WO2021083305A1 - 一种加氢处理脱油沥青的方法和*** - Google Patents

一种加氢处理脱油沥青的方法和*** Download PDF

Info

Publication number
WO2021083305A1
WO2021083305A1 PCT/CN2020/125109 CN2020125109W WO2021083305A1 WO 2021083305 A1 WO2021083305 A1 WO 2021083305A1 CN 2020125109 W CN2020125109 W CN 2020125109W WO 2021083305 A1 WO2021083305 A1 WO 2021083305A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
reaction
hydrogenation
oil
coking
Prior art date
Application number
PCT/CN2020/125109
Other languages
English (en)
French (fr)
Inventor
杨清河
孙淑玲
胡大为
牛传峰
贾燕子
戴立顺
王振
户安鹏
任亮
李大东
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司石油化工科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201911054710.1A external-priority patent/CN112745953B/zh
Priority claimed from CN201911054170.7A external-priority patent/CN112745951B/zh
Priority claimed from CN201911053430.9A external-priority patent/CN112745947B/zh
Priority claimed from CN201911054142.5A external-priority patent/CN112745950B/zh
Priority claimed from CN201911053706.3A external-priority patent/CN112745948B/zh
Priority claimed from CN201911053414.XA external-priority patent/CN112745946B/zh
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司石油化工科学研究院 filed Critical 中国石油化工股份有限公司
Priority to JP2022525048A priority Critical patent/JP2023501180A/ja
Priority to US17/772,799 priority patent/US20220372385A1/en
Priority to KR1020227017797A priority patent/KR20220092544A/ko
Publication of WO2021083305A1 publication Critical patent/WO2021083305A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of catalytic cracking in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/302Viscosity
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/305Octane number, e.g. motor octane number [MON], research octane number [RON]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/308Gravity, density, e.g. API
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4012Pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/30Aromatics

Definitions

  • the invention relates to the field of hydrocarbon oil processing, in particular to a method for hydrotreating deoiled asphalt and a system for hydrotreating deoiled asphalt.
  • Efficient conversion of residual oil is the core of oil refining enterprises.
  • the fixed-bed residual oil hydrogenation is a key technology for high-efficiency conversion of residual oil, which has the characteristics of good product quality and mature technology.
  • the residual solvent deasphalting (demetal)-hydrotreating-catalytic cracking combined process technology (SHF) developed by the Sinopec Research Institute of Petroleum and Chemical Technology is to maximize the production of automotive use from low-value vacuum residues.
  • SHF residual solvent deasphalting
  • DOA deoiled asphaltene
  • the new combined process of residue hydrogenation-catalytic cracking (DCC) to produce more propylene in the transition to chemical industry is also limited by the influence of asphaltenes and metals in the residue.
  • the hydrogen content of the hydrogenation residue is low, and the residue is hydrogenated.
  • the operation cycle is short and the DCC propylene yield is low, which affects the economic benefits of the combined technology.
  • the purpose of the present invention is to overcome the shortcomings of the prior art and provide a method and system for hydrotreating deoiled asphalt that can realize high-value use of DOA.
  • the first aspect of the present invention provides a method for hydrotreating deoiled asphalt, the method comprising:
  • the first reaction unit contains rich ore precursor material and/or hydrogenation catalyst
  • the hydrogenation catalyst can Catalyzes at least one reaction selected from the group consisting of a hydrodemetalization reaction, a hydrodesulfurization reaction, a hydrodeasphalting reaction, and a hydrodecarbonization reaction
  • the first reaction unit is a fixed bed hydrogenation unit
  • the deoiling The ratio of the amount of asphalt and the aromatics-containing stream is such that the mixed raw material formed by the deoiled asphalt and the aromatics-containing stream is liquid at no higher than 400°C, and the rich ore precursor material is capable of adsorbing selected from V, Ni, Fe , Ca and Mg at least one metal material;
  • the first light component is introduced into the second reaction unit for reaction to obtain at least one product selected from the group consisting of gasoline components, diesel components and BTX raw material components, wherein the second reaction
  • the unit is selected from at least one of a hydrocracking unit, a catalytic cracking unit, and a diesel hydro-upgrading unit;
  • the invention also relates to various variants of the method of the first aspect.
  • the second aspect of the present invention provides a system for hydrotreating deoiled asphalt, which includes:
  • the first reaction unit is a fixed bed hydrogenation unit for hydrogenating the deoiled asphalt and the aromatics-containing stream therein;
  • a separation unit which is kept in fluid communication with the first reaction unit, and is used for fractionating the liquid phase product from the first reaction unit;
  • a second reaction unit which is kept in fluid communication with the separation unit, and is used for reacting the first light component obtained in the separation unit therein, and the second reaction unit is selected from hydrocracking At least one of a unit, a catalytic cracking unit, and a diesel hydro-upgrading unit;
  • a delayed coking unit which is kept in fluid communication with the separation unit, and is used for reacting the first heavy component obtained in the separation unit to obtain a coking gasoline, coking diesel, coking wax oil, and low-carbon coking oil. At least one product of sulfur petroleum coke;
  • An outlet which is kept in fluid communication with the separation unit, and is used to draw the first heavy component obtained from the separation unit as a low-sulfur marine fuel oil component out of the system.
  • the invention also relates to various variants of the system of the second aspect.
  • DOA and aromatics-containing streams are processed through fixed-bed hydrotreating (such as hydrodesulfurization), and the first light component after hydrogenation is subjected to hydrocracking (RLG or RLA) to produce BTX and diesel fractions, or to catalytic cracking (LTAG) produces gasoline fractions (and liquefied petroleum gas); the first heavy component after hydrogenation produces low-sulfur petroleum coke or heavy low-sulfur ship fuel.
  • hydrocracking RLG or RLA
  • LTAG catalytic cracking
  • gasoline fractions and liquefied petroleum gas
  • the first heavy component after hydrogenation produces low-sulfur petroleum coke or heavy low-sulfur ship fuel.
  • the aforementioned treatment process provided by the present invention can realize high-value use of DOA.
  • Fig. 1 is a process flow diagram of hydrotreating deoiled asphalt in a specific embodiment of the first variant of the technical solution of the first aspect of the present invention.
  • Fig. 2 is a process flow diagram of hydrotreating deoiled asphalt in a specific embodiment of a second variant of the technical solution of the first aspect of the present invention.
  • Fig. 3 is a process flow diagram of hydrotreating deoiled asphalt in a specific embodiment of a third variant of the technical solution of the first aspect of the present invention.
  • FIG. 4 is a process flow diagram of a specific embodiment of a fourth variant of the technical solution of the first aspect of the present invention for hydrotreating deoiled asphalt.
  • Fig. 5 is a process flow diagram of hydrotreating deoiled asphalt in a specific embodiment of the fifth variant of the technical solution of the first aspect of the present invention.
  • Fig. 6 is a process flow diagram of hydrotreating deoiled asphalt in a specific embodiment of a sixth variant of the technical solution of the first aspect of the present invention.
  • the numbers (1), (2), (3), (31), etc. representing the steps, the numbers first, second, etc. representing various embodiments/variations, and the numbers of the respective reference signs They are mainly set to be distinguished from each other, and should not be understood as the sequence of steps or the combination of components in the process, unless otherwise specified.
  • a (hydrogenation) reaction unit some typical embodiments of the reaction unit of the present invention are carried out by hydrogenation reaction. Therefore, for convenience, the present invention relates to the first and second "reaction" units. According to the specific technical solution in which it is located, it may be used interchangeably with the terms first and second "hydrogenation" units, and those skilled in the art can understand that it refers to the same object in this specific technical solution.
  • the first aspect of the present invention provides a method for hydrotreating deoiled asphalt.
  • the method of the first aspect generally includes:
  • the first light component is introduced into the second reaction unit for reaction to obtain at least one product selected from the group consisting of gasoline components, diesel components and BTX raw material components, wherein the second reaction
  • the unit is selected from at least one of a hydrocracking unit, a catalytic cracking unit, and a diesel hydro-upgrading unit;
  • the present invention provides various embodiments and variants of this first aspect.
  • the description and/or definition of each feature adopted may be applicable to the present invention.
  • the aspect and its various embodiments and variants unless the aspect or its specific embodiments or variants provide different or more specific descriptions and/or limitations.
  • the amount ratio of the deoiled bitumen and the aromatic hydrocarbon-containing stream is such that the mixed raw material formed by the deoiled bitumen and the aromatic hydrocarbon-containing stream is liquid at no higher than 280°C; further preferably, the deoiled bitumen and the aromatic hydrocarbon stream are liquid.
  • the amount ratio of the aromatic hydrocarbon-containing stream is such that the mixed raw material formed by the deoiled asphalt and the aromatic hydrocarbon-containing stream is liquid at not higher than 100°C.
  • the cutting point of the first light component and the first heavy component is 350°C.
  • step (2) the hydrogenation reaction in the first reaction unit is carried out in the presence of a hydrogenation catalyst.
  • the ratio of the amount of the deoiled bitumen and the aromatic hydrocarbon-containing stream is such that the 100°C viscosity of the mixed raw material formed by the deoiled bitumen and the aromatic hydrocarbon stream is not greater than 400 mm 2 /s. It is preferably not more than 200 mm 2 /s, and more preferably not more than 100 mm 2 /s.
  • the aromatics-containing stream is a distillate oil rich in aromatics and/or aromatic compounds.
  • the final boiling point of the aromatic-rich distillate oil is 200-540°C, and the aromatic content is greater than or equal to 20% by mass, preferably greater than or equal to 40% by mass, and more preferably greater than or equal to 50% by mass.
  • the distillate oil rich in aromatic hydrocarbons is selected from at least one of LCO, HCO, ethylene tar, coal tar, coker diesel, and coker wax oil.
  • the distillate oil rich in aromatic hydrocarbons of the present invention may be derived from processes other than those of the present invention, or may be derived from the process of the present invention.
  • the aromatic hydrocarbon compound is selected from one or more of benzene, toluene, xylene, naphthalene, methyl naphthalene, multi-branched naphthalene and aromatic hydrocarbons above bicyclic rings, preferably polycyclic aromatic hydrocarbons with a ring number not exceeding three rings Or a mixture of them.
  • the aromatic hydrocarbon compound is selected from at least one of benzene, toluene, xylene, naphthalene, naphthalene substituted with at least one C 1-6 alkyl group, and aromatic hydrocarbon with three or more rings.
  • the aromatics-containing stream is a distillate oil rich in aromatics, and the amount-to-mass ratio of the deoiled bitumen to the aromatics-containing stream is 1:10 to 50:10, more preferably 3:10 to 30:10.
  • the aromatic hydrocarbon-containing stream is an aromatic compound
  • the amount-mass ratio of the deoiled asphalt to the aromatic compound is 1:10 to 50:10; More preferably, it is 3:10 to 20:10.
  • the deoiled asphalt is the deoiled asphalt obtained after the heavy oil raw material enters the solvent deasphalting unit for solvent deasphalting treatment.
  • the mass fraction of the yield of the deoiled asphalt is not more than 50%, more preferably not more than 40%, and further preferably not more than 30%.
  • the method of the present invention further comprises: recycling the coker diesel oil and/or the coker wax oil obtained in step (32) back to step (2) as at least part of the aromatic hydrocarbon-containing stream.
  • the operating conditions in the first reaction unit include: a reaction temperature of 280 to 450°C, a reaction pressure of 8.0 to 20.0 MPa, a hydrogen-to-oil volume ratio of 400 to 2000, and a liquid hour
  • the volumetric space velocity is 0.05 to 1.2 h -1 ; more preferably, the operating conditions in the first reaction unit include: a reaction temperature of 330 to 420° C., a reaction pressure of 10.0 to 18.0 MPa, and a hydrogen-to-oil volume ratio of 600 to 1200, the liquid hourly volumetric space velocity is 0.10 ⁇ 0.8h -1 .
  • Liquid hourly volumetric space velocity and reaction pressure are selected according to the characteristics of the material to be treated, the required conversion rate and the refining depth.
  • the hydrogenation catalyst of the present invention may be a graded combination of different catalysts.
  • the hydrogenation catalyst can at least catalyze the hydrodemetalization reaction and the hydrodesulfurization reaction.
  • the present invention does not specifically limit the specific types of catalysts that can catalyze the hydrodemetalization reaction, the hydrodesulfurization reaction, the hydrodeasphalting reaction, and the hydrodecarbonization reaction. Conventionally used in the field can be used to catalyze the above reaction. Catalyst.
  • the hydrogenation catalyst of the present invention may be, for example, a porous refractory inorganic oxide as a support, an oxide or sulfide of a group VIB and/or group VIII metal as an active component, and an auxiliary agent is optionally added.
  • the first reaction unit is a fixed bed hydrogenation unit, a moving bed-fixed bed hydrogenation unit or a moving bed hydrogenation unit.
  • the first reaction unit contains a rich ore precursor material and/or a hydrogenation catalyst, and the hydrogenation catalyst is capable of catalyzing selected from the group consisting of a hydrodemetalization reaction, a hydrodesulfurization reaction, and a hydrogenation reaction.
  • the rich ore precursor material is a material capable of adsorbing at least one metal selected from the group consisting of V, Ni, Fe, Ca, and Mg.
  • the first reaction unit is a fixed bed hydrogenation unit.
  • the rich ore precursor material contains a carrier and an active component element supported on the carrier, and the carrier is selected from at least one of aluminum hydroxide, aluminum oxide and silicon oxide.
  • the active component element is selected from at least one of group VIB and group VIII metal elements. More preferably, the active components in the rich ore precursor material are oxides and/or sulfides selected from the group VIB and VIII metal elements.
  • the ignition loss of the rich ore precursor material is not less than 3% by mass, the specific surface area is not less than 80 m 2 /g, and the water absorption rate is not less than 0.9 g/g.
  • the ignition reduction refers to the percentage of the mass of the rich ore precursor material after roasting treatment at 600°C/2h, which accounts for the percentage of the mass before roasting;
  • the water absorption refers to the immersion of the rich ore precursor material in water for half an hour at room temperature (for example, 25°C) The added mass accounts for the percentage of the mass before soaking.
  • step (2) according to the direction of the reactant flow, the first reaction unit is sequentially filled with a first rich ore precursor material and a second rich ore precursor material, and the second The ignition loss of the rich ore precursor material is greater than or equal to the ignition loss of the first rich ore precursor material.
  • the ignition loss of the first rich ore precursor material is 3-15% by mass, and the ignition loss of the second rich ore precursor material is not less than 15% by mass.
  • the filling volume ratio of the first rich ore precursor material to the second rich ore precursor material is 5:95 to 95:5.
  • the ore-rich precursor material will be transformed into a vanadium-rich material, and the vanadium content in the vanadium-rich material is not less than 10% by mass.
  • the raw material hydroprocessing technology involved in the first reaction unit of the present invention is a fixed-bed hydroprocessing technology.
  • the reactor or reaction The bed layer includes at least one rich ore precursor material and/or a hydrogenation catalyst.
  • the rich ore precursor material is mainly composed of two parts: one is a carrier with strong ability to adsorb vanadium-containing organic compounds in the oil, and the other is a hydrogenation active function The active ingredient.
  • the carrier is mainly obtained by extruding and drying silicon oxide, aluminum hydroxide or aluminum hydroxide/alumina mixture.
  • the surface is rich in -OH and has strong adsorption capacity for vanadium-containing organic compounds in the oil. It is calcined at 600°C. 2h, its ignition loss is not less than 5%.
  • the active components are mainly oxides or sulfides of Group VIB and/or Group VIII metals such as W, Mo, Co, Ni, etc.
  • the hydrogenation catalyst involved in the foregoing preferred embodiments is generally a heavy residue hydrogenation catalyst.
  • the heavy residue hydrogenation catalyst refers to the functions of heavy and residual oil hydrodemetalization, hydrodesulfurization, and hydrodecarbonization.
  • the combination of catalysts. These catalysts are generally based on porous refractory inorganic oxides such as alumina as the carrier, and the oxides or sulfides of Group VIB and/or Group VIII metals such as W, Mo, Co, Ni, etc. as the active components, selectively Add other various additives such as P, Si, F, B and other elements of the catalyst, such as RDM, RCS series of heavy and residual oil hydrodemetalization catalysts and desulfurization catalysts developed by the Research Institute of Petrochemical Sciences.
  • the present invention there are preferably ore-rich precursor materials, hydrodemetalization and desulfurization catalysts, and hydrodesulfurization catalysts.
  • the filling sequence is generally such that the raw materials are sequentially contacted with the ore-rich precursor materials, hydrodesulfurization, and hydrodesulfurization catalysts.
  • one or two catalysts should be installed less, for example, only the rich ore precursor material and the hydrodesulfurization catalyst are installed, and the hydrodemetalization desulfurization catalyst is not installed.
  • the second reaction unit is a hydrocracking unit
  • the operating conditions in the hydrocracking unit include: a reaction temperature of 330 to 420° C., and a reaction pressure of 5.0 to 18.0 MPa ,
  • the hydrogen-to-oil volume ratio is 500-2000, and the liquid hourly volumetric space velocity is 0.3-3.0h -1 .
  • the hydrocracking unit is filled with at least one hydrotreating catalyst and at least one hydrocracking catalyst.
  • the hydrocracking unit is a fixed bed hydrocracking unit.
  • the first light component is introduced into the second reaction unit for reaction, and the hydrocracking technology used is a fixed bed hydrocracking technology.
  • the reactor or reaction bed layer includes at least two hydrocracking catalysts, one is a pretreatment catalyst and the other is a hydrocracking catalyst. Since the material obtained by the fixed bed hydrotreating and fractional distillation has high metal content, sulfur, nitrogen content and carbon residue value, the pretreatment catalyst preferably has strong demetallization activity and good desulfurization and denitrification. Activity to ensure the activity of the subsequent hydrocracking catalyst.
  • the hydrocracking catalyst preferably has good hydrocracking activity.
  • These catalysts are generally porous refractory inorganic oxides such as alumina or molecular sieves as the carrier, and the oxides of Group VIB and/or Group VIII metals such as W, Mo, Co, Ni, etc. are used as active components, which are selectively added
  • Various other additives such as P, Si, F, B and other elemental catalysts, such as the RS series pretreatment catalysts and RHC series hydrocracking catalysts developed by the Research Institute of Petrochemical Industry, belong to this category of catalysts.
  • the RS series catalyst is a NiW catalyst
  • the RHC series catalyst is a NiMo molecular sieve catalyst.
  • the second reaction unit is a catalytic cracking unit
  • the catalytic cracking unit is a fluidized catalytic cracking (FCC) unit.
  • FCC fluidized catalytic cracking
  • the first light component catalytic cracking technology used in the first light component catalytic cracking is FCC technology, and preferably the LTAG technology developed by the Research Institute of Petrochemical Industry is used to mainly produce gasoline fractions and liquefied gas.
  • the operating conditions in the fluidized catalytic cracking unit include: a reaction temperature of 500 to 600° C., a catalyst-to-oil ratio of 3 to 12, and a residence time of 1 to 10 s; more preferably, the fluidized catalytic cracking unit
  • the operating conditions include: the reaction temperature is 520-580°C, the ratio of agent to oil is 4-10, and the residence time is 2-5s.
  • agent-to-oil ratio in the present invention all means the agent-to-oil mass ratio.
  • the second reaction unit is a diesel hydro-upgrading unit
  • the operating conditions in the diesel hydro-upgrading unit include: a reaction temperature of 330-420°C, a reaction pressure It is 5.0 ⁇ 18.0MPa, the volume ratio of hydrogen to oil is 500 ⁇ 2000, and the liquid hourly volumetric space velocity is 0.3 ⁇ 3.0h -1 .
  • the diesel hydro-upgrading unit is filled with at least one diesel hydro-upgrading catalyst.
  • the diesel hydro-upgrading catalyst of the present invention may be, for example, a combined catalyst having functions such as diesel hydrodesulfurization and hydrodenitrogenation.
  • These catalysts are generally based on porous refractory inorganic oxides such as alumina as the support, and the oxides or sulfides of Group VIB and/or Group VIII metals such as W, Mo, Co, Ni, etc. as the active components, selectively Adding other various additives such as P, Si, F, B and other elements of the catalyst, such as the RS series diesel hydrodesulfurization catalyst and denitrification catalyst developed by the Research Institute of Petrochemical Sciences.
  • the first heavy component is introduced into the delayed coking unit for reaction to obtain at least one product selected from the group consisting of coking gasoline, coking diesel, coking wax oil, and low-sulfur petroleum coke
  • the operating conditions in the delayed coking unit include: a reaction temperature of 440-520°C, and a residence time of 0.1-4h.
  • the sulfur content of the first heavy component is not more than 1.8% by mass
  • the first heavy component is introduced into the delayed coking unit for reaction to obtain low-sulfur petroleum coke, more preferably controlled
  • the conditions in the delayed coking unit are such that the sulfur content of the low-sulfur petroleum coke is not more than 3% by mass.
  • the first heavy component is used as the low-sulfur marine fuel oil component, and the sulfur content in the low-sulfur marine fuel oil component is not more than 0.5% by mass.
  • the present invention does not particularly limit the specific operation of the solvent deasphalting treatment, and it can be carried out by using a conventional solvent deasphalting process in the field.
  • the operating parameters of the solvent deasphalting process are exemplarily listed in the examples of the present invention, and those skilled in the art should not be understood as limiting the present invention.
  • the invention is suitable for the hydrogenation conversion of normal slag and reduced slag, and is especially suitable for high metal (Ni+V>150 ⁇ g/g, especially Ni+V>200 ⁇ g/g), high carbon residue (mass fraction of carbon residue>17%, In particular, the mass fraction of carbon residue>20%), the inferior residue of high-density ring substances is hydroconverted.
  • the hydrogenation catalyst can catalyze at least one reaction selected from the group consisting of a hydrodemetalization reaction, a hydrodesulfurization reaction, a hydrodeasphalting reaction, and a hydrodecarbonization reaction.
  • the rich ore precursor The material is a material capable of adsorbing at least one metal selected from V, Ni, Fe, Ca, and Mg.
  • the heavy oil feedstock 1 enters the solvent deasphalting unit 2 for solvent deasphalting treatment to obtain deoiled asphalt 4 and deasphalted oil 3; the deoiled asphalt 4 and the aromatic hydrocarbon stream 5 together form a mixed raw material 6 and enter
  • the hydrogenation reaction is carried out in the first reaction unit 7, wherein the first reaction unit contains a rich ore precursor material and/or a hydrogenation catalyst, and the first reaction unit is a fixed-bed hydrogenation unit;
  • the liquid phase product of the reaction unit 7 enters the separation unit 19 for fractional distillation to obtain the first light component 8 and the first heavy component 9;
  • the first light component 8 is introduced into the second reaction unit 10 for reaction to obtain At least one product selected from the group consisting of gasoline component 13, BTX raw material component 12, and diesel component 14; and the first heavy component 9 is introduced into the delayed coking unit 11 for reaction to obtain a product selected from coking gasoline 15, At least one product of coking diesel 16, coking wax oil 17, and low-sulfur petroleum coke 18; or the first heavy component
  • each feature in the first variant of the technical solution of the first aspect can be used in each variant of the first aspect of the present invention, as well as other aspects and variants thereof, unless other aspects or variants There are different or more specific descriptions and/or limitations in the variants.
  • descriptions and/or definitions of various variants of the first aspect of the present invention, as well as various other aspects and various features of various variants thereof (especially features not specifically described and/or limited in the first variant) It can be used in the first variant of the technical solution of the first aspect, unless there is a different or more specific description and/or limitation in the first variant of the technical solution of the first aspect.
  • the first reaction unit of the present invention is a moving bed-fixed bed hydrogenation combined unit or a moving bed hydrogenation unit.
  • the first reaction unit is a moving bed-fixed bed hydrogenation combined unit; in the second preferred case, the first reaction unit is a moving bed hydrogenation unit.
  • the first reaction unit is a combined moving bed-fixed bed hydrogenation unit.
  • the first reaction unit is a moving bed-fixed bed hydrogenation combined unit, and the moving bed is filled with a rich ore precursor material, and the fixed bed is The rich ore precursor material and the hydrogenation catalyst are sequentially loaded or the fixed bed is filled with the hydrogenation catalyst.
  • the first reaction unit is a moving bed-fixed bed hydrogenation combined unit, and the moving bed is sequentially filled with a rich ore precursor material and a hydrogenation catalyst, and the fixed bed The rich ore precursor material and the hydrogenation catalyst are sequentially loaded or the fixed bed is filled with the hydrogenation catalyst.
  • the ratio of the volume of the rich ore precursor material packed in the moving bed to the sum of the volume of the rich ore precursor material and the hydrogenation catalyst packed in the fixed bed is 10 : 90 to 60:40, preferably 20:80 to 40:60. It should be explained that when only the hydrogenation catalyst is filled in the fixed bed, the above-mentioned filling volume ratio represents: the volume of the rich ore precursor material filled in the moving bed and the hydrogenation catalyst filled in the fixed bed Proportion of volume.
  • the method of the present invention further includes: replacing the rich ore precursor material filled in the moving bed with fresh rich ore precursor material every cycle, and the replacement ratio accounts for the total amount of rich ore precursor material filled in the moving bed 5-20% by mass, more preferably 10-15% by mass.
  • the period is 5-20 days, preferably 10-15 days.
  • the shape of the rich ore precursor material of the present invention can be cylindrical and/or spherical, preferably spherical.
  • the average particle size of the rich ore precursor material is 0.1-6 mm, more preferably 0.3-4 mm, further preferably 0.5-1.5 mm.
  • the aforementioned fresh rich ore precursor material used to replace the rich ore precursor material filled in the moving bed of the present invention is in an oxidized state or a sulfided state, preferably in a sulfided state.
  • the first reaction unit is sequentially filled with a first rich ore precursor material and a second rich ore precursor material, and the second The ignition loss of the rich ore precursor material is greater than or equal to the ignition loss of the first rich ore precursor material.
  • the present invention does not specifically limit the specific filling positions of the first rich ore precursor material and the second rich ore precursor material, as long as it can be realized that, relative to the second rich ore precursor material, the reaction material is first mixed with the first rich ore precursor material. It suffices to contact the rich ore precursor material, and then contact the second rich ore precursor material.
  • the raw material hydroprocessing technology involved in the first reaction unit of the present invention is a moving bed-fixed bed hydroprocessing technology or a moving bed hydroprocessing technology.
  • the moving bed reactor is filled with spherical rich ore precursor materials, and the average particle size of the spherical catalyst is 0.1-6mm.
  • the fixed bed reaction bed layer includes at least one rich ore precursor material and/or a hydrogenation catalyst.
  • the rich ore precursor material is mainly composed of two parts: one is a carrier with strong ability to adsorb vanadium-containing organic compounds in the oil, and the other is Active component of hydrogen active function.
  • the reactor or the reaction bed layer includes at least a rich ore precursor material and a hydrogenation catalyst.
  • the rich ore precursor material is mainly composed of two parts: one is a carrier with strong ability to adsorb vanadium-containing organic compounds in the oil, and the other is Active component of hydrogenation active function.
  • each feature in the second variant of the technical solution of the first aspect can be used in each variant of the first aspect of the present invention, as well as other aspects and variants thereof, unless other aspects or variants There are different or more specific descriptions and/or limitations in the variants.
  • descriptions and/or definitions of various variants of the first aspect of the present invention, as well as various other aspects and various features of various variants thereof (especially features not specifically described and/or limited in the second variant) It can be used in the second variant of the technical solution of the first aspect, unless there is a different or more specific description and/or limitation in the second variant of the technical solution of the first aspect.
  • the method of the invention further comprises:
  • the deasphalted oil is introduced into the third hydrogenation unit for hydrogenation reaction, and the liquid phase effluent obtained in the third hydrogenation unit is introduced into the DCC unit for reaction to obtain propylene, LCO, HCO and oil slurry, wherein the third hydrogenation unit is a fixed bed hydrogenation unit;
  • the aromatic hydrocarbon stream containing the oil slurry obtained in the DCC unit and/or the demetallized oil slurry obtained in the fourth hydrogenation unit is used as the first variant or the second variant (preferably the first variant The aromatic hydrocarbon-containing stream (5) described in step (2) in ).
  • the oil slurry obtained in the DCC unit and the deoiled asphalt obtained in the solvent deasphalting unit are introduced into the first hydrogenation unit for conversion reaction, the oil slurry may be filtered or not, preferably After filtering treatment, the solid content is controlled at ⁇ 10ppm.
  • the aromatic hydrocarbon-containing stream further contains aromatic hydrocarbon-rich distillate oil, and the aromatic hydrocarbon-rich distillate oil includes the LCO and/or the HCO obtained in the DCC unit.
  • step (11) the operating conditions in the DCC unit are controlled so that the aromatic hydrocarbon content in the LCO and/or HCO is greater than or equal to 60% by mass.
  • the cutting point of the LCO and the HCO is 180-205°C; preferably, the cutting point of the HCO and the oil slurry is 330-360°C.
  • this third variant provides the following preferred implementations the way:
  • the mass fraction of the deoiled bitumen yield is not more than 50%, more preferably not more than 40%, and further preferably not more than 30%.
  • the heavy feedstock oil is residual oil and/or heavy oil.
  • the third variant has no particular limitation on the specific operation of the solvent deasphalting treatment, and it can be carried out by a conventional solvent deasphalting process in the art.
  • the third variant does not list specific operating parameters of the solvent deasphalting process, and those skilled in the art should not interpret it as a limitation to the third variant.
  • the third variant provides the following preferred specific implementations formula:
  • the operating conditions of the third hydrogenation unit include: a reaction temperature of 280 to 400°C, a reaction pressure of 6.0 to 14.0 MPa, a hydrogen-to-oil volume ratio of 600 to 1200, The volumetric space velocity is 0.3 ⁇ 2.0h -1 .
  • the third hydrogenation unit is filled with at least two hydrogenation catalysts; more preferably, in step (11), the hydrogenation catalyst is selected from hydrogenation catalysts A catalyst for at least one of the demetalization reaction, the hydrodesulfurization reaction, and the hydrodecarbonization reaction; the hydrogenation catalyst is generally a porous refractory inorganic oxide such as alumina as a carrier; particularly preferably, In step (11), the hydrogenation catalyst contains alumina as a support and a VIB and/or VIII metal element as an active component element, and the hydrogenation catalyst optionally contains P At least one auxiliary element among, Si, F and B.
  • the group VIB and group VIII metal elements may be, for example, W, Mo, Co, Ni, and the like.
  • the active component may be an oxide and/or sulfide of the above-mentioned active component element.
  • the conditions of the third hydrogenation unit of deasphalted oil (DAO) with hydrogen are generally as follows:
  • the hydroprocessing technology of DAO is a fixed-bed hydroprocessing technology.
  • the reactor or reaction bed layer includes at least two hydrogenation catalysts.
  • the heavy residual oil hydrogenation catalyst used means the Hydrodemetallization, hydrodesulfurization, hydrodenitrogenation, and hydrodecarbonization combined catalysts.
  • catalysts are generally based on porous refractory inorganic oxides such as alumina as supports, and Group VIB and/or Group VIII metals such as oxides or sulfides of W, Mo, Co, Ni, etc., as active components, selectively Add other various additives such as P, Si, F, B and other elements of the catalyst, such as RDM, RCS series of heavy and residual oil hydrodemetalization catalysts and desulfurization catalysts developed by the Research Institute of Petrochemical Sciences.
  • RDM Rasteretalization catalysts
  • hydrodesulfurization catalysts hydrodesulfurization catalysts
  • hydrodenitrogenation catalysts hydrodenitrogenation catalysts.
  • the filling order is generally such that the feedstock oil is sequentially followed by hydrogenation and denitrification.
  • Metal, hydrodesulfurization, and hydrodenitrogenation catalysts are contacted.
  • one or two catalysts can be installed less according to the situation. For example, only the hydrodemetalization catalyst and the hydrodesulfurization catalyst are installed, and the hydrodenitrogenation catalyst is not installed.
  • Liquid hourly volumetric space velocity and reaction pressure are usually selected according to the characteristics of the material to be treated and the required conversion rate and refining depth.
  • the third variant provides the following preferred specific implementation methods formula:
  • the second reaction unit is a fixed-bed hydrocracking unit; preferably, the fixed-bed hydrocracking unit is filled with at least two catalysts; the catalysts are generally porous Refractory inorganic oxide such as alumina is the carrier; preferably, the catalyst packed in the fixed-bed hydrocracking unit contains alumina as the carrier and VIB and/or VIII as the active component element Group metal element, and the catalyst optionally further contains at least one auxiliary element selected from P, Si, F and B.
  • the group VIB and group VIII metal elements may be, for example, W, Mo, Co, Ni, and the like.
  • the active component may be an oxide and/or sulfide of the above-mentioned active component element.
  • the second reaction unit is sequentially filled with a pretreatment catalyst and a hydrocracking catalyst.
  • the second reaction unit is a fixed bed hydrocracking unit, and the operating conditions in the second reaction unit include: a reaction temperature of 330 to 420°C, a reaction pressure of 5.0 to 18.0 MPa, and a hydrogen-to-oil volume ratio It is 500 ⁇ 2000, and the liquid hourly volumetric space velocity is 0.3 ⁇ 3.0h -1 . More preferably, according to the direction of the reactant flow, the second reaction unit is sequentially filled with a pretreatment catalyst and a hydrocracking catalyst.
  • the second reaction unit is a catalytic cracking unit
  • the catalytic cracking unit is a fluidized catalytic cracking unit.
  • the third variant provides the following preferred specific implementations formula:
  • the fourth hydrogenation unit is a fixed bed hydrogenation unit, and the operating conditions of the fourth hydrogenation unit include: a reaction temperature of 200 to 280° C., and a reaction pressure of 3.0 ⁇ 6.0MPa, the volume ratio of hydrogen to oil is 600 ⁇ 1200, and the liquid hourly volumetric space velocity is 0.5 ⁇ 2.5h -1 .
  • the fourth hydrogenation unit is filled with at least two hydrogenation catalysts; more preferably, in step (13), the hydrogenation catalyst is selected from hydrogenation catalysts A catalyst for at least one of the demetalization reaction, the hydrodesulfurization reaction, and the hydrodecarbonization reaction; the hydrogenation catalyst is generally a porous refractory inorganic oxide such as alumina as a carrier; particularly preferably, In step (13), the hydrogenation catalyst contains alumina as a support and a VIB and/or VIII metal element as an active component element, and the hydrogenation catalyst optionally contains P At least one auxiliary element among, Si, F and B.
  • the group VIB and group VIII metal elements may be, for example, W, Mo, Co, Ni, and the like.
  • the active component in the hydrogenation catalyst, may be an oxide and/or sulfide of the above-mentioned active component element.
  • the hydrotreating technology of oil slurry is low-pressure fixed bed hydrotreating technology.
  • the reactor or reaction bed layer includes at least two hydrogenation catalysts, and the heavy residual oil hydrogenation catalyst used refers to the It is a combined catalyst with functions such as mass conversion catalyst, heavy and residual oil hydrodemetalization catalyst, hydrodesulfurization, hydrodenitrogenation and hydrodecarbonization.
  • catalysts are generally based on porous refractory inorganic oxides such as alumina as supports, and Group VIB and/or Group VIII metals such as oxides or sulfides of W, Mo, Co, Ni, etc., as active components, selectively Add other various additives such as P, Si, F, B and other elements of the catalyst, such as RDM, RCS series of heavy and residual oil hydrodemetalization catalysts and desulfurization catalysts developed by the Research Institute of Petrochemical Sciences.
  • RDM Rasteretalization catalysts
  • hydrodesulfurization catalysts hydrodesulfurization catalysts
  • hydrodenitrogenation catalysts hydrodenitrogenation catalysts.
  • the filling order is generally such that the feedstock oil is sequentially followed by hydrogenation and denitrification.
  • Metal, hydrodesulfurization, and hydrodenitrogenation catalysts are contacted.
  • one or two catalysts can be installed less according to the situation. For example, only the hydrodemetalization catalyst and the hydrodesulfurization catalyst are installed, and the hydrodenitrogenation catalyst is not installed.
  • Liquid hourly volumetric space velocity and reaction pressure are usually selected according to the characteristics of the material to be treated and the required conversion rate and refining depth.
  • the heavy feedstock oil 1 enters the solvent deasphalting unit 2 for solvent deasphalting treatment to obtain deoiled asphalt 4 and deasphalted oil 3; the deasphalted oil 3 is introduced to the third hydrogenation unit
  • the hydrogenation reaction is carried out in 29, and the liquid phase effluent 20 obtained in the third hydrogenation unit is introduced into the DCC unit 21 for reaction to obtain propylene 22, LCO23, HCO24 and oil slurry 25, wherein the first The three hydrogenation unit is a fixed-bed hydrogenation unit; the oil slurry 25 obtained in the DCC unit 21 is introduced into the fourth hydrogenation unit 26 for a demetallization reaction to obtain a demetallized oil slurry 27;
  • the deoiled asphalt 4 obtained in the solvent deasphalting unit 2 together forms a mixed raw material 6 and is introduced into the first hydrogenation unit 7 for conversion reaction, and the aromatic hydrocarbon-containing stream is selected from the LCO23 obtained in the DCC unit 21, the At least one of the HCO 24 obtained in the DCC unit 21, the demetall
  • each feature in the third variant of the technical solution of the first aspect can be used in the variants of the first aspect of the present invention, as well as other aspects and variants thereof, unless other aspects or variants are used. There are different or more specific descriptions and/or limitations in the variants. Similarly, the description and/or limitation of each variant of the first aspect of the present invention, as well as other various aspects and various features in each variant thereof (especially features not specifically described and/or limited in the third variant) It can be used in the third variant of the technical solution of the first aspect, unless there is a different or more specific description and/or limitation in the third variant of the technical solution of the first aspect.
  • the fourth variant is basically similar to the third variant, with the main difference being: the LCO and/or HCO obtained in the DCC unit are incorporated into the aromatic hydrocarbon-containing stream (5) described in step (2) , The oil slurry (25) does not undergo the fourth hydrogenation unit in the step (13), but is recycled back to the solvent deasphalting unit for solvent deasphalting treatment.
  • the recycling ratio is 0.1-0.5:1.
  • the heavy feedstock oil 1 enters the solvent deasphalting unit 2 for solvent deasphalting treatment to obtain deoiled asphalt 4 and deasphalted oil 3; the deasphalted oil 3 is introduced to the third hydrogenation unit
  • the hydrogenation reaction is carried out in 29, and the liquid phase effluent 20 obtained in the third hydrogenation unit is introduced into the DCC unit 21 for reaction to obtain propylene 22, LCO23, HCO24 and oil slurry 25, wherein the first
  • the three hydrogenation unit is a fixed bed hydrogenation unit; the LCO23 and/or HCO24 obtained in the DCC unit 21 and the deoiled bitumen 4 obtained in the solvent deasphalting unit 2 are combined with the aromatic hydrocarbon stream to form a mixed raw material 6 and introduced
  • the conversion reaction is carried out in the first hydrogenation unit 7, and the aromatic hydrocarbon-containing stream is selected from at least one of LCO23 from DCC unit 21, HCO24 from DCC unit 21, and external aromatic compound 5.
  • the first hydrogenation The unit is a fixed bed hydrogenation unit or a moving bed hydrogenation unit; the liquid phase effluent obtained in the first hydrogenation unit 7 is separated, and the first light component 8 obtained by the separation is introduced into the second reaction unit
  • the reaction in 10 is carried out to obtain at least one product selected from gasoline component 13, diesel component 14 and BTX feedstock component 12, or at least part of the first light component 8 is recycled back to the DCC unit 21
  • introducing the separated first heavy component 9 into the delayed coking unit 11 for reaction to obtain at least one product selected from the group consisting of coking gasoline 15, coking diesel 16, coking wax oil 17, and low-sulfur petroleum coke 18; or
  • the first heavy component 9 is used as a low-sulfur marine fuel oil component.
  • the cutting point is 100-250°C, and the aromatic hydrocarbon content in the second heavy component is greater than or equal to 20% by mass;
  • the second heavy component is incorporated into the aromatic hydrocarbon-containing stream (5) described in step (2) of any one of the first to fourth variants (preferably the first variant).
  • the hydrogenation saturation reaction performed in the fifth reaction unit is partial hydrogenation saturation, and it is particularly preferable that the cutting point of the second light component and the second heavy component is 180°C.
  • the second light component preferably enters the catalytic cracking unit to produce light olefins.
  • the fifth reaction unit is at least one of a fixed bed reactor, a moving bed reactor, and a fluidized bed reactor.
  • the operating conditions in the fifth reaction unit include: a reaction temperature of 200-420°C, a reaction pressure of 2-18 MPa, a liquid hourly volumetric space velocity of 0.3-10 h -1 , and a hydrogen-to-oil volume ratio of 50-5000 More preferably, the operating conditions in the fifth reaction unit include: a reaction temperature of 220-400° C., a reaction pressure of 2-15 MPa, a liquid hourly volumetric space velocity of 0.3-5 h -1 , and a hydrogen-to-oil volume ratio of 50 -4000.
  • the conditions for partial hydrogenation saturation of aromatic-rich distillates with hydrogen are generally as follows:
  • the partial hydrogenation saturation technology of aromatic-rich distillates is a fixed bed/ebullating bed/moving bed hydroprocessing technology.
  • the reactor or reaction bed layer includes at least one hydrorefining catalyst.
  • the hydrorefining catalyst used in the partial hydrogenation saturation of aromatic-rich distillates preferably has good and moderate hydrogenation saturation activity to avoid further saturation of the tetralin structure into decalin or naphthenic structure with lower hydrogen supply capacity .
  • These catalysts are generally based on porous refractory inorganic oxides such as alumina as the support, and the oxides of Group VIB and/or Group VIII metals such as W, Mo, Co, Ni, etc. are used as active components, and other components are selectively added.
  • a variety of additives such as P, Si, F, B and other elements of the catalyst, for example, the RS series pretreatment catalyst developed by the Research Institute of Petrochemical Industry belongs to this type of catalyst.
  • RS series catalyst is a kind of NiMo catalyst.
  • the first reaction unit is a medium/low pressure fixed bed hydrogenation unit.
  • the operating conditions in the first reaction unit include: a reaction temperature of 260 to 500° C., a reaction pressure of 2.0 to 20.0 MPa, more preferably 2 to 12 MPa, and a hydrogen-to-oil volume ratio of 100 ⁇ 1200, the liquid hourly volumetric space velocity is 0.1 ⁇ 1.5h -1 .
  • Liquid hourly volumetric space velocity and reaction pressure are selected according to the characteristics of the material to be treated, the required conversion rate and the refining depth.
  • the aromatic-rich distillate 30 is introduced into the fifth reaction unit 31 for hydrogenation saturation and then fractionated to obtain the second light component and the second heavy component 32; and the heavy oil feedstock 1 enters the solvent deasphalting unit 2
  • the aromatic hydrocarbon-containing stream preferably further contains aromatic hydrocarbon compounds 5 from the outside, wherein the first reaction unit contains ore-rich precursor materials and can catalyze selected from the group consisting of hydrodemetalization reactions, hydrodesulfurization reactions,
  • the hydrogenation catalyst for at least one of the hydrodeasphalting reaction and the hydrodecarbonization reaction, the first reaction unit is a fixed bed hydrogenation unit; the liquid phase product from the first reaction unit 7 enters the separation Fractional distillation is performed in
  • each feature in the fifth variant of the technical solution of the first aspect can be used in the variants of the first aspect of the present invention, as well as other aspects and variants thereof, unless other aspects or variants are used. There are different or more specific descriptions and/or limitations in the variants. Similarly, the description and/or limitation of each variant of the first aspect of the present invention, as well as other various aspects and various features in each variant thereof (especially features not specifically described and/or limited in the fifth variant) It can be used in the fifth variant of the technical solution of the first aspect, unless there is a different or more specific description and/or limitation in the fifth variant of the technical solution of the first aspect.
  • the LCO and/or HCO from the DCC unit are incorporated into the aromatic-rich distillate described in step (16) or used as the aromatic-rich distillate described in step (16) of the fifth variant.
  • the features adopted in the step (1) of this sixth variant are basically the same as those of the step (1) in the third variant.
  • the feature adopted in the step (14) of the sixth variant is basically the same as the step (11) in the third variant.
  • the operating conditions of the DCC unit of the sixth variant include: a reaction temperature of 500-650° C., a catalyst-oil ratio of 3-12, and a residence time of 0.6-6 s.
  • the cutting point of the LCO and the HCO is 300 to 400°C; and the cutting point of the HCO and the oil slurry is 400 to 500°C.
  • the sixth variant further includes: recycling the coking diesel oil and/or the coking wax oil obtained in step (32) back to the fifth hydrogenation unit for hydrogenation saturation.
  • the operating conditions of the sixth hydrogenation unit include: a reaction temperature of 280 to 400° C., a reaction pressure of 6.0 to 14.0 MPa, and a hydrogen-to-oil volume ratio It is 600 ⁇ 1200, and the liquid hourly volumetric space velocity is 0.3 ⁇ 2.0h -1 .
  • step (14) of this sixth variant the sixth hydrogenation unit is filled with at least two hydrogenation catalysts.
  • the hydrogenation catalyst is capable of catalyzing at least one selected from the group consisting of hydrodemetalization reaction, hydrodesulfurization reaction, and hydrodecarbonization reaction Catalyst for reaction.
  • the hydrogenation catalyst in step (14) of the sixth modification, contains alumina as a support and a group VIB and/or group VIII metal element as an active component element, and the hydrogenation catalyst optionally, the hydrogenation catalyst further contains at least one auxiliary element selected from P, Si, F and B.
  • the heavy oil feedstock 1 enters the solvent deasphalting unit 2 for solvent deasphalting treatment to obtain deoiled asphalt 4 and deasphalted oil 3; the deasphalted oil 3 is introduced into the sixth hydrogenation unit 24 for processing Hydrogenation reaction, and the liquid phase effluent obtained in the sixth hydrogenation unit 24 is introduced into the DCC unit 35 for reaction to obtain propylene 36, LCO37, HCO38 and oil slurry 33; will contain the LCO37 and/or
  • the aromatic-rich distillate 30 of the HCO38 is introduced into the fifth hydrogenation unit 31 for hydrogenation saturation and then fractionated to obtain the second heavy component 32 and the second light component;
  • the aromatic hydrocarbon-containing stream divided into 32 together form the mixed raw material 6 and is introduced into the first reaction unit 7 for hydrogenation reaction.
  • the aromatic hydrocarbon-containing stream preferably also contains aromatic compounds 5 from the outside, wherein the first reaction unit 7 It contains a rich ore precursor material and a hydrogenation catalyst capable of catalyzing at least one reaction selected from the group consisting of a hydrodemetalization reaction, a hydrodesulfurization reaction, a hydrodeasphalting reaction, and a hydrodecarbonization reaction; from the first
  • the liquid phase product of the reaction unit 7 enters the separation unit 19 for fractional distillation to obtain the first light component 8 and the first heavy component 9;
  • the first light component 8 is introduced into the second reaction unit 10 for reaction to obtain At least one product selected from gasoline component 13, BTX feedstock component 12, diesel component 14, or at least part of the first light component 8 is recycled to the DCC unit 35; and the first light component 8 is recycled to the DCC unit 35; and
  • the single heavy component 9 is introduced into the delayed coking unit 11 for reaction to obtain at least one product selected from the group consisting of coking gasoline 15, coking diesel 16, coking wax oil 17, and low-s
  • each feature in the sixth variant of the technical solution of the first aspect can be used in each variant of the first aspect of the present invention, as well as other aspects and variants thereof, unless other aspects or variants There are different or more specific descriptions and/or limitations in the variants.
  • the description and/or limitation of each variant of the first aspect of the present invention, as well as other various aspects and various features in each variant thereof (especially features not specifically described and/or limited in the sixth variant) It can be used in the sixth variant of the technical solution of the first aspect, unless there is a different or more specific description and/or limitation in the sixth variant of the technical solution of the first aspect.
  • the second aspect of the present invention provides a system for hydrotreating deoiled asphalt.
  • the system of the first variant of the second aspect includes:
  • the first reaction unit is a fixed bed hydrogenation unit for hydrogenating the deoiled asphalt and the aromatics-containing stream therein;
  • a separation unit which is kept in fluid communication with the first reaction unit, and is used for fractionating the liquid phase product from the first reaction unit;
  • a second reaction unit which is kept in fluid communication with the separation unit, and is used for reacting the first light component obtained in the separation unit therein, and the second reaction unit is selected from hydrocracking At least one of a unit, a catalytic cracking unit, and a diesel hydro-upgrading unit;
  • a delayed coking unit which is kept in fluid communication with the separation unit, and is used for reacting the first heavy component obtained in the separation unit to obtain a coking gasoline, coking diesel, coking wax oil, and low-carbon coking oil. At least one product of sulfur petroleum coke;
  • An outlet which is kept in fluid communication with the separation unit, and is used to draw the first heavy component obtained from the separation unit as a low-sulfur marine fuel oil component out of the system.
  • the delayed coking unit is kept in fluid communication with the first reaction unit for recycling the coking diesel oil and/or the coking wax oil obtained in the delayed coking unit back to the first reaction unit in.
  • the system further includes a solvent deasphalting unit, and the system also includes a solvent deasphalting unit.
  • the solvent deasphalting unit is in fluid communication with the first reaction unit and is used for solvent deasphalting heavy oil raw materials therein.
  • the deoiled bitumen obtained after bitumen treatment is introduced into the first reaction unit.
  • the second reaction unit is a hydrocracking unit.
  • the second reaction unit is a catalytic cracking unit
  • the catalytic cracking unit is a fluidized catalytic cracking unit
  • the second reaction unit is a diesel hydro-upgrading unit.
  • the system includes:
  • the first reaction unit is a moving bed-fixed bed hydrogenation combined unit or a moving bed hydrogenation unit for hydrogenating the deoiled asphalt and aromatic hydrocarbon streams therein;
  • a separation unit which is kept in fluid communication with the first reaction unit, and is used for fractionating the liquid phase product from the first reaction unit;
  • a second reaction unit which is kept in fluid communication with the separation unit, and is used for reacting the first light component obtained in the separation unit therein, and the second reaction unit is selected from hydrocracking At least one of a unit, a catalytic cracking unit, and a diesel hydro-upgrading unit;
  • a delayed coking unit which is kept in fluid communication with the separation unit, and is used for reacting the first heavy component obtained in the separation unit to obtain a coking gasoline, coking diesel, coking wax oil, and low-carbon coking oil. At least one product of sulfur petroleum coke;
  • An outlet which is kept in fluid communication with the separation unit, and is used to draw the first heavy component obtained from the separation unit as a low-sulfur marine fuel oil component out of the system.
  • the delayed coking unit is kept in fluid communication with the first reaction unit for recycling the coking diesel oil and/or the coking wax oil obtained in the delayed coking unit back to the first reaction unit in.
  • the system further includes a solvent deasphalting unit, which is kept in fluid communication with the first reaction unit, and is used to introduce the deoiled asphalt obtained after the heavy oil raw material is subjected to solvent deasphalting treatment in it.
  • the first reaction unit is kept in fluid communication with the first reaction unit, and is used to introduce the deoiled asphalt obtained after the heavy oil raw material is subjected to solvent deasphalting treatment in it.
  • the first reaction unit is kept in fluid communication with the first reaction unit, and is used to introduce the deoiled asphalt obtained after the heavy oil raw material is subjected to solvent deasphalting treatment in it.
  • the second reaction unit is a hydrocracking unit.
  • the second reaction unit is a catalytic cracking unit
  • the catalytic cracking unit is a fluidized catalytic cracking unit
  • the second reaction unit is a diesel hydro-upgrading unit.
  • the solvent deasphalting unit is used for solvent deasphalting the heavy feedstock oil to obtain deoiled asphalt and deasphalted oil;
  • the third hydrogenation unit is in fluid communication with the solvent deasphalting unit, and the third hydrogenation unit is a fixed bed hydrogenation unit for deasphalting from the solvent deasphalting unit
  • the oil undergoes hydrogenation reaction in it;
  • a DCC unit which is kept in fluid communication with the third hydrogenation unit, and is used for reacting the liquid phase effluent obtained in the third hydrogenation unit therein to obtain propylene, LCO, HCO and oil slurry;
  • a fourth hydrogenation unit which is in fluid communication with the DCC unit, and is used to demetallize the oil slurry obtained in the DCC unit to obtain a demetalized oil slurry;
  • the first hydrogenation unit, the first hydrogenation unit is a fixed bed hydrogenation unit or a moving bed hydrogenation unit, the first hydrogenation unit and the DCC unit, the fourth hydrogenation unit and the solvent dehydration unit
  • the bitumen unit is kept in fluid communication for converting the demetalized oil slurry from the fourth hydrogenation unit and/or the oil slurry from the DCC unit and the deoiled bitumen from the solvent deasphalting unit therein reaction;
  • a separation unit which is kept in fluid communication with the first hydrogenation unit and the DCC unit, respectively, for fractionating the liquid phase effluent from the first hydrogenation unit and capable of separating the The first light component obtained in the unit is recycled back to the DCC unit;
  • a second reaction unit which is kept in fluid communication with the separation unit, and is used for reacting the first light component obtained in the separation unit therein, and the second reaction unit is selected from hydrocracking At least one of a unit, a catalytic cracking unit, and a diesel hydro-upgrading unit;
  • a delayed coking unit which is kept in fluid communication with the separation unit, and is used for reacting the first heavy component obtained in the separation unit to obtain a coking gasoline, coking diesel, coking wax oil, and low-carbon coking oil. At least one product of sulfur petroleum coke;
  • An outlet which is kept in fluid communication with the separation unit, and is used to draw the first heavy component obtained from the separation unit as a low-sulfur marine fuel oil component out of the system.
  • the delayed coking unit maintains fluid communication with the first hydrogenation unit, and is used to circulate the coking diesel oil and/or the coking wax oil obtained in the delayed coking unit back to the first hydrogenation unit. In the hydrogenation unit.
  • the system includes:
  • Solvent deasphalting unit which is used for solvent deasphalting heavy feedstock oil to obtain deoiled asphalt and deasphalted oil;
  • the third hydrogenation unit is in fluid communication with the solvent deasphalting unit, and the third hydrogenation unit is a fixed bed hydrogenation unit for deasphalting from the solvent deasphalting unit
  • the oil undergoes hydrogenation reaction in it;
  • a DCC unit which is kept in fluid communication with the third hydrogenation unit, and is used for reacting the liquid phase effluent obtained in the third hydrogenation unit therein to obtain propylene, LCO, HCO and oil slurry;
  • the first hydrogenation unit, the first hydrogenation unit is a fixed bed hydrogenation unit or a moving bed hydrogenation unit, and the first hydrogenation unit is kept in fluid communication with the DCC unit and the solvent deasphalting unit for Carrying out a conversion reaction between the LCO and/or HCO from the DCC unit and the deoiled asphalt from the solvent deasphalting unit;
  • a separation unit which is kept in fluid communication with the first hydrogenation unit and the DCC unit, respectively, for fractionating the liquid phase effluent from the first hydrogenation unit and capable of separating the The first light component obtained in the unit is recycled back to the DCC unit;
  • the second reaction unit which is kept in fluid communication with the separation unit, and is used for reacting the first light component obtained in the separation unit to obtain a gasoline component, a diesel fraction, and BTX. At least one product among the raw material components;
  • a delayed coking unit which is kept in fluid communication with the separation unit, and is used for reacting the first heavy component obtained in the separation unit to obtain a coking gasoline, coking diesel, coking wax oil, and low-carbon coking oil. At least one product of sulfur petroleum coke;
  • An outlet which is kept in fluid communication with the separation unit, and is used to lead the first heavy component obtained from the separation unit out of the system as a low-sulfur marine fuel oil component.
  • the DCC unit is in fluid communication with the solvent deasphalting unit, and is used to circulate the oil slurry obtained in the DCC unit back to the solvent deasphalting unit for solvent deasphalting treatment.
  • the system includes:
  • a fifth reaction unit which is used to hydrogenate and fractionate the aromatic-rich distillate oil therein to obtain the second light component and the second heavy component;
  • the first reaction unit the first reaction unit is a fixed bed hydrogenation unit and is in fluid communication with the fifth reaction unit, and is used to combine deoiled asphalt with the second heavy component from the fifth reaction unit.
  • the aromatics stream undergoes hydrogenation reaction in it;
  • a separation unit which is kept in fluid communication with the first reaction unit, and is used for fractionating the liquid phase product from the first reaction unit;
  • a second reaction unit which is kept in fluid communication with the separation unit, and is used for reacting the first light component obtained in the separation unit therein, and the second reaction unit is selected from hydrocracking At least one of a unit, a catalytic cracking unit, and a diesel hydro-upgrading unit;
  • a delayed coking unit which is kept in fluid communication with the separation unit, and is used for reacting the first heavy component obtained in the separation unit to obtain a coking gasoline, coking diesel, coking wax oil, and low-carbon coking oil. At least one product of sulfur petroleum coke;
  • An outlet which is kept in fluid communication with the separation unit, and is used to draw the first heavy component obtained from the separation unit as a low-sulfur marine fuel oil component out of the system.
  • the delayed coking unit is kept in fluid communication with the first reaction unit for recycling the coking diesel oil and/or the coking wax oil obtained in the delayed coking unit back to the first reaction unit As at least part of the aromatic hydrocarbon-containing stream.
  • the system further includes a solvent deasphalting unit, which is kept in fluid communication with the first reaction unit, and is used for solvent deasphalting the heavy oil feedstock therein, and deasphalting the solvent.
  • the deoiled asphalt obtained after the treatment is introduced into the first reaction unit.
  • the second reaction unit is a hydrocracking unit.
  • the second reaction unit is a catalytic cracking unit
  • the catalytic cracking unit is a fluidized catalytic cracking unit
  • the second reaction unit is a diesel hydro-upgrading unit.
  • the system includes:
  • Solvent deasphalting unit which is used for solvent deasphalting heavy feedstock oil to obtain deoiled asphalt and deasphalted oil;
  • a sixth hydrogenation unit which is in fluid communication with the solvent deasphalting unit, and the sixth hydrogenation unit is a fixed bed hydrogenation unit for deasphalting from the solvent deasphalting unit
  • the oil undergoes hydrogenation reaction in it;
  • a DCC unit which is kept in fluid communication with the sixth hydrogenation unit, and is used to react the liquid phase effluent obtained in the sixth hydrogenation unit therein to obtain propylene, LCO, HCO and oil slurry;
  • the fifth hydrogenation unit which is kept in fluid communication with the DCC unit, and is used to hydrogenate and fractionate the aromatic-rich distillate oil containing the LCO and/or the HCO therein to obtain the first Second light component and second heavy component;
  • the first reaction unit which is a fixed-bed hydrogenation unit and is in fluid communication with the fifth hydrogenation unit and the solvent deasphalting unit, respectively, for deoiling from the solvent deasphalting unit Pitch and the aromatics-containing stream containing the second heavy component from the fifth hydrogenation unit undergo hydrogenation reaction therein;
  • a separation unit which is kept in fluid communication with the first reaction unit and the DCC unit, respectively, and is used for fractionating the liquid phase product from the first reaction unit therein, and can obtain the result from the separation unit
  • a second reaction unit which is kept in fluid communication with the separation unit, and is used for reacting the first light component obtained in the separation unit therein, and the second reaction unit is selected from hydrocracking At least one of a unit, a catalytic cracking unit, and a diesel hydro-upgrading unit;
  • a delayed coking unit which is kept in fluid communication with the separation unit, and is used for reacting the first heavy component obtained in the separation unit to obtain a coking gasoline, coking diesel, coking wax oil, and low-carbon coking oil. At least one product of sulfur petroleum coke;
  • An outlet which is kept in fluid communication with the separation unit, and is used to draw the first heavy component obtained from the separation unit as a low-sulfur marine fuel oil component out of the system.
  • the delayed coking unit is kept in fluid communication with the first reaction unit for recycling the coking diesel oil and/or the coking wax oil obtained in the delayed coking unit back to the fifth hydrogenation Unit.
  • the second reaction unit is a hydrocracking unit.
  • the second reaction unit is a catalytic cracking unit
  • the catalytic cracking unit is a fluidized catalytic cracking unit
  • the second reaction unit is a diesel hydro-upgrading unit.
  • the present invention uses organic combination of solvent deasphalting, heavy oil hydrogenation, hydrocracking or catalytic cracking or coking, etc., not only makes light petroleum fractions High-value utilization, and convert low-value DOA into low-sulfur ship fuel components and low-sulfur petroleum coke raw materials that meet environmental protection requirements, thereby realizing the efficient, environmentally friendly and comprehensive utilization of heavy petroleum resources.
  • results in Table 2 in the following examples are the average values of the results obtained by sampling and testing every 25 hours during the continuous operation of the device for 100 hours.
  • Catalytic cracking catalyst MLC-500, RS-2100 hydrofining catalyst, RHC-131 hydrocracking catalyst, RG-30B, RDM-33B and RCS-31 are all catalysts produced by Sinopec Catalyst Co., Ltd. Changling Branch.
  • the normal temperature mentioned below means 25 ⁇ 3°C.
  • Preparation of rich ore precursor material 1 Select 2000g of RPB110 pseudo-boehmite produced by Changling Branch of Sinopec Catalyst Co., Ltd., of which 1000g is treated at 550°C for 2h to obtain about 700g of alumina, and about 700g of alumina and another 1000g of pseudoboehmite are selected.
  • the boehmite is thoroughly mixed, then 40g sesame powder and 20g citric acid are added, and 2200g deionized water is added, kneaded and extruded, and dried at 300°C for 3h to obtain about 1730g carrier.
  • Preparation of rich ore precursor material 2 select 2000g of RPB110 pseudo-boehmite produced by Changling Branch of Sinopec Catalyst Co., Ltd., add 30g of sesame powder and 30g of citric acid, and add 2400g of deionized water, knead and extrude into After drying at 120°C for 5 hours to obtain about 2040g carrier, add 2200mL solution containing Mo and Ni for saturated impregnation. The Mo content in the solution is 7.5% by weight of MoO 3 and the Ni content is 1.7% by weight of NiO. Impregnation for half an hour, Afterwards, it was treated at 200°C for 3 hours to obtain rich ore precursor material 2, whose properties are shown in Table I-5.
  • Preparation of rich ore precursor material 3 select 2000g of commercially available silicon oxide, add 30g of sesame powder and 30g of sodium hydroxide, and add 2400g of deionized water, knead and extrude, dry at 120°C for 5h to obtain a carrier, add 2200mL solution containing Mo and Ni is saturated immersed, the Mo content in the solution is 4.5% by weight of MoO 3 , Ni content is 1.0% by weight of NiO, immersed for half an hour, and then treated at 200°C for 3 hours to obtain a rich ore precursor Material 3, the properties are shown in Table I-5.
  • the solvent deasphalting is carried out with the Middle East vacuum residue as the raw material.
  • the solvent used is a hydrocarbon mixture mainly containing butane (75% by mass butane content) and a small amount of propane and pentane.
  • Raw materials The DOA and LCO in Example IB are mixed according to a mass ratio of 1:10.
  • the mixed raw materials are liquid at room temperature.
  • the properties of the mixed raw materials are shown in Table I-1.
  • the first reaction unit the mixed raw materials are tested on a medium-sized fixed-bed heavy oil hydrotreating unit.
  • the reactor of the first reaction unit is filled with RG-30B protective catalyst, rich ore precursor material 1, rich ore precursor material 2, RDM-33B residue demetallization and desulfurization transition catalyst, and RCS-31 desulfurization catalyst.
  • the operating conditions of the fixed bed heavy oil hydrotreating are: temperature 380°C, reaction pressure 16MPa, liquid hourly volumetric space velocity 0.18h -1 , hydrogen/oil ratio (volume): 1000:1.
  • the product properties are shown in Table I-2.
  • the hydrocracking process conditions are as follows: the refining section temperature is 370°C, the cracking section temperature is 385°C, the reaction pressure is 7MPa, the liquid hourly volumetric space velocity is 2.0h -1 , the hydrogen/oil volume ratio: 1200:1, the resulting hydrocracked gasoline product The properties are shown in Table I-4.
  • Raw materials The DOA and HCO in Example IB are mixed according to a mass ratio of 5:10.
  • the mixed raw materials are liquid at room temperature.
  • the properties of the mixed raw materials are shown in Table I-1.
  • the first reaction unit the mixed raw materials are tested on a medium-sized fixed-bed heavy oil hydrotreating device.
  • the catalyst filling and process conditions are the same as the fixed-bed heavy oil hydrotreating catalyst filling and process conditions in Example I-1. After hydroprocessing, The properties of the products are shown in Table I-2.
  • Second reaction unit the first light component below 378°C was tested on a fixed-bed hydrocracking unit.
  • the catalyst and test conditions were the same as those in the first light component hydrocracking test below 335°C in Example I-1.
  • the properties of hydrocracking products are shown in Table I-4.
  • Raw materials The DOA and LCO in Example IB are mixed according to a mass ratio of 10:10.
  • the mixed raw materials are liquid at room temperature.
  • the properties of the mixed raw materials are shown in Table I-1.
  • the first reaction unit the mixed raw materials are tested on a medium-sized fixed-bed heavy oil hydrotreating device.
  • the catalyst filling and process conditions are the same as the fixed-bed heavy oil hydrotreating catalyst filling and process conditions in Example I-1. After hydroprocessing, The properties of the products are shown in Table I-2.
  • Second reaction unit the first light component below 350°C is tested on a fixed bed hydrocracking unit.
  • the catalyst and test conditions are the same as those of the first light component below 335°C hydrocracking test in Example I-1.
  • the properties of hydrocracking products are shown in Table I-4.
  • Raw materials The DOA and coal tar I in Example IB are mixed according to a mass ratio of 15:10.
  • the mixed raw materials are liquid at room temperature.
  • the properties of the mixed raw materials are shown in Table I-1.
  • the first reaction unit the mixed raw materials are tested on a medium-sized fixed-bed heavy oil hydrotreating device.
  • the catalyst filling and process conditions are the same as the fixed-bed heavy oil hydrotreating catalyst filling and process conditions in Example I-1. After hydroprocessing, The properties of the products are shown in Table I-2.
  • Second reaction unit the first light component below 355°C was tested on a fixed-bed hydrocracking unit.
  • the catalyst and test conditions were the same as the first light component hydrocracking test below 335°C in Example I-1.
  • the properties of hydrocracking products are shown in Table I-4.
  • Example I-B The DOA and LCO in Example I-B are mixed according to a mass ratio of 10:10, the mixed raw materials are liquid at room temperature, and the properties of the mixed raw materials are shown in Table I-1.
  • the fixed bed reaction temperature was increased by 3°C, and the hydrogenation test was stopped after a total of 300 days of operation.
  • the sulfur mass fraction of the hydrogenated oil was between 0.46 and 0.50%, and the vanadium content was between 10-15 ⁇ g/g.
  • the rich ore precursor material 1 and rich ore precursor material 2 initially loaded into the reactor become V-rich material 1 and vanadium-rich material 2 after the reaction. After roasting analysis, their V content is 55% by mass and 45% by mass, respectively. High-quality material of high-value V 2 O 5.
  • the first heavy component greater than or equal to 350°C in Example I-3 is introduced into the delayed coking unit for coking treatment.
  • the conditions in the delayed coking unit include: a reaction temperature of 490°C and a residence time of 1.5h.
  • the mass yield of the obtained low-sulfur petroleum coke is 28.7%, and the mass fraction of the petroleum coke sulfur is 2.7%.
  • the first light component below 350°C in Example I-3 was subjected to a catalytic cracking test in a small catalytic cracking fixed fluidized bed test device.
  • the catalyst used was the catalytic cracking catalyst MLC-500; the conditions of the fluidized catalytic unit included: reaction The temperature is 540°C, the agent-oil ratio is 6, and the residence time is 3s.
  • the product gasoline quality yield was 55.2%
  • the gasoline RON octane number was 95.8.
  • the mixed raw materials are the same as in Example I-3.
  • the first reaction unit similar to the example I-3, the difference is that the catalyst filling is different.
  • the operating conditions of the fixed bed heavy oil hydrotreating are the same as in Example I-3.
  • the reaction temperature is increased by 3°C every 30 days.
  • the hydrogenation test runs for a total of 330 days and then stops running.
  • the sulfur content of the hydrogenated oil is between 0.55 and 0.65%, and the vanadium content is Between 4-7 ⁇ g/g.
  • the rich ore precursor material 1 and rich ore precursor material 2 initially loaded into the reactor become vanadium-rich material 1 and vanadium-rich material 2 after the reaction. After roasting analysis, the vanadium content is 58% by mass and 47% by mass, respectively. High-quality material of high-value V 2 O 5.
  • the mixed raw materials are the same as in Example I-3.
  • the first reaction unit similar to that in Example I-3, except that the catalyst loading is different.
  • the operating conditions of the fixed bed heavy oil hydrotreating are the same as in Example I-3.
  • the reaction temperature of the fixed bed reactor is increased by 3°C every 30 days.
  • the sulfur content of the hydrogenated oil is between 0.56 and 0.68% ,
  • the vanadium content is between 2-4 ⁇ g/g.
  • the ore-rich precursor material 1 initially loaded into the reactor becomes the vanadium-rich material 1 after the reaction, and its vanadium content is 61% by mass after roasting analysis, which is a high-quality material for refining high-value V 2 O 5.
  • Raw materials The DOA and LCO in Example IB and coal tar II (obtained in Example I-7) are mixed according to a mass ratio of 15:5:5.
  • the mixed raw materials are liquid at room temperature.
  • the properties of the mixed raw materials are shown in Table I -1.
  • the first reaction unit the mixed raw materials are tested on a medium-sized fixed-bed heavy oil hydrotreating device.
  • the catalyst filling and process conditions are the same as the fixed-bed heavy oil hydrotreating catalyst filling and process conditions in Example I-1. After hydroprocessing, The properties of the products are shown in Table I-2.
  • Second reaction unit the first light component below 355°C was tested on a fixed-bed hydrocracking unit.
  • the catalyst and test conditions were the same as the first light component hydrocracking test below 335°C in Example I-1.
  • the properties of hydrocracking products are shown in Table I-4.
  • Raw materials The DOA and QY1 in Example IB are mixed with a mass ratio of 1:10.
  • the mixed raw materials are liquid at room temperature.
  • the properties of the mixed raw materials are shown in Table I-1.
  • the first reaction unit the mixed raw materials are tested on a medium-sized fixed-bed heavy oil hydrotreating device.
  • the catalyst filling and process conditions are the same as the fixed-bed heavy oil hydrotreating catalyst filling and process conditions in Example I-1. After hydroprocessing, The properties of the products are shown in Table I-2.
  • Second reaction unit the first light component below 350°C is tested on a fixed bed hydrocracking unit.
  • the catalyst and test conditions are the same as those of the first light component below 335°C hydrocracking test in Example I-1.
  • the properties of hydrocracking products are shown in Table I-4.
  • Raw materials The DOA and QY2 in Example IB are mixed at a mass ratio of 2:10.
  • the mixed raw materials are liquid at room temperature.
  • the properties of the mixed raw materials are shown in Table I-1.
  • the first reaction unit the mixed raw materials are tested on a medium-sized fixed-bed heavy oil hydrotreating device.
  • the catalyst filling and process conditions are the same as the fixed-bed heavy oil hydrotreating catalyst filling and process conditions in Example I-1. After hydroprocessing, The properties of the products are shown in Table I-2.
  • Second reaction unit the first light component below 335°C was tested on a fixed bed hydrocracking unit.
  • the catalyst and test conditions were the same as the first light component hydrocracking test below 335°C in Example I-1.
  • the properties of hydrocracking products are shown in Table I-4.
  • the mixed raw materials are the same as in Example I-1.
  • the first reaction unit similar to that in Example I-1, except that the catalyst filling is different.
  • the mixed raw materials are the same as in Example I-1.
  • the first reaction unit similar to the example I-1, the difference is that the catalyst filling is different.
  • the reactor of the first reaction unit is first filled with the ore-rich precursor material 2 , After filling the rich ore precursor material 1, that is:
  • the reactor of the first reaction unit is filled with RG-30B protection catalyst, rich ore precursor material 2, rich ore precursor material 1, RDM-33B residue demetallization desulfurization transition catalyst, and RCS-31 desulfurization catalyst.
  • the mixed raw materials are the same as in Example I-1.
  • the first reaction unit similar to Example I-1, except that the catalyst filling is different.
  • the mixed raw materials are the same as in Example I-1.
  • the first reaction unit similar to Example I-1, except that the catalyst filling is different.
  • Example IB The DOA and QY3 in Example IB are mixed with a mass ratio of 3:10. DOA cannot be completely dissolved at 100°C, that is, the resulting mixture is non-liquid.
  • the properties of the mixed raw materials are shown in Table I-1.
  • Example I-1 84.12 0.7256 95 5.9
  • Example I-2 82.04 0.7323 92 6.6
  • Example I-3 79.11 0.7494 90 7.3
  • Example I-4 75.36 0.7792 89 9.1
  • Example I-11 74.21 0.7782 88 9.3
  • Example I-12 81.30 0.7488 94 7.0
  • Example I-13 78.33 0.7603 92 9.5
  • Example I-14 84.01 0.7266 95 6.0
  • Example I-15 83.98 0.7260 95 6.1
  • Example I-16 84.05 0.7271 95 6.3
  • Example I-17 83.84 0.7310 95 6.9
  • Raw materials The DOA and LCO in Example IB are mixed according to a mass ratio of 1:10.
  • the mixed raw materials are liquid at room temperature.
  • the properties of the mixed raw materials are shown in Table II-1.
  • the first reaction unit the mixed raw materials are tested on a medium-sized moving bed-fixed bed heavy oil hydrotreating unit.
  • the moving bed reactor is filled with rich ore precursor material 1, according to the flow direction of the reactants
  • the operating conditions of hydroprocessing are: pressure 16MPa, space velocity 0.18h -1 , hydrogen/oil ratio (volume): 1000:1, among which the hydrogenation temperature of the moving bed reactor is 385°C, and the fixed bed reactor is hydrogenated.
  • the reaction temperature is 370°C.
  • the hydrocracking process conditions are as follows: refining section temperature 370°C, cracking section 385°C, pressure 7MPa, space velocity 2.0h -1 , hydrogen/oil (volume): 1200:1, the properties of the obtained hydrocracked gasoline products are shown in Table II -4.
  • Raw materials The DOA and HCO in Example IB are mixed according to a mass ratio of 5:10.
  • the mixed raw materials are liquid at room temperature.
  • the properties of the mixed raw materials are shown in Table II-1.
  • the first reaction unit the mixed raw materials are tested on a medium-sized moving bed-fixed bed heavy oil hydrotreating device.
  • the catalyst filling and process conditions are the same as those in Example II-1. After hydrotreating, the product properties are shown in Table II-2.
  • Second reaction unit the first light component is tested on a fixed-bed hydrocracking unit with a temperature of less than 378°C.
  • the catalyst and test conditions are the same as the first light component hydrocracking test in Example II-1, and the hydrocracked product is obtained. , The properties are shown in Table II-4.
  • the solvent deasphalting is carried out with the Middle East vacuum residue as the raw material.
  • the solvent used is a hydrocarbon mixture with butane as the main material (butane content is 75% by mass) and a small amount of propane and pentane.
  • Example III- The DAO and DOA used in Example III- are all derived from Example III-A.
  • the properties of DAO and DOA are shown in Table III-1.
  • the operating conditions of the DCC unit are: reaction temperature 410°C, agent-to-oil ratio 3, residence time 5s; DCC unit obtains LCO1 (see Table III-6 for properties), HCO1 and slurry 1.
  • the oil slurry 1 obtained from the DCC unit is passed through the fourth hydrogenation unit (fixed bed residue hydrogenation unit) to obtain the demetallized oil slurry 1.
  • the properties are shown in Table III-1.
  • DOA and demetallized oil slurry 1 are mixed according to the mass ratio of 1:10, and the mixed raw materials (see Table III-2 for properties) are hydrotreated by the first hydrogenation unit (fixed bed residue hydrotreating unit), and the product properties are shown in Table III-3.
  • the first light component below 350°C was tested on a fixed-bed hydrocracking unit to obtain hydrocracking products.
  • the properties are shown in Table III-5.
  • the operating conditions of the DCC unit are: reaction temperature of 420°C, agent-to-oil ratio of 3, and residence time of 5s; the DCC unit obtains LCO2, HCO2 and slurry 2.
  • the oil slurry 2 obtained from the DCC unit is passed through the fourth hydrogenation unit (fixed bed residue hydrogenation unit) to obtain the demetallized oil slurry 2, and the properties are shown in Table III-1.
  • DOA and demetallized oil slurry 2 are mixed according to the mass ratio of 5:10, and the mixed raw materials (see Table III-2 for properties) are hydrotreated by the first hydrogenation unit (fixed bed residue hydroprocessing unit), and the product properties are shown in Table III-3.
  • the first light component below 350°C was tested on a fixed bed hydrocracking unit to obtain hydrocracking products.
  • the properties are shown in Table III-5.
  • the operating conditions of the DCC unit are: reaction temperature 440°C, agent-to-oil ratio 3, residence time 5s; DCC unit obtains LCO3, HCO3 and oil slurry 3.
  • the oil slurry 3 obtained from the DCC unit is passed through the fourth hydrogenation unit (fixed bed residue hydrogenation unit) to obtain the demetallized oil slurry 3, and the properties are shown in Table III-1.
  • DOA and demetallized oil slurry 3 are mixed at a mass ratio of 10:10.
  • the mixed raw materials (see Table III-2 for properties) are hydrotreated by the first hydrogenation unit (fixed bed residue hydroprocessing unit), and the product properties are shown in Table III-3.
  • the first light component below 350°C was tested on a fixed-bed hydrocracking unit to obtain hydrocracking products.
  • the properties are shown in Table III-5.
  • DOA from Example III-A was mixed with the demetallized slurry 1 at a mass ratio of 15:10, and the mixed raw materials (see Table III-2 for properties) were passed through the first hydrogenation unit (moving bed residue hydrotreating unit) After hydroprocessing, the product properties are shown in Table III-3.
  • the first light component below 350°C was tested on a fixed-bed hydrocracking unit to obtain hydrocracking products.
  • the properties are shown in Table III-5.
  • DOA from Example III-A
  • LCO1, HCO1, and demetallized slurry 1 according to a mass ratio of 1:3:3:4, and the mixed raw materials (see Table III-2 for properties) are passed through the first hydrogenation unit (fixed (Bed Residue Hydrotreating Unit) After hydrotreating, the product properties are shown in Table III-3.
  • the first light component below 350°C was tested on a fixed-bed hydrocracking unit to obtain hydrocracking products.
  • the properties are shown in Table III-5.
  • Example III-1 The first heavy component obtained in Example III-1 is introduced into the delayed coking unit for reaction to obtain coking gasoline.
  • the operating conditions of the delayed coking unit are: the reaction temperature is 490°C, and the residence time is 1.5h.
  • Example III-1 It is carried out according to the similar process of Example III-1, except that the obtained first heavy component is introduced into the delayed coking unit for reaction to obtain coking gasoline, coking diesel and coking wax oil.
  • the operating conditions of the delayed coking unit are: the reaction temperature is 500°C, and the residence time is 1.2h.
  • the operating conditions of the first hydrogenation unit in this embodiment III- are the same as those of embodiment III-1.
  • the first light component below 350°C was tested on a fixed-bed hydrocracking unit to obtain hydrocracking products.
  • the properties are shown in Table III-5.
  • Example III-1 The first light component below 350°C obtained in Example III-1 was tested on a fixed bed hydrocracking unit to obtain a diesel component.
  • the catalysts used are RS-2100 hydrorefining catalyst and RHC-131 hydrocracking catalyst produced by Changling Branch of Sinopec Catalyst Co., Ltd.
  • the hydrocracking process conditions are as follows: the temperature of the refining section is 370°C, the temperature of the cracking section is 385°C, the reaction pressure is 7MPa, The hourly volumetric space velocity is 2.0h -1 , the hydrogen/oil volume ratio: 1200:1, and the properties of the obtained hydrocracking products are shown in Table III-4.
  • the first light component below 350°C was tested on a fixed-bed hydrocracking unit to obtain hydrocracking products.
  • the properties are shown in Table III-5.
  • Example III-The DOA used in Example III-A is obtained from Example III-A.
  • the DOA is mixed with the light oil product QY1 of the refinery and the demetallized oil slurry 1 according to the mass ratio of 1:5:5, and the mixed raw materials (see table for properties) III-2)
  • the first hydrogenation unit fixed bed residue hydroprocessing unit
  • Table III-3 After the first hydrogenation unit (fixed bed residue hydroprocessing unit) is hydrotreated, the product properties are shown in Table III-3.
  • the first light component below 350°C was tested on a fixed-bed hydrocracking unit to obtain hydrocracking products.
  • the properties are shown in Table III-5.
  • Example III-The DOA used in Example III-A is obtained from Example III-A.
  • the DOA is mixed with the refinery light oil product QY2 and the demetallized oil slurry 1 according to the mass ratio of 2:5:5, and the mixed raw materials (see table for properties) III-2)
  • the first hydrogenation unit fixed bed residue hydroprocessing unit
  • Table III-3 the product properties are shown in Table III-3.
  • the first light component below 350°C was tested on a fixed-bed hydrocracking unit to obtain hydrocracking products.
  • the properties are shown in Table III-5.
  • Example III- The DOA used in Example III- is derived from Example III-A, and DOA and the filtered oil slurry 1 (solid content of 5 ⁇ g/g) are mixed in a mass ratio of 1:10.
  • the first light component below 350°C was tested on a fixed-bed hydrocracking unit to obtain hydrocracking products.
  • the properties are shown in Table III-5.
  • Example III- was carried out using a method similar to that of Example III-1, except that in this Example III-, the first light component of less than 350°C was recycled back to the DCC unit with a recycle ratio of 0.1.
  • the DCC unit obtains LCO13, HCO13 and oil slurry 13.
  • the oil slurry 13 obtained from the DCC unit passes through the fourth hydrogenation unit (fixed bed residue hydrogenation unit) to obtain the demetallized oil slurry 13, whose properties are shown in Table III-1.
  • DOA and demetallized oil slurry 13 are mixed according to the mass ratio of 1:10, and the mixed raw materials (see Table III-2 for properties) are hydrotreated by the first hydrogenation unit (fixed bed residue hydroprocessing unit), and the product properties are shown in Table III-3.
  • the first light component below 350°C was tested on a fixed-bed hydrocracking unit to obtain hydrocracking products.
  • the properties are shown in Table III-5.
  • the catalyst and device are the same as in Example III-1.
  • DOA (from Example III-A) is mixed with refinery light oil product QY3 and demetallized oil slurry 1 in a mass ratio of 3:5:5, and DOA cannot be completely dissolved at 100°C.
  • Table III-1 DOA, DAO and the properties of liquid products after treatment by the third hydrogenation unit
  • Liquid phase product 1 Table III-shows: the liquid phase product after the third hydrogenation unit hydrotreating.
  • Table III-2 (Continued Table III-): Properties of mixed raw materials
  • Table III-3 Product properties after hydrotreating of fixed bed/moving bed residue in the first hydrogenation unit
  • Example III-1 0.72 ⁇ 10 >92
  • Example III-2 0.72 ⁇ 10 >92
  • Example III-3 0.72 ⁇ 10 >92
  • Example III-4 0.72 ⁇ 10 >92
  • Example III-5 0.72 ⁇ 10 >92
  • Example III-9 0.72 ⁇ 10 >92
  • Example III-10 0.72 ⁇ 10 >92
  • Example III-11 0.71 ⁇ 10 >92
  • Example III-12 0.72 ⁇ 10 >92
  • Example III-13 0.71 ⁇ 10 >92
  • Example IV- The DAO and DOA used in Example IV- are all derived from Example IV-A.
  • the properties of DAO and DOA are shown in Table IV-1.
  • the operating conditions of the DCC unit are: reaction temperature 410°C, agent-to-oil ratio 3.0, residence time 3s; DCC unit obtains LCO1 (see Table IV-6 for properties), HCO1 (see Table IV-6 for properties) and slurry 1.
  • DOA and LCO1 are mixed at a mass ratio of 1:10, and the mixed raw materials (see Table IV-2 for properties) are hydrotreated by the second hydrogenation (fixed bed residue hydroprocessing unit), and the product properties are shown in Table IV-3.
  • the first light component below 350°C was tested on a fixed-bed hydrocracking unit to obtain hydrocracking products.
  • the properties are shown in Table IV-5.
  • the operating conditions of the DCC unit are: reaction temperature 420°C, catalyst-oil ratio 3.0, residence time 3s; DCC unit obtains LCO2 (see Table IV-6 for properties), HCO2 and slurry 2.
  • DOA and LCO2 are mixed at a mass ratio of 5:10, and the mixed raw materials (see Table IV-2 for properties) are hydrotreated by the first hydrogenation unit (fixed bed residue hydroprocessing unit), and the product properties are shown in Table IV-3.
  • the first light component below 350°C was tested on a fixed-bed hydrocracking unit to obtain hydrocracking products.
  • the properties are shown in Table IV-5.
  • Table IV-1 DOA, DAO and the properties of liquid products after treatment by the third hydrogenation unit
  • Liquid phase product 1 Table IV-shows: the liquid phase product after the third hydrogenation unit hydrotreating.
  • Example IV-2 Mixed raw materials To To species DOA: LCO1 DOA: LCO2 Mass ratio 1:10 5:10 20°C state Liquid Liquid C 7 insoluble matter/mass% 3.1 10.4 Residual carbon, mass% 4.54 9.5 Sulfur, mass% 1.33 2.56 Viscosity (100°C), (mm 2 /s) 1.7 3.45 Ni+V,( ⁇ g/g) 34.3 109.8
  • Table IV-3 Product properties after hydrotreating of fixed bed/moving bed residue in the first hydrogenation unit
  • Example IV-1 0.72 ⁇ 10 >92
  • Example IV-2 0.72 ⁇ 10 >92
  • the fifth reaction unit the raw material is LCO1 (see Table V-1 for properties), from the catalytic cracking unit of Yangzi Refinery; the fifth reaction unit operating conditions: reaction temperature is 290°C, reaction pressure is 4MPa, liquid hour volume The space velocity is 1h -1 , and the volume ratio of hydrogen to oil is 800:1.
  • the first fractionation the cutting point of the second light component and the second heavy component 1 (see Table V-1 for properties) is 180°C;
  • the first reaction unit raw material DOA (from Iraqi heavy residue reduction) and the second heavy component 1 are mixed at a mass ratio of 1:10, and the properties are shown in Table V-2; medium-sized fixed-bed residue hydrotreating unit, total reactor The volume is 200mL. According to the logistics direction, the first reaction unit is filled with RG-30B protection catalyst, rich ore precursor material 1, rich ore precursor material 2, RDM-33B residue demetallization and desulfurization transition catalyst, and RCS-31 desulfurization catalyst.
  • Table V-3 The properties of the mixed raw materials after hydrogenation are shown in Table V-3.
  • Second fractionation Fractionation of the liquid phase product obtained by the first reaction unit to obtain the first light component less than 350°C and the first heavy component greater than or equal to 350°C.
  • the properties of the first heavy component are shown in Table V-4.
  • the first light component is tested in the second reaction unit.
  • the reaction pressure is 10MPa
  • the liquid hourly volumetric space velocity is 2.0h -1
  • the hydrogen-oil volume ratio is 1200:1
  • the hydrocracking product is obtained, and the properties are shown in Table V-5.
  • the first fractionation the cutting point of the second light component and the second heavy component 2 (see Table V-1 for properties) is 190°C;
  • the first reaction unit raw materials, DOA (from Iraqi heavy slag) and the second heavy component 2 are mixed in a mass ratio of 5:10, and the properties are shown in Table V-2; the processing device and catalyst loading conditions are the same as those in Example V-1 In the same, the operating conditions are: the reaction temperature is 380°C, the reaction pressure is 10MPa, the liquid hourly volumetric space velocity is 0.3h -1 , and the hydrogen-to-oil volume ratio is 800:1.
  • the properties of the mixed raw materials after hydrogenation are shown in Table V-3.
  • Second fractionation Fractionation of the liquid phase product obtained by the first reaction unit to obtain the first light component less than 350°C and the first heavy component greater than or equal to 350°C.
  • the properties of the first heavy component are shown in Table V-4.
  • the first light component is tested in the second reaction unit.
  • the second reaction unit the situation is the same as that in Example V-1, and the hydrocracking product is obtained.
  • the properties are shown in Table V-5.
  • the fifth reaction unit the raw material, the aromatic-rich distillate is LCO1 (see Table V-1 for properties), from the catalytic cracking unit of Yangzi Refinery; the fifth reaction unit operating conditions: reaction temperature is 320°C, reaction pressure is 6MPa, liquid hour The volumetric space velocity is 1h -1 , and the volume ratio of hydrogen to oil is 800:1.
  • the first fractionation the cutting point of the second light component and the second heavy component 3 (see Table V-1 for properties) is 190°C;
  • the first reaction unit raw materials, DOA (from Iraqi heavy slag) and the second heavy component 3 are mixed and formed at a mass ratio of 10:10, and the properties are shown in Table V-2; the processing device and catalyst filling conditions are the same as those in Example V-1 In the same, the operating conditions are: the reaction temperature is 370°C, the reaction pressure is 6MPa, the liquid hourly volumetric space velocity is 0.3h -1 , and the hydrogen-to-oil volume ratio is 800:1.
  • Table V-3 The properties of the mixed raw materials after hydrogenation are shown in Table V-3.
  • Second fractionation Fractionation of the liquid phase product obtained by the first reaction unit to obtain the first light component less than 350°C and the first heavy component greater than or equal to 350°C.
  • the properties of the first heavy component are shown in Table V-4.
  • the first heavy component was subjected to a coking reaction at a reaction temperature of 500° C. and a residence time of 0.5 h to obtain petroleum coke (with a yield of 30% by mass), in which the sulfur content was 2.7% by mass.
  • the first light component is tested in the second reaction unit.
  • the second reaction unit the situation is the same as that in Example V-1, and the hydrocracking product is obtained.
  • the properties are shown in Table V-5.
  • Example V-1 Example V-2
  • Example V-3 Example V-4 20°C state Liquid Liquid Liquid Liquid C 7 insoluble matter, mass% 2.09 7.67 13.50 16.80 Residual carbon, mass% 2.27 8.33 19.50 25.00 Sulfur, mass% 1.4 2.14 3.21 3.85 Viscosity (100°C), (mm 2 /s) 1.9 8.6 35.1 36.0 Ni+V,( ⁇ g/g) twenty three 104 153 195 195
  • Comparative example 1 20°C state Liquid Liquid Liquid C 7 insoluble matter, mass% 2.18 1.99 3.83 Residual carbon, mass% 3.7 2.58 4.17 Sulfur, mass% 1.68 1.55 2.47 Viscosity (100°C), (mm 2 /s) 3.9 3.1 5.6 Ni+V,( ⁇ g/g) 32 25 41
  • Example V-1 0.72 >92 ⁇ 10
  • Example V-2 0.72 >92 ⁇ 10
  • Example V-3 0.72 >92 ⁇ 10
  • solvent deasphalting Use a vacuum residue as a raw material for solvent deasphalting.
  • the solvent used is a hydrocarbon mixture with a butane content of 75% by weight or more.
  • solvent: vacuum residue 2:1 (mass ratio)
  • Solvent deasphalting was carried out under the conditions, the mass yield of DAO was 68%, and the yield of DOA was 32%.
  • Example VI-B The DAO and DOA used in Example VI- are all from Example VI-B.
  • liquid phase products of DAO after hydrogenation in the sixth hydrogenation unit are shown in Table VI-1; the liquid phase products enter the DCC unit for reaction to obtain LCO1 (the final boiling point is 350°C, and the mass percentage of aromatics is 54 %) and HCO1.
  • LCO1 undergoes hydrogenation saturation and fractionation in the fifth hydrogenation unit to obtain the second light component 1 and the second heavy component 1 with a cutting point of 180°C.
  • the operating conditions for the hydrogenation of the fifth hydrogenation unit are: the reaction temperature is At 290°C, the reaction pressure is 4MPa, the liquid hourly volumetric space velocity is 1h -1 , and the hydrogen-to-oil volume ratio is 800:1.
  • the properties of LCO1 and second heavy component 1 are shown in Table VI-2.
  • DOA is mixed with the second heavy component 1 in a mass ratio of 1:10, and the properties of the mixed raw materials are shown in Table VI-3.
  • reaction temperature is 360°C
  • reaction pressure is 8MPa
  • liquid hourly volumetric space velocity is 0.3h -1
  • hydrogen-to-oil volume ratio is 800:1 .
  • the properties of the mixed raw materials after hydrogenation are shown in Table VI-4.
  • the liquid phase product obtained by the fractionation of the first reaction unit has the properties of the first heavy component greater than or equal to 350°C in Table VI-5.
  • the first light component below 350°C is tested in the second reaction unit to obtain the hydrocracking product.
  • the properties are shown in Table VI-6.
  • Example VI-B The DAO and DOA used in Example VI- are all from Example VI-B.
  • liquid phase products of DAO after hydrogenation in the sixth hydrogenation unit are shown in Table VI-1; the liquid phase products enter the DCC unit for reaction to obtain LCO2 and HCO2.
  • HCO2 is hydrogenated and saturated and fractionated in the fifth hydrogenation unit to obtain the second light component 2 and the second heavy component 2 with a cutting point of 180°C.
  • the hydrogenation operation conditions of the fifth hydrogenation unit are: reaction temperature is 330 °C, the reaction pressure is 6MPa, the liquid hourly volumetric space velocity is 1h -1 , and the hydrogen-to-oil volume ratio is 800:1.
  • the properties of HCO2 and the second heavy component 2 are shown in Table VI-2.
  • DOA and the second heavy component 2 are mixed according to the mass ratio of 5:10, and the properties of the mixed raw materials are shown in Table VI-3.
  • reaction temperature is 380°C
  • reaction pressure is 10MPa
  • liquid hourly volumetric space velocity is 0.3h -1
  • hydrogen-to-oil volume ratio is 800:1 .
  • the properties of the mixed raw materials after hydrogenation are shown in Table VI-4.
  • the liquid phase product obtained by the fractionation of the first reaction unit has the properties of the first heavy component greater than or equal to 350°C, as shown in Table VI-5.
  • the first light component below 350°C is tested in the second reaction unit to obtain the hydrocracking product.
  • the properties are shown in Table VI-6.
  • Example VI-B The DAO and DOA used in Example VI- are all from Example VI-B.
  • liquid phase products of DAO after hydrogenation in the sixth hydrogenation unit are shown in Table VI-1; the liquid phase products enter the DCC unit for reaction to obtain LCO1 and HCO1.
  • LCO1 undergoes hydrogenation saturation and fractionation in the fifth hydrogenation unit to obtain the second light component 3 and the second heavy component 3 with a cutting point of 180°C.
  • the hydrogenation operation conditions of the fifth hydrogenation unit are: the reaction temperature is 320 °C, the reaction pressure is 6MPa, the liquid hourly volumetric space velocity is 1h -1 , and the hydrogen-to-oil volume ratio is 800:1.
  • the properties of LCO1 and the properties of the second heavy component 3 are shown in Table VI-2.
  • DOA is mixed with the second heavy component 3 in a mass ratio of 10:10.
  • the properties of the mixed raw materials are shown in Table VI-3.
  • reaction temperature is 370°C
  • reaction pressure is 6MPa
  • liquid hourly volumetric space velocity is 0.3h -1
  • hydrogen-to-oil volume ratio is 800:1 .
  • the properties of the mixed raw materials after hydrogenation are shown in Table VI-4.
  • the liquid phase product obtained by the fractionation of the first reaction unit has the properties of the first heavy component greater than or equal to 350°C, as shown in Table VI-5.
  • the first heavy component was subjected to a coking reaction at a reaction temperature of 500° C. and a residence time of 0.5 h to obtain petroleum coke (yield of 31 mass%) with a sulfur content of 2.6% by mass.
  • the first light component below 350°C is tested in the second reaction unit to obtain the hydrocracking product.
  • the properties are shown in Table VI-6.
  • Example VI-B The DAO and DOA used in Example VI- are all from Example VI-B.
  • liquid phase products of DAO after hydrogenation in the sixth hydrogenation unit are shown in Table VI-1; the liquid phase products enter the DCC unit for reaction to obtain LCO1 and HCO1.
  • the aromatic-rich distillate used in this example VI is coal tar (see Table VI-1 for properties) and LCO1 from a domestic coal coking unit.
  • the mass ratio of LCO1 to coal tar is 1:1.
  • the aromatic-rich distillate is in the first
  • the fifth hydrogenation unit undergoes hydrogenation saturation and fractional distillation to obtain the second light component 4 and the second heavy component 4 with a cutting point of 180°C.
  • the hydrogenation operation conditions of the fifth hydrogenation unit are: the reaction temperature is 300°C, and the reaction The pressure is 10MPa, the liquid hourly volumetric space velocity is 0.8h -1 , and the hydrogen-to-oil volume ratio is 800:1.
  • Table VI-2 The properties of the aromatic-rich distillate oil and the second heavy component 4 are shown in Table VI-2.
  • DOA and the second heavy component 4 are mixed at a mass ratio of 15:10.
  • the properties of the mixed raw materials are shown in Table VI-3.
  • reaction temperature is 350°C
  • reaction pressure is 12MPa
  • liquid hourly volumetric space velocity is 0.3h -1
  • hydrogen-to-oil volume ratio is 800:1 .
  • the properties of the mixed raw materials after hydrogenation are shown in Table VI-4.
  • the liquid phase product obtained by the fractionation of the first reaction unit has the properties of the first heavy component greater than or equal to 350°C, as shown in Table VI-5.
  • the first light component below 350°C is tested in the second reaction unit to obtain the hydrocracking product.
  • the properties are shown in Table VI-6.
  • the liquid phase product obtained by the fractionation of the first reaction unit has the properties of the first heavy component greater than or equal to 350°C, as shown in Table VI-5.
  • Example VI-3 After the same mixed raw materials as in Example VI-3 were hydrotreated by the first reaction unit, the reaction temperature was increased by 3°C every 30 days, and the hydrogenation test was stopped after a total of 360 days of operation.
  • the rich ore precursor material 1 and rich ore precursor material 2 initially loaded into the reactor become V-rich material 1 and vanadium-rich material 2 after the reaction. After roasting analysis, their V content is 56% by mass and 47% by mass, respectively. The content is more than 10 times higher than that of natural ore. It is a high-quality material for refining high-value V 2 O 5.
  • the first light component below 350°C in Example VI-3 was subjected to a catalytic cracking test in a small catalytic cracking fixed fluidized bed test device.
  • the catalyst used was the catalytic cracking catalyst MLC-500 produced by the Changling Branch of Sinopec Catalyst Co., Ltd. ,
  • the reaction temperature is 540°C
  • the agent-oil ratio is 5, and the residence time is 2s.
  • the product gasoline mass yield was 43%, and the gasoline RON octane number was 92.
  • Example VI- The process is similar to that of Example VI-1, except that the first heavy component obtained in Example VI- is introduced into the delayed coking unit for reaction to obtain coking gasoline, coking diesel, and coking wax oil.
  • the sulfur content of coker diesel oil is 0.16% by mass, the freezing point is -13°C, and the cetane number is 49.
  • the operating conditions of the delayed coking unit are: the reaction temperature is 500°C, and the residence time is 0.5h.
  • the sulfur content of the coking wax oil is 0.76% by mass, and the freezing point is 32°C.
  • the yield of coking gasoline was 15%, the sulfur content was 0.08% by mass, and the MON was 60.
  • Example VI-1 The process conditions are the same as in Example VI-1.
  • the properties of the mixed coker diesel, coker wax oil and LCO1 oil and the properties of the second heavy component 8 are shown in Table VI-2.
  • DOA comes from Example VI-B and is mixed with the second heavy component 8 in a mass ratio of 1:10.
  • the properties of the mixed raw materials are shown in Table VI-3.
  • reaction temperature is 360°C
  • reaction pressure is 8MPa
  • liquid hourly volumetric space velocity is 0.3h -1
  • hydrogen-to-oil volume ratio is 800:1 .
  • the properties of the mixed raw materials after hydrogenation are shown in Table VI-4.
  • the first light component below 350°C is tested in the second reaction unit to obtain the hydrocracking product.
  • the properties are shown in Table VI-6.
  • Example VI-1 The first light component below 350°C obtained in Example VI-1 was tested on a diesel hydro-upgrading device to obtain a diesel component.
  • the operating conditions of the diesel hydro-upgrading device are: the reaction temperature is 350°C, the reaction pressure is 7MPa, the hydrogen-to-oil volume ratio is 800, and the liquid hourly volumetric space velocity is 1.0h -1 .
  • the obtained diesel component had a sulfur content of 9 ppm, a freezing point of -32°C, and a cetane number of 51.9.
  • Example VI- The process is similar to that in Example VI-1, except that the catalyst filling in the first reaction unit in Example VI- is as follows:
  • the order of catalyst loading is the hydrogenation protection catalyst, the rich ore precursor material 1, the hydrodemetalization desulfurization catalyst, and the hydrodesulfurization catalyst.
  • the liquid phase product obtained by the fractionation of the first reaction unit has the properties of the first heavy component greater than or equal to 350°C in Table VI-5.
  • the first light component below 350°C is tested in the second reaction unit to obtain the hydrocracking product.
  • the properties are shown in Table VI-6.
  • Example VI- The process is similar to that in Example VI-1, except that the catalyst filling in the first reaction unit in Example VI- is as follows:
  • the order of catalyst loading is the hydrogenation protection catalyst, the rich ore precursor material 2, the rich ore precursor material 1, the hydrodemetalization desulfurization catalyst, and the hydrodesulfurization catalyst.
  • the liquid phase product obtained by the fractionation of the first reaction unit has the properties of the first heavy component greater than or equal to 350°C, as shown in Table VI-5.
  • the first light component below 350°C was tested in the second reaction unit to obtain hydrocracking products.
  • the properties are shown in Table VI-6.
  • Example VI- The process is similar to that in Example VI-1, except that the catalyst filling in the first reaction unit in Example VI- is as follows:
  • the order of catalyst loading is: hydrodesulfurization catalyst, hydrodesulfurization catalyst, hydrodesulfurization catalyst.
  • the liquid phase product obtained by the fractionation of the first reaction unit has the properties of the first heavy component greater than or equal to 350°C, as shown in Table VI-5.
  • the first light component below 350°C was tested in the second reaction unit to obtain the hydrocracking product.
  • the properties are shown in Table VI-6.
  • Example VI- The process is similar to that of Example VI-1, except that the catalyst filling in the first reaction unit in Example VI- is as follows:
  • the order of catalyst loading is: hydrogenation protection catalyst, rich ore precursor material 3, hydrodemetalization desulfurization catalyst, and hydrodesulfurization catalyst.
  • the liquid phase product obtained by the fractionation of the first reaction unit has the properties of the first heavy component greater than or equal to 350°C, as shown in Table VI-5.
  • the first light component below 350°C is tested in the second reaction unit to obtain the hydrocracking product.
  • the properties are shown in Table VI-6.
  • the catalyst and device are similar to those of Example VI-1. The difference is:
  • the aromatic-rich distillate QY (aromatic content of 20% by mass) in this comparative example VI- does not pass through a partial hydrosaturation treatment device, but is directly mixed with DOA.
  • DOA and QY are mixed at a mass ratio of 1:10.
  • the properties of the mixed raw materials are shown in Table VI-3.
  • the first light component below 350°C is tested in the second reaction unit to obtain the hydrocracking product.
  • the properties are shown in Table VI-6.
  • the catalyst and device are similar to those of Example VI-1. The difference is:
  • the aromatic-rich distillate oil QY does not pass through a partial hydrosaturation treatment device, but is directly mixed with DOA.
  • DOA and QY are mixed at a mass ratio of 2:10.
  • the properties of the mixed raw materials are shown in Table VI-3.
  • the first light component below 350°C is tested in the second reaction unit to obtain the hydrocracking product.
  • the properties are shown in Table VI-6.
  • the catalyst and device are similar to those of Example VI-1. The difference is:
  • the aromatic-rich distillate oil QY does not pass through a partial hydrosaturation treatment device, but is directly mixed with DOA.
  • DOA and QY are mixed at a mass ratio of 3:10. Because there are a large amount of solids in the mixed raw materials (at 100°C), the next test cannot be carried out.
  • Table VI-1 DOA, DAO and the properties of liquid phase products after hydroprocessing in the sixth hydrogenation unit
  • Example VI-1 0.9221 3.8 3.2 0.33 79.3 10.9
  • Example VI-2 0.9327 5.9 6.5 0.49 83.2 22.9
  • Example VI-3 0.9730 6.4 16.1 0.63 99.9 54.1
  • Example VI-4 0.9811 8.9 17.4 0.89 109.6 60.9
  • Example VI-5 0.9710 6.2 15.2 0.50 93.1 48.7
  • Example VI-8 0.9229 4.1 3.8 0.38 82.3 13.1
  • Example VI-10 0.9218 3.9 3.9 0.33 80.5 12
  • Comparative Example VI-1 0.9456 4.5 5.1 0.97 95.1 33
  • Comparative Example VI-2 0.9517 4.6 5.0 1.14 98.7 50
  • Example VI-1 0.72 >92 ⁇ 10
  • Example VI-2 0.72 >92 ⁇ 10
  • Example VI-3 0.72 >92 ⁇ 10
  • Example VI-4 0.72 >92 ⁇ 10
  • Example VI-8 0.72 >92 ⁇ 10
  • Example VI-10 0.72 >92 ⁇ 10
  • Example VI-11 0.72 >92 ⁇ 10
  • Example VI-12 0.72 >92 ⁇ 10
  • Example VI-13 0.72 >92 ⁇ 10 Comparative Example VI-1 >0.72 ⁇ 92 12 Comparative Example VI-2 >0.72 ⁇ 92 13
  • the technology of the present invention can obtain high-quality raw materials for the production of low-sulfur marine fuel or low-sulfur coke products from DOA.
  • the technology of the present invention can obtain high-quality gasoline products that meet the National V standard.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

一种加氢处理脱油沥青的方法和***,该方法包括:将脱油沥青(4)和含芳烃物流(5)引入至第一反应单元(7)中进行加氢反应,所述第一反应单元(7)中含有富矿前驱体材料和/或加氢催化剂,所述第一反应单元(7)为固定床加氢单元;将来自第一反应单元(7)的液相产物进行分馏(19),得到第一轻组分(8)和第一重组分(9);将第一轻组分(8)引入至第二反应单元(10)中进行反应以得到汽油组分(13)、柴油组分(14)和/或BTX原料组分(12);以及将第一重组分(9)引入至延迟焦化单元(11)中进行反应;或者将第一重组分(9)作为低硫船用燃料油组分。所述处理工艺能够实现高价值利用脱油沥青(4)。

Description

一种加氢处理脱油沥青的方法和*** 技术领域
本发明涉及烃油加工领域,具体涉及一种加氢处理脱油沥青的方法和一种加氢处理脱油沥青的***。
背景技术
渣油高效转化是炼油企业的核心。而固定床渣油加氢是渣油高效转化的关键技术,具有产品质量好、工艺成熟等特点。
但渣油中高含量的沥青质和金属是固定床渣油加氢装置运转周期的制约因素。
为解决这一难题,中石化石油化工科学研究院开发的渣油溶剂脱沥青(脱金属)-加氢处理-催化裂化组合工艺技术(SHF)是从低价值减压渣油中最大限度生产车用清洁燃料并延长运转周期的创新技术,但由于脱油沥青质(DOA)软化点高,难于输送和利用,限制了SHF技术的推广。
向化工转型的渣油加氢-催化裂解(DCC)多产丙烯的新组合工艺,也是受限于渣油中的沥青质和金属的影响,加氢渣油氢含量低,渣油加氢的运转周期短,DCC丙烯收率低,影响组合技术的经济效益。
另外,2020年开始要实行硫质量分数≯0.5%的低硫船燃新标准和硫质量分数≯3.0%的低硫石油焦标准,如何低成本生产低硫船燃(低硫石油焦)技术也是目前急需解决的问题。
因此,将DOA转化成低硫船燃或生产低硫石油焦的原料是迫切需要解决的技术难题。
发明内容
本发明的目的是为了克服现有技术的不足,提供一种能够实现高价值利用DOA的加氢处理脱油沥青的方法和***。
为了实现上述目的,本发明的第一方面提供一种加氢处理脱油沥青的方法,该方法包括:
(2)将脱油沥青和含芳烃物流引入至第一反应单元中进行加氢反应,其中,所述第一反应单元中含有富矿前驱体材料和/或加氢催化剂, 所述加氢催化剂能够催化选自加氢脱金属反应、加氢脱硫反应、加氢脱沥青反应和加氢脱残炭反应中的至少一种反应,所述第一反应单元为固定床加氢单元,所述脱油沥青和所述含芳烃物流的用量比使得由该脱油沥青和含芳烃物流形成的混合原料在不高于400℃时呈液态,所述富矿前驱体材料为能够吸附选自V、Ni、Fe、Ca和Mg中的至少一种金属的材料;
(21)将来自所述第一反应单元的液相产物进行分馏,得到第一轻组分和第一重组分,其中,所述第一轻组分和所述第一重组分的切割点为240~450℃;
(31)将所述第一轻组分引入至第二反应单元中进行反应以得到选自汽油组分、柴油组分和BTX原料组分中的至少一种产物,其中,所述第二反应单元选自加氢裂化单元、催化裂化单元和柴油加氢提质单元中的至少一种;以及
(32)将所述第一重组分引入至延迟焦化单元中进行反应以得到选自焦化汽油、焦化柴油、焦化蜡油和低硫石油焦中的至少一种产物;或者将所述第一重组分作为低硫船用燃料油组分。
本发明还涉及所述第一方面的方法的各种变体。
本发明的第二方面提供一种加氢处理脱油沥青的***,该***中包括:
第一反应单元,该第一反应单元为固定床加氢单元,用于将脱油沥青和含芳烃物流在其中进行加氢反应;
分离单元,该分离单元与所述第一反应单元保持流体连通,用于将来自所述第一反应单元的液相产物在其中进行分馏;
第二反应单元,该第二反应单元与所述分离单元保持流体连通,用于将由所述分离单元中获得的第一轻组分在其中进行反应,所述第二反应单元选自加氢裂化单元、催化裂化单元和柴油加氢提质单元中的至少一种;
延迟焦化单元,该延迟焦化单元与所述分离单元保持流体连通,用于将由所述分离单元中获得的第一重组分在其中进行反应以得到选自焦化汽油、焦化柴油、焦化蜡油和低硫石油焦中的至少一种产物;
出口,该出口与所述分离单元保持流体连通,用于将由所述分离单元中获得的第一重组分作为低硫船用燃料油组分引出***。
本发明还涉及所述第二方面的***的各种变体。
本发明将DOA与含芳烃物流一起通过固定床加氢处理(例如加氢脱硫),加氢后的第一轻组分进行加氢裂化(RLG或RLA)生产BTX和柴油馏分,或进行催化裂化(LTAG)生产汽油馏分(和液化气);加氢后的第一重组分生产低硫石油焦或重质低硫船燃。
本发明提供的前述处理工艺能够实现高价值利用DOA。
附图说明
图1是本发明的第一方面技术方案的第一变体的具体实施方式的加氢处理脱油沥青的工艺流程图。
图2是本发明的第一方面技术方案的第二变体的具体实施方式的加氢处理脱油沥青的工艺流程图。
图3是本发明的第一方面技术方案的第三变体的具体实施方式的加氢处理脱油沥青的工艺流程图。
图4是本发明的第一方面技术方案的第四变体的具体实施方式的加氢处理脱油沥青的工艺流程图。
图5是本发明的第一方面技术方案的第五变体的具体实施方式的加氢处理脱油沥青的工艺流程图。
图6是本发明的第一方面技术方案的第六变体的具体实施方式的加氢处理脱油沥青的工艺流程图。
附图标记说明
1    重油原料               2    溶剂脱沥青单元
3    脱沥青油               4    脱油沥青
5    含芳烃物流             6    混合原料
7    第一反应单元           8    第一轻组分
9    第一重组分             10   第二反应单元
11   延迟焦化单元           12   BTX原料组分
13   汽油组分               14   柴油组分
15   焦化汽油               16   焦化柴油
17   焦化蜡油               18   低硫石油焦
19   分离单元               20   液相流出物
21   DCC单元                 22   丙烯
23   LCO                     24   HCO
25   油浆                    26   第四加氢单元
27   脱金属后油浆            29   第三加氢单元
                             30   富芳馏分油
31   第五反应单元            32   第二重组分
33   油浆                    34   第六加氢单元
35   DCC单元                 36   丙烯
37   LCO                     38   HCO
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
在本发明中,表示步骤的编号(1)、(2)、(3)、(31)等,表示各种实施方式/变体的编号第一、第二等,以及各个附图标记的编号均主要为彼此区别而设置,而不应理解为在工艺中的步骤顺序或部件的组合顺序,除非专门指明。进一步地,在表示(加氢)反应单元时,本发明的一些反应单元的典型实施方式为通过加氢反应实施,因此,为方便起见,本发明涉及第一、第二等“反应”单元时,根据其所处的具体技术方案可能与术语第一、第二等“加氢”单元互换使用,本领域技术人员能够理解其在该具体技术方案中指代相同的对象。
如前所述,本发明的第一方面提供了一种加氢处理脱油沥青的方法,该第一方面的方法总体来说包括:
(2)将脱油沥青和含芳烃物流引入至第一反应单元中进行加氢反应,所述脱油沥青和所述含芳烃物流的用量比使得由该脱油沥青和含芳烃物流形成的混合原料在不高于400℃时呈液态;
(21)将来自所述第一反应单元的液相产物进行分馏,得到第一轻组分和第一重组分,其中,所述第一轻组分和所述第一重组分的切割点为240~450℃;
(31)将所述第一轻组分引入至第二反应单元中进行反应以得到选自汽油组分、柴油组分和BTX原料组分中的至少一种产物,其中,所述第二反应单元选自加氢裂化单元、催化裂化单元和柴油加氢提质单元中的至少一种;以及
(32)将所述第一重组分引入至延迟焦化单元中进行反应以得到选自焦化汽油、焦化柴油、焦化蜡油和低硫石油焦中的至少一种产物;或者将所述第一重组分作为低硫船用燃料油组分。
进一步地,本发明提供了该第一方面的多个实施方案和变体。在本发明上下文中,本发明的该第一、第二或其它方面的多个实施方案和变体在描述相同的对象时,所采用的各个特征的描述和/或限定可适用于本发明的各个方面及其各个实施方案和变体中,除非该方面或其具体实施方案或变体提供了不同或更加具体的描述和/或限定。
优选地,所述脱油沥青和所述含芳烃物流的用量比使得由该脱油沥青和含芳烃物流形成的混合原料在不高于280℃时呈液态;进一步优选所述脱油沥青和所述含芳烃物流的用量比使得由该脱油沥青和含芳烃物流形成的混合原料在不高于100℃时呈液态。
特别优选地,所述第一轻组分和所述第一重组分的切割点为350℃。
在一个实施方案中,在步骤(2)中,第一反应单元中的加氢反应在加氢催化剂存在下进行。
优选地,在步骤(2)中,所述脱油沥青和所述含芳烃物流的用量比使得由该脱油沥青和含芳烃物流形成的混合原料的100℃粘度不大于400mm 2/s,更优选不大于200mm 2/s,进一步优选不大于100mm 2/s。
优选情况下,在步骤(2)中,所述含芳烃物流为富含芳烃的馏分油和/或芳烃化合物。
优选地,所述富含芳烃的馏分油的终馏点在200-540℃,芳烃含量大于等于20质量%,优选大于等于40质量%,更优选大于等于50质量%。
优选地,所述富含芳烃的馏分油选自LCO、HCO、乙烯焦油、煤焦油、焦化柴油和焦化蜡油中的至少一种。本发明的所述富含芳烃的馏分油可以来自本发明以外的工艺,也可以来自本发明的工艺。
优选地,所述芳烃化合物选自苯、甲苯、二甲苯、萘、甲基萘、 多支链萘及双环以上芳烃中的一种或几种,优选为环数不超过三环的多环芳烃或它们的混合物。特别优选情况下,所述芳烃化合物选自苯、甲苯、二甲苯、萘、由至少一种C 1-6的烷基取代的萘、三环以上芳烃中的至少一种。
根据一种优选的具体实施方式,在步骤(2)中,所述含芳烃物流为富含芳烃的馏分油,且所述脱油沥青与所述含芳烃物流的用量质量比为1:10至50:10,更优选为3:10至30:10。
根据另一种优选的具体实施方式,在步骤(2)中,所述含芳烃物流为芳烃化合物,且所述脱油沥青与所述芳烃化合物的用量质量比为1:10至50:10;更优选为3:10至20:10。
优选情况下,在步骤(2)中,所述脱油沥青为由重油原料进入溶剂脱沥青单元中进行溶剂脱沥青处理后得到的脱油沥青。
优选地,在所述溶剂脱沥青单元中,所述脱油沥青的收率质量分数不大于50%,更优选不大于40%,进一步优选不大于30%。
优选地,本发明的该方法还包括:将步骤(32)中获得的所述焦化柴油和/或所述焦化蜡油循环回步骤(2)中作为至少部分所述含芳烃物流。
优选情况下,在步骤(2)中,所述第一反应单元中的操作条件包括:反应温度为280~450℃,反应压力为8.0~20.0MPa,氢油体积比为400~2000,液时体积空速为0.05~1.2h -1;更优选地,所述第一反应单元中的操作条件包括:反应温度为330~420℃,反应压力为10.0~18.0MPa,氢油体积比为600~1200,液时体积空速为0.10~0.8h -1。液时体积空速和反应压力是根据待处理物料的特性和要求的转化率及精制深度进行选择的。
在没有特别说明的情况下,本文所述的压力均表示表压。
本发明所述的加氢催化剂可以为不同催化剂的级配组合,优选加氢催化剂至少能够催化加氢脱金属反应和加氢脱硫反应。
本发明对能够催化加氢脱金属反应、加氢脱硫反应、加氢脱沥青反应和加氢脱残炭反应的催化剂的具体种类没有特别的限定,可以采用本领域内常规应用的能够催化上述反应的催化剂。
本发明的所述加氢催化剂例如可以为以多孔耐熔无机氧化物为载体,第VIB族和/或VIII族金属的氧化物或硫化物为活性组分,选择 性地加入助剂的催化剂。
在一个实施方案中,所述第一反应单元为固定床加氢单元,移动床-固定床加氢组合单元或移动床加氢单元。
本发明进一步提供了所述第一方面技术方案的如下所述的第一变体:
在所述第一变体中,所述第一反应单元中含有富矿前驱体材料和/或加氢催化剂,所述加氢催化剂能够催化选自加氢脱金属反应、加氢脱硫反应、加氢脱沥青反应和加氢脱残炭反应中的至少一种反应,所述富矿前驱体材料为能够吸附选自V、Ni、Fe、Ca和Mg中的至少一种金属的材料。
在一个实施方案中,所述第一反应单元为固定床加氢单元。
优选地,在步骤(2)中,所述富矿前驱体材料中含有载体和负载在所述载体上的活性组分元素,所述载体选自氢氧化铝、氧化铝和氧化硅中的至少一种,所述活性组分元素选自第VIB族和VIII族金属元素中的至少一种。更优选地,所述富矿前驱体材料中的活性组分为选自第VIB族和VIII族金属元素的氧化物和/或硫化物。
更优选情况下,在步骤(2)中,所述富矿前驱体材料的灼减不低于3质量%,比表面积不低于80m 2/g,吸水率不低于0.9g/g。所述灼减是指富矿前驱体材料在600℃/2h焙烧处理后减少的质量占焙烧前质量的百分比例;所述吸水率是指富矿前驱体材料室温(例如25℃)下浸泡水中半小时增加的质量占浸泡前质量的百分比例。
根据一种优选的具体实施方式,在步骤(2)中,按照反应物流方向,所述第一反应单元中依次装填有第一富矿前驱体材料和第二富矿前驱体材料,且所述第二富矿前驱体材料的灼减大于等于所述第一富矿前驱体材料的灼减。
根据前述优选的具体实施方式,进一步优选地,所述第一富矿前驱体材料的灼减为3-15质量%,以及所述第二富矿前驱体材料的灼减为不小于15质量%。
根据前述优选的具体实施方式,进一步优选地,所述第一富矿前驱体材料与所述第二富矿前驱体材料的装填体积比为5:95至95:5。
优选情况下,本发明的第一反应单元在长周期运行后,富矿前驱体材料会转变为富钒材料,富钒材料中的钒含量不小于10质量%。
以下提供本发明的第一反应单元中的优选的具体实施方式:
本发明的所述第一反应单元中涉及的原料加氢处理技术为固定床加氢处理技术,以目前工业上较成熟的固定床重、渣油加氢技术为例,所述反应器或反应床层至少包括一种富矿前驱体材料和/或一种加氢催化剂,富矿前驱体材料主要由两部分组成:一是吸附油中含钒有机化合物能力强的载体,二是具有加氢活性功能的活性组分。所述载体主要由氧化硅、氢氧化铝或氢氧化铝/氧化铝混合物挤条成型、干燥得到,表面富含丰富的-OH,对油中含钒有机化合物有强的吸附能力,600℃焙烧2h,其灼减不低于5%。活性组分主要采用第VIB族和/或VIII族金属如W、Mo、Co、Ni等的氧化物或硫化物。
前述优选的具体实施方式中涉及的加氢催化剂一般为重渣油加氢催化剂,重渣油加氢催化剂是指具有重、渣油加氢脱金属、加氢脱硫和加氢脱残炭等功能的组合催化剂。这些催化剂一般都是以多孔耐熔无机氧化物如氧化铝为载体,第VIB族和/或VIII族金属如W、Mo、Co、Ni等的氧化物或硫化物为活性组分,选择性地加入其它各种助剂如P、Si、F、B等元素的催化剂,例如由石油化工科学研究院研发的RDM、RCS系列重、渣油加氢脱金属催化剂和脱硫催化剂。目前在固定床渣油加氢技术中,经常是多种催化剂配套使用。本发明中优选有富矿前驱体材料、加氢脱金属脱硫催化剂、加氢脱硫催化剂,装填顺序一般是使原料依次与富矿前驱体材料、加氢脱金属脱硫、加氢脱硫催化剂接触,有时也可根据情况,少装一种或两种催化剂,例如只装填富矿前驱体材料和加氢脱硫催化剂,而不装加氢脱金属脱硫催化剂。当然也有将这几种催化剂混合装填的技术。
优选地,在步骤(31)中,所述第二反应单元为加氢裂化单元,且所述加氢裂化单元中的操作条件包括:反应温度为330~420℃,反应压力为5.0~18.0MPa,氢油体积比为500~2000,液时体积空速为0.3~3.0h -1
优选地,所述加氢裂化单元中装填有至少一种加氢处理催化剂和至少一种加氢裂化催化剂。
优选地,所述加氢裂化单元为固定床加氢裂化单元。
以下提供本发明的第二反应单元中的优选的具体实施方式:
在步骤(31)中,将所述第一轻组分引入至第二反应单元中进行 反应,采用的加氢裂化技术为固定床加氢裂化技术。以目前工业上较成熟固定床蜡油加氢裂化技术为例,所述反应器或反应床层至少包括两种加氢裂化催化剂,一种是预处理催化剂,一种是加氢裂化催化剂。由于经固定床加氢处理后又经分馏得到的物料中金属含量、硫、氮含量及残炭值都较高,因此预处理催化剂优选具有很强的脱金属活性和很好的脱硫、脱氮活性,以保证后面的加氢裂化催化剂的活性。加氢裂化催化剂优选具有很好的加氢裂化活性。这些催化剂一般都是以多孔耐熔无机氧化物如氧化铝或分子筛为载体,第ⅥB族和/或Ⅷ族金属如W、Mo、Co、Ni等的氧化物为活性组分,选择性地加入其它各种助剂如P、Si、F、B等元素的催化剂,例如由石油化工科学研究院研发的RS系列预处理催化剂和RHC系列加氢裂化催化剂就属于这类催化剂。RS系列催化剂是一种NiW催化剂,RHC系列催化剂是一种NiMo分子筛催化剂。
优选情况下,在步骤(31)中,所述第二反应单元为催化裂化单元,且所述催化裂化单元为流化催化裂化(FCC)单元。
优选地,第一轻组分催化裂化中采用的第一轻组分催化裂化技术为FCC技术,优选采用石油化工科学研究院开发的LTAG技术,主要生产汽油馏分和液化气。
优选地,所述流化催化裂化单元中的操作条件包括:反应温度为500~600℃,剂油比为3~12,停留时间为1~10s;更优选地,所述流化催化裂化单元的操作条件包括:反应温度为520~580℃,剂油比为4~10,停留时间为2~5s。
本发明所述的剂油比均表示剂油质量比。
优选情况下,在步骤(31)中,所述第二反应单元为柴油加氢提质单元,且所述柴油加氢提质单元中的操作条件包括:反应温度为330~420℃,反应压力为5.0~18.0MPa,氢油体积比为500~2000,液时体积空速为0.3~3.0h -1
优选地,所述柴油加氢提质单元中装填有至少一种柴油加氢提质催化剂。
本发明的所述柴油加氢提质催化剂例如可以为具有柴油加氢脱硫和加氢脱氮等功能的组合催化剂。这些催化剂一般都是以多孔耐熔无机氧化物如氧化铝为载体,第VIB族和/或VIII族金属如W、Mo、 Co、Ni等的氧化物或硫化物为活性组分,选择性地加入其它各种助剂如P、Si、F、B等元素的催化剂,例如由石油化工科学研究院研发的RS系列柴油加氢脱硫催化剂和脱氮催化剂。
优选情况下,在步骤(32)中,将所述第一重组分引入至延迟焦化单元中进行反应以得到选自焦化汽油、焦化柴油、焦化蜡油和低硫石油焦中的至少一种产物,且所述延迟焦化单元中的操作条件包括:反应温度为440~520℃,停留时间为0.1~4h。
优选地,在步骤(32)中,所述第一重组分的硫含量不大于1.8质量%,将所述第一重组分引入至延迟焦化单元中进行反应以得到低硫石油焦,更优选控制所述延迟焦化单元中的条件,使得所述低硫石油焦的硫含量不大于3质量%。
优选情况下,在步骤(32)中,将所述第一重组分作为低硫船用燃料油组分,且所述低硫船用燃料油组分中的硫含量不大于0.5质量%。
本发明对所述溶剂脱沥青处理的具体操作没有特别的限制,可以采用本领域内常规的溶剂脱沥青工艺进行。本发明的实例中示例性地列举了溶剂脱沥青工艺的操作参数,本领域技术人员不应理解为对本发明的限制。
本发明适用于常渣与减渣的加氢转化,尤其适用于高金属(Ni+V>150μg/g,尤其Ni+V>200μg/g)、高残炭(残炭质量分数>17%,尤其残炭质量分数>20%)、高稠环物质的劣质渣油加氢转化。
在一个实施方案中,所述加氢催化剂能够催化选自加氢脱金属反应、加氢脱硫反应、加氢脱沥青反应和加氢脱残炭反应中的至少一种反应,所述富矿前驱体材料为能够吸附选自V、Ni、Fe、Ca和Mg中的至少一种金属的材料。
所述第一方面技术方案的第一变体的示例性实施方式可参见图1。
以下结合图1对所述第一变体的加氢处理脱油沥青的方法进行进一步详细说明。
如图1所示,重油原料1进入溶剂脱沥青单元2中进行溶剂脱沥青处理后得到的脱油沥青4和脱沥青油3;脱油沥青4与含芳烃物流5一起形成混合原料6并进入第一反应单元7中进行加氢反应,其中,所述第一反应单元中含有富矿前驱体材料和/或加氢催化剂,所述第一反应单元为固定床加氢单元;来自所述第一反应单元7的液相产物进 入分离单元19中进行分馏,得到第一轻组分8和第一重组分9;将所述第一轻组分8引入至第二反应单元10中进行反应以得到选自汽油组分13、BTX原料组分12、柴油组分14中的至少一种产物;以及将所述第一重组分9引入至延迟焦化单元11中进行反应以得到选自焦化汽油15、焦化柴油16、焦化蜡油17和低硫石油焦18中的至少一种产物;或者将所述第一重组分9作为低硫船用燃料油组分。
所述第一方面技术方案的第一变体中各个特征的描述和/或限定可用于本发明的第一方面的各个变体、以及其它各个方面及其各个变体中,除非其它方面或各变体中存在不同或更加具体的描述和/或限定。类似地,本发明第一方面的各个变体、以及其它各个方面及其各个变体中各个特征(尤其是该第一变体中未具体描述和/或限定的特征)的描述和/或限定可用于所述第一方面技术方案的第一变体中,除非所述第一方面技术方案的第一变体中存在不同或更加具体的描述和/或限定。
本发明进一步提供了所述第一方面技术方案的如下所述的第二变体:
在该第二变体中,本发明的所述第一反应单元为移动床-固定床加氢组合单元或移动床加氢单元。第一种优选的情况,所述第一反应单元为移动床-固定床加氢组合单元;第二种优选的情况,所述第一反应单元为移动床加氢单元。
本发明特别优选所述第一反应单元为移动床-固定床加氢组合单元。
根据一种优选的具体实施方式,在步骤(2)中,所述第一反应单元为移动床-固定床加氢组合单元,且所述移动床中装填富矿前驱体材料,所述固定床中依次装填富矿前驱体材料和加氢催化剂或者所述固定床中装填加氢催化剂。
优选情况下,在步骤(2)中,所述第一反应单元为移动床-固定床加氢组合单元,且所述移动床中依次装填富矿前驱体材料和加氢催化剂,所述固定床中依次装填富矿前驱体材料和加氢催化剂或者所述固定床中装填加氢催化剂。
在前述优选的具体实施方式中,更优选地,所述移动床中装填的富矿前驱体材料的体积与所述固定床中装填的富矿前驱体材料和加氢催化剂的体积之和的比例为10:90至60:40,优选20:80至40:60。需要解释的是,当所述固定床中仅装填加氢催化剂时,上述装填体积之比 表示:所述移动床中装填的富矿前驱体材料的体积与所述固定床中装填的加氢催化剂的体积的比例。
优选情况下,本发明的该方法还包括:每周期采用新鲜富矿前驱体材料更换所述移动床中装填的富矿前驱体材料,且更换比例占所述移动床中装填的富矿前驱体材料总量的5~20质量%,更优选10~15质量%。
优选地,所述周期为5~20天,优选为10~15天。
本发明所述富矿前驱体材料的形状可以为圆柱形和/或球形,优选为球形。
优选情况下,所述富矿前驱体材料的平均粒径为0.1~6mm,更优选0.3-4mm,进一步优选0.5-1.5mm。
本发明前述用于更换所述移动床中装填的富矿前驱体材料的新鲜富矿前驱体材料为氧化态或硫化态,优选为硫化态。
根据一种优选的具体实施方式,在步骤(2)中,按照反应物流方向,所述第一反应单元中依次装填有第一富矿前驱体材料和第二富矿前驱体材料,且所述第二富矿前驱体材料的灼减大于等于所述第一富矿前驱体材料的灼减。本发明对所述第一富矿前驱体材料和所述第二富矿前驱体材料的装填具***置没有特别的限定,只要能够实现:相对于第二富矿前驱体材料,反应物料先与所述第一富矿前驱体材料接触,然后再与所述第二富矿前驱体材料接触即可。
在该第二变体中,本发明的所述第一反应单元中涉及的原料加氢处理技术为移动床-固定床加氢处理技术或移动床加氢处理技术。其中,移动床反应器装填的是球形富矿前驱体材料,球形催化剂平均粒径为0.1-6mm。固定床反应床层至少包括一种富矿前驱体材料和/或一种加氢催化剂,富矿前驱体材料主要由两部分组成:一是吸附油中含钒有机化合物能力强的载体,二是具有加氢活性功能的活性组分。所述反应器或反应床层至少包括一种富矿前驱体材料和一种加氢催化剂,富矿前驱体材料主要由两部分组成:一是吸附油中含钒有机化合物能力强的载体,二是具有加氢活性功能的活性组分。
所述第一方面技术方案的第二变体的示例性实施方式可参见图2。
所述第一方面技术方案的第二变体中各个特征的描述和/或限定可用于本发明的第一方面的各个变体、以及其它各个方面及其各个变体 中,除非其它方面或各变体中存在不同或更加具体的描述和/或限定。类似地,本发明第一方面的各个变体、以及其它各个方面及其各个变体中各个特征(尤其是该第二变体中未具体描述和/或限定的特征)的描述和/或限定可用于所述第一方面技术方案的第二变体中,除非所述第一方面技术方案的第二变体中存在不同或更加具体的描述和/或限定。
本发明进一步提供了所述第一方面技术方案的如下所述的第三变体:
根据该第三变体,本发明所述方法还包括:
(1)将重质原料油引入至溶剂脱沥青单元中进行溶剂脱沥青处理,得到脱油沥青和脱沥青油;
(11)将所述脱沥青油引入至第三加氢单元中进行加氢反应,并将所述第三加氢单元中获得的液相流出物引入至DCC单元进行反应,得到丙烯、LCO、HCO和油浆,其中,所述第三加氢单元为固定床加氢单元;
(13)将所述DCC单元中获得的油浆引入至第四加氢单元中进行脱金属反应,得到脱金属后油浆;以及
将含有所述DCC单元中获得的油浆和/或所述第四加氢单元中获得的脱金属后油浆的含芳烃物流用作第一变体或第二变体(优选第一变体)中的步骤(2)中所述的含芳烃物流(5)。
在将所述DCC单元中获得的油浆与所述溶剂脱沥青单元中获得的脱油沥青引入至第一加氢单元中进行转化反应时,所述油浆可以经过或者不经过过滤处理,优选经过过滤处理,使得其中的固含量控制在≤10ppm。
优选地,所述含芳烃物流中还含有富含芳烃的馏分油,所述富含芳烃的馏分油包括所述DCC单元中获得的所述LCO和/或所述HCO。
优选地,在步骤(11)中,控制所述DCC单元中的操作条件,使得所述LCO和/或HCO中的芳烃含量大于等于60质量%。
优选地,所述LCO与所述HCO的切割点为180-205℃;优选地,所述HCO与所述油浆的切割点为330-360℃。
针对所述溶剂脱沥青单元,该第三变体提供如下优选的具体实施 方式:
优选地,在步骤(1)中,在所述溶剂脱沥青单元中,所述脱油沥 青的收率质量分数不大于50%,更优选不大于40%,进一步优选不大于30%。
优选地,在步骤(1)中,所述重质原料油为渣油和/或重油。
该第三变体对所述溶剂脱沥青处理的具体操作没有特别的限制,可以采用本领域内常规的溶剂脱沥青工艺进行。该第三变体没有列举溶剂脱沥青工艺的具体操作参数,本领域技术人员不应理解为对该第三变体的限制。
针对所述第三加氢单元,该第三变体提供如下优选的具体实施方 式:
优选情况下,在步骤(11)中,所述第三加氢单元的操作条件包括:反应温度为280~400℃,反应压力为6.0~14.0MPa,氢油体积比为600~1200,液时体积空速为0.3~2.0h -1
优选地,在步骤(11)中,所述第三加氢单元中装填有至少两种加氢催化剂;更优选地,在步骤(11)中,所述加氢催化剂为能够催化选自加氢脱金属反应、加氢脱硫反应和加氢脱残炭反应中的至少一种反应的催化剂;所述加氢催化剂一般都是以多孔耐熔无机氧化物如氧化铝为载体;特别优选情况下,在步骤(11)中,所述加氢催化剂中含有作为载体的氧化铝和作为活性组分元素的第VIB族和/或VIII族金属元素,且该加氢催化剂中任选还含有选自P、Si、F和B中的至少一种助剂元素。在所述加氢催化剂中,所述第VIB族和VIII族金属元素例如可以为W、Mo、Co、Ni等。并且,在所述加氢催化剂中,所述活性组分可以为上述活性组分元素的氧化物和/或硫化物。
以下提供该第三变体的第三加氢单元中的优选的具体实施方式:
有氢存在的脱沥青油(DAO)的第三加氢单元的条件通常如下:DAO的加氢处理技术为固定床加氢处理技术。以目前工业上较成熟固定床重、渣油加氢技术为例,所述反应器或反应床层至少包括两种加氢催化剂,采用的重渣油加氢催化剂是指具有重、渣油加氢脱金属、加氢脱硫、加氢脱氮和加氢脱残炭等功能的组合催化剂。这些催化剂一般都是以多孔耐熔无机氧化物如氧化铝为载体,第ⅥB族和/或Ⅷ族金属如W、Mo、Co、Ni等的氧化物或硫化物为活性组分,选择性地加入其它各种助剂如P、Si、F、B等元素的催化剂,例如由石油化工科学研究院研发的RDM、RCS系列重、渣油加氢脱金属催化剂和脱硫 催化剂。目前在固定床渣油加氢技术中,经常是多种催化剂配套使用,其中有加氢脱金属催化剂、加氢脱硫催化剂、加氢脱氮催化剂,装填顺序一般是使原料油依次与加氢脱金属、加氢脱硫、加氢脱氮催化剂接触,有时也可根据情况,少装一种或两种催化剂,例如只装填加氢脱金属催化剂和加氢脱硫催化剂,而不装加氢脱氮催化剂。当然也有将这几种催化剂混合装填的技术。液时体积空速和反应压力通常是根据待处理物料的特性和要求的转化率及精制深度进行选择的。
针对所述第二反应单元,该第三变体提供如下优选的具体实施方 式:
优选情况下,在步骤(31)中,所述第二反应单元为固定床加氢裂化单元;优选所述固定床加氢裂化单元中装填有至少两种催化剂;所述催化剂一般都是以多孔耐熔无机氧化物如氧化铝为载体;优选情况下,所述固定床加氢裂化单元中装填的所述催化剂中含有作为载体的氧化铝和作为活性组分元素的第VIB族和/或VIII族金属元素,且该催化剂中任选还含有选自P、Si、F和B中的至少一种助剂元素。在所述催化剂中所述第VIB族和VIII族金属元素例如可以为W、Mo、Co、Ni等。并且,在所述催化剂中,所述活性组分可以为上述活性组分元素的氧化物和/或硫化物。特别优选情况下,在所述步骤(31)中,按照反应物流方向,所述第二反应单元中依次装填预处理催化剂和加氢裂化催化剂。
优选地,所述第二反应单元为固定床加氢裂化单元,且所述第二反应单元中的操作条件包括:反应温度为330~420℃,反应压力为5.0~18.0MPa,氢油体积比为500~2000,液时体积空速为0.3~3.0h -1。更优选地,按照反应物流方向,所述第二反应单元中依次装填预处理催化剂和加氢裂化催化剂。
根据一种优选的具体实施方式,在步骤(31)中,所述第二反应单元为催化裂化单元,且所述催化裂化单元为流化催化裂化单元。
针对所述第四加氢单元,该第三变体提供如下优选的具体实施方 式:
优选情况下,在步骤(13)中,所述第四加氢单元为固定床加氢单元,且所述第四加氢单元的操作条件包括:反应温度为200~280℃,反应压力为3.0~6.0MPa,氢油体积比为600~1200,液时体积空速为 0.5~2.5h -1
优选地,在步骤(13)中,所述第四加氢单元中装填有至少两种加氢催化剂;更优选地,在步骤(13)中,所述加氢催化剂为能够催化选自加氢脱金属反应、加氢脱硫反应和加氢脱残炭反应中的至少一种反应的催化剂;所述加氢催化剂一般都是以多孔耐熔无机氧化物如氧化铝为载体;特别优选情况下,在步骤(13)中,所述加氢催化剂中含有作为载体的氧化铝和作为活性组分元素的第VIB族和/或VIII族金属元素,且该加氢催化剂中任选还含有选自P、Si、F和B中的至少一种助剂元素。在步骤(13)中,在所述加氢催化剂中,所述第VIB族和VIII族金属元素例如可以为W、Mo、Co、Ni等。并且,在所述加氢催化剂中,所述活性组分可以为上述活性组分元素的氧化物和/或硫化物。
以下提供该第三变体的第四加氢单元中的一种优选的具体实施方式:
油浆的加氢处理技术为低压固定床加氢处理技术。以目前工业上较成熟固定床重、渣油加氢技术为例,所述反应器或反应床层至少包括两种加氢催化剂,采用的重渣油加氢催化剂是指具有重、渣油沥青质转化催化剂、重、渣油加氢脱金属催化剂、加氢脱硫、加氢脱氮和加氢脱残炭等功能的组合催化剂。这些催化剂一般都是以多孔耐熔无机氧化物如氧化铝为载体,第ⅥB族和/或Ⅷ族金属如W、Mo、Co、Ni等的氧化物或硫化物为活性组分,选择性地加入其它各种助剂如P、Si、F、B等元素的催化剂,例如由石油化工科学研究院研发的RDM、RCS系列重、渣油加氢脱金属催化剂和脱硫催化剂。目前在固定床渣油加氢技术中,经常是多种催化剂配套使用,其中有加氢脱金属催化剂、加氢脱硫催化剂、加氢脱氮催化剂,装填顺序一般是使原料油依次与加氢脱金属、加氢脱硫、加氢脱氮催化剂接触,有时也可根据情况,少装一种或两种催化剂,例如只装填加氢脱金属催化剂和加氢脱硫催化剂,而不装加氢脱氮催化剂。当然也有将这几种催化剂混合装填的技术。液时体积空速和反应压力通常是根据待处理物料的特性和要求的转化率及精制深度进行选择的。
以下结合图3对所述第三变体的加工重质油原料的方法进行进一步详细说明。
如图1所示,重质原料油1进入溶剂脱沥青单元2中进行溶剂脱沥青处理后得到的脱油沥青4和脱沥青油3;将所述脱沥青油3引入至第三加氢单元29中进行加氢反应,并将所述第三加氢单元中获得的液相流出物20引入至DCC单元21中进行反应,得到丙烯22、LCO23、HCO24和油浆25,其中,所述第三加氢单元为固定床加氢单元;将所述DCC单元21中获得的油浆25引入至第四加氢单元26中进行脱金属反应,得到脱金属后油浆27;将含芳烃物流所述溶剂脱沥青单元2中获得的脱油沥青4一起形成混合原料6引入至第一加氢单元7中进行转化反应,所述含芳烃物流选自所述DCC单元21中获得的LCO23、所述DCC单元21中获得的HCO24、所述第四加氢单元26中获得的脱金属后油浆27和来自外界的芳烃化合物5中的至少一种,所述第一加氢单元为固定床加氢单元或移动床加氢单元;将所述第一加氢单元7中获得的液相流出物进行分离,并将分离获得的第一轻组分8引入至第二反应单元10中进行反应以得到选自汽油组分13、柴油组分14和BTX原料组分12中的至少一种产物,或者将至少部分所述第一轻组分8循环回所述DCC单元21中;以及将分离获得的第一重组分9引入至延迟焦化单元11中进行反应以得到选自焦化汽油15、焦化柴油16、焦化蜡油17和低硫石油焦18中的至少一种产物;或者将所述第一重组分9作为低硫船用燃料油组分。
所述第一方面技术方案的第三变体中各个特征的描述和/或限定可用于本发明的第一方面的各个变体、以及其它各个方面及其各个变体中,除非其它方面或各变体中存在不同或更加具体的描述和/或限定。类似地,本发明第一方面的各个变体、以及其它各个方面及其各个变体中各个特征(尤其是该第三变体中未具体描述和/或限定的特征)的描述和/或限定可用于所述第一方面技术方案的第三变体中,除非所述第一方面技术方案的第三变体中存在不同或更加具体的描述和/或限定。
本发明进一步提供了所述第一方面技术方案的如下所述的第四变体:
所述第四变体与所述第三变体基本类似,主要区别在于:将所述DCC单元中获得的LCO和/或HCO并入步骤(2)中所述的含芳烃物流(5)中,油浆(25)不经历所述步骤(13)中的所述第四加氢单元,而是循环回溶剂脱沥青单元中进行溶剂脱沥青处理。
在将所述第一轻组分循环回所述DCC单元中时,优选循环比为0.1-0.5:1。
以下结合图4对本发明的加工重质油原料的方法进行进一步详细说明。
如图4所示,重质原料油1进入溶剂脱沥青单元2中进行溶剂脱沥青处理后得到的脱油沥青4和脱沥青油3;将所述脱沥青油3引入至第三加氢单元29中进行加氢反应,并将所述第三加氢单元中获得的液相流出物20引入至DCC单元21中进行反应,得到丙烯22、LCO23、HCO24和油浆25,其中,所述第三加氢单元为固定床加氢单元;将所述DCC单元21中获得的LCO23和/或HCO24与所述溶剂脱沥青单元2中获得的脱油沥青4与含芳烃物流一起形成混合原料6引入至第一加氢单元7中进行转化反应,所述含芳烃物流选自来自DCC单元21的LCO23、来自DCC单元21的HCO24、来自外界芳烃化合物5中的至少一种,所述第一加氢单元为固定床加氢单元或移动床加氢单元;将所述第一加氢单元7中获得的液相流出物进行分离,并将分离获得的第一轻组分8引入至第二反应单元10中进行反应以得到选自汽油组分13、柴油组分14和BTX原料组分12中的至少一种产物,或者将至少部分所述第一轻组分8循环回所述DCC单元21中;以及将分离获得的第一重组分9引入至延迟焦化单元11中进行反应以得到选自焦化汽油15、焦化柴油16、焦化蜡油17和低硫石油焦18中的至少一种产物;或者将所述第一重组分9作为低硫船用燃料油组分。
所述第一方面技术方案的第四变体中各个特征的描述和/或限定可用于本发明的第一方面的各个变体、以及其它各个方面及其各个变体中,除非其它方面或各变体中存在不同或更加具体的描述和/或限定。类似地,本发明第一方面的各个变体、以及其它各个方面及其各个变体中各个特征(尤其是该第四变体中未具体描述和/或限定的特征)的描述和/或限定可用于所述第一方面技术方案的第四变体中,除非所述第一方面技术方案的第四变体中存在不同或更加具体的描述和/或限定。
本发明进一步提供了所述第一方面技术方案的如下所述的第五变体:
在该第五变体中,包括:
步骤(16):将富芳馏分油引入至第五反应单元中进行加氢饱和后 分馏以获得第二轻组分和第二重组分,所述第二轻组分和所述第二重组分的切割点为100-250℃,所述第二重组分中的芳烃含量大于等于20质量%;以及
将所述第二重组分并入第一至第四变体中任一(优选第一变体)所述的步骤(2)中所述的含芳烃物流(5)中。
该第五变体优选所述第五反应单元中进行的加氢饱和反应为部分加氢饱和,特别优选所述第二轻组分和所述第二重组分的切割点为180℃。
所述第二轻组分优选进入催化裂化单元生产低碳烯烃。
优选地,在步骤(16)中,所述第五反应单元为固定床反应器、移动床反应器和沸腾床反应器中的至少一种反应器。
优选情况下,所述第五反应单元中的操作条件包括:反应温度为200-420℃,反应压力为2-18MPa,液时体积空速为0.3-10h -1,氢油体积比50-5000;更优选地,所述第五反应单元中的操作条件包括:反应温度为220-400℃,反应压力为2-15MPa,液时体积空速为0.3-5h -1,氢油体积比为50-4000。
以下提供该第五变体的第五反应单元中的优选的具体实施方式:
有氢存在的富芳馏分油的部分加氢饱和的条件通常如下:富芳馏分油的部分加氢饱和技术为固定床/沸腾床/移动床加氢处理技术。以目前工业上较成熟固定床柴油或蜡油加氢技术为例,所述反应器或反应床层至少包括一种加氢精制催化剂。富芳馏分油的部分加氢饱和中应用的加氢精制催化剂优选具有良好且适中的加氢饱和活性,以避免四氢萘类结构进一步饱和为供氢能力较低的十氢萘或环烷烃结构。这些催化剂一般都是以多孔耐熔无机氧化物如氧化铝为载体,第ⅥB族和/或Ⅷ族金属如W、Mo、Co、Ni等的氧化物为活性组分,选择性地加入其它各种助剂如P、Si、F、B等元素的催化剂,例如由石油化工科学研究院研发的RS系列预处理催化剂就属于这类催化剂。RS系列催化剂是一种NiMo催化剂。
该第五变体优选所述第一反应单元为中/低压固定床加氢单元。
优选情况下,在步骤(2)中,所述第一反应单元中的操作条件包括:反应温度260~500℃,反应压力为2.0~20.0MPa,进一步优选为2~12MPa,氢油体积比为100~1200,液时体积空速为0.1~1.5h -1。液时 体积空速和反应压力是根据待处理物料的特性和要求的转化率及精制深度进行选择的。
以下结合图5对本发明的加工富芳馏分油的方法进行进一步详细说明。
如图5所示,将富芳馏分油30引入至第五反应单元31中进行加氢饱和后分馏以获得第二轻组分和第二重组分32;以及重油原料1进入溶剂脱沥青单元2中进行溶剂脱沥青处理后得到的脱油沥青4和脱沥青油3;脱油沥青4与含有所述第二重组分32的含芳烃物流一起形成混合原料6并进入第一反应单元7中进行加氢反应,所述含芳烃物流中优选还含有来自外界的芳烃化合物5,其中,所述第一反应单元中含有富矿前驱体材料和能够催化选自加氢脱金属反应、加氢脱硫反应、加氢脱沥青反应和加氢脱残炭反应中的至少一种反应的加氢催化剂,所述第一反应单元为固定床加氢单元;来自所述第一反应单元7的液相产物进入分离单元19中进行分馏,得到第一轻组分8和第一重组分9,其中,所述第一轻组分和所述第一重组分的切割点为240~450℃;将所述第一轻组分8引入至第二反应单元10中进行反应以得到选自汽油组分13、BTX原料组分12、柴油组分14中的至少一种产物,其中,所述第二反应单元选自加氢裂化单元、催化裂化单元和柴油加氢提质单元中的至少一种;以及将所述第一重组分9引入至延迟焦化单元11中进行反应以得到选自焦化汽油15、焦化柴油16、焦化蜡油17和低硫石油焦18中的至少一种产物;或者将所述第一重组分9作为低硫船用燃料油组分。
所述第一方面技术方案的第五变体中各个特征的描述和/或限定可用于本发明的第一方面的各个变体、以及其它各个方面及其各个变体中,除非其它方面或各变体中存在不同或更加具体的描述和/或限定。类似地,本发明第一方面的各个变体、以及其它各个方面及其各个变体中各个特征(尤其是该第五变体中未具体描述和/或限定的特征)的描述和/或限定可用于所述第一方面技术方案的第五变体中,除非所述第一方面技术方案的第五变体中存在不同或更加具体的描述和/或限定。
本发明进一步提供了所述第一方面技术方案的如下所述的第六变体:
在该第六变体中,包括:
(1)将重质原料油引入至溶剂脱沥青单元中进行溶剂脱沥青处理,得到脱油沥青和脱沥青油;
(14)将所述脱沥青油引入至第六加氢单元中进行加氢反应,并将所述第六加氢单元中获得的液相流出物引入至DCC单元进行反应,得到丙烯、LCO、HCO和油浆,其中,所述第六加氢单元为固定床加氢单元;以及
将来自所述DCC单元的LCO和/或HCO并入步骤(16)中所述的富芳馏分油中或用作第五变体的步骤(16)中所述的富芳馏分油。
由此,在一个实施方案中,该第六变体所述步骤(1)所采用的特征基本与第三变体中所述步骤(1)相同。
进一步地,在一个实施方案中,该第六变体所述步骤(14)所采用的特征基本与第三变体中所述步骤(11)相同。
优选地,该第六变体所述DCC单元的操作条件包括:反应温度为500-650℃,剂油比为3-12,停留时间为0.6-6s。
在一个实施方案中,该第六变体优选所述LCO与所述HCO的切割点为300~400℃;以及所述HCO和所述油浆的切割点为400~500℃。
在一个实施方案中,该第六变体还包括:将步骤(32)中获得的所述焦化柴油和/或所述焦化蜡油循环回所述第五加氢单元中进行加氢饱和。
在一个实施方案中,该第六变体的步骤(14)中,所述第六加氢单元的操作条件包括:反应温度为280~400℃,反应压力为6.0~14.0MPa,氢油体积比为600~1200,液时体积空速为0.3~2.0h -1
在一个实施方案中,该第六变体的步骤(14)中,所述第六加氢单元中装填有至少两种加氢催化剂。
在一个实施方案中,该第六变体的步骤(14)中,所述加氢催化剂为能够催化选自加氢脱金属反应、加氢脱硫反应和加氢脱残炭反应中的至少一种反应的催化剂。
在一个实施方案中,该第六变体的步骤(14)中,所述加氢催化剂中含有作为载体的氧化铝和作为活性组分元素的第VIB族和/或VIII族金属元素,且该加氢催化剂中任选还含有选自P、Si、F和B中的至少一种助剂元素。
以下结合图6对该第六变体的加工重质原料油和富芳馏分油的方 法进行进一步详细说明。
如图1所示,重油原料1进入溶剂脱沥青单元2中进行溶剂脱沥青处理后得到脱油沥青4和脱沥青油3;将所述脱沥青油3引入至第六加氢单元24中进行加氢反应,并将所述第六加氢单元24中获得的液相流出物引入至DCC单元35中进行反应,得到丙烯36、LCO37、HCO38和油浆33;将含有所述LCO37和/或所述HCO38的富芳馏分油30引入至第五加氢单元31中进行加氢饱和后分馏以获得第二重组分32和第二轻组分;将脱油沥青4和含有所述第二重组分32的含芳烃物流一起形成混合原料6并引入至第一反应单元7中进行加氢反应,所述含芳烃物流中优选还含有来自外界的芳烃化合物5,其中,所述第一反应单元7中含有富矿前驱体材料和能够催化选自加氢脱金属反应、加氢脱硫反应、加氢脱沥青反应和加氢脱残炭反应中的至少一种反应的加氢催化剂;来自所述第一反应单元7的液相产物进入分离单元19中进行分馏,得到第一轻组分8和第一重组分9;将所述第一轻组分8引入至第二反应单元10中进行反应以得到选自汽油组分13、BTX原料组分12、柴油组分14中的至少一种产物,或者将至少部分所述第一轻组分8循环回所述DCC单元35中;以及将所述第一重组分9引入至延迟焦化单元11中进行反应以得到选自焦化汽油15、焦化柴油16、焦化蜡油17和低硫石油焦18中的至少一种产物;或者将所述第一重组分9作为低硫船用燃料油组分。
所述第一方面技术方案的第六变体中各个特征的描述和/或限定可用于本发明的第一方面的各个变体、以及其它各个方面及其各个变体中,除非其它方面或各变体中存在不同或更加具体的描述和/或限定。类似地,本发明第一方面的各个变体、以及其它各个方面及其各个变体中各个特征(尤其是该第六变体中未具体描述和/或限定的特征)的描述和/或限定可用于所述第一方面技术方案的第六变体中,除非所述第一方面技术方案的第六变体中存在不同或更加具体的描述和/或限定。
如前所述,本发明的第二方面提供了一种加氢处理脱油沥青的***,该第二方面的第一变体的***中包括:
第一反应单元,该第一反应单元为固定床加氢单元,用于将脱油沥青和含芳烃物流在其中进行加氢反应;
分离单元,该分离单元与所述第一反应单元保持流体连通,用于 将来自所述第一反应单元的液相产物在其中进行分馏;
第二反应单元,该第二反应单元与所述分离单元保持流体连通,用于将由所述分离单元中获得的第一轻组分在其中进行反应,所述第二反应单元选自加氢裂化单元、催化裂化单元和柴油加氢提质单元中的至少一种;
延迟焦化单元,该延迟焦化单元与所述分离单元保持流体连通,用于将由所述分离单元中获得的第一重组分在其中进行反应以得到选自焦化汽油、焦化柴油、焦化蜡油和低硫石油焦中的至少一种产物;
出口,该出口与所述分离单元保持流体连通,用于将由所述分离单元中获得的第一重组分作为低硫船用燃料油组分引出***。
优选地,所述延迟焦化单元与所述第一反应单元保持流体连通,用于将所述延迟焦化单元中获得的所述焦化柴油和/或所述焦化蜡油循环回所述第一反应单元中。
优选情况下,该***中还包括溶剂脱沥青单元,该***中还包括溶剂脱沥青单元,该溶剂脱沥青单元与所述第一反应单元保持流体连通,用于将重油原料在其中进行溶剂脱沥青处理后得到的脱油沥青引入至所述第一反应单元中。
根据一种优选的具体实施方式,在本发明的***中,所述第二反应单元为加氢裂化单元。
根据另一种优选的具体实施方式,在本发明的***中,所述第二反应单元为催化裂化单元,且所述催化裂化单元为流化催化裂化单元。
根据另一种优选的具体实施方式,在本发明的***中,所述第二反应单元为柴油加氢提质单元。
本发明进一步提供了所述第二方面技术方案的如下所述的第二变体:
在该第二变体中,所述***中包括:
第一反应单元,该第一反应单元为移动床-固定床加氢组合单元或移动床加氢单元,用于将脱油沥青和含芳烃物流在其中进行加氢反应;
分离单元,该分离单元与所述第一反应单元保持流体连通,用于将来自所述第一反应单元的液相产物在其中进行分馏;
第二反应单元,该第二反应单元与所述分离单元保持流体连通,用于将由所述分离单元中获得的第一轻组分在其中进行反应,所述第 二反应单元选自加氢裂化单元、催化裂化单元和柴油加氢提质单元中的至少一种;
延迟焦化单元,该延迟焦化单元与所述分离单元保持流体连通,用于将由所述分离单元中获得的第一重组分在其中进行反应以得到选自焦化汽油、焦化柴油、焦化蜡油和低硫石油焦中的至少一种产物;
出口,该出口与所述分离单元保持流体连通,用于将由所述分离单元中获得的第一重组分作为低硫船用燃料油组分引出***。
优选地,所述延迟焦化单元与所述第一反应单元保持流体连通,用于将所述延迟焦化单元中获得的所述焦化柴油和/或所述焦化蜡油循环回所述第一反应单元中。
优选情况下,该***中还包括溶剂脱沥青单元,该溶剂脱沥青单元与所述第一反应单元保持流体连通,用于将重油原料在其中进行溶剂脱沥青处理后得到的脱油沥青引入至所述第一反应单元中。
根据一种优选的具体实施方式,在本发明的***中,所述第二反应单元为加氢裂化单元。
根据另一种优选的具体实施方式,在本发明的***中,所述第二反应单元为催化裂化单元,且所述催化裂化单元为流化催化裂化单元。
根据另一种优选的具体实施方式,在本发明的***中,所述第二反应单元为柴油加氢提质单元。
本发明进一步提供了所述第二方面技术方案的如下所述的第三变体:
在该第三变体中,所述溶剂脱沥青单元,该溶剂脱沥青单元用于将重质原料油在其中进行溶剂脱沥青处理,得到脱油沥青和脱沥青油;
第三加氢单元,该第三加氢单元与所述溶剂脱沥青单元保持流体连通,且该第三加氢单元为固定床加氢单元,用于将来自所述溶剂脱沥青单元的脱沥青油在其中进行加氢反应;
DCC单元,该DCC单元与所述第三加氢单元保持流体连通,用于将所述第三加氢单元中获得的液相流出物在其中进行反应以得到丙烯、LCO、HCO和油浆;
第四加氢单元,该第四加氢单元与所述DCC单元保持流体连通,用于将所述DCC单元中获得的油浆在其中进行脱金属反应以得到脱金属后油浆;
第一加氢单元,该第一加氢单元为固定床加氢单元或移动床加氢单元,所述第一加氢单元与所述DCC单元、所述第四加氢单元和所述溶剂脱沥青单元保持流体连通,用于将来自所述第四加氢单元的脱金属后油浆和/或来自所述DCC单元的油浆与来自所述溶剂脱沥青单元的脱油沥青在其中进行转化反应;
分离单元,该分离单元与所述第一加氢单元和所述DCC单元分别保持流体连通,用于将来自所述第一加氢单元的液相流出物在其中进行分馏,以及能够将该分离单元中所得的第一轻组分循环回所述DCC单元中;
第二反应单元,该第二反应单元与所述分离单元保持流体连通,用于将由所述分离单元中获得的第一轻组分在其中进行反应,所述第二反应单元选自加氢裂化单元、催化裂化单元和柴油加氢提质单元中的至少一种;
延迟焦化单元,该延迟焦化单元与所述分离单元保持流体连通,用于将由所述分离单元中获得的第一重组分在其中进行反应以得到选自焦化汽油、焦化柴油、焦化蜡油和低硫石油焦中的至少一种产物;
出口,该出口与所述分离单元保持流体连通,用于将由所述分离单元中获得的第一重组分作为低硫船用燃料油组分引出***。
优选情况下,所述延迟焦化单元与所述第一加氢单元保持流体连通,用于将所述延迟焦化单元中获得的所述焦化柴油和/或所述焦化蜡油循环回所述第一加氢单元中。
本发明进一步提供了所述第二方面技术方案的如下所述的第四变体:
在该第四变体中,所述***中包括:
溶剂脱沥青单元,该溶剂脱沥青单元用于将重质原料油在其中进行溶剂脱沥青处理,得到脱油沥青和脱沥青油;
第三加氢单元,该第三加氢单元与所述溶剂脱沥青单元保持流体连通,且该第三加氢单元为固定床加氢单元,用于将来自所述溶剂脱沥青单元的脱沥青油在其中进行加氢反应;
DCC单元,该DCC单元与所述第三加氢单元保持流体连通,用于将所述第三加氢单元中获得的液相流出物在其中进行反应以得到丙烯、LCO、HCO和油浆;
第一加氢单元,该第一加氢单元为固定床加氢单元或移动床加氢单元,所述第一加氢单元与所述DCC单元和所述溶剂脱沥青单元保持流体连通,用于将来自所述DCC单元的LCO和/或HCO与来自所述溶剂脱沥青单元的脱油沥青在其中进行转化反应;
分离单元,该分离单元与所述第一加氢单元和所述DCC单元分别保持流体连通,用于将来自所述第一加氢单元的液相流出物在其中进行分馏,以及能够将该分离单元中所得的第一轻组分循环回所述DCC单元中;
第二反应单元,该第二反应单元与所述分离单元保持流体连通,用于将由所述分离单元中获得的第一轻组分在其中进行反应以得到选自汽油组分、柴油馏分、BTX原料组分中的至少一种产物;
延迟焦化单元,该延迟焦化单元与所述分离单元保持流体连通,用于将由所述分离单元中获得的第一重组分在其中进行反应以得到选自焦化汽油、焦化柴油、焦化蜡油和低硫石油焦中的至少一种产物;
出口,该出口与所述分离单元保持流体连通,用于将由所述分离单元中获得的第一重组分引出***以作为低硫船用燃料油组分。
优选情况下,所述DCC单元与所述溶剂脱沥青单元保持流体连通,用于将所述DCC单元中获得的油浆循环回所述溶剂脱沥青单元中进行溶剂脱沥青处理。
本发明进一步提供了所述第二方面技术方案的如下所述的第五变体:
在该第五变体中,所述***中包括:
第五反应单元,该第五反应单元用于将富芳馏分油在其中进行加氢饱和和分馏以得到第二轻组分和第二重组分;
第一反应单元,该第一反应单元为固定床加氢单元且与所述第五反应单元保持流体连通,用于将脱油沥青和含有来自所述第五反应单元的第二重组分的含芳烃物流在其中进行加氢反应;
分离单元,该分离单元与所述第一反应单元保持流体连通,用于将来自所述第一反应单元的液相产物在其中进行分馏;
第二反应单元,该第二反应单元与所述分离单元保持流体连通,用于将由所述分离单元中获得的第一轻组分在其中进行反应,所述第二反应单元选自加氢裂化单元、催化裂化单元和柴油加氢提质单元中 的至少一种;
延迟焦化单元,该延迟焦化单元与所述分离单元保持流体连通,用于将由所述分离单元中获得的第一重组分在其中进行反应以得到选自焦化汽油、焦化柴油、焦化蜡油和低硫石油焦中的至少一种产物;
出口,该出口与所述分离单元保持流体连通,用于将由所述分离单元中获得的第一重组分作为低硫船用燃料油组分引出***。
优选地,所述延迟焦化单元与所述第一反应单元保持流体连通,用于将所述延迟焦化单元中获得的所述焦化柴油和/或所述焦化蜡油循环回所述第一反应单元中作为至少部分所述含芳烃物流。
优选情况下,该***中还包括溶剂脱沥青单元,该溶剂脱沥青单元与所述第一反应单元保持流体连通,用于将重油原料在其中进行溶剂脱沥青处理,并将所述溶剂脱沥青处理后得到的脱油沥青引入至所述第一反应单元中。
根据一种优选的具体实施方式,在本发明的***中,所述第二反应单元为加氢裂化单元。
根据另一种优选的具体实施方式,在本发明的***中,所述第二反应单元为催化裂化单元,且所述催化裂化单元为流化催化裂化单元。
根据另一种优选的具体实施方式,在本发明的***中,所述第二反应单元为柴油加氢提质单元。
本发明进一步提供了所述第二方面技术方案的如下所述的第六变体:
在该第六变体中,所述***中包括:
溶剂脱沥青单元,该溶剂脱沥青单元用于将重质原料油在其中进行溶剂脱沥青处理,得到脱油沥青和脱沥青油;
第六加氢单元,该第六加氢单元与所述溶剂脱沥青单元保持流体连通,且该第六加氢单元为固定床加氢单元,用于将来自所述溶剂脱沥青单元的脱沥青油在其中进行加氢反应;
DCC单元,该DCC单元与所述第六加氢单元保持流体连通,用于将所述第六加氢单元中获得的液相流出物在其中进行反应以得到丙烯、LCO、HCO和油浆;
第五加氢单元,该第五加氢单元与所述DCC单元保持流体连通,用于将含有所述LCO和/或所述HCO的富芳馏分油在其中进行加氢饱 和和分馏以得到第二轻组分和第二重组分;
第一反应单元,该第一反应单元为固定床加氢单元且与所述第五加氢单元和所述溶剂脱沥青单元分别保持流体连通,用于将来自所述溶剂脱沥青单元的脱油沥青和含有来自所述第五加氢单元的第二重组分的含芳烃物流在其中进行加氢反应;
分离单元,该分离单元与所述第一反应单元和所述DCC单元分别保持流体连通,用于将来自所述第一反应单元的液相产物在其中进行分馏,以及能够将该分离单元中所得的第一轻组分循环回所述DCC单元中;
第二反应单元,该第二反应单元与所述分离单元保持流体连通,用于将由所述分离单元中获得的第一轻组分在其中进行反应,所述第二反应单元选自加氢裂化单元、催化裂化单元和柴油加氢提质单元中的至少一种;
延迟焦化单元,该延迟焦化单元与所述分离单元保持流体连通,用于将由所述分离单元中获得的第一重组分在其中进行反应以得到选自焦化汽油、焦化柴油、焦化蜡油和低硫石油焦中的至少一种产物;
出口,该出口与所述分离单元保持流体连通,用于将由所述分离单元中获得的第一重组分作为低硫船用燃料油组分引出***。
优选地,所述延迟焦化单元与所述第一反应单元保持流体连通,用于将所述延迟焦化单元中获得的所述焦化柴油和/或所述焦化蜡油循环回所述第五加氢单元中。
根据一种优选的具体实施方式,在本发明的***中,所述第二反应单元为加氢裂化单元。
根据另一种优选的具体实施方式,在本发明的***中,所述第二反应单元为催化裂化单元,且所述催化裂化单元为流化催化裂化单元。
根据另一种优选的具体实施方式,在本发明的***中,所述第二反应单元为柴油加氢提质单元。
在本发明的优选的具体实施方式下,与现有技术相比,本发明由于采用了溶剂脱沥青、重油加氢、加氢裂化或催化裂化或焦化等工艺的有机组合,不但使轻石油馏分高价值利用,而且使低价值的DOA转化成符合环保要求的低硫船燃组分和低硫石油焦原料,由此实现了重质石油资源的高效、环保和综合利用。
以下将通过实例对本发明进行详细描述。在没有特别说明的情况下,以下实例均采用图1所示的工艺流程进行。
在没有特别说明的情况下,以下实例中的表2的结果为装置持续运行100h中,每25h取样检测获得的结果的平均值。
催化裂化催化剂MLC-500、RS-2100加氢精制催化剂、RHC-131加氢裂化催化剂、RG-30B、RDM-33B和RCS-31均为中石化催化剂有限公司长岭分公司生产的催化剂。
各实例中使用的富含芳烃的馏分油的性质见表6。
以下涉及的常温表示25±3℃。
实施例I-A
富矿前驱体材料1制备:选取中石化催化剂有限公司长岭分公司生产的RPB110拟薄水铝石2000g,其中1000g在550℃下处理2h,得到约700g氧化铝,将约700g氧化铝和另外1000g拟薄水铝石充分混合,之后加入40g田菁粉和20g柠檬酸,并加入2200g去离子水,混捏并挤条成型,在300℃下干燥3h,得到约1730g载体,加入2100mL含Mo和Ni的溶液进行饱和浸渍,溶液中Mo含量以MoO 3重量计为5.5%,Ni含量以NiO重量计为1.5%,浸渍半小时,之后在180℃下处理4h,得到富矿前驱体材料1,性质如表I-5中所示。
富矿前驱体材料2制备:选取中石化催化剂有限公司长岭分公司生产的RPB110拟薄水铝石2000g,加入30g田菁粉和30g柠檬酸,并加入2400g去离子水,混捏并挤条成型,在120℃下干燥5h,得到约2040g载体,加入2200mL含Mo和Ni的溶液进行饱和浸渍,溶液中Mo含量以MoO 3重量计为7.5%,Ni含量以NiO重量计为1.7%,浸渍半小时,之后在200℃下处理3h,得到富矿前驱体材料2,性质如表I-5中所示。
富矿前驱体材料3制备:选取市售的氧化硅2000g,加入30g田菁粉和30g氢氧化钠,并加入2400g去离子水,混捏并挤条成型,在120℃下干燥5h,得到载体,加入2200mL含Mo和Ni的溶液进行饱和浸渍,溶液中Mo含量以MoO 3重量计为4.5%,Ni含量以NiO重量计为1.0%,浸渍半小时,之后在200℃下处理3h,得到富矿前驱体材料3,性质如表I-5中所示。
实施例I-B
以中东减压渣油为原料进行溶剂脱沥青,所用溶剂为一种以丁烷为主(丁烷含量为75质量%)并含有少量丙烷和戊烷的烃类混合物,在120℃,溶剂:减压渣油=1.5:1(质量比)的条件下进行溶剂脱沥青,脱沥青油(DAO)质量收率68.1%,脱油沥青(DOA)质量收率31.9%。
实施例I-1
原料:采用实施例I-B中的DOA与LCO按照质量比1:10混合,混合原料在常温下为液态,混合原料的性质见表I-1。
第一反应单元:混合原料在中型固定床重油加氢处理装置上进行试验。按照反应物流动方向,第一反应单元的反应器中装填RG-30B保护催化剂、富矿前驱体材料1、富矿前驱体材料2、RDM-33B渣油脱金属脱硫过渡催化剂、RCS-31脱硫催化剂,装填体积比为:RG-30B:富矿前驱体材料1:富矿前驱体材料2:RDM-33B:RCS-31=6:30:30:14:20。固定床重油加氢处理的操作条件为:温度380℃,反应压力16MPa,液时体积空速0.18h -1,氢/油比(体积):1000:1。混合原料经固定床加氢处理后,产品性质见表I-2。
分离:分馏固定床重油加氢处理得到的液相产品,大于等于335℃的第一重组分性质见表I-3。
第二反应单元:小于335℃第一轻组分在固定床加氢裂化装置上进行加氢裂化试验,催化剂的装填比为:RS-2100:RHC-131=40:60(V/V)。加氢裂化工艺条件如下:精制段温度370℃,裂化段温度385℃,反应压力7MPa,液时体积空速2.0h -1,氢/油体积比:1200:1,得到的加氢裂化汽油产品性质见表I-4。
实施例I-2
原料:采用实施例I-B中的DOA与HCO按照质量比5:10混合,混合原料在常温下为液态,混合原料的性质见表I-1。
第一反应单元:混合原料在中型固定床重油加氢处理装置上进行试验,催化剂装填及工艺条件同实施例I-1中的固定床重油加氢处理催 化剂装填及工艺条件,加氢处理后,产品性质见表I-2。
分离:分馏固定床渣油加氢处理得到的液相产品,大于等于378℃第一重组分性质见表I-3。
第二反应单元:小于378℃第一轻组分在固定床加氢裂化装置上进行试验,催化剂及试验条件与实施例I-1中小于335℃第一轻组分加氢裂化试验相同,得到加氢裂化产品,性质见表I-4。
实施例I-3
原料:采用实施例I-B中的DOA与LCO按照质量比10:10混合,混合原料在常温下为液态,混合原料的性质见表I-1。
第一反应单元:混合原料在中型固定床重油加氢处理装置上进行试验,催化剂装填及工艺条件同实施例I-1中的固定床重油加氢处理催化剂装填及工艺条件,加氢处理后,产品性质见表I-2。
分离:分馏固定床重油加氢处理得到的液相产品,大于等于350℃第一重组分性质见表I-3。
第二反应单元:小于350℃第一轻组分在固定床加氢裂化装置上进行试验,催化剂及试验条件与实施例I-1中小于335℃第一轻组分加氢裂化试验相同,得到加氢裂化产品,性质见表I-4。
实施例I-4
原料:采用实施例I-B中的DOA与煤焦油I按照质量比15:10混合,混合原料在常温下为液态,混合原料的性质见表I-1。
第一反应单元:混合原料在中型固定床重油加氢处理装置上进行试验,催化剂装填及工艺条件同实施例I-1中的固定床重油加氢处理催化剂装填及工艺条件,加氢处理后,产品性质见表I-2。
分离:分馏固定床重油加氢处理得到的液相产品,大于等于355℃第一重组分性质见表I-3。
第二反应单元:小于355℃第一轻组分在固定床加氢裂化装置上进行试验,催化剂及试验条件与实施例I-1中小于335℃第一轻组分加氢裂化试验相同,得到加氢裂化产品,性质见表I-4。
实施例I-5
采用与实施例I-3相似的方法进行,所不同的是:
第一反应单元:本实施例I-中,固定床重油加氢处理的温度为395℃,按照反应物流动方向,第一反应单元的反应器中装填RG-30B保护催化剂、富矿前驱体材料1、RCS-31脱硫催化剂,装填体积比为:RG-30B:富矿前驱体材料1:RCS-31=7:65:28。
其余条件与实施例I-3中相同。
所得>350℃第一重组分主要物化性质见表I-3。
实施例I-6
采用实施例I-B中的DOA与LCO按照质量比10:10混合,混合原料在常温下为液态,混合原料的性质见表I-1。
催化剂装填和固定床重油加氢处理的操作条件同实施例I-3。
每过30天,固定床反应温度提3℃,加氢试验共计运行300天后停止运转,加氢生成油硫质量分数在0.46~0.50%之间,钒含量在10-15μg/g之间。
初始装到反应器的富矿前驱体材料1和富矿前驱体材料2,反应后变成富V材料1和富钒材料2,经焙烧分析其V含量分别为55质量%和45质量%,是提炼高价值V 2O 5的高品质材料。
实施例I-7
将实施例I-3中的大于等于350℃第一重组分引入至延迟焦化单元进行焦化处理,延迟焦化单元中的条件包括:反应温度为490℃,停留时间为1.5h。
所得低硫石油焦的质量收率为28.7%,石油焦硫质量分数为2.7%。
实施例I-8
将实施例I-3中的小于350℃第一轻组分在小型催化裂化固定流化床试验装置进行催化裂化试验,所用催化剂为催化裂化催化剂MLC-500;流化催化单元的条件包括:反应温度为540℃,剂油比为6,停留时间为3s。
结果,产品汽油质量收率为55.2%,汽油RON辛烷值为95.8。
实施例I-9
原料:混合原料与实施例I-3中相同。
第一反应单元:与实施例I-3中相似,不同的是催化剂装填情况不同,本实施例I-中,按照反应物流动方向,依次装填RG-30B:富矿前驱体材料1:富矿前驱体材料2=5:60:35(V/V)。固定床重油加氢处理的操作条件同实施例I-3。
混合原料经固定床重油加氢处理后,每过30天,反应温度提3℃,加氢试验共计运行330天后停止运转,加氢生成油硫质量分数在0.55~0.65%之间,钒含量在4-7μg/g之间。
初始装到反应器的富矿前驱体材料1和富矿前驱体材料2,反应后变成富钒材料1和富钒材料2,经焙烧分析其钒含量分别为58质量%和47质量%,是提炼高价值V 2O 5的高品质材料。
实施例I-10
原料:混合原料与实施例I-3中相同。
第一反应单元:与实施例I-3中相似,不同的是催化剂装填情况不同,本实施例I-中,按照反应物流动方向,依次装填RG-30B:富矿前驱体材料1=10:90(V/V)。固定床重油加氢处理的操作条件同实施例I-3。
混合原料经固定床重油加氢处理后,每过30天,固定床反应器反应温度提3℃,加氢试验共计运行300天后停止运转,加氢生成油硫质量分数在0.56~0.68%之间,钒含量在2-4μg/g之间。
初始装到反应器的富矿前驱体材料1反应后变成富钒材料1,经焙烧分析其钒含量为61质量%,是提炼高价值V 2O 5的高品质材料。
实施例I-11
原料:采用实施例I-B中的DOA与LCO以及煤焦油II(由实施例I-7中获得)按照质量比15:5:5混合,混合原料在常温下为液态,混合原料的性质见表I-1。
第一反应单元:混合原料在中型固定床重油加氢处理装置上进行试验,催化剂装填及工艺条件同实施例I-1中的固定床重油加氢处理催化剂装填及工艺条件,加氢处理后,产品性质见表I-2。
分离:分馏固定床重油加氢处理得到的液相产品,大于等于355℃第一重组分性质见表I-3。
第二反应单元:小于355℃第一轻组分在固定床加氢裂化装置上进行试验,催化剂及试验条件与实施例I-1中小于335℃第一轻组分加氢裂化试验相同,得到加氢裂化产品,性质见表I-4。
实施例I-12
原料:采用实施例I-B中的DOA与QY1以质量比1:10混合,混合原料在常温下为液态,混合原料的性质见表I-1。
第一反应单元:混合原料在中型固定床重油加氢处理装置上进行试验,催化剂装填及工艺条件同实施例I-1中的固定床重油加氢处理催化剂装填及工艺条件,加氢处理后,产品性质见表I-2。
分离:分馏固定床重油加氢处理得到的液相产品,大于等于350℃第一重组分性质见表I-3。
第二反应单元:小于350℃第一轻组分在固定床加氢裂化装置上进行试验,催化剂及试验条件与实施例I-1中小于335℃第一轻组分加氢裂化试验相同,得到加氢裂化产品性质见表I-4。
实施例I-13
原料:采用实施例I-B中的DOA与QY2以质量比2:10混合,混合原料在常温下为液态,混合原料的性质见表I-1。
第一反应单元:混合原料在中型固定床重油加氢处理装置上进行试验,催化剂装填及工艺条件同实施例I-1中的固定床重油加氢处理催化剂装填及工艺条件,加氢处理后,产品性质见表I-2。
分离:分馏固定床重油加氢处理得到的液相产品,大于等于335℃第一重组分性质见表I-3。
第二反应单元:小于335℃第一轻组分在固定床加氢裂化装置上进行试验,催化剂及试验条件与实施例I-1中小于335℃第一轻组分加氢裂化试验相同,得到加氢裂化产品,性质见表I-4。
实施例I-14
原料:混合原料与实施例I-1中相同。
第一反应单元:与实施例I-1中相似,不同的是催化剂装填情况不同,本实施例I-中,按照反应物流动方向,依次装填RG-30B保护催化剂、富矿前驱体材料1、RDM-33B渣油脱金属脱硫过渡催化剂、RCS-31脱硫催化剂,装填体积比为:RG-30B:富矿前驱体材料1:RDM-33B:RCS-31=6:60:14:20。
其余条件与实施例I-1中相同。
混合原料经固定床加氢处理后,产品性质见表I-2。
分馏固定床重油加氢处理得到的液相产品,大于等于335℃第一重组分性质见表I-3。
实施例I-15
原料:混合原料与实施例I-1中相同。
第一反应单元:与实施例I-1中相似,不同的是催化剂装填情况不同,本实施例I-中,按照反应物流动方向,第一反应单元的反应器中先装填富矿前驱体材料2,后装填富矿前驱体材料1,也即:
按照反应物流动方向,第一反应单元的反应器中装填RG-30B保护催化剂、富矿前驱体材料2、富矿前驱体材料1、RDM-33B渣油脱金属脱硫过渡催化剂、RCS-31脱硫催化剂,装填体积比为:RG-30B:富矿前驱体材料2:富矿前驱体材料1:RDM-33B:RCS-31=6:30:30:14:20。
其余条件与实施例I-1中相同。
混合原料经固定床加氢处理后,产品性质见表I-2。
分馏固定床重油加氢处理得到的液相产品,大于等于335℃第一重组分性质见表I-3。
实施例I-16
原料:混合原料与实施例I-1中相同。
第一反应单元:与实施例I-1中相似,不同的是催化剂装填情况不同,本实施例I-中,按照反应物流动方向,第一反应单元的反应器中依次装填RG-30B保护催化剂、RDM-33B渣油脱金属脱硫过渡催化剂、RCS-31脱硫催化剂,装填体积比为:RG-30B:RDM-33B:RCS-31=10:40:50。
其余条件与实施例I-1中相同。
混合原料经固定床加氢处理后,产品性质见表I-2。
分馏固定床重油加氢处理得到的液相产品,大于等于335℃第一重组分性质见表I-3。
实施例I-17
原料:混合原料与实施例I-1中相同。
第一反应单元:与实施例I-1中相似,不同的是催化剂装填情况不同,本实施例I-中,按照反应物流动方向,第一反应单元的反应器中依次装填RG-30B保护催化剂、富矿前驱体材料3、富矿前驱体材料2、RDM-33B渣油脱金属脱硫过渡催化剂、RCS-31脱硫催化剂,装填体积比为:RG-30B:富矿前驱体材料3:富矿前驱体材料2:RDM-33B:RCS-31=6:30:30:14:20。
其余条件与实施例I-1中相同。
混合原料经固定床加氢处理后,产品性质见表I-2。
分馏固定床重油加氢处理得到的液相产品,大于等于335℃第一重组分性质见表I-3。
对比例I-1
原料:采用实施例I-B中的DOA与QY3以质量比3:10混合,DOA在100℃下无法全部溶解,也即所得混合物料为非液态,混合原料的性质见表I-1。
因混合原料中有大量固体,故无法进行下一步试验。
表I-1:混合原料性质
Figure PCTCN2020125109-appb-000001
表I-2:固定床重油加氢处理后产品性质
Figure PCTCN2020125109-appb-000002
表I-3:第一重组分性质
Figure PCTCN2020125109-appb-000003
表I-4:加氢裂化汽油产品性质
项目 收率/质量% 密度(20℃)/g/cm 3 RON 硫含量,μg/g
实施例I-1 84.12 0.7256 95 5.9
实施例I-2 82.04 0.7323 92 6.6
实施例I-3 79.11 0.7494 90 7.3
实施例I-4 75.36 0.7792 89 9.1
实施例I-11 74.21 0.7782 88 9.3
实施例I-12 81.30 0.7488 94 7.0
实施例I-13 78.33 0.7603 92 9.5
实施例I-14 84.01 0.7266 95 6.0
实施例I-15 83.98 0.7260 95 6.1
实施例I-16 84.05 0.7271 95 6.3
实施例I-17 83.84 0.7310 95 6.9
表I-5:富矿前驱体材料性质
  灼减,质量% 比表面积,m 2/g 吸水率,g/g
富矿前驱体材料1 13.5 263 1.08
富矿前驱体材料2 29.9 279 1.22
富矿前驱体材料3 20.5 99 1.05
表I-6:富含芳烃的馏分油的性质
  终馏点 芳烃含量,质量% 来源
LCO 310℃ 51 -
HCO 350℃ 54 -
煤焦油I 345℃ 55 -
煤焦油II 315℃ 50 实施例I-7
QY1 300℃ 40 炼油厂轻质油品
QY2 298℃ 30 炼油厂轻质油品
QY3 295℃ 20 炼油厂轻质油品
实施例II-1
原料:采用实施例I-B中的DOA与LCO按照质量比1:10混合,混合原料在常温下为液态,混合原料的性质见表II-1。
第一反应单元:混合原料在中型移动床-固定床重油加氢处理装置上进行试验。移动床反应器中装填富矿前驱体材料1,按照反应物流动方向,固定床反应器中装填富矿前驱体材料2、RDM-33B渣油脱金属脱硫过渡催化剂、RCS-31脱硫催化剂,装填体积比为:富矿前驱体材料1:富矿前驱体材料2:RDM-33B:RCS-31=30:36:14:20。加氢处理的操作条件为:压力16MPa,空速0.18h -1,氢/油比(体积):1000:1,其中,移动床反应器加氢反应温度为385℃,固定床反应器加氢反应温度为370℃。混合原料经加氢处理后,产品性质见表II-2。
分离:分馏加氢处理得到的液相产品,大于等于335℃第一重组分性质见表II-3。
第二反应单元:小于335℃第一轻组分在固定床加氢裂化装置上进行加氢裂化试验,催化剂的装填比为:RS-2100:RHC-131=40:60(V/V), 加氢裂化工艺条件如下:精制段温度370℃,裂化段385℃,压力7MPa,空速2.0h -1,氢/油(体积):1200:1,得到的加氢裂化汽油产品性质见表II-4。
实施例II-2
原料:采用实施例I-B中的DOA与HCO按照质量比5:10混合,混合原料在常温下为液态,混合原料的性质见表II-1。
第一反应单元:混合原料在中型移动床-固定床重油加氢处理装置上进行试验,催化剂装填及工艺条件同实施例II-1,加氢处理后,产品性质见表II-2。
分离:分馏加氢处理得到的液相产品,大于等于378℃第一重组分性质见表II-3。
第二反应单元:小于378℃第一轻组分在固定床加氢裂化装置上进行试验,催化剂及试验条件与实施例II-1第一轻组分加氢裂化试验相同,得到加氢裂化产品,性质见表II-4。
表II-1:混合原料性质
Figure PCTCN2020125109-appb-000004
表II-2:重油加氢处理后产品性质
Figure PCTCN2020125109-appb-000005
表II-3:第一重组分性质
Figure PCTCN2020125109-appb-000006
表II-4:加氢裂化汽油产品性质
项目 收率,质量% 密度(20℃),g/cm 3 RON 硫含量,μg/g
实施例1 80.22 0.7122 95.5 5.3
实施例2 79.63 0.7233 92.8 6.1
实施例III-A
以中东减压渣油为原料进行溶剂脱沥青,所用溶剂为一种以丁烷为主(丁烷含量为75质量%)并含有少量丙烷和戊烷的烃类混合物,在120℃,溶剂:减压渣油=4:1(质量比)的条件下进行溶剂脱沥青,脱沥青油(DAO)质量收率72.4%,脱油沥青(DOA)质量收率27.2%。
实施例III-1
本实施例III-采用的DAO和DOA均来自实施例III-A中所得,DAO和DOA的性质见表III-1。
DAO经第三加氢单元后的液相产品性质见表III-1。
DCC单元操作条件为:反应温度410℃,剂油比3,停留时间5s;DCC单元得到LCO1(性质见表III-6)、HCO1和油浆1。
DCC单元所得油浆1经第四加氢单元(固定床渣油加氢单元)后得到脱金属后油浆1,性质见表III-1。
DOA与脱金属后油浆1按照质量比1:10混合,混合原料(性质见表III-2)经第一加氢单元(固定床渣油加氢处理单元)加氢处理后,产品性质见表III-3。
分馏第一加氢单元得到的液相产品,大于等于350℃第一重组分性质见表III-4。
小于350℃第一轻组分在固定床加氢裂化装置上进行试验,得到加 氢裂化产品,性质见表III-5。
实施例III-2
本实施例III-采用的DAO和DOA与实施例III-1中相同。
DAO经第三加氢单元后的所得液相产品性质与实施例III-1中相同。
DCC单元操作条件为:反应温度420℃,剂油比3,停留时间5s;DCC单元得到LCO2、HCO2和油浆2。
DCC单元所得油浆2经第四加氢单元(固定床渣油加氢单元)后得到脱金属后油浆2,性质见表III-1。
DOA与脱金属后油浆2按照质量比5:10混合,混合原料(性质见表III-2)经第一加氢单元(固定床渣油加氢处理单元)加氢处理后,产品性质见表III-3。
分馏第一加氢单元得到的液相产品,大于等于350℃第一重组分性质见表III-4。
小于350℃第一轻组分在固定床加氢裂化装置上进行试验,得到加氢裂化产品,性质见表III-5。
实施例III-3
本实施例III-采用的DAO和DOA与实施例III-1中相同。
DAO经第三加氢单元后的所得液相产品性质与实施例III-1中相同。
DCC单元操作条件为:反应温度440℃,剂油比3,停留时间5s;DCC单元得到LCO3、HCO3和油浆3。
DCC单元所得油浆3经第四加氢单元(固定床渣油加氢单元)后得到脱金属后油浆3,性质见表III-1。
DOA与脱金属后油浆3按照质量比10:10混合,混合原料(性质见表III-2)经第一加氢单元(固定床渣油加氢处理单元)加氢处理后,产品性质见表III-3。
分馏第一加氢单元得到的液相产品,大于等于350℃第一重组分性质见表III-4。
小于350℃第一轻组分在固定床加氢裂化装置上进行试验,得到加氢裂化产品,性质见表III-5。
实施例III-4
DOA(来自实施例III-A)与脱金属后油浆1按照质量比15:10混合,混合原料(性质见表III-2)经第一加氢单元(移动床渣油加氢处理单元)加氢处理后,产品性质见表III-3。
分馏第一加氢单元得到的液相产品,大于等于350℃第一重组分性质见表III-4。
小于350℃第一轻组分在固定床加氢裂化装置上进行试验,得到加氢裂化产品,性质见表III-5。
实施例III-5
DOA(来自实施例III-A)与LCO1、HCO1、脱金属后油浆1按照质量比1:3:3:4混合,混合原料(性质见表III-2)经第一加氢单元(固定床渣油加氢处理单元)加氢处理后,产品性质见表III-3。
分馏第一加氢单元得到的液相产品,大于等于350℃第一重组分性质见表III-4。
小于350℃第一轻组分在固定床加氢裂化装置上进行试验,得到加氢裂化产品,性质见表III-5。
实施例III-6
将实施例III-1中所得第一重组分引入至延迟焦化单元中进行反应,得到焦化汽油。
延迟焦化单元的操作条件为:反应温度490℃下,停留时间为1.5h。
结果:焦化汽油的收率为29.7%,石油焦硫质量分数为2.7%。
实施例III-7
按照实施例III-1相似的流程进行,所不同的是,将所得第一重组分引入至延迟焦化单元中进行反应,得到焦化汽油、焦化柴油和焦化蜡油。
延迟焦化单元的操作条件为:反应温度500℃下,停留时间为1.2h。
结果:焦化汽油的收率为30.8%,石油焦硫质量分数为2.5%。
并将焦化柴油和焦化蜡油循环回第一加氢单元(固定床渣油加氢处理单元)中进行加氢处理,其中,混合原料(性质见表III-2)的组 成为DOA:脱金属后油浆1:焦化柴油:焦化蜡油的质量比1:5:3:2。加氢处理后,产品性质见表III-3。
本实施例III-中的第一加氢单元的操作条件同实施例III-1。
分馏第一加氢单元得到的液相产品,大于等于350℃第一重组分性质见表III-4。
小于350℃第一轻组分在固定床加氢裂化装置上进行试验,得到加氢裂化产品,性质见表III-5。
实施例III-8
将实施例III-1所得小于350℃第一轻组分在固定床加氢裂化装置上进行试验,得到柴油组分。
所用的催化剂为中石化催化剂有限公司长岭分公司生产的加氢催化剂的RS-2100加氢精制催化剂和RHC-131加氢裂化催化剂。各催化剂之间的装填比为:RS-2100:RHC-131=40:60(V/V),加氢裂化工艺条件如下:精制段温度370℃,裂化段温度385℃,反应压力7MPa,液时体积空速2.0h -1,氢/油体积比:1200:1,得到的加氢裂化产品性质见表III-4。
实施例III-9
将与实施例III-1相同的混合原料经第一加氢单元(移动床渣油加氢处理单元)加氢处理后,产品性质见表III-3。
分馏第一加氢单元得到的液相产品,大于等于350℃第一重组分性质见表III-4。
小于350℃第一轻组分在固定床加氢裂化装置上进行试验,得到加氢裂化产品,性质见表III-5。
实施例III-10
本实施例III-采用的DOA来自实施例III-A中所得,将DOA与炼油厂轻质油品QY1、脱金属后油浆1按照质量比1:5:5混合,混合原料(性质见表III-2)经第一加氢单元(固定床渣油加氢处理单元)加氢处理后,产品性质见表III-3。
混合原料经第一加氢单元(固定床渣油加氢处理单元)加氢处理 后,产品性质见表III-3。
分馏第一加氢单元得到的液相产品,大于等于350℃第一重组分性质见表III-4。
小于350℃第一轻组分在固定床加氢裂化装置上进行试验,得到加氢裂化产品,性质见表III-5。
实施例III-11
本实施例III-采用的DOA来自实施例III-A中所得,将DOA与炼油厂轻质油品QY2、脱金属后油浆1按照质量比2:5:5混合,混合原料(性质见表III-2)经第一加氢单元(固定床渣油加氢处理单元)加氢处理后,产品性质见表III-3。
分馏第一加氢单元得到的液相产品,大于等于350℃第一重组分性质见表III-4。
小于350℃第一轻组分在固定床加氢裂化装置上进行试验,得到加氢裂化产品,性质见表III-5。
实施例III-12
本实施例III-采用的DOA来自实施例III-A中所得,将DOA、过滤后的油浆1(固含量为5μg/g)按照质量比1:10混合。
混合原料(性质见表III-2)经第一加氢单元(固定床渣油加氢处理单元)加氢处理后,产品性质见表III-3。
分馏第一加氢单元得到的液相产品,大于等于350℃第一重组分性质见表III-4。
小于350℃第一轻组分在固定床加氢裂化装置上进行试验,得到加氢裂化产品,性质见表III-5。
实施例III-13
本实施例III-采用与实施例III-1相似的方法进行,所不同的是,本实施例III-中将小于350℃第一轻组分循环回DCC单元中,循环比为0.1。
DCC单元得到LCO13、HCO13和油浆13。
DCC单元所得油浆13经第四加氢单元(固定床渣油加氢单元)后 得到脱金属后油浆13,性质见表III-1。
DOA与脱金属后油浆13按照质量比1:10混合,混合原料(性质见表III-2)经第一加氢单元(固定床渣油加氢处理单元)加氢处理后,产品性质见表III-3。
分馏第一加氢单元得到的液相产品,大于等于350℃第一重组分性质见表III-4。
小于350℃第一轻组分在固定床加氢裂化装置上进行试验,得到加氢裂化产品,性质见表III-5。
对比例III-1
催化剂与装置同实施例III-1。
DOA(来自实施例III-A)与炼油厂轻质油品QY3、脱金属后油浆1按照质量比3:5:5混合,DOA在100℃下无法实现全部溶解。
因混合原料中有大量固体,故无法进行下一步试验。
表III-1:DOA、DAO及第三加氢单元处理后液相产品等的性质
Figure PCTCN2020125109-appb-000007
液相产品 1表III-示:第三加氢单元加氢处理后液相产品。
表III-2:混合原料性质
Figure PCTCN2020125109-appb-000008
表III-2(续表III-):混合原料性质
Figure PCTCN2020125109-appb-000009
表III-3:第一加氢单元中固定床/移动床渣油加氢处理后产品性质
Figure PCTCN2020125109-appb-000010
表III-4:第一重组分性质
Figure PCTCN2020125109-appb-000011
表III-5:加氢裂化产品性质
项目 密度(20℃),g/cm 3 硫,μg/g RON
实施例III-1 0.72 <10 >92
实施例III-2 0.72 <10 >92
实施例III-3 0.72 <10 >92
实施例III-4 0.72 <10 >92
实施例III-5 0.72 <10 >92
实施例III-9 0.72 <10 >92
实施例III-10 0.72 <10 >92
实施例III-11 0.71 <10 >92
实施例III-12 0.72 <10 >92
实施例III-13 0.71 <10 >92
表III-6
  终馏点℃ 芳烃质量百分含量
LCO1 270 55
HCO1 310 61
LCO2 267 60
LCO3 285 59
QY1 300 40
QY2 203 30
QY3 210 20
从表III-4中的数据可以看出,本发明的技术能够从DOA得到优质的生产低硫船燃或低硫焦产品原料。
从表III-5中的数据可以看出,本发明的技术能够从DOA得到优质的和符合国Ⅴ标准的低烯烃含量的汽油产品。
实施例IV-1
本实施例IV-采用的DAO和DOA均来自实施例IV-A中所得,DAO和DOA的性质见表IV-1。
DAO经第三加氢单元后的液相产品性质见表IV-1。
DCC单元操作条件为:反应温度410℃,剂油比3.0,停留时间3s;DCC单元得到LCO1(性质见表IV-6)、HCO1(性质见表IV-6)和油浆1。
DOA与LCO1按照质量比1:10混合,混合原料(性质见表IV-2)经第二加氢(固定床渣油加氢处理单元)加氢处理后,产品性质见表IV-3。
分馏第一加氢单元得到的液相产品,大于等于350℃第一重组分性质见表IV-4。
小于350℃第一轻组分在固定床加氢裂化装置上进行试验,得到加氢裂化产品,性质见表IV-5。
实施例IV-2
本实施例IV-采用的DAO和DOA与实施例IV-1中相同。
DAO经第三加氢单元后的所得液相产品性质与实施例IV-1中相同。
DCC单元操作条件为:反应温度420℃,剂油比3.0,停留时间3s;DCC单元得到LCO2(性质见表IV-6)、HCO2和油浆2。
DOA与LCO2按照质量比5:10混合,混合原料(性质见表IV-2)经第一加氢单元(固定床渣油加氢处理单元)加氢处理后,产品性质见表IV-3。
分馏第一加氢单元得到的液相产品,大于等于350℃第一重组分性质见表IV-4。
小于350℃第一轻组分在固定床加氢裂化装置上进行试验,得到加氢裂化产品,性质见表IV-5。
表IV-1:DOA、DAO及第三加氢单元处理后液相产品等的性质
项目 DOA DAO 液相产品 1 煤焦油 DAO11 DOA11
密度(20℃),g/cm 3 1132.69 989.6 943.2 985.1 965.3 1123.22
残炭,质量% 54.56 13.6 5.2 20.3 12.4 52.31
硫含量,质量% 6.13 3.815 0.24 4.7 3.621 6.02
氮含量,质量% 0.772 0.235 0.15 0.431 0.225 0.765
(Ni+V),μg/g 378 32.78 5.41 67.2 30.81 331
液相产品 1表IV-示:第三加氢单元加氢处理后液相产品。
表IV-2:混合原料性质
  实施例IV-1 实施例IV-2
混合原料    
种类 DOA:LCO1 DOA:LCO2
质量比例 1:10 5:10
20℃状态 液态 液态
C 7不溶物/质量% 3.1 10.4
残炭,质量% 4.54 9.5
硫,质量% 1.33 2.56
粘度(100℃),(mm 2/s) 1.7 3.45
Ni+V,(μg/g) 34.3 109.8
表IV-3:第一加氢单元中固定床/移动床渣油加氢处理后产品性质
Figure PCTCN2020125109-appb-000012
表IV-4:第一重组分性质
Figure PCTCN2020125109-appb-000013
表IV-5:加氢裂化产品性质
项目 密度(20℃),g/cm 3 硫,μg/g RON
实施例IV-1 0.72 <10 >92
实施例IV-2 0.72 <10 >92
实施例V-1
第五反应单元:原料富芳馏分油为LCO1(性质见表V-1),来自扬子炼化催化裂化装置;第五反应单元操作条件:反应温度为290℃,反应压力为4MPa,液时体积空速为1h -1,氢油体积比为800:1。
第一分馏:第二轻组分和第二重组分1(性质见表V-1)的切割点为180℃;
第一反应单元:原料DOA(来自伊重减渣)和第二重组分1以1:10的质量比混合形成,性质见表V-2;中型固定床渣油加氢处理装置,反应器总体积为200mL,按照物流方向,第一反应单元中依次装填RG-30B保护催化剂、富矿前驱体材料1、富矿前驱体材料2、RDM-33B渣油脱金属脱硫过渡催化剂、RCS-31脱硫催化剂,装填比为:RG-30B:富矿前驱体材料V-1:富矿前驱体材料V-2:RDM-33B:RCS-31=6:30:30:14:20(V/V);操作条件为:反应温度为360℃,反应压力为8MPa,液时体积空速为0.3h -1,氢油体积比为800:1。混合原料加氢后产品性质见表V-3。
第二分馏:分馏第一反应单元处理得到的液相产品,得到小于350℃的第一轻组分和大于等于350℃的第一重组分,第一重组分性质见表V-4。
第一轻组分在第二反应单元进行试验。
第二反应单元:固定床加氢裂化装置,依次装填RS-2100:RHC-131=40:60(V/V),操作条件为:精制段反应温度为370 ℃,裂化段反应温度为385℃,反应压力为10MPa,液时体积空速为2.0h -1,氢油体积比为:1200:1;得到加氢裂化产品,性质见表V-5。
实施例V-2
第五反应单元:原料,富芳馏分油为HCO2(性质见表V-1),来自镇海炼化催化裂化装置;第五反应单元操作条件:反应温度为330℃,反应压力为6MPa,液时体积空速为1h -1,氢油体积比为800:1。
第一分馏:第二轻组分和第二重组分2(性质见表V-1)的切割点为190℃;
第一反应单元:原料,DOA(来自伊重减渣)和第二重组分2以5:10的质量比混合形成,性质见表V-2;处理装置及催化剂装填情况与实施例V-1中相同,操作条件为:反应温度为380℃,反应压力为10MPa,液时体积空速为0.3h -1,氢油体积比为800:1。混合原料加氢后产品性质见表V-3。
第二分馏:分馏第一反应单元处理得到的液相产品,得到小于350℃的第一轻组分和大于等于350℃的第一重组分,第一重组分性质见表V-4。
第一轻组分在第二反应单元进行试验。
第二反应单元:情况与实施例V-1中相同,得到加氢裂化产品,性质见表V-5。
实施例V-3
第五反应单元:原料,富芳馏分油为LCO1(性质见表V-1),来自扬子炼化催化裂化装置;第五反应单元操作条件:反应温度为320℃,反应压力为6MPa,液时体积空速为1h -1,氢油体积比为800:1。
第一分馏:第二轻组分和第二重组分3(性质见表V-1)的切割点为190℃;
第一反应单元:原料,DOA(来自伊重减渣)和第二重组分3以10:10的质量比混合形成,性质见表V-2;处理装置及催化剂装填情况与实施例V-1中相同,操作条件为:反应温度为370℃,反应压力为6MPa,液时体积空速为0.3h -1,氢油体积比为800:1。混合原料加氢后产品性质见表V-3。
第二分馏:分馏第一反应单元处理得到的液相产品,得到小于350℃的第一轻组分和大于等于350℃的第一重组分,第一重组分性质见表V-4。
将该第一重组分在反应温度为500℃停留时间为0.5h下进行焦化反应,得到石油焦(收率30质量%),其中,硫含量为2.7质量%。
第一轻组分在第二反应单元进行试验。
第二反应单元:情况与实施例V-1中相同,得到加氢裂化产品,性质见表V-5。
表V-1:富芳馏分油加氢前后性质
Figure PCTCN2020125109-appb-000014
表V-2:混合原料性质
  实施例V-1 实施例V-2 实施例V-3 实施例V-4
20℃状态 液态 液态 液态 液态
C 7不溶物,质量% 2.09 7.67 13.50 16.80
残炭,质量% 2.27 8.33 19.50 25.00
硫,质量% 1.4 2.14 3.21 3.85
粘度(100℃),(mm 2/s) 1.9 8.6 35.1 36.0
Ni+V,(μg/g) 23 104 153 195
表V-2(续表V-):混合原料性质
  实施例V-8 对比例1 对比例2
20℃状态 液态 液态 液态
C 7不溶物,质量% 2.18 1.99 3.83
残炭,质量% 3.7 2.58 4.17
硫,质量% 1.68 1.55 2.47
粘度(100℃),(mm 2/s) 3.9 3.1 5.6
Ni+V,(μg/g) 32 25 41
表V-3:混合原料加氢后产品性质
Figure PCTCN2020125109-appb-000015
表V-4:第一重组分性质
Figure PCTCN2020125109-appb-000016
表V-5:加氢裂化产品性质
项目 密度(20℃),g/cm3 RON 硫含量,μg/g
实施例V-1 0.72 >92 <10
实施例V-2 0.72 >92 <10
实施例V-3 0.72 >92 <10
实施例VI-B
以一种减压渣油为原料进行溶剂脱沥青,所用溶剂为丁烷含量为 75重量%以上的烃类混合物,在120℃下,溶剂:减压渣油=2:1(质量比)的条件下进行溶剂脱沥青,DAO质量收率68%,DOA质量收率32%。
所得DAO和DOA的性质见表VI-1。
实施例VI-1
本实施例VI-采用的DAO和DOA均来自实施例VI-B。
DAO经第六加氢单元中进行加氢反应后的液相产品性质见表VI-1;液相产品进入DCC单元进行反应,得到LCO1(终馏点为350℃,芳烃质量百分含量为54%)和HCO1。
LCO1在第五加氢单元中进行加氢饱和后分馏以获得切割点为180℃的第二轻组分1和第二重组分1,第五加氢单元加氢的操作条件为:反应温度为290℃,反应压力为4MPa,液时体积空速为1h -1,氢油体积比为800:1。LCO1性质和第二重组分1性质如表VI-2所示。
DOA与第二重组分1按照质量比1:10混合,混合原料的性质见表VI-3。
DOA和第二重组分1的混合原料在第一反应单元的操作条件为:反应温度为360℃,反应压力为8MPa,液时体积空速为0.3h -1,氢油体积比为800:1。混合原料加氢后产品性质见表VI-4。
分馏第一反应单元处理得到的液相产品,大于等于350℃第一重组分性质见表VI-5。
小于350℃第一轻组分在第二反应单元进行试验,得到加氢裂化产品,性质见表VI-6。
实施例VI-2
本实施例VI-采用的DAO和DOA均来自实施例VI-B。
DAO经第六加氢单元中进行加氢反应后的液相产品性质见表VI-1;液相产品进入DCC单元进行反应,得到LCO2和HCO2。
HCO2在第五加氢单元中进行加氢饱和后分馏以获得切割点为180℃的第二轻组分2和第二重组分2,第五加氢单元加氢操作条件为:反应温度为330℃,反应压力为6MPa,液时体积空速为1h -1,氢油体积比为800:1。HCO2性质和第二重组分2性质如表VI-2所示。
DOA与第二重组分2按照质量比5:10混合,混合原料的性质见表VI-3。
DOA和第二重组分2的混合原料在第一反应单元的操作条件为:反应温度为380℃,反应压力为10MPa,液时体积空速为0.3h -1,氢油体积比为800:1。混合原料加氢后产品性质见表VI-4。
分馏第一反应单元处理得到的液相产品,大于等于350℃第一重组分性质见表VI-5。
小于350℃第一轻组分在第二反应单元进行试验,得到加氢裂化产品,性质见表VI-6。
实施例VI-3
本实施例VI-采用的DAO和DOA均来自实施例VI-B。
DAO经第六加氢单元中进行加氢反应后的液相产品性质见表VI-1;液相产品进入DCC单元进行反应,得到LCO1和HCO1。
LCO1在第五加氢单元中进行加氢饱和后分馏以获得切割点为180℃的第二轻组分3和第二重组分3,第五加氢单元加氢操作条件为:反应温度为320℃,反应压力为6MPa,液时体积空速为1h -1,氢油体积比为800:1。LCO1性质和第二重组分3性质如表VI-2所示。
DOA与第二重组分3按照质量比10:10混合,混合原料的性质见表VI-3。
DOA和第二重组分3的混合原料在第一反应单元的操作条件为:反应温度为370℃,反应压力为6MPa,液时体积空速为0.3h -1,氢油体积比为800:1。混合原料加氢后产品性质见表VI-4。
分馏第一反应单元处理得到的液相产品,大于等于350℃第一重组分性质见表VI-5。
将第一重组分在反应温度为500℃停留时间为0.5h下进行焦化反应,得到石油焦(收率31质量%),硫含量为2.6质量%。
小于350℃第一轻组分在第二反应单元进行试验,得到加氢裂化产品,性质见表VI-6。
实施例VI-4
本实施例VI-采用的DAO和DOA均来自实施例VI-B。
DAO经第六加氢单元中进行加氢反应后的液相产品性质见表VI-1;液相产品进入DCC单元进行反应,得到LCO1和HCO1。
本实施例VI-采用的富芳馏分油为来自国内某煤焦化装置的煤焦油(性质见表VI-1)和LCO1,LCO1与煤焦油的质量比为1:1,富芳馏分油在第五加氢单元中进行加氢饱和后分馏以获得切割点为180℃的第二轻组分4和第二重组分4,第五加氢单元加氢操作条件为:反应温度为300℃,反应压力为10MPa,液时体积空速为0.8h -1,氢油体积比为800:1。富芳馏分油和第二重组分4的性质如表VI-2所示。
DOA与第二重组分4按照质量比15:10混合,混合原料的性质见表VI-3。
DOA和第二重组分4的混合原料在第一反应单元的操作条件为:反应温度为350℃,反应压力为12MPa,液时体积空速为0.3h -1,氢油体积比为800:1。混合原料加氢后产品性质见表VI-4。
分馏第一反应单元处理得到的液相产品,大于等于350℃第一重组分性质见表VI-5。
小于350℃第一轻组分在第二反应单元进行试验,得到加氢裂化产品,性质见表VI-6。
实施例VI-5
采用与实施例VI-3相似的方法进行,所不同的是:
本实施例VI-中,第一反应单元的加氢处理的温度为395℃。
其余条件与实施例VI-3中相同。
混合原料加氢后产品性质见表VI-4。
分馏第一反应单元处理得到的液相产品,大于等于350℃第一重组分性质见表VI-5。
实施例VI-6
催化剂装填和加氢处理的操作条件同实施例VI-3。
与实施例VI-3相同的混合原料经第一反应单元加氢处理后,每过30天,反应温度提3℃,加氢试验共计运行360天后停止运转。
初始装到反应器的富矿前驱体材料1和富矿前驱体材料2,反应后变成富V材料1和富钒材料2,经焙烧分析其V含量分别为56质量% 和47质量%,其钒含量比自然矿石高10倍以上,是提炼高价值V 2O 5的高品质材料。
实施例VI-7
将实施例VI-3中的小于350℃第一轻组分在小型催化裂化固定流化床试验装置进行催化裂化试验,所用催化剂为中石化催化剂有限公司长岭分公司生产的催化裂化催化剂MLC-500,反应温度为540℃,剂油比为5,停留时间为2s。
结果,产品汽油质量收率为43%,汽油RON辛烷值为92。
实施例VI-8
采用与实施例VI-1相似的工艺,不同之处在于,本实施例VI-中将所得第一重组分引入至延迟焦化单元中进行反应,得到焦化汽油、焦化柴油和焦化蜡油。
焦化柴油的硫含量0.16质量%,凝点-13℃,十六烷值49。
延迟焦化单元的操作条件为:反应温度为500℃,停留时间为0.5h。
焦化蜡油的硫含量0.76质量%,凝点32℃。
焦化汽油的收率为15%,硫含量0.08质量%,MON为60。
并将焦化柴油和焦化蜡油循环回第五加氢单元和所述LCO1混合,以进行加氢饱和后分馏以获得切割点为180℃的第二轻组分8和第二重组分8,反应工艺条件同实施例VI-1。混合焦化柴油、焦化蜡油以及LCO1的油料的性质和第二重组分8的性质如表VI-2所示。
DOA来自实施例VI-B,与第二重组分8按照质量比1:10混合,混合原料的性质见表VI-3。
DOA和第二重组分8的混合原料在第一反应单元的操作条件为:反应温度为360℃,反应压力为8MPa,液时体积空速为0.3h -1,氢油体积比为800:1。混合原料加氢后产品性质见表VI-4。
分馏第一反应单元得到的液相产品,大于等于350℃第一重组分性质见表VI-5。
小于350℃第一轻组分在第二反应单元进行试验,得到加氢裂化产品,性质见表VI-6。
实施例VI-9
将实施例VI-1所得小于350℃第一轻组分在柴油加氢改质装置上进行试验,得到柴油组分。
柴油加氢改质装置的操作条件为:反应温度为350℃,反应压力为7MPa,氢油体积比为800,液时体积空速为1.0h -1
结果,所得柴油组分的硫含量9ppm,凝点-32℃,十六烷值51.9。
实施例VI-10
采用与实施例VI-1相似的工艺进行,所不同的是,本实施例VI-中的第一反应单元中的催化剂装填情况如下:
按照物流方向,催化剂装填的顺序为加氢保护催化剂、富矿前驱体材料1、加氢脱金属脱硫催化剂、加氢脱硫催化剂。第一反应单元中,各催化剂之间的装填比为:RG-30B:富矿前驱体材料1:RDM-33B:RCS-31=6:60:14:20(V/V)。
混合原料加氢后产品性质见表VI-4。
分馏第一反应单元处理得到的液相产品,大于等于350℃第一重组分性质见表VI-5。
小于350℃第一轻组分在第二反应单元进行试验,得到加氢裂化产品,性质见表VI-6。
实施例VI-11
采用与实施例VI-1相似的工艺进行,所不同的是,本实施例VI-中的第一反应单元中的催化剂装填情况如下:
按照物流方向,催化剂装填的顺序为加氢保护催化剂、富矿前驱体材料2、富矿前驱体材料1、加氢脱金属脱硫催化剂、加氢脱硫催化剂。第一反应单元中,各催化剂之间的装填比为:RG-30B:富矿前驱体材料2:富矿前驱体材料1:RDM-33B:RCS-31=6:30:30:14:20(V/V)。
混合原料加氢后产品性质见表VI-4。
分馏第一反应单元处理得到的液相产品,大于等于350℃第一重组分性质见表VI-5。
小于350℃第一轻组分在第二反应单元进行试验,得到加氢裂化产 品,性质见表VI-6。
实施例VI-12
采用与实施例VI-1相似的工艺进行,所不同的是,本实施例VI-中的第一反应单元中的催化剂装填情况如下:
按照物流方向,催化剂装填的顺序为:加氢保护催化剂、加氢脱金属脱硫催化剂、加氢脱硫催化剂。第一反应单元中,各催化剂之间的装填比为:RG-30B:RDM-33B:RCS-31=12:38:50(V/V)。
混合原料加氢后产品性质见表VI-4。
分馏第一反应单元处理得到的液相产品,大于等于350℃第一重组分性质见表VI-5。
小于350℃第一轻组分在第二反应单元进行试验,得到加氢裂化产品,性质见表VI-6。
实施例VI-13
采用与实施例VI-1相似的工艺进行,所不同的是,本实施例VI-中的第一反应单元中的催化剂装填情况如下:
按照物流方向,催化剂装填的顺序为:加氢保护催化剂、富矿前驱体材料3、加氢脱金属脱硫催化剂、加氢脱硫催化剂。第一反应单元中,各催化剂之间的装填比为:RG-30B:富矿前驱体材料3:RDM-33B:RCS-31=5:40:20:35(V/V)。
混合原料加氢后产品性质见表VI-4。
分馏第一反应单元处理得到的液相产品,大于等于350℃第一重组分性质见表VI-5。
小于350℃第一轻组分在第二反应单元进行试验,得到加氢裂化产品,性质见表VI-6。
对比例VI-1
催化剂与装置与实施例VI-1相似。所不同的是:
本对比例VI-中富芳馏分油QY(芳烃含量为20质量%)不经过部分加氢饱和处理装置,而直接与DOA混合。DOA与QY以质量比1:10混合,混合原料的性质见表VI-3。
混合原料经第一反应单元加氢处理后,产品性质见表VI-4。
分馏第一反应单元加氢处理得到的液相产品,大于等于350℃第一重组分性质见表VI-5。
小于350℃第一轻组分在第二反应单元进行试验,得到加氢裂化产品,性质见表VI-6。
对比例VI-2
催化剂与装置与实施例VI-1相似。所不同的是:
本对比例VI-中富芳馏分油QY不经过部分加氢饱和处理装置,而直接与DOA混合。DOA与QY以质量比2:10混合,混合原料的性质见表VI-3。
混合原料经第一反应单元加氢处理后,产品性质见表VI-4。
分馏第一反应单元加氢处理得到的液相产品,大于等于350℃第一重组分性质见表VI-5。
小于350℃第一轻组分在第二反应单元进行试验,得到加氢裂化产品,性质见表VI-6。
对比例VI-3
催化剂与装置与实施例VI-1相似。所不同的是:
本对比例VI-中富芳馏分油QY不经过部分加氢饱和处理装置,而直接与DOA混合。DOA与QY以质量比3:10混合,因混合原料中有大量固体(100℃时),故无法进行下一步试验。
表VI-1:DOA、DAO及第六加氢单元加氢处理后液相产品等的性质
项目 DOA DAO 第六加氢单元加氢处理后液相产品
密度(20℃),g/cm 3 1135.1 990.3 946.2
残炭,质量% 48.9 11.6 4.7
硫含量,质量% 6.42 3.6 0.32
氮含量,质量% 1.4 0.68 0.35
(Ni+V),μg/g 481 45.6 6.1
表VI-2:富芳馏分油加氢前后性质
Figure PCTCN2020125109-appb-000017
表VI-3:混合原料性质
Figure PCTCN2020125109-appb-000018
表VI-3(续表VI-):混合原料性质
  实施例VI-8 对比例VI-1 对比例VI-2
种类 DOA:第二重组分8 DOA:QY DOA:QY
质量比 1:10 1:10 2:10
20℃状态 液态 液态 液态
C 7不溶物,质量% 3.4 2.9 5.4
残炭,质量% 4.81 4.73 5.41
硫,质量% 1.51 1.02 1.73
粘度(100℃),(mm 2/s) 3.1 3.8 4.4
Ni+V,(μg/g) 39.9 36.2 56.2
表VI-4:混合原料加氢处理后产品性质
Figure PCTCN2020125109-appb-000019
表VI-5:第一重组分性质
项目 密度(20℃) C 7不溶物 残炭 粘度(100℃) (Ni+V)
  g/cm 3 质量% 质量% 质量% mm 2/s μg/g
实施例VI-1 0.9221 3.8 3.2 0.33 79.3 10.9
实施例VI-2 0.9327 5.9 6.5 0.49 83.2 22.9
实施例VI-3 0.9730 6.4 16.1 0.63 99.9 54.1
实施例VI-4 0.9811 8.9 17.4 0.89 109.6 60.9
实施例VI-5 0.9710 6.2 15.2 0.50 93.1 48.7
实施例VI-8 0.9229 4.1 3.8 0.38 82.3 13.1
实施例VI-10 0.9218 3.9 3.9 0.33 80.5 12
实施例VI-11 0.9219 3.9 4.1 0.35 83.4 12
实施例VI-12 0.9222 4.1 4.4 0.41 86.7 14
实施例VI-13 0.9220 4.0 4.2 0.39 85.0 12
对比例VI-1 0.9456 4.5 5.1 0.97 95.1 33
对比例VI-2 0.9517 4.6 5.0 1.14 98.7 50
表VI-6:加氢裂化产品性质
项目 密度(20℃)/g/cm 3 RON 硫含量,μg/g
实施例VI-1 0.72 >92 <10
实施例VI-2 0.72 >92 <10
实施例VI-3 0.72 >92 <10
实施例VI-4 0.72 >92 <10
实施例VI-8 0.72 >92 <10
实施例VI-10 0.72 >92 <10
实施例VI-11 0.72 >92 <10
实施例VI-12 0.72 >92 <10
实施例VI-13 0.72 >92 <10
对比例VI-1 >0.72 <92 12
对比例VI-2 >0.72 <92 13
表VI-7:富矿前驱体材料性质
  灼减,质量% 比表VI-面积,m 2/g 吸水率,g/g
富矿前驱体材料1 13.5 263 1.08
富矿前驱体材料2 29.9 279 1.22
富矿前驱体材料3 20.5 99 1.05
由上述结果可以看出,本发明的技术能够从DOA得到优质的生产低硫船燃或低硫焦产品原料。
并且,本发明的技术能够得到优质的和符合国V标准的汽油产品。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (52)

  1. 一种加氢处理脱油沥青的方法,其特征在于,该方法包括:
    (2)将脱油沥青(4)和含芳烃物流(5)混合得到的混合原料(6)引入至第一反应单元(7)中进行加氢反应,所述脱油沥青和所述含芳烃物流的组成和用量比使得所述混合原料(6)在不高于400℃时呈液态,
    (21)将来自所述第一反应单元的液相产物分离得到第一轻组分(8)和第一重组分(9),其中,所述第一轻组分和所述第一重组分的切割点为240~450℃,其中,所述分离任选通过分馏(19)进行;
    (31)将所述第一轻组分(8)引入至第二反应单元(10)中进行反应以得到选自汽油组分(13)、柴油组分(14)和BTX原料组分(12)中的至少一种产物,其中,所述第二反应单元选自加氢裂化单元、催化裂化单元和柴油加氢提质单元中的至少一种;以及
    (32)将所述第一重组分(9)引入至延迟焦化单元(11)中进行反应以得到选自焦化汽油(15)、焦化柴油(16)、焦化蜡油(17)和低硫石油焦(18)中的至少一种产物;或者将所述第一重组分作为低硫船用燃料油组分。
  2. 根据权利要求1所述的方法,其中,在步骤(2)中,所述脱油沥青和所述含芳烃物流的用量比使得由该脱油沥青和含芳烃物流形成的混合原料的100℃粘度不大于400mm 2/s,优选不大于200mm 2/s,更优选不大于100mm 2/s。
  3. 根据权利要求1或2所述的方法,其中,在步骤(2)中,所述含芳烃物流为富含芳烃的馏分油和/或芳烃化合物;
    优选地,所述富含芳烃的馏分油的终馏点在200-540℃,芳烃含量大于等于20质量%,优选大于等于40质量%,更优选大于等于50质量%;
    优选地,所述富含芳烃的馏分油选自LCO、HCO、乙烯焦油、煤焦油、焦化柴油和焦化蜡油中的至少一种。
  4. 根据权利要求3所述的方法,其中,所述芳烃化合物选自苯、甲苯、二甲苯、萘、由至少一种C 1-6的烷基取代的萘、三环以上芳烃中的至少一种。
  5. 根据权利要求3所述的方法,其中,在步骤(2)中,所述含芳烃物流为富含芳烃的馏分油,且所述脱油沥青与所述含芳烃物流的用量质量比为1:10至50:10,优选为3:10至30:10。
  6. 根据权利要求3所述的方法,其中,在步骤(2)中,所述含芳烃物流为芳烃化合物,且所述脱油沥青与所述芳烃化合物的用量质量比为1:10至50:10,优选为3:10至30:10。
  7. 根据权利要求1-6中任意一项所述的方法,其中,在步骤(2)中,所述脱油沥青为由重油原料进入溶剂脱沥青单元中进行溶剂脱沥青处理后得到的脱油沥青;
    优选地,在所述溶剂脱沥青单元中,所述脱油沥青的收率质量分数不大于50%,优选不大于40%,更优选不大于30%。
  8. 根据权利要求1-7中任意一项所述的方法,其中,该方法还包括:将步骤(32)中获得的所述焦化柴油和/或所述焦化蜡油循环回步骤(2)中作为至少部分所述含芳烃物流。
  9. 根据权利要求1-7中任意一项所述的方法,其中,在步骤(2)中,所述第一反应单元中的操作条件包括:反应温度为280~450℃,反应压力为8.0~20.0MPa,氢油体积比为400~2000,液时体积空速为0.05~1.2h -1
    优选地,所述第一反应单元中的操作条件包括:反应温度为330~420℃,反应压力为10.0~18.0MPa,氢油体积比为600~1200,液时体积空速为0.10~0.8h -1
  10. 根据权利要求1-7中任意一项所述的方法,其中,在步骤(31)中,所述第二反应单元为加氢裂化单元,且所述加氢裂化单元中的操作条件包括:反应温度为330~420℃,反应压力为5.0~18.0MPa,氢油体积比为500~2000,液时体积空速为0.3~3.0h -1
    优选地,所述加氢裂化单元中装填有至少一种加氢处理催化剂和至少一种加氢裂化催化剂。
  11. 根据权利要求1-7中任意一项所述的方法,其中,在步骤(31)中,所述第二反应单元为催化裂化单元,且所述催化裂化单元为流化催化裂化单元;
    优选地,所述流化催化裂化单元中的操作条件包括:反应温度为500~600℃,剂油比为3~12,停留时间为1~10s;
    优选地,所述流化催化裂化单元的操作条件包括:反应温度为520~580℃,剂油比为4~10,停留时间为2~5s。
  12. 根据权利要求1-7中任意一项所述的方法,其中,在步骤(31)中,所述第二反应单元为柴油加氢提质单元,且所述柴油加氢提质单元中的操作条件包括:反应温度为330~420℃,反应压力为5.0~18.0MPa,氢油体积比为500~2000,液时体积空速为0.3~3.0h -1
    优选地,所述柴油加氢提质单元中装填有至少一种柴油加氢提质催化剂。
  13. 根据权利要求1-7中任意一项所述的方法,其中,在步骤(32)中,将所述第一重组分引入至延迟焦化单元中进行反应以得到选自焦化汽油、焦化柴油、焦化蜡油和低硫石油焦中的至少一种产物,且所述延迟焦化单元中的操作条件包括:反应温度为440~520℃,停留时间为0.1~4h;
    优选地,在步骤(32)中,所述第一重组分的硫含量不大于1.8质量%,将所述第一重组分引入至延迟焦化单元中进行反应以得到低硫石油焦,优选所述低硫石油焦的硫含量不大于3质量%。
  14. 根据权利要求1-7中任意一项所述的方法,其中,在步骤(32)中,将所述第一重组分作为低硫船用燃料油组分,且所述低硫船用燃料油组分中的硫含量不大于0.5质量%。
  15. 根据权利要求1所述的方法,其中,所述第一反应单元为固定床加氢单元,移动床-固定床加氢组合单元或移动床加氢单元。
  16. 根据权利要求1所述的方法,其中,
    所述第一反应单元中含有富矿前驱体材料和/或加氢催化剂,所述加氢催化剂能够催化选自加氢脱金属反应、加氢脱硫反应、加氢脱沥青反应和加氢脱残炭反应中的至少一种反应,所述富矿前驱体材料为能够吸附选自V、Ni、Fe、Ca和Mg中的至少一种金属的材料。
  17. 根据权利要求16所述的方法,其中,在步骤(2)中,所述富矿前驱体材料中含有载体和负载在所述载体上的活性组分元素,所述载体选自氢氧化铝、氧化铝和氧化硅中的至少一种,所述活性组分元素选自第VIB族和VIII族金属元素中的至少一种。
  18. 根据权利要求16所述的方法,其中,在步骤(2)中,所述富矿前驱体材料的灼减不低于3质量%,比表面积不低于80m 2/g,吸 水率不低于0.9g/g;
    优选地,在步骤(2)中,按照反应物流方向,所述第一反应单元中依次装填有第一富矿前驱体材料和第二富矿前驱体材料,且所述第二富矿前驱体材料的灼减大于等于所述第一富矿前驱体材料的灼减。
  19. 根据权利要求18所述的方法,其中,在步骤(2)中,所述第一富矿前驱体材料的灼减为3-15质量%,以及所述第二富矿前驱体材料的灼减为不小于15质量%;
    优选地,所述第一富矿前驱体材料与所述第二富矿前驱体材料的装填体积比为5:95至95:5。
  20. 根据权利要求1所述的方法,其中,在步骤(2)中,所述第一反应单元为移动床-固定床加氢组合单元,且所述移动床中装填富矿前驱体材料,所述固定床中依次装填富矿前驱体材料和加氢催化剂或者所述固定床中装填加氢催化剂;
    优选地,所述移动床中装填的富矿前驱体材料的体积与所述固定床中装填的富矿前驱体材料和加氢催化剂的体积之和的比例为10:90至60:40,优选20:80至40:60。
  21. 根据权利要求4所述的方法,其中,该方法还包括:每周期采用新鲜富矿前驱体材料更换所述移动床中装填的富矿前驱体材料,且更换比例占所述移动床中装填的富矿前驱体材料总量的5~20质量%,优选10~15质量%;
    优选地,所述周期为5~20天,优选为10~15天。
  22. 根据权利要求20所述的方法,其中,所述含芳烃物流中还含有富含芳烃的馏分油,所述富含芳烃的馏分油包括所述DCC单元中获得的所述LCO和/或所述HCO;
    优选地,所述富含芳烃的馏分油的馏程为200~450℃,芳烃含量大于等于20质量%,优选大于等于40质量%,更优选大于等于50质量%;
    优选地,所述富含芳烃的馏分油还包括选自乙烯焦油、煤焦油、焦化柴油和焦化蜡油中的至少一种。
  23. 根据权利要求1-7中任意一项所述的方法,该方法还包括:
    (1)将重质原料油引入至溶剂脱沥青单元中进行溶剂脱沥青处理,得到脱油沥青和脱沥青油;
    (11)将所述脱沥青油引入至第三加氢单元中进行加氢反应,并将所述第三加氢单元中获得的液相流出物引入至DCC单元进行反应,得到丙烯、LCO、HCO和油浆,其中,所述第三加氢单元为固定床加氢单元;
  24. 根据权利要求23所述的方法,其中,在步骤(11)中,控制所述DCC单元中的操作条件,使得所述LCO和/或HCO中的芳烃含量大于等于60质量%。
  25. 根据权利要求23所述的方法,其中,在步骤(11)中,所述第三加氢单元的操作条件包括:反应温度为280~400℃,反应压力为6.0~14.0MPa,氢油体积比为600~1200,液时体积空速为0.3~2.0h -1
  26. 根据权利要求23所述的方法,其中,在步骤(11)中,所述第三加氢单元中装填有至少两种加氢催化剂;
    优选地,所述加氢催化剂为能够催化选自加氢脱金属反应、加氢脱硫反应和加氢脱残炭反应中的至少一种反应的催化剂;
    优选地,所述加氢催化剂中含有作为载体的氧化铝和作为活性组分元素的第VIB族和/或VIII族金属元素,且该加氢催化剂中任选还含有选自P、Si、F和B中的至少一种助剂元素。
  27. 根据权利要求23所述的方法,其中,在步骤(2)中,所述第一加氢单元为固定床加氢单元,且所述第一加氢单元中装填有至少两种加氢处理催化剂;
    优选地,所述加氢处理催化剂为能够催化选自沥青质转化反应、加氢脱金属反应、加氢脱硫反应和加氢脱残炭反应中的至少一种反应的催化剂;
    优选地,所述加氢处理催化剂中含有作为载体的氧化铝和作为活性组分元素的第VIB族和/或VIII族金属元素,且该加氢处理催化剂中任选还含有选自P、Si、F和B中的至少一种助剂元素。
  28. 根据权利要求23所述的方法,其中,在步骤(2)中,所述第一加氢单元为移动床加氢单元,且所述第一加氢单元中装填有至少一种移动床加氢处理催化剂;
    优选地,所述移动床加氢处理催化剂中含有作为载体的氧化铝和作为活性组分元素的第VIB族和/或VIII族金属元素,且该移动床加氢处理催化剂中任选还含有选自P、Si、F和B中的至少一种助剂元素。
  29. 根据权利要求23所述的方法,该方法还包括:
    (13)将所述DCC单元中获得的油浆引入至第四加氢单元中进行脱金属反应,得到脱金属后油浆;以及
    将含有所述DCC单元中获得的油浆和/或所述第四加氢单元中获得的脱金属后油浆的含芳烃物流并入步骤(2)中所述的含芳烃物流(5)中或用作步骤(2)中所述的含芳烃物流(5)。
  30. 根据权利要求29所述的方法,其中,该方法还包括:将步骤(32)中获得的所述焦化柴油和/或所述焦化蜡油循环回步骤(3)中作为至少部分所述含芳烃物流。
  31. 根据权利要求29所述的方法,其中,在步骤(13)中,所述第四加氢单元为固定床加氢单元,且所述第四加氢单元的操作条件包括:反应温度为200~280℃,反应压力为3.0~6.0MPa,氢油体积比为600~1200,液时体积空速为0.5~2.5h -1
  32. 根据权利要求23所述的方法,该方法还包括:
    将所述DCC单元中获得的LCO和/或HCO并入步骤(2)中所述的含芳烃物流(5)中。
  33. 根据权利要求32所述的方法,其中,该方法进一步包括:将所述DCC单元中获得的油浆循环回溶剂脱沥青单元中进行溶剂脱沥青。
  34. 根据权利要求1-7中任意一项所述的方法,该方法还包括:
    步骤(16):将富芳馏分油引入至第五反应单元中进行加氢饱和后分馏以获得第二轻组分和第二重组分,所述第二轻组分和所述第二重组分的切割点为100-250℃,所述第二重组分中的芳烃含量大于等于20质量%;以及
    将所述第二重组分并入步骤(2)中所述的含芳烃物流(5)中。
  35. 根据权利要求34所述的方法,其中,在步骤(2)中,所述含芳烃物流中还含有芳烃化合物和/或芳烃油,所述芳烃油选自LCO、HCO、FGO、乙烯焦油、煤焦油、焦化柴油和焦化蜡油中的至少一种。
  36. 根据权利要求34所述的方法,其中,所述富芳馏分油中的芳烃含量大于等于20质量%,优选大于等于25质量%,更优选大于等于40质量%。
  37. 根据权利要求34所述的方法,其中,在步骤(16)中,所述第五反应单元为固定床反应器、移动床反应器和沸腾床反应器中的至 少一种反应器;
    优选地,所述第五反应单元中的操作条件包括:反应温度为200-420℃,反应压力为2-18MPa,液时体积空速为0.3-10h -1,氢油体积比50-5000;
    优选地,所述第五反应单元中的操作条件包括:反应温度为220-400℃,反应压力为2-15MPa,液时体积空速为0.3-5h -1,氢油体积比为50-4000。
  38. 根据权利要求34所述的方法,该方法还包括:
    (1)将重质原料油引入至溶剂脱沥青单元中进行溶剂脱沥青处理,得到脱油沥青和脱沥青油;
    (14)将所述脱沥青油引入至第六加氢单元中进行加氢反应,并将所述第六加氢单元中获得的液相流出物引入至DCC单元进行反应,得到丙烯、LCO、HCO和油浆,其中,所述第六加氢单元为固定床加氢单元;以及
    将来自所述DCC单元的LCO和/或HCO并入步骤(16)中所述的富芳馏分油中或用作步骤(16)中所述的富芳馏分油。
  39. 根据权利要求38所述的方法,其中,所述DCC单元的操作条件包括:反应温度为500-650℃,剂油比为3-12,停留时间为0.6-6s。
  40. 根据权利要求38所述的方法,其中,该方法还包括:将步骤(32)中获得的所述焦化柴油和/或所述焦化蜡油循环回所述第五加氢单元中进行加氢饱和。
  41. 根据权利要求38所述的方法,其中,在步骤(14)中,所述第六加氢单元的操作条件包括:反应温度为280~400℃,反应压力为6.0~14.0MPa,氢油体积比为600~1200,液时体积空速为0.3~2.0h -1
    优选地,在步骤(14)中,所述第六加氢单元中装填有至少两种加氢催化剂;
    优选地,在步骤(14)中,所述加氢催化剂为能够催化选自加氢脱金属反应、加氢脱硫反应和加氢脱残炭反应中的至少一种反应的催化剂;
    优选地,在步骤(14)中,所述加氢催化剂中含有作为载体的氧化铝和作为活性组分元素的第VIB族和/或VIII族金属元素,且该加氢催化剂中任选还含有选自P、Si、F和B中的至少一种助剂元素。
  42. 一种加氢处理脱油沥青的***,其特征在于,该***中包括:
    第一反应单元,该第一反应单元为固定床加氢单元、移动床-固定床加氢组合单元或移动床加氢单元,用于将脱油沥青和含芳烃物流在其中进行加氢反应;
    分离单元,该分离单元与所述第一反应单元保持流体连通,用于将来自所述第一反应单元的液相产物在其中进行分馏;
    第二反应单元,该第二反应单元与所述分离单元保持流体连通,用于将由所述分离单元中获得的第一轻组分在其中进行反应,所述第二反应单元选自加氢裂化单元、催化裂化单元和柴油加氢提质单元中的至少一种;
    延迟焦化单元,该延迟焦化单元与所述分离单元保持流体连通,用于将由所述分离单元中获得的第一重组分在其中进行反应以得到选自焦化汽油、焦化柴油、焦化蜡油和低硫石油焦中的至少一种产物。
  43. 根据权利要求42所述的***,其中,该***中还包括溶剂脱沥青单元,该溶剂脱沥青单元与所述第一反应单元保持流体连通,用于将重油原料在其中进行溶剂脱沥青处理后得到的脱油沥青引入至所述第一反应单元中。
  44. 一种加工重质原料油的***,其特征在于,该***中包括:
    溶剂脱沥青单元,该溶剂脱沥青单元用于将重质原料油在其中进行溶剂脱沥青处理,得到脱油沥青和脱沥青油;
    第三加氢单元,该第三加氢单元与所述溶剂脱沥青单元保持流体连通,且该第三加氢单元为固定床加氢单元,用于将来自所述溶剂脱沥青单元的脱沥青油在其中进行加氢反应;
    DCC单元,该DCC单元与所述第三加氢单元保持流体连通,用于将所述第三加氢单元中获得的液相流出物在其中进行反应以得到丙烯、LCO、HCO和油浆;
    第一加氢单元,该第一加氢单元为固定床加氢单元或移动床加氢单元,所述第一加氢单元与所述DCC单元和所述溶剂脱沥青单元保持流体连通,用于将来自所述DCC单元的LCO和/或HCO与来自所述溶剂脱沥青单元的脱油沥青在其中进行转化反应;
    分离单元,该分离单元与所述第一加氢单元和所述DCC单元分别保持流体连通,用于将来自所述第一加氢单元的液相流出物在其中进 行分馏,以及能够将该分离单元中所得的第一轻组分循环回所述DCC单元中;
    第二反应单元,该第二反应单元与所述分离单元保持流体连通,用于将由所述分离单元中获得的第一轻组分在其中进行反应以得到选自汽油组分、柴油馏分、BTX原料组分中的至少一种产物;
    延迟焦化单元,该延迟焦化单元与所述分离单元保持流体连通,用于将由所述分离单元中获得的第一重组分在其中进行反应以得到选自焦化汽油、焦化柴油、焦化蜡油和低硫石油焦中的至少一种产物。
  45. 根据权利要求42-44中任一项所述的***,其中,所述延迟焦化单元与所述第一反应单元保持流体连通,用于将所述延迟焦化单元中获得的所述焦化柴油和/或所述焦化蜡油循环回所述第一反应单元中。
  46. 一种加工重质原料油的***,其特征在于,该***中包括:
    溶剂脱沥青单元,该溶剂脱沥青单元用于将重质原料油在其中进行溶剂脱沥青处理,得到脱油沥青和脱沥青油;
    第三加氢单元,该第三加氢单元与所述溶剂脱沥青单元保持流体连通,且该第三加氢单元为固定床加氢单元,用于将来自所述溶剂脱沥青单元的脱沥青油在其中进行加氢反应;
    DCC单元,该DCC单元与所述第三加氢单元保持流体连通,用于将所述第三加氢单元中获得的液相流出物在其中进行反应以得到丙烯、LCO、HCO和油浆;
    第四加氢单元,该第四加氢单元与所述DCC单元保持流体连通,用于将所述DCC单元中获得的油浆在其中进行脱金属反应以得到脱金属后油浆;
    第一加氢单元,该第一加氢单元为固定床加氢单元或移动床加氢单元,所述第一加氢单元与所述DCC单元、所述第四加氢单元和所述溶剂脱沥青单元保持流体连通,用于将来自所述第四加氢单元的脱金属后油浆和/或来自所述DCC单元的油浆与来自所述溶剂脱沥青单元的脱油沥青在其中进行转化反应;
    分离单元,该分离单元与所述第一加氢单元和所述DCC单元分别保持流体连通,用于将来自所述第一加氢单元的液相流出物在其中进行分馏,以及能够将该分离单元中所得的第一轻组分循环回所述DCC单元中;
    第二反应单元,该第二反应单元与所述分离单元保持流体连通,用于将由所述分离单元中获得的第一轻组分在其中进行反应,所述第二反应单元选自加氢裂化单元、催化裂化单元和柴油加氢提质单元中的至少一种;
    延迟焦化单元,该延迟焦化单元与所述分离单元保持流体连通,用于将由所述分离单元中获得的第一重组分在其中进行反应以得到选自焦化汽油、焦化柴油、焦化蜡油和低硫石油焦中的至少一种产物。
  47. 根据权利要求46所述的***,其中,所述DCC单元与所述溶剂脱沥青单元保持流体连通,用于将所述DCC单元中获得的油浆循环回所述溶剂脱沥青单元中进行溶剂脱沥青处理。
  48. 一种加工富芳馏分油的***,其特征在于,该***中包括:
    第五反应单元,该第五反应单元用于将富芳馏分油在其中进行加氢饱和和分馏以得到第二轻组分和第二重组分;
    第一反应单元,该第一反应单元为固定床加氢单元且与所述第五反应单元保持流体连通,用于将脱油沥青和含有来自所述第五反应单元的第二重组分的含芳烃物流在其中进行加氢反应;
    分离单元,该分离单元与所述第一反应单元保持流体连通,用于将来自所述第一反应单元的液相产物在其中进行分馏;
    第二反应单元,该第二反应单元与所述分离单元保持流体连通,用于将由所述分离单元中获得的第一轻组分在其中进行反应,所述第二反应单元选自加氢裂化单元、催化裂化单元和柴油加氢提质单元中的至少一种;
    延迟焦化单元,该延迟焦化单元与所述分离单元保持流体连通,用于将由所述分离单元中获得的第一重组分在其中进行反应以得到选自焦化汽油、焦化柴油、焦化蜡油和低硫石油焦中的至少一种产物。
  49. 根据权利要求48所述的***,其中,所述延迟焦化单元与所述第一反应单元保持流体连通,用于将所述延迟焦化单元中获得的所述焦化柴油和/或所述焦化蜡油循环回所述第一反应单元中作为至少部分所述含芳烃物流。
  50. 根据权利要求48所述的***,其中,该***中还包括溶剂脱沥青单元,该溶剂脱沥青单元与所述第一反应单元保持流体连通,用于将重油原料在其中进行溶剂脱沥青处理,并将所述溶剂脱沥青处理 后得到的脱油沥青引入至所述第一反应单元中。
  51. 一种加工重质原料油和富芳馏分油的***,其特征在于,该***中包括:
    溶剂脱沥青单元,该溶剂脱沥青单元用于将重质原料油在其中进行溶剂脱沥青处理,得到脱油沥青和脱沥青油;
    第六加氢单元,该第六加氢单元与所述溶剂脱沥青单元保持流体连通,且该第六加氢单元为固定床加氢单元,用于将来自所述溶剂脱沥青单元的脱沥青油在其中进行加氢反应;
    DCC单元,该DCC单元与所述第六加氢单元保持流体连通,用于将所述第六加氢单元中获得的液相流出物在其中进行反应以得到丙烯、LCO、HCO和油浆;
    第五加氢单元,该第五加氢单元与所述DCC单元保持流体连通,用于将含有所述LCO和/或所述HCO的富芳馏分油在其中进行加氢饱和和分馏以得到第二轻组分和第二重组分;
    第一反应单元,该第一反应单元为固定床加氢单元且与所述第五加氢单元和所述溶剂脱沥青单元分别保持流体连通,用于将来自所述溶剂脱沥青单元的脱油沥青和含有来自所述第五加氢单元的第二重组分的含芳烃物流在其中进行加氢反应;
    分离单元,该分离单元与所述第一反应单元和所述DCC单元分别保持流体连通,用于将来自所述第一反应单元的液相产物在其中进行分馏,以及能够将该分离单元中所得的第一轻组分循环回所述DCC单元中;
    第二反应单元,该第二反应单元与所述分离单元保持流体连通,用于将由所述分离单元中获得的第一轻组分在其中进行反应,所述第二反应单元选自加氢裂化单元、催化裂化单元和柴油加氢提质单元中的至少一种;
    延迟焦化单元,该延迟焦化单元与所述分离单元保持流体连通,用于将由所述分离单元中获得的第一重组分在其中进行反应以得到选自焦化汽油、焦化柴油、焦化蜡油和低硫石油焦中的至少一种产物。
  52. 根据权利要求51所述的***,其中,所述延迟焦化单元与所述第五加氢单元保持流体连通,用于将所述延迟焦化单元中获得的所述焦化柴油和/或所述焦化蜡油循环回所述第五加氢单元中。
PCT/CN2020/125109 2019-10-31 2020-10-30 一种加氢处理脱油沥青的方法和*** WO2021083305A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022525048A JP2023501180A (ja) 2019-10-31 2020-10-30 脱油アスファルトを水素化処理するための方法およびシステム
US17/772,799 US20220372385A1 (en) 2019-10-31 2020-10-30 Process and system for hydrotreating deoiled asphalt
KR1020227017797A KR20220092544A (ko) 2019-10-31 2020-10-30 탈유 아스팔트의 수소화처리 방법 및 시스템

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN201911053414.X 2019-10-31
CN201911054710.1A CN112745953B (zh) 2019-10-31 2019-10-31 一种加氢处理脱油沥青的方法和***
CN201911054142.5 2019-10-31
CN201911054170.7A CN112745951B (zh) 2019-10-31 2019-10-31 一种加工富芳馏分油的方法和***
CN201911053430.9A CN112745947B (zh) 2019-10-31 2019-10-31 一种加工重质原料油的方法和***
CN201911053430.9 2019-10-31
CN201911054142.5A CN112745950B (zh) 2019-10-31 2019-10-31 一种加氢处理脱油沥青的方法和***
CN201911053706.3A CN112745948B (zh) 2019-10-31 2019-10-31 一种加工重质原料油和富芳馏分油的方法和***
CN201911053706.3 2019-10-31
CN201911053414.XA CN112745946B (zh) 2019-10-31 2019-10-31 一种加工重质原料油的方法和***
CN201911054710.1 2019-10-31
CN201911054170.7 2019-10-31

Publications (1)

Publication Number Publication Date
WO2021083305A1 true WO2021083305A1 (zh) 2021-05-06

Family

ID=75714859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125109 WO2021083305A1 (zh) 2019-10-31 2020-10-30 一种加氢处理脱油沥青的方法和***

Country Status (5)

Country Link
US (1) US20220372385A1 (zh)
JP (1) JP2023501180A (zh)
KR (1) KR20220092544A (zh)
TW (1) TW202136483A (zh)
WO (1) WO2021083305A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1654603A (zh) * 2004-02-13 2005-08-17 中国石油化工股份有限公司 一种劣质重、渣油的转化方法
CN101418222A (zh) * 2007-10-26 2009-04-29 中国石油化工股份有限公司 一种处理劣质渣油的组合工艺
CN102311799A (zh) * 2010-07-07 2012-01-11 中国石油化工股份有限公司 一种渣油处理组合工艺方法
US20130233768A1 (en) * 2012-01-27 2013-09-12 Saudi Arabian Oil Company Integrated solvent deasphalting, hydrotreating and steam pyrolysis process for direct processing of a crude oil
CN104232158A (zh) * 2014-08-22 2014-12-24 中国石油大学 沥青质轻质化方法
CN108546565A (zh) * 2018-04-08 2018-09-18 中石化(洛阳)科技有限公司 重油延迟焦化方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1654603A (zh) * 2004-02-13 2005-08-17 中国石油化工股份有限公司 一种劣质重、渣油的转化方法
CN101418222A (zh) * 2007-10-26 2009-04-29 中国石油化工股份有限公司 一种处理劣质渣油的组合工艺
CN102311799A (zh) * 2010-07-07 2012-01-11 中国石油化工股份有限公司 一种渣油处理组合工艺方法
US20130233768A1 (en) * 2012-01-27 2013-09-12 Saudi Arabian Oil Company Integrated solvent deasphalting, hydrotreating and steam pyrolysis process for direct processing of a crude oil
CN104232158A (zh) * 2014-08-22 2014-12-24 中国石油大学 沥青质轻质化方法
CN108546565A (zh) * 2018-04-08 2018-09-18 中石化(洛阳)科技有限公司 重油延迟焦化方法及装置

Also Published As

Publication number Publication date
US20220372385A1 (en) 2022-11-24
TW202136483A (zh) 2021-10-01
JP2023501180A (ja) 2023-01-18
KR20220092544A (ko) 2022-07-01

Similar Documents

Publication Publication Date Title
US4089774A (en) Process for demetalation and desulfurization of petroleum oils
US4271042A (en) Process for demetalation and desulfurization of petroleum oils
WO2021083302A1 (zh) 一种加工富芳馏分油的方法和***
CA2652227C (en) Improved hydrocracker post-treat catalyst for production of low sulfur fuels
CN112538385B (zh) 一种加氢与催化裂化的组合方法
CN112538384B (zh) 一种多产异丁烷和轻质芳烃的加氢处理-催化裂化组合工艺方法
WO2021083305A1 (zh) 一种加氢处理脱油沥青的方法和***
CN112745952B (zh) 一种加工富芳馏分油的方法和***
Egorova Study of aspects of deep hydrodesulfurization by means of model reactions
RU2737374C1 (ru) Способ использования катализатора гидродеметаллизации в процессе гидрогенизационной переработки нефтяного сырья
RU2803873C1 (ru) Способ и система гидропереработки обезмасленного асфальта
CN112745948B (zh) 一种加工重质原料油和富芳馏分油的方法和***
CN112745950B (zh) 一种加氢处理脱油沥青的方法和***
CN112745951B (zh) 一种加工富芳馏分油的方法和***
JP2005238113A (ja) 水素化処理触媒、炭化水素油の水素化処理方法、低硫黄軽油の製造方法および環境対応軽油
CN112745949B (zh) 一种联合加工脱油沥青和富芳馏分油的方法和***
CN114437808B (zh) 一种加工重油的方法和***
CN114437795B (zh) 一种加工重油的方法和***
CN112745947B (zh) 一种加工重质原料油的方法和***
CN112745953B (zh) 一种加氢处理脱油沥青的方法和***
CN112745946B (zh) 一种加工重质原料油的方法和***
CN114426887B (zh) 一种加工富芳馏分油的方法
US4210525A (en) Hydrodenitrogenation of demetallized residual oil
JP2001038227A (ja) 炭化水素油の水素化分解及び脱硫用触媒並びに水素化分解及び脱硫方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880746

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022525048

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227017797

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20880746

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20880746

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 23/06/2022)

WWE Wipo information: entry into national phase

Ref document number: 522432401

Country of ref document: SA