴流床形式の構成である。この旋回流により、微粉砕炭48はガス化室51内での滞留時間が長くなってガス化反応が促進され、高いガス化効率が得られる。
 前記ガス化炉50において、上段バーナ52aと下段バーナ52bに供給する酸素の比率は、上段バーナ52a側が低く、下段バーナ52b側が高く設定される。これにより、ガス化室51の上側部分では温度が高く(例えば1600℃程度)、下側部分では温度が幾分低く(例えば1200℃)なる。その結果、ガス化室51の下側部分では、微粉砕炭48と酸素(ガス化剤)49とが反応して、二酸化炭素CO2と水蒸気H2Oのガスが発生する。一方、ガス化室51の上側部分では、微粉砕炭48と酸素(ガス化剤)49とが供給されて燃焼し、更に高温に加熱されて、この高温加熱下で前記ガス化室51の下側部分で発生した二酸化炭素CO2と水蒸気H2Oとがガス化室51の上側部分に上昇して加熱分解され、一酸化炭素COと水素H2とのガスが生成される。生成されたガス中の一酸化炭素CO及び水素H2は上昇流に乗って上端部の取出口50aから上方に取り出された後、ガスクーラー(図示せず)によって冷却される。また、生じたスラグは下端部から排出され、排出容器55(図1参照)に貯留される。
 前記ガス化炉50で生成された一酸化炭素CO及び水素H2を含むガスは、取出口50aからガスクーラーに供給されて冷却された後、次にガス精製装置70に供給される。このガス精製装置70は、前記生成ガス中の主要成分以外の不純物、例えば硫黄化合物(硫化水素H2Sや硫化カルボニルCOS)などを除去する。具体的には、図示しないが、硫化水素H2S除去用では、主としてCOS変換器及びH2S吸収器を有する。COS変換器は触媒反応により硫化カルボニルCOSを硫化水素H2Sに変換する。また、H2S吸収器は吸収液としてアミン溶液などのアルカリ性溶液を貯留し、アルカリ性溶液中に生成ガスを通過させて硫化水素H2Sを吸収する。他の構成は周知であるので省略する。
 前記不純物を除去されたガスは、次にCO2分離・回収装置75に供給される。該CO2分離・回収装置(二酸化炭素分離装置)75は、不純物を除去された一酸化炭素COを二酸化炭素CO2にするシフト反応を起こさせ、その後にガス中から二酸化炭素CO2を分離して回収する。前記CO2分離・回収装置75は、セラミック膜などを用いて二酸化炭素CO2と水素H2を分離する膜分離形式である。
 更に、前記CO2分離・回収装置75には、図示しないパイプラインが接続されており、このパイプラインは陸又は海底の枯渇した油田やガス田の地層中に連通しており、この油田やガス田に前記分離した二酸化炭素CO2を輸送し、この油田やガス田の地層中に封じ込められる。更には、このように二酸化炭素CO2の供給によって復活した油田やガス田から油やガスを再度供給できるようにすることも可能である。
 前記CO2分離・回収装置75では、前記二酸化炭素CO2の分離、回収によって水素H2のみが得られ、この水素H2は水素液化機79に供給される。水素液化機79は、供給された水素H2を液化して液体水素LH2に変換し、この液体水素LH2を褐炭採掘地の液体水素タンク(採掘地)80に貯留する。この液体水素タンク(採掘地)(貯留装置)80は、液体水素LH2の蒸発を抑制する断熱性能を有している。液体水素LH2は大気圧状態の水素H2に比して数百倍も容積効率が良い。従って、このように水素H2を液体水素LH2に変換して液体水素タンク(採掘地)80に貯留することにより、小規模で水素H2を貯留することが可能である。
 前記液体水素タンク(採掘地)80に貯留された液体水素LH2は、液体水素運搬船85により運搬される。液体水素運搬船(運搬機関)85は、海を隔てた他の地域、国などに液体水素LH2を運搬する。例えば、褐炭が所定国の炭鉱地域で採掘された場合には、この所定国にて褐炭から本水素製造装置1を用いて水素H2を製造し、液体水素タンク(採掘地)80に貯留した後、この水素H2の利用国である他国に液体水素運搬船85を使用して液体水素タンク80(採掘地)の液体水素LH2を運搬する。尚、液体水素LH2を所定国内で陸上から陸上へ運搬する際には、液体水素運搬船85に代えて車両が用いられる。
 前記液体水素運搬船85で運搬された液体水素LH2は、例えば褐炭の採掘地とは異なる他国に設置された他国の液体水素タンク(他国)90に貯留される。この液体水素タンク(他国)90に貯留された液体水素LH2は、必要に応じて例えば燃料電池などの製造用としてその他国内の所定場所に運搬される。
 以上のように、本実施形態では、多孔質物質として褐炭40を用い、この褐炭40を減圧発酵乾燥機3のタンク30に投入し、このタンク30内で褐炭40を撹拌しながら、褐炭40の細孔に微生物を入り込ませて、微生物の発酵熱によって褐炭40を中心部分まで十分乾燥させ、微粉砕された微粉砕炭48を得た。従来では、図5(a)に示す乾燥処理前の褐炭40を熱風乾燥すると燃焼してしまうため、燃焼しないように乾燥した場合には、同図(b)に示すように、褐炭40の表面部分だけが乾燥し、表面部分より中心側では水分が未だ多く存在する結果となる。また、褐炭40を炭化装置で乾燥させる場合には、燃焼ガスが発生する問題が生じる。従って、本実施形態では、従来のように燃焼ガスを発生することなく、微生物の発酵熱によって中心部分まで十分に乾燥して微粉砕された褐炭40(微粉砕炭48)を得ることが可能である。
 また、そのような微粉砕炭48を水素製造装置1のガス化炉50に供給し、微粉砕炭48をガス化したので、そのガス化に際して、水分がほとんど無い微粉砕炭48は発生熱量が高くて、加熱時には従来よりも高温になる。従って、微粉砕炭48から、一酸化炭素COと水素H2を主成分とするガスへの反応速度を速めて、ガス化を促進することが可能である。
 更に、ガス化炉50でガス化したガス中の不純物(硫黄化合物など)をガス精製装置70によって除去したので、ガス中の水素H2を純度高く製造することが可能である。
 加えて、不純物が除去されたガス中の一酸化炭素COをCO2分離・回収装置75により二酸化炭素CO2に変換して分離したので、ガス中から水素H2のみを取り出すことができる。その際、分離された二酸化炭素CO2は、陸又は海底のガス田などにパイプラインなどを使用して輸送し、そのガス田の地層中に封じ込められるので、微粉砕炭48から水素H2を製造するに際して二酸化炭素CO2が発生しても、実質的に二酸化炭素CO2の排出を無くすことができる。
 また、取り出された水素H2は水素液化機79により液化され、容積効率の高い液体水素LH2として液体水素タンク(採掘地)80に貯留されるので、水素H2の貯留規模を小規模化することが可能である。
 更に、液体水素タンク(採掘地)80に貯留された液体水素LH2を液体水素運搬船85により他国の水素利用国に運搬できるので、我が国日本が水素利用国として燃料電池などを安価に製造することが可能になる。
 尚、本実施形態では、減圧発酵乾燥機3に褐炭を投入、収容したが、多孔質物質の乾燥装置としての減圧発酵乾燥機3には、多孔質物質として褐炭の他に、水分を含んだ活性炭やコーヒー滓などの多孔質物質を収容して、それら活性炭などを乾燥させても良いのは勿論である。水分を含んだ活性炭では、減圧発酵乾燥機3を使用すれば、再生するのに燃焼装置を用いる必要がなくなる。
 また、本実施形態では、水素製造装置1のガス化炉50は、噴流床形式の構成のものを使用したが、その他の形式、例えば、微粉砕炭48をガス化炉の上端部から投入する一方、酸素などの酸化剤をガス化炉の下端部から供給する固定床形式のガス化炉を使用したり、微粉砕炭48を空気などで流動化してガス化する流動床形式のガス化炉を使用してもよい。
 今回、開示した実施形態は全ての点で例示であって、限定的な解釈の根拠となるものではない。本発明の技術的範囲は、前記した実施形態のみによって解釈されるものではなく、特許請求の範囲の記載に基づいて画定される。また、本発明の技術的範囲には、特許請求の範囲と均等の意味範囲内での全ての変更が含まれる。
 本発明は、褐炭などの多孔質物質の乾燥装置及びこれを備えた水素製造装置並びに多孔質物質の乾燥方法に利用することができる。
 1  水素製造装置
 3  減圧発酵乾燥機
 30 タンク(密閉容器)
 40 褐炭(多孔質物質)
 48 微粉砕炭
 50 ガス化炉(ガス化装置)
 70 ガス精製装置
 75 CO2分離・回収装置(二酸化炭素分離装置)
 79 水素液化機
 80 液体水素タンク(採掘地)(貯留装置)
 85 液体水素運搬船(運搬機関)

Claims (9)

  1.  水分を含んだ多孔質物質を密閉容器に収容し、該多孔質物質を減圧下において所定の温度範囲に加熱しながら撹拌するとともに、
     微生物を前記密閉容器に投入し、該微生物を前記多孔質物質の細孔に入り込ませて、該微生物の発酵熱によって前記多孔質物質の水分を蒸発させて乾燥する減圧発酵乾燥機を備えた
     ことを特徴とする多孔質物質の乾燥装置。
  2.  請求項1に記載の多孔質物質の乾燥装置において、
     前記多孔質物質は褐炭である
     ことを特徴とする多孔質物質の乾燥装置。
  3.  請求項2に記載の多孔質物質の乾燥装置と、
     前記乾燥装置の減圧発酵乾燥機により得られた乾燥した褐炭をガス化し、一酸化炭素と水素を主成分とするガスを生成するガス化装置とを備えた
     ことを特徴とする水素製造装置。
  4.  請求項3に記載の水素製造装置において、
     前記ガス化装置により生成されたガスに含まれる不純物を除去するガス精製装置を備えた
     ことを特徴とする水素製造装置。
  5.  請求項4に記載の水素製造装置において、
     前記ガス精製装置により不純物を除去されたガス中の一酸化炭素をシフト反応して二酸化炭素を生成し、該二酸化炭素を前記水素から分離する二酸化炭素分離装置を備えた
     ことを特徴とする水素製造装置。
  6.  請求項5に記載の水素製造装置において、
     前記二酸化炭素分離装置により二酸化炭素と分離された水素を液化した液体水素を貯留する貯留装置を備えた
     ことを特徴とする水素製造装置。
  7.  請求項5又は6に記載の水素製造装置において、
     前記二酸化炭素分離装置により分離された二酸化炭素は、陸又は海底の地層中に封じ込められる
     ことを特徴とする水素製造装置。
  8.  請求項6に記載の水素製造装置において、
     前記貯留装置に貯留された液体水素を所定場所に運搬する運搬機関を備えた
     ことを特徴とする水素製造装置。
  9.  水分を含んだ多孔質物質を密閉容器に収容し、該多孔質物質を減圧下において所定の温度範囲に加熱しながら撹拌するとともに、
     微生物を前記密閉容器に投入し、該微生物を前記多孔質物質の細孔に入り込ませて、該微生物の発酵熱によって前記多孔質物質の水分を蒸発させて乾燥する減圧発酵乾燥工程を備えた
     ことを特徴とする多孔質物質の乾燥方法。
PCT/JP2020/034665 2019-10-31 2020-09-14 多孔質物質の乾燥装置及びこれを備えた水素製造装置並びに多孔質物質の乾燥方法 WO2021084942A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/769,488 US20240230224A9 (en) 2019-10-31 2020-09-14 Drying apparatus of porous material, hydrogen production system including the same, and method for drying porous material
CN202080054877.2A CN114207371B (zh) 2019-10-31 2020-09-14 多孔质物质的干燥装置、具备该干燥装置的氢制造装置以及多孔质物质的干燥方法
AU2020376194A AU2020376194B2 (en) 2019-10-31 2020-09-14 Drying device for porous substance, hydrogen production device comprising same, and method for drying porous substance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019198450A JP7146277B2 (ja) 2019-10-31 2019-10-31 多孔質物質の乾燥装置を備えた水素製造装置、および水素製造方法
JP2019-198450 2019-10-31

Publications (1)

Publication Number Publication Date
WO2021084942A1 true WO2021084942A1 (ja) 2021-05-06

Family

ID=75712755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034665 WO2021084942A1 (ja) 2019-10-31 2020-09-14 多孔質物質の乾燥装置及びこれを備えた水素製造装置並びに多孔質物質の乾燥方法

Country Status (4)

Country Link
JP (1) JP7146277B2 (ja)
CN (1) CN114207371B (ja)
AU (1) AU2020376194B2 (ja)
WO (1) WO2021084942A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007319738A (ja) * 2006-05-30 2007-12-13 Kazuo Yamagishi 有機性廃棄物の減容・焼却システム
US20090199425A1 (en) * 2008-02-13 2009-08-13 Taylor David W Processing device for improved utilization of fuel solids
WO2011007493A1 (ja) * 2009-07-13 2011-01-20 川崎重工業株式会社 水素製造方法及び水素製造システム
WO2011129192A1 (ja) * 2010-04-16 2011-10-20 新日鉄エンジニアリング株式会社 石炭ガス化システムおよび石炭ガス化方法
JP2012050956A (ja) * 2010-09-03 2012-03-15 Miike Iron Works Co Ltd 有機廃棄物の炭化方法及び炭化プラント
JP2014214257A (ja) * 2013-04-26 2014-11-17 バブコック日立株式会社 石炭ガス化システム及び石炭ガス化発電システム
JP2014228265A (ja) * 2013-05-21 2014-12-08 正城 山地 褐炭利用バイオマス発電システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101413641B1 (ko) * 2014-02-26 2014-08-06 (주)이파워기술단 화력발전소의 과열 증기를 활용한 석탄 건조시스템
CN208536581U (zh) * 2018-03-05 2019-02-22 四川省德名斯科技有限公司 一种过热空气干燥盘
CN108444249B (zh) * 2018-04-13 2024-04-23 李召书 褐煤两步低温干燥方法及设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007319738A (ja) * 2006-05-30 2007-12-13 Kazuo Yamagishi 有機性廃棄物の減容・焼却システム
US20090199425A1 (en) * 2008-02-13 2009-08-13 Taylor David W Processing device for improved utilization of fuel solids
WO2011007493A1 (ja) * 2009-07-13 2011-01-20 川崎重工業株式会社 水素製造方法及び水素製造システム
WO2011129192A1 (ja) * 2010-04-16 2011-10-20 新日鉄エンジニアリング株式会社 石炭ガス化システムおよび石炭ガス化方法
JP2012050956A (ja) * 2010-09-03 2012-03-15 Miike Iron Works Co Ltd 有機廃棄物の炭化方法及び炭化プラント
JP2014214257A (ja) * 2013-04-26 2014-11-17 バブコック日立株式会社 石炭ガス化システム及び石炭ガス化発電システム
JP2014228265A (ja) * 2013-05-21 2014-12-08 正城 山地 褐炭利用バイオマス発電システム

Also Published As

Publication number Publication date
US20240133625A1 (en) 2024-04-25
AU2020376194A1 (en) 2022-05-26
CN114207371A (zh) 2022-03-18
CN114207371B (zh) 2023-06-27
AU2020376194B2 (en) 2023-08-17
JP7146277B2 (ja) 2022-10-04
JP2021071241A (ja) 2021-05-06

Similar Documents

Publication Publication Date Title
KR101445205B1 (ko) 열분해에 의해 바이오매스로부터 합성 가스를 제조하는 시스템 및 방법
JP5938788B2 (ja) 湿潤バイオマスを、熱化学的に炭化、およびガス化する方法
CN110312780B (zh) 用于超临界二氧化碳电力循环***的全蒸汽气化
JP7050043B2 (ja) 廃棄物処理システム
CN108026459A (zh) 带有碳捕集的全蒸汽气化
JP2011111511A (ja) 炭素化合物の再生処理方法、ガス化装置および再生処理システム
JP2012528222A (ja) 有機廃棄物の熱分解ガス化のための新規な方法
RU2662440C1 (ru) Способ газификации твердого топлива и устройство для его осуществления
JP2009298967A (ja) ガス化方法、及びガス化装置
WO2021084942A1 (ja) 多孔質物質の乾燥装置及びこれを備えた水素製造装置並びに多孔質物質の乾燥方法
RU2562685C2 (ru) Система транспортировки твердых веществ и газификационная установка
CN113348230A (zh) 带有固体燃料制备***的全蒸汽气化
CN111718756A (zh) 一种火电厂热解制氢***及制氢方法
US20240230224A9 (en) Drying apparatus of porous material, hydrogen production system including the same, and method for drying porous material
JP5679160B2 (ja) 炭素担持体、炭素担持体製造方法、炭素担持体製造装置、ガス生成方法、ガス生成装置、発電方法及び発電装置
KR102254729B1 (ko) 가연성 폐기물을 이용한 수소와 이산화탄소 제조방법
JP2010202689A (ja) ガス化方法、発電方法、ガス化装置、発電装置及び有機物
CN104704087A (zh) 用于生产一氧化碳的***和方法
RU106246U1 (ru) Установка для переработки органического сырья
CN210122559U (zh) 一种火电厂热解制氢***
JP2012237547A (ja) 流動層乾燥設備及び石炭を用いたガス化複合発電システム
JP6590359B1 (ja) バイオマスを原料とする水素製造方法
TWI320840B (en) Entrained bed gasification system for solid biomass carbonization and the method thereof
CN104001708A (zh) 由食物垃圾生成碳化固体物及可溶液的方法及其生成装置
JP2013178027A (ja) 非凝縮性ガスの排気装置、ガス化複合発電設備および非凝縮性ガスの排気方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20882546

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 17769488

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2020376194

Country of ref document: AU

Date of ref document: 20200914

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09.08.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20882546

Country of ref document: EP

Kind code of ref document: A1