WO2021079573A1 - Imaging device and storage device - Google Patents

Imaging device and storage device Download PDF

Info

Publication number
WO2021079573A1
WO2021079573A1 PCT/JP2020/027598 JP2020027598W WO2021079573A1 WO 2021079573 A1 WO2021079573 A1 WO 2021079573A1 JP 2020027598 W JP2020027598 W JP 2020027598W WO 2021079573 A1 WO2021079573 A1 WO 2021079573A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
memory modules
memory
imaging device
control unit
Prior art date
Application number
PCT/JP2020/027598
Other languages
French (fr)
Japanese (ja)
Inventor
和俊 児玉
高橋 正浩
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2021079573A1 publication Critical patent/WO2021079573A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/102Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including bipolar components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass

Definitions

  • This technology is related to storage devices. More specifically, the present invention relates to a storage device and an imaging device including a plurality of memory modules.
  • an image pickup device In the image pickup device, there is a problem that noise is generated by the switching operation when supplying the drive power to the image pickup device, and the noise is superimposed on the image pickup signal. Therefore, for example, an image pickup device has been proposed in which a power supply switching operation is not performed during a period in which the image pickup element generates or processes a photoelectric conversion signal (see, for example, Patent Document 1).
  • the switching operation is controlled so as not to be performed during the period when the electric charge is transferred from the photoelectric conversion element to the floating diffusion element.
  • the pixel signal may be temporarily held in the image memory.
  • This image memory is often composed of a plurality of memory modules, and the power supply is liable to fluctuate. Therefore, when the power supply to the image memory fluctuates, the fluctuation may become a noise source in the image sensor.
  • This technology was created in view of this situation, and aims to suppress fluctuations in power supply in a storage device equipped with a plurality of memory modules.
  • the present technology has been made to solve the above-mentioned problems, and the first aspect thereof is a pixel array portion in which a plurality of pixels for photoelectric conversion of light from a subject are arranged, and the plurality of pixels.
  • An analog-digital converter that converts an analog signal into a pixel signal based on a digital signal, a plurality of memory modules that hold the pixel signal converted by the analog-digital converter, and a power supply current shared by the plurality of memory modules.
  • a control unit that independently controls the operation of each of the plurality of memory modules so that the total of the power supply lines supplied to the power supply lines and the power supply currents supplied to the plurality of memory modules sharing the power supply line is constant.
  • the plurality of memory modules are SRAMs
  • the control unit may control the retention of the SRAMs. That is, the control unit controls the operation of each of the memory modules by controlling the retention of the SRAM. In this case, the control unit may control the retention of the SRAM so that a predetermined number of memory modules among the plurality of memory modules are active. This has the effect of making the sum of the supplied power supply currents constant for the SRAM that shares the power supply line.
  • the power supply line is a plurality of power supply lines for supplying power supply currents from a plurality of different power supply pads, and the plurality of memory modules share each of the plurality of power supply lines. It may be divided into power supply groups. This has the effect of making the sum of the power supply currents supplied to the memory modules in the power supply group constant.
  • control unit may control the plurality of memory modules having the same module number in the power supply group to perform the same operation. This has the effect of aligning the control of the memory modules between the power supply groups.
  • those having the same module number in the power supply group among the plurality of memory modules are arranged at positions where the distances from the power supply pads are equal to each other. May be good. This has the effect of unifying the behavior of the power supply current of the memory module for each power supply group.
  • those having the same module number in the power supply group among the plurality of memory modules are arranged at positions where the distances from the power supply pads are different from each other. May be good. This has the effect of making the voltage drop in the power supply line different for each power supply group.
  • those having the same module number in the power supply group among the plurality of memory modules are arranged at random positions from the power supply pad. May be good. This has the effect of distributing the voltage drop pattern in the power supply line for each power supply group.
  • FIG. 1 is a diagram showing an example of the overall configuration of the image sensor 100 according to the embodiment of the present technology.
  • the image sensor 100 includes a pixel array unit 110, a pixel drive unit 111, a column processing unit 121, an image memory 130, a system control unit 151, and a signal processing unit 154.
  • the image sensor 100 is an example of the image pickup apparatus described in the claims.
  • the pixel array unit 110 is formed by arranging a plurality of pixels for photoelectric conversion of light from a subject in an array.
  • the pixel drive unit 111 drives the pixels of the pixel array unit 110 row by row (horizontal line).
  • the column processing unit 121 processes the pixel values of each column (vertical column) read from the pixel array unit 110. More specifically, the column processing unit 121 AD (Analog-to-Digital) converts the analog signal of the pixel of each column into the pixel signal of the digital signal. The pixel signal generated in this way is supplied to the image memory 130 and temporarily held.
  • the column processing unit 121 is an example of the analog-to-digital conversion unit described in the claims.
  • the image memory 130 is a memory that temporarily holds the pixel signal supplied from the column processing unit 121 as image data. As will be described later, the image memory 130 includes a plurality of memory modules.
  • the image memory 130 includes, for example, an SRAM (Static Random Access Memory) as a storage element. Compared to DRAM (Dynamic Random Access Memory), this SRAM does not require a refresh operation, has high access speed, and consumes less power.
  • SRAM Static Random Access Memory
  • SRAM can perform control called "retention" that cannot be rewritten while retaining data.
  • retention is off, SRAM is active and can be rewritten.
  • retention is turned on, the SRAM goes to sleep. As a result, the leakage current of the SRAM can be reduced.
  • the signal processing unit 154 performs predetermined signal processing on the image data held in the image memory 130.
  • the signal processing for example, demosaic processing, white balance processing, and the like are assumed.
  • the system control unit 151 controls each unit of the image sensor 100.
  • the system control unit 151 independently controls the operation of each of the plurality of memory modules of the image memory 130.
  • the system control unit 151 is an example of the control unit described in the claims.
  • the memory power supply is supplied to the image sensor 100 via the signal line 132, and the logic power supply is supplied via the signal line 158. Further, a memory control signal is supplied from the system control unit 151 to the image memory 130 via the signal line 131.
  • FIG. 2 is a diagram showing an example of a mounting image of the image sensor 100 in the embodiment of the present technology.
  • the image sensor 100 assumes a laminated structure. As shown in a in the figure, the pixel array unit 110 occupies most of the area of the first layer. On the other hand, as shown in b in the figure, other circuits are housed in the second layer. The first layer and the second layer are connected between the via regions 191 and 192.
  • the AD converter 120 includes the above-mentioned column processing unit 121, and AD-converts a pixel analog signal into a pixel signal based on a digital signal.
  • the output circuit 150 includes the above-mentioned system control unit 151 and signal processing unit 154, and outputs from the image sensor 100 to the outside.
  • the peripheral circuit 140 is a peripheral circuit including an analog bias circuit of each part of the image sensor 100.
  • FIG. 3 is a diagram showing a configuration example of the image memory 130 according to the embodiment of the present technology.
  • the image memory 130 includes a plurality of memory modules. These plurality of memory modules are divided into power supply groups that share the power supply pad 139. In this example, it is divided into M + 1 power supply groups # 0 to # M (M is an integer of 0 or more). However, although a plurality of power supply groups are shown in this example, one power supply group may be used as the minimum configuration.
  • a module number is assigned to each memory module in the power supply group.
  • module numbers # 0 to # 2 are assigned to each of the three memory modules.
  • those having the same module number in the power supply group are controlled to perform the same operation. That is, when the system control unit 151 controls the retention of the memory module # 0 to be turned off via the signal line 131, the memory modules # 0 in all the power supply groups become active. That is, such control by the system control unit 151 is performed independently for the memory modules in the power supply group.
  • Power for memory is supplied to each of the power pads 139 via the signal line 132. Further, the memory control signal is supplied to the memory modules having the same module number in the power supply group via the signal line 131.
  • FIG. 4 is a diagram showing an operation example of the image memory 130 according to the embodiment of the present technology.
  • SRAM has retention control, which allows transitions between active and sleep states. For example, if the control signal # 0 is at the H level, the memory module # 0 is activated, and if the control signal # 0 is at the L level, the memory module # 0 goes to sleep.
  • two of the three memory modules are controlled to be active during the memory usage period.
  • the total power supply current (total memory current) consumed by the memory modules in the power supply group is also constant. Therefore, fluctuations in the current of the power supply supplied to the memory module are suppressed.
  • the current fluctuation of each part also affects the pixel array unit 110, and unnecessary horizontal stripes are formed. May adversely affect the quality of the generated image.
  • the number of memory modules in the power supply group is set to 3 in order to explain the principle of the present technology, but in the following, the memory modules in the power supply group are also considered in order to consider the arrangement of the memory modules.
  • the number of is described as N + 1 (N is an integer of 1 or more).
  • N is an integer of 1 or more.
  • the memory modules having the same module number in the power supply group are controlled so as to perform the same operation.
  • a diagram in which the entire arrangement is rotated by 90 degrees is used.
  • FIG. 5 is a diagram showing a first arrangement example of the image memory 130 according to the embodiment of the present technology.
  • the memory modules in the power supply group share the power supply line 138 connected to one power supply pad 139. Then, in each of the power supply groups, those having a common module number are connected to the power supply line 138 in the same order. Therefore, those having the same module number have the same distance from the power pad 139. As a result, the behavior of the power supply current of the memory module for each power supply group can be unified.
  • FIG. 6 is a diagram showing an operation example in the first arrangement example of the image memory 130 according to the embodiment of the present technology.
  • the memory module # N and the memory module # 1 are activated at the same time, and then the memory module # 1 and the memory module # 2 are activated at the same time. In this way, when the memory module # N-1 and the memory module # N are activated at the same time, the writing for one frame is completed.
  • FIG. 7 is a diagram showing a second arrangement example of the image memory 130 according to the embodiment of the present technology.
  • FIG. 8 is a diagram showing a third arrangement example of the image memory 130 according to the embodiment of the present technology.
  • FIG. 9 is a diagram showing a fourth arrangement example of the image memory 130 according to the embodiment of the present technology.
  • the memory modules of a plurality of power supply groups have the same module number. Two are given. Therefore, two memory modules are active in a power group. However, when viewed from the entire image memory 130, the total memory current is controlled to be constant.
  • FIG. 10 is a diagram showing an operation example in the fourth arrangement example of the image memory 130 according to the embodiment of the present technology.
  • memory module # 0 and memory module # 1 are active at the same time, and then memory module # 1 and memory module # 2 are active at the same time. In this way, writing for one frame is completed.
  • the load of the power supply wiring can be made uniform by arranging so that the total number of SRAMs to be controlled for step-down or boosting of the power supply or ground is the same for each power supply group. This is especially useful when the leakage current dominates the write power of the memory.
  • the system control unit 151 controls the plurality of memory modules sharing the power supply line 138 so that the total power supply current supplied is constant. As a result, it is possible to suppress fluctuations in the current of the power supply supplied to the memory module and improve the image quality of the output image.
  • the present technology can have the following configurations.
  • a pixel array unit in which a plurality of pixels for photoelectric conversion of light from a subject are arranged, and An analog-to-digital converter that converts analog signals from the plurality of pixels into pixel signals based on digital signals.
  • a plurality of memory modules that hold the pixel signals converted by the analog-to-digital converter, and A power supply line shared by the plurality of memory modules to supply a power supply current, and
  • An imaging device including a control unit that independently controls the operation of each of the plurality of memory modules so that the sum of the power supply currents supplied to the plurality of memory modules sharing the power supply line is constant.
  • the plurality of memory modules are SRAMs.
  • the image pickup apparatus wherein the control unit controls retention of the SRAM.
  • the power supply line is a plurality of power supply lines for supplying power supply currents from a plurality of different power supply pads.
  • the imaging device according to any one of (1) to (3), wherein the plurality of memory modules are divided into power supply groups sharing each of the plurality of power supply lines.
  • (5) The image pickup apparatus according to (4) above, wherein the control unit controls the plurality of memory modules having the same module number in the power supply group to perform the same operation.
  • a storage device including a control unit that independently controls the operation of each of the plurality of memory modules so that the sum of the power supply currents supplied to the plurality of memory modules sharing the power supply line is constant.
  • Image sensor 110 Pixel array unit 111 Pixel drive unit 120 AD converter 121
  • Image memory 138 Power supply line 139
  • Peripheral circuit 150 Output circuit 151 System control unit 154 Signal processing unit 191, 192 Via area

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Semiconductor Memories (AREA)

Abstract

This storage device comprises a plurality of memory modules, wherein variations in power supply are suppressed. The storage device comprises the plurality of memory modules, a power supply line and a control unit. The plurality of memory modules share the power supply line. The power supply line is shared by the plurality of memory modules and supplies a power supply current to the same. The control unit individually controls operation of each of the plurality of memory modules so that a total power supply current supplied to the plurality of memory modules that share the power supply line is constant.

Description

撮像装置および記憶装置Imaging device and storage device
 本技術は、記憶装置に関する。詳しくは、複数のメモリモジュールを備える記憶装置および撮像装置に関する。 This technology is related to storage devices. More specifically, the present invention relates to a storage device and an imaging device including a plurality of memory modules.
 撮像装置では、撮像素子に駆動電源を供給する際のスイッチング動作によってノイズが生じてしまい、撮像信号にノイズが重畳されてしまうという問題がある。そのため、例えば、撮像素子が光電変換信号を生成し、または、処理する期間において、電源供給のスイッチング動作を行わないようにした撮像装置が提案されている(例えば、特許文献1参照。)。 In the image pickup device, there is a problem that noise is generated by the switching operation when supplying the drive power to the image pickup device, and the noise is superimposed on the image pickup signal. Therefore, for example, an image pickup device has been proposed in which a power supply switching operation is not performed during a period in which the image pickup element generates or processes a photoelectric conversion signal (see, for example, Patent Document 1).
特開2015-126240号公報Japanese Unexamined Patent Publication No. 2015-126240
 上述の従来技術では、ロジックの動作タイミングを調整することにより、例えば光電変換素子から浮遊拡散素子に電荷が転送される期間にスイッチング動作を行わないように制御している。しかしながら、浮遊拡散素子を介して画素信号を読み出した後にも、一時的に画素信号を画像メモリに保持する場合がある。この画像メモリは複数のメモリモジュールから構成されることが多く、電源供給に変動を生じ易い。そのため、画像メモリへの電源供給に変動を生じた場合には、その変動が撮像素子におけるノイズ源となるおそれがある。 In the above-mentioned conventional technique, by adjusting the operation timing of the logic, for example, the switching operation is controlled so as not to be performed during the period when the electric charge is transferred from the photoelectric conversion element to the floating diffusion element. However, even after the pixel signal is read through the floating diffusion element, the pixel signal may be temporarily held in the image memory. This image memory is often composed of a plurality of memory modules, and the power supply is liable to fluctuate. Therefore, when the power supply to the image memory fluctuates, the fluctuation may become a noise source in the image sensor.
 本技術はこのような状況に鑑みて生み出されたものであり、複数のメモリモジュールを備える記憶装置において、電源供給の変動を抑制することを目的とする。 This technology was created in view of this situation, and aims to suppress fluctuations in power supply in a storage device equipped with a plurality of memory modules.
 本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、被写体からの光を光電変換する複数の画素を配置した画素アレイ部と、上記複数の画素からのアナログ信号をデジタル信号による画素信号に変換するアナログデジタル変換部と、上記アナログデジタル変換部によって変換された上記画素信号を保持する複数のメモリモジュールと、上記複数のメモリモジュールに共有されて電源電流を供給する電源線と、上記電源線を共有する上記複数のメモリモジュールに対して供給される電源電流の総和が一定となるように上記複数のメモリモジュールの各々について独立に動作制御を行う制御部とを具備する撮像装置または記憶装置である。これにより、電源線を共有する複数のメモリモジュールに対して、供給される電源電流の総和を一定にするという作用をもたらす。 The present technology has been made to solve the above-mentioned problems, and the first aspect thereof is a pixel array portion in which a plurality of pixels for photoelectric conversion of light from a subject are arranged, and the plurality of pixels. An analog-digital converter that converts an analog signal into a pixel signal based on a digital signal, a plurality of memory modules that hold the pixel signal converted by the analog-digital converter, and a power supply current shared by the plurality of memory modules. A control unit that independently controls the operation of each of the plurality of memory modules so that the total of the power supply lines supplied to the power supply lines and the power supply currents supplied to the plurality of memory modules sharing the power supply line is constant. An image pickup device or a storage device including the above. This has the effect of making the sum of the power supply currents supplied to the plurality of memory modules sharing the power supply line constant.
 また、この第1の側面において、上記複数のメモリモジュールは、SRAMであり、上記制御部は、上記SRAMのリテンションを制御するようにしてもよい。すなわち、制御部は、SRAMのリテンションを制御することにより、メモリモジュールの各々について動作制御を行う。この場合において、上記制御部は、上記複数のメモリモジュールのうち所定数のメモリモジュールがアクティブになるように上記SRAMのリテンションを制御するようにしてもよい。これにより、電源線を共有するSRAMに対して、供給される電源電流の総和を一定にするという作用をもたらす。 Further, in the first aspect, the plurality of memory modules are SRAMs, and the control unit may control the retention of the SRAMs. That is, the control unit controls the operation of each of the memory modules by controlling the retention of the SRAM. In this case, the control unit may control the retention of the SRAM so that a predetermined number of memory modules among the plurality of memory modules are active. This has the effect of making the sum of the supplied power supply currents constant for the SRAM that shares the power supply line.
 また、この第1の側面において、上記電源線は、異なる複数の電源パッドからの電源電流を供給する複数の電源線であり、上記複数のメモリモジュールは、上記複数の電源線の各々を共有する電源グループに分割されてもよい。これにより、電源グループ内のメモリモジュールに対して、供給される電源電流の総和を一定にするという作用をもたらす。 Further, in the first aspect, the power supply line is a plurality of power supply lines for supplying power supply currents from a plurality of different power supply pads, and the plurality of memory modules share each of the plurality of power supply lines. It may be divided into power supply groups. This has the effect of making the sum of the power supply currents supplied to the memory modules in the power supply group constant.
 また、この第1の側面において、上記制御部は、上記複数のメモリモジュールのうち上記電源グループ内のモジュール番号が共通するもの同士が同じ動作を行うように制御してもよい。これにより、電源グループ間でメモリモジュールの制御を整合させるという作用をもたらす。 Further, in the first aspect, the control unit may control the plurality of memory modules having the same module number in the power supply group to perform the same operation. This has the effect of aligning the control of the memory modules between the power supply groups.
 また、この第1の側面において、上記複数のメモリモジュールは、上記複数のメモリモジュールのうち上記電源グループ内のモジュール番号が共通するもの同士が上記電源パッドからの距離が互いに等しい位置に配置されてもよい。これにより、電源グループ毎のメモリモジュールの電源電流の挙動を統一するという作用をもたらす。 Further, in the first aspect, in the plurality of memory modules, those having the same module number in the power supply group among the plurality of memory modules are arranged at positions where the distances from the power supply pads are equal to each other. May be good. This has the effect of unifying the behavior of the power supply current of the memory module for each power supply group.
 また、この第1の側面において、上記複数のメモリモジュールは、上記複数のメモリモジュールのうち上記電源グループ内のモジュール番号が共通するもの同士が上記電源パッドからの距離が互いに異なる位置に配置されてもよい。これにより、電源線における電圧降下を電源グループ毎に異なるものにするという作用をもたらす。 Further, in the first aspect, in the plurality of memory modules, those having the same module number in the power supply group among the plurality of memory modules are arranged at positions where the distances from the power supply pads are different from each other. May be good. This has the effect of making the voltage drop in the power supply line different for each power supply group.
 また、この第1の側面において、上記複数のメモリモジュールは、上記複数のメモリモジュールのうち上記電源グループ内のモジュール番号が共通するもの同士が上記電源パッドからの距離がランダムな位置に配置されてもよい。これにより、電源線における電圧降下のパターンを電源グループ毎に散らすという作用をもたらす。 Further, in the first aspect, in the plurality of memory modules, those having the same module number in the power supply group among the plurality of memory modules are arranged at random positions from the power supply pad. May be good. This has the effect of distributing the voltage drop pattern in the power supply line for each power supply group.
本技術の実施の形態におけるイメージセンサ100の全体構成の一例を示す図である。It is a figure which shows an example of the whole structure of the image sensor 100 in embodiment of this technique. 本技術の実施の形態におけるイメージセンサ100の実装イメージの例を示す図である。It is a figure which shows the example of the mounting image of the image sensor 100 in embodiment of this technique. 本技術の実施の形態における画像メモリ130の構成例を示す図である。It is a figure which shows the configuration example of the image memory 130 in embodiment of this technique. 本技術の実施の形態における画像メモリ130の動作例を示す図である。It is a figure which shows the operation example of the image memory 130 in embodiment of this technique. 本技術の実施の形態における画像メモリ130の第1の配置例を示す図である。It is a figure which shows the 1st arrangement example of the image memory 130 in embodiment of this technique. 本技術の実施の形態の画像メモリ130の第1の配置例における動作例を示す図である。It is a figure which shows the operation example in the 1st arrangement example of the image memory 130 of embodiment of this technique. 本技術の実施の形態における画像メモリ130の第2の配置例を示す図である。It is a figure which shows the 2nd arrangement example of the image memory 130 in embodiment of this technique. 本技術の実施の形態における画像メモリ130の第3の配置例を示す図である。It is a figure which shows the 3rd arrangement example of the image memory 130 in embodiment of this technique. 本技術の実施の形態における画像メモリ130の第4の配置例を示す図である。It is a figure which shows the 4th arrangement example of the image memory 130 in embodiment of this technique. 本技術の実施の形態の画像メモリ130の第4の配置例における動作例を示す図である。It is a figure which shows the operation example in the 4th arrangement example of the image memory 130 of embodiment of this technique.
 以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
 1.イメージセンサと画像メモリ
 2.電源グループとメモリモジュールの配置
Hereinafter, embodiments for carrying out the present technology (hereinafter referred to as embodiments) will be described. The explanation will be given in the following order.
1. 1. Image sensor and image memory 2. Power group and memory module placement
 <1.イメージセンサと画像メモリ>
 [イメージセンサ]
 図1は、本技術の実施の形態におけるイメージセンサ100の全体構成の一例を示す図である。
<1. Image sensor and image memory>
[Image sensor]
FIG. 1 is a diagram showing an example of the overall configuration of the image sensor 100 according to the embodiment of the present technology.
 イメージセンサ100は、画素アレイ部110と、画素駆動部111と、カラム処理部121と、画像メモリ130と、システム制御部151と、信号処理部154とを備える。なお、イメージセンサ100は、特許請求の範囲に記載の撮像装置の一例である。 The image sensor 100 includes a pixel array unit 110, a pixel drive unit 111, a column processing unit 121, an image memory 130, a system control unit 151, and a signal processing unit 154. The image sensor 100 is an example of the image pickup apparatus described in the claims.
 画素アレイ部110は、被写体からの光を光電変換する複数の画素をアレイ状に配置したものである。画素駆動部111は、画素アレイ部110の画素を行(水平方向のライン)毎に駆動するものである。 The pixel array unit 110 is formed by arranging a plurality of pixels for photoelectric conversion of light from a subject in an array. The pixel drive unit 111 drives the pixels of the pixel array unit 110 row by row (horizontal line).
 カラム処理部121は、画素アレイ部110から読み出された各列(垂直方向のカラム)の画素の値を処理するものである。より具体的には、このカラム処理部121は、各列の画素のアナログ信号をデジタル信号による画素信号にAD(Analog-to-Digital)変換する。このようにして生成された画素信号は、画像メモリ130に供給され、一時的に保持される。なお、カラム処理部121は、特許請求の範囲に記載のアナログデジタル変換部の一例である。 The column processing unit 121 processes the pixel values of each column (vertical column) read from the pixel array unit 110. More specifically, the column processing unit 121 AD (Analog-to-Digital) converts the analog signal of the pixel of each column into the pixel signal of the digital signal. The pixel signal generated in this way is supplied to the image memory 130 and temporarily held. The column processing unit 121 is an example of the analog-to-digital conversion unit described in the claims.
 画像メモリ130は、カラム処理部121から供給された画素信号を画像データとして一時的に保持するメモリである。後述するように、この画像メモリ130は、複数のメモリモジュールを備える。この画像メモリ130は、記憶素子として、例えば、SRAM(Static Random Access Memory)を備える。このSRAMは、DRAM(Dynamic Random Access Memory)と比べて、リフレッシュ操作が不要であり、アクセスが高速で消費電力も少ないという特徴を有する。 The image memory 130 is a memory that temporarily holds the pixel signal supplied from the column processing unit 121 as image data. As will be described later, the image memory 130 includes a plurality of memory modules. The image memory 130 includes, for example, an SRAM (Static Random Access Memory) as a storage element. Compared to DRAM (Dynamic Random Access Memory), this SRAM does not require a refresh operation, has high access speed, and consumes less power.
 SRAMは、データを保持したまま書き換えができない「リテンション」と呼ばれる制御を行うことが可能である。通常の動作時にはリテンションはオフであり、SRAMはアクティブになり、書き換えが可能である。リテンションをオンにすると、SRAMはスリープ状態となる。これにより、SRAMのリーク電流を減らすことができる。 SRAM can perform control called "retention" that cannot be rewritten while retaining data. During normal operation, retention is off, SRAM is active and can be rewritten. When retention is turned on, the SRAM goes to sleep. As a result, the leakage current of the SRAM can be reduced.
 信号処理部154は、画像メモリ130に保持された画像データに対して所定の信号処理を施すものである。この場合の信号処理としては、例えば、デモザイク処理や、ホワイトバランス処理などが想定される。 The signal processing unit 154 performs predetermined signal processing on the image data held in the image memory 130. As the signal processing in this case, for example, demosaic processing, white balance processing, and the like are assumed.
 システム制御部151は、イメージセンサ100の各部を制御するものである。例えば、このシステム制御部151は、画像メモリ130の複数のメモリモジュールの各々について独立に動作制御を行う。なお、システム制御部151は、特許請求の範囲に記載の制御部の一例である。 The system control unit 151 controls each unit of the image sensor 100. For example, the system control unit 151 independently controls the operation of each of the plurality of memory modules of the image memory 130. The system control unit 151 is an example of the control unit described in the claims.
 このイメージセンサ100には、メモリ用電源が信号線132を介して供給され、ロジック用電源が信号線158を介して供給される。また、システム制御部151から画像メモリ130に対しては、信号線131を介してメモリ制御信号が供給される。 The memory power supply is supplied to the image sensor 100 via the signal line 132, and the logic power supply is supplied via the signal line 158. Further, a memory control signal is supplied from the system control unit 151 to the image memory 130 via the signal line 131.
 図2は、本技術の実施の形態におけるイメージセンサ100の実装イメージの例を示す図である。 FIG. 2 is a diagram showing an example of a mounting image of the image sensor 100 in the embodiment of the present technology.
 この例では、イメージセンサ100は、積層構造を想定している。同図におけるaに示すように、画素アレイ部110は第1層の大半の面積を占めている。一方、同図におけるbに示すように、他の回路は第2層に収納される。第1層と第2層は、ビア領域191と192との間で接続が行われる。 In this example, the image sensor 100 assumes a laminated structure. As shown in a in the figure, the pixel array unit 110 occupies most of the area of the first layer. On the other hand, as shown in b in the figure, other circuits are housed in the second layer. The first layer and the second layer are connected between the via regions 191 and 192.
 AD変換器120は、上述のカラム処理部121を含み、画素のアナログ信号をデジタル信号による画素信号にAD変換するものである。 The AD converter 120 includes the above-mentioned column processing unit 121, and AD-converts a pixel analog signal into a pixel signal based on a digital signal.
 出力回路150は、上述のシステム制御部151や信号処理部154を含み、イメージセンサ100から外部への出力を行うものである。 The output circuit 150 includes the above-mentioned system control unit 151 and signal processing unit 154, and outputs from the image sensor 100 to the outside.
 周辺回路140は、イメージセンサ100の各部のアナログのバイアス回路等を含む周辺回路である。 The peripheral circuit 140 is a peripheral circuit including an analog bias circuit of each part of the image sensor 100.
 [画像メモリ]
 図3は、本技術の実施の形態における画像メモリ130の構成例を示す図である。
[Image memory]
FIG. 3 is a diagram showing a configuration example of the image memory 130 according to the embodiment of the present technology.
 画像メモリ130は、複数のメモリモジュールを備える。これら複数のメモリモジュールは、電源パッド139を共有する電源グループに分割される。この例では、M+1個の電源グループ#0乃至#M(Mは0以上の整数)に分割されている。ただし、この例では複数の電源グループを示しているが、最小構成として電源グループは1個でもよい。 The image memory 130 includes a plurality of memory modules. These plurality of memory modules are divided into power supply groups that share the power supply pad 139. In this example, it is divided into M + 1 power supply groups # 0 to # M (M is an integer of 0 or more). However, although a plurality of power supply groups are shown in this example, one power supply group may be used as the minimum configuration.
 電源グループ内のメモリモジュールには、それぞれモジュール番号が付与される。この例では、それぞれ3つのメモリモジュールに対して、#0乃至#2のモジュール番号が付与されている。以下の例では、電源グループ内のモジュール番号が共通するもの同士が、同じ動作を行うように制御されるものとする。すなわち、システム制御部151が信号線131を介して、メモリモジュール#0のリテンションをオフにするように制御すると、全ての電源グループ内のメモリモジュール#0がアクティブになる。すなわち、このようなシステム制御部151による制御は、電源グループ内のメモリモジュールについて独立に行われる。 A module number is assigned to each memory module in the power supply group. In this example, module numbers # 0 to # 2 are assigned to each of the three memory modules. In the following example, it is assumed that those having the same module number in the power supply group are controlled to perform the same operation. That is, when the system control unit 151 controls the retention of the memory module # 0 to be turned off via the signal line 131, the memory modules # 0 in all the power supply groups become active. That is, such control by the system control unit 151 is performed independently for the memory modules in the power supply group.
 電源パッド139の各々には、信号線132を介してメモリ用電源が供給される。また、電源グループ内のモジュール番号が共通するメモリモジュールには、信号線131を介してメモリ制御信号が供給される。 Power for memory is supplied to each of the power pads 139 via the signal line 132. Further, the memory control signal is supplied to the memory modules having the same module number in the power supply group via the signal line 131.
 [動作]
 図4は、本技術の実施の形態における画像メモリ130の動作例を示す図である。
[motion]
FIG. 4 is a diagram showing an operation example of the image memory 130 according to the embodiment of the present technology.
 ここでは、電源グループ内の3つのメモリモジュールを想定して説明する。上述のように、SRAMにはリテンション制御があり、これによりアクティブまたはスリープの各状態を遷移させることができる。例えば、制御信号#0がHレベルであればメモリモジュール#0がアクティブになり、制御信号#0がLレベルであればメモリモジュール#0がスリープになる。 Here, the explanation will be made assuming three memory modules in the power supply group. As mentioned above, SRAM has retention control, which allows transitions between active and sleep states. For example, if the control signal # 0 is at the H level, the memory module # 0 is activated, and if the control signal # 0 is at the L level, the memory module # 0 goes to sleep.
 この例では、メモリ使用期間においては、3つのメモリモジュールのうち、2つのメモリモジュールがアクティブになるように制御される。このとき、電源グループ内で動作を行うメモリモジュールの数が一定であるため、電源グループ内のメモリモジュールに消費される電源電流の総和(メモリ総電流)も一定になる。したがって、メモリモジュールに供給される電源の電流変動が抑制される。 In this example, two of the three memory modules are controlled to be active during the memory usage period. At this time, since the number of memory modules operating in the power supply group is constant, the total power supply current (total memory current) consumed by the memory modules in the power supply group is also constant. Therefore, fluctuations in the current of the power supply supplied to the memory module are suppressed.
 上述のような積層構造を想定すると、画像メモリ130やAD変換器120などの画素アレイ部110以外の領域であっても、各部の電流変動は画素アレイ部110にも作用を及ぼし、不要な横筋を発生するなど、生成される画像の品質に悪影響を与えるおそれがある。その点、この実施の形態によれば、メモリモジュールに供給される電源の電流変動を抑制して、画像品質を向上させることができる。 Assuming the above-mentioned laminated structure, even in areas other than the pixel array unit 110 such as the image memory 130 and the AD converter 120, the current fluctuation of each part also affects the pixel array unit 110, and unnecessary horizontal stripes are formed. May adversely affect the quality of the generated image. In that respect, according to this embodiment, it is possible to suppress fluctuations in the current of the power supply supplied to the memory module and improve the image quality.
 <2.電源グループとメモリモジュールの配置>
 上述の例では、本技術の原理を説明するために、電源グループ内のメモリモジュールの数を3個としたが、以下ではメモリモジュールの配置を併せて考慮するために、電源グループ内のメモリモジュールの数をN+1個(Nは1以上の整数)として説明する。ただし、電源グループ内のモジュール番号が共通するメモリモジュール同士が同じ動作を行うように制御を行う点は、上述の例と同様である。なお、説明の都合上、全体の配置を90度回転させた図を使用する。
<2. Power supply group and memory module placement>
In the above example, the number of memory modules in the power supply group is set to 3 in order to explain the principle of the present technology, but in the following, the memory modules in the power supply group are also considered in order to consider the arrangement of the memory modules. The number of is described as N + 1 (N is an integer of 1 or more). However, it is the same as the above-mentioned example in that the memory modules having the same module number in the power supply group are controlled so as to perform the same operation. For convenience of explanation, a diagram in which the entire arrangement is rotated by 90 degrees is used.
 [第1の配置例]
 図5は、本技術の実施の形態における画像メモリ130の第1の配置例を示す図である。
[First arrangement example]
FIG. 5 is a diagram showing a first arrangement example of the image memory 130 according to the embodiment of the present technology.
 この第1の配置例では、複数の電源グループのメモリモジュールにおいて、モジュール番号が共通するもの同士は、電源パッド139からの距離が互いに等しい位置に配置される。 In this first arrangement example, among the memory modules of a plurality of power supply groups, those having a common module number are arranged at positions where the distances from the power supply pads 139 are equal to each other.
 電源グループ内のメモリモジュールは、1つの電源パッド139に接続する電源線138を共有する。そして、電源グループの各々において、モジュール番号が共通するもの同士は、同じ順序で電源線138に接続する。したがって、モジュール番号が共通するもの同士は、電源パッド139からの距離が互いに等しくなる。これにより、電源グループ毎のメモリモジュールの電源電流の挙動を統一することができる。 The memory modules in the power supply group share the power supply line 138 connected to one power supply pad 139. Then, in each of the power supply groups, those having a common module number are connected to the power supply line 138 in the same order. Therefore, those having the same module number have the same distance from the power pad 139. As a result, the behavior of the power supply current of the memory module for each power supply group can be unified.
 図6は、本技術の実施の形態の画像メモリ130の第1の配置例における動作例を示す図である。 FIG. 6 is a diagram showing an operation example in the first arrangement example of the image memory 130 according to the embodiment of the present technology.
 この例では、メモリモジュール#Nとメモリモジュール#1とが同時にアクティブになり、次にメモリモジュール#1とメモリモジュール#2とが同時にアクティブになる。この要領で、メモリモジュール#N-1とメモリモジュール#Nとが同時にアクティブになると、1フレーム分の書き込みを終了する。 In this example, the memory module # N and the memory module # 1 are activated at the same time, and then the memory module # 1 and the memory module # 2 are activated at the same time. In this way, when the memory module # N-1 and the memory module # N are activated at the same time, the writing for one frame is completed.
 このように、メモリ使用期間においては、N+1個のメモリモジュールのうち、2つのメモリモジュールがアクティブになるように制御される。このとき、電源グループ内で動作を行うメモリモジュールの数が一定であるため、電源グループ内のメモリ総電流も一定になる。したがって、メモリモジュールに供給される電源の電流変動が抑制される。 In this way, during the memory usage period, two memory modules out of N + 1 memory modules are controlled to be active. At this time, since the number of memory modules operating in the power supply group is constant, the total memory current in the power supply group is also constant. Therefore, fluctuations in the current of the power supply supplied to the memory module are suppressed.
 [第2の配置例]
 図7は、本技術の実施の形態における画像メモリ130の第2の配置例を示す図である。
[Second arrangement example]
FIG. 7 is a diagram showing a second arrangement example of the image memory 130 according to the embodiment of the present technology.
 この第2の配置例では、複数の電源グループのメモリモジュールにおいて、モジュール番号が共通するもの同士は、電源パッド139からの距離が互いに異なる位置に配置される。これにより、モジュール番号が共通するもの同士は、電源パッド139からの距離が互いに異なるものとなり、電源線138における電圧降下(IRドロップ)が電源グループ毎に異なるものとなる。 In this second arrangement example, among the memory modules of a plurality of power supply groups, those having the same module number are arranged at positions where the distances from the power supply pads 139 are different from each other. As a result, the modules having the same module number have different distances from the power supply pad 139, and the voltage drop (IR drop) in the power supply line 138 is different for each power supply group.
 したがって、この第2の配置例によれば、電源線138の負荷を含めて、電源による電流変動を抑制することができる。 Therefore, according to this second arrangement example, it is possible to suppress the current fluctuation due to the power supply including the load of the power supply line 138.
 [第3の配置例]
 図8は、本技術の実施の形態における画像メモリ130の第3の配置例を示す図である。
[Third arrangement example]
FIG. 8 is a diagram showing a third arrangement example of the image memory 130 according to the embodiment of the present technology.
 この第3の配置例では、複数の電源グループのメモリモジュールにおいて、モジュール番号が共通するもの同士は、電源パッド139からの距離がランダムな位置に配置される。これにより、モジュール番号が共通するもの同士は、電源パッド139からの距離がランダムになり、電源線138における電圧降下(IRドロップ)のパターンを電源グループ毎に散らすことができる。 In this third arrangement example, among the memory modules of a plurality of power supply groups, those having a common module number are arranged at random positions from the power supply pad 139. As a result, the distances from the power supply pads 139 are random for those having the same module number, and the pattern of the voltage drop (IR drop) in the power supply line 138 can be scattered for each power supply group.
 したがって、この第3の配置例によれば、電源線138の負荷を含めて、電源による電流変動を抑制することができる。 Therefore, according to this third arrangement example, it is possible to suppress the current fluctuation due to the power supply including the load of the power supply line 138.
 [第4の配置例]
 図9は、本技術の実施の形態における画像メモリ130の第4の配置例を示す図である。
[Fourth arrangement example]
FIG. 9 is a diagram showing a fourth arrangement example of the image memory 130 according to the embodiment of the present technology.
 これまでの配置例では電源グループ内のメモリモジュールにはそれぞれ1つずつモジュール番号が付与されていたが、この第4の配置例では、複数の電源グループのメモリモジュールにおいて、モジュール番号が同じものが2つずつ付与される。したがって、ある電源グループでは2つのメモリモジュールがアクティブになる。ただし、画像メモリ130全体で見れば、メモリ総電流が一定になるように制御される。 In the previous arrangement examples, one module number was assigned to each memory module in the power supply group, but in this fourth arrangement example, the memory modules of a plurality of power supply groups have the same module number. Two are given. Therefore, two memory modules are active in a power group. However, when viewed from the entire image memory 130, the total memory current is controlled to be constant.
 図10は、本技術の実施の形態の画像メモリ130の第4の配置例における動作例を示す図である。 FIG. 10 is a diagram showing an operation example in the fourth arrangement example of the image memory 130 according to the embodiment of the present technology.
 この例では、メモリモジュール#0とメモリモジュール#1とが同時にアクティブになり、次にメモリモジュール#1とメモリモジュール#2とが同時にアクティブになる。この要領で、1フレーム分の書き込みを終了する。 In this example, memory module # 0 and memory module # 1 are active at the same time, and then memory module # 1 and memory module # 2 are active at the same time. In this way, writing for one frame is completed.
 この第4の配置例では、電源または接地の降圧または昇圧の制御の対象となるSRAMの総数が、電源グループ毎に同じになるように配置することで、電源配線の負荷を揃えることができる。これは、メモリの書込み電力よりもリーク電流が支配的な場合に、特に有用である。 In this fourth arrangement example, the load of the power supply wiring can be made uniform by arranging so that the total number of SRAMs to be controlled for step-down or boosting of the power supply or ground is the same for each power supply group. This is especially useful when the leakage current dominates the write power of the memory.
 このように、本技術の実施の形態では、電源線138を共有する複数のメモリモジュールに対して、供給される電源電流の総和が一定となるように、システム制御部151が制御を行う。これにより、メモリモジュールに供給される電源の電流変動を抑制して、出力画像の画像品質を向上させることができる。 As described above, in the embodiment of the present technology, the system control unit 151 controls the plurality of memory modules sharing the power supply line 138 so that the total power supply current supplied is constant. As a result, it is possible to suppress fluctuations in the current of the power supply supplied to the memory module and improve the image quality of the output image.
 なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。 Note that the above-described embodiment shows an example for embodying the present technology, and the matters in the embodiment and the matters specifying the invention in the claims have a corresponding relationship with each other. Similarly, the matters specifying the invention within the scope of claims and the matters in the embodiment of the present technology having the same name have a corresponding relationship with each other. However, the present technology is not limited to the embodiment, and can be embodied by applying various modifications to the embodiment without departing from the gist thereof.
 なお、本明細書に記載された効果はあくまで例示であって、限定されるものではなく、また、他の効果があってもよい。 It should be noted that the effects described in the present specification are merely examples and are not limited, and other effects may be obtained.
 なお、本技術は以下のような構成もとることができる。
(1)被写体からの光を光電変換する複数の画素を配置した画素アレイ部と、
 前記複数の画素からのアナログ信号をデジタル信号による画素信号に変換するアナログデジタル変換部と、
 前記アナログデジタル変換部によって変換された前記画素信号を保持する複数のメモリモジュールと、
 前記複数のメモリモジュールに共有されて電源電流を供給する電源線と、
 前記電源線を共有する前記複数のメモリモジュールに対して供給される電源電流の総和が一定となるように前記複数のメモリモジュールの各々について独立に動作制御を行う制御部と
を具備する撮像装置。
(2)前記複数のメモリモジュールは、SRAMであり、
 前記制御部は、前記SRAMのリテンションを制御する
前記(1)に記載の撮像装置。
(3)前記制御部は、前記複数のメモリモジュールのうち所定数のメモリモジュールがアクティブになるように前記SRAMのリテンションを制御する
前記(2)に記載の撮像装置。
(4)前記電源線は、異なる複数の電源パッドからの電源電流を供給する複数の電源線であり、
 前記複数のメモリモジュールは、前記複数の電源線の各々を共有する電源グループに分割される
前記(1)から(3)のいずれかに記載の撮像装置。
(5)前記制御部は、前記複数のメモリモジュールのうち前記電源グループ内のモジュール番号が共通するもの同士が同じ動作を行うように制御する
前記(4)に記載の撮像装置。
(6)前記複数のメモリモジュールは、前記複数のメモリモジュールのうち前記電源グループ内のモジュール番号が共通するもの同士が前記電源パッドからの距離が互いに等しい位置に配置される
前記(5)に記載の撮像装置。
(7)前記複数のメモリモジュールは、前記複数のメモリモジュールのうち前記電源グループ内のモジュール番号が共通するもの同士が前記電源パッドからの距離が互いに異なる位置に配置される
前記(5)に記載の撮像装置。
(8)前記複数のメモリモジュールは、前記複数のメモリモジュールのうち前記電源グループ内のモジュール番号が共通するもの同士が前記電源パッドからの距離がランダムな位置に配置される
前記(5)に記載の撮像装置。
(9)複数のメモリモジュールと、
 前記複数のメモリモジュールに共有されて電源電流を供給する電源線と、
 前記電源線を共有する前記複数のメモリモジュールに対して供給される電源電流の総和が一定となるように前記複数のメモリモジュールの各々について独立に動作制御を行う制御部と
を具備する記憶装置。
The present technology can have the following configurations.
(1) A pixel array unit in which a plurality of pixels for photoelectric conversion of light from a subject are arranged, and
An analog-to-digital converter that converts analog signals from the plurality of pixels into pixel signals based on digital signals.
A plurality of memory modules that hold the pixel signals converted by the analog-to-digital converter, and
A power supply line shared by the plurality of memory modules to supply a power supply current, and
An imaging device including a control unit that independently controls the operation of each of the plurality of memory modules so that the sum of the power supply currents supplied to the plurality of memory modules sharing the power supply line is constant.
(2) The plurality of memory modules are SRAMs.
The image pickup apparatus according to (1) above, wherein the control unit controls retention of the SRAM.
(3) The image pickup apparatus according to (2), wherein the control unit controls retention of the SRAM so that a predetermined number of memory modules among the plurality of memory modules are activated.
(4) The power supply line is a plurality of power supply lines for supplying power supply currents from a plurality of different power supply pads.
The imaging device according to any one of (1) to (3), wherein the plurality of memory modules are divided into power supply groups sharing each of the plurality of power supply lines.
(5) The image pickup apparatus according to (4) above, wherein the control unit controls the plurality of memory modules having the same module number in the power supply group to perform the same operation.
(6) The plurality of memory modules according to (5), wherein those having a common module number in the power supply group among the plurality of memory modules are arranged at positions where the distances from the power supply pads are equal to each other. Imaging device.
(7) The plurality of memory modules according to (5), wherein those having a common module number in the power supply group among the plurality of memory modules are arranged at positions where the distances from the power supply pads are different from each other. Imaging device.
(8) The plurality of memory modules according to (5) above, wherein among the plurality of memory modules, those having a common module number in the power supply group are arranged at random positions from the power supply pad. Imaging device.
(9) Multiple memory modules and
A power supply line shared by the plurality of memory modules to supply a power supply current, and
A storage device including a control unit that independently controls the operation of each of the plurality of memory modules so that the sum of the power supply currents supplied to the plurality of memory modules sharing the power supply line is constant.
 100 イメージセンサ
 110 画素アレイ部
 111 画素駆動部
 120 AD変換器
 121 カラム処理部
 130 画像メモリ
 138 電源線
 139 電源パッド
 140 周辺回路
 150 出力回路
 151 システム制御部
 154 信号処理部
 191、192 ビア領域
100 Image sensor 110 Pixel array unit 111 Pixel drive unit 120 AD converter 121 Column processing unit 130 Image memory 138 Power supply line 139 Power supply pad 140 Peripheral circuit 150 Output circuit 151 System control unit 154 Signal processing unit 191, 192 Via area

Claims (9)

  1.  被写体からの光を光電変換する複数の画素を配置した画素アレイ部と、
     前記複数の画素からのアナログ信号をデジタル信号による画素信号に変換するアナログデジタル変換部と、
     前記アナログデジタル変換部によって変換された前記画素信号を保持する複数のメモリモジュールと、
     前記複数のメモリモジュールに共有されて電源電流を供給する電源線と、
     前記電源線を共有する前記複数のメモリモジュールに対して供給される電源電流の総和が一定となるように前記複数のメモリモジュールの各々について独立に動作制御を行う制御部と
    を具備する撮像装置。
    A pixel array unit in which a plurality of pixels for photoelectric conversion of light from a subject are arranged, and
    An analog-to-digital converter that converts analog signals from the plurality of pixels into pixel signals based on digital signals.
    A plurality of memory modules that hold the pixel signals converted by the analog-to-digital converter, and
    A power supply line shared by the plurality of memory modules to supply a power supply current, and
    An imaging device including a control unit that independently controls the operation of each of the plurality of memory modules so that the sum of the power supply currents supplied to the plurality of memory modules sharing the power supply line is constant.
  2.  前記複数のメモリモジュールは、SRAMであり、
     前記制御部は、前記SRAMのリテンションを制御する
    請求項1記載の撮像装置。
    The plurality of memory modules are SRAMs, and the plurality of memory modules are SRAMs.
    The imaging device according to claim 1, wherein the control unit controls retention of the SRAM.
  3.  前記制御部は、前記複数のメモリモジュールのうち所定数のメモリモジュールがアクティブになるように前記SRAMのリテンションを制御する
    請求項2記載の撮像装置。
    The imaging device according to claim 2, wherein the control unit controls retention of the SRAM so that a predetermined number of memory modules among the plurality of memory modules are activated.
  4.  前記電源線は、異なる複数の電源パッドからの電源電流を供給する複数の電源線であり、
     前記複数のメモリモジュールは、前記複数の電源線の各々を共有する電源グループに分割される
    請求項1記載の撮像装置。
    The power supply line is a plurality of power supply lines that supply power supply currents from a plurality of different power supply pads.
    The imaging device according to claim 1, wherein the plurality of memory modules are divided into power supply groups sharing each of the plurality of power supply lines.
  5.  前記制御部は、前記複数のメモリモジュールのうち前記電源グループ内のモジュール番号が共通するもの同士が同じ動作を行うように制御する
    請求項4記載の撮像装置。
    The imaging device according to claim 4, wherein the control unit controls the plurality of memory modules having the same module number in the power supply group to perform the same operation.
  6.  前記複数のメモリモジュールは、前記複数のメモリモジュールのうち前記電源グループ内のモジュール番号が共通するもの同士が前記電源パッドからの距離が互いに等しい位置に配置される
    請求項5記載の撮像装置。
    The imaging device according to claim 5, wherein the plurality of memory modules are arranged at positions where the plurality of memory modules having a common module number in the power supply group are arranged at positions where the distances from the power supply pads are equal to each other.
  7.  前記複数のメモリモジュールは、前記複数のメモリモジュールのうち前記電源グループ内のモジュール番号が共通するもの同士が前記電源パッドからの距離が互いに異なる位置に配置される
    請求項5記載の撮像装置。
    The imaging device according to claim 5, wherein the plurality of memory modules are arranged at positions where the plurality of memory modules having the same module number in the power supply group are arranged at different distances from the power supply pad.
  8.  前記複数のメモリモジュールは、前記複数のメモリモジュールのうち前記電源グループ内のモジュール番号が共通するもの同士が前記電源パッドからの距離がランダムな位置に配置される
    請求項5記載の撮像装置。
    The imaging device according to claim 5, wherein the plurality of memory modules are arranged at random positions from the power supply pads among the plurality of memory modules having a common module number in the power supply group.
  9.  複数のメモリモジュールと、
     前記複数のメモリモジュールに共有されて電源電流を供給する電源線と、
     前記電源線を共有する前記複数のメモリモジュールに対して供給される電源電流の総和が一定となるように前記複数のメモリモジュールの各々について独立に動作制御を行う制御部と
    を具備する記憶装置。
    With multiple memory modules
    A power supply line shared by the plurality of memory modules to supply a power supply current, and
    A storage device including a control unit that independently controls the operation of each of the plurality of memory modules so that the sum of the power supply currents supplied to the plurality of memory modules sharing the power supply line is constant.
PCT/JP2020/027598 2019-10-25 2020-07-16 Imaging device and storage device WO2021079573A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-194272 2019-10-25
JP2019194272A JP2021069044A (en) 2019-10-25 2019-10-25 Imaging apparatus and storage device

Publications (1)

Publication Number Publication Date
WO2021079573A1 true WO2021079573A1 (en) 2021-04-29

Family

ID=75620430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027598 WO2021079573A1 (en) 2019-10-25 2020-07-16 Imaging device and storage device

Country Status (2)

Country Link
JP (1) JP2021069044A (en)
WO (1) WO2021079573A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0628844A (en) * 1992-07-11 1994-02-04 Hitachi Ltd Semiconductor storage device
JPH11203862A (en) * 1998-01-13 1999-07-30 Mitsubishi Electric Corp Semiconductor storage device
JP2015126240A (en) * 2013-12-25 2015-07-06 キヤノン株式会社 Imaging apparatus and driving method of the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0628844A (en) * 1992-07-11 1994-02-04 Hitachi Ltd Semiconductor storage device
JPH11203862A (en) * 1998-01-13 1999-07-30 Mitsubishi Electric Corp Semiconductor storage device
JP2015126240A (en) * 2013-12-25 2015-07-06 キヤノン株式会社 Imaging apparatus and driving method of the same

Also Published As

Publication number Publication date
JP2021069044A (en) 2021-04-30

Similar Documents

Publication Publication Date Title
US10375334B2 (en) Image sensor and electronic apparatus including multiple substrates
US7659925B2 (en) High speed CMOS image sensor circuits with memory readout
US8953074B2 (en) Semiconductor device, physical information acquiring apparatus, and signal reading-out method
US9237285B2 (en) Solid-state image pickup device and camera system
KR20150027061A (en) Semiconductor device and sensing system
US7864237B2 (en) Solid-state imaging device, method of driving solid-state imaging device, and camera
US7903104B2 (en) Spatial modulator display system using two memories and display time slices having differing times
US20170318246A1 (en) Image Sensor and Sensing Method Thereof
US20140240565A1 (en) Solid-state imaging device and electronic apparatus
KR20080019182A (en) Solid-state imaging device
US7423680B2 (en) Apparatus and method for clamping reset voltage in image sensor
US9961287B2 (en) Image sensor
EP1642453A1 (en) Charge pumps for cmos imagers
JP4337906B2 (en) Solid-state imaging device and camera system
JP2016181736A (en) Imaging device, method of driving the same, and imaging system
WO2021079573A1 (en) Imaging device and storage device
JP2006229935A (en) Image sensor capable of preventing lowering of voltage of power supply line and disposition method of power supply line of image sensor
US11532660B2 (en) Photoelectric conversion device
WO2013061853A1 (en) Solid-state image pickup element and camera system
JP2008060269A (en) Photoelectric conversion apparatus, and imaging apparatus
US20080159018A1 (en) Semiconductor memory device having internal voltage generation circuits
US8456885B2 (en) Random access memory circuit
JP2006197426A (en) Solid-state imaging device and semiconductor device
JP6021543B2 (en) Imaging device, imaging device, information processing device
US20170347045A1 (en) Image sensor for reducing horizontal noise and method of driving the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20878737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20878737

Country of ref document: EP

Kind code of ref document: A1