WO2021079793A1 - セラミック複合体及びセラミック複合体の製造方法 - Google Patents

セラミック複合体及びセラミック複合体の製造方法 Download PDF

Info

Publication number
WO2021079793A1
WO2021079793A1 PCT/JP2020/038699 JP2020038699W WO2021079793A1 WO 2021079793 A1 WO2021079793 A1 WO 2021079793A1 JP 2020038699 W JP2020038699 W JP 2020038699W WO 2021079793 A1 WO2021079793 A1 WO 2021079793A1
Authority
WO
WIPO (PCT)
Prior art keywords
melt
crystal
phase
ceramic composite
crystals
Prior art date
Application number
PCT/JP2020/038699
Other languages
English (en)
French (fr)
Inventor
古滝 敏郎
文弥 堀越
鈴木 正幸
柴田 大輔
Original Assignee
アダマンド並木精密宝石株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アダマンド並木精密宝石株式会社 filed Critical アダマンド並木精密宝石株式会社
Priority to JP2021554312A priority Critical patent/JPWO2021079793A1/ja
Publication of WO2021079793A1 publication Critical patent/WO2021079793A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/14Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method characterised by the seed, e.g. its crystallographic orientation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/20Aluminium oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides

Definitions

  • the present invention relates to a ceramic complex and a method for producing a ceramic complex.
  • a light emitting diode (LED: Light Emitting Diode) or a semiconductor laser that emits blue light is used as a light source, and a part of the blue light is wavelength-converted to yellow light by a wavelength conversion member, and a mixture of blue light and yellow light is used.
  • Lighting devices that irradiate white light are widespread.
  • using a YAG (Y 3 Al 5 O 12 ) based phosphor material of the wavelength conversion member, which is containing a phosphor powder in a resin or glass is proposed.
  • Patent Documents 1 and 2 propose a ceramic composite having a lamellar structure in which the Y 3 Al 5 O 12 phase and the Al 2 O 3 phase are continuously three-dimensionally entangled with each other as eutectic.
  • the ceramic composite according to such Patent Documents 1 and 2 the blue light in Y 3 Al 5 O 12 phase with wavelength conversion into yellow light, of Y 3 Al 5 O 12 phase and the Al 2 O 3 phase Blue light and yellow light are scattered at the interface, and white can be obtained by mixing colors.
  • the YAG of the ceramic composite has a thermal conductivity of only about one-fourth that of sapphire, for example, and tends to generate heat more easily than a crystal material (for example, the sapphire crystal) conventionally used for lighting devices such as LEDs. There is. Therefore, when the ceramic composite is made thicker, the amount of heat generated increases and the heat dissipation property deteriorates. Therefore, the ceramic composite used for a lighting device or the like is required to be miniaturized or thinned.
  • the ceramic composite incorporated in the lighting device is required to be miniaturized or thinned.
  • the transmission of blue light concentrates on a specific part of the ceramic complex. Further, a large amount of light is required depending on the application of the lighting device. Therefore, as the ceramic composite becomes smaller or thinner, heat is more likely to be generated from the ceramic composite, and the heat generating portion is concentrated on a specific portion of the ceramic composite, which causes a failure or malfunction of the lighting device.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a ceramic composite capable of achieving miniaturization or thinning and efficiently dissipating heat, and a method for producing the same.
  • the ceramic composite of the present invention has at least two oxide phases of Y 3 Al 5 O 12 phase and Al 2 O 3 phase as a lamellar structure, and also has Al 2 O 3 phase and sapphire crystal or ruby crystal. It is characterized in that the Al 2 O 3 phases of any of the crystals are integrated with each other without a bonding interface.
  • the ceramic composite of the present invention is provided with at least two crystals, and is sandwiched between the two crystals to form an Al 2 O 3 phase of the crystal and an Al 2 O 3 phase of the ceramic composite. It is characterized in that it is integrated with each other without a bonding interface.
  • the ceramic composite of the present invention is characterized in that the gap between the crystals in which the ceramic composite is sandwiched is 0.01 mm or more and 1 mm or less.
  • a stop hole or a through hole is formed in the crystal, and the ceramic composite is inserted into the stop hole or the through hole, so that the Al 2 O 3 phase of the crystal and the ceramic composite are formed. It is characterized in that the Al 2 O 3 phases of the body are integrated with each other without a bonding interface.
  • the ceramic composite of the present invention is characterized in that the diameter of the stop hole or the through hole is 0.1 mm or more and 3 mm or less.
  • the method for producing a ceramic composite of the present invention includes a step of preparing a melt composed of at least aluminum oxide and yttrium oxide, and contacting a crystal of either sapphire crystal or ruby crystal with the melt to form a melt. to melt the the contacted crystalline portion, and Al 2 O 3 phase of the crystal, and a step of integrating the bonding interface without each other by melting the Al 2 O 3 phase of aluminum oxide, in that it has a step of cooling the melt It is a feature.
  • the method for producing a ceramic composite of the present invention includes a step of preparing at least two crystals and stacking them on each other, a step of putting a raw material containing at least aluminum oxide and yttrium oxide into the crucible, and a step of heating the crucible.
  • the method for producing a ceramic composite of the present invention is characterized in that the gap between crystals is 0.01 mm or more and 1 mm or less.
  • the method for producing a ceramic composite of the present invention is characterized in that the longitudinal direction of the gap between crystals is orthogonal to the plane direction of the liquid surface of the melt.
  • the method for producing a ceramic composite of the present invention includes a step of forming a stop hole or a through hole in a crystal, and a stop in which the melt is infiltrated into the stop hole or the through hole by a capillary phenomenon and brought into contact with the melt. to melt the crystalline portion in the hole or through hole, and wherein the Al 2 O 3 phase of the crystal, further comprising the step of bonding interface are integrated without each other by melting the Al 2 O 3 phase of aluminum oxide.
  • the method for producing a ceramic composite of the present invention is characterized in that the diameter of a stop hole or a through hole is 0.1 mm or more and 3 mm or less.
  • the ceramic composite and the method for producing a ceramic composite according to the present invention it is possible to achieve miniaturization or thinning, and to realize a ceramic composite capable of efficiently dissipating heat, and such a ceramic composite.
  • the body can be manufactured.
  • FIG. 1 It is a front view which shows typically an example of the ceramic complex which concerns on embodiment of this invention.
  • (b) It is a bottom view of FIG. 1 (a).
  • (c) It is a right side view of FIG. 1 (a).
  • It is a perspective view of FIG. (a) It is a front view schematically showing another example of the ceramic complex which concerns on embodiment of this invention.
  • (b) It is a bottom view of FIG. 3 (a).
  • FIG. 3 It is a right side view of FIG. 3 (a). It is an enlarged view of the circle A portion in FIG.
  • FIG. 6 is a side view schematically showing a state in which the ceramic complex and crystals of FIG. 14 are laminated.
  • FIG. 5 is a side view schematically showing a state in which the ceramic composite of FIG. 15 is melted and resolidified.
  • It is a schematic block diagram which shows the manufacturing apparatus of the ceramic complex by the EFG method.
  • (a) It is a top view which shows typically an example of the die which concerns on embodiment of this invention.
  • (b) It is a front view of FIG. 18 (a).
  • (c) It is a side view of the figure (a).
  • (a) It is explanatory drawing which shows an example of the seed crystal which concerns on embodiment of this invention.
  • FIG. 5 is a perspective view partially showing a plurality of ceramic complexes according to an embodiment of the present invention obtained by the EFG method. It is a perspective view which shows another form of the growth process of the ceramic complex by the EFG method.
  • the first feature of this embodiment is that it has at least two oxide phases of Y 3 Al 5 O 12 phase and Al 2 O 3 phase as a lamella structure, and also has Al 2 O 3 phase and a sapphire crystal or a ruby crystal.
  • the Al 2 O 3 phases of any of the crystals are integrated into a ceramic composite having no bonding interface with each other.
  • the second feature of the present embodiment is the step of preparing a melt composed of at least aluminum oxide and yttrium oxide, and contacting either a sapphire crystal or a ruby crystal with the melt to bring it into contact with the melt.
  • a third feature of the present embodiment together with the crystal are provided at least two, are sandwiched by the two crystals, and Al 2 O 3 phase of the crystal, Al 2 O 3 phase of the ceramic composite However, it is a ceramic composite that is integrated without a bonding interface.
  • the fourth feature of the present embodiment is a step of preparing at least two crystals and stacking them on top of each other, a step of putting a raw material containing at least aluminum oxide and yttrium oxide into the pit, and a step of heating the pit to prepare the raw material.
  • the process of melting in a pit to prepare a melt, and the crystals are brought into contact with the melt, and the melt is infiltrated into the gaps between the overlapping crystals by a capillary phenomenon, and the melt is sandwiched between the crystals to melt the crystals.
  • the fifth feature of the present embodiment is that a stop hole or a through hole is formed in the crystal, and a ceramic complex is inserted into the stop hole or the through hole to form an Al 2 O 3 phase of the crystal and ceramic.
  • the Al 2 O 3 phases of the complex are integrated into a ceramic complex without a bonding interface.
  • the sixth feature of the present embodiment is a step of forming a stop hole or a through hole in the crystal, and a stop hole or a stop hole in which the melt is infiltrated into the stop hole or the through hole by a capillary phenomenon and brought into contact with the melt.
  • the method for producing a ceramic composite body further comprising a step of bonding interface are integrated without each other by melting the Al 2 O 3 phase of aluminum oxide It is a thing.
  • the Al 2 O 3 phase of either crystal sapphire crystal or ruby crystal, Al 2 O 3 phase with each other directly of the ceramic composite there is no mutually bonding interface by the molten state It is formed by being integrated with. Therefore, even if heat is generated from the ceramic composite, the heat is quickly conducted to the crystal, so that a ceramic composite capable of efficiently dissipating heat can be realized.
  • the Al 2 O 3 phases are integrated with each other without a bonding interface, the Al 2 O 3 phases are firmly bonded to each other to prevent separation, and the ceramic joint also has high impact resistance. Can be given and reliability is improved.
  • the seventh feature of the present embodiment is that the ceramic composite has a gap of 0.01 mm or more and 1 mm or less between crystals sandwiching the ceramic composite.
  • the eighth feature of this embodiment is that the method for producing a ceramic complex has a gap between crystals of 0.01 mm or more and 1 mm or less.
  • the ninth feature of this embodiment is that the diameter of the stop hole or through hole is 0.1 mm or more and 3 mm or less as a ceramic composite.
  • the tenth feature of the present embodiment is that the diameter of the stop hole or the through hole is 0.1 mm or more and 3 mm or less as a method for manufacturing a ceramic composite.
  • the melt can be uniformly infiltrated into the gaps between crystals, the stop holes, or the through holes by the capillary phenomenon, unevenness in the thickness of the ceramic complex is prevented, and uniform white light is obtained over the entire in-plane. Things will be possible.
  • the eleventh feature of the present embodiment is that the method for producing a ceramic complex is such that the longitudinal direction of the gap between the crystals is orthogonal to the plane direction of the liquid surface of the melt.
  • the capillary phenomenon can be performed most quickly.
  • the ceramic composite 2 according to the present invention has at least two oxide phases, Y 3 Al 5 O 12 phase and Al 2 O 3 phase, as a lamella structure, and Al 2 thereof. and O 3 phase, either crystalline 6 or 9 Al 2 O 3 phase of the sapphire crystal or ruby crystals are integrated in a state bonded interface is not another.
  • FIG. 10 is a photomicrograph showing a cross section of the ceramic complex 2.
  • the ceramic composite 2 of the present embodiment has at least two oxides of a YAG (Y 3 Al 5 O 12 ) phase, which is the first phase, and an Al 2 O 3 phase, which is the second phase.
  • It is a solidified body having a lamellar structure in which the phases exist as eutectics and the first and second phases are continuously and sterically entwined with each other.
  • the structure of the lamellar structure in which the two oxide phases of the first phase and the second phase are continuously and three-dimensionally entangled with each other is oxidized because there is no boundary phase such as amorphous between each oxide phase. It is an organization in which physical phases are in direct contact with each other.
  • the region shown in dark color (black portion) is the Y 3 Al 5 O 12 phase
  • the region shown in light color (white portion) is the Al 2 O 3 phase.
  • the first phase and the second phase are rarely separated in an island shape independently, and have continuous regions in the three-dimensional direction (three-dimensional direction). Further, when the obtained solidified ceramic complex 2 was confirmed with the naked eye of the manufacturer, it was yellow.
  • composition ratio of the Y 3 Al 5 O 12 phase contained in the ceramic complex 2 is 19.72 ⁇ 2.00 mol% in the vicinity of the eutectic composition. If the composition ratio of the Y 3 Al 5 O 12 phase is out of this range, it is difficult to uniformly form a lamellar structure by eutectic with the Al 2 O 3 phase.
  • the Y 3 Al 5 O 12 phase it is more desirable to contain Ce in the Y 3 Al 5 O 12 phase.
  • the Y of the Y 3 Al 5 O 12 phase is partially replaced by Ce, so that the Y 3 Al 5 O 12 phase functions as a phosphor material and absorbs blue light, which is the primary light. This is because the yellow light of the secondary light is emitted and the white light can be obtained.
  • the content of Ce in the Y 3 Al 5 O 12 phase is preferably in the range of 0.01 mol% or more and 5.0 mol% or less.
  • Y 3 Al 5 O 12 phase of Y is substituted partially Ce, Y 3 Al 5 O 12 phase functions as a phosphor material, the secondary light by absorbing blue light is the primary light It emits yellow light.
  • the absorption wavelength and the emission wavelength change depending on the Ce concentration, but the ceramic composite of the present embodiment has a uniformly fine lamellar structure even if the Ce content is relatively high, as will be described later. Can be formed.
  • the Y 3 Al 5 O 12 phase activated by Ce is shown as the first phase, but a part of Y may be replaced with Lu. Substitution amount of Lu is possible to set the above 1.0 mol% 10.0 mol% or less is preferable in terms of Y 3 Al 5 O 12 phase emits yellow light of the secondary light by absorbing blue light is the primary light .. Further, when a part of Y is replaced with Lu, the Y 3 Al 5 O 12 phase may be activated in the range of 0.01 mol% or more and 5.0 mol% or less in Ce.
  • Cr may also be added to the ceramic complex.
  • the amount to be added can be arbitrarily selected, but for example, when it is desired to emit red fluorescent light from the ceramic complex, 0.01 mol% or more and 0.5 mol% or less is desirable.
  • the ceramic complex 2 contains MgO in the range of 10 ppm or more and 500 ppm or less. By containing MgO in this range, the conversion efficiency from blue light to white light can be enhanced, and the emission intensity of white light can be increased.
  • the average value of the lamellar intervals in the Y 3 Al 5 O 12 phase is 0.5 ⁇ m or more and 20 ⁇ m or less. is there.
  • the lamellar spacing is larger than 20 ⁇ m, the lamellar structure becomes insufficiently dense, and the interface between the Y 3 Al 5 O 12 phase and the Al 2 O 3 phase is performed while blue light is transmitted through the ceramic composite 2. The number of times the light is incident on the surface is reduced, the light is not sufficiently scattered, and the efficiency of wavelength conversion and color mixing is reduced.
  • the ceramic complex 2 is manufactured by using a crucible 5 (see FIG. 9) described later. Therefore, the raw material melt in which molybdenum (Mo) or tungsten (W), which is the material of the crucible 5, melts the raw material of the ceramic composite 2 in the crucible 5 (hereinafter, simply referred to as “melt” if necessary). In 17, it dissolves in a small amount and is incorporated into the ceramic composite 2. Therefore, the ceramic complex 2 contains a small amount of Mo or W in addition to the Y 3 Al 5 O 12 phase and the Al 2 O 3 phase, MgO, Ce, and Lu and Cr.
  • Mo molybdenum
  • W tungsten
  • the amount of Mo or W contained in the ceramic composite 2 is preferably in the range of 1.0 mol ⁇ ppm or more and 30,000 mol ⁇ ppm or less, and more preferably in the range of 100 mol ⁇ ppm or more and 3000 mol ⁇ ppm or less.
  • EFG Edge-defined Film-fed. Growth
  • the Mo or W content is increased to exceed 30,000 mol ⁇ ppm, the crystallinity of the Y 3 Al 5 O 12 phase and the Al 2 O 3 phase deteriorates, and the wavelength conversion efficiency deteriorates, which is not preferable.
  • the Mo or W content is set to 100 mol ⁇ ppm or more and 3000 mol ⁇ ppm or less, these problems can be solved and the amount of white light emitted can be increased by uniformly scattering the primary light and the secondary light. Therefore, it is the most desirable.
  • the content of Mo or W contained in the ceramic composite 2 is set to at least 1.0 mol ⁇ ppm or more and 30,000 mol ⁇ ppm or less, a fine lamellar structure is formed to uniformly scatter light, and the emission intensity is increased. Uniformity and conversion efficiency can be improved.
  • the amount of the material of the crucible 5 dissolved in the melt 17 increases because the melting point is low, and the element content derived from the crucible 5 contained in the ceramic complex 2 increases. It is not preferable because it does. Further, it is not preferable to use a material having a high melting point other than Mo or W as the material constituting the crucible 5 because there are problems such as reactivity with the melt 17 of the raw material and moldability of the crucible 5. Therefore, in order to manufacture the ceramic complex 2 and refine the lamellar structure of the Y 3 Al 5 O 12 phase and the Al 2 O 3 phase, Mo or W is contained in the ceramic complex 2 in the above range. Things are important.
  • the ceramic composite 2 of the present embodiment has at least two oxide phases of Y 3 Al 5 O 12 phase and Al 2 O 3 phase as a lamellar structure, and Y 3 Al 5 O 12
  • the average value of the lamellar spacing in the phase is 0.5 ⁇ m or more and 20 ⁇ m or less, and MgO is contained in an amount of 10 ppm or more and 500 ppm or less. Further, since Mo or W is contained, it is possible to uniformly scatter the primary light and the secondary light to improve the wavelength conversion efficiency.
  • the Ce content is adjusted in the range of 0.01 mol% or more and 5.0 mol% or less as described above. Therefore, the lamellar structure contains the interfaces of the Y 3 Al 5 O 12 phase and the Al 2 O 3 phase at a density of 30 pieces / mm or more and 800 pieces / mm or less. If the number of interfaces is less than 30 / mm, the lamellar structure is not sufficiently dense, and the interface between the Y 3 Al 5 O 12 phase and the Al 2 O 3 phase while blue light is transmitted through the ceramic composite 2 The number of times the light is incident on the surface is reduced, the light is not sufficiently scattered, and the efficiency of wavelength conversion and color mixing is reduced. If the interface is greater than 800 / mm, since the size of Y 3 Al 5 O 12 phase becomes several times the wavelength of the smaller becomes the blue light, uniformly possible to wavelength convert blue light into yellow light May become difficult.
  • FIGS. 1 to 4 two crystals are provided as shown in FIGS. 1 to 4 (crystals 6 and 6), or a pipe-shaped crystal 9 shown in FIG. 5 is provided. There is. A stop hole or a through hole is formed in the crystal 9 of FIG. Note that FIG. 5 illustrates an embodiment having a through hole 9a.
  • the surfaces of the crystals 6 are joined by direct contact without using an adhesive or a joining material.
  • the melt 17 is infiltrated into the minute gaps between the bonded surfaces of the crystals 6 to be bonded by a capillary phenomenon described later, and is sandwiched between the two crystals (6, 6). Therefore, the Al 2 O 3 phase of the ceramic complex 2 is integrated with the Al 2 O 3 phase of the crystal 6 on both sides thereof without a bonding interface.
  • the gap between the crystals (6, 6) in which the ceramic composite is sandwiched is set to 0.01 mm or more and 1 mm or less.
  • the gap between the crystals (6, 6) is less than 0.01 mm, the ceramic complex 2 formed in the gap is excessively thinned, so that the influence of the thickness due to the manufacturing error and the influence of the thickness unevenness in the plane are affected. As the size increases, it becomes difficult to obtain white light uniformly over the entire in-plane area.
  • the thermal conductivity of the Y 3 Al 5 O 12 phase contained in the ceramic composite 2 is only about 1/4 of that of the Al 2 O 3 phase, if the gap between the crystals (6, 6) becomes large, The ceramic composite 2 formed in the gap is also thickened, the heat dissipation is deteriorated, and a temperature difference between the surface and the inside is likely to occur.
  • the gap between the crystals (6, 6) is larger than 3 mm, a temperature difference between the outside and the inside is likely to occur, which may impair the uniformity of the lamella spacing, which is not preferable.
  • the desirable gap for preventing a temperature difference between the surface and the inside is 1 mm or less.
  • the melt 17 is impregnated into the direct bonding surface between the crystals 6 by a capillary phenomenon to form the gap. Is formed, the gap between the direct joint surfaces is expanded as the melt 17 infiltrates. Therefore, it is not preferable because the bonded state cannot be maintained and peeling may occur. Therefore, as shown in FIG. 4, it is preferable to separately provide a slit with a step 6c on the joint surface with a width W and allow the melt 17 to penetrate into the slit to form the ceramic complex 2.
  • the width W is a desired width of the ceramic complex 2 to be formed, and is less than the width of the crystal 6.
  • the thickness of the slit due to the step 6c is such that the melt 17 that has penetrated into the slit is held in the slit by its surface tension and does not drip or drip out of the slit.
  • the upper limit of the thickness of the slit may be 1 mm, which is the upper limit of the gap between the crystals (6, 6).
  • the size of the crystal 6 in the plane direction is not particularly limited, but from the viewpoint of preventing deterioration of workability, a square shape having a width of 0.5 mm or more and 300 mm or less and a length of 10 mm or more and 1000 mm or less is desirable.
  • the ceramic composite 2 is inserted into the stop hole or the through hole, and the ceramic composite 2 is inserted. and Al 2 O 3 phase of the crystal 9, Al 2 O 3 phase of the ceramic composite 2 are integrated in a state bonded interface is not another. Further, by setting the diameter of the stop hole or the through hole to 0.1 mm or more and 3 mm or less, the melt 17 can be infiltrated into the stop hole or the through hole by the capillary phenomenon.
  • the diameter of the stop hole or through hole is less than 0.1 mm, the diameter of the ceramic composite 2 portion becomes too small, and it becomes difficult to obtain white light uniformly. On the other hand, if it exceeds 3 mm, the ceramic complex 2 becomes too thick, the heat dissipation property deteriorates, and the uniformity of the lamella spacing may be impaired, which is not preferable.
  • FIG. 5 shows an embodiment having a through hole 9a, it may be a stop hole.
  • the diameter of the crystal 9 is not particularly limited as long as a stop hole or a through hole (hole 9a in FIG. 5) having a diameter of 0.1 mm or more and 3 mm or less can be formed.
  • Crystal 6 or 9 is composed of either sapphire crystal or ruby crystal.
  • Examples of the crystal 6 or 9 include a single crystal, a polycrystal, and a crystal having an intermediate structure between them. However, since a single crystal has high thermal conductivity and high transparency, it is most preferable especially for lighting equipment applications.
  • the Al 2 O 3 phase of the crystal 6 or 9 of either the sapphire crystal or the ruby crystal and the Al 2 O of the ceramic composite 2 are directly integrated by melting, which will be described later, without a bonding interface. Therefore, even if heat is generated from the ceramic complex 2, the heat is quickly conducted to the crystals 6 or 9, so that the ceramic complex 2 capable of efficiently dissipating heat can be realized.
  • the Al 2 O 3 phases are integrated with each other without a bonding interface, the Al 2 O 3 phases are firmly bonded to each other to prevent separation, and the ceramic bonded body 2 also has high impact resistance. Gender can be imparted and reliability is improved.
  • the ceramic complex 2 is sandwiched between two crystals (6, 6) (0.01 mm or more and 1 mm or less) to reduce the thickness, or the crystal 9 has a stop hole or a through hole (diameter 0.1). It is inserted into (mm or more and 3 mm or less) to reduce the size (smaller diameter). Therefore, it is possible to achieve miniaturization or thinning of the ceramic composite 2.
  • the ceramic complex 2 becomes smaller or thinner, heat is generated from the ceramic complex 2, and even if the heat generating portion is concentrated on a specific portion of the smaller or thinner ceramic complex 2, the crystal (6 or) Since 9) and the Al 2 O 3 phases of the ceramic complex 2 are directly integrated by melting without a bonding interface, heat is quickly dissipated.
  • the manufacturing apparatus 1 of the ceramic complex 2 is composed of a crucible 5 as a container 3 for manufacturing the ceramic complex 2 and a pulling container 4.
  • the container 3 includes a crucible 5, a crucible drive unit 18, a heater 7, an electrode 8, and a heat insulating material 10.
  • the crucible 5 is made of molybdenum (Mo) or tungsten (W) and melts the raw material of the ceramic complex 2.
  • the crucible drive unit 18 rotates the crucible 5 about its vertical direction.
  • the heater 7 heats the crucible 5.
  • the electrode 8 energizes the heater 7.
  • the heat insulating material 10 surrounds the crucible 5 and the heater 7.
  • the container 3 is provided with an atmospheric gas introduction port 11 and an atmospheric gas exhaust port 12.
  • the atmosphere gas introduction port 11 is an introduction port for introducing, for example, argon gas as an atmosphere gas into the container 3, and prevents oxidative consumption of the crucible 5 and the heater 7.
  • the exhaust port 12 is provided for exhausting the atmospheric gas in the container 3.
  • the pull-up container 4 includes a shaft 13, a shaft drive unit 14, a gate valve 15, and an entrance / exit 16 of the ceramic complex 2.
  • the shaft 13 holds a separately prepared crystal 6.
  • the shaft drive unit 14 raises and lowers the shaft 13 toward the crucible 5, and rotates the shaft 13 about the raising and lowering direction.
  • the gate valve 15 separates the container 3 and the pull-up container 4. Further, the entrance / exit 16 allows the ceramic composite according to the present invention to be taken in and out.
  • the manufacturing process of the ceramic complex 2 using the manufacturing apparatus 1 will be described.
  • it contains granulated raw material powder (for example, 64.71% by weight of aluminum oxide, 35.02% by weight of yttrium oxide, 0.003% by weight of magnesium oxide, 0.27% by weight of cerium oxide, which is the raw material of the ceramic composite 2.
  • a predetermined amount of powder is added to the crucible 5 and filled.
  • the raw material powder may contain compounds and elements other than the above depending on the purity or composition of the ceramic complex 2 to be produced, but at least aluminum oxide and yttrium oxide are contained.
  • the inside of the container 3 is replaced with argon gas, and the oxygen concentration is set to a predetermined value or less.
  • the raw material powder is melted by heating with the heater 7 to bring the crucible 5 to a predetermined temperature.
  • the heating temperature of the crucible 5 is above the melting point of the ceramic composite 2 and below the melting point of aluminum oxide, sapphire crystals, or ruby crystals. Since the melting point of the ceramic complex 2 is about 1820 ° C. to 1870 ° C., the heating temperature of the crucible 5 is set to be about 50 ° C. higher than the melting point of the ceramic complex 2 as an example.
  • the melting point of aluminum oxide, sapphire crystal, or ruby crystal is about 2050 ° C to 2072 ° C.
  • the raw material powder is melted shortly after heating, and the raw material melt 17 (see FIG. 6) is prepared.
  • the temperature of the melt 17 is set above the melting point of the ceramic composite 2 and below the melting point of aluminum oxide, sapphire crystals, or ruby crystals.
  • the shaft 13 is lowered and the crystals are immersed in the melt 17 and brought into contact with each other.
  • the crystals to be immersed in the melt 17 are either two crystals (6, 6) directly bonded to each other as described above, or a pipe-shaped crystal 9 shown in FIG.
  • a stop hole or a through hole is formed in advance in the crystal 9 of FIG. 5 by drilling or the like.
  • 6 to 9 show, as an example of the manufacturing method according to the present invention, the immersed state of the crystals (6, 6) directly bonded by the step of superimposing the flat crystal-shaped crystals 6 shown in FIGS. 1 to 4 in advance. Is shown.
  • FIG. 7 shows a state in which crystals (6, 6) are immersed in the melt 17, and a part of the melt 17 infiltrates into the gap 6b of the joint surface between the crystals 6 by capillary action.
  • the gap 6b is exaggerated for the sake of clarity. Due to the infiltration, a part of the melt 17 is sandwiched between the crystals (6, 6), and the melt 17 and the crystals (6, 6) are brought into contact with each other.
  • the crystal 9 of FIG. 5 may be immersed in the melt 17, and the melt 17 may be immersed in the stop hole or the through hole by a capillary phenomenon to bring the melt 17 into contact with the crystal 9.
  • the crystalline portion in contact with the melt 17 is melted.
  • the applicant has found that by concentrating the Al 2 O 3 phase of the crystal 6 on the contact surface with the melt 17, only the contact surface is preferentially melted even if the temperature is lower than the melting point of the crystal 6. And Al 2 O 3 phase of the crystal (6,6) by its melting, Al 2 O 3 phase of aluminum oxide melt is integrated in a state bonded interface is not another.
  • the Al 2 O 3 phase of aluminum oxide of the melt 17 is formed on the surfaces of the two crystals (6, 6) forming the gap 6b, the other surface in contact with the melt 17, and the end portion. Be integrated.
  • the shaft 13 is raised to take out the crystal (6, 6) or 9 from the melt 17, and the melt 17 integrated with the crystal (6, 6) or 9 is cooled to cool the ceramic composite which is a solidified body.
  • Form body 2 It is the ceramic composite 2 of the solidified body is formed, the crystal (6,6) or the Al 2 O 3 phase 9, Al 2 O 3 phase of the ceramic composite body 2, together with the state bonding interface is not mutually To be transformed.
  • the crystal After immersing the crystal in the melt 17, the crystal is immediately taken out from the melt 17 as soon as it is confirmed that the melt 17 has penetrated into the gap 6b of the joint surface, the stop hole or the through hole. Then, the melted portion of the crystal (6,6) or 9 is limited to the contact portion with the melt 17, and the heating of the crystal (6,6) or 9 as a whole is suppressed, and the crystal (6,6) or 9 is suppressed.
  • 9 is a single crystal in particular, it is possible to maintain the crystal structure in a single phase state, which is desirable.
  • the obtained ceramic complex 2 is allowed to cool, the gate valve 15 is opened, the gate valve 15 is moved to the pull-up container 4, and the ceramic composite 2 is taken out from the doorway 16.
  • the ceramic complex integrated on the surface of the crystal (6, 6) or 9 is not required other than the ceramic complex 2 formed in the gap 6b or in the stop hole or through hole after being taken out from the doorway 16. It may be removed by polishing (see FIG. 8).
  • the crystal formation conditions of the ceramic composite 2 in the capillary phenomenon can be kept the same over the width direction, and the ceramic can be maintained.
  • a uniform lamellar structure can be formed over the entire area of the complex 2.
  • the melt 17 can be uniformly infiltrated into the gap 6b of the joint surface between the crystals (6, 6) and the stop hole or through hole of the crystal 9, so that the thickness of the ceramic composite 2 can be increased. Unevenness is prevented, and uniform white light can be obtained over the entire in-plane of the ceramic composite 2.
  • the longitudinal direction of the gap 6b between the crystals (6, 6) (the vertical direction of FIG. 7 or 8) is orthogonal to the surface direction of the liquid surface of the melt 17 (horizontal direction of FIG. 7 or FIG. 8). Then, the crystals (6, 6) are immersed in the liquid surface of the melt 17 in the vertical direction.
  • the longitudinal direction of the stop hole or the longitudinal direction of the through hole is orthogonal to the surface direction of the liquid surface of the melt 17, and the stop hole or the through hole is immersed in the liquid surface of the melt 17 in the vertical direction. By such immersion, the capillary phenomenon can be performed most quickly.
  • Crystals 6 or 9 may be produced by using a known method.
  • the sapphire crystal and the ruby crystal those grown and grown by the EFG method, the kilopros method, the Choclas Lucy method, the Verneuil method, the vertical Bridgeman method and the like are used.
  • two crystals (6, 6) are provided, a step 6c is provided only in the lower crystal 6, and the ceramic composite 2 is arranged in the step 6c to form a crystal (6).
  • 6) sandwiches the crystal (6, 6) Al 2 O 3 phase and the ceramic composite 2 Al 2 O 3 phase.
  • the planar shapes of the two crystals (6, 6) are circular with each other having orifra, and the diameter is 1 inch (25.4 mm) to 8 inches (203.2 mm).
  • the thickness is 1 mm.
  • the height of the step 6c is 0.01 mm or more and less than the thickness of the crystal 6, and the width is less than the diameter of the crystal 6.
  • FIGS. 14 to 16 includes three crystals 6, and a through hole 6a is provided only in the middle crystal 6 which is sandwiched between the upper and lower crystals (6, 6) and has a relatively small diameter. ..
  • the ceramic composite 2 is inserted or arranged in the through hole 6a and between the upper and lower crystals (6, 6) sandwiching the middle crystal 6, and the Al 2 O 3 phase of each of the three crystals 6 and the ceramic.
  • the Al 2 O 3 phase of the complex 2 is integrated.
  • the shape of the three crystals 6 in the plane direction is a circular shape having orientation flare with each other, and each is formed to a thickness of 1 mm.
  • the diameters of the upper and lower crystals (6, 6) are 1 inch (25.4 mm) to 8 inches (203.2 mm), and only the diameter of the middle crystal 6 is set to be smaller than the diameter of the upper and lower crystals (6, 6). .. Further, the diameter of each through hole 6a is 0.1 mm or more and 3 mm or less. Further, each through hole 6a is formed in the middle crystal 6 in advance by drilling or the like.
  • FIGS. 11 to 16 are views for explaining a method for producing a plurality of ceramic composites.
  • the ceramic complex manufacturing apparatus 19 is composed of a container 20 for growing the ceramic complex 2 and a pulling container 4 for pulling up the grown ceramic complex 2, and the ceramic complex 2 is formed by the EFG method. Nurture and grow.
  • the container 20 includes a crucible 5, a crucible drive unit 18, a heater 7, an electrode 8, a die 22, and a heat insulating material 10.
  • the crucible 5 is made of molybdenum or tungsten and melts the raw material.
  • the crucible drive unit 18 rotates the crucible 5 about its vertical direction.
  • the heater 7 heats the crucible 5.
  • the electrode 8 energizes the heater 7.
  • the die 22 is installed in the crucible 5 and determines the liquid level shape of the raw material melt (hereinafter, simply referred to as “melt” if necessary) 17 when pulling up the ceramic complex 2.
  • the heat insulating material 10 surrounds the crucible 5, the heater 7, and the die 22.
  • the container 20 is provided with an atmosphere gas introduction port 11 and an exhaust port 12.
  • the atmosphere gas introduction port 11 is an introduction port for introducing, for example, argon gas as an atmosphere gas into the container 20, and prevents oxidative consumption of the crucible 5, the heater 7, and the die 22.
  • the exhaust port 12 is provided for exhausting the inside of the container 20.
  • the pull-up container 4 includes a shaft 13, a shaft drive unit 14, a gate valve 15, and a substrate entrance / exit 16, and pulls up a plurality of flat plate-shaped ceramic complexes 2 grown and grown from the seed crystal 23.
  • the shaft 13 holds the seed crystal 23.
  • the shaft drive unit 14 raises and lowers the shaft 13 toward the crucible 5, and rotates the shaft 13 about the raising and lowering direction.
  • the gate valve 15 separates the container 20 and the pull-up container 4. Further, the substrate entrance / exit 16 takes in and out the seed crystal 23.
  • the manufacturing apparatus 19 also has a control unit (not shown), which controls the rotation of the crucible drive unit 18 and the shaft drive unit 14.
  • the die 22 is made of molybdenum and has a large number of dividers 24 as shown in FIG. FIG. 18 shows a case where 30 partition plates 24 are formed and 15 dies 22 are formed as an example of dies.
  • the partition plates 24 have the same flat plate shape and are arranged in parallel with each other so as to form a minute gap (slit) 25 to form one die 22.
  • the slit 25 is provided over almost the entire width of the die 22.
  • the plurality of dies 22 have the same shape and are arranged in parallel at predetermined intervals so that their longitudinal directions are parallel to each other, a plurality of slits 25 are provided.
  • a slope 29 is formed on the upper portion of each partition plate 24, and an acute-angled opening 31 is formed by arranging the slopes 29 facing each other. Further, the slit 25 has a role of raising the melt 17 from the lower end of each die 22 to the opening 31 by a capillary phenomenon.
  • the raw material put into the crucible 5 melts (raw material melt) based on the temperature rise of the crucible 5 to become the melt 17.
  • a part of the melt 17 penetrates into the slit 25 of the die 22, rises in the slit 25 based on the capillary phenomenon as described above, is exposed from the opening 31, and the raw material melt pool 30 is exposed at the opening 31. Is formed (see FIG. 21 (a)).
  • the ceramic complex 2 grows according to the shape of the melt surface formed by the raw material melt pool (hereinafter, referred to as “melt pool” if necessary) 30.
  • the shape of the melt surface is an elongated rectangle, a flat plate-shaped ceramic composite 2 is manufactured.
  • FIGS. 17, 20, and 21 in this embodiment, a flat plate-shaped ceramic composite substrate is used as the seed crystal 23. Further, the seed crystal 23 is arranged so that the plane direction of the seed crystal 23 and the longitudinal direction of the die 22 are orthogonal to each other at an angle of 90 °. Further, since the seed crystal 23 and the ceramic complex 2 are also orthogonal to each other at an angle of 90 °, FIG. 17 shows the side surface of the ceramic complex 2.
  • the contact area of the lower part of the shaft 13 with the substrate holder (not shown) is large, the seed crystal 23 will be deformed due to stress due to the difference in the coefficient of thermal expansion and will be damaged in some cases. On the contrary, the fixation of the seed crystal 23 may be loosened due to the difference in the coefficient of thermal expansion. Therefore, it is preferable that the contact area between the seed crystal 23 and the substrate holder is small. Further, the seed crystal 23 needs to have a substrate shape that can be securely fixed to the substrate holder.
  • FIG. 19 is a diagram showing an example of the substrate shape of the seed crystal 23.
  • a notch 26 is provided in the upper part of the seed crystal 23.
  • a U-shaped substrate holder can be inserted from the lower side of two notches 26 to reliably hold the seed crystal 23 while reducing the contact area. Become.
  • a notch hole 27 may be provided inside the seed crystal 23. Using this notch hole 27, for example, a locking claw is inserted into two notch holes 27 to securely hold the seed crystal 23 while reducing the contact area between the substrate holder and the seed crystal 23. It becomes possible.
  • granulated raw material powder (as an example, powder containing 64.71% by weight of aluminum oxide, 35.02% by weight of yttrium oxide, 0.003% by weight of magnesium oxide, 0.27% by weight of cerium oxide), which is the raw material of the ceramic composite, is used.
  • a predetermined amount is put into the crucible 5 in which the die 22 is stored and filled.
  • the raw material powder may contain compounds and elements other than the above, depending on the purity or composition of the ceramic complex to be produced.
  • the inside of the container 20 is replaced with argon gas, and the oxygen concentration is set to a predetermined value or less.
  • the crucible 5 is heated to a predetermined temperature by heating with the heater 7, and the raw material powder is melted.
  • the heating temperature of the crucible 5 is above the melting point of the ceramic composite 2 and below the melting point of aluminum oxide, sapphire crystals, or ruby crystals. Since the melting point of the ceramic complex 2 is about 1820 ° C. to 1870 ° C., the heating temperature of the crucible 5 is set to be about 50 ° C. higher than the melting point of the ceramic complex 2 as an example.
  • the raw material powder melts and the raw material melt 17 is prepared.
  • the temperature of the melt 17 is set above the melting point of the ceramic composite 2 and below the melting point of aluminum oxide, sapphire crystals, or ruby crystals. Further, a part of the melt 17 rises through the slit 25 of the die 22 due to the capillary phenomenon and reaches the surface of the die 22, and a melt pool 30 is formed on the upper portion of the slit 25.
  • the seed crystal 23 is lowered while being held at an angle perpendicular to the longitudinal direction of the melt pool 30 above the slit 25, and the seed crystal 23 is melted in the melt pool 30. Contact the liquid surface.
  • the seed crystal 23 is introduced into the pull-up container 4 from the substrate entrance / exit 16 in advance.
  • the melt 17 and the melt pool 30 are not shown.
  • FIG. 20 is a diagram showing the positional relationship between the seed crystal 23 and the partition plate 24.
  • the plane direction of the seed crystal 23 orthogonal to the longitudinal direction of the partition plate 24, it is possible to reduce the contact area between the seed crystal 23 and the melt 17. Therefore, the contact portion of the seed crystal 23 becomes familiar with the melt 17, and crystal defects are less likely to occur in the ceramic complex 2 to be grown and grown.
  • FIG. 21 (b) is a diagram showing a state in which a part of the seed crystal 23 is melted.
  • the substrate holder is pulled up at a predetermined ascending speed, and the seed crystal 23 is started to be pulled up. Specifically, the shaft 13 raises the substrate holder at a predetermined speed.
  • FIG. 22 is a diagram illustrating the shape of the lower side of the seed crystal 23.
  • FIG. 22A shows a case where the lower side has a comb tooth shape
  • FIG. 22B shows a case where the lower side has a sawtooth shape.
  • the spacing between the irregularities is adjusted to the spacing of the openings 31, and the convex portion is aligned with the center of the melt pool 30.
  • the convex portion can be used as the growth start point of the ceramic complex 2, and the ceramic complex 2 can be formed more easily.
  • the shape of the unevenness is not limited to that shown in FIG. 22, and may be, for example, a corrugated uneven shape.
  • the substrate holder is raised at a predetermined speed, and the ceramic complex 2 is crystal-grown around the seed crystal 23 so as to widen in the longitudinal direction of the die 22 as shown in FIG. 23 (spreading).
  • the ceramic complex 2 is widened to the full width of the die 22 (the end of the partition plate 24) (full spread)
  • a flat plate-shaped ceramic complex 2 having a width similar to the full width of the die 22 is grown.
  • FIG. 23 is a schematic view showing how the width of the ceramic complex 2 is expanded by the spreading step.
  • the flat plate-shaped straight body portion 28 having a constant width similar to the full width of the die 22 is subjected to a predetermined speed.
  • a pulling step of pulling up to a predetermined length (straight body length) is carried out to obtain a flat plate-shaped ceramic composite 2.
  • the temperature is controlled by using a heater 7 or the like so that the interface temperature of the melt 17 in the melt pool 30 formed in the upper part of the slit 25 becomes constant.
  • the ceramic complex 2 grows when the melt 17 that has risen to the melt pool 30 is cooled while being pulled up in contact with the seed crystal 23. Therefore, by controlling the temperature of the melt pool 30 to be constant, the crystal growth conditions can be kept the same during the growth period of the ceramic complex 2, and a uniform lamellar structure can be formed over the entire ceramic complex 2. Can be done.
  • the pulling speed of the seed crystal 23 in the pulling step is preferably in the range of 0.9 mm / hour or more and 400 mm / hour or less. More preferably, it is in the range of 50 mm / hour or more and 200 mm / hour or less.
  • the pulling speed When the pulling speed is less than 0.9 mm / hour, the size of the lamellar structure fluctuates greatly with respect to the error of the pulling speed, and it becomes difficult to control the size of the lamellar structure. Therefore, the emission intensity of the white light of the grown and grown ceramic complex 2 is lowered. In addition, the slow growth rate reduces productivity.
  • the pulling speed is larger than 400 mm / hour, it becomes difficult to control the temperature of the melt pool 30, and therefore it becomes difficult to control the size of the lamellar structure. Further, if the pulling speed is too high, the melt 17 of the melt pool 30 is likely to be separated from the seed crystal 23 and the straight body portion 28, and the growth is likely to be interrupted, which is not preferable.
  • the appearance of the obtained flat plate-shaped ceramic complex 2 is shown in FIG.
  • the length of the straight body is not particularly limited, but is preferably 2 inches or more (50.8 mm or more).
  • the total width of the die 22 and the width of the seed crystal 23 may be the same, and the ceramic complex 2 may be grown and grown with the same width as the total width of the seed crystal 23.
  • the melt 17 and the melt pool 30 are not shown in order to give priority to the visibility of the slit 25.
  • the seed crystal 23, and the die 22 as described above, it is possible to simultaneously manufacture a plurality of ceramic complexes 2 from the common seed crystal 23.
  • the die 22 including the seed crystal 23 and the partition plate 24 needs to be precisely positioned. Therefore, as shown in FIG. 17, the manufacturing apparatus 19 is provided with a crucible drive unit 18 for rotating the crucible 5 on which the die 22 is installed, and a control unit (not shown) for controlling the rotation thereof. Further, the shaft 13 is also provided with a shaft drive unit 14 that rotates the shaft 13 and a control unit (not shown) that controls the rotation thereof. That is, the positioning of the seed crystal 23 with respect to the die 22 is adjusted by rotating the shaft 13 or the crucible 5 by the control unit. Precise positioning of the seed crystal 23 and the die 22 can also be performed by using the die 22 in which a part of the slope 29 of each partition plate 24 is cut out.
  • the solidified ceramic composite 2 is prepared in advance. Further, in the embodiment of FIGS. 11 to 13, the prepared ceramic composite 2 of the solidified body is arranged on the step 6c. Next, only the ceramic composite 2 of the solidified body arranged in the step 6c is melted, and a melt composed of at least aluminum oxide and yttrium oxide is prepared and spread in the step 6c which is a gap between the crystals (6, 6). Go.
  • the melting method of only the ceramic complex 2 is performed by utilizing the difference between the melting point of the ceramic complex 2 and the melting point of the crystal 6.
  • the ceramic complex 2 and crystals (6, 6) in the state shown in FIG. 12 are heated in a heating furnace or the like.
  • the heating temperature at that time may be higher than the melting point of the ceramic composite 2 and lower than the melting point of the aluminum oxide, sapphire crystal, or ruby crystal.
  • the heating temperature is about 50 ° C. above the melting point of the ceramic complex 2.
  • the solidified ceramic composite 2 is formed in the step 6c as shown in FIG. 13, and the upper and lower crystals (6) are formed. , and Al 2 O 3 phase 6), Al 2 O 3 phase of the ceramic composite body 2, are integrated in a state bonded interface is not another.
  • the prepared ceramic composite 2 of the solidified body is placed on the surface of the lower substrate 6, and then only the ceramic complex 2 is melted in the heating furnace or the like to at least.
  • the heating temperature of the ceramic composite 2 is above the melting point of the ceramic composite 2 and below the melting point of aluminum oxide, sapphire crystals, or ruby crystals. As an example, the heating temperature is about 50 ° C. above the melting point of the ceramic complex 2.
  • the upper and lower crystals (6, 6) sandwich the middle crystal 6 and further cover the middle crystal 6 as shown in FIG.
  • the solidified ceramic composite 2 is formed as described above. Accordingly, the Al 2 O 3 phase of the crystal 6 parts in three main surface and the through hole 6a of each crystal 6, Al 2 O 3 phase of the ceramic composite body 2, are integrated in a state bonded interface is not mutually .. Further, the ceramic complex 2 is sandwiched between the upper and lower crystals (6, 6).
  • the gap between the upper and lower crystals (6, 6) in FIG. 16 is the thickness (1 mm) of the middle crystal 6.
  • each crystal 6 in FIGS. 11 to 16 in the plane direction may be a square shape. Further, the arrangement position of the ceramic complex 2 shown in FIGS. 14 and 15 may be changed between the upper crystal 6 main surface and the middle crystal 6 main surface. Further, each through hole 6a may be a stop hole.
  • Examples 1 and 2 of the present invention will be described below, but the present invention is not limited to the following examples.
  • a sapphire single crystal was used as the crystal.
  • the sapphire single crystal had a rectangular outer shape, had external dimensions of 44.5 mm ⁇ 100 mm, a diagonal length of 109 mm, and a thickness of 1 mm.
  • a raw material powder containing 64.71% by weight of aluminum oxide, 35.02% by weight of yttrium oxide, 0.003% by weight of magnesium oxide, and 0.27% by weight of cerium oxide is melted in the crucible to prepare a melt. did. Further, Ce was contained in 0.3 mol% in Example 1 and 0.1 mol% in Example 2.
  • the crucible used was made by Mo. Therefore, Mo was contained in the melt in an amount of 1.0 mol ⁇ ppm or more and 30,000 mol ⁇ ppm or less.
  • the crucible After filling the crucible with the raw material powder, the crucible was heated to form a melt. After the formation of the melt, the directly bonded sapphire single crystal was immersed in the melt up to 30 mm in Example 1 and up to 50 mm in Example 2 out of the external dimensions of 100 mm. The longitudinal direction of the gap between the sapphire single crystals is orthogonal to the surface direction of the liquid surface of the melt, the sapphire single crystal is immersed in the melt, and the melt is poured into the gap or slit of the joint surface by capillarity. Infiltrated.
  • Sapphire single crystal portion in contact with the melt by the infiltration is melted, and Al 2 O 3 phase of the sapphire single crystal, Al 2 O 3 phase of aluminum oxide ceramic composite 2 material are integrated by melting. After that, it was cooled and polished to form a ceramic complex composed of a solidified body. Both ceramic composite body of each example, the Al 2 O 3 phase of the duplex, Al 2 O 3 phase of the sapphire single crystal, it was confirmed that it is integrated in a state bonded interface is not another. Moreover, the obtained ceramic complex was yellow.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

【課題】小型化又は薄型化が達成出来ると共に、効率良く放熱が可能なセラミック複合体とその製造方法の提供。 【解決手段】少なくとも酸化アルミニウムと酸化イットリウムから成る融液を用意する工程と、サファイア結晶又はルビー結晶の何れかの結晶を融液に接触させて、融液に接触させた結晶部分を融解させ、結晶のAl相と、酸化アルミニウムのAl相を融解により互いに接合界面が無く一体化する工程と、融液を冷却する工程により、セラミック複合体を製造する。製造されたセラミック複合体は、少なくともYAl12相及びAl相の2つの酸化物相をラメラ構造として有すると共に、Al相と、サファイア結晶又はルビー結晶の何れかの結晶のAl相が、互いに接合界面が無く一体化されている。

Description

セラミック複合体及びセラミック複合体の製造方法
 本発明は、セラミック複合体及びセラミック複合体の製造方法に関する。
 現在、光源として青色光を発光する発光ダイオード(LED:Light Emitting Diode)や半導体レーザを用い、青色光の一部を波長変換部材で黄色光に波長変換して、青色光と黄色光の混色により白色光を照射する照明装置が普及している。この様な照明装置では、波長変換部材にYAG(YAl12)系の蛍光体材料を用い、樹脂やガラスに蛍光体粉末を含有させるものが提案されている。
 また特許文献1,2には、YAl12相及びAl相が共晶として連続的に三次元に相互に絡み合ったラメラ構造を有するセラミック複合体が提案されている。この様な特許文献1,2に記載されたセラミック複合体では、YAl12相で青色光を黄色光に波長変換すると共に、YAl12相とAl相の界面で青色光と黄色光が散乱されて、混色で白色を得る事が出来る。
特許第4609319号公報 特許第5246376号公報
 前記セラミック複合体のYAGは、熱伝導率が例えばサファイアの4分の1程度しかなく、従来LED等の照明装置に使用されていた結晶材料(例えば前記サファイア結晶)に比べて発熱を生じ易い傾向がある。従ってセラミック複合体を厚くすると、発熱量が増大して放熱性が悪化する為、照明装置等に使用されるセラミック複合体には小型化又は薄型化が求められる。
 一方で照明装置には用途に伴い、様々な形状が要求される。形状の設計自由度を確保する為にも、照明装置に組み込まれるセラミック複合体には、小型化又は薄型化が要求される。
 しかしセラミック複合体の小型化又は薄型化に伴い、青色光の透過がセラミック複合体の特定部分に集中してしまう。更に、照明装置の用途に依っては、大きな光量が要求される。従ってセラミック複合体の小型化又は薄型化に伴い、セラミック複合体から熱がより生じ易くなると共に、発熱部分がセラミック複合体の特定部分に集中する為、照明装置の故障や不具合の原因となる。
 本発明は、上記課題に鑑みてなされたものであり、小型化又は薄型化が達成出来ると共に、効率良く放熱が可能なセラミック複合体とその製造方法の提供を目的とする。
 前記課題は、以下の本発明により達成される。即ち、本発明のセラミック複合体は、少なくともYAl12相及びAl相の2つの酸化物相をラメラ構造として有すると共に、Al相と、サファイア結晶又はルビー結晶の何れかの結晶のAl相が、互いに接合界面が無く一体化されている事を特徴とする。
 更に、本発明のセラミック複合体は、結晶が少なくとも2個備えられていると共に、その2個の結晶により挟まれて、結晶のAl相と、セラミック複合体のAl相が、互いに接合界面が無く一体化されている事を特徴とする。
 更に、本発明のセラミック複合体は、セラミック複合体が挟まれている結晶どうしの隙間が0.01mm以上1mm以下である事を特徴とする。
 また、本発明のセラミック複合体は、結晶に止め穴又は貫通孔が形成されていると共に、止め穴又は貫通孔内にセラミック複合体が挿入されて、結晶のAl相と、セラミック複合体のAl相が、互いに接合界面が無く一体化されている事を特徴とする。
 更に、本発明のセラミック複合体は、止め穴又は貫通孔の径が、0.1mm以上3mm以下である事を特徴とする。
 また、本発明のセラミック複合体の製造方法は、少なくとも酸化アルミニウムと酸化イットリウムから成る融液を用意する工程と、サファイア結晶又はルビー結晶の何れかの結晶を融液に接触させて、融液に接触させた結晶部分を融解させ、結晶のAl相と、酸化アルミニウムのAl相を融解により互いに接合界面が無く一体化する工程と、融液を冷却する工程を有する事を特徴とする。
 更に、本発明のセラミック複合体の製造方法は、結晶を少なくとも2個用意すると共に、互いに重ねる工程と、坩堝に少なくとも酸化アルミニウムと酸化イットリウムを含む原料を投入する工程と、坩堝を加熱して、原料を坩堝内で融解して融液を用意する工程と、結晶を融液に接触させ、重ね合わせた結晶どうしの隙間に毛細管現象により融液を浸入させて、融液を結晶で挟んで結晶を融液に接触させ、融液に接触させた結晶部分を融解させ、結晶のAl相と、酸化アルミニウムのAl相を融解により互いに接合界面が無く一体化する工程と、結晶を融液から取り出し、結晶と一体化された融液を冷却する工程を更に有する事を特徴とする。
 更に、本発明のセラミック複合体の製造方法は、結晶どうしの隙間を0.01mm以上1mm以下とする事を特徴とする。
 更に、本発明のセラミック複合体の製造方法は、融液の液面の面方向に対し、結晶どうしの隙間の長手方向を直交させる事を特徴とする。
 また、本発明のセラミック複合体の製造方法は、結晶に止め穴又は貫通孔を形成する工程と、止め穴又は貫通孔内に毛細管現象により融液を浸入させて、融液に接触させた止め穴又は貫通孔内の結晶部分を融解させ、結晶のAl相と、酸化アルミニウムのAl相を融解により互いに接合界面が無く一体化する工程を更に有する事を特徴とする。
 更に、本発明のセラミック複合体の製造方法は、止め穴又は貫通孔の径を、0.1mm以上3mm以下とする事を特徴とする。
 本発明に係るセラミック複合体及びセラミック複合体の製造方法に依れば、小型化又は薄型化が達成出来ると共に、効率良く放熱が可能なセラミック複合体が実現可能になると共に、その様なセラミック複合体を製造可能となる。
(a) 本発明の実施形態に係るセラミック複合体の一例を模式的に示す正面図である。(b) 図1(a)の底面図である。(c) 図1(a)の右側面図である。 図1の斜視図である。 (a) 本発明の実施形態に係るセラミック複合体の他の例を模式的に示す正面図である。(b) 図3(a)の底面図である。(c) 図3(a)の右側面図である。 図3内の円A部分の拡大図である。 本発明の実施形態に係るセラミック複合体の、更に他の例を模式的に示す斜視図である。 本発明の実施形態に係るセラミック複合体の製造方法の工程を模式的に示す説明図である。 本発明の実施形態に係るセラミック複合体の製造方法の他の工程を模式的に示す説明図である。 図6及び図7の工程を経て製造された、本発明の実施形態に係るセラミック複合体を模式的に示す側面図である。 本発明の実施形態に係るセラミック複合体を製造する製造装置を示す概略構成図である。 本発明に係る製造方法で製造されたセラミック複合体の断面を示す顕微鏡写真である。 本発明の実施形態に係るセラミック複合体の、更に他の例を模式的に示す斜視図である。 図11のセラミック複合体及び結晶を積層した状態を模式的に示す側面図である。 図12のセラミック複合体が融解し、再凝固した状態を模式的に示す側面図である。 本発明の実施形態に係るセラミック複合体の、更に他の例を模式的に示す斜視図である。 図14のセラミック複合体及び結晶を積層した状態を模式的に示す側面図である。 図15のセラミック複合体が融解し、再凝固した状態を模式的に示す側面図である。 EFG法によるセラミック複合体の製造装置を示す概略構成図である。 (a) 本発明の実施形態に係るダイの一例を模式的に示す平面図である。(b)図18(a)の正面図である。(c) 同図(a)の側面図である。 (a) 本発明の実施形態に係る種結晶の一例を示す説明図である。(b) 本発明の実施形態に係る種結晶の他の例を示す説明図である。(c) 本発明の実施形態に係る種結晶の更に他の例を示す説明図である。 本発明の実施形態における種結晶と仕切り板との位置関係を模式的に示す斜視図である。 (a) 本発明の実施形態における種結晶と仕切り板との位置関係を模式的に示す正面図である。(b) 本発明の実施形態における、種結晶の一部を融解する様子を示す正面図である。 (a) 本発明の実施形態に係る種結晶において、下辺が櫛歯形状の種結晶を示す説明図である。(b) 本発明の実施形態に係る種結晶において、下辺が鋸形形状の種結晶を示す説明図である。 本発明の実施形態に係るセラミック複合体のスプレディング工程を模式的に示す斜視図である。 EFG法により得られる、本発明の実施形態に係る複数のセラミック複合体を部分的に示す斜視図である。 EFG法によるセラミック複合体の成長工程の別形態を示す斜視図である。
 本実施の形態の第一の特徴は、少なくともYAl12相及びAl相の2つの酸化物相をラメラ構造として有すると共に、Al相と、サファイア結晶又はルビー結晶の何れかの結晶のAl相が、互いに接合界面が無く一体化されているセラミック複合体とした事である。
 本実施の形態の第二の特徴は、少なくとも酸化アルミニウムと酸化イットリウムから成る融液を用意する工程と、サファイア結晶又はルビー結晶の何れかの結晶を融液に接触させて、融液に接触させた結晶部分を融解させ、結晶のAl相と、酸化アルミニウムのAl相を融解により互いに接合界面が無く一体化する工程と、融液を冷却する工程を有するセラミック複合体の製造方法とした事である。融液に接触させる結晶部分のみ融解させ、その他の結晶部分は融解しない。
 本実施の形態の第三の特徴は、結晶が少なくとも2個備えられていると共に、その2個の結晶により挟まれて、結晶のAl相と、セラミック複合体のAl相が、互いに接合界面が無く一体化されているセラミック複合体とした事である。
 本実施の形態の第四の特徴は、結晶を少なくとも2個用意すると共に、互いに重ねる工程と、坩堝に少なくとも酸化アルミニウムと酸化イットリウムを含む原料を投入する工程と、坩堝を加熱して、原料を坩堝内で融解して融液を用意する工程と、結晶を融液に接触させ、重ね合わせた結晶どうしの隙間に毛細管現象により融液を浸入させて、融液を結晶で挟んで結晶を融液に接触させ、融液に接触させた結晶部分を融解させ、結晶のAl相と、酸化アルミニウムのAl相を融解により互いに接合界面が無く一体化する工程と、結晶を融液から取り出し、結晶と一体化された融液を冷却する工程を更に有するセラミック複合体の製造方法とした事である。
 本実施の形態の第五の特徴は、結晶に止め穴又は貫通孔が形成されていると共に、止め穴又は貫通孔内にセラミック複合体が挿入されて、結晶のAl相と、セラミック複合体のAl相が、互いに接合界面が無く一体化されているセラミック複合体とした事である。
 本実施の形態の第六の特徴は、結晶に止め穴又は貫通孔を形成する工程と、止め穴又は貫通孔内に毛細管現象により融液を浸入させて、融液に接触させた止め穴又は貫通孔内の結晶部分を融解させ、結晶のAl相と、酸化アルミニウムのAl相を融解により互いに接合界面が無く一体化する工程を更に有するセラミック複合体の製造方法とした事である。
 これらの構成及び製造方法に依れば、サファイア結晶又はルビー結晶の何れかの結晶のAl相と、セラミック複合体のAl相どうしが直接、融解により互いに接合界面が無い状態で一体化されて形成されている。従って、セラミック複合体から熱が発生したとしても、その熱が速やかに結晶へと伝導されるので、効率良く放熱が可能なセラミック複合体が実現可能になる。
 更に、Al相どうしが互いに接合界面が無い状態で一体化されているので、Al相どうしが強固に結合されて分離が防止可能となり、セラミック接合体にも高い耐衝撃性が付与出来て信頼性が向上する。
 更に、毛細管現象により結晶に融液を浸入させる事で、速やかに結晶のAl相と一体化したセラミック複合体を製造する事が可能となり、量産性が向上する。
 本実施の形態の第七の特徴は、セラミック複合体が挟まれている結晶どうしの隙間が0.01mm以上1mm以下であるセラミック複合体とした事である。
 本実施の形態の第八の特徴は、結晶どうしの隙間を0.01mm以上1mm以下とするセラミック複合体の製造方法とした事である。
 本実施の形態の第九の特徴は、止め穴又は貫通孔の径が、0.1mm以上3mm以下であるセラミック複合体とした事である。
 本実施の形態の第十の特徴は、止め穴又は貫通孔の径を、0.1mm以上3mm以下とするセラミック複合体の製造方法とした事である。
 これらの構成及び製造方法に依れば、前記効果に加えて、セラミック複合体の小型化又は薄型化が達成出来る。更にセラミック複合体の小型化又は薄型化に伴い、セラミック複合体から発熱が生じ、発熱部分が小型化又は薄型化されたセラミック複合体の特定部分に集中したとしても、Al相どうしが直接、融解により互いに接合界面が無い状態で一体化されている為、速やかに放熱される。
 更に、毛細管現象により結晶どうしの隙間や止め穴又は貫通孔内に、均一に融液を浸入可能となるので、セラミック複合体の厚みのムラが防止され、面内全域で均一な白色光を得る事が可能となる。
 本実施の形態の第十一の特徴は、融液の液面の面方向に対し、結晶どうしの隙間の長手方向を直交させるセラミック複合体の製造方法とした事である。
 この製造方法に依れば、前記効果に加えて、毛細管現象を最も速やかに行う事が可能となる。
 以下、図1から図10を参照して本発明の第1の実施形態に係るセラミック複合体とその製造方法を説明する。
 図1から図5に示す様に、本発明に係るセラミック複合体2は、少なくともYAl12相及びAl相の2つの酸化物相をラメラ構造として有すると共に、そのAl相と、サファイア結晶又はルビー結晶の何れかの結晶6又は9のAl相が、互いに接合界面が無い状態で一体化されている。
 図10は、セラミック複合体2の断面を示す顕微鏡写真である。図10に示す様に、本実施形態のセラミック複合体2は、第1相であるYAG(YAl12)相と、第2相であるAl相の少なくとも2つの酸化物相が共晶として存在しており、第1相と第2相が連続的に且つ相互に立体的に絡み合ったラメラ構造の組織を有する凝固体である。
 第1相と第2相の2つの酸化物相が連続的に且つ相互に立体的に絡み合ったラメラ構造の組織とは、各酸化物相の間にアモルファス等の境界相が存在せず、酸化物相どうしが直接接して存在している組織という事である。図10に於いて濃色(黒い部分)で示された領域がYAl12相であり、淡色(白い部分)で示された領域がAl相である。第1相及び第2相は、島状に独立して分離したものが少なく、立体方向(三次元方向)に連続した領域を有している。また得られた凝固体であるセラミック複合体2を製造者の肉眼で確認したところ、黄色を呈していた。
 またセラミック複合体2に含まれるYAl12相の組成比は、共晶組成近傍の19.72±2.00mol%である。YAl12相の組成比がこの範囲を外れると、Al相との共晶でラメラ構造を均一に形成する事が困難である。
 また、YAl12相にはCeを含有させる事がより望ましい。その理由は、YAl12相のYが部分的にCeに置換される事で、YAl12相が蛍光体材料として機能し、一次光である青色光を吸収して二次光の黄色光を放出し、白色光を得られる為である。
 YAl12相におけるCeの含有量は0.01mol%以上5.0mol%以下の範囲が好ましい。YAl12相のYが部分的にCeに置換される事で、YAl12相が蛍光体材料として機能し、一次光である青色光を吸収して二次光の黄色光を放出する。YAl12相ではCe濃度によって吸収波長や発光波長が変化するが、本実施形態のセラミック複合体では後述する様に比較的Ceの含有量が多くても、均一に微細なラメラ構造を形成する事が出来る。
 ここでは第1相としてCeで付活されたYAl12相を示したが、Yの一部がLuに置換されたものとしても良い。Luの置換量は、1.0mol%以上10.0mol%以下と設定する事が、YAl12相が一次光である青色光を吸収して二次光の黄色光を放出する点で好ましい。更にYの一部をLuで置換する際は、YAl12相がCeで0.01mol%以上5.0mol%以下の範囲内で付活されていても良い。
 またCrをセラミック複合体に添加しても良い。添加量は任意に選択可能であるが、例えば赤い蛍光光をセラミック複合体から出射させたい場合は0.01mol%以上0.5mol%以下が望ましい。
 またセラミック複合体2には、MgOが10ppm以上500ppm以下の範囲で含有されている。MgOをこの範囲で含有する事により、青色光から白色光への変換効率が高められ、白色光の発光強度を大きく出来る。
 また、本実施形態のセラミック複合体2では、YAl12相とAl相のラメラ構造では、YAl12相におけるラメラ間隔の平均値が0.5μm以上20μm以下である。ここでYAl12相のラメラ間隔とは、Al相に挟まれたYAl12相の幅を示しており、連続したYAl12相の長手方向を横断した幅を示している。ラメラ間隔が0.5μm未満の場合には、YAl12相のサイズが青色光の波長の数倍程度となってしまい、均一に青色光を黄色光に波長変換する事が困難になってしまう。また、ラメラ間隔が20μmよりも大きい場合には、ラメラ構造の緻密さが不十分となり、セラミック複合体2を青色光が透過する間にYAl12相とAl相の界面に入射する回数が減少し、十分に光が散乱されず波長変換や混色の効率が低下してしまう。
 またセラミック複合体2は、後述する坩堝5(図9参照)を用いて製造される。従って、坩堝5の材料であるモリブデン(Mo)又はタングステン(W)が、坩堝5内でセラミック複合体2の原料を融解した原料融液(以下、必要に応じて単に「融液」と表記)17に、微量に溶け出してセラミック複合体2に取り込まれる。従って、セラミック複合体2には、上記YAl12相とAl相、MgO,Ce,及びLuやCrの他に、微量のMo又はWが含有されている。
 セラミック複合体2に含有されるMo又はWの量は、好ましくは1.0mol・ppm以上30000mol・ppm以下の範囲であり、更に好ましくは100mol・ppm以上3000mol・ppm以下の範囲である。EFG(Edge-defined Film-fed. Growth)法を用いたセラミック複合体2の製造では、坩堝5の材料が融液17に溶け出す事を完全に防止する事が不可能であり、Mo又はWの含有量を1.0mol・ppm未満とする事は非常に困難である。また、Mo又はWの含有量を30000mol・ppmを超えて大きくすると、YAl12相やAl相の結晶性が悪化して波長変換効率が悪化する為好ましくない。Mo又はWの含有量を100mol・ppm以上3000mol・ppm以下に設定すると、これら問題点が解消されると共に、一次光と二次光を均一に散乱して白色光の発光量増加が可能となる為、最も望ましい。従って、セラミック複合体2に含有されるMo又はWの含有量を少なくとも1.0mol・ppm以上30000mol・ppm以下とする事で、微細なラメラ構造を形成して均一に光散乱を行い、発光強度の均一化と変換効率の向上を図る事が出来る。
 坩堝5にMo又はW以外の材料を用いると、融点が低い為坩堝5の材料が融液17に溶け出す量が増加し、セラミック複合体2に含有される坩堝5由来の元素含有量が増加する為好ましくない。また、坩堝5を構成する材料としてMo又はW以外の融点が高い材料を用いる事は、原料の融液17との反応性や、坩堝5の成形性等の問題があり好ましくない。従って、セラミック複合体2を製造してYAl12相とAl相のラメラ構造を微細化する為には、セラミック複合体2にMo又はWが上記範囲で含まれている事が重要である。
 以上に述べた様に、本実施形態のセラミック複合体2では、少なくともYAl12相及びAl相の2つの酸化物相をラメラ構造として有し、YAl12相におけるラメラ間隔の平均値が0.5μm以上20μm以下であり、MgOが10ppm以上500ppm以下含有されている。更にMo又はWが含有されている為、一次光と二次光を均一に散乱して、波長変換効率を向上させる事が可能となる。
 本実施形態のセラミック複合体2では、前述の様にCe含有量を0.01mol%以上5.0mol%以下の範囲で調節している。従って、ラメラ構造にはYAl12相及びAl相の界面が、30個/mm以上800個/mm以下の密度で含まれている。界面が30個/mm未満の場合には、ラメラ構造の緻密さが不十分であり、セラミック複合体2を青色光が透過する間にYAl12相とAl相の界面に入射する回数が減少し、十分に光が散乱されず波長変換や混色の効率が低下してしまう。界面が800個/mmを超える場合には、YAl12相のサイズが小さくなり青色光の波長の数倍程度となってしまう為、均一に青色光を黄色光に波長変換する事が困難になってしまうおそれがある。
 この様なセラミック複合体2と一体化する結晶としては、図1から4に示す様に2個備えられるか(結晶6,6)、又は図5に示されるパイプ形状の結晶9が備えられている。図5の結晶9には、止め穴又は貫通孔が形成されている。なお図5では貫通された孔9aを有する実施形態を図示している。
 図1から4に示す、平板形状の結晶6が2個備えられている実施形態では、互いの結晶6の表面が接着剤や接合材等を介さない、直接接触により接合されている。
 接合されている互いの結晶6の接合面の微小な隙間に、後述する毛細管現象により融液17が浸入され、2個の結晶(6,6)により挟まれる。従って、セラミック複合体2のAl相がその両面で、結晶6のAl相と互いに接合界面が無く一体化されている。セラミック複合体が挟まれている結晶(6,6)どうしの隙間は、0.01mm以上1mm以下に設定される。
 結晶(6,6)どうしの隙間が0.01mm未満では、隙間に形成されるセラミック複合体2が過度に薄型化されるので、製造誤差による厚みの影響や、面内での厚みムラの影響が大きくなり、面内全域で白色光を均一に得る事が困難になる。一方で、セラミック複合体2に含まれるYAl12相の熱伝導率がAl相の4分の1程度しかない為、結晶(6,6)どうしの隙間が大きくなると、隙間に形成されるセラミック複合体2も厚くなって放熱性が悪化し、表面と内部で温度差が生じ易くなる。よって、結晶(6,6)どうしの隙間が3mmより大きい場合には、外側と内側との温度差が生じ易くなり、ラメラ間隔の均一性が損なわれるおそれが生じる為好ましくない。表面と内部での温度差を防止する望ましい前記隙間は1mm以下である。
 結晶(6,6)どうしの隙間を、0.01mmから1mmの範囲内で比較的大きい1mm付近に形成したい場合に、結晶6間の直接接合面に融液17を毛細管現象で浸入させて前記隙間を形成させる事は、融液17の浸入に伴い直接接合面の隙間が拡大される。従って、接合状態が維持出来なくなって剥離が発生するおそれが有る為好ましくない。依って、図4に示す様に、接合面に別途段差6cによるスリットを幅Wで以て設け、そのスリット内に融液17を浸入させてセラミック複合体2を形成する事が、好ましい。幅Wは、形成したいセラミック複合体2の所望の幅とし、且つ結晶6の幅未満とする。なお段差6cによるスリットの厚みは、スリット内に浸入した融液17が、その表面張力によりスリット内に保持され、スリット外に滴下又は垂れない程度とする。スリットの厚みの上限としては、結晶(6,6)どうしの隙間の上限値である1mmとすれば良い。
 結晶6の平面方向のサイズは特に限定されないが、作業性の悪化防止の点から、幅が0.5mm以上300mm以下で長さが10mm以上1000mm以下の方形状が望ましい。
 一方、図5に示す様に、止め穴又は貫通孔が形成されているパイプ形状の結晶9が備えられている実施形態では、その止め穴又は貫通孔内にセラミック複合体2が挿入されて、結晶9のAl相と、セラミック複合体2のAl相が互いに接合界面が無い状態で一体化されている。更に、止め穴又は貫通孔の径を0.1mm以上3mm以下に設定する事で、止め穴又は貫通孔内に前記融液17を毛細管現象により浸入させる事が可能となる。
 止め穴又は貫通孔の径が0.1mm未満では、セラミック複合体2部分が過度に小径となり過ぎる為、白色光を均一に得る事が困難になる。一方で3mmを超えるとセラミック複合体2が厚くなり過ぎて放熱性が悪化し、ラメラ間隔の均一性が損なわれるおそれが生じる為好ましくない。
 図5では貫通された孔9aを有する実施形態を示しているが、止め穴としても良い。なお、結晶9の径寸法は、0.1mm以上3mm以下の径を有する止め穴又は貫通孔(図5では孔9a)が形成可能であれば、特に限定されない。
 結晶6又は9はサファイア結晶又はルビー結晶の何れかで構成される。その結晶6又は9としては、単結晶や多結晶、それらの中間構造を有する結晶等が挙げられる。しかし単結晶は熱伝導率が高いと共に透明性も高いので、特に照明装置用途として最も好ましい。
 以上、本発明の第1の実施形態に係るセラミック複合体2に依れば、サファイア結晶又はルビー結晶の何れかの結晶6又は9のAl相と、セラミック複合体2のAl相どうしが直接、後述する融解により互いに接合界面が無い状態で一体化されて形成されている。従って、セラミック複合体2から熱が発生したとしても、その熱が速やかに結晶6又は9へと伝導されるので、効率良く放熱が可能なセラミック複合体2が実現可能になる。
 更に、Al相どうしが互いに接合界面が無い状態で一体化されているので、Al相どうしが強固に結合されて分離が防止可能となり、セラミック接合体2にも高い耐衝撃性が付与出来て信頼性が向上する。
 またセラミック複合体2は、2個の結晶(6,6)どうしの隙間(0.01mm以上1mm以下)に挟まれて厚みが薄型化されるか、又は結晶9の止め穴か貫通孔(径0.1mm以上3mm以下)内に挿入されて小型化(小径化)される。従って、セラミック複合体2の小型化又は薄型化が達成出来る。
 更にセラミック複合体2の小型化又は薄型化に伴い、セラミック複合体2から発熱が生じ、発熱部分が小型化又は薄型化されたセラミック複合体2の特定部分に集中したとしても、結晶(6又は9)とセラミック複合体2のAl相どうしが直接、融解により互いに接合界面が無い状態で一体化されている為、速やかに放熱される。
 依って、セラミック複合体2を照明装置に使用しても、照明装置の故障や不具合を防止する事が可能となる。
 更に、図6から図9を参照して、本発明の第1の実施形態に係るセラミック複合体2の製造方法を説明する。図9に示す様に、セラミック複合体2の製造装置1は、セラミック複合体2を製造する容器3としての坩堝5と、引き上げ容器4とから構成される。
 容器3は、坩堝5、坩堝駆動部18、ヒータ7、電極8、及び断熱材10を備える。坩堝5はモリブデン(Mo)製またはタングステン(W)製であり、セラミック複合体2の原料を融解する。坩堝駆動部18は、坩堝5をその鉛直方向を軸として回転させる。ヒータ7は坩堝5を加熱する。また、電極8はヒータ7を通電する。また断熱材10は、坩堝5とヒータ7を取り囲んでいる。
 更に容器3は、雰囲気ガス導入口11と、雰囲気ガスの排気口12を備える。雰囲気ガス導入口11は、雰囲気ガスとして例えばアルゴンガスを容器3内に導入する為の導入口であり、坩堝5やヒータ7の酸化消耗を防止する。一方、排気口12は容器3内の雰囲気ガスを排気する為に備えられる。
 引き上げ容器4は、シャフト13、シャフト駆動部14、ゲートバルブ15、及びセラミック複合体2の出入口16を備える。シャフト13は別途作製した結晶6を保持する。またシャフト駆動部14は、シャフト13を坩堝5に向けて昇降させると共に、その昇降方向を軸としてシャフト13を回転させる。ゲートバルブ15は容器3と引き上げ容器4とを仕切る。また出入口16は、本発明に係るセラミック複合体を出し入れする。
 次に、製造装置1を使用したセラミック複合体2の製造工程を説明する。最初の工程として、セラミック複合体2の原料である、造粒された原料粉末(一例として酸化アルミニウムを64.71重量%、酸化イットリウムを35.02重量%、酸化マグネシウムを0.003重量%、酸化セリウム0.27重量%含んだ粉末)を坩堝5に所定量投入して充填する。原料粉末には、製造しようとするセラミック複合体2の純度又は組成に応じて、上記以外の化合物や元素が含まれていても良いが、少なくとも酸化アルミニウムと酸化イットリウムは含むものとする。
 続いて、坩堝5やヒータ7を酸化消耗させない為に、容器3内をアルゴンガスで置換し、酸素濃度を所定値以下とする。
 次の工程として、ヒータ7で加熱して坩堝5を所定の温度とし、原料粉末を融解する。坩堝5の加熱温度は、セラミック複合体2の融点超で、且つ酸化アルミニウムやサファイア結晶、又はルビー結晶の融点未満とする。セラミック複合体2の融点は、約1820℃から1870℃なので、一例として坩堝5の加熱温度は、そのセラミック複合体2の融点の50℃程度上とする。また、酸化アルミニウムやサファイア結晶、又はルビー結晶の融点は約2050℃から2072℃程度である。この様な温度に坩堝5を加熱すると、加熱後しばらくして原料粉末が融解して、原料の融液17(図6参照)が用意される。その融液17の温度は、セラミック複合体2の融点超で、且つ酸化アルミニウムやサファイア結晶、又はルビー結晶の融点未満に設定される。
 次の工程として、シャフト13を降下させて融液17に結晶を浸漬して接触させる。融液17に浸漬させる結晶は、前記の通り2個で互いに直接接合した結晶(6,6)か、図5に示すパイプ形状の結晶9とする。図5の結晶9には、予め止め穴又は貫通孔を、ドリル加工などで形成しておく。図6から図9では、本発明に係る製造方法の一例として、図1から図4で示した、平板形状の結晶6どうしを予め重ね合わせる工程により直接接合した結晶(6,6)の浸漬状態を示している。
 図7には結晶(6,6)が融液17に浸漬され、融液17の一部が、結晶6どうしの接合面の隙間6bに毛細管現象により浸入する工程の状態を示している。図6から図8では分かり易さを優先して、隙間6bを誇張して図示している。浸入により融液17の一部が結晶(6,6)で挟まれて、融液17と結晶(6,6)とが接触される。なお、図5の結晶9を融液17に浸漬させ、止め穴又は貫通孔内に毛細管現象により融液17を浸入させ、融液17と結晶9とを接触させても良い。
 融液17に接触された結晶部分は融解される。結晶6のAl相が融液17との接触面に集まる事で、結晶6の融点未満でも接触面のみ優先的に融解されることを本出願人は見出した。その融解により結晶(6,6)のAl相と、融液の酸化アルミニウムのAl相が、互いに接合界面が無い状態で一体化される。図7の場合は、隙間6bを形成する2つの結晶(6,6)表面と、融液17に接触したもう一方の表面並びに端部に、融液17の酸化アルミニウムのAl相が一体化される。
 なお、図5の結晶9を融液17に浸漬させた場合、止め穴又は貫通孔内の結晶部分が融液17の温度により融解される。その融解により結晶(6,6)のAl相と、融液の酸化アルミニウムのAl相が、互いに接合界面が無い状態で一体化される。更に、結晶9の融液17への浸漬の際に、融液17に接触する結晶9端部と、結晶9の側面も、融液17の酸化アルミニウムのAl相と一体化される。
 その後、シャフト13を上昇させて結晶(6,6)又は9を融液17から取り出し、結晶(6,6)又は9に一体化している融液17を冷却して、凝固体であるセラミック複合体2を形成する。凝固体のセラミック複合体2が形成される事で、結晶(6,6)又は9のAl相と、セラミック複合体2のAl相が、互いに接合界面が無い状態で一体化される。
 融液17に結晶を浸漬後は、接合面の隙間6bや止め穴又は貫通孔内への融液17の浸入が確認され次第、直ちに融液17から結晶を取り出す。すると、結晶(6,6)又は9の融解部分を、融液17との接触部分のみに限定され、結晶(6,6)又は9全体の加熱が抑制されて、結晶(6,6)又は9が特に単結晶の場合は、結晶構造を単相状態に保持する事が可能となり、望ましい。
 この後、得られたセラミック複合体2を放冷し、ゲートバルブ15を空け、引き上げ容器4側に移動して、出入口16から取り出す。
 出入口16から取り出した後、隙間6b内若しくは止め穴か貫通孔内に形成されたセラミック複合体2以外に、結晶(6,6)又は9の表面に一体化されたセラミック複合体は不要なので、研磨により除去すれば良い(図8参照)。
 なお結晶との接触時に融液17の液面の温度を一定に管理する事で、毛細管現象に於けるセラミック複合体2の結晶の形成条件を幅方向に亘って同等に保つ事ができ、セラミック複合体2全域に亘って均一なラメラ構造を形成する事が出来る。
 以上の様に、本発明ではセラミック複合体2の融液17に毛細管現象が発生する事を見出したので、毛細管現象により結晶に融液を浸入させる事で、速やかに結晶のAl相と一体化したセラミック複合体2を製造する事が可能となり、量産性が向上可能となった。
 更に、毛細管現象により結晶(6,6)どうしの接合面の隙間6bや、結晶9の止め穴又は貫通孔内に、均一に融液17を浸入可能となるので、セラミック複合体2の厚みのムラが防止され、セラミック複合体2の面内全域で均一な白色光を得る事が可能となる。
 更に、融液17の液面の面方向(図7又は図8の水平方向)に対し、結晶(6,6)どうしの隙間6bの長手方向(図7又は図8の上下方向)を直交方向とし、融液17の液面に対し鉛直方向に結晶(6,6)を浸漬させるものとする。又は止め穴の長手方向か貫通孔の長手方向と、融液17の液面の面方向とを直交させ、融液17の液面に対し鉛直方向に止め穴又は貫通孔を浸漬させる。このような浸漬により、毛細管現象を最も速やかに行う事が可能となる。
 結晶6又は9は、公知の方法を用いて作製すれば良い。サファイア結晶やルビー結晶は、EFG法、キロプロス法、チョクラスルキー法、ベルヌーイ法、垂直ブリッジマン法などによって育成成長されたものを用いる。
 次に、図11から図25を参照して本発明の第2の実施形態に係るセラミック複合体とその製造方法を説明する。なお、第1の実施形態と重複する箇所には、同一の引き出し番号を付し、重複する説明は省略又は簡略化して説明する。
 図11から図13の実施形態では、2個の結晶(6,6)を備えると共に、下の結晶6のみに段差6cを設け、その段差6c内にセラミック複合体2を配置して結晶(6,6)により挟んで、結晶(6,6)のAl相と、セラミック複合体2のAl相を一体化している。
 図11から図13の実施形態では、2個の結晶(6,6)の平面方向の形状は、互いにオリフラを有する円形状であり、直径は1インチ(25.4mm)から8インチ(203.2mm)であり、厚みは1mmに成形される。また段差6cの高さは0.01mm以上且つ結晶6の厚み未満、幅は結晶6の直径未満とする。
 図14から図16の実施形態は、3個の結晶6を備えると共に、上下の各結晶(6,6)に挟まれ相対的に小径な真ん中の結晶6のみ、貫通孔6aが設けられている。その貫通孔6a内と、真ん中の結晶6を挟んだ上下の各結晶(6,6)の間にセラミック複合体2が挿入又は配置され、3つの各結晶6のAl相と、セラミック複合体2のAl相が一体化されている。
 3つの結晶6の平面方向の形状は、互いにオリフラを有する円形状であり、厚みはそれぞれ1mmに成形される。また上下の結晶(6,6)の直径は1インチ(25.4mm)から8インチ(203.2mm)であり、真ん中の結晶6の直径のみ、上下の結晶(6,6)の直径未満に設定する。更に各貫通孔6aの径は、0.1mm以上3mm以下とする。また、各貫通孔6aは予めドリル加工などで、真ん中の結晶6に形成しておく。
 更に、図11から図16の各実施形態に係るセラミック複合体2の製造方法を説明する。始めに、図11又は図14に於いて結晶6に配置されるセラミック複合体2の製造方法について図17から図25を参照して説明する。図17から図24は、複数のセラミック複合体の製造方法について説明する図である。
 図17に示すように、セラミック複合体の製造装置19は、セラミック複合体2を育成する容器20と、育成したセラミック複合体2を引き上げる引き上げ容器4とから構成され、EFG法によりセラミック複合体2を育成成長する。
 容器20は、坩堝5、坩堝駆動部18、ヒータ7、電極8、ダイ22、及び断熱材10を備える。坩堝5はモリブデン製またはタングステン製であり、原料を融解する。坩堝駆動部18は、坩堝5をその鉛直方向を軸として回転させる。ヒータ7は坩堝5を加熱する。また、電極8はヒータ7を通電する。ダイ22は坩堝5内に設置され、セラミック複合体2を引き上げる際の原料融液(以下、必要に応じて単に「融液」と表記)17の液面形状を決定する。また断熱材10は、坩堝5とヒータ7とダイ22を取り囲んでいる。
 更に容器20は、雰囲気ガス導入口11と排気口12を備える。雰囲気ガス導入口11は、雰囲気ガスとして例えばアルゴンガスを容器20内に導入するための導入口であり、坩堝5やヒータ7、及びダイ22の酸化消耗を防止する。一方、排気口12は容器20内を排気するために備えられる。
 引き上げ容器4は、シャフト13、シャフト駆動部14、ゲートバルブ15、及び基板出入口16を備え、種結晶23から育成成長した複数の平板形状のセラミック複合体2を引き上げる。シャフト13は種結晶23を保持する。またシャフト駆動部14は、シャフト13を坩堝5に向けて昇降させると共に、その昇降方向を軸としてシャフト13を回転させる。ゲートバルブ15は容器20と引き上げ容器4とを仕切る。また基板出入口16は、種結晶23を出し入れする。
 なお製造装置19は図示されない制御部も有しており、この制御部により坩堝駆動部18及びシャフト駆動部14の回転を制御する。
 次に、ダイ22について説明する。ダイ22はモリブデン製であり、図18に示すように多数の仕切り板24を有する。図18ではダイの一例として、仕切り板24が30枚であり、ダイ22が15個形成されている場合を示している。仕切り板24は同一の平板形状を有し、微小間隙(スリット)25を形成するように互いに平行に配置されて、1つのダイ22を形成している。スリット25は、ダイ22のほぼ全幅に亘って設けられる。また複数のダイ22は同一形状を有すると共に、その長手方向が互いに平行となるように所定の間隔で並列に配置されているため、複数のスリット25が設けられることとなる。各仕切り板24の上部は斜面29が形成されており、互いの斜面29が向かい合わせで配置されることで、鋭角の開口部31が形成されている。またスリット25は融液17を毛細管現象によって、各ダイ22の下端から開口部31に上昇させる役割を有している。
 坩堝5内に投入される原料は、坩堝5の温度上昇に基づいて融解(原料メルト)し、融液17となる。この融液17の一部は、ダイ22のスリット25に浸入し、前記のように毛細管現象に基づいてスリット25内を上昇し開口部31から露出して、開口部31で原料融液溜まり30が形成される(図21(a)参照)。EFG法では、原料融液溜まり(以下、必要に応じて「融液溜まり」と表記)30で形成される融液面の形状に従って、セラミック複合体2が成長する。図18に示したダイ22では、融液面の形状は細長い長方形となるので、平板形状のセラミック複合体2が製造される。
 次に、種結晶23について説明する。図17、図20、及び図21に示すように本実施形態では、種結晶23として平板形状のセラミック複合体製の基板を用いる。更に、種結晶23の平面方向とダイ22の長手方向は、互いに90°の角度で以て直交となるように、種結晶23が配置される。また、種結晶23とセラミック複合体2も90°の角度で以て直交するので、図17ではセラミック複合体2の側面を示している。
 種結晶23は、シャフト13の下部の基板保持具(図示せず)との接触面積が大きいと、熱膨張率の差による応力のため変形し、場合によっては破損してしまう。反対に熱膨張率の差により種結晶23の固定が緩む場合もある。従って、種結晶23と基板保持具との接触面積は小さい方が好ましい。また、種結晶23は基板保持具に確実に固定できる基板形状の必要がある。
 図19は種結晶23の基板形状の一例を示した図である。このうち、同図(a)及び(b)は、種結晶23の上部に切り欠き部26を設けたものである。この切り欠き部26を利用して、例えば2カ所の切り欠き部26の下側からU字形の基板保持具を差し込んで、接触面積を小さくしつつ確実に種結晶23を保持することが可能となる。
 また、図19(c)に示したように、種結晶23内側に切り欠き穴27を設けても良い。この切り欠き穴27を利用して、例えば2カ所の切り欠き穴27に係止爪を差し込んで、基板保持具と種結晶23との接触面積を小さくしつつ、確実に種結晶23を保持することが可能となる。
 次に、前記製造装置19を使用したセラミック複合体2の製造方法を説明する。最初にセラミック複合体の原料である、造粒された原料粉末(一例として酸化アルミニウムを64.71重量%、酸化イットリウムを35.02重量%、酸化マグネシウムを0.003重量%、酸化セリウム0.27重量%含んだ粉末)をダイ22が収納された坩堝5に所定量投入して充填する。原料粉末には、製造しようとするセラミック複合体の純度又は組成に応じて、上記以外の化合物や元素が含まれていてもよい。
 続いて、坩堝5やヒータ7若しくはダイ22を酸化消耗させないために、容器20内をアルゴンガスで置換し、酸素濃度を所定値以下とする。
 次に、ヒータ7で加熱して坩堝5を所定の温度とし、原料粉末を融解する。坩堝5の加熱温度は、セラミック複合体2の融点超で、且つ酸化アルミニウムやサファイア結晶、又はルビー結晶の融点未満とする。セラミック複合体2の融点は、約1820℃から1870℃なので、一例として坩堝5の加熱温度は、そのセラミック複合体2の融点の50℃程度上とする。坩堝5の加熱後しばらくすると原料粉末が融解して、原料の融液17が用意される。その融液17の温度は、セラミック複合体2の融点超で、且つ酸化アルミニウムやサファイア結晶、又はルビー結晶の融点未満に設定される。更に融液17の一部はダイ22のスリット25を毛細管現象により上昇してダイ22の表面に達し、スリット25上部に融液溜まり30が形成される。
 次に図20及び図21に示すように、スリット25上部の融液溜まり30の長手方向に対して垂直な角度に種結晶23を保持しつつ降下させ、種結晶23を融液溜まり30の融液面に接触させる。なお、種結晶23は、予め基板出入口16から引き上げ容器4内に導入しておく。図20ではスリット25や開口部31の見易さを優先するため、融液17と融液溜まり30の図示を省略している。
 図20は、種結晶23と仕切り板24との位置関係を示した図である。前記の通り、種結晶23の平面方向を仕切り板24の長手方向と直交させることにより、種結晶23と融液17との接触面積を小さくすることが可能となる。従って、種結晶23の接触部分が融液17となじみ、育成成長されるセラミック複合体2に結晶欠陥が生じにくくなる。
 種結晶23を融液面に接触させる際に、種結晶23の下部を仕切り板24の上部に接触させて融解しても良い。図21(b)は、種結晶23の一部を融解する様子を示した図である。このように種結晶23の一部を融解することで、種結晶23と融液17との温度差を速やかに解消ことができ、セラミック複合体2での結晶欠陥の発生を更に低減することが可能となる。
 続いて基板保持具を所定の上昇速度で引き上げて、種結晶23の引き上げを開始する。具体的には、シャフト13により基板保持具を所定の速度で上昇させる。
 なお、ダイ22の開口部31に対する種結晶の位置合わせをより容易にするため、種結晶23の下辺に凹凸を設けてもよい。図22は、種結晶23の下辺の形状を例示した図であり、同図(a)は下辺が櫛歯形状の場合を、同図(b)では鋸形形状の場合を示している。
 この凹凸の間隔は、開口部31の間隔に合わせ、凸部分を融液溜まり30の中心に合わせる。凸部分を設けることで凸部分をセラミック複合体2の成長開始点とすることができ、セラミック複合体2がより容易に形成可能となる。なお、凹凸の形状は図22に示したものには限定されず、例えば波形の凹凸形状であっても良い。
 基板保持具を所定の速度で上昇させ、種結晶23を中心に図23に示すようにセラミック複合体2をダイ22の長手方向に拡幅するように結晶成長させる(スプレディング)。セラミック複合体2が、ダイ22の全幅(仕切り板24の端)まで拡幅すると(フルスプレッド)、ダイ22の全幅と同程度の幅を有する、面積の広い平板形状のセラミック複合体2が育成される(直胴工程)。図23は、スプレディング工程によりセラミック複合体2の幅が広がる様子を示した模式図である。幅の広いセラミック複合体2が得られることにより、セラミック複合体製品の歩留まりが向上する。
 スプレディング工程により、ダイ22の全幅までセラミック複合体2を成長させた後、図24に示すようにダイ22の全幅と同程度の一定幅を有する、平板形状の直胴部分28を所定の速度で所定の長さ(直胴長さ)まで引き上げる引き上げ工程を実施し、平板形状のセラミック複合体2を得る。
 引き上げ工程の期間中には、スリット25の上部に形成されている融液溜まり30での融液17の界面温度が一定となるように、ヒータ7等を用いて温度制御する。セラミック複合体2は、融液溜まり30まで上昇してきた融液17が種結晶23と接触して引き上げられながら冷却されることで成長する。したがって、融液溜まり30の温度を一定に管理することで、セラミック複合体2の成長期間において結晶の成長条件を同等に保つことができ、セラミック複合体2全域にわたって均一なラメラ構造を形成することができる。
 引き上げ工程における種結晶23の引き上げ速度は、0.9mm/時間以上400mm/時間以下の範囲とすることが好ましい。より好ましくは50mm/時間以上200mm/時間以下の範囲である。種結晶23の引き上げ速度を50mm/時間以上とすることにより、セラミック複合体2へのクラック導入を防止可能となる。更に、前記引き上げ速度を200mm/時間以下とすることにより、セラミック複合体2の育成状態をより安定化することが出来る。
 引き上げ速度が0.9mm/時未満の場合には、引き上げ速度の誤差に対してラメラ構造のサイズ変動が大きくなるため、ラメラ構造のサイズを制御することが困難になる。従って、育成成長させたセラミック複合体2の白色光の発光強度の低下を招いてしまう。また、成長速度が遅いため生産性が低くなる。引き上げ速度が400mm/時間より大きい場合には、融液溜まり30の温度を制御することが困難になるため、ラメラ構造のサイズを制御することも困難になる。また、引き上げ速度が大きすぎると、融液溜まり30の融液17が種結晶23や直胴部分28から分離して成長が中断する可能性が高くなるため好ましくない。
 この後、得られたセラミック複合体2を放冷し、ゲートバルブ15を空け、引き上げ容器4側に移動して、基板出入口16から取り出す。得られた平板形状のセラミック複合体2の外観を図24に示す。直胴長さは特に限定されないが、2インチ以上(50.8mm以上)が好ましい。
 また図25に示すように、ダイ22の全幅と種結晶23の幅を同一とし、種結晶23の全幅と同じ幅でセラミック複合体2を育成成長させても良い。なお図25でもスリット25の見易さを優先するため、融液17と融液溜まり30の図示を省略している。
 以上説明したような製造装置19、種結晶23、及びダイ22を用いることにより、共通の種結晶23から複数のセラミック複合体2を同時に製造することが出来る。
 種結晶23、及び仕切り板24を含めたダイ22は、精密に位置決めする必要がある。よって図17に示したように製造装置19は、ダイ22を設置する坩堝5を回転する坩堝駆動部18、及びその回転を制御する制御部(図示せず)が設けられている。またシャフト13に関しても、シャフト13を回転するシャフト駆動部14、及びその回転を制御する制御部(図示せず)が設けられている。即ち、ダイ22に対する種結晶23の位置決めは、制御部によりシャフト13又は坩堝5を回転させて調整する。なお、種結晶23とダイ22との精密な位置決めについては、各仕切り板24の斜面29の一部を切り欠いたダイ22を使用することによっても行うことが出来る。
 以上の様に凝固体のセラミック複合体2を、予め用意する。更に図11から図13の実施形態では、用意した凝固体のセラミック複合体2を段差6cに配置する。次に、段差6cに配置した凝固体のセラミック複合体2のみ融解させて、結晶(6,6)どうしの隙間である段差6c内に、少なくとも酸化アルミニウムと酸化イットリウムから成る融液を用意及び拡げて行く。
 セラミック複合体2のみの融解方法は、セラミック複合体2の融点と、結晶6の融点の違いを利用して行う。具体的には、図12の状態のセラミック複合体2と結晶(6,6)を加熱炉などで加熱する。その際の加熱温度を、セラミック複合体2の融点超で、且つ酸化アルミニウムやサファイア結晶、又はルビー結晶の融点未満とすれば良い。一例として加熱温度は、セラミック複合体2の融点の50℃程度上とする。
 段差6c内に拡がった融液と接触する上下の各結晶(6,6)部分のみ融解される。前記の通り、結晶6のAl相が融液との接触面に集まる事で、結晶6の融点未満でも接触面のみ優先的に融解されることを本出願人は見出した。その融解により各結晶(6,6)のAl相と、融液の酸化アルミニウムのAl相が、互いに接合界面が無い状態で一体化される。
 その後、融液及び各結晶(6,6)の融解部分を放冷、冷却する事により、図13の様に段差6c内に凝固体のセラミック複合体2が形成され、上下の各結晶(6,6)のAl相と、セラミック複合体2のAl相が、互いに接合界面が無い状態で一体化される。
 一方、図14から図16の実施形態では、用意した凝固体のセラミック複合体2を下側の基板6の面上に配置し、その後前記加熱炉などでセラミック複合体2のみ融解させて、少なくとも酸化アルミニウムと酸化イットリウムから成る融液を用意する。セラミック複合体2の加熱温度は、セラミック複合体2の融点超で、且つ酸化アルミニウムやサファイア結晶、又はルビー結晶の融点未満とする。一例として加熱温度は、セラミック複合体2の融点の50℃程度上とする。
 融液は、真ん中及び下側の各結晶6の主面上を拡がって行き、各主面と接触すると共に、各貫通孔6a内にも毛細管現象により浸入され、各貫通孔6a内の結晶部分が融液と接触される。更に、融液は各貫通孔6aを通過して、真ん中の結晶6のもう一方の主面上と上側の結晶6の主面上を拡がって行き、各主面に接触する。
 融液と接触した3つの各結晶6の主面と貫通孔6a内の結晶6部分のみ、融液により融解され、各結晶6のAl相と、融液の酸化アルミニウムのAl相が、互いに接合界面が無い状態で一体化される。
 その後、融液及び各結晶6の融解部分を放冷、冷却する事により、図16の様に上下の各結晶(6,6)が、真ん中の結晶6を挟み、更に真ん中の結晶6を覆う様に凝固体のセラミック複合体2が形成される。従って、3つの各結晶6の主面と貫通孔6a内の結晶6部分のAl相と、セラミック複合体2のAl相が、互いに接合界面が無い状態で一体化される。またセラミック複合体2は、上下の各結晶(6,6)で挟まれる。
 なお、図16の上下の各結晶(6,6)どうしの隙間は、真ん中の結晶6の厚み(1mm)となる。
 図11から図16の各結晶6の平面方向の形状は、方形状でも良い。また図14と図15に示すセラミック複合体2の配置位置は、上側の結晶6主面と、真ん中の結晶6主面の間に変更しても良い。また各貫通孔6aは、止め穴としても良い。
 以下に本発明の実施例1及び2を説明するが、本発明は以下の実施例にのみ限定されるものではない。実施例1及び2では、結晶にはサファイア単結晶を用いた。そのサファイア単結晶は、外形が長方形状で、外形寸法は44.5mm×100mm、対角線の長さが109mm、厚み1mmの平板形のものを実施例毎に2個用いて直接接合した。更に実施例2のみ段差(図3及び図4の6c)から成るスリットを、W=30mm,厚み0.01mmで接合面に形成した。
 セラミック複合体の原料は、酸化アルミニウムを64.71重量%、酸化イットリウムを35.02重量%、酸化マグネシウムを0.003重量%、酸化セリウム0.27重量%含んだ原料粉末を、前記坩堝内で融解して融液を用意した。またCeを実施例1では0.3mol%含有させたと共に実施例2では0.1mol%含有させた。
 坩堝はMo製のものを使用した。従って、融液にMoが1.0mol・ppm以上30000mol・ppm以下含有された。
 その坩堝内に原料粉末を充填後、坩堝を加熱して融液を形成した。融液の形成後、直接接合したサファイア単結晶を、外形寸法100mmのうち、実施例1では30mmまで、実施例2では50mmまで融液内に浸漬させた。融液の液面の面方向に対し、前記サファイア単結晶どうしの隙間の長手方向を直交させて、サファイア単結晶を融液に浸漬させ、毛細管現象で接合面の隙間又はスリット内に融液を浸入させた。
 浸入により融液に接触したサファイア単結晶部分は融解し、サファイア単結晶のAl相と、セラミック複合体2原料の酸化アルミニウムのAl相が融解により一体化した。その後冷却及び研磨を施して、凝固体から成るセラミック複合体を形成した。各実施例のセラミック複合体とも、その両面のAl相と、サファイア単結晶のAl相が、互いに接合界面が無い状態で一体化されている事を確認した。また、得られたセラミック複合体は黄色を呈していた。
 また結晶どうしの隙間は、どちらの実施例でも0.01mmと薄型に形成された事が確認された。実施例2ではスリット幅W=30mmの範囲内のみ融液が浸入されて、セラミック複合体が形成されている事が確認された。
 そのセラミック複合体に、サファイア単結晶の外側から青色光を照射したところ、両実施例とも白色光に変換されている事が確認された。
   1、19   セラミック複合体の製造装置
   2     セラミック複合体
   3、20   容器
   4     引き上げ容器
   5     坩堝
   6     結晶
   6a     孔
   6b     結晶間の接合面の隙間
   6c     段差
   7     ヒータ
   8     電極
   9     パイプ形状の結晶
   9a     孔
   10     断熱材
   11     雰囲気ガス導入口
   12     雰囲気ガスの排気口
   13     シャフト
   14     シャフト駆動部
   15     ゲートバルブ
   16     セラミック複合体の出入口
   17     融液
   18     坩堝駆動部
   22     ダイ
   23     種結晶
   24     仕切り板
   25     スリット
   26     切り欠き部
   27     切り欠き穴
   28     直胴部分
   29     斜面
   30     融液溜まり
   31     開口部
   W     段差6cの幅

Claims (11)

  1.  少なくともYAl12相及びAl相の2つの酸化物相をラメラ構造として有すると共に、前記Al相と、サファイア結晶又はルビー結晶の何れかの結晶のAl相が、互いに接合界面が無く一体化されているセラミック複合体。
  2.  前記結晶が少なくとも2個備えられていると共に、その2個の前記結晶により挟まれて、前記結晶の前記Al相と、前記セラミック複合体の前記Al相が、互いに接合界面が無く一体化されている請求項1に記載のセラミック複合体。
  3.  前記セラミック複合体が挟まれている前記結晶どうしの隙間が0.01mm以上1mm以下である請求項2に記載のセラミック複合体。
  4.  前記結晶に止め穴又は貫通孔が形成されていると共に、前記止め穴又は前記貫通孔内に前記セラミック複合体が挿入されて、前記結晶の前記Al相と、前記セラミック複合体の前記Al相が、互いに接合界面が無く一体化されている請求項1に記載のセラミック複合体。
  5.  前記止め穴又は前記貫通孔の径が、0.1mm以上3mm以下である請求項4に記載のセラミック複合体。
  6.  少なくとも酸化アルミニウムと酸化イットリウムから成る融液を用意する工程と、
     サファイア結晶又はルビー結晶の何れかの結晶を融液に接触させて、前記融液に接触させた前記結晶部分を融解させ、前記結晶のAl相と、前記酸化アルミニウムのAl相を融解により互いに接合界面が無く一体化する工程と、
     前記融液を冷却する工程を有するセラミック複合体の製造方法。
  7.  前記結晶を少なくとも2個用意すると共に、互いに重ねる工程と、
     坩堝に少なくとも前記酸化アルミニウムと前記酸化イットリウムを含む原料を投入する工程と、
     前記坩堝を加熱して、前記原料を前記坩堝内で融解して前記融液を用意する工程と、
     前記結晶を前記融液に接触させ、重ね合わせた前記結晶どうしの隙間に毛細管現象により前記融液を浸入させて、前記融液を前記結晶で挟んで前記結晶を前記融液に接触させ、前記融液に接触させた前記結晶部分を融解させ、前記結晶の前記Al相と、前記酸化アルミニウムの前記Al相を融解により互いに接合界面が無く一体化する工程と、
     前記結晶を前記融液から取り出し、前記結晶と一体化された前記融液を冷却する工程を有する請求項6に記載のセラミック複合体の製造方法。
  8.  前記結晶どうしの前記隙間を0.01mm以上1mm以下とする請求項7に記載のセラミック複合体の製造方法。
  9.  前記融液の液面の面方向に対し、前記結晶どうしの前記隙間の長手方向を直交させる請求項7又は8に記載のセラミック複合体の製造方法。
  10.  前記結晶に止め穴又は貫通孔を形成する工程と、
     前記止め穴又は前記貫通孔内に毛細管現象により前記融液を浸入させて、前記融液に接触させた前記止め穴又は前記貫通孔内の前記結晶部分を融解させ、前記結晶の前記Al相と、前記酸化アルミニウムの前記Al相を融解により互いに接合界面が無く一体化する工程を有する請求項6に記載のセラミック複合体の製造方法。
  11.  前記止め穴又は前記貫通孔の径を、0.1mm以上3mm以下とする請求項10に記載のセラミック複合体の製造方法。
PCT/JP2020/038699 2019-10-25 2020-10-14 セラミック複合体及びセラミック複合体の製造方法 WO2021079793A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021554312A JPWO2021079793A1 (ja) 2019-10-25 2020-10-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-193914 2019-10-25
JP2019193914 2019-10-25

Publications (1)

Publication Number Publication Date
WO2021079793A1 true WO2021079793A1 (ja) 2021-04-29

Family

ID=75619408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038699 WO2021079793A1 (ja) 2019-10-25 2020-10-14 セラミック複合体及びセラミック複合体の製造方法

Country Status (2)

Country Link
JP (1) JPWO2021079793A1 (ja)
WO (1) WO2021079793A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136197A (en) * 1979-04-09 1980-10-23 Toshiba Corp Liquid phase epitaxial growing method
JPH11278994A (ja) * 1998-03-26 1999-10-12 Japan Science & Technology Corp 酸化物系セラミックス共晶体繊維およびその製造装置と製造方法
US20160326667A1 (en) * 2015-05-04 2016-11-10 Clemson University Monolithic heterogeneous single crystals with multiple regimes for solid staet laser applications
CN106676631A (zh) * 2016-11-28 2017-05-17 昆明理工大学 一种制备abx3钙钛矿单晶薄膜的方法
JP2019056038A (ja) * 2017-09-20 2019-04-11 アダマンド並木精密宝石株式会社 発光体及び発光体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136197A (en) * 1979-04-09 1980-10-23 Toshiba Corp Liquid phase epitaxial growing method
JPH11278994A (ja) * 1998-03-26 1999-10-12 Japan Science & Technology Corp 酸化物系セラミックス共晶体繊維およびその製造装置と製造方法
US20160326667A1 (en) * 2015-05-04 2016-11-10 Clemson University Monolithic heterogeneous single crystals with multiple regimes for solid staet laser applications
CN106676631A (zh) * 2016-11-28 2017-05-17 昆明理工大学 一种制备abx3钙钛矿单晶薄膜的方法
JP2019056038A (ja) * 2017-09-20 2019-04-11 アダマンド並木精密宝石株式会社 発光体及び発光体の製造方法

Also Published As

Publication number Publication date
JPWO2021079793A1 (ja) 2021-04-29

Similar Documents

Publication Publication Date Title
EP2843026A1 (en) Phosphor, method for manufacturing same, and light-emitting device
KR20030088882A (ko) 백색발광소자
KR102315049B1 (ko) 광원 장치의 제조 방법
WO2021079793A1 (ja) セラミック複合体及びセラミック複合体の製造方法
JP5857337B2 (ja) 酸化ガリウム基板とその製造方法
JP6672674B2 (ja) 基板の製造方法及びそれによって得られた基板並びに発光装置の製造方法
JP2017107072A (ja) 波長変換部材及び波長変換素子、並びにそれを用いた発光装置
WO2021045077A1 (ja) セラミック複合体
JP2013231149A (ja) Uv光励起赤色発光材料及び発光装置
JP7445949B2 (ja) セラミック複合体
JP2021038347A (ja) セラミック複合体
JP2021038346A (ja) セラミック複合体
JP7350298B2 (ja) セラミック複合体の製造方法
JP6502285B2 (ja) 単結晶ファイバの製造方法
WO2022163604A1 (ja) 発光体、腕時計、及び発光体の製造方法
US20230257649A1 (en) Phosphor and light source device
EP3736316A1 (en) Phosphor and light source device
JP2012160540A (ja) 発光素子の製造方法および発光素子
JP2010238834A (ja) 発光ダイオード用基板の製造方法
CN210778670U (zh) 一种导模法生产不同厚度稀***晶荧光体的模具用夹片
US11035055B2 (en) Group 13 nitride layer, composite substrate, and functional element
CN113957529A (zh) 一种基于导模法生长装置的氧化镓晶体生长方法
JP2022153703A (ja) セラミック複合体と、セラミック複合体を備える腕時計又はネームプレート、セラミック複合体の製造方法
CN113913924A (zh) 一种氧化镓单晶生长装置
JP2023142167A (ja) 蛍光体および光源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879385

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021554312

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20879385

Country of ref document: EP

Kind code of ref document: A1