WO2021070403A1 - 直流電源装置及びサーボdc給電システム - Google Patents

直流電源装置及びサーボdc給電システム Download PDF

Info

Publication number
WO2021070403A1
WO2021070403A1 PCT/JP2020/009399 JP2020009399W WO2021070403A1 WO 2021070403 A1 WO2021070403 A1 WO 2021070403A1 JP 2020009399 W JP2020009399 W JP 2020009399W WO 2021070403 A1 WO2021070403 A1 WO 2021070403A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
circuit
supply device
voltage
power line
Prior art date
Application number
PCT/JP2020/009399
Other languages
English (en)
French (fr)
Inventor
岳 桐淵
俊行 財津
岳史 蘆田
昌志 土井
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to US17/764,942 priority Critical patent/US11967892B2/en
Priority to CN202080066643.XA priority patent/CN114467246A/zh
Priority to DE112020004867.5T priority patent/DE112020004867T5/de
Publication of WO2021070403A1 publication Critical patent/WO2021070403A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/15Arrangements for reducing ripples from dc input or output using active elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/06Two-wire systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/008Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present invention relates to a DC power supply device and a servo DC power supply system.
  • a device (hereinafter referred to as a motor control device) in which the converter is removed from the servo driver is placed near each motor, and a configuration is adopted in which power is supplied to each motor control device from one DC power supply device via a DC bus. If this is done, the above problem can be prevented from occurring. However, in a system adopting this configuration, the LC circuit on the DC bus side and the motor control device side may interfere with each other to oscillate the voltage of the DC bus (see, for example, Non-Patent Document 1).
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a technique capable of suppressing oscillation of a voltage in a power supply path that supplies power to one or more motor control devices.
  • the DC power supply device detects a power supply unit that outputs DC and a DC voltage fluctuation or current fluctuation output from the power supply unit, and based on the detection result, the DC voltage fluctuation or current. It is provided with a filter circuit that adjusts the impedance of its own circuit so that fluctuations are suppressed.
  • the impedance on the motor side (the part consisting of the inverter circuit and the servo motor) is smaller than the impedance on the power supply side (power supply line side). It happens in some cases.
  • the DC power supply device includes a filter circuit that adjusts the impedance of its own circuit (own filter circuit) so that fluctuations in the output DC voltage are suppressed. Therefore, if this DC power supply device is used, it is possible to suppress the oscillation of the voltage of the power supply path for supplying power to one or more motor control devices.
  • the specific circuit configuration of the filter circuit in the DC power supply device is not particularly limited.
  • the filter circuit includes a series connection of a capacitor and a variable resistance arranged between a positive power line and a negative power line from the power supply unit (for example, a circuit that converts alternating current to direct current), and the variable resistance.
  • a control unit that controls the resistance value of the DC voltage fluctuation so as to be suppressed based on the detection result of the voltage fluctuation of the positive side power line or the negative side power line may be provided.
  • the filter circuit detects the voltage fluctuation of the positive side power line or the negative side power line by detecting the variable resistance inserted into the positive side power line or the negative side power line from the power supply unit and the resistance value of the variable resistance. Based on the result, a control unit that controls the DC voltage fluctuation so as to be suppressed may be provided.
  • the variable resistor of each filter circuit having this configuration may be a transistor controlled by the control unit to operate in the active region.
  • FIG. 1 is an explanatory diagram of a schematic configuration of a servo DC power supply system according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram of a schematic configuration of a motor control device in a servo DC power feeding system.
  • FIG. 3 is an explanatory diagram of a schematic configuration of a DC power supply device used in a servo DC power supply system.
  • FIG. 4 is an explanatory diagram of an equivalent circuit of the servo DC power supply system.
  • FIG. 5 is a diagram for explaining an unstable region of the equivalent circuit shown in FIG.
  • FIG. 6 is a diagram for explaining the function of the filter circuit.
  • FIG. 7 is an explanatory diagram of another configuration example of the filter circuit.
  • FIG. 1 shows a schematic configuration of a servo DC power supply system according to an embodiment of the present invention
  • FIG. 2 shows a schematic configuration of a motor control device 10 included in the servo DC power supply system.
  • the servo DC power supply system is a system in which the DC power supply device 30 and the plurality of motor control devices 10 are connected by a power supply path 35.
  • the DC power supply device 30 is a power supply that outputs a predetermined DC voltage. Details of the DC power supply device 30 will be described later.
  • the motor control device 10 is a device that controls the servomotor 40 (hereinafter, also simply referred to as the motor 40) in accordance with commands (position command, speed command, etc.) from a higher-level device such as a PLC (Programmable Logic Controller). As shown in FIG. 2, the motor control device 10 includes an inverter circuit 11 and a control unit 12.
  • the inverter circuit 11 is a circuit for converting a DC voltage from a DC power supply device 30 input via a power supply path 35 into a three-phase alternating current.
  • the inverter circuit 11 has a configuration in which a U-phase leg, a V-phase leg, and a W-phase leg are connected in parallel between the positive side power line and the negative side power line, and is a motor control device.
  • a current sensor 28 for measuring the output current of each leg of the inverter circuit 11 is provided in 10.
  • the control unit 12 is a unit that controls the inverter circuit 11 by PWM (Pulse Width Modulation) according to a command from a host device (PLC or the like).
  • the control unit 12 is composed of a processor (microcontroller, CPU, etc.) and its peripheral circuits.
  • the control unit 12 contains signals from each current sensor 28 and an encoder 41 (absolute encoder or incremental encoder) attached to the motor 40. A signal or the like from the encoder) is input.
  • the power supply path 35 (FIG. 1) is a power supply path in which a plurality of power cables are combined so that the electric power (current) from the DC power supply device 30 can be distributed and supplied to each motor control device 10 in the servo DC power supply system. .. As shown in FIG. 1, a smoothing capacitor 18 is usually provided at a connection portion (between the power supply terminals of each motor control device 10) of the power supply path 35 with each motor control device 10.
  • FIG. 3 shows a schematic configuration of the DC power supply device 30 used in the servo DC power supply system according to the present embodiment.
  • the DC power supply device 30 includes a power supply unit 31 and a filter circuit 32.
  • the power supply unit 31 is a unit that outputs a predetermined DC voltage.
  • FIG. 3 shows a unit that converts three-phase AC from the three-phase AC power supply 50 into DC voltage as the power supply unit 31, but the power supply unit 31 is a unit that converts single-phase AC into DC voltage. You may.
  • the power supply unit 31 may be a rectifier circuit in which a diode is combined (for example, a full-wave rectifier circuit) or an AC-DC converter (for example, a power supply regeneration converter) in which a switching element is used.
  • the power supply unit 31 may be a secondary battery.
  • the filter circuit 32 is a circuit that stabilizes and outputs the direct current input to the own filter circuit 32.
  • the filter circuit 32 includes a series connection of a capacitor 23 and a transistor 24 arranged between a power line 33p on the plus side and a power line 33m on the minus side from the power supply unit 31, and a vibration voltage detection circuit 21. And a drive circuit 22.
  • the drive circuit 22 is a circuit that applies a voltage to the gate of the transistor 24 so that the transistor 24 operates in the active region (linear region) in response to the control signal from the vibration voltage detection circuit 21.
  • the vibration voltage detection circuit 21 detects a voltage fluctuation (voltage change amount within a predetermined time) of the power line 33p, and when a voltage fluctuation equal to or higher than a predetermined threshold value is detected, the resistance of the transistor 24 increases. This is a circuit for changing the level of the control signal to the drive circuit 22.
  • the vibration voltage detection circuit 21 has a function of changing the level of the control signal to the drive circuit 22 according to an instruction from the host device, and a state in which it can be considered that there is no voltage fluctuation of the power line 33p continues for a specified time. It also has a function of changing the level of the control signal to the drive circuit 22 in the direction in which the resistance of the transistor 24 decreases.
  • the servo DC power supply system according to this embodiment has the configuration described above. Therefore, according to the servo DC power supply system, it is possible to suppress the oscillation of the voltage of the power supply path 35.
  • the impedance on the motor side (the portion composed of the plurality of motor control devices 10 and the plurality of motors 40) is expressed as Zm, as shown in FIG. It can be represented by an equivalent circuit.
  • L 1 is the inductance of the power supply path 35
  • r L is the series resistance of L 1.
  • C 1 is the combined capacitance of the capacitance of the power supply path 35 and the capacitance of the smoothing capacitor 18, and r C is the series resistance of C 1.
  • the filter circuit 32 is provided in the subsequent stage of the power supply unit 31 of the DC power supply device 30 (FIG. 3) of the servo DC power supply system.
  • the filter circuit 32 has a configuration in which the resistance of the transistor 24 is controlled by the vibration voltage detection circuit 21 to a resistance at which the voltage of the power supply path 35 does not become unstable. Therefore, in the servo DC power supply system according to the present embodiment, as schematically shown in FIG. 6, the Zoo -peak value is higher than that in the system in which the DC power supply device without the filter circuit 32 is used. It can be lowered. As a result, the voltage of the power supply path 35 is prevented from becoming unstable (oscillating).
  • the above-mentioned servo DC power supply system and DC power supply device 30 can be modified in various ways.
  • the power supply path 35 of the servo DC power supply system is shown in FIG. 1 if the power (current) from the DC power supply device 30 can be supplied to all the motor control devices 10 in the servo DC power supply system. It may have a configuration different from that of.
  • the filter circuit 32 in the DC power supply device 30 may be a circuit capable of adjusting the impedance of the own filter circuit 32 so that the voltage fluctuation of the power supply path 35 is suppressed. Therefore, instead of the transistor 24 of the filter circuit 32 (FIG.
  • a plurality of resistors and a selector for inserting one of these resistors between one end of the capacitor 23 and the power line 33 m on the minus side are provided. You may. Further, instead of the capacitor 23 and the transistor 24 of the filter circuit 32, a variable capacitor capable of electrically controlling the capacitance may be used.
  • the filter circuit 32 includes a circuit having the configuration shown in FIG. 7, that is, a transistor 24 inserted in the power line 33p on the positive side, a vibration voltage detection circuit 21 for controlling the resistance of the transistor 24, and a drive circuit 22.
  • the circuit may be adopted.
  • the filter circuit 32 having the configuration shown in FIG. 7 may be transformed into one in which the transistor 24 is inserted in the power line 33m on the minus side.
  • the circuit vibration voltage detection circuit 21 may be a circuit for detecting voltage fluctuations of the power line 33p.
  • the filter circuit 32 detects the current fluctuation of the power supply path 35 and suppresses the current fluctuation so that the impedance of the own circuit is suppressed. It may be a circuit for adjusting.
  • the filter circuit 32 may be a circuit in which the threshold value can be set from the outside, and the servo DC power supply system may be transformed into a system operated while adjusting the threshold value set in the filter circuit.
  • Appendix 1 Power supply unit (31) that outputs to direct current and A filter circuit (32) that detects DC voltage fluctuations or current fluctuations output from the power supply unit and adjusts the impedance of its own circuit so that the DC voltage fluctuations or current fluctuations are suppressed based on the detection results. )When, DC power supply device (10).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Power Conversion In General (AREA)
  • Dc-Dc Converters (AREA)

Abstract

モータ制御装置への電力供給路の電圧発振を抑制できる直流電源装置を提供する。直流電源装置は、直流に出力する電源部(AC/DCコンバータ等)と、電源部からの出力される直流の電圧変動を検知し、検知結果に基づき、前記直流の電圧変動が抑制されるように、自回路のインピーダンスを調整するフィルタ回路と、を備える。

Description

直流電源装置及びサーボDC給電システム
 本発明は、直流電源装置とサーボDC給電システムとに関する。
 工場等では、複数の電動機が、離れた場所に配置された複数のサーボドライバにてPWM駆動されるシステム(ロボットとその制御装置とで構成されたシステム等)が使用されている。そのようなシステムには、電動機・サーボドライバ間の長いケーブルからの放射ノイズを低減するために、スイッチングスピードを速くできない、電動機・サーボドライバ間の接続に多数のケーブルが必要とされる、といった問題がある。
 各電動機の近傍に、サーボドライバからコンバータを除去した装置(以下、モータ制御装置と表記する)を配置し、1つの直流電源装置からDCバスにて各モータ制御装置に電力を供給する構成を採用しておけば、上記問題が発生しないようにすることが出来る。ただし、この構成を採用したシステムでは、DCバス側のLC回路とモータ制御装置側とが干渉してDCバスの電圧が発振する場合がある(例えば、非特許文献1参照)。
横尾 真志, 近藤 圭一郎,「直流電気鉄道車両におけるベクトル制御された誘導電動機駆動システムのダンピング制御系設計法」、電気学会論文誌D,Vol. 135 No.6 pp.622-631(2015)
 本発明は、上記問題に鑑みなされたものであり、1つ以上のモータ制御装置に電力を供給する電力供給路の電圧の発振を抑制できる技術を提供することを目的とする。
 本発明の一観点に係る直流電源装置は、直流に出力する電源部と、前記電源部から出力される直流の電圧変動又は電流変動を検知し、検知結果に基づき、前記直流の電圧変動又は電流変動が抑制されるように、自回路のインピーダンスを調整するフィルタ回路と、を備える。
 1つ以上のモータ制御装置に電力を供給する電力供給路の電圧の発振は、モータ側(インバータ回路とサーボモータとからなる部分)のインピーダンスが、電源側(電力供給路側)のインピーダンスよりも小さい場合に生じるものである。直流電源装置は、出力される直流の電圧変動が抑制されるように、自回路(自フィルタ回路)のインピーダンスを調整するフィルタ回路を備えている。従って、この直流電源装置を用いておけば、1つ以上のモータ制御装置へ電力を供給するための電力供給路の電圧の発振を抑制することができる。
 直流電源装置内のフィルタ回路の具体的な回路構成は、特に限定されない。フィルタ回路は、前記電源部(例えば、交流を直流に変換する回路)からのプラス側の電力線とマイナス側の電力線との間に配置された、コンデンサと可変抵抗の直列接続体と、前記可変抵抗の抵抗値を、前記プラス側の電力線又は前記マイナス側の電力線の電圧変動の検知結果に基づき、前記直流の電圧変動が抑制されるように制御する制御部と、を備えていても良い。フィルタ回路は、前記電源部からのプラス側の電力線又はマイナス側の電力線に挿入された可変抵抗と、前記可変抵抗の抵抗値を、前記プラス側の電力線又は前記マイナス側の電力線の電圧変動の検知結果に基づき、前記直流の電圧変動が抑制されるように制御する制御部と、を備えても良い。また、この構成を有する各フィルタ回路の可変抵抗は、前記制御部により能動領域で動作するよう制御されるトランジスタであっても良い。
 本発明によれば、1つ以上のモータ制御装置へ電力を供給する電力供給路の電圧発振を抑制することができる。
図1は、本発明の一実施形態に係るサーボDC給電システムの概略構成の説明図である。 図2は、サーボDC給電システム内のモータ制御装置の概略構成の説明図である。 図3は、サーボDC給電システムに用いられている直流電源装置の概略構成の説明図である。 図4は、サーボDC給電システムの等価回路の説明図である。 図5は、図4に示した等価回路の不安定となる領域を説明するための図である。 図6は、フィルタ回路の機能を説明するための図である。 図7は、フィルタ回路の他の構成例の説明図である。
 以下、図面を参照して本発明の実施の形態について説明する。
 図1に、本発明の一実施形態に係るサーボDC給電システムの概略構成を示し、図2に、サーボDC給電システムに含まれるモータ制御装置10の概略構成を示す。
 図1に示してあるように、本実施形態に係るサーボDC給電システムは、直流電源装置30と複数のモータ制御装置10との間を、電力供給路35にて接続したシステムである。
 直流電源装置30は、所定の直流電圧を出力する電源である。この直流電源装置30の詳細については後述する。
 モータ制御装置10は、PLC(Programmable Logic Controller)等の上位装置からの指令(位置指令、速度指令等)に従って、サーボモータ40(以下、単に、モータ40とも表記する)を制御する装置である。図2に示してあるように、モータ制御装置10は、インバータ回路11と制御部12とを備えている。
 インバータ回路11は、電力供給路35を介して入力される直流電源装置30からの直流電圧を三相交流に変換するための回路である。インバータ回路11は、プラス側の電力線とマイナス側の電力線との間に、U相用のレグ、V相用のレグ及びW相用のレグを並列接続した構成を有しており、モータ制御装置10には、インバータ回路11の各レグの出力電流を測定するための電流センサ28が設けられている。
 制御部12は、上位装置(PLC等)からの指令に従って、インバータ回路11をPWM(Pulse Width Modulation)制御するユニットである。制御部12は、プロセッサ(マイクロコントローラ、CPU等)とその周辺回路とから構成されており、制御部12は、各電流センサ28からの信号、モータ40に取り付けられたエンコーダ41(アブソリュートエンコーダやインクリメンタルエンコーダ)からの信号等が入力されている。
 電力供給路35(図1)は、直流電源装置30からの電力(電流)を、サーボDC給電システム内の各モータ制御装置10に分配供給できるように複数の電力ケーブルを組み合わせた給電路である。図1に示してあるように、電力供給路35の各モータ制御装置10との接続部分(各モータ制御装置10の電源端子間)には、通常、平滑コンデンサ18が設けられる。
 図3に、本実施形態に係るサーボDC給電システムに用いられている直流電源装置30の概略構成を示す。図示してあるように、直流電源装置30は、電源部31とフィルタ回路32とを備える。
 電源部31は、所定の直流電圧を出力するユニットである。図3には、電源部31として、三相交流電源50からの三相交流を直流電圧に変換するユニットを示してあるが、電源部31は、単相交流を直流電圧に変換するユニットであっても良い。また、電源部31は、ダイオードを組み合わせた整流回路(例えば、全波整流回路)であっても、スイッチング素子が用いられたAC-DCコンバータ(例えば、電源回生コンバータ)であっても良い。さらに、電源部31は、二次電池であっても良い。
 フィルタ回路32は、自フィルタ回路32に入力される直流を安定化して出力する回路である。図示してあるように、フィルタ回路32は、電源部31からのプラス側の電力線33p及びマイナス側の電力線33m間に配置された、コンデンサ23とトランジスタ24の直列接続体と、振動電圧検出回路21と駆動回路22とを備える。
 駆動回路22は、振動電圧検出回路21からの制御信号に応じた、トランジスタ24が能動領域(線形領域)で動作することになる電圧をトランジスタ24のゲートに印加する回路である。
 振動電圧検出回路21は、電力線33pの電圧変動(所定時間内の電圧変化量)を検出し、予め定められている閾値以上の電圧変動を検出したときに、トランジスタ24の抵抗が上昇する方向に駆動回路22への制御信号のレベルを変更する回路である。なお、振動電圧検出回路21は、上位装置からの指示に従って、駆動回路22への制御信号のレベルを変更する機能、及び、電力線33pの電圧変動が無いとみなせる状態が規定時間継続した場合に、トランジスタ24の抵抗が下降する方向に駆動回路22への制御信号のレベルを変更する機能も有している。
 本実施形態に係るサーボDC給電システムは、以上、説明した構成を有している。従って、サーボDC給電システムによれば、電力供給路35の電圧の発振を抑制することが出来る。
 具体的には、図1に示したような構成のサーボDC給電システムは、モータ側(複数のモータ制御装置10と複数のモータ40からなる部分)のインピーダンスをZmと表記すると、図4に示した等価回路で表すことが出来る。
 なお、この図4において、Lは、電力供給路35のインダクタンス、rは、Lの直列抵抗である。また、Cは、電力供給路35のキャパシタンスと平滑コンデンサ18のキャパシタンスの合成キャパシタンス、rは、Cの直列抵抗である。
 この等価回路(図4)における電源側の出力インピーダンスのピーク値Zo-peakは、以下の式により表される。
Figure JPOXMLDOC01-appb-M000001
 そして、図5に模式的に示してあるように、“Zo-peak>Zm”が成立する場合に、電力供給路35の電圧が不安定となる。従って、Zo-peak値を減少させれば、電力供給路35の電圧が不安定になること(発振すること)を抑止することができる。
 上記したように、サーボDC給電システムの直流電源装置30(図3)の電源部31の後段には、フィルタ回路32が設けられている。
 そして、フィルタ回路32は、トランジスタ24の抵抗が、振動電圧検出回路21により、電力供給路35の電圧が不安定とならない抵抗に制御される構成を有している。従って、本実施形態に係るサーボDC給電システムでは、図6に模式的に示してあるように、フィルタ回路32が設けられていない直流電源装置が用いられたシステムよりも、Zo-peak値を低くすることが出来る。そして、その結果として、電力供給路35の電圧が不安定になること(発振すること)が抑止されることになる。
 《変形形態》
 上記したサーボDC給電システム、直流電源装置30は、各種の変形が可能なものである。例えば、サーボDC給電システムの電力供給路35は、直流電源装置30からの電力(電流)を、サーボDC給電システム内の全モータ制御装置10に供給できるものであれば、図1に示したものとは異なる構成のものであっても良い。また、直流電源装置30内のフィルタ回路32は、電力供給路35の電圧変動が抑制されるように、自フィルタ回路32のインピーダンスを調整可能な回路であれば良い。従って、フィルタ回路32(図3)のトランジスタ24の代わりに、複数の抵抗器と、それらの抵抗器の中のいずれかをコンデンサ23の一端とマイナス側の電力線33m間に挿入するセレクタとを設けても良い。また、フィルタ回路32のコンデンサ23及びトランジスタ24の代わりに、容量を電気的に制御できるバリアブルキャパシタを用いても良い。
 フィルタ回路32として、図7に示した構成の回路、すなわち、プラス側の電力線33pに挿入されたトランジスタ24と、当該トランジスタ24の抵抗を制御する振動電圧検出回路21及び駆動回路22とで構成された回路を採用しても良い。図7に示した構成のフィルタ回路32を、マイナス側の電力線33mにトランジスタ24が挿入されているものに変形しても良い。回路振動電圧検出回路21を、電力線33pの電圧変動を検出する回路としても良い。
 また、電力供給路35の電圧変動時には、電力供給路35を流れる電流も変動する。そして、電流変動を抑制すれば、電圧変動が抑制されるのであるから、フィルタ回路32は、電力供給路35の電流変動を検知して、当該電流変動が抑制されるように、自回路のインピーダンスを調整する回路であっても良い。フィルタ回路32を、閾値を外部から設定可能な回路とした上で、サーボDC給電システムを、フィルタ回路に設定する閾値を調整しながら運用されるシステムに変形しておいても良い。
 《付記1》
 直流に出力する電源部(31)と、
 前記電源部からの出力される直流の電圧変動又は電流変動を検知し、検知結果に基づき、前記直流の電圧変動又は電流変動が抑制されるように、自回路のインピーダンスを調整するフィルタ回路(32)と、
 を備える直流電源装置(10)。
 10  モータ制御装置
 11  インバータ回路
 12  制御部
 18  平滑コンデンサ
 21  振動電圧検出回路
 22  駆動回路
 23  コンデンサ
 24  トランジスタ
 25  インダクタ
 28  電流センサ
 30  直流電源装置
 31  電源部
 32  フィルタ回路
 33p  プラス側の電力線
 33m  マイナス側の電力線
 35  電力供給路
 40  サーボモータ
 41  エンコーダ
 50  三相交流電源

Claims (6)

  1.  直流を出力する電源部と、
     前記電源部からの出力される直流の電圧変動又は電流変動を検知し、検知結果に基づき、前記直流の電圧変動又は電流変動が抑制されるように、自回路のインピーダンスを調整するフィルタ回路と、
     を備える直流電源装置。
  2.  前記電源部が、交流を直流に変換する回路である、
     請求項1に記載の直流電源装置。
  3.  前記フィルタ回路は、
     前記電源部からのプラス側の電力線とマイナス側の電力線との間に配置された、コンデンサと可変抵抗の直列接続体と、
     前記可変抵抗の抵抗値を、前記プラス側の電力線又は前記マイナス側の電力線の電圧変動の検知結果に基づき、前記直流の電圧変動が抑制されるように制御する制御部と、
     を備える、
     請求項1又は2に記載の直流電源装置。
  4.  前記フィルタ回路は、
     前記電源部からのプラス側の電力線又はマイナス側の電力線に挿入された可変抵抗と、
     前記可変抵抗の抵抗値を、前記プラス側の電力線又は前記マイナス側の電力線の電圧変動の検知結果に基づき、前記直流の電圧変動が抑制されるように制御する制御部と、
     を備える、
     請求項1又は2に記載の直流電源装置。
  5.  前記可変抵抗が、前記制御部により能動領域で動作するよう制御されるトランジスタである、
     請求項3又は4に記載の直流電源装置。
  6.  請求項1から5のいずれか一項に記載の直流電源装置と、
     1つ以上のモータ制御装置と、
     前記直流電源装置からの電力を前記1つ以上のモータ制御装置に供給する電力供給路と、
     を含むサーボDC給電システム。
PCT/JP2020/009399 2019-10-11 2020-03-05 直流電源装置及びサーボdc給電システム WO2021070403A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/764,942 US11967892B2 (en) 2019-10-11 2020-03-05 DC power supply device and servo DC power supply system
CN202080066643.XA CN114467246A (zh) 2019-10-11 2020-03-05 直流电源装置及伺服dc供电***
DE112020004867.5T DE112020004867T5 (de) 2019-10-11 2020-03-05 Gleichstromversorgungsvorrichtung und servo-gleichstromversorgungssystem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019187380A JP7383969B2 (ja) 2019-10-11 2019-10-11 直流電源装置及びサーボdc給電システム
JP2019-187380 2019-10-11

Publications (1)

Publication Number Publication Date
WO2021070403A1 true WO2021070403A1 (ja) 2021-04-15

Family

ID=75437082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009399 WO2021070403A1 (ja) 2019-10-11 2020-03-05 直流電源装置及びサーボdc給電システム

Country Status (5)

Country Link
US (1) US11967892B2 (ja)
JP (1) JP7383969B2 (ja)
CN (1) CN114467246A (ja)
DE (1) DE112020004867T5 (ja)
WO (1) WO2021070403A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54128141U (ja) * 1978-02-28 1979-09-06
JPS61157284A (ja) * 1984-12-27 1986-07-16 Fanuc Ltd 駆動制御装置
JPH0539145U (ja) * 1991-10-15 1993-05-25 三菱電機株式会社 電源装置
JP2005322500A (ja) * 2004-05-10 2005-11-17 Ushio Inc 高圧放電ランプ点灯装置
JP2013162719A (ja) * 2012-02-08 2013-08-19 Daikin Ind Ltd 突入電流防止装置
JP2019030179A (ja) * 2017-08-02 2019-02-21 リコー電子デバイス株式会社 過電圧保護回路と電源装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994008392A1 (en) * 1992-10-06 1994-04-14 Fanuc Ltd Method of motor driving control
US5469046A (en) * 1993-04-30 1995-11-21 North American Philips Corporation Transformerless low voltage switching power supply
JPH118933A (ja) * 1997-06-16 1999-01-12 Sony Corp 負荷適応型の安定化電源装置
US6489755B1 (en) * 2000-09-18 2002-12-03 Adtran, Inc. Active ripple and noise filter for telecommunication equipment powering

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54128141U (ja) * 1978-02-28 1979-09-06
JPS61157284A (ja) * 1984-12-27 1986-07-16 Fanuc Ltd 駆動制御装置
JPH0539145U (ja) * 1991-10-15 1993-05-25 三菱電機株式会社 電源装置
JP2005322500A (ja) * 2004-05-10 2005-11-17 Ushio Inc 高圧放電ランプ点灯装置
JP2013162719A (ja) * 2012-02-08 2013-08-19 Daikin Ind Ltd 突入電流防止装置
JP2019030179A (ja) * 2017-08-02 2019-02-21 リコー電子デバイス株式会社 過電圧保護回路と電源装置

Also Published As

Publication number Publication date
JP7383969B2 (ja) 2023-11-21
CN114467246A (zh) 2022-05-10
DE112020004867T5 (de) 2022-06-30
JP2021065003A (ja) 2021-04-22
US11967892B2 (en) 2024-04-23
US20220352808A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
WO2016098410A1 (ja) 電力変換装置及びこれを用いた電動パワーステアリング装置
US20160315570A1 (en) Motor drive device
WO2015045107A1 (ja) 突入電流制限回路、及び電力変換装置
JP5540753B2 (ja) ロボットシステム
JP6384316B2 (ja) 電力変換装置及び電力変換装置の制御方法
WO2018155321A1 (ja) 制御装置およびこれを用いた電動パワーステアリング装置
JP2008154431A (ja) モータ制御装置
WO2021070403A1 (ja) 直流電源装置及びサーボdc給電システム
JP6689688B2 (ja) 電力変換装置、空気調和機および電力変換装置の制御方法
US11955914B2 (en) Processing device
JP6375845B2 (ja) モータ制御装置、及びモータ制御方法
WO2020195677A1 (ja) サーボdc給電システム及びモータ制御装置
JP7472462B2 (ja) サーボdc給電システム及びモータ制御装置
JP6273442B2 (ja) 負荷制限時に能動型ブリッジ整流器を駆動制御するための方法、整流装置およびコンピュータプログラム製品
JP2021065001A (ja) コネクタ及びサーボdc給電システム
WO2020208980A1 (ja) モータ駆動装置及びサーボdc給電システム
JP2006180606A (ja) 電圧駆動素子の制御装置
CN111987974B (zh) 旋转电机控制装置
WO2019163110A1 (ja) モータ駆動装置
JP2013135516A (ja) 電力変換装置及び空気調和機
WO2022059399A1 (ja) サーボdc給電システム、モータ制御装置、及びサーボモータの制御方法
JP7413980B2 (ja) 電力変換装置
US11218085B2 (en) Power conversion device having an inverter circuit including current limitation circuits and a control circuit controlling same
JP6251660B2 (ja) 電力変換装置の電圧制御装置
JP6312112B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20874079

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20874079

Country of ref document: EP

Kind code of ref document: A1