WO2021071154A1 - 폴리에틸렌 및 이의 제조방법 - Google Patents

폴리에틸렌 및 이의 제조방법 Download PDF

Info

Publication number
WO2021071154A1
WO2021071154A1 PCT/KR2020/013170 KR2020013170W WO2021071154A1 WO 2021071154 A1 WO2021071154 A1 WO 2021071154A1 KR 2020013170 W KR2020013170 W KR 2020013170W WO 2021071154 A1 WO2021071154 A1 WO 2021071154A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyethylene
temperature
formula
molecular weight
alkyl
Prior art date
Application number
PCT/KR2020/013170
Other languages
English (en)
French (fr)
Inventor
박하나
최성호
류혜인
전상진
이승미
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200125237A external-priority patent/KR102616697B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US17/292,503 priority Critical patent/US20220017665A1/en
Priority to CN202080006422.3A priority patent/CN113166321B/zh
Priority to JP2021525642A priority patent/JP7217070B2/ja
Priority to EP20874834.3A priority patent/EP3868798A4/en
Publication of WO2021071154A1 publication Critical patent/WO2021071154A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene

Definitions

  • the present invention relates to polyethylene showing improved low-temperature sealing properties with an increase in the content and molecular weight of a low crystalline polymer and a method for producing the same.
  • Olefin polymerization catalyst systems can be classified into Ziegler-Natta and metallocene catalyst systems, and these two highly active catalyst systems have been developed according to their respective characteristics.
  • Ziegler Natta catalysts have been widely applied to existing commercial processes since their invention in the 50s, but since they are multi-site catalysts with multiple active points, they are characterized by a wide molecular weight distribution of polymers. There is a problem in that there is a limit to securing desired physical properties because the composition distribution of is not uniform.
  • the metallocene catalyst is composed of a combination of a main catalyst composed of a transition metal compound and a cocatalyst composed of an organometallic compound composed mainly of aluminum.
  • a catalyst is a homogeneous complex catalyst and is a single site catalyst.
  • a polymer having a narrow molecular weight distribution and a uniform composition distribution of a comonomer is obtained according to the single active point characteristics.
  • the stereoregularity of the polymer, copolymerization characteristics, molecular weight It has properties that can change crystallinity and the like.
  • U.S. Patent No. 5,914,289 describes a method of controlling the molecular weight and molecular weight distribution of a polymer using a metallocene catalyst supported on each carrier, but it takes a lot of time and the amount of solvent used to prepare the supported catalyst. In addition, there was a hassle to support each of the metallocene catalysts used on the carrier.
  • Korean Patent Laid-Open Publication No. 2004-0076965 discloses a method of controlling the molecular weight distribution by polymerizing while changing the combination of catalysts in the reactor by supporting a double-nuclear metallocene catalyst and a single-nuclear metallocene catalyst on a carrier together with an activator. have.
  • this method has a limitation in realizing the characteristics of each catalyst at the same time, and also has a disadvantage in that the metallocene catalyst portion is released from the carrier component of the completed catalyst, causing fouling in the reactor.
  • linear low-density polyethylene is prepared by copolymerizing ethylene and ⁇ -olefin at low pressure using a metallocene-based polymerization catalyst, has a narrow molecular weight distribution, has a short chain branch (SCB) of a constant length, and does not have a long chain branch (LCB).
  • Linear low-density polyethylene film has excellent mechanical properties such as breaking strength, elongation, tear strength, and drop impact strength, as well as the properties of general polyethylene, so it is difficult to apply the existing low-density polyethylene or high-density polyethylene. The use is increasing.
  • Patent Document 1 U.S. Patent No. 5,914,289
  • Patent Document 2 Korean Patent Publication No. 2004-0076965
  • the present invention is to solve the problems of the prior art, and to provide a polyethylene showing improved low-temperature sealing properties and a method of manufacturing the same by increasing the content and molecular weight of a low crystalline polymer.
  • the present invention exhibits excellent hot-tack strength properties, including the polyethylene, and as a result is intended to provide a film useful for high-speed packaging.
  • It includes an ethylene repeating unit and an ⁇ -olefin repeating unit,
  • the density measured according to ASTM D1505 is 0.916 g/cm 3 or more
  • the Te1 is 25 to 30 °C
  • the first semi-crystalline polymer has a weight average molecular weight (Mw) of 200,000 g/mol or more, and is included in an amount of 5% by weight or more based on the total weight of polyethylene, providing polyethylene.
  • Mw weight average molecular weight
  • hydrogen gas is introduced into the reactor in the presence of a catalyst composition including a first transition metal compound represented by the following formula (1) and a second transition metal compound represented by the following formula (2). And polymerizing an ethylene monomer and an ⁇ -olefin-based monomer having 3 or more carbon atoms, wherein the hydrogen gas is 10 ppm or more and 200 ppm based on the total weight of the monomer including an ethylene monomer and an ⁇ -olefin-based monomer having 3 or more carbon atoms.
  • a catalyst composition including a first transition metal compound represented by the following formula (1) and a second transition metal compound represented by the following formula (2).
  • the method for producing polyethylene described above is introduced in an amount less than and wherein the molar ratio of the ⁇ -olefin monomer to the ethylene monomer present in the reactor (molar ratio of ⁇ -olefin monomer/ethylene monomer) is 0.25 or more during the polymerization reaction.
  • R 1 and R 2 are each independently hydrogen, halogen, C 1-20 alkyl, C 2-20 alkenyl, C 1-20 alkoxy, C 2-20 alkoxyalkyl, C 6-20 aryl, C 7-20 alkyl Aryl, or C 7-20 arylalkyl,
  • X 1 and X 2 are each independently halogen or C 1-20 alkyl
  • R 3 and R 4 are each independently hydrogen, halogen, C 1-20 alkyl, C 2-20 alkenyl, C 1-20 alkoxy, C 2-20 alkoxyalkyl, C 6-20 aryl, C 7-20 alkyl Aryl, or C 7-20 arylalkyl,
  • X 3 and X 4 are each independently halogen or C 1-20 alkyl.
  • a film including the above-described polyethylene, particularly, a film for high-speed packaging is provided.
  • the polyethylene according to the present invention can exhibit improved low-temperature sealing properties by increasing the polymer content and molecular weight of low crystallinity. Accordingly, when applied to the production of a packaging film, particularly a high-speed packaging film, it exhibits excellent hot-tack properties, thereby increasing productivity.
  • 5 to 7 are graphs showing the results of GPC (Gel Permeation Chromatography) analysis of the first semicrystalline polymer in the polyethylene prepared in Example 1 and Comparative Examples 5 and 6, respectively.
  • Example 12 is a graph showing the results of measuring the low temperature sealing strength of the polyethylene prepared in Example 1 and Comparative Examples 5 to 7.
  • short chain branching in polyethylene refers to a chain branched in the form of a branch with respect to the longest main chain in each of the polymer chains, specifically the number of carbon atoms. It means a chain of 2 to 7.
  • the number of such short-chain branches can be calculated by FT-IR analysis of the polymer, and can be proportional to the content of the ⁇ -olefin-based monomer contained in the polymer chains.
  • polyethylene according to an embodiment of the present invention is an ethylene/ ⁇ -olefin-based copolymer comprising an ethylene repeating unit and an ⁇ -olefin-based repeating unit,
  • the density measured according to ASTM D1505 is 0.916 g/cm 3 or more
  • the Te1 is 25 to 30 °C
  • the first semi-crystalline polymer has a weight average molecular weight (Mw) of 200,000 g/mol or more, and is included in an amount of 5% by weight or more based on the total weight of polyethylene.
  • Mw weight average molecular weight
  • the present inventors used a specific catalyst composition to be described later in the production of polyethylene, and as a result of controlling the mixing ratio of the ethylene monomer and the comonomer and the amount of hydrogen input, the produced polyethylene has a controlled density of a certain level or more, and is different from the conventional one.
  • the present invention was completed by confirming that it exhibits crystal properties.
  • the crystal properties of the polyethylene were confirmed through TREF analysis. According to the analysis results, the polyethylene is distinguished from showing only one peak in the first to the same analysis result in three different specific temperature ranges.
  • the first to third peaks are the fraction of polymer chains exhibiting different crystallinity in the polyethylene of one embodiment, more specifically, the first fraction showing the lowest crystallinity, and the third peak showing the highest crystallinity. It means that a fraction, and a second fraction exhibiting crystallinity between the first and third fractions, are included.
  • polyethylene according to one embodiment has all physical properties required for various uses, for example, compatibility with other resins, and processability. , It is possible to simultaneously improve the strength and impact strength when alone or when compounded with other resins. This is presumed to be because the polyethylene contains polymer chains exhibiting various crystallinity at the same time.
  • the polyethylene according to an embodiment of the present invention contains a first fraction showing low crystallinity at a high fractional ratio (fraction), and polymer chains included in this first fraction have a high molecular weight.
  • polyethylene according to an embodiment of the present invention can not only excellently express various physical properties at the same time, but also can significantly improve sealing strength characteristics at low temperatures. Accordingly, it can be particularly useful in the manufacture of a high-speed packaging film that requires excellent hot-tack properties.
  • the TREF analysis for polyethylene may be performed using a TREF equipment manufactured by Polymer Char. Specifically, a sample in a solution was prepared by dissolving the polyethylene in a solvent such as 1,2,4-trichlorobenzene, and after introducing the prepared sample into a TREF column, the initial temperature was lowered to 20° C., and then a constant heating rate 1 The concentration of the eluted polymer was measured by flowing 1,2,4-trichlorobenzene as a solvent through the column at a flow rate of 0.5 mL/min while raising the temperature to 120 °C at °C/min. A more specific measurement method will be described in detail in the following test examples.
  • the identified first and third peaks mean that the polyethylene contains a semi-crystalline polymer corresponding to each peak.
  • polycrystalline refers to a temperature rising elution fractionation (TREF), differential scanning calorimetry (DSC) or a first-order transition temperature, crystal melting temperature (Tm) or elution temperature measured by an equivalent technique.
  • TREF temperature rising elution fractionation
  • DSC differential scanning calorimetry
  • Tm crystal melting temperature
  • amorphous refers to a polymer without a crystal melting temperature as measured by elevated temperature elution fractionation (TREF), differential scanning calorimetry (DSC) or equivalent techniques.
  • the temperature at the highest point of each peak in the TREF elution curve is the elution temperature (Te), and is expressed as Te1, Te2, and Te3, respectively.
  • Te elution temperature
  • the Te2 is lower than Te3 and is present at a higher temperature than Te1, specifically, the Te1 is 25 to 30°C, the Te2 is 40 to 65°C, and the Te3 is 80 to 100°C.
  • Polyethylene according to an embodiment of the present invention includes first to third semi-crystalline polymers corresponding to the first to third peaks and having different crystallinity.
  • Te1 represents the elution temperature of the first semicrystalline polymer exhibiting low crystallinity, and is 25°C or higher, or 27°C or higher, or 28°C or higher, or 28.1°C or higher, 30°C or lower, or 29°C or lower, Or 28.5°C or less.
  • Te2 represents the elution temperature of the second semicrystalline polymer having higher crystallinity than the first polymer, and is 40°C or higher, or 50°C or higher, or 60°C or higher, or 62°C or higher, and 65°C or lower , Or 63°C or less, or 62.5°C or less.
  • Te3 represents the elution temperature of the third polymer having higher crystallinity than the second semi-crystalline polymer, and is 80°C or higher, or 90°C or higher, or 93°C or higher, 100°C or lower, or 95°C or lower, Or 94°C or less.
  • the fractional ratio (or content) of the entire polyethylene of the first to third fractions of polymer chains exhibiting different crystallinity may be determined by the integrated areas of the first to third peaks and their ratios, Each of these integrated areas can be derived by dividing the first to third peaks, for example, by each peak area according to a certain temperature area, and then obtaining the lower area, and the integral of each peak relative to the total area of each peak.
  • the fractional ratio of each fraction corresponding to each peak may be determined by the ratio of the area.
  • the polyethylene of one embodiment has a fractional ratio of the first fraction defined from the integral area of the first peak of 5% or more, more specifically 10% or more, or 11% or more, or 12% Or more, and may be 20% or less, or 15% or less, or 13% or less.
  • the content of the first semicrystalline polymer corresponding to the first fraction may be 5% by weight or more, and more specifically 10% by weight or more, 11% by weight or more, or 12% by weight or more. And, it corresponds to 20% by weight or less, 15% by weight or less, or 13% by weight or less.
  • the content of the first semi-crystalline polymer having the lowest crystallinity in the polyethylene is high, it can be rapidly melted at a low temperature, thereby improving the low-temperature sealing properties.
  • the polyethylene may have a weight average molecular weight (Mw) of 200,000 g/mol or more, more specifically 200,000 g/mol or more, or more than 200,000 g/mol, or 202,000 g/mol or more, or 205,000 g/mol or more, and may be 500,000 g/mol or less, or 300,000 g/mol or less, or 250,000 g/mol or less, or 210,000 g/mol or less, or 206,000 g/mol or less .
  • Mw weight average molecular weight
  • the number average molecular weight (Mn) of the first semicrystalline polymer is also as high as 50,000 g/mol or more, and more specifically, 50,000 g/mol or more, or 60,000 g/mol or more, or 70,000 g/mol or more, 100,000 g/mol or less, or 80,000 g/mol or less, or 75,000 g/mol or less, or 73,000 g/mol or less.
  • the first semi-crystalline polymer has a high molecular weight distribution (Mw/Mn ratio) of 2 or more, or 2.3 or more, or 2.5 or more, or 2.8 or more, or 2.82 or more, and 3 or less, or 2.95 or less, or 2.93 or less. Can be indicated.
  • the weight average molecular weight, number average molecular weight, and molecular weight distribution of the first semicrystalline polymer can be measured through gel permeation chromatography (GPC) analysis, and the specific measurement method thereof is described in the following test examples. It will be described in detail.
  • GPC gel permeation chromatography
  • the polyethylene exhibits a density of 0.916 g/cm 3 or more when measured according to ASTM D1505 standards, along with the above-described crystal properties.
  • the density of the olefin-based polymer is affected by the type and content of monomers used in polymerization, the degree of polymerization, and the like, and in the case of a copolymer, the content of comonomers is greatly influenced.
  • polyethylene according to an embodiment of the present invention exhibits a density of 0.916 g/cm 3 or more, and as a result, it can exhibit excellent mechanical properties and processability.
  • the polyethylene may have a density of 0.916 g/cm 3 or more, 0.920 g/cm 3 or less, or 0.918 g/cm 3 or less, and maintain mechanical properties and impact strength through optimization of such a density range. The improvement effect can be further enhanced.
  • the polyethylene has an average number of short chain branches (SCB) per 1000 carbons in the polymer in the polymer region having a log Mw of 5.5 or more when analyzed by gel permeation chromatography (GPC-FTIR) combined with Fourier transform infrared spectroscopy, 35 It may be more than, more specifically 35 or more or 35.5 or more, or 36 or more, or 36.5 or more, 40 or less, or 39 or less, or 38.5 or less, or 38 or less.
  • SCB short chain branches
  • the high number of SCBs in the polymer region reflects that the polymers in the polymer region contain a higher content of ⁇ -olefin repeating units, and as a result, the polymers in the polymer region form low crystals to improve the low-temperature sealing strength. It can show an effect that can be improved.
  • the polyethylene may have an average number of short-chain branches (SCBs) per 1000 carbons in the entire polymer of 18 or more, or 19 or more, or 20 or more, and 22 or less, or 21.5 or less.
  • SCBs short-chain branches
  • the number of short-chain branches (SCBs) in the polymer region having a log Mw of 5.5 or more and the number of SCBs in the polyethylene are expressed as average values after calculating each value from the GPC-FTIR analysis result. Is described in detail in the following test examples.
  • the polyethylene may exhibit a narrow molecular weight distribution (MWD) of 3 or less, more specifically 2.75 or less, or 2.70 or less, and may exhibit a molecular weight distribution of 2 or more, or 2.5 or more, or 2.65 or more.
  • MFD molecular weight distribution
  • having two or more Te means that two or more kinds of polymers having different branched chain contents of the polymer are mixed.
  • the molecular weight distribution increases, and as a result, impact strength and mechanical properties decrease, and a blocking phenomenon occurs.
  • polyethylene in the present invention exhibits three Tes and, as described above, has a narrow molecular weight distribution, thus exhibiting excellent impact strength and mechanical properties.
  • the polyethylene has a number average molecular weight (Mn) of 35,000 g/mol or more, or 40,000 g/mol or more, or 42,000 g/mol or more, or 43,000 g/mol or more. , 50,000 g/mol or less, or 45,000 g/mol or less, or 44,000 g/mol or less, and a weight average molecular weight (Mw) of 100,000 g/mol or more, or 110,000 g/mol or more, or 112,000 g/mol or more, 130,000 g/mol or less, or 120,000 g/mol or less, or 115,000 g/mol or less or 114,000 g/mol or less.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) are molecular weights in terms of polystyrene analyzed by gel permeation chromatography (GPC), and the molecular weight distribution (MWD) is Mw/Mn. Can be calculated from the ratio of The specific measurement method will be described in detail in the following experimental examples.
  • polyethylene may satisfy any one or more of the following conditions (i) to (v), or two or more, or three or more, or four or more, or all five conditions:
  • the sealing start temperature under the 2N condition is 95°C or less, and the hot-tack strength at 100°C is 3.0N or more.
  • the polyethylene has a melt index (MI) of 0.8 g/10min or more, or 0.9 g/10min or more, or 1 g/10min or more, measured according to ASTM D-1238 (condition E, 190°C, 2.16kg load) , 2 g/10min or less, or 1.8 g/10min or less, or 1.5 g/10min or less.
  • MI melt index
  • the polyethylene has a high melting temperature of 120 to 125°C, and thus may exhibit excellent heat resistance.
  • the polyethylene may have a melting temperature (Tm) of 120°C or more, 125°C or less, or 122°C or less as measured by DSC.
  • the polyethylene may have a crystallization temperature (Tc) of 100°C or higher, 110°C or lower, or 105°C or lower, or 103°C or lower.
  • Tc crystallization temperature
  • the polyethylene was subjected to DSC at a temperature range of -50 to 190°C, and in the graph obtained as a result, heat of fusion confirmed as an integral value for the peak observed in the temperature range of 0 to 130°C; ⁇ H) may be 99.5 J/g or more, or 100.0 J/g or more, or 105 J/g or more, and 120 J/g or less, or 115 J/g or less. Accordingly, it can exhibit excellent heat resistance.
  • the melting temperature (Tm), crystallization temperature (Tc), and heat of fusion ( ⁇ H) of the polyethylene can be measured using a differential scanning calorimeter (DSC), and the specific method is described below. It will be described in detail in an example.
  • the above-described polyethylene may be a copolymer including an ethylene-based repeating unit and an ⁇ -olefin-based repeating unit, and in this case, the ⁇ -olefin-based repeating unit is 1-butene, 1-pentene, 4-methyl-1- Derived from an ⁇ -olefin having 3 to 20 carbon atoms such as pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dodecene, 1-tetradecene, or 1-hexadecene It may be a repeating unit, and in consideration of the excellent impact strength of polyethylene, it may be appropriately a repeating unit derived from 1-hexene.
  • the polyethylene of the above-described embodiment may exhibit excellent low-temperature sealing strength characteristics.
  • the polyethylene has a sealing initiation temperature (SIT) of 95°C or less, or 93°C or less, or 90°C or less, as measured according to the ASTM F1921 measurement method, and a hot-tack strength at 100°C. (N/25mm)) is as high as 3.0N or more, or 3.2N or more.
  • SIT sealing initiation temperature
  • the above-described polyethylene can be manufactured by a manufacturing method using a specific catalyst system to be described later. Accordingly, according to another embodiment of the present invention, in the presence of a catalyst composition comprising a first transition metal compound represented by the following formula (1) and a second transition metal compound represented by the following formula (2), an ethylene monomer, and a carbon number of 3 Including the step of polymerizing the above ⁇ -olefin monomer, the hydrogen gas is added in an amount of 10 ppm or more and less than 200 ppm based on the total weight of the monomer including the ethylene monomer and the ⁇ -olefin monomer having 3 or more carbon atoms, There is provided a method for producing the above-described polyethylene, wherein the molar ratio of the ⁇ -olefin-based monomer to the ethylene monomer in the reactor (the molar ratio of the ⁇ -olefin-based monomer/ethylene monomer) is 0.25 or more:
  • R 1 and R 2 are each independently hydrogen, halogen, C 1-20 alkyl, C 2-20 alkenyl, C 1-20 alkoxy, C 2-20 alkoxyalkyl, C 6-20 aryl, C 7-20 alkyl Aryl, or C 7-20 arylalkyl,
  • X 1 and X 2 are each independently halogen or C 1-20 alkyl
  • R 3 and R 4 are each independently hydrogen, halogen, C 1-20 alkyl, C 2-20 alkenyl, C 1-20 alkoxy, C 2-20 alkoxyalkyl, C 6-20 aryl, C 7-20 alkyl Aryl, or C 7-20 arylalkyl,
  • X 3 and X 4 are each independently halogen or C 1-20 alkyl.
  • the halogen may be fluorine (F), chlorine (Cl), bromine (Br), or iodine (I).
  • C 1-20 alkyl can be straight chain, branched chain or cyclic alkyl.
  • C 1-20 alkyl is C 1-20 straight-chain alkyl; C 1-10 straight chain alkyl; C 1-5 straight chain alkyl; C 3-20 branched or cyclic alkyl; C 3-15 branched or cyclic alkyl; Or C 3-10 branched or cyclic alkyl.
  • C 1-20 alkyl may be methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, tert-butyl, n-pentyl, iso-pentyl or cyclohexyl.
  • C 2-20 alkenyl can be straight chain, branched chain or cyclic alkenyl.
  • C 2-20 alkenyl is C 2-20 straight alkenyl, C 2-10 straight alkenyl, C 2-5 straight alkenyl, C 3-20 branched alkenyl, C 3-15 branched alkenyl Kenyl, C 3-10 branched chain alkenyl, C 5-20 cyclic alkenyl or C 5-10 cyclic alkenyl. More specifically, C 2-20 alkenyl may be ethenyl, propenyl, butenyl, pentenyl or cyclohexenyl.
  • C 6-20 aryl can mean monocyclic, bicyclic or tricyclic aromatic hydrocarbons. Specifically, C 6-20 aryl may be phenyl, naphthyl or anthracenyl.
  • C 7-20 alkylaryl may mean a substituent in which at least one hydrogen of the aryl is substituted by alkyl.
  • the C 7-20 alkylaryl may be methylphenyl, ethylphenyl, n-propylphenyl, iso-propylphenyl, n-butylphenyl, iso-butylphenyl, tert-butylphenyl or cyclohexylphenyl.
  • C 7-20 arylalkyl may mean a substituent in which one or more hydrogens of alkyl are substituted by aryl.
  • the C 7-20 arylalkyl may be benzyl, phenylpropyl, or phenylhexyl.
  • C 1-20 alkoxy may be straight chain, branched chain or cyclic alkoxy.
  • examples of C 1-20 alkoxy include, but are not limited to, methoxy, ethoxy, n-butoxy, tert-butoxy, phenyloxy, and cyclohexyloxy.
  • C 2-20 alkoxyalkyl may mean a substituent in which at least one hydrogen of alkyl is substituted by alkoxy.
  • C 2-20 alkoxyalkyl methoxymethyl, ethoxymethyl, methoxyethyl, ethoxyethyl, butoxymethyl, butoxyethyl, butoxypropyl, butoxybutyl, butoxyheptyl, butoxy Hexyl and the like may be mentioned, but the present invention is not limited thereto.
  • R 1 and R 2 in Formula 1 are the same as or different from each other, and are each independently C 4-20 or C 4-12 straight-chain alkyl; Or it may be C 5-12 or C 6-10 straight-chain alkyl substituted with tert-butoxy , X 1 and X 2 are the same as or different from each other, and each independently a halogen such as chloro; Or C 1-4 straight chain alkyl such as methyl; may be.
  • R 1 and R 2 are both C 6-10 straight chain alkyl substituted with tert-butoxy, or both are n-hexyl substituted with tert-butoxy, and X 1 and X All 2 may be C 1-4 straight chain alkyl or methyl.
  • the first transition metal compound represented by Formula 1 may be a compound represented by Formula 1a or Formula 1b, but is not limited thereto.
  • the first transition metal compound represented by the above structural formulas may be synthesized by applying known reactions, and a more detailed synthesis method may be referred to Examples.
  • R 3 and R 4 in Formula 1 are the same as or different from each other, and each independently C 3 -propyl, n-butyl, n-pentyl, or n-hexyl.
  • 12 straight-chain alkyl, X 3 and X 4 are the same as or different from each other, and each independently may be a C 1-4 straight-chain alkyl such as methyl or ethyl.
  • R 3 and R 4 may be all or C 4-6 straight-chain alkyl, and X 3 and X 4 may all be C 1-4 straight-chain alkyl or methyl.
  • the second transition metal compound represented by Formula 2 may be a compound represented by Formula 2a or Formula 2b, but is not limited thereto.
  • the second transition metal compound represented by the above structural formulas may be synthesized by applying known reactions, and a more detailed synthesis method may be referred to Examples.
  • the first transition metal compound represented by Formula 1 contributes to making a low molecular weight linear copolymer
  • the second transition metal compound represented by Formula 2 is a high molecular weight linear copolymer. It can contribute to the formation of coalitions.
  • the catalyst composition may exhibit excellent support performance, catalytic activity, and high co-polymerization by using the first transition metal compound of low co-polymerization and the second transition metal compound of high co-polymerization together as a hybrid catalyst. Particularly, when ultra-low-density polyethylene is produced in a slurry process under such a catalyst composition, process stability is improved, and fouling problems that have occurred in the prior art can be prevented. In addition, polyethylene having excellent physical properties may be provided by using the catalyst composition.
  • the mixing molar ratio (A:B) of the first transition metal compound (A) and the second transition metal compound (B) may be 1:0.3 to 1:3.5, and when included in the above molar ratio, a high catalyst It can exhibit activity and copolymerization, and as a result, it is possible to more easily implement the structure and physical properties of the polyethylene as described above.
  • the molar ratio (A:B) of the first transition metal compound and the second transition metal compound is less than 1:0.3, it may be difficult to manufacture ultra-low density polyethylene as the copolymerization deteriorates, and if it exceeds 1:3.5, the molecule of the desired polymer The structure can be difficult to implement. More specifically, the molar ratio (A:B) of the first transition metal compound and the second transition metal compound in the catalyst composition may be 1:0.5 to 1:2, or 1:1 to 1:1.5.
  • the catalyst composition may further include at least one of a carrier and a cocatalyst.
  • the catalyst composition may further include a carrier supporting the first transition metal compound and the second transition metal compound.
  • a carrier supporting the first transition metal compound and the second transition metal compound When the catalyst composition is used in the form of a supported catalyst, it is possible to further improve the morphology and physical properties of the polyethylene produced, and may be suitably used for slurry polymerization, bulk polymerization, and gas phase polymerization processes.
  • a carrier moisture that interferes with the support of the transition metal compound on the carrier surface is removed, and instead, a carrier having a highly reactive hydroxy group, silanol group or siloxane group on the surface may be preferably used.
  • the surface may be modified by calcination, or a drying process may be performed.
  • silica prepared by calcining silica gel, silica dried at high temperature, silica-alumina, and silica-magnesia may be used, and these are usually Na 2 O, K 2 CO 3 , BaSO 4 , and Mg(NO 3 ) Oxide, carbonate, sulfate, and nitrate components such as 2 may be contained.
  • the temperature may be 200 to 600°C, and may be 250 to 600°C. If the calcination or drying temperature of the carrier is low below 200°C, there is a risk that the moisture on the surface and the cocatalyst may react because there is too much moisture remaining in the carrier, and the cocatalyst is carried by the excess hydroxyl groups. Although the rate may be relatively high, this requires a large amount of cocatalyst.
  • the drying or calcination temperature exceeds 600°C and is too high, the surface area decreases as the pores on the surface of the carrier are combined, and a lot of hydroxyl groups or silanol groups disappear on the surface, and only siloxane groups remain, so that the reaction site with the cocatalyst There is a fear that the value will decrease.
  • the amount of hydroxy groups on the surface of the carrier can be controlled by a method and conditions for preparing the carrier or drying conditions such as temperature, time, vacuum or spray drying.
  • a method and conditions for preparing the carrier or drying conditions such as temperature, time, vacuum or spray drying.
  • the amount of the hydroxy group is too low, the reaction site with the cocatalyst is small, and when the amount of the hydroxy group is too large, it may be due to moisture other than the hydroxy group present on the surface of the carrier particle.
  • the amount of hydroxy groups on the surface of the carrier may be 0.1 to 10 mmol/g or 0.5 to 5 mmol/g.
  • the first and second transition metal compounds are 10 ⁇ mol or more, or 30 ⁇ mol or more, 500 ⁇ mol or less, based on 1 g of silica, per weight of the carrier, Alternatively, it may be supported in a content range of 100 ⁇ mol or less. When supported in the above content range, an appropriate supported catalytic activity may be exhibited, and thus it may be advantageous in terms of maintaining the activity of the catalyst and economical efficiency.
  • the catalyst composition may further include a cocatalyst to activate the transition metal compound as a catalyst precursor.
  • the cocatalyst is an organometallic compound containing a group 13 metal, and is not particularly limited as long as it can be used when polymerizing olefins under a general metallocene catalyst.
  • the cocatalyst may be one or more compounds selected from the group consisting of compounds represented by the following Chemical Formulas 3 to 5.
  • R 11 may be the same as or different from each other, and each independently halogen; Hydrocarbons of C 1-20; Or a halogen-substituted C 1-20 hydrocarbon;
  • n is an integer of 2 or more
  • R 12 may be the same as or different from each other, and each independently halogen; Hydrocarbons of C 1-20; Or a halogen-substituted C 1-20 hydrocarbon;
  • J is aluminum or boron
  • E is a neutral or cationic Lewis base
  • H is a hydrogen atom
  • Z is a group 13 element
  • Q may be the same as or different from each other, and each independently of one or more hydrogen atoms is substituted or unsubstituted with halogen, C 1-20 hydrocarbon, alkoxy or phenoxy, C 6-20 aryl group or C 1-20 It is an alkyl group.
  • Examples of the compound represented by Formula 3 include C 1-20 alkylaluminoxane-based compounds such as methylaluminoxane, ethylaluminoxane, isobutylaluminoxane, or butylaluminoxane, and any one or two of them Mixtures of the above can be used.
  • examples of the compound represented by Formula 4 include trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, tripropyl aluminum, tributyl aluminum, dimethyl chloro aluminum, triisopropyl aluminum, tri-s-butyl aluminum, tricyclo Pentyl aluminum, tripentyl aluminum, triisopentyl aluminum, trihexyl aluminum, trioctyl aluminum, ethyl dimethyl aluminum, methyl diethyl aluminum, triphenyl aluminum, tri-p-tolyl aluminum, dimethyl aluminum methoxide, dimethyl aluminum ethoxide , Trimethyl boron, triethyl boron, triisobutyl boron, tripropyl boron, tributyl boron, and the like. More specifically, it may be selected from trimethyl aluminum, triethyl aluminum, and triisobutyl aluminum.
  • examples of the compound represented by Formula 5 include triethyl ammonium tetraphenyl boron, tributyl ammonium tetraphenyl boron, trimethyl ammonium tetraphenyl boron, tripropyl ammonium tetraphenyl boron, trimethyl ammonium tetra (p- Tolyl) boron, trimethyl ammonium tetra (o,p-dimethylphenyl) boron, tributyl ammonium tetra (p-trifluoromethylphenyl) boron, trimethyl ammonium tetra (p-trifluoromethylphenyl) boron, tributyl ammony Um tetrapentafluorophenyl boron, N,N-diethylanilinium tetraphenyl boron, N,N-diethylanilinium tetrapentafluorophenyl boron,
  • the cocatalyst is a compound represented by Chemical Formula 3, more specifically, C 1 such as methylaluminoxane. It may be an alkylaluminoxane-based compound of -20.
  • the alkylaluminoxane-based compound acts as a scavenger of hydroxyl groups present on the surface of the carrier to improve catalytic activity, and converts the halogen group of the catalyst precursor to a methyl group to promote chain growth during polymerization of polypropylene. Let it.
  • the cocatalyst may be supported in an amount of 0.1 g or more, or 0.5 g or more, and 20 g or less, or 10 g or less, based on 1 g of silica, for example, per weight of the carrier.
  • 0.1 g or more or 0.5 g or more, and 20 g or less, or 10 g or less, based on 1 g of silica, for example, per weight of the carrier.
  • the catalyst composition when the catalyst composition includes both the carrier and the cocatalyst, the catalyst composition includes the steps of supporting the cocatalyst compound on the carrier; And supporting the transition metal compound on the carrier, wherein the transition metal compound is supported by the first transition metal compound and then the second transition metal compound is supported. It can be done, or vice versa.
  • a supported catalyst having a structure determined according to such a supporting sequence may exhibit higher catalytic activity and excellent process stability in the manufacturing process of polyethylene.
  • the catalyst composition may be used in the form of a slurry or diluted in a solvent depending on the polymerization method, or may be used in the form of a mud catalyst mixed with a mixture of oil and grease.
  • the solvent is an aliphatic hydrocarbon solvent having 5 to 12 carbon atoms suitable for the polymerization process of a propylene monomer, such as pentane, hexane, heptane, nonane, decane, and these Isomers and aromatic hydrocarbon solvents such as toluene and benzene, or hydrocarbon solvents substituted with chlorine atoms such as dichloromethane and chlorobenzene, and any one or a mixture of two or more of them may be used.
  • the catalyst composition may further include the above-described solvent, and a small amount of water or air, which may act as a catalyst poison, may be removed by treating the solvent with a small amount of alkyl aluminum before use.
  • the polymerization process may be carried out as a continuous polymerization process, for example, a continuous solution polymerization process, a bulk polymerization process, a suspension polymerization process, a slurry polymerization process or an emulsion polymerization process, and various polymerizations known as polymerization reactions of olefinic monomers.
  • a continuous solution polymerization process for example, a continuous solution polymerization process, a bulk polymerization process, a suspension polymerization process, a slurry polymerization process or an emulsion polymerization process, and various polymerizations known as polymerization reactions of olefinic monomers.
  • a continuous solution polymerization process for example, a continuous solution polymerization process, a bulk polymerization process, a suspension polymerization process, a slurry polymerization process or an emulsion polymerization process, and various polymerizations known as polymerization reactions of olefinic monomers.
  • the process can be employed.
  • the polymerization reaction for the production of polyethylene may be performed by copolymerizing an ethylene monomer and an ⁇ -olefin-based monomer as a comonomer using one continuous slurry polymerization reactor or a loop slurry reactor.
  • the polymerization reaction may be carried out in a slurry phase polymerization in a hydrocarbon-based solvent (eg, an aliphatic hydrocarbon-based solvent such as hexane, butane, or pentane).
  • a hydrocarbon-based solvent eg, an aliphatic hydrocarbon-based solvent such as hexane, butane, or pentane.
  • the first and second transition metal compounds according to the present invention exhibit excellent solubility in aliphatic hydrocarbon-based solvents, they are stably dissolved and supplied to the reaction system, so that the polymerization reaction can proceed effectively.
  • ⁇ -olefin monomer propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-itocene, and the like may be used, and among them, 1-hexene may be used. Accordingly, in the slurry polymerization, the ethylene and 1-hexene may be polymerized to produce ultra-low density polyethylene.
  • the molar ratio of the ⁇ -olefin monomer/ethylene monomer in the reactor is 0.25 or more.
  • the molar ratio of the monomers introduced into the reactor before the polymerization reaction and the molar ratio of the monomers present in the reactor during the polymerization reaction may vary depending on the catalytic reactivity.
  • the resulting copolymer has the above crystal structure and physical properties, especially 0.916 g/cm It can show sufficient stiffness by showing a density of 3 or more.
  • the molar ratio of the ⁇ -olefin monomer/ethylene monomer is less than 0.25, it is difficult to prepare and implement polyethylene having the above-described crystal structure and physical properties.
  • the molar ratio of the ⁇ -olefin monomer/ethylene monomer in the reactor may be 0.25 or more, or 0.26 or more, 0.3 or less, or 0.28 or less, or 0.27 or less, and in this case, the density of the copolymer is 0.916 to 0.920 g/ By maintaining the cm 3 level, better stiffness can be exhibited.
  • the molar ratio of the ethylene monomer and the ⁇ -olefin monomer in the reactor can be calculated using the gas chromatograph after measuring each concentration. The specific measurement method will be described in detail in the following test examples.
  • the temperature during the polymerization reaction may be 70 to 200 °C. If the polymerization reaction temperature is less than 70°C, the polymerization rate and productivity may be lowered, and if it exceeds 200°C, there is a concern that a fouling phenomenon in the reactor may occur.
  • the polymerization reaction may be carried out at a temperature of 80° C. or more and 150° C. or less.
  • the pressure during the polymerization reaction may be 20 to 50 bar to ensure optimum productivity. It is possible to manufacture polyethylene with better efficiency within the above range. More specifically, it may be performed at a pressure of 20 bar or more and 40 bar or less.
  • hydrogen gas may be introduced for the purpose of controlling the molecular weight and molecular weight distribution of polyethylene.
  • the hydrogen gas serves to suppress the rapid reaction of the transition metal compound at the initial stage of polymerization and terminate the polymerization reaction. Accordingly, by controlling the use and amount of hydrogen gas, polyethylene having the molecular structure and physical properties described above can be effectively manufactured.
  • the hydrogen gas may be added in an amount of 10 ppm or more and less than 200 ppm based on the total weight of the monomer including ethylene and ⁇ -olefin.
  • the ethylene/ ⁇ -olefin polymer to be produced can realize the physical properties in the present invention.
  • the content of hydrogen gas is less than 10ppm, the polymerization reaction is not uniformly terminated, making it difficult to manufacture polyethylene having the desired physical properties. If the content of hydrogen gas is more than 200ppm, the termination reaction occurs too quickly to produce polyethylene with an excessively low molecular weight. There is a risk of becoming.
  • the hydrogen gas may be added in an amount of 10 ppm or more, or 15 ppm or more, 180 ppm or less, or 150 ppm or less, or 100 ppm or less, or 50 ppm or less, or 30 ppm or less based on the total weight of the monomer.
  • trialkyl aluminum such as triethyl aluminum may be optionally further added during the polymerization reaction.
  • alkyl is as defined above, specifically C 1-20 alkyl, and more specifically C 1-6 straight or branched chain alkyl, such as methyl, ethyl, isobutyl, etc. I can.
  • the trialkylaluminum (based on 1M) may be added in an amount of 300 ppm or more, or 400 ppm or more, 600 ppm or less, or 500 ppm or less, based on the total weight of the monomer including ethylene and ⁇ -olefin, and the tree of this content range Upon polymerization reaction in the presence of alkylaluminum, homopolyethylene having excellent strength characteristics can be more easily prepared.
  • an organic solvent may be further used as a reaction medium or diluent in the polymerization reaction.
  • Such an organic solvent may be used in an amount such that slurry polymerization or the like can be properly performed in consideration of the content of the olefinic monomer.
  • Polyethylene prepared by the above-described manufacturing method may exhibit improved low-temperature sealing properties due to an increase in the content and molecular weight of the low crystalline polymer, and when used as a packaging film, it may exhibit increased hot-tack sealing properties.
  • a film including the above-described polyethylene more specifically, a film for high-speed packaging is provided.
  • the film may be prepared and used according to a conventional method, except that the above-described polyethylene is included as a main component.
  • reaction solution was decanted. 3.0 kg of hexane was added to the reactor, the hexane slurry was transferred to filter dry, and the hexane solution was filtered. It was dried under reduced pressure at 50° C. for 4 hours to prepare a supported catalyst.
  • MeSiCl 3 compound (24.7 ml, 0.21 mol) was added thereto at -100°C, stirred at room temperature for 3 hours or more, and then the filtered solution was vacuum dried (tBu-O-(CH 2 ) 6 SiMeCl 2 To obtain a compound (yield 84%), a solution of tBu-O-(CH 2 ) 6 SiMeCl 2 (7.7 g, 0.028 mol) dissolved in hexane (50 ml) at -78° C. was dissolved in fluorenyllithium (4.82 g).
  • the polymerization reactor was a continuous polymerization reactor that is an isobutane slurry loop process, the reactor volume was 140L, and the reaction flow rate was operated at about 7m/s.
  • Gases (ethylene, hydrogen) required for polymerization and 1-hexene, which is a comonomer, are constantly and continuously injected, and individual flow rates are adjusted according to the target product.
  • concentrations of all gases and 1-hexene, a comonomer, were confirmed by on-line gas chromatograph.
  • the supported catalyst was introduced as an isobutane slurry, the reactor pressure was maintained at about 40 bar, and the polymerization temperature was carried out at about 85°C.
  • An ethylene/1-hexene copolymer was prepared by performing the same method as in Example 1, except for changing to the conditions described in Table 1 below.
  • Catalytic activity (kgPE/gCat): After measuring the weight of the catalyst (Cat) used in the polymerization reaction of the Example or Comparative Example and the weight of the polymer (PE) prepared from the polymerization reaction, respectively, prepared based on the weight of the catalyst used The activity of the catalyst was calculated as the weight ratio of the resulting polymer.
  • the molar ratio of comonomer/ethylene is the molar ratio of comonomer (1-hexene) to ethylene present in the slurry reactor during the polymerization reaction, and ethylene and 1-hexene using a gas chromatograph. Each concentration of was measured, and the molar ratio was calculated from the results.
  • the concentration of each monomer using the gas chromatograph was measured using a gas chromatography (7890B GC) equipped with an Agilent Al 2 O 3 KCl column having a length of 50 m and an inner diameter of 0.53 mm, and a carrier gas of 12 mL. It was high-purity helium flowing at a rate of /min, the injection port temperature was 200°C, and was injected using a separation mode (10:1).
  • Te elution temperature
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • PolymerChar's TREF equipment was used, and 1,2,4-trichlorobenzene was used as a solvent and the measurement was performed in the range of 20°C to 120°C. Specifically, 30 mg of polyethylene of the Example or Comparative Example was dissolved in 20 ml of 1,2,4-trichlorobenzene solvent at 135° C. for 30 minutes and then stabilized at 95° C. for 30 minutes to prepare each sample. The prepared sample was introduced into a TREF column, cooled to 20° C. at a temperature drop rate of 0.5° C./min, and held for 2 minutes.
  • the elution temperature (Te) of polyethylene was confirmed, and the content of the first semicrystalline polymer at Te 25 to 30° C. was calculated based on the total weight of polyethylene (% by weight).
  • GPC Gel permeation chromatography
  • FIGS. 5 to 7 are respectively in Example 1 and Comparative Examples 5 and 6 It is a graph showing the GPC analysis results of the first semi-crystalline polymer in the prepared polyethylene.
  • MI Melt Index
  • Density Density (Density, g/cm 3 ): It was measured according to ASTM D1505.
  • Tm Melting temperature
  • Tc crystallization temperature
  • ⁇ H ⁇ H (0-130°C)
  • Example or Comparative Example was measured using a DSC 2920 (TA instrument) as a differential scanning calorimeter (DSC). After heating the copolymer in Example or Comparative Example to 190° C., it was maintained for 5 minutes, and the temperature was lowered to -50° C., and then the temperature was increased again. At this time, the rate of rise and fall of the temperature were adjusted to 10°C/min, respectively.
  • the melting temperature (Tm) was taken as the maximum point of the endothermic peak measured in the section where the second temperature rises.
  • the crystallization temperature (Tc) was performed in the same manner as in the measurement of the melting temperature, and the maximum point of the exothermic peak was taken as the crystallization temperature from the curve that appeared while decreasing the temperature.
  • ⁇ H is the integral value for the peak observed in the temperature range of 0 to 130°C in the graph obtained by performing DSC at a temperature range of -50 to 190°C in the same manner as in the measurement of the melting temperature As a result, the heat of fusion value was confirmed (unit: J/g).
  • a Polymer Laboratories PLgel MIX-B 300 mm length column was used, and the measurement was performed using a Waters PL-GPC220 instrument.
  • the evaluation temperature was 160° C.
  • 1,2,4-trichlorobenzene was used as a solvent
  • the flow rate was 1 mL/min.
  • the polymer sample was prepared at a concentration of 10 mg/10 mL, and then supplied in an amount of 200 ⁇ L.
  • the values of Mw and Mn were derived using a calibration curve formed using polystyrene standards.
  • the molecular weight (g/mol) of the polystyrene standard was 2,000 / 10,000 / 30,000 / 70,000 / 200,000 / 700,000 / 2,000,000 / 4,000,000 / 10,000,000.
  • each copolymer prepared in Examples and Comparative Examples was analyzed by gel permeation chromatography (GPC) in the same manner as in 4), and the log value (log Mw) of the weight average molecular weight (Mw) was x
  • the molecular weight distribution curve of the polymer chains constituting the copolymer was derived, with the axis as the axis and the molecular weight distribution (dw_dlogM) with respect to the log value as the y axis.
  • each copolymer was analyzed by FT-IR to derive a distribution curve of the number of SCBs per 1000 carbon atoms (right y-axis; SCB per 1000TC) according to the weight average molecular weight (x-axis) of the polymer chains.
  • Example Comparative example One 2 3 4
  • One 2 3 4 5 6 7 Density (g/cm 3 ) 0.918 0.916 0.918 0.918 0.918 0.918 0.921 0.918 0.918 0.916 0.918 MI (g/10min) 1.0 1.0 1.5 2.0 0.4 10.5 1.0 1.0 1.0 0.5 1.0 Tm (°C) 121.5 120.0 120.5 120.2 122.5 119.5 122.0 118.0 122.1 122.7 122.3 Tc (°C) 102.1 101.5 102.0 101.7 105.1 100.0 102.0 105.0 107.4 105.8 63.2/106.4 ⁇ H(0 ⁇ 130°C)(J/g) 115.0 105.0 112.0 110.0 118.5 114.0 119.5 114.0 111.9 99.2 141.2 Mn (g/mol) 43,000 44,000 40,000 38,000 52,000 16,000 41,000 42,000 32,000 34,000 29,000 Mw (g/mol) 112,000 114,000 110,000 107,000 152,000 48,000 111,000 100,000 110,000 131,000 99,000 MWD 2.65 2.70 2.65 2.60
  • Example 1 Comparing FIGS. 8 to 11, it can be seen that in Example 1, the SCB content in the ultra-high molecular weight region is high, as a result, the low crystal content is high, and the low crystal has a high molecular weight.
  • Width 25 mm
  • Thickness 50 ⁇ 60 ⁇ m
  • Example Comparative example One 2 3 4 One 2 3 4 5 6 7 SIT(°C), 2N 90.0 87.0 89.0 87.0 97.0 95.0 100.1 115.0 107.5 98.0 120.0 Hot-tack Strength (N/25mm) 90°C 2.0 2.5 2.1 2.5 - - - - - - - 95°C 3.0 3.2 3.0 3.0 1.5 2.0 - - - 1.5 - 100°C 3.2 3.8 3.1 3.3 2.3 2.3 2.0 - 1.1 2.6 -
  • Example 12 is a graph showing the results of measuring the low temperature sealing strength of the polyethylene prepared in Example 1 and Comparative Examples 5 to 7.
  • the sealing initiation temperature (SIT) in the 2N condition was as low as 90°C or less compared to the comparative examples, and the sealing strength was high in a wide melting temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명에서는 저결정성 중합체의 함량 및 분자량 증가로, 개선된 저온 실링 특성을 나타내는 폴리에틸렌 및 이의 제조방법이 제공된다.

Description

폴리에틸렌 및 이의 제조방법
관련 출원(들)과의 상호 인용
본 출원은 2019년 10월 11일자 한국 특허 출원 제10-2019-0126480호 및 2020년 9월 25일 한국 특허 출원 제10-2020-0125237호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 저결정성 중합체의 함량 및 분자량 증가로, 개선된 저온 실링 특성을 나타내는 폴리에틸렌 및 이의 제조방법에 관한 것이다.
올레핀 중합 촉매계는 지글러 나타 및 메탈로센 촉매계로 분류할 수 있으며, 이 두 가지의 고활성 촉매계는 각각의 특징에 맞게 발전되어 왔다. 지글러 나타 촉매는 50년대 발명된 이래 기존의 상업 프로세스에 널리 적용되어 왔으나, 활성점이 여러 개 혼재하는 다활성점 촉매(multi-site catalyst)이기 때문에, 중합체의 분자량 분포가 넓은 것이 특징이며, 공단량체의 조성 분포가 균일하지 않아 원하는 물성 확보에 한계가 있다는 문제점이 있다.
한편, 메탈로센 촉매는 전이금속 화합물이 주성분인 주촉매와 알루미늄이 주성분인 유기 금속 화합물인 조촉매의 조합으로 이루어지며, 이와 같은 촉매는 균일계 착체 촉매로 단일 활성점 촉매(single site catalyst)이며, 단일 활성점 특성에 따라 분자량 분포가 좁으며, 공단량체의 조성 분포가 균일한 중합체가 얻어지며, 촉매의 리간드 구조 변형 및 중합 조건의 변경에 따라 중합체의 입체 규칙도, 공중합 특성, 분자량, 결정화도 등을 변화시킬 수 있는 특성을 가지고 있다.
미국 특허 제5,914,289호에는 각각의 담체에 담지된 메탈로센 촉매를 이용하여 중합체의 분자량 및 분자량 분포를 제어하는 방법이 기재되어 있으나, 담지촉매 제조시 사용된 용매의 양 및 제조시간이 많이 소요되고, 사용되는 메탈로센 촉매를 담체에 각각 담지시켜야 하는 번거로움이 따랐다.
한국특허공개 제2004-0076965호에는 담체에 이중핵 메탈로센 촉매와 단일핵 메탈로센 촉매를 활성화제와 함께 담지하여 반응기 내 촉매의 조합을 변화시키며 중합함으로써 분자량 분포를 제어하는 방안을 개시하고 있다. 그러나, 이러한 방법은 각각의 촉매의 특성을 동시에 구현하기에 한계가 있으며, 또한 완성된 촉매의 담체 성분에서 메탈로센 촉매 부분이 유리되어 반응기에 파울링(fouling)을 유발하는 단점이 있다.
한편, 선형 저밀도 폴리에틸렌은 메탈로센계 중합 촉매를 사용하여 저압에서 에틸렌과 α-올레핀을 공중합하여 제조되며, 분자량 분포가 좁고 일정한 길이의 단쇄 분지(SCB)를 가지며, 장쇄 분지(LCB)가 없다. 선형 저밀도 폴리에틸렌 필름은 일반 폴리에틸렌의 특성과 더불어 파단강도와 신율, 인열강도, 낙추충격강도 등 기계적 물성이 우수하여, 기존의 저밀도 폴리에틸렌이나 고밀도 폴리에틸렌의 적용이 어려운, 포장용(packaging) 필름 등으로의 사용이 증가하고 있다.
고속 포장용 필름의 경우, 생산성 증대를 위해 핫택(hot-tack) 강도를 증가시키는 것이 요구되고 있다. 그러나, 종래의 선형 저밀도 폴리에틸렌의 경우, 용융 온도(Tm)이 높아 저온 실링 강도가 낮은 단점이 있다. 이에 따라 고속 가공 생산시 실링성이 떨어져 포장물이 흘러나오는 문제점이 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 미국특허 제5,914,289호
(특허문헌 2) 한국특허공개 제2004-0076965호
이에 본 발명은 상기 종래기술의 문제점을 해결하기 위한 것으로, 저결정성 중합체의 함량 및 분자량 증가로, 개선된 저온 실링 특성을 나타내는 폴리에틸렌 및 이의 제조방법을 제공하고자 한다.
또, 본 발명은 상기 폴리에틸렌을 포함하여 우수한 핫택(hot-tack) 강도 특성을 나타내며, 결과로서 고속 포장용으로 유용한 필름을 제공하고자 한다.
상기 과제를 해결하기 위하여, 본 발명의 일 구현예에 따르면,
에틸렌 반복 단위와, α-올레핀계 반복 단위를 포함하며,
ASTM D1505에 따라 측정한 밀도가 0.916 g/cm 3 이상이고,
온도 상승 용리 분별법 (Temperature Rising Elution Fractionation; TREF)으로 분석시, 20 내지 120℃ 온도 범위에서 제1 내지 제3 준결정질 중합체의 용리 온도에 각각 대응하는 Te1, Te2 및 Te3의 3개의 용리 온도를 나타내며, 상기 Te2는 Te3 보다 온도가 낮고 Te1 보다 온도가 높으며,
상기 Te1은 25 내지 30℃이고,
상기 제1준결정질 중합체는 중량평균 분자량(Mw)이 200,000 g/mol 이상이고, 폴리에틸렌 총 중량을 기준으로 5중량% 이상의 함량으로 포함되는, 폴리에틸렌을 제공한다.
또, 본 발명의 다른 일 구현예에 따르면, 하기 화학식 1로 표시되는 제 1 전이금속 화합물 및 하기 화학식 2로 표시되는 제 2 전이금속 화합물을 포함하는 촉매 조성물의 존재 하에, 반응기 내로 수소 기체를 투입하며 에틸렌 단량체, 및 탄소수 3 이상의 α-올레핀계 단량체를 중합 반응시키는 단계를 포함하며, 상기 수소 기체가, 에틸렌 단량체 및 탄소수 3 이상의 α-올레핀계 단량체를 포함하는 단량체 총 중량에 대하여 10 ppm 이상 200ppm 미만의 양으로 투입되고, 상기 중합 반응시, 반응기 내 존재하는 에틸렌 단량체에 대한 α-올레핀계 단량체의 몰비(α-올레핀계 단량체/에틸렌 단량체의 몰비)가 0.25 이상인, 상기한 폴리에틸렌의 제조방법을 제공한다:
[화학식 1]
Figure PCTKR2020013170-appb-img-000001
상기 화학식 1에서,
R 1 및 R 2는 각각 독립적으로 수소, 할로겐, C 1-20 알킬, C 2-20 알케닐, C 1-20 알콕시, C 2-20 알콕시알킬, C 6-20 아릴, C 7-20 알킬아릴, 또는 C 7-20 아릴알킬이고,
X 1 및 X 2는 각각 독립적으로 할로겐 또는 C 1-20 알킬이고,
[화학식 2]
Figure PCTKR2020013170-appb-img-000002
상기 화학식 2에서,
R 3 및 R 4는 각각 독립적으로 수소, 할로겐, C 1-20 알킬, C 2-20 알케닐, C 1-20 알콕시, C 2-20 알콕시알킬, C 6-20 아릴, C 7-20 알킬아릴, 또는 C 7-20 아릴알킬이고,
X 3 및 X 4는 각각 독립적으로 할로겐 또는 C 1-20 알킬이다.
본 발명의 또 다른 일 구현예에 따르면 상기한 폴리에틸렌을 포함하는 필름, 특히 고속 포장용 필름을 제공한다.
본 발명에 따른 폴리에틸렌은, 저결정성의 중합체 함량 및 분자량의 증가로, 개선된 저온 실링 특성을 나타낼 수 있다. 이에 포장용 필름, 특히 고속 포장용 필름의 제조에 적용시 우수한 핫택 특성을 나타내어 생산성을 높일 수 있다.
도 1 내지 도 4는 각각 실시예 1, 및 비교예 5 내지 7에서 제조한 폴리에틸렌에 대한 TREF(Temperature Rising Elution Fractionation)에 따른 분석 결과를 나타낸 그래프이다.
도 5 내지 도 7은 각각 실시예 1 및 비교예 5, 6에서 제조한 폴리에틸렌에서의 제1준결정질 중합체에 대한 GPC(Gel Permeation Chromatography) 분석 결과를 나타낸 그래프이다.
도 8 내지 도 11은 각각 실시예 1, 및 비교예 5 내지 7에서 제조한 폴리에틸렌에 대한 GPC-FTIR(Gel Permeation Chromatography-Fourier-transform infrared spectroscopy) 분석 결과로 수득한, 폴리에틸렌 분자량에 따른 SCB 함량을 나타내는 그래프이다.
도 12는 실시예 1, 및 비교예 5 내지 7에서 에서 제조한 폴리에틸렌에 대한 저온 실링 강도를 측정한 결과를 나타낸 그래프이다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 발명에 있어서, 폴리에틸렌에서의 "단쇄 분지(short chain branching; SCB)"라고 함은, 중합체 사슬들 각각에서 가장 긴 주쇄에 대해 가지와 같은 형태로 분지 결합된 사슬(chain), 구체적으로는 탄소수 2 내지 7의 사슬을 의미한다. 이러한 단쇄 분지의 개수는 중합체를 FT-IR 분석함으로써 산출될 수 있으며, 중합체 사슬들에 포함된 α-올레핀계 단량체의 함량에 비례할 수 있다.
이하, 본 발명의 폴리에틸렌, 이의 제조방법 및 이를 이용한 필름에 대하여 상세히 설명한다.
구체적으로, 발명의 일 구현예에 따른 폴리에틸렌은, 에틸렌 반복 단위와, α-올레핀계 반복 단위를 포함하는 에틸렌/α-올레핀계 공중합체로서,
ASTM D1505에 따라 측정한 밀도가 0.916 g/cm 3 이상이고,
온도 상승 용리 분별법(TREF)으로 분석시, 20 내지 120℃ 온도 범위에서 제1 내지 제3 준결정질 중합체의 용리 온도에 각각 대응하는 Te1, Te2 및 Te3의 3개의 용리 온도를 나타내며, 상기 Te2는 Te3 보다 온도가 낮고 Te1 보다 온도가 높으며,
상기 Te1은 25 내지 30℃이고,
상기 제1준결정질 중합체는 중량평균 분자량(Mw)이 200,000 g/mol 이상이고, 폴리에틸렌 총 중량을 기준으로 5중량% 이상의 함량으로 포함된다.
본 발명자들은 폴리에틸렌의 제조시 후술하는 특정한 촉매 조성물을 사용하고, 또 에틸렌 단량체와 공단량체의 혼합비 및 수소 투입량을 제어한 결과, 제조된 폴리에틸렌이 일정 수준 이상의 제어된 밀도를 갖는 동시에, 종래와는 상이한 결정 특성을 나타냄을 확인하고 본 발명을 완성하였다.
상기 폴리에틸렌의 결정 특성은 TREF 분석을 통해 확인되었다. 분석 결과에 따르면, 상기 폴리에틸렌은 서로 다른 3개의 특정 온도 범위에서 제 1 내지 동일한 분석 결과에서 대체로 하나의 피크만을 나타내는 것과 구별된다.
보다 구체적으로, 상기 제 1 내지 제 3 피크는 일 구현예의 폴리에틸렌에서 서로 다른 결정성을 나타내는 중합체 사슬들의 분획, 보다 구체적으로, 가장 낮은 결정성을 나타내는 제 1 분획, 가장 높은 결정성을 나타내는 제 3 분획, 그리고, 제 1 및 제 3 분획 사이의 결정성을 나타내는 제 2 분획이 포함됨을 의미한다. 이와 같이 서로 다른 결정성을 갖는 중합체 사슬들의 제 1 내지 제 3 분획이 동시에 포함됨에 따라, 일 구현예에 따른 폴리에틸렌은 다양한 용도에 요구되는 제반 물성, 예를 들어, 다른 수지와의 상용성, 가공성, 단독 또는 다른 수지와 컴파운딩 되었을 때의 강도 및 충격 강도 등을 동시에 향상시킬 수 있다. 이는 상기 폴리에틸렌이 다양한 결정성을 나타내는 중합체 사슬들을 동시에 포함하고 있기 때문으로 추정된다.
특히, 발명의 일 구현예에 따른 폴리에틸렌은 낮은 결정성을 나타내는 제1 분획을 높은 분획비(분율)로 포함하며, 또 이러한 제1 분획에 포함된 중합체 사슬들에는 높은 분자량을 갖는 것이 확인되었다. 그 결과, 발명의 일 구현예에 따른 폴리에틸렌은 다양한 물성을 동시에 우수하게 발현할 수 있을 뿐 아니라, 저온에서의 실링 강도 특성을 크게 개선시킬 수 있다. 이에 따라 우수한 핫택 특성이 요구되는 고속 포장용 필름의 제조에 특히 유용하게 사용될 수 있다.
한편, 본 발명에 있어서, 폴리에틸렌에 대한 TREF 분석은, Polymer Char 사의 TREF 장비를 사용하여 수행될 수 있다. 구체적으로는 상기 폴리에틸렌을 1,2,4-트리클로로벤젠 등의 용매에 용해시켜 용액상의 시료를 준비하고, 준비한 시료를 TREF 컬럼에 도입한 후, 초기 온도 20℃까지 낮추고, 이후 일정한 승온 속도 1℃/min로 120℃까지 승온시키면서, 용매인 1,2,4-트리클로로벤젠을 0.5 mL/분의 유속으로 컬럼에 흘리면서 용출되는 중합체의 농도를 측정한다. 보다 구체적인 측정 방법은 이하 시험예에서 상세히 설명한다.
상기한 TREF 분석의 결과로서 온도에 대한 용출량 (dW/dT)으로 표현되는 TREF 용출 곡선을 수득할 수 있으며, 상술한 온도 범위에서 제1 내지 제3 분획에 대응하는 제1 내지 제3 피크를 확인할 수 있다. 확인된 제1 및 제3의 피크는 폴리에틸렌이 각 피크에 대응하는 준결정질 중합체를 포함하는 것을 의미한다.
본 명세서에 있어서, "준결정질"은, 온도 상승 용리 분별(TREF), 시차 주사 열량 측정법 (DSC) 또는 동등한 기술에 의해 측정되는 1차 전이 온도, 결정 용융 온도 (Tm) 또는 용리 온도 등을 갖는 중합체를 지칭한다. 준결정질은 결정성에 따라 밀도, Tm, 용리 온도 등이 달라진다. 한편, 용어 "비정질"은 온도상승 용리 분별(TREF), 시차 주사 열량 측정법 (DSC) 또는 동등한 기술에 의해 측정되는 결정 용융 온도가 없는 중합체를 지칭한다.
또, TREF 용출 곡선에서 각 피크의 최고점의 온도가 용리 온도(elution temperature; Te)이며, 각각 Te1, Te2, 및 Te3으로 표현한다. 상기 Te2는 Te3 보다 낮고 Te1보다 높은 온도에서 존재하며, 구체적으로 상기 Te1 은 25 내지 30℃이고, 상기 Te2 는 40 내지 65℃이며, 상기 Te3 은 80 내지 100℃이다.
발명의 일 구현예에 따른 폴리에틸렌은, 상기 제1 내지 제3 피크에 대응하며, 서로 다른 결정성을 갖는 제1 내지 제3의 준결정질 중합체를 포함한다.
구체적으로 Te1은 저결정성을 나타내는 제1 준결정질 중합체의 용리 온도를 나타내며, 25℃ 이상, 또는 27℃ 이상, 또는, 28℃ 이상, 또는 28.1℃ 이상이고, 30℃ 이하, 또는 29℃ 이하, 또는 28.5℃ 이하이다. 또, Te2는 상기 제1 중합체에 비해서는 높은 결정성을 갖는 제2준결정질 중합체의 용리 온도를 나타내며, 40℃ 이상, 또는 50℃ 이상, 또는 60℃ 이상, 또는 62℃ 이상이고, 65℃ 이하, 또는 63℃ 이하, 또는 62.5℃ 이하이다. 이와 같이 중간 수준의 결정성을 나타내는 중합체 사슬들의 용리 온도, Te2가 65℃ 이하로 낮기 때문에 저결정 함량이 상대적으로 높아 저온에서도 빠르게 융해될 수 있으며, 결과로서, 저온 실링 특성의 개선 효과를 나타낼 수 있다. 또, Te3은 상기 제2 준결정질 중합체에 비해 높은 결정성을 갖는 제3중합체의 용리 온도를 나타내며, 80℃ 이상, 또는 90℃ 이상, 또는 93℃ 이상이고, 100℃ 이하, 또는 95℃ 이하, 또는 94℃ 이하이다.
또, 상기 제 1 내지 제 3 피크의 각 적분 면적 및 이들의 비율에 의해, 서로 다른 결정성을 나타내는 중합체 사슬들의 제 1 내지 제 3 분획의 전체 폴리에틸렌 중 분획비(또는 함량)가 결정될 수 있는데, 이러한 각 적분 면적은 제 1 내지 제 3 피크를, 예를 들어, 일정 온도 영역에 따라 각 피크 영역별로 나눈 후, 그 하부 면적을 구함으로서 도출될 수 있으며, 각 피크의 전체 면적 대비 각 피크의 적분 면적의 비율로 각 피크에 대응하는 각 분획의 분획비가 결정될 수 있다.
이와 같은 방법으로 분석되었을 때, 일 구현예의 폴리에틸렌은 상기 제 1 피크의 적분 면적으로부터 정의되는 상기 제 1 분획의 분획비가 5% 이상, 보다 구체적으로는 10% 이상, 또는 11% 이상, 또는 12% 이상이고, 20% 이하, 또는 15% 이하, 또는 13% 이하로 될 수 있다. 이는 폴리에틸렌 총 중량을 기준으로 환산시, 제1분획에 해당하는 제1준결정질 중합체의 함량이 5중량% 이상일 수 있으며, 보다 구체적으로는 10중량% 이상, 11중량% 이상, 또는 12중량% 이상이고, 20 중량% 이하, 15중량% 이하, 또는 13중량% 이하에 해당한다. 이와 같이 폴리에틸렌 내에서 가장 낮은 결정성을 갖는 제1준결정질 중합체의 함량이 높기 때문에 저온에서 빠르게 융해될 수 있기 때문에 저온 실링 특성의 개선 효과를 나타낼 수 있다.
또, 상기 폴리에틸렌은 가장 낮은 결정성을 나타내는 제1준결정질 중합체의 중량평균 분자량(Mw)이 200,000 g/mol 이상일 수 있으며, 보다 구체적으로는 200,000 g/mol 이상, 또는 200,000 g/mol 초과, 또는 202,000 g/mol 이상, 또는 205,000 g/mol 이상이고, 500,000 g/mol 이하, 또는 300,000 g/mol 이하, 또는 250,000 g/mol 이하, 또는 210,000g/mol 이하, 또는 206,000g/mol 이하 일 수 있다. 이와 같이 높은 분자량을 가짐에 따라 중합체 사슬 간의 얽힘으로 인해 저온에서도 실링강도가 향상될 수 있다.
또한 상기 제1준결정질 중합체의 수평균 분자량(Mn) 역시 50,000 g/mol 이상으로 높으며, 보다 구체적으로는, 50,000 g/mol 이상, 또는 60,000 g/mol 이상, 또는 70,000 g/mol 이상이고, 100,000 g/mol 이하, 또는 80,000 g/mol 이하, 또는 75,000 g/mol 이하, 또는 73,000 g/mol 이하일 수 있다. 또 상기 제1준결정질 중합체는 2 이상, 또는 2.3 이상, 또는 2.5 이상, 또는 2.8 이상, 또는 2.82 이상이고, 3 이하, 또는 2.95 이하, 또는 2.93 이하의 높은 분자량 분포(Mw/Mn의 비)를 나타낼 수 있다.
한편, 본 발명에 있어서, 상기 제1준결정질 중합체의 중량평균 분자량, 수평균 분자량 및 분자량 분포는, 겔 투과 크로마토그래피(GPC) 분석을 통해 측정될 수 있으며, 그 구체적인 측정 방법을 이하 시험예에서 상세히 설명한다.
또, 상기 폴리에틸렌은 상기한 결정 특성과 함께, ASTM D1505 기준에 따라 측정시 0.916 g/cm 3 이상의 밀도를 나타낸다.
통상 올레핀계 중합체의 밀도는 중합시 사용되는 단량체의 종류와 함량, 중합도 등의 영향을 받으며, 공중합체의 경우 공단량체의 함량에 의한 영향이 크다. 본 발명에서는 특정 구조를 갖는 전이금속 화합물을 포함하는 촉매 조성물의 사용으로 많은 양의 공단량체 도입이 가능하다. 그 결과, 본 발명의 일 구현예에 따른 폴리에틸렌은 0.916 g/cm 3 이상의 밀도를 나타내며, 결과로서 우수한 기계적 특성과 함께 가공성을 나타낼 수 있다. 보다 구체적으로는 상기 폴리에틸렌은 0.916 g/cm 3 이상이고, 0.920 g/cm 3 이하, 또는 0.918 g/cm 3 이하의 밀도를 나타낼 수 있으며, 이 같은 밀도 범위의 최적화를 통해 기계적 물성 유지 및 충격강도 개선 효과를 더욱 증진시킬 수 있다.
더 나아가, 상기 폴리에틸렌은 퓨리에 변환 적외 분광법과 결합된 겔 투과 크로마토그래피(GPC-FTIR) 분석시 log Mw가 5.5 이상인 고분자 영역에서의 중합체 내 탄소 1000 개당 단쇄 분지(SCB)의 평균 개수가, 35개 이상, 보다 구체적으로는 35개 이상 또는 35.5개 이상, 또는 36개 이상, 또는 36.5개 이상이고, 40개 이하, 또는 39개 이하, 또는 38.5개 이하, 또는 38개 이하일 수 있다. 이와 같이 고분자 영역에서의 높은 SCB 개수는, 고분자 영역에서의 중합체들이 α-올레핀계 반복 단위들을 보다 높은 함량으로 포함하는 것을 반영하며, 그 결과 고분자 영역의 중합체들이 저결정을 이루어 저온 실링 강도를 보다 개선할 수 있는 효과를 나타낼 수 있다.
더 나아가, 상기 폴리에틸렌은 중합체 전체 내 탄소 1000 개당 단쇄 분지(SCB)의 평균 개수가 18개 이상, 또는 19개 이상, 또는 20개 이상이고, 22개 이하, 또는 21.5개 이하일 수 있다. 이와 같이 높은 SCB 개수는 공단량체(comonomer)의 함량이 높음을 의미하며, 결과로서 밀도 하향에도 우수한 저온 실링 강도 개선 효과를 나타낼 수 있다.
본 발명에 있어서, log Mw가 5.5 이상인 고분자 영역에서의 단쇄 분지(SCB)의 개수 및 폴리에틸렌의 내 SCB 개수는 상기 GPC-FTIR 분석 결과로부터 각각의 값을 산출한 후, 평균값으로 나타낸 것이며, 구체적인 방법은 이하 시험예에서 상세히 설명한다.
또, 상기 폴리에틸렌은 3 이하의 좁은 분자량 분포(MWD)를 나타내며, 보다 구체적으로는 2.75 이하, 또는 2.70 이하이고, 2 이상, 또는 2.5 이상, 또는 2.65 이상의 분자량 분포를 나타낼 수 있다.
일반적으로 TREF 측정시 2개 이상의 Te를 갖게 되면 중합체의 분지쇄 함량이 상이한 중합체가 2종 이상 혼합되어 있는 것을 의미한다. 또 2종 이상의 중합체가 혼합되어 존재할 경우 분자량 분포가 증가하게 되고, 결과로서 충격 강도와 기계적 물성 등이 감소하고, 블로킹 현상 등도 일어나게 된다. 그러나, 본 발명에서의 폴리에틸렌은 3개의 Te를 나타내면서도 상기와 같이 좁은 분자량 분포를 가짐에 따라, 우수한 충격강도 및 기계적 물성을 나타낼 있다.
또, 상기한 분자량 분포 범위를 충족하는 조건 하에서, 상기 폴리에틸렌은 수평균 분자량(Mn)이 35,000 g/mol 이상, 또는 40,000 g/mol 이상, 또는 42,000 g/mol 이상, 또는 43,000 g/mol 이상이고, 50,000 g/mol 이하, 또는 45,000 g/mol 이하, 또는 44,000 g/mol 이하이고, 중량평균 분자량(Mw)이 100,000 g/mol 이상, 또는 110,000 g/mol 이상, 또는 112,000 g/mol 이상이고, 130,000 g/mol 이하, 또는 120,000 g/mol 이하, 또는 115,000 g/mol 이하 또는 114,000 g/mol 이하일 수 있다.
한편, 본 발명에 있어서, 중량평균 분자량(Mw)과 수평균 분자량(Mn)은 겔 투과형 크로마토그래피(GPC: gel permeation chromatography)로 분석되는 폴리스티렌 환산 분자량이며, 상기 분자량 분포(MWD)는 Mw/Mn의 비로부터 계산될 수 있다. 그 구체적인 측정 방법은 이하 실험예에서 상세히 설명한다.
또, 상기 폴리에틸렌은 하기 (i) 내지 (v)의 조건 중 어느 하나 이상, 또는 둘 이상, 또는 셋 이상, 또는 넷 이상, 또는 다섯 개의 모든 조건을 충족할 수 있다:
(i) ASTM D-1238에 따라 190℃ 및 2.16kg 하중의 조건에서 측정한 용융지수: 0.8 내지 2 g/10min,
(ii) 용융온도: 120 내지 125℃,
(iii) 결정화 온도: 100 내지 110℃,
(iv) 0 내지 130℃ 온도 범위에서의 융해열: 99.5 내지 120 J/g, 및
(v) ASTM F1921 측정법에 따라 2N 조건에서의 실링 개시 온도가 95℃ 이하이고, 100℃에서의 핫택 강도가 3.0N 이상.
구체적으로 상기 폴리에틸렌은 ASTM D-1238(조건 E, 190℃, 2.16kg 하중)에 따라 측정한 용융 지수(MI)가 0.8 g/10min 이상, 또는 0.9 g/10min 이상, 또는 1 g/10min 이상이고, 2 g/10min 이하, 또는 1.8 g/10min 이하, 또는 1.5 g/10min 이하일 수 있다. 상기한 범위의 밀도와 함께 최적 범위의 용융 지수를 가짐으로써, 상기 폴리에틸렌은 우수한 기계적 특성을 유지하면서도 개선된 가공성을 나타낼 수 있다.
또, 상기 폴리에틸렌은 120 내지 125℃의 높은 용융 온도를 가져 우수한 내열성을 나타낼 수 있다. 구체적으로 상기 폴리에틸렌은 DSC에 의해 측정된 용융 온도(Tm)이 120℃ 이상이고, 125℃ 이하, 또는 122℃ 이하일 수 있다.
또, 상기 폴리에틸렌은 결정화 온도(Tc)가 100℃ 이상이고, 110℃ 이하, 또는 105℃ 이하, 또는 103℃ 이하일 수 있다. 이와 같이 높은 결정화 온도는 폴리에틸렌내 공단량체의 균일 분포로 인한 것으로, 상기한 온도 범위를 가짐으로써 우수한 구조 안정성을 나타낼 수 있다.
또, 상기 폴리에틸렌은 -50 내지 190℃의 온도 범위에서 DSC를 수행하고, 결과로 수득한 그래프에 있어서 0 내지 130℃의 온도 범위에서 관찰되는 피크에 대한 적분값으로 확인되는 융해열(heat of fusion; △H)이 99.5 J/g 이상, 또는 100.0 J/g 이상, 또는 105 J/g 이상이고, 120 J/g 이하, 또는 115 J/g 이하일 수 있다. 이에 따라 우수한 내열성을 나타낼 수 있다.
본 발명에 있어서, 폴리에틸렌의 용융 온도(Tm), 결정화 온도(Tc), 및 융해열(△H)은 시차주사열량계(Differential Scanning Calorimeter, DSC)를 이용하여 측정할 수 있으며, 그 구체적인 방법은 이하 시험예에서 상세히 설명한다.
한편, 상술한 폴리에틸렌은 에틸렌계 반복 단위와, α-올레핀계 반복 단위를 포함하는 공중합체일 수 있으며, 이때, α-올레핀계 반복 단위는 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 또는 1-헥사데센 등의 탄소수 3 내지 20의 α-올레핀에서 유래한 반복 단위로 될 수 있으며, 폴리에틸렌의 우수한 충격 강도 등을 고려하여, 적절하게는 1-헥센에서 유래한 반복 단위로 될 수 있다.
상술한 일 구현예의 폴리에틸렌은 우수한 저온 실링 강도 특성을 나타낼 수 있다. 구체적으로 상기 폴리에틸렌은 ASTM F1921 측정법에 따라 측정한 2N 조건에서의 실링 개시 온도(SIT)가 95℃ 이하, 또는 93℃ 이하, 또는 90℃ 이하로 낮고, 100℃에서의 핫택 강도(Hot-tack Strength (N/25mm))가 3.0N 이상, 또는 3.2N 이상으로 높다.
이에 따라 자동차용, 신발용, 전선용, 완구용, 섬유용, 의료용 등의 재료와 같은 각종 포장용, 건축용, 생활용품 등의 여러 가지 분야 및 용도에 중공 성형용, 압출 성형용 또는 사출 성형용으로 유용하게 사용될 수 있으며, 특히 고속 포장용 필름으로써 유용하다.
한편, 상술한 폴리에틸렌은 후술하는 특정한 촉매 시스템을 이용한 제조 방법에 의해 제조될 수 있음이 확인되었다. 이에 발명의 다른 구현예에 따르면, 하기 화학식 1로 표시되는 제 1 전이금속 화합물 및 하기 화학식 2로 표시되는 제 2 전이금속 화합물을 포함하는 촉매 조성물의 존재 하에, 반응기 내에서 에틸렌 단량체, 및 탄소수 3 이상의 α-올레핀계 단량체를 중합 반응시키는 단계를 포함하며, 상기 수소 기체가, 에틸렌 단량체 및 탄소수 3 이상의 α-올레핀계 단량체를 포함하는 단량체 총 중량에 대하여 10 ppm 이상 200ppm 미만의 양으로 투입되고, 상기 반응기 내 에틸렌 단량체에 대한 α-올레핀계 단량체의 몰비(α-올레핀계 단량체/에틸렌 단량체의 몰비)가 0.25 이상인, 상술한 폴리에틸렌의 제조방법이 제공된다:
[화학식 1]
Figure PCTKR2020013170-appb-img-000003
상기 화학식 1에서,
R 1 및 R 2는 각각 독립적으로 수소, 할로겐, C 1-20 알킬, C 2-20 알케닐, C 1-20 알콕시, C 2-20 알콕시알킬, C 6-20 아릴, C 7-20 알킬아릴, 또는 C 7-20 아릴알킬이고,
X 1 및 X 2는 각각 독립적으로 할로겐 또는 C 1-20 알킬이고,
[화학식 2]
Figure PCTKR2020013170-appb-img-000004
상기 화학식 2에서,
R 3 및 R 4는 각각 독립적으로 수소, 할로겐, C 1-20 알킬, C 2-20 알케닐, C 1-20 알콕시, C 2-20 알콕시알킬, C 6-20 아릴, C 7-20 알킬아릴, 또는 C 7-20 아릴알킬이고,
X 3 및 X 4는 각각 독립적으로 할로겐 또는 C 1-20 알킬이다.
상기 일 구현예에 따른 촉매 조성물에 포함되는 전이금속 화합물에 있어서, 상기 화학식 1 및 2에서의 치환기들을 보다 구체적으로 설명하면 하기와 같다.
할로겐(halogen)은 불소(F), 염소(Cl), 브롬(Br) 또는 요오드(I)일 수 있다.
C 1-20 알킬은 직쇄, 분지쇄 또는 고리형 알킬일 수 있다. 구체적으로, C 1-20 알킬은 C 1-20 직쇄 알킬; C 1-10 직쇄 알킬; C 1-5 직쇄 알킬; C 3-20 분지쇄 또는 고리형 알킬; C 3-15 분지쇄 또는 고리형 알킬; 또는 C 3-10 분지쇄 또는 고리형 알킬일 수 있다. 보다 구체적으로, C 1-20 알킬은 메틸, 에틸, n-프로필, iso-프로필, n-부틸, iso-부틸, tert-부틸, n-펜틸, iso-펜틸 또는 사이클로헥실 등일 수 있다.
C 2-20 알케닐은 직쇄, 분지쇄 또는 고리형 알케닐일 수 있다. 구체적으로, C 2-20 알케닐은 C 2-20 직쇄 알케닐, C 2-10 직쇄 알케닐, C 2-5 직쇄 알케닐, C 3-20 분지쇄 알케닐, C 3-15 분지쇄 알케닐, C 3-10 분지쇄 알케닐, C 5-20 고리형 알케닐 또는 C 5-10 고리형 알케닐일 수 있다. 보다 구체적으로, C 2-20 알케닐는 에테닐, 프로페닐, 부테닐, 펜테닐 또는 사이클로헥세닐 등일 수 있다.
C 6-20 아릴은 모노사이클릭, 바이사이클릭 또는 트라이사이클릭 방향족 탄화수소를 의미할 수 있다. 구체적으로, C 6-20 아릴은 페닐, 나프틸 또는 안트라세닐 등일 수 있다.
C 7-20 알킬아릴은 아릴의 1 이상의 수소가 알킬에 의하여 치환된 치환기를 의미할 수 있다. 구체적으로, C 7-20 알킬아릴은 메틸페닐, 에틸페닐, n-프로필페닐, iso-프로필페닐, n-부틸페닐, iso-부틸페닐, tert-부틸페닐 또는 사이클로헥실페닐 등일 수 있다.
C 7-20 아릴알킬은 알킬의 1 이상의 수소가 아릴에 의하여 치환된 치환기를 의미할 수 있다. 구체적으로, C 7-20 아릴알킬은 벤질, 페닐프로필 또는 페닐헥실 등일 수 있다.
C 1-20 알콕시는 직쇄, 분지쇄 또는 고리형 알콕시일 수 있다. 구체적으로, C 1-20 알콕시로는, 메톡시, 에톡시, n-부톡시, tert-부톡시, 페닐옥시, 시클로헥실옥시 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
C 2-20 알콕시알킬은 알킬의 1 이상의 수소가 알콕시에 의하여 치환된 치환기를 의미할 수 있다. 구체적으로, C 2-20 알콕시알킬로는, 메톡시메틸, 에톡시메틸, 메톡시에틸, 에톡시에틸, 부톡시메틸, 부톡시에틸, 부톡시프로필, 부톡시부틸, 부톡시헵틸, 부톡시헥실 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 일 구현예에 따른 촉매 조성물은, 상기 화학식 1에서 R 1 및 R 2는 서로 동일하거나 상이하며, 각각 독립적으로 C 4-20 또는 C 4-12의 직쇄 알킬이거나; 또는 tert-부톡시로 치환된 C 5-12 또는 C 6-10 직쇄 알킬일 수 있으며, X 1 및 X 2는 서로 동일하거나 상이하며, 각각 독립적으로 클로로과 같은 할로겐; 또는 메틸과 같은 C 1-4 직쇄 알킬;일 수 있다.
보다 바람직하게는, 상기 화학식 1에서, R 1 및 R 2는 모두 tert-부톡시로 치환된 C 6-10 직쇄 알킬이거나, 또는 모두 tert-부톡시로 치환된 n-헥실이고, X 1 및 X 2는 모두 C 1-4 직쇄 알킬 또는 메틸일 수 있다.
구체적으로, 상기 화학식 1로 표시되는 제 1 전이금속 화합물은 하기 화학식 1a 또는 화학식 1b로 표시되는 화합물일 수 있으나, 이에 한정되는 것은 아니다.
[화학식 1a]
Figure PCTKR2020013170-appb-img-000005
[화학식 1b]
Figure PCTKR2020013170-appb-img-000006
상기 구조식들로 표시되는 제 1 전이금속 화합물은 공지의 반응들을 응용하여 합성될 수 있으며, 보다 상세한 합성 방법은 실시예를 참고할 수 있다.
상기 일 구현예에 따른 촉매 조성물은, 상기 화학식 1에서 R 3 및 R 4는 서로 동일하거나 상이하며, 각각 독립적으로 n-프로필, n-부틸, n-펜틸, 또는 n-헥실과 같은 C 3-12 직쇄 알킬이고, X 3 및 X 4는 서로 동일하거나 상이하며, 각각 독립적으로 메틸, 에틸과 같은 C 1-4 직쇄 알킬일 수 있다.
보다 바람직하게는 상기 화학식 2에서, R 3 및 R 4은 모두 또는 C 4-6 직쇄 알킬이고, X 3 및 X 4는 모두 C 1-4 직쇄 알킬 또는 메틸일 수 있다.
구체적으로, 상기 화학식 2로 표시되는 제 2 전이금속 화합물은 하기 화학식 2a 또는 화학식 2b로 표시되는 화합물일 수 있으나, 이에 한정되는 것은 아니다.
[화학식 2a]
Figure PCTKR2020013170-appb-img-000007
[화학식 2b]
Figure PCTKR2020013170-appb-img-000008
상기 구조식들로 표시되는 제 2 전이금속 화합물은 공지의 반응들을 응용하여 합성될 수 있으며, 보다 상세한 합성 방법은 실시예를 참고할 수 있다.
상기 일 구현예에 따른 촉매 조성물에서, 상기 화학식 1로 표시되는 제 1 전이금속 화합물은 저분자량의 선형 공중합체를 만드는데 기여하고, 상기 화학식 2로 표시되는 제2 전이금속 화합물은 고분자량의 선형 공중합체를 만드는데 기여할 수 있다. 상기 촉매 조성물은, 저공중합성의 제 1 전이금속 화합물 및 고공중합성의 제2 전이금속 화합물을 함께 혼성(hybrid) 촉매로서 사용함으로써, 우수한 담지 성능, 촉매 활성 및 고공중합성을 나타낼 수 있다. 특히, 이러한 촉매 조성물 하에 슬러리 공정에서 초저밀도 폴리에틸렌을 제조하는 경우, 공정안정성이 향상되어 종래에 발생하였던 파울링 문제를 방지할 수 있다. 또한, 상기 촉매 조성물을 이용하여 물성이 우수한 폴리에틸렌을 제공할 수 있다.
또, 상기 촉매 조성물에 있어서, 상기 제 1 전이금속 화합물과 제 2 전이금속 화합물의 혼합 몰비를 제어함으로써, 촉매 활성 및 공중합성을 증진시키고, 또 보다 용이하게 폴리에틸렌의 분자 구조 및 물성을 구현할 수 있다. 구체적으로, 상기 제 1 전이금속 화합물(A)과 제 2 전이금속 화합물(B)의 혼합 몰비(A:B)가 1:0.3 내지 1:3.5일 수 있으며, 상기한 몰비로 포함될 경우, 높은 촉매 활성과 공중합성을 나타낼 수 있으며, 결과로서 상술한 바와 같은 폴리에틸렌의 구조 및 물성을 보다 용이하게 구현할 수 있다. 특히, 이러한 촉매 조성물 하의 슬러리 공정에서 초저밀도 폴리에틸렌을 제조하는 경우, 종래 초저밀도 폴리에틸렌이 녹거나 부풀러져(swell) 생산성이 저하되고 파울링이 발생하는 문제점이 해결되어, 우수한 공정안정성을 나타낼 수 있다.
만약 상기 제 1 전이금속 화합물과 제 2 전이금속 화합물의 몰비(A:B)가 1:0.3 미만이면 공중합성이 저하됨에 따라 초저밀도 폴리에틸렌 제조가 어려울 수 있고, 1:3.5 초과하면 원하는 중합체의 분자 구조를 구현이 어려울 수 있다. 보다 구체적으로는 상기 촉매 조성물 내 상기 제 1 전이금속 화합물과 제 2 전이금속 화합물의 몰비(A:B)는 1:0.5 내지 1:2, 또는 1:1 내지 1:1.5일 수 있다.
한편, 상기 촉매 조성물은, 담체 및 조촉매 중 1종 이상을 더 포함할 수 있다.
구체적으로, 상기 촉매 조성물은 상기 제1 전이금속 화합물 및 제2 전이금속 화합물을 담지하는 담체를 더 포함할 수 있다. 상기 촉매 조성물이 담지 촉매의 형태로 사용될 경우, 제조되는 폴리에틸렌의 모폴로지 및 물성을 더욱 개선시킬 수 있고, 또 슬러리 중합, 벌크 중합, 및 기상 중합 공정에 적합하게 사용될 수 있다.
구체적으로 상기 담체로는 담체 표면에서 전이금속 화합물의 담지를 방해하는 수분은 제거되고, 대신 표면에 반응성이 큰 하이드록시기, 실라놀기 또는 실록산기를 갖는 담체가 바람직하게 사용될 수 있으며, 이를 위해 사용전 하소(calcination)에 의해 표면 개질되거나, 또는 건조 공정이 수행될 수 있다. 예컨대, 실리카겔을 하소하여 제조한 실리카, 고온에서 건조한 실리카, 실리카-알루미나, 및 실리카-마그네시아 등이 사용될 수 있고, 이들은 통상적으로 Na 2O, K 2CO 3, BaSO 4, 및 Mg(NO 3) 2 등의 산화물, 탄산염, 황산염, 및 질산염 성분을 함유할 수 있다.
상기 담체에 대한 하소 또는 건조시 온도는 200 내지 600℃일 수 있으며, 250 내지 600℃일 수 있다. 상기 담체에 대한 하소 또는 건조 온도가 200℃ 이하로 낮을 경우에는 담체에 잔류하는 수분이 너무 많아서 표면의 수분과 조촉매가 반응할 우려가 있고, 또 과량으로 존재하는 하이드록실기로 인해 조촉매 담지율이 상대적으로 높아질 수 있으나, 이로 인해 많은 양의 조촉매가 요구되게 된다. 또 건조 또는 하소 온도가 600℃를 초과하여 지나치게 높을 경우에는 담체 표면의 기공들이 합쳐지면서 표면적이 감소하고, 표면에 하이드록시기 또는 실라놀기가 많이 없어지고, 실록산기만 남게 되어 조촉매와의 반응자리가 감소할 우려가 있다.
상기 담체 표면에 있는 하이드록시기의 양은 담체의 제조방법 및 조건 또는 건조 조건, 예컨대 온도, 시간, 진공 또는 스프레이 건조 등에 의해 조절할 수 있다. 상기 하이드록시기의 양이 지나치게 낮으면 조촉매와의 반응자리가 적고, 지나치게 많으면 담체 입자 표면에 존재하는 하이드록시기 이외에 수분에서 기인한 것일 가능성이 있다. 일 례로 담체 표면의 하이드록시기 양은 0.1 내지 10mmol/g 또는 0.5 내지 5 mmol/g일 수 있다.
상기한 담체들 중에서도 실리카의 경우, 실리카 담체에 대해 상기 전이금속 화합물이 화학적으로 결합하여 담지되기 때문에, 공중합 공정에서 담체 표면으로부터 유리되어 나오는 촉매가 거의 없다. 그 결과 슬러리 중합 또는 기상 중합으로 폴리에틸렌을 제조할 경우, 반응기 벽면이나 중합체 입자끼리 엉겨 붙는 파울링을 최소화할 수 있어 바람직하다.
또한, 상기 촉매 조성물이 담지 촉매의 형태로 사용되는 경우, 상기 제1 및 제2전이금속 화합물은 담체 중량당, 예컨대, 실리카 1g을 기준으로 10 μmol 이상, 또는 30 μmol 이상이고, 500 μmol 이하, 또는 100 μmol 이하의 함량 범위로 담지될 수 있다. 상기 함량 범위로 담지될 때, 적절한 담지 촉매 활성을 나타내어 촉매의 활성 유지 및 경제성 측면에서 유리할 수 있다.
또, 상기 촉매 조성물은 촉매 전구체인 전이금속 화합물을 활성화시키기 위하여 조촉매를 추가로 포함할 수 있다. 상기 조촉매로는 13족 금속을 포함하는 유기 금속 화합물로서, 일반적인 메탈로센 촉매 하에 올레핀을 중합할 때 사용될 수 있는 것이라면 특별히 한정되는 것은 아니다. 구체적으로, 상기 조촉매은 하기 화학식 3 내지 5로 표시되는 화합물로 이루어진 군에서 선택되는 1종 이상의 화합물일 수 있다.
[화학식 3]
-[Al(R 11)-O] m-
상기 화학식 3에서,
R 11은 서로 동일하거나 다를 수 있으며, 각각 독립적으로 할로겐; C 1-20의 탄화수소; 또는 할로겐으로 치환된 C 1-20의 탄화수소이고;
m은 2 이상의 정수이며;
[화학식 4]
J(R 12) 3
상기 화학식 4에서,
R 12는 서로 동일하거나 다를 수 있으며, 각각 독립적으로 할로겐; C 1-20의 탄화수소; 또는 할로겐으로 치환된 C 1-20의 탄화수소이고;
J는 알루미늄 또는 보론이며;
[화학식 5]
[E-H] +[ZQ 4] - 또는 [E] +[ZQ 4] -
상기 화학식 5에서,
E는 중성 또는 양이온성 루이스 염기이고;
H는 수소 원자이며;
Z는 13족 원소이고;
Q는 서로 동일하거나 다를 수 있으며, 각각 독립적으로 1 이상의 수소 원자가 할로겐, C 1-20의 탄화수소, 알콕시 또는 페녹시로 치환되거나 또는 비치환된, C 6-20의 아릴기 또는 C 1-20의 알킬기이다.
상기 화학식 3으로 표시되는 화합물의 예로는 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산, 또는 부틸알루미녹산 등의 C 1-20의 알킬알루미녹산계 화합물을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또, 상기 화학식 4로 표시되는 화합물의 예로는 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 디메틸클로로알루미늄, 트리이소프로필알루미늄, 트리-s-부틸알루미늄, 트리사이클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄, 트리헥실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리-p-톨릴알루미늄, 디메틸알루미늄메톡시드, 디메틸알루미늄에톡시드, 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론, 트리부틸보론 등이 포함되며, 보다 구체적으로는 트리메틸알루미늄, 트리에틸알루미늄, 및 트리이소부틸알루미늄 중에서 선택되는 것일 수 있다.
또, 상기 화학식 5로 표시되는 화합물의 예로는 트리에틸암모니움테트라페닐보론, 트리부틸암모니움테트라페닐보론, 트리메틸암모니움테트라페닐보론, 트리프로필암모니움테트라페닐보론, 트리메틸암모니움테트라(p-톨릴)보론, 트리메틸암모니움테트라(o,p-디메틸페닐)보론, 트리부틸암모니움테트라(p-트리플로로메틸페닐)보론, 트리메틸암모니움테트라(p-트리플로로메틸페닐)보론, 트리부틸암모니움테트라펜타플로로페닐보론, N,N-디에틸아닐리니움테트라페닐보론, N,N-디에틸아닐리니움테트라펜타플로로페닐보론, 디에틸암모니움테트라펜타플로로페닐보론, 트리페닐포스포늄테트라페닐보론, 트리메틸포스포늄테트라페닐보론, 트리에틸암모니움테트라페닐알루미늄, 트리부틸암모니움테트라페닐알루미늄, 트리메틸암모니움테트라페닐알루미늄, 트리프로필암모니움테트라페닐알루미늄, 트리메틸암모니움테트라(p-톨릴)알루미늄, 트리프로필암모니움테트라(p-톨릴)알루미늄, 트리에틸암모니움테트라(o,p-디메틸페닐)알루미늄, 트리부틸암모니움테트라(p-트리플로로메틸페닐)알루미늄, 트리메틸암모니움테트라(p-트리플로로메틸페닐)알루미늄, 트리부틸암모니움테트라펜타플로로페닐알루미늄, N,N-디에틸아닐리니움테트라페닐알루미늄, N,N-디에틸아닐리니움테트라펜타플로로페닐알루미늄, 디에틸암모니움테트라펜타플로로페닐알루미늄, 트리페닐포스포늄테트라페닐알루미늄, 트리메틸포스포늄테트라페닐알루미늄, 트리프로필암모니움테트라(p-톨릴)보론, 트리에틸암모니움테트라(o,p-디메틸페닐)보론, 트리부틸암모니움테트라(p-트리플로로메틸페닐)보론, 트리페닐카보니움테트라(p-트리플로로메틸페닐)보론, 또는 트리페닐카보니움테트라펜타플로로페닐보론 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기한 조촉매 중에서도, 상기 전이금속 화합물과의 사용시 보다 우수한 촉매 활성을 나타낼 수 있는 점을 고려할 때, 상기 조촉매로는 상기 화학식 3으로 표시되는 화합물, 보다 구체적으로는 메틸알루미녹산 등의 C 1-20의 알킬알루미녹산계 화합물일 수 있다. 상기 알킬알루미녹산계 화합물은 담체 표면에 존재하는 히드록실기의 스캐빈저(scavenger)로 작용하여 촉매 활성을 향상시키고, 촉매 전구체의 할로겐기를 메틸기로 전환시켜 폴리프로필렌의 중합시, 사슬 성장을 촉진시킨다.
상기 조촉매는 담체 중량당, 예컨대, 실리카 1g을 기준으로 0.1g 이상, 또는 0.5g 이상이고, 20g 이하, 또는 10g 이하의 양으로 담지될 수 있다. 상기한 함량 범위로 포함시 조촉매 사용에 따른 촉매 활성 개선 효과와 함께 미분 발생 저감 효과를 충분히 얻을 수 있다.
또, 상기 촉매 조성물이 상기한 담체 및 조촉매를 모두 포함하는 경우, 상기 촉매 조성물은 담체에 조촉매 화합물을 담지시키는 단계; 및 상기 담체에 상기 전이금속 화합물을 담지시키는 단계;를 포함하는 제조방법에 의해 제조될 수 있으며, 이떄 상기 전이금속 화합물의 담지는 제1 전이금속 화합물의 담지 후 제2전이금속 화합물의 담지가 수행될 수도 있고, 또는 반대로 수행될 수도 있다. 이와 같은 담지 순서에 따라 결정된 구조를 갖는 담지 촉매는 폴리에틸렌의 제조 공정에서 보다 높은 촉매 활성과 함께, 우수한 공정 안정성을 나타낼 수 있다.
또 상기 촉매 조성물은, 중합 방법에 따라 용매에 슬러리(slurry) 상태로 사용되거나, 희석한 상태로 사용될 수도 있고, 또는 오일 및 그리스의 혼합물에 혼합한 머드 촉매의 형태로 사용될 수 있다.
용매에 슬러리 상태로 사용되거나 희석한 상태로 사용되는 경우, 상기 용매로는 프로필렌 단량체의 중합 공정에 적합한 탄소수 5 내지 12의 지방족 탄화수소 용매, 예를 들면 펜탄, 헥산, 헵탄, 노난, 데칸, 및 이들의 이성질체와 톨루엔, 벤젠과 같은 방향족 탄화수소 용매, 또는 디클로로메탄, 클로로벤젠과 같은 염소원자로 치환된 탄화수소 용매 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 이 경우 상기 촉매 조성물은 상기한 용매를 더 포함할 수 있으며, 또 사용 전 상기 용매에 대해 소량의 알킬알루미늄 처리함으로써 촉매 독으로 작용할 수 있는 소량의 물 또는 공기 등을 제거할 수도 있다.
한편, 상기 중합 공정은 연속식 중합 공정으로 수행될 수 있으며, 예컨대, 연속식 용액 중합 공정, 벌크 중합 공정, 현탁 중합 공정, 슬러리 중합 공정 또는 유화 중합 공정 등 올레핀계 단량체의 중합 반응으로 알려진 다양한 중합 공정이 채용될 수 있다.
구체적으로, 폴리에틸렌 제조를 위한 중합 반응은 하나의 연속식 슬러리 중합 반응기, 또는 루프 슬러리 반응기 등을 이용하여 에틸렌 단량체와 공단량체로서 α-올레핀계 단량체를 공중합 반응을 수행할 수 있다. 다만, 일 구현예의 방법에 따라, 보다 효과적으로 분자량 분포를 조절하기 위하여 연속식 벌크-슬러리 중합 또는 기상 중합으로 올레핀계 단량체를 중합하는 것이 좀더 적절하다. 특히, 상기 중합 반응은 탄화수소계 용매(예를 들어, 헥산, 부탄, 펜탄 등의 지방족 탄화수소계 용매) 내에서 슬러리상 중합으로 진행될 수 있다. 본 발명에 따른 상기 제1 및 제2 전이금속 화합물은 지방족 탄화수소계 용매에 대해서도 우수한 용해도를 나타냄에 따라, 이들이 안정적으로 용해 및 반응계에 공급되어, 상기 중합 반응이 효과적으로 진행될 수 있다.
상기 α-올레핀계 단량체로는 구체적으로, 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-아이토센 등이 사용될 수 있으며, 이중에서도 1-헥센이 사용할 수 있다. 이에, 상기 슬러리 중합에서는, 상기 에틸렌 및 1-헥센을 중합하여 초저밀도 폴리에틸렌을 제조할 수 있다.
한편, 상기 중합 반응시, 반응기 내 α-올레핀계 단량체/에틸렌 단량체의 몰비가 0.25 이상이다.
중합 반응 전 반응기 내로 투입되는 상기 단량체들의 투입 몰비와, 중합 반응 동안 반응기내 존재하는 상기 단량체들의 몰비는 촉매 반응성에 따라 달라질 수 있다. 본 발명에서는 중합 반응 동안에 반응기내 존재(또는 잔류)하는 상기 에틸렌 단량체와 α-올레핀계 단량체의 몰비를 상기한 범위 내로 제어함으로써, 제조되는 공중합체가 상기한 결정 구조 및 물성, 특히 0.916 g/cm 3 이상의 밀도를 나타내어 충분한 stiffness를 나타낼 수 있다. 그러나 α-올레핀계 단량체/에틸렌 단량체의 몰비가 0.25 미만이면, 상기한 결정 구조 및 물성을 갖는 폴리에틸렌의 제조 및 구현이 어렵다. 보다 구체적으로 반응기내 상기 α-올레핀계 단량체/에틸렌 단량체의 몰비는 0.25 이상, 또는 0.26 이상이고, 0.3 이하, 또는 0.28 이하, 또는 0.27 이하일 수 있으며, 이 경우 공중합체의 밀도가 0.916 내지 0.920 g/cm 3 수준을 유지함으로써 보다 우수한 stiffness를 나타낼 수 있다.
한편, 반응기 내 에틸렌 단량체와 α-올레핀계 단량체의 몰비는 gas chromatograph로 각각의 농도를 측정한 후, 이를 이용하여 계산할 수 있다. 그 구체적인 측정 방법은 이하 시험예에서 상세히 설명한다.
또, 상기 중합 반응시 온도는 70 내지 200℃가 될 수 있다. 중합 반응 온도가 70℃ 미만이면 중합 속도 및 생산성이 저하될 우려가 있고, 또 200℃를 초과하면, 반응기 내 파울링 현상이 발생할 우려가 있다. 중합 온도 제어에 따른 상기한 폴리에틸렌의 물성 구현의 용이함 및 공정성을 고려할 때, 상기 중합 반응은 80℃ 이상 150℃ 이하의 온도에서 수행될 수 있다.
또한, 상기 중합 반응시 압력은 최적의 생산성 확보를 위하여 20 내지 50 bar로 될 수 있다. 상기한 범위 내에서 보다 우수한 효율로 폴리에틸렌을 제조할 수 있다. 보다 구체적으로는 20bar 이상이고 40bar 이하의 압력에서 수행될 수 있다.
또, 상기 중합 반응시, 폴리에틸렌의 분자량 및 분자량 분포를 조절하기 위한 목적으로 수소 기체가 투입될 수 있다. 이때, 상기 수소 기체는 중합 초기의 전이금속 화합물의 급격한 반응을 억제하고, 중합반응을 종결하는 역할을 한다. 이에 따라 이러한 수소 기체의 사용 및 사용량의 조절에 의해, 상기한 분자 구조 및 물성을 갖는 폴리에틸렌이 효과적으로 제조될 수 있다.
상기 수소 기체는, 에틸렌 및 α-올레핀을 포함하는 단량체 총 중량에 대하여 10 ppm 이상이고, 200ppm 미만의 양으로 투입될 수 있다.
상기한 조건으로 투입될 때, 제조되는 에틸렌/α-올레핀 중합체가 본 발명에서의 물성적 특징을 구현할 수 있다. 만약 수소 기체의 함량이 10ppm 미만으로 투입되면, 중합반응의 종결이 균일하게 일어나지 않아 원하는 물성을 갖는 폴리에틸렌의 제조가 어려워질 수 있고, 또 200ppm 이상일 경우 종결반응이 지나치게 빨리 일어나 분자량이 지나치게 낮은 폴리에틸렌가 제조될 우려가 있다. 보다 구체적으로는, 상기 수소 기체는 단량체 총 중량에 대하여 10 ppm 이상, 또는 15ppm 이상이고, 180ppm 이하, 또는 150ppm 이하, 또는 100ppm 이하, 또는 50ppm 이하, 또는 30ppm 이하의 양으로 투입될 수 있다.
또, 상기 중합 반응시 트리에틸알루미늄과 같은 트리알킬알루미늄이 선택적으로 더 투입될 수 있다.
중합 반응기내에 수분이나 불순물이 존재하면 촉매의 일부가 분해(decomposition)되게 되는데, 상기한 트리알킬알루미늄은 반응기 내에 존재하는 수분이나 불순물 또는 단량체에 포함된 수분을 사전에 잡아내는 scavenger 역할을 하기 때문에, 제조에 사용되는 촉매의 활성을 극대화할 수 있으며, 그 결과로서 우수한 물성, 특히 좁은 분자량 분포를 갖는 호모 폴리에틸렌을 보다 효율 좋게 제조할 수 있다. 구체적으로 상기 트리알킬알루미늄에 있어서, 알킬은 앞서 정의한 바와 같으며, 구체적으로는 C 1-20의 알킬이고, 보다 구체적으로 메틸, 에틸, 이소부틸 등과 같은 C 1-6의 직쇄 또는 분지쇄 알킬일 수 있다. 상기 트리알킬알루미늄(1M 기준)은 에틸렌 및 α-올레핀을 포함하는 단량체 총 중량에 대해 300 ppm 이상, 또는 400ppm 이상이고, 600ppm 이하, 또는 500ppm 이하의 함량으로 투입될 수 있으며, 이러한 함량 범위의 트리알킬알루미늄의 존재 하에 중합 반응시, 우수한 강도 특성을 갖는 호모 폴리에틸렌을 보다 용이하게 제조할 수 있다.
또, 상기 중합 반응에는 반응 매질 또는 희석제로서 유기 용매가 더 사용될 수 있다. 이러한 유기 용매는 올레핀계 단량체의 함량을 고려하여 슬러리상 중합 등이 적절히 수행될 수 있는 정도의 함량으로 사용될 수 있다.
상기한 바와 같은 제조방법에 의해 제조된 폴리에틸렌은, 저결정성 중합체의 함량 및 분자량 증가로, 개선된 저온 실링 특성을 나타낼 수 있으며, 포장용 필름으로 사용시에는 증가된 핫택 실링 특성을 나타낼 수 있다.
이에 따라 본 발명의 또 다른 일 구현예에 따르면, 상기한 폴리에틸렌을 포함하는 필름, 보다 구체적으로는 고속 포장용 필름이 제공된다.
상기 필름은 상기한 폴리에틸렌을 주성분으로 포함하는 것을 제외하고는 통상의 방법에 따라 제조, 사용될 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다.
<혼성 담지 촉매 제조>
합성예 1
실리카(Grace Davison사 제조 SP952)를 200℃의 온도에서 12 시간 동안 진공을 가한 상태에서 탈수 및 건조하였다.
20L sus 고압 반응기에 톨루엔 용액 3.0kg을 넣고, 상기 건조된 실리카(Grace Davison사 제조 SP952) 1000 g을 투입한 후, 반응기의 온도를 40℃로 올리면서 교반하였다. 실리카를 60분 동안 충분히 분산시킨 후, 10 wt% 메틸알루미녹산(MAO)/톨루엔 용액을 8kg을 투입하고 200rpm으로 12시간 교반하였다. 반응기 온도를 60℃로 올린 후 화학식 1b로 표시되는 화합물 0.01mmol을 용액 상태로 녹인 후 투입하고 2시간 반응 후에, 화학식 2a로 표시되는 화합물 0.01mmol을 용액 상태로 녹인 후 투입한 후 2시간 동안 반응을 추가로 시켰다. 교반을 멈추고 30분동안 settling시킨 후 반응 용액을 decantation한다. 반응기에 헥산 3.0kg을 투입하고 헥산 슬러리를 filter dry로 이송하고 헥산 용액을 필터하였다. 50℃에서 4시간 동안 감압 하에 건조하여 담지 촉매를 제조하였다.
Figure PCTKR2020013170-appb-img-000009
(1b)
Figure PCTKR2020013170-appb-img-000010
(2a)
합성예 2
디에틸에테르(Et 2O) 용매 하에서 tBu-O-(CH 2) 6Cl 화합물과 Mg(0) 간의 반응으로부터 그리냐드(Grignard) 시약인 tBu-O-(CH 2)6MgCl 용액 0.14mol을 얻었다. 여기에 -100℃의 상태에서 MeSiCl 3 화합물(24.7㎖, 0.21mol)을 가하고, 상온에서 3시간 이상 교반시킨 후, 걸러낸 용액을 진공 건조하여 (tBu-O-(CH 2) 6SiMeCl 2의 화합물을 얻었다(수율 84%). -78℃에서 헥산(50㎖)에 녹아있는 tBu-O-(CH 2) 6SiMeCl 2(7.7g, 0.028mol) 용액에 플루오렌일리튬(fluorenyllithium, 4.82g, 0.028mol)/헥산(150㎖) 용액을 2시간에 걸쳐 천천히 가하였다. 흰색 침전물(LiCl)을 걸러내고 헥산으로 원하는 생성물을 추출하여 모든 휘발성 물질을 진공 건조하여 엷은 노란색 오일 형태의 (tBu-O-(CH 2) 6)SiMe(9-C 13H 10)의 화합물을 얻었다(수율 99%).
여기에 THF 용매(50㎖)를 가하고, 상온에서 C 5H 5Li(2.0g, 0.028mol)/THF(50㎖) 용액과 3시간 이상 반응시킨 후, 모든 휘발성 물질들을 진공 건조하고 헥산으로 추출하여 최종 리간드인 오렌지 오일 형태의 (tBu-O-(CH 2) 6)(CH 3)Si(C 5H 5)(9-C 13H 10) 화합물을 얻었다(수율 95%). 리간드의 구조는 1H NMR 을 통해 확인되었다.
또한, -78℃에서 (tBu-O-(CH 2) 6)(CH 3)Si(C 5H 5)(9-C 13H 10)(12g, 0.028mol)/THF(100㏖) 용액에 2 당량의 n-BuLi을 가해 실온으로 올리면서 4시간 이상 반응시켜서 오렌지 고체 형태의 (tBu-O-(CH 2) 6)(CH 3)Si(C 5H 5Li)(9-C 13H 10Li)의 화합물을 얻었다(수율 81%). 또한, -78℃에서 ZrCl 4(1.05g, 4.50mmol)/ether(30㎖)의 서스펜젼(suspension) 용액에 디리튬염(dilithium salt; 2.0g, 4.5mmol)/ether(30㎖) 용액을 천천히 가하고 실온에서 3시간 동안 더 반응시켰다. 모든 휘발성 물질을 진공 건조하고, 얻어진 오일성 액체 물질에 디클로로메탄(dichloromethane) 용매를 가하여 걸러내었다. 걸러낸 용액을 진공 건조한 후, 헥산을 가해 침전물을 유도하였다. 얻어진 침전물을 여러 번 헥산으로 씻어내어 붉은색 고체 형태의 racemic-(tBu-O-(CH 2) 6)(CH 3)Si(C 5H 4)(9-C 13H 9)ZrCl 2 화합물(3)을 얻었다(수율 54%).
이어서, 상기 합성예 1에서 화학식 2a의 화합물 대신에 상기에서 합성한 화합물(3)을 사용하는 것을 제외하고는 상기 합성예 1에서와 동일한 방법으로 수행하여, 화합물(1b)와 화합물(3)이 혼성 담지된 담지 촉매를 제조하였다.
<에틸렌/α-올레핀 공중합체의 제조>
실시예 1
상기에서 제조한 혼성 담지 촉매의 존재 하에, 하기 표 1에 나타낸 바와 같은 조건으로 에틸렌-1-헥센을 슬러리 중합하였다.
이때, 중합 반응기는 이소부탄 슬러리 루프 프로세스(isobutane Slurry loop process)인 연속 중합기로, 반응기 부피는 140L이며, 반응 유속은 약 7m/s로 운전하였다. 중합에 필요한 가스류(에틸렌, 수소) 및 공단량체인 1-헥센은 일정하게 연속적으로 투입되며, 개별적인 유량은 타겟(target) 제품에 맞게 조절하였다. 모든 가스류 및 공단량체인 1-헥센의 농도는 on-line gas chromatograph로 확인하였다. 담지 촉매는 이소부탄 슬러리로 투입되며, 반응기 압력은 약 40 bar로 유지되며, 중합 온도는 약 85℃에서 수행하였다.
실시예 2 내지 4, 및 비교예 1 내지 4
하기 표 1에 기재된 조건으로 변경하는 것을 제외하고는, 상기 실시예 1에서와 동일한 방법으로 수행하여 에틸렌/1-헥센 공중합체를 제조하였다.
비교예 5
상업적으로 입수한 에틸렌/1-헥센 공중합체(Exxon XP8318™, 기상중합)를 사용하였다.
비교예 6
상업적으로 입수한 에틸렌/1-헥센 공중합체(Exxon XP8656ML™, 기상중합)를 사용하였다.
비교예 7
상업적으로 입수한 에틸렌/1-헥센 공중합체(대림 BO1801EN™, 기상중합)를 사용하였다.
실시예 1 실시예 2 실시예 3 실시예 4 비교예 1 비교예 2 비교예 3 비교예 4
촉매 합성예 1 합성예 1 합성예 1 합성예 1 합성예 1 합성예 1 합성예 1 합성예2
촉매 활성*
(kgPE/gCat)
6.0 6.2 6.2 6.4 6.0 6.5 5.8 6.7
중합 공정 슬러리 중합 슬러리 중합 슬러리 중합 슬러리 중합 슬러리 중합 슬러리 중합 슬러리 중합 슬러리 중합
중합 온도(℃) 85 85 85 85 85 85 85 85
H 2 투입량(ppm) 15 15 20 50 5 200 15 20
에틸렌 투입량
(kg/h)
25 25 25 25 25 25 25 25
공단량체 1-헥센 1-헥센 1-헥센 1-헥센 1-헥센 1-헥센 1-헥센 1-헥센
공단량체 투입량(kg/h) 3.0 3.5 3.0 3.0 2.8 3.5 2.5 4.5
공단량체/에틸렌 몰비** 0.25 0.27 0.25 0.26 0.24 0.26 0.20 0.32
* 촉매활성 (kgPE/gCat): 상기 실시예 또는 비교예의 중합 반응에 이용된 촉매(Cat)의 중량과, 중합 반응으로부터 제조된 중합체(PE)의 중량을 각각 측정한 후, 사용한 촉매 중량 대비 제조된 중합체의 중량 비로서 촉매의 활성(activity)을 산출하였다.
** 공단량체/에틸렌 몰비: 상기 표에서 공단량체/에틸렌의 몰비는 중합 반응 동안에 슬러리 반응기내 존재하는 에틸렌에 대한 공단량체(1-헥센)의 몰비로, gas chromatograph를 이용하여 에틸렌 및 1-헥센의 농도를 각각 측정하고, 그 결과로부터 몰비를 계산하였다.
또, 상기 gas chromatograph를 이용한 각 단량체의 농도 측정은, 길이가 50 m, 내경 0.53 ㎜인 에질런트사의 Al 2O 3 KCl 컬럼이 장착된 기체 크로마토그래피 (7890B GC)를 이용하였으며, 캐리어 가스는 12mL/min의 속도로 흐르는 고순도 헬륨이고, 주입구 온도는 200℃이며, 분리 모드(10:1)를 사용하여 주입시켰다.
시험예 1
온도 상승 용리 분별법(TREF) 분석을 통해 용리 온도(Te), 및 저결정성 중합체, 즉 Te 25~30℃에서의 제1준결정질 중합체의 함량을 측정하고, 또 겔 투과 크로마토 그래피 분석을 통해 수평균 분자량(Mn) 및 중량평균 분자량(Mw)을 각각 측정하였다.
(1) TREF 분석
PolymerChar의 TREF 장비를 사용하였으며 1,2,4-트리클로로벤젠을 용매로 하여 20℃ 내지 120℃ 범위에서 측정하였다. 상세하게는, 상기 실시예 또는 비교예서의 폴리에틸렌 30mg을 20ml의 1,2,4-트리클로로벤젠 용매 하에서 135℃에서 30분간 용해시킨 후 95℃에서 30분간 안정화시켜 각각의 샘플을 준비하였다. 준비한 샘플을 TREF 컬럼에 도입한 후, 0.5℃/분의 강온 속도로 20℃까지 냉각 후, 2분간 유지하였다. 그 후 20℃에서 120℃까지 일정한 승온 속도 1℃/min로 가열하면서 용매인 1,2,4-트리클로로벤젠을 0.5 mL/분의 유속으로 컬럼에 흘리면서 용출되는 폴리에틸렌의 농도를 측정하였다.
결과로 수득한 TREF 용출 곡선으로부터, 폴리에틸렌의 용리 온도(Te)를 확인하고, 또, Te 25~30℃에서의 제1준결정질 중합체의 함량을 폴리에틸렌 총 중량을 기준으로 산출하였다(중량%).
(2) GPC 분석
겔 투과 크로마토그래피(GPC)를 이용하여 저결정성 중합체, 즉 Te 25~30℃에서의 준결정질 중합체의 수평균 분자량(Mn) 및 중량평균 분자량(Mw)을 측정하였다.
Polymer Laboratories PLgel MIX-B 300mm 길이 칼럼을 이용하고, Waters PL-GPC220 기기를 이용하여 측정하였다. 이때, 평가 온도는 160℃이며, 1,2,4-트리클로로벤젠을 용매로서 사용하였으며 유속은 1mL/min의 속도로 측정하였다. 샘플은 10mg/10mL의 농도로 조제한 다음, 200 μL 의 양으로 공급하였다. 폴리스티렌 표준을 이용하여 형성된 검정 곡선을 이용하여, Mw 및 Mn 의 값을 유도하였다. 폴리스티렌 표준품의 분자량(g/mol)은 2,000 / 10,000 / 30,000 / 70,000 / 200,000 / 700,000 / 2,000,000 / 4,000,000 / 10,000,000의 9종을 사용하였다.
상기한 분석 결과들을 하기 표 2, 도 1 내지 도 7에 나타내었다.
도 1 내지 도 4는 각각 실시예 1, 및 비교예 5 내지 7에서 제조한 폴리에틸렌에 대한 TREF에 따른 분석 결과를 나타낸 그래프이고, 도 5 내지 도 7은 각각 실시예 1 및 비교예 5, 6에서 제조한 폴리에틸렌에서의 제1준결정질 중합체에 대한 GPC 분석 결과를 나타낸 그래프이다.
실시예 비교예
1 2 3 4 1 2 3 4 5 6 7
Te1 (℃) 28.5 28.1 28.0 28.1 28.0 28.0 28.1 28.1 28.1 28.1 25.1
Te2 (℃) 62.5 62.0 62.6 62.2 63.5 60.2 62.3 - 68.1 67.5 73.9
Te3 (℃) 93.8 93.0 93.7 93.5 94.0 92.8 93.0 87.4 95.8 95.7 85.0
Te4 (℃) - - - - - - - - - - 95.8
Te 25~30℃의 제1준결정질 중합체 함량
(중량%)
12.0 13.0 12.2 12.5 8.0 9.5 6.5 1.2 3.9 4.9 2.1
Mn (g/mol) 70,000 73,000 70,000 70,000 300 305 300 300 302 315 295
Mw (g/mol) 205,000 206,000 204,000 202,000 320 310 310 310 325 329 309
Mw/Mn 2.93 2.95 2.92 2.90 1.07 1.02 1.03 1.03 1.08 1.04 1.05
시험예 2
상기 실시예 및 비교예에서 제조한 에틸렌/α-올레핀 공중합체에 대해 하기의 방법으로 물성을 측정하고, 그 결과를 하기 표 3, 도 8 및 도 11에 나타내었다.
(1) 용융지수 (MI)(g/10min): ASTM D 1238에 의거하여 190℃ 하에서 2.16 kg의 하중으로 용융 지수(MI2.16)를 측정하였으며, 10분 동안 용융되어 나온 중합체의 무게(g)로 나타내었다.
(2) 밀도(Density, g/cm 3): ASTM D1505에 따라 측정하였다.
(3) 용융 온도(Tm), 결정화 온도(Tc) 및 △H (0~130℃): 시차주사열량계(Differential Scanning Calorimeter, DSC)를 이용하여 Tm, Tc 및 △H를 각각 측정하였다.
구체적으로는, 시차주사열량계(DSC)로서, DSC 2920 (TA instrument)를 이용하여 측정 하였다. 상기 실시예 또는 비교예에서의 공중합체를 190℃까지 가열한 후 5분 동안 유지하고, -50℃까지 온도를 내린 후 다시 온도를 증가시켰다. 이때 온도의 상승속도와 하강속도는 각각 10℃/min으로 조절하였다. 용융 온도(Tm)는 두 번째 온도가 상승하는 구간에서 측정한 흡열 피크의 최대 지점으로 하였다.
또, 결정화 온도(Tc)는 상기 용융 온도 측정시와 동일한 방법으로 수행하고, 온도를 감소시키면서 나타나는 곡선으로부터 발열 피크의 최대 지점을 결정화 온도로 하였다.
또, △H는, 상기 용융 온도 측정시와 동일한 방법으로 -50 내지 190℃의 온도 범위에서 DSC를 수행하고, 결과로 수득된 그래프에서 0 내지 130℃의 온도 범위에서 관찰되는 피크에 대한 적분값으로, 융해열(heat of fusion) 값을 확인하였다(단위: J/g).
(4) 수평균 분자량(Mn), 중량평균 분자량(Mw), 분자량 분포(MWD): 겔 투과 크로마토 그래피(GPC)를 이용하여 수 평균 분자량(Mn) 및 중량평균 분자량(Mw)을 각각 측정하고, 중량 평균 분자량을 수 평균 분자량으로 나누어 분자량 분포(Mw/Mn)를 계산하였다.
구체적으로는 Polymer Laboratories PLgel MIX-B 300mm 길이 칼럼을 이용하고, Waters PL-GPC220 기기를 이용하여 측정하였다. 이때, 평가 온도는 160℃이며, 1,2,4-트리클로로벤젠을 용매로서 사용하였으며, 유속은 1mL/min이었다. 중합체 샘플은 10mg/10mL의 농도로 조제한 다음, 200 μL의 양으로 공급하였다. 폴리스티렌 표준을 이용하여 형성된 검정 곡선을 이용하여 Mw 및 Mn 의 값을 유도하였다. 폴리스티렌 표준품의 분자량(g/mol)은 2,000 / 10,000 / 30,000 / 70,000 / 200,000 / 700,000 / 2,000,000 / 4,000,000 / 10,000,000의 9종을 사용하였다.
(5) SCB 평균 개수: 퓨리에 변환 적외 분광법과 결합된 겔 투과 크로마토그래피(GPC-FTIR) 분석을 통해, 공중합체 내 SCB의 개수 및 log Mw가 5.5 이상인 고분자 영역에서의 SCB 개수를 각각 산출하고 평균 값으로 나타내었다.
구체적으로, 상기 실시예 및 비교예에서 제조한 각 공중합체를 상기 4)에서와 동일한 방법으로 겔 투과 크로마토그래피(GPC)로 분석하여, 중량평균 분자량(Mw)의 로그값 (log Mw)을 x축으로 하고, 상기 로그값에 대한 분자량 분포 (dw_dlogM)를 y축으로 하는, 상기 공중합체를 이루는 중합체 사슬들의 분자량 분포 곡선을 도출하였다.
그리고, 각 공중합체를 FT-IR로 분석하여 상기 중합체 사슬들의 중량평균 분자량(x축)에 따른 탄소수 1000 개 당 SCB의 개수 값(오른쪽 y축; SCB per 1000TC)의 분포 곡선을 도출하였다.
이러한 도출 결과로부터, log Mw 5.5 이상의 고분자 영역에서의 중합체 내 탄소수 1000개당 SCB 개수, 및 공중합체내 탄소수 1000개당 SCB 개수를 각각 산출하고, 평균값으로 나타내었다.
실시예 비교예
1 2 3 4 1 2 3 4 5 6 7
밀도 (g/cm 3) 0.918 0.916 0.918 0.918 0.918 0.918 0.921 0.918 0.918 0.916 0.918
MI (g/10min) 1.0 1.0 1.5 2.0 0.4 10.5 1.0 1.0 1.0 0.5 1.0
Tm (℃) 121.5 120.0 120.5 120.2 122.5 119.5 122.0 118.0 122.1 122.7 122.3
Tc (℃) 102.1 101.5 102.0 101.7 105.1 100.0 102.0 105.0 107.4 105.8 63.2/106.4
△H(0~130℃)(J/g) 115.0 105.0 112.0 110.0 118.5 114.0 119.5 114.0 111.9 99.2 141.2
Mn
(g/mol)
43,000 44,000 40,000 38,000 52,000 16,000 41,000 42,000 32,000 34,000 29,000
Mw
(g/mol)
112,000 114,000 110,000 107,000 152,000 48,000 111,000 100,000 110,000 131,000 99,000
MWD 2.65 2.70 2.65 2.60 2.70 2.80 2.75 2.52 3.41 3.82 3.41
SCB 평균 개수 (#1000C) 20.0 21.5 20.5 20.7 18.5 19.0 16.5 17.0 20.4 21.7 17.5
log Mw 5.5 이상의 고분자 영역에서의 SCB 평균 개수 (#1000C) 36.5 38.0 36.7 37.0 32.5 34.0 32.5 11.5 27.4 32.5 26.1
도 8 내지 도 11은 각각 실시예 1, 및 비교예 5 내지 7에서 제조한 폴리에틸렌에 대한 GPC-FTIR 분석 결과로 수득한, 폴리에틸렌 분자량에 따른 SCB 함량을 나타내는 그래프이다.
도 8 내지 도 11을 비교하면, 실시예 1의 경우, 초고분자량의 영역에서의 SCB 함량이 높고, 결과로서 저결정 함량이 높고, 또한 저결정이 고분자량을 가짐을 확인할 수 있다.
상기한 실험 결과들로부터, 실시예 1 및 2의 경우, 동등 수준의 MI 및 밀도를 가지는 비교예 4, 5 및 7의 공중합체들과 비교하여 초고분자량 영역에서 SCB 함량이 높은 것을 확인할 수 있으며, 이로부터 우수한 저온 실링 강도 특성을 나타냄을 예상할 수 있다.
시험예 3
상기 실시예 및 비교예에서 제조한 에틸렌/1-헥센 공중합체에 대해, J&B hot tack tester(Hot tacker 4000)를 사용하여 ASTM F1921 측정법에 따라, 실링 개시 온도(Seal initiation temperature; SIT) 및 저온 실링 강도로서 핫택 강도(Hot-tack Strength (N/25mm))를 측정하고, 그 결과를 표 4 및 도 12에 나타내었다.
<측정조건>
압력: 0.275 N/mm 2
실링시간: 0.5 sec
냉각시간: 0.1 sec
박리속도: 200 mm/s
폭: 25 mm
두께: 50~60㎛
실시예 비교예
1 2 3 4 1 2 3 4 5 6 7
SIT(℃), 2N 90.0 87.0 89.0 87.0 97.0 95.0 100.1 115.0 107.5 98.0 120.0
Hot-tack Strength (N/25mm) 90℃ 2.0 2.5 2.1 2.5 - - - - - - -
95℃ 3.0 3.2 3.0 3.0 1.5 2.0 - - - 1.5 -
100℃ 3.2 3.8 3.1 3.3 2.3 2.3 2.0 - 1.1 2.6 -
상기 표 4에서 "-"는 측정하지 않았음을 의미한다.
도 12는 실시예 1, 및 비교예 5 내지 7에서 에서 제조한 폴리에틸렌에 대한 저온 실링 강도를 측정한 결과를 나타낸 그래프이다.
실험결과, 실시예 1 및 2의 경우, 비교예들과 비교하여 2N 조건에서의 실링개시온도(SIT)가 90℃ 이하로 낮고, 또 넓은 용융 온도에서 높은 실링 강도를 나타내었다.

Claims (18)

  1. 에틸렌 반복 단위와, α-올레핀계 반복 단위를 포함하며,
    ASTM D1505에 따라 측정한 밀도가 0.916 g/cm 3 이상이고,
    온도 상승 용리 분별법으로 분석시, 20 내지 120℃ 온도 범위에서 제1 내지 제3 준결정질 중합체의 용리 온도에 각각 대응하는 Te1, Te2 및 Te3의 3개의 용리 온도를 나타내며, 상기 Te2는 Te3 보다 온도가 낮고 Te1 보다 온도가 높으며,
    상기 Te1은 25 내지 30℃이고,
    상기 제1준결정질 중합체는 중량평균 분자량이 200,000 g/mol 이상이고, 폴리에틸렌 총 중량을 기준으로 5중량% 이상의 함량으로 포함되는, 폴리에틸렌.
  2. 제1항에 있어서,
    상기 제1준결정질 중합체는 중량평균 분자량이 200,000 내지 500,000 g/mol이고, 폴리에틸렌 총 중량을 기준으로 10 내지 20중량%로 포함되는, 폴리에틸렌.
  3. 제1항에 있어서,
    상기 Te2는 40 내지 65℃이고, Te3 은 80 내지 100℃인, 폴리에틸렌.
  4. 제1항에 있어서,
    상기 폴리에틸렌은, 퓨리에 변환 적외 분광법과 결합된 겔 투과 크로마토그래피 분석시, log Mw가 5.5 이상인 고분자 영역에서의 중합체 내 탄소 1000 개당 단쇄 분지의 평균 개수가, 35개 이상인, 폴리에틸렌.
  5. 제1항에 있어서,
    상기 폴리에틸렌내 탄소 1000 개당 단쇄 분지의 평균 개수가 18 내지 22개인, 폴리에틸렌.
  6. 제1항에 있어서,
    상기 폴리에틸렌은 분자량 분포가 3 이하인, 폴리에틸렌.
  7. 제1항에 있어서,
    상기 폴리에틸렌은 수평균 분자량이 35,000 내지 50,000 g/mol이고, 중량평균 분자량이 100,000 내지 130,000 g/mol인, 폴리에틸렌.
  8. 제1항에 있어서,
    상기 폴리에틸렌은, 하기 (i) 내지 (v)의 조건 중 1 이상을 충족하는, 폴리에틸렌:
    (i) ASTM D-1238에 따라 190℃ 및 2.16kg 하중의 조건에서 측정한 용융지수: 0.8 내지 2 g/10min,
    (ii) 용융온도: 120 내지 125℃,
    (iii) 결정화 온도: 100 내지 110℃,
    (iv) 0 내지 130℃ 온도 범위에서의 융해열: 99.5 내지 120 J/g, 및
    (v) ASTM F1921 측정법에 따라 2N 조건에서의 실링 개시 온도가 95℃ 이하이고, 100℃에서의 핫택 강도가 3.0N 이상임.
  9. 제1항에 있어서,
    상기 α-올레핀은 1-부텐, 1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센 또는 이들의 혼합물을 포함하는, 폴리에틸렌.
  10. 제9항에 있어서,
    상기 α-올레핀은 1-헥센인, 폴리에틸렌.
  11. 하기 화학식 1로 표시되는 제 1 전이금속 화합물 및 하기 화학식 2로 표시되는 제 2 전이금속 화합물을 포함하는 촉매 조성물의 존재 하에, 반응기 내로 수소 기체를 투입하며 에틸렌 단량체 및 탄소수 3 이상의 α-올레핀계 단량체를 중합 반응시키는 단계를 포함하며,
    상기 수소 기체가, 에틸렌 단량체 및 탄소수 3 이상의 α-올레핀계 단량체를 포함하는 단량체 총 중량에 대하여 10 ppm 이상 200ppm 미만의 양으로 투입되고,
    상기 중합 반응시, 반응기 내 존재하는 에틸렌 단량체에 대한 α-올레핀계 단량체의 몰비가 0.25 이상인, 제1항에 따른 폴리에틸렌의 제조방법:
    [화학식 1]
    Figure PCTKR2020013170-appb-img-000011
    상기 화학식 1에서,
    R 1 및 R 2는 각각 독립적으로 수소, 할로겐, C 1-20 알킬, C 2-20 알케닐, C 1-20 알콕시, C 2-20 알콕시알킬, C 6-20 아릴, C 7-20 알킬아릴, 또는 C 7-20 아릴알킬이고,
    X 1 및 X 2는 각각 독립적으로 할로겐 또는 C 1-20 알킬이고,
    [화학식 2]
    Figure PCTKR2020013170-appb-img-000012
    상기 화학식 2에서,
    R 3 및 R 4는 각각 독립적으로 수소, 할로겐, C 1-20 알킬, C 2-20 알케닐, C 1-20 알콕시, C 2-20 알콕시알킬, C 6-20 아릴, C 7-20 알킬아릴, 또는 C 7-20 아릴알킬이고,
    X 3 및 X 4는 각각 독립적으로 할로겐 또는 C 1-20 알킬이다.
  12. 제11항에 있어서,
    상기 R 1 및 R 2는 각각 독립적으로 C 4-12 직쇄 알킬; 또는 tert-부톡시로 치환된 C 5-9 직쇄 알킬인, 제조방법.
  13. 제11항에 있어서,
    상기 R 3 및 R 4는 각각 독립적으로 C 3-12 직쇄 알킬이고,
    X 3 및 X 4는 각각 독립적으로 C 1-4 직쇄 알킬인, 제조방법.
  14. 제11항에 있어서,
    상기 제1 전이금속 화합물은 하기 화학식 1a 또는 화학식 1b로 표시되는 화합물인, 제조방법:
    [화학식 1a]
    Figure PCTKR2020013170-appb-img-000013
    [화학식 1b]
    Figure PCTKR2020013170-appb-img-000014
    .
  15. 제11항에 있어서,
    상기 제2 전이금속 화합물은 하기 화학식 2a 또는 화학식 2b로 표시되는 화합물인, 제조방법:
    [화학식 2a]
    Figure PCTKR2020013170-appb-img-000015
    [화학식 2b]
    Figure PCTKR2020013170-appb-img-000016
    .
  16. 제11항에 있어서,
    상기 제 1 전이금속 화합물과 제 2 전이금속 화합물은 1:0.3 내지 1:3.5의 몰비로 포함되는, 제조방법.
  17. 제11항에 있어서,
    상기 촉매 조성물은 담체 및 조촉매 중 1종 이상을 더 포함하는, 제조방법.
  18. 제1항 내지 제10항 중 어느 한 항에 따른 폴리에틸렌을 포함하는 필름.
PCT/KR2020/013170 2019-10-11 2020-09-28 폴리에틸렌 및 이의 제조방법 WO2021071154A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/292,503 US20220017665A1 (en) 2019-10-11 2020-09-28 Polyethylene and Method for Preparing the Same
CN202080006422.3A CN113166321B (zh) 2019-10-11 2020-09-28 聚乙烯及其制备方法
JP2021525642A JP7217070B2 (ja) 2019-10-11 2020-09-28 ポリエチレンおよびその製造方法
EP20874834.3A EP3868798A4 (en) 2019-10-11 2020-09-28 Polyethylene and preparation method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0126480 2019-10-11
KR20190126480 2019-10-11
KR10-2020-0125237 2020-09-25
KR1020200125237A KR102616697B1 (ko) 2019-10-11 2020-09-25 폴리에틸렌 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2021071154A1 true WO2021071154A1 (ko) 2021-04-15

Family

ID=75437325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/013170 WO2021071154A1 (ko) 2019-10-11 2020-09-28 폴리에틸렌 및 이의 제조방법

Country Status (1)

Country Link
WO (1) WO2021071154A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08325333A (ja) * 1995-03-28 1996-12-10 Nippon Petrochem Co Ltd エチレン・α−オレフィン共重合体
US5914289A (en) 1996-02-19 1999-06-22 Fina Research, S.A. Supported metallocene-alumoxane catalysts for the preparation of polyethylene having a broad monomodal molecular weight distribution
KR100414934B1 (ko) * 1998-06-19 2004-01-13 니혼폴리올레핀 가부시키가이샤 에틸렌·α-올레핀공중합체, 그 조성물 및 그 필름 및그들을 이용한 용도
KR20040076965A (ko) 2003-02-27 2004-09-04 호남석유화학 주식회사 올레핀 중합용 담지 다중핵 메탈로센 촉매 및 이의 제조방법
JP2015113282A (ja) * 2013-12-09 2015-06-22 広栄化学工業株式会社 ハフニウム化合物とジルコニウム化合物の混合組成物およびその製造方法
KR20160115704A (ko) * 2015-03-26 2016-10-06 주식회사 엘지화학 올레핀계 중합체
KR20180052422A (ko) * 2016-11-10 2018-05-18 주식회사 엘지화학 결정 특성 및 분자량 분포가 조절된 올레핀계 공중합체

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08325333A (ja) * 1995-03-28 1996-12-10 Nippon Petrochem Co Ltd エチレン・α−オレフィン共重合体
US5914289A (en) 1996-02-19 1999-06-22 Fina Research, S.A. Supported metallocene-alumoxane catalysts for the preparation of polyethylene having a broad monomodal molecular weight distribution
KR100414934B1 (ko) * 1998-06-19 2004-01-13 니혼폴리올레핀 가부시키가이샤 에틸렌·α-올레핀공중합체, 그 조성물 및 그 필름 및그들을 이용한 용도
KR20040076965A (ko) 2003-02-27 2004-09-04 호남석유화학 주식회사 올레핀 중합용 담지 다중핵 메탈로센 촉매 및 이의 제조방법
JP2015113282A (ja) * 2013-12-09 2015-06-22 広栄化学工業株式会社 ハフニウム化合物とジルコニウム化合物の混合組成物およびその製造方法
KR20160115704A (ko) * 2015-03-26 2016-10-06 주식회사 엘지화학 올레핀계 중합체
KR20180052422A (ko) * 2016-11-10 2018-05-18 주식회사 엘지화학 결정 특성 및 분자량 분포가 조절된 올레핀계 공중합체

Similar Documents

Publication Publication Date Title
WO2019125050A1 (ko) 올레핀계 중합체
WO2019212303A1 (ko) 에틸렌/알파-올레핀 공중합체 및 이의 제조방법
WO2010128826A2 (ko) 올레핀계 중합체 및 이를 포함하는 섬유
WO2017099491A1 (ko) 올레핀계 중합체
WO2021040139A1 (ko) 올레핀계 공중합체 및 이의 제조방법
WO2019132475A1 (ko) 올레핀계 중합체
WO2019212308A1 (ko) 에틸렌/알파-올레핀 공중합체 및 이의 제조방법
WO2020171631A1 (ko) 올레핀계 중합체
WO2019194547A1 (ko) 폴리올레핀 수지 조성물 및 이의 제조방법
WO2019212310A1 (ko) 에틸렌/알파-올레핀 공중합체를 포함하는 접착제 조성물
WO2017003261A1 (ko) 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2019212304A1 (ko) 에틸렌/알파-올레핀 공중합체 및 이의 제조방법
WO2020171625A1 (ko) 우수한 물성의 가교 폴리에틸렌 파이프
WO2021075788A1 (ko) 올레핀 중합용 혼성 촉매의 제조방법, 올레핀 중합용 혼성 촉매 및 올레핀계 중합체
WO2021071154A1 (ko) 폴리에틸렌 및 이의 제조방법
WO2023191519A1 (ko) 올레핀 중합 촉매용 전이금속 화합물, 이를 포함하는 올레핀 중합 촉매 및 이를 이용하여 중합된 폴리올레핀
WO2020171624A1 (ko) 고가교도를 갖는 폴리에틸렌 및 이를 포함하는 가교 폴리에틸렌 파이프
WO2016153275A1 (ko) 올레핀계 중합체
WO2022108233A1 (ko) 올레핀계 중합체, 그로부터 제조된 필름 및 그 제조방법
WO2021066490A1 (ko) 올레핀계 중합체
WO2021066486A1 (ko) 올레핀계 중합체
WO2020122561A1 (ko) 폴리에틸렌 및 이의 염소화 폴리에틸렌
WO2019212302A1 (ko) 올레핀계 공중합체 및 이의 제조방법
WO2020046051A1 (ko) 폴리에틸렌 및 이의 염소화 폴리에틸렌
WO2021060907A1 (ko) 폴리에틸렌 및 이의 염소화 폴리에틸렌

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021525642

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20874834

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020874834

Country of ref document: EP

Effective date: 20210520

NENP Non-entry into the national phase

Ref country code: DE