WO2021056602A1 - 一种红土镍矿冶炼的含镍铁素体不锈钢及其制备方法 - Google Patents

一种红土镍矿冶炼的含镍铁素体不锈钢及其制备方法 Download PDF

Info

Publication number
WO2021056602A1
WO2021056602A1 PCT/CN2019/109535 CN2019109535W WO2021056602A1 WO 2021056602 A1 WO2021056602 A1 WO 2021056602A1 CN 2019109535 W CN2019109535 W CN 2019109535W WO 2021056602 A1 WO2021056602 A1 WO 2021056602A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
stainless steel
ferritic stainless
furnace
steel
Prior art date
Application number
PCT/CN2019/109535
Other languages
English (en)
French (fr)
Inventor
王平
赵永璞
Original Assignee
王平
赵永璞
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王平, 赵永璞 filed Critical 王平
Publication of WO2021056602A1 publication Critical patent/WO2021056602A1/zh
Priority to PH12021551517A priority Critical patent/PH12021551517A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/076Use of slags or fluxes as treating agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to the field of iron and steel metallurgy, in particular to a nickel-containing ferritic stainless steel smelted from laterite nickel ore and a preparation method thereof.
  • Laterite nickel ore resources on the earth have hundreds of billions of tons, and they are geologically stratified according to the nickel content in the ore layers of several meters to tens of meters deep on the surface of the earth.
  • the middle-level ore contains high nickel, which can reach more than 1.0%, and has the value of smelting nickel metal. Generally, it will become the raw material of 300 series stainless steel.
  • Laterite nickel ore is a natural alloy ore with high iron content and a huge resource. Although laterite nickel ore contains high iron content, including valuable alloys such as chromium, nickel, and cobalt, the metal content can reach more than 55%, but because of its low nickel content and high phosphorus content, it has become a waste of no use value. .
  • the traditional ferritic stainless steel due to its excellent corrosion resistance, good mechanical properties, good cold rolling properties, almost the same coefficient of expansion as ordinary carbon steel, easy to weld and other excellent characteristics, has been widely used, even in Used as structural steel in the construction field.
  • Nickel is a beneficial element for the mechanical properties of steel, especially for the ductility of steel; especially for duplex stainless steel and austenitic stainless steel, nickel is a key element. Nickel has the effect of ensuring the non-magnetic properties of austenitic stainless steel, and nickel is also used in a small part of ferritic stainless steel. According to the view of the International Nickel Institute, reducing the use of nickel in stainless steel is a process choice based on cost and price considerations. There is no data showing the adverse effects of nickel on the structure and performance of stainless steel.
  • the present invention proposes a nickel-containing ferritic stainless steel with full utilization of resources.
  • the present invention proposes to prepare ferritic stainless steel with a nickel content of less than 1.6wt% by using surface ore resources with nickel content of less than 1% laterite nickel ore, which is an economical and effective industrial use of these nearly abandoned laterite nickel ore surface ore. Preparation.
  • the technical problem to be solved by the present invention is how to use the nearly discarded laterite nickel ore surface layer ore to prepare nickel-containing ferritic stainless steel, and meet the needs of hot-rolled and cold-rolled sheet materials, suitable for occasions that do not require non-magnetic and Used as seismic energy-absorbing steel, nickel-containing ferritic stainless steel with corresponding corrosion resistance can also be selected according to the requirements of corrosion resistance scenes.
  • the present invention provides a nickel-containing ferritic stainless steel smelted from laterite nickel ore.
  • the basic components of the nickel-containing ferritic stainless steel are calculated by mass percentage: C 0.01-0.07wt%, Si ⁇ 0.8wt%, Mn ⁇ 0.8 wt%, Cr 14-26wt%, Ni ⁇ 1.6wt%, P ⁇ 0.05wt%, S ⁇ 0.030wt%, Al 0.01-0.05wt%, total O ⁇ 40ppm, the rest is Fe and unavoidable impurities.
  • the metallographic structure of the nickel-containing ferritic stainless steel is: a small amount of nano-sized carbides are uniformly distributed on the ferrite matrix, the average size of the carbides is controlled below 400 nanometers, and the average size of crystal grains is less than 8 microns; yield strength ⁇ 0.2 ⁇ 350MPa, breaking strength ⁇ 450MPa, elongation ⁇ 20%.
  • the nickel-containing ferritic stainless steel includes Cr 17-26wt% of medium chromium nickel-containing ferritic stainless steel and Cr 17-26wt% of high chromium nickel-containing ferritic stainless steel. %, Mo 0.6-0.8wt% of high chromium nickel-containing pitting corrosion resistant ferritic stainless steel.
  • the neutral salt spray corrosion resistance of the medium chromium nickel-containing ferritic stainless steel is equal to or better than that of the austenitic stainless steel 304 stainless steel, which is close to the ferritic stainless steel 430.
  • the neutral salt spray corrosion resistance of the high chromium nickel-containing ferritic stainless steel is equal to or better than that of 316 stainless steel.
  • the neutral salt spray corrosion resistance of the high chromium nickel-containing pitting corrosion resistant ferritic stainless steel is equal to or better than that of 2205 duplex stainless steel and 316 stainless steel, and at the same time has a certain pitting corrosion resistance.
  • a preparation method of the nickel-containing ferritic stainless steel specifically includes the following steps:
  • the raw material is the surface ore of low-nickel laterite nickel ore, which is smelted into molten iron by blast furnace smelting or submerged electric furnace and sent to AOD blowing; or molten iron obtained by smelting low-nickel iron in induction furnace or electric arc furnace is sent to AOD blowing; AOD blowing During the refining process, the adjustment of the lower limit target of the Cr composition is completed according to the requirements of the Cr composition of the nickel-containing ferritic stainless steel, and the adjustment of the lower limit target of the composition of the main alloy elements Ni, Mn, and Si is completed;
  • the reduction refining slag should control the basicity of CaO/SiO 2 at 2- Within the range of 3, the composition of the reduced refining slag is CaO: 50-60wt% in terms of mass percentage, wherein the total content of CaO in high-quality CaCO 3 is >50wt%; SiO 2 : 25-30wt%; CaF 2 : 10wt% ; The remaining high-alumina refractory brick lumps; the lumps of the reduced refining slag are less than 20mm, and there must be no powdery materials, and it needs to be packed in a sealed moisture-proof bag;
  • LF furnace began to maintain white slag after 10 minutes of argon blowing and stirring.
  • slag is too thin, add high calcium ratio limestone to adjust the slag to maintain the foamability of the slag, so that the refining and adjustment of the composition of the LF furnace can proceed smoothly; maintain LF
  • the time consumed for refining and adjusting ingredients is generally not more than 40 minutes;
  • the molten steel obtained after refining in S7 and S6 is sent to the continuous caster to be cast into slabs, square billets or rectangular billets;
  • the slab or square billet or rectangular billet is sent for inspection and grinding, and then the required steel is produced by the rolling process and heat treatment of controlled rolling and cooling in the rolling mill.
  • the rolling and heat treatment of the medium-chromium-containing nickel-containing ferritic stainless steel or the S8 intermediate-controlled rolling and controlled cooling of the high-chromium-containing nickel-containing ferritic stainless steel is: the blooming temperature of the billet is 1080-1120°C, and the final rolling The temperature is 910-950°C, and the required specifications of steel are obtained; after the final rolling, the steel is sprayed and cooled to 670-730°C immediately, and then it is processed in an isothermal holding furnace. The isothermal holding time is controlled at 4-6 hours and then out of the furnace. , After being out of the furnace, spray or cool directly to below 200°C by other cooling methods.
  • the chromium content in S1 of the high chromium nickel-containing pitting corrosion resistant ferritic stainless steel needs to be controlled to be 17-26wt%, and 0.6-0.8wt% of Mo needs to be added to S2, and the controlled rolling and cooling in S8
  • the rolling and heat treatment are as follows: the initial rolling temperature of the billet is 1080-1120°C, and the final rolling temperature is 910-950°C to obtain the required specifications of steel; after the final rolling, the steel is sent to the solution furnace at 1080-1120°C for 1.5 -2.0 hours of isothermal treatment to achieve the purpose of solid dissolving of the added Mo element in the high chromium nickel-containing pitting corrosion resistant ferritic stainless steel; after the solid solution is completed, the steel is immediately sprayed and cooled to 670-730°C , And then enter the isothermal holding furnace for treatment, the isothermal holding time is controlled at 4-6 hours, immediately after the furnace is sprayed or directly cooled to below 200 °C through other cooling methods; the
  • the isothermal heat preservation treatment needs to be maintained at 670-730°C for 8-12 hours.
  • the invention carries out systematic alloy design and heat treatment process design based on the iron and alloy value of the laterite nickel ore surface ore resources.
  • a series of nickel-containing ferritic stainless steels, medium-chromium-containing nickel-iron iron are produced Stainless steel, high-chromium nickel-containing ferritic stainless steel and high-chromium nickel-containing pitting corrosion-resistant ferritic stainless steel.
  • the invention makes these nearly discarded laterite nickel ore surface minerals resource and value, and meet the functional requirements of stainless steel.
  • the nickel-containing ferritic stainless steel of the present invention realizes crystallization through controlled rolling and controlled cooling, and the average crystal grain size is less than 8 microns, which plays an important role in reducing intergranular corrosion and pitting corrosion.
  • the addition of Mo element in the LF furnace realizes the function of pitting corrosion resistance under the condition of less alloying elements.
  • the nickel-containing ferritic stainless steel provided by the present invention has a tensile strength ⁇ 450MPa, yield strength ⁇ 350MPa, elongation after fracture ⁇ 22%, and section shrinkage ⁇ 40%, which is suitable for hot-rolled and cold-rolled sheet materials. , It is also suitable for occasions where non-magnetic is not required. It can also be used as seismic energy-absorbing steel, and nickel-containing ferritic stainless steel with corresponding corrosion resistance can also be selected according to the requirements of corrosion resistance.
  • the technical problem to be solved by the present invention is how to use the nearly discarded laterite nickel ore surface layer ore to prepare nickel-containing ferritic stainless steel, and meet the needs of hot-rolled and cold-rolled sheet materials, suitable for occasions that do not require non-magnetic and Used as seismic energy-absorbing steel, nickel-containing ferritic stainless steel with corresponding corrosion resistance can also be selected according to the requirements of corrosion resistance scenes.
  • the present invention provides a nickel-containing ferritic stainless steel smelted from laterite nickel ore.
  • the basic composition of the nickel-containing ferritic stainless steel is calculated by mass percentage: C 0.01-0.07wt%, Si ⁇ 0.8 wt%, Mn ⁇ 0.8wt%, Cr 14-26wt%, Ni ⁇ 1.6wt%, P ⁇ 0.05wt%, S ⁇ 0.030wt%, Al 0.01-0.05wt%, total O ⁇ 40ppm, the rest is Fe and non Impurities to avoid.
  • the metallographic structure of the nickel-containing ferritic stainless steel is: a small amount of nano-sized carbides are uniformly distributed on the ferrite matrix, the average size of the carbides is controlled below 400 nanometers, and the average grain size is less than 8 microns; the yield strength ⁇ 0.2 ⁇ 350MPa, breaking strength ⁇ 450MPa, elongation ⁇ 20%.
  • the nickel-containing ferritic stainless steel includes Cr 14-17wt% medium chromium nickel-containing ferritic stainless steel and Cr 17-26wt% high chromium nickel-containing ferritic stainless steel, and also includes Cr 17-26wt% , Mo 0.6-0.8wt% high chromium nickel-containing pitting corrosion resistant ferritic stainless steel.
  • the neutral salt spray corrosion resistance of the medium chromium-containing nickel-containing ferritic stainless steel is equal to or better than the austenitic stainless steel 304 stainless steel, and is close to the ferritic stainless steel 430.
  • the neutral salt spray corrosion resistance of the high chromium nickel-containing ferritic stainless steel is equal to or better than that of 316 stainless steel.
  • the high chromium nickel-containing pitting corrosion resistant ferritic stainless steel has a neutral salt spray corrosion resistance equal to or better than 2205 duplex stainless steel and 316 stainless steel, and has a certain pitting corrosion resistance.
  • a preparation method of the nickel-containing ferritic stainless steel specifically includes the following steps:
  • the raw material is the surface ore of low-nickel laterite nickel ore, which is smelted into molten iron by blast furnace smelting or submerged electric furnace and sent to AOD for AOD blowing; or the molten iron obtained by smelting low-nickel iron in induction furnace or electric arc furnace is sent to AOD for blowing; AOD blowing
  • the adjustment of the lower limit target of the Cr composition is completed according to the requirements of the Cr composition of the nickel-containing ferritic stainless steel, and the adjustment of the lower limit target of the composition of the main alloy elements Ni, Mn, and Si is completed;
  • the reduction refining slag should control the alkalinity CaO/SiO 2 at 2- Within the range of 3, the composition of the reduced refining slag is CaO: 50-60wt% in terms of mass percentage, wherein the total content of CaO in high-quality CaCO 3 is >50wt%; SiO 2 : 25-30wt%; CaF 2 : 10wt% ; The remaining high-alumina refractory brick lumps; the lumps of the reduced refining slag are less than 20mm, and there must be no powdery materials, and it needs to be packed in a sealed moisture-proof bag;
  • LF furnace began to maintain white slag after 10 minutes of argon blowing and stirring.
  • slag is too thin, add high calcium ratio limestone to adjust the slag to maintain the foamability of the slag, so that the refining and adjustment of the composition of the LF furnace can proceed smoothly; maintain LF
  • the time consumed for refining and adjusting ingredients is generally not more than 40 minutes;
  • the molten steel obtained after refining in S7 and S6 is sent to the continuous caster to be cast into slabs, square billets or rectangular billets;
  • the slab or square billet or rectangular billet is sent for inspection and grinding, and then the required steel is produced by the rolling process and heat treatment of controlled rolling and cooling in the rolling mill.
  • the rolling and heat treatment of the medium-chromium-containing nickel-containing ferritic stainless steel or the S8 intermediate-controlled rolling and controlled cooling of the high-chromium-containing nickel-containing ferritic stainless steel are: the blooming temperature of the billet is 1080-1120°C, and the final rolling temperature 910-950°C, obtain the required specifications of steel; after finishing rolling, immediately spray and cool the steel to 670-730°C, and then enter the isothermal holding furnace for treatment.
  • the isothermal holding time is controlled at 4-6 hours and then out of the furnace. Immediately after being out of the furnace, spray or cool directly to below 200°C by other cooling methods.
  • the chromium content needs to be controlled to be 17-26wt%, and the S2 needs to add 0.6-0.8wt% of Mo.
  • S8 controlled rolling and cold rolling are required.
  • the preparation and heat treatment are as follows: the initial rolling temperature of the billet is 1080-1120°C, and the final rolling temperature is 910-950°C to obtain the required specifications of steel; after the final rolling, the steel is sent to the solution furnace at 1080-1120°C for 1.5- 2.0 hours of isothermal treatment, to achieve the purpose of solid dissolving of the added Mo element in the high chromium nickel-containing pitting corrosion resistant ferritic stainless steel; after the solid solution is completed, the steel is immediately spray-cooled to 670-730°C, Immediately enter the isothermal holding furnace for treatment, the isothermal holding time is controlled at 4-6 hours, immediately after the furnace is sprayed or directly cooled to below 200°C through other cooling methods; the high chromium nickel-containing pitting corrosion-resistant ferritic stainless steel can be used in Processing and use in hot rolled state.
  • the isothermal heat preservation treatment needs to be maintained at 670-730°C for 8-12 hours.
  • the basic composition of a medium chromium nickel-containing ferritic stainless steel smelted from laterite nickel ore is calculated by mass percentage: C 0.01-0.07%, Si ⁇ 0.8%, Mn ⁇ 0.8%, Cr 16%, Ni ⁇ 1.6%, P ⁇ 0.05%, S ⁇ 0.030%, Al 0.01-0.05%, total O ⁇ 40ppm, the rest is Fe and unavoidable impurities.
  • the metallographic structure of the medium chromium nickel-containing ferritic stainless steel is: a small amount of nano-sized carbides are uniformly distributed on the ferrite matrix, the average size of the carbides is controlled below 400 nanometers, and the average size of crystal grains is less than 8 microns; Yield strength ⁇ 0.2 ⁇ 350MPa, breaking strength ⁇ 450MPa, elongation ⁇ 20%.
  • the neutral salt spray corrosion resistance of the medium chromium-containing nickel-containing ferritic stainless steel is equal to or better than the austenitic stainless steel 304 stainless steel, and is close to the ferritic stainless steel 430.
  • the preparation method of the medium chromium nickel-containing ferritic stainless steel includes the following steps:
  • the raw material is the surface ore of low-nickel laterite nickel ore, which is smelted into molten iron through blast furnace smelting or submerged electric furnace and sent to AOD blowing; or the molten iron obtained by smelting low-nickel iron in induction furnace or electric arc furnace is sent to AOD blowing; AOD blowing Complete the adjustment of the lower limit target of the main alloying elements Cr, Ni, Mn and Si during the refining process;
  • the reduction refining slag should control the basicity of CaO/SiO 2 at 2- Within the range of 3, the composition of the reduced refining slag is CaO: 50-60% by mass percentage, and the total content of CaO in high-quality CaCO 3 is>50%; SiO 2 : 25-30%; CaF 2 : 10% ; The remaining high-alumina refractory brick lumps; the lumps of the reduced refining slag are less than 20mm, and there must be no powdery materials, and it needs to be packed in a sealed moisture-proof bag;
  • LF furnace began to maintain white slag after 10 minutes of argon blowing and stirring.
  • slag is too thin, add high calcium ratio limestone to adjust the slag to maintain the foamability of the slag, so that the refining and adjustment of the composition of the LF furnace can proceed smoothly; maintain LF
  • the time consumed for refining and adjusting ingredients is generally not more than 40 minutes;
  • the molten steel obtained after refining in S7 and S6 is sent to the continuous caster to be cast into slabs, square billets or rectangular billets;
  • the slab or square billet or rectangular billet is sent for inspection and grinding, and then the required steel is produced by the rolling process and heat treatment of controlled rolling and cooling in the rolling mill.
  • the rolling and heat treatment of the S8 intermediate-controlled rolling and controlled cooling of the medium-chromium-nickel-containing ferritic stainless steel are: the initial rolling temperature of the billet is 1080-1120°C, and the final rolling temperature is 910-950°C to obtain the required specifications of steel ; After finishing rolling, immediately spray and cool the steel to 670-730°C, and then enter the isothermal holding furnace for treatment. The isothermal holding time is controlled at 4-6 hours and then out of the furnace, immediately after the furnace is sprayed or directly through other cooling methods Cool to below 200°C.
  • the isothermal heat preservation treatment needs to be maintained at 670-730°C for 8-12 hours.
  • the basic composition of a laterite nickel ore smelting high chromium nickel-containing ferritic stainless steel is calculated by mass percentage: C 0.01-0.07%, Si ⁇ 0.8%, Mn ⁇ 0.8%, Cr 24%, Ni ⁇ 1.6%, P ⁇ 0.05%, S ⁇ 0.030%, Al 0.01-0.05%, total O ⁇ 40ppm, the rest is Fe and unavoidable impurities.
  • the metallographic structure of the high chromium nickel-containing ferritic stainless steel is: a small amount of nano-sized carbides are uniformly distributed on the ferrite matrix, the average size of the carbides is controlled below 400 nanometers, and the average size of crystal grains is less than 8 microns; Yield strength ⁇ 0.2 ⁇ 350MPa, breaking strength ⁇ 450MPa, elongation ⁇ 20%.
  • the neutral salt spray corrosion resistance of the high chromium nickel-containing ferritic stainless steel is equal to or better than that of 316 stainless steel.
  • the preparation method of the high chromium nickel-containing ferritic stainless steel includes the following steps:
  • the raw material is the surface ore of low-nickel laterite nickel ore, which is smelted into molten iron by blast furnace smelting or submerged electric furnace and sent to AOD blowing; or molten iron obtained by smelting low-nickel iron in induction furnace or electric arc furnace is sent to AOD blowing; AOD blowing Complete the adjustment of the lower limit target of the main alloying elements Cr, Ni, Mn and Si during the refining process;
  • the reduction refining slag should control the alkalinity CaO/SiO 2 at 2- Within the range of 3, the composition of the reduced refining slag is CaO: 50-60%wt in terms of mass percentage, wherein the total content of CaO in high-quality CaCO 3 is >50wt%; SiO 2 : 25-30wt%; CaF 2 : 10wt %; the remaining high-alumina refractory brick lumps; the lumps of the reduced refining slag are less than 20mm, there must be no powdery materials, and it needs to be packed in a sealed moisture-proof bag;
  • LF furnace began to maintain white slag after 10 minutes of argon blowing and stirring.
  • slag is too thin, add high calcium ratio limestone to adjust the slag to maintain the foamability of the slag, so that the refining and adjustment of the composition of the LF furnace can proceed smoothly; maintain LF
  • the time consumed for refining and adjusting ingredients is generally not more than 40 minutes;
  • the molten steel obtained after refining in S7 and S6 is sent to the continuous caster to be cast into slabs, square billets or rectangular billets;
  • the slab or square billet or rectangular billet is sent for inspection and grinding, and then the required steel is produced by the rolling process and heat treatment of controlled rolling and cooling in the rolling mill.
  • the high-chromium nickel-containing ferritic stainless steel, the rolling and heat treatment process method of controlled rolling and controlled cooling the blooming temperature of the billet is 1080-1120°C, the final rolling temperature is 910-950°C; the finishing rolling is finished, the spraying process is carried out immediately Pour cooling to 670-730°C and enter into isothermal holding furnace for treatment.
  • the isothermal holding time is controlled at 4-6 hours. After the furnace is released, spray or other direct cooling to below 200°C.
  • the rolling and heat treatment of the S8 intermediate controlled rolling and controlled cooling of the high-chromium nickel-containing ferritic stainless steel are: the initial rolling temperature of the billet is 1080-1120°C, and the final rolling temperature is 910-950°C to obtain the required specifications of steel ; After finishing rolling, immediately spray and cool the steel to 670-730°C, and then enter the isothermal holding furnace for treatment. The isothermal holding time is controlled at 4-6 hours and then out of the furnace, immediately after the furnace is sprayed or directly through other cooling methods Cool to below 200°C.
  • the isothermal heat preservation treatment needs to be maintained at 670-730°C for 8-12 hours.
  • the basic components of a laterite nickel smelting high chromium nickel-containing pitting corrosion resistant ferritic stainless steel are calculated by mass percentage: C 0.01-0.07%, Si ⁇ 0.8%, Mn ⁇ 0.8%, Cr 26%, Ni ⁇ 1.6% , P ⁇ 0.05%, S ⁇ 0.030%, Mo 0.8%, Al 0.01-0.05%, total O ⁇ 40ppm, and the rest are Fe and unavoidable impurities.
  • the metallographic structure of the high chromium nickel-containing pitting corrosion resistant ferritic stainless steel is: a small amount of nano-sized carbides are uniformly distributed on the ferrite matrix, the average size of the carbides is controlled below 400 nanometers, and the average size of crystal grains is less than 8 microns; yield strength ⁇ 0.2 ⁇ 350MPa, breaking strength ⁇ 450MPa, elongation ⁇ 20%.
  • the high chromium nickel-containing pitting corrosion resistant ferritic stainless steel has a neutral salt spray corrosion resistance equal to or better than 2205 duplex stainless steel and 316 stainless steel, and has a certain pitting corrosion resistance.
  • the preparation method includes the following steps:
  • the raw material is the surface ore of low-nickel laterite nickel ore, which is smelted into molten iron by blast furnace smelting or submerged electric furnace and sent to AOD blowing; or molten iron obtained by smelting low-nickel iron in induction furnace or electric arc furnace is sent to AOD blowing; AOD blowing Complete the adjustment of the lower limit target of the main alloying elements Cr, Ni, Mn and Si during the refining process;
  • the reduction refining slag should control the alkalinity CaO/SiO 2 at 2- Within the range of 3, the composition of the reduced refining slag is CaO: 50-60% by mass percentage, and the total content of CaO in high-quality CaCO 3 is>50%; SiO 2 : 25-30%; CaF 2 : 10% ; The remaining high-alumina refractory brick lumps; the lumps of the reduced refining slag are less than 20mm, and there must be no powdery materials, and it needs to be packed in a sealed moisture-proof bag;
  • LF furnace began to maintain white slag after 10 minutes of argon blowing and stirring.
  • slag is too thin, add high calcium ratio limestone to adjust the slag to maintain the foamability of the slag, so that the refining and adjustment of the composition of the LF furnace can proceed smoothly; maintain LF
  • the time consumed for refining and adjusting ingredients is generally not more than 40 minutes;
  • the molten steel obtained after refining in S7 and S6 is sent to the continuous caster to be cast into slabs, square billets or rectangular billets;
  • the slab or square billet or rectangular billet is sent for inspection and grinding, and then the required steel is produced by the rolling process and heat treatment of controlled rolling and cooling in the rolling mill.
  • the chromium content needs to be controlled to be 17-26wt%, and the S2 needs to add 0.6-0.8wt% of Mo.
  • S8 controlled rolling and cold rolling are required.
  • the preparation and heat treatment are as follows: the initial rolling temperature of the billet is 1080-1120°C, and the final rolling temperature is 910-950°C to obtain the required specifications of steel; after the final rolling, the steel is sent to the solution furnace at 1080-1120°C for 1.5- 2.0 hours of isothermal treatment, to achieve the purpose of solid dissolving of the added Mo element in the high chromium nickel-containing pitting corrosion resistant ferritic stainless steel; after the solid solution is completed, the steel is immediately spray-cooled to 670-730°C, Immediately enter the isothermal holding furnace for treatment, the isothermal holding time is controlled at 4-6 hours, immediately after the furnace is sprayed or directly cooled to below 200°C through other cooling methods; the high chromium nickel-containing pitting corrosion-resistant ferritic stainless steel can be used in Processing and use in hot rolled state.
  • the isothermal heat preservation treatment needs to be maintained at 670-730°C for 8-12 hours.
  • the present invention performs systematic alloy design and heat treatment process design based on the iron and alloy value of the laterite nickel ore surface ore resources.
  • a series of nickel-containing ferritic stainless steels, medium-chromium-containing nickel-iron iron are produced Stainless steel, high-chromium nickel-containing ferritic stainless steel and high-chromium nickel-containing pitting corrosion-resistant ferritic stainless steel.
  • the invention makes these nearly discarded laterite nickel ore surface minerals resource and value, and meet the functional requirements of stainless steel.
  • the nickel-containing ferritic stainless steel of the present invention realizes crystallization through controlled rolling and controlled cooling, and the average crystal grain size is less than 8 microns, which plays an important role in reducing intergranular corrosion and pitting corrosion.
  • the addition of Mo element in the LF furnace realizes the function of pitting corrosion resistance under the condition of less alloying elements.
  • the nickel-containing ferritic stainless steel provided by the present invention has a tensile strength ⁇ 450MPa, yield strength ⁇ 350MPa, elongation after fracture ⁇ 22%, and section shrinkage ⁇ 40%, which is suitable for hot-rolled and cold-rolled sheet materials. , It is also suitable for occasions where non-magnetic is not required. It can also be used as seismic energy-absorbing steel, and nickel-containing ferritic stainless steel with corresponding corrosion resistance can also be selected according to the requirements of corrosion resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

一种红土镍矿冶炼的含镍铁素体不锈钢及其制备方法,属于钢铁冶金领域。基本成分为:C 0.01-0.07wt%,Si≤0.8wt%,Mn≤0.8wt%,Cr 14-26wt%,Ni≤1.6wt%,P≤0.05wt%,S≤0.030wt%,Al 0.01-0.05wt%,全O≤40ppm,其余为Fe和不可避免的杂质。该钢基于红土镍矿表层矿含铬特性和低镍特性,利用资源的有效成分创造了多种含镍铁素体不锈钢,使这些几近废弃的红土镍矿表层矿资源化、价值化,含镍铁素体不锈钢根据耐中性盐雾腐蚀以及耐点蚀需求进行成分调整和工艺选择以满足多种不锈钢的功能性需求,利于工业化生产和使用。

Description

一种红土镍矿冶炼的含镍铁素体不锈钢及其制备方法 技术领域
本发明涉及钢铁冶金领域,尤其涉及一种红土镍矿冶炼的含镍铁素体不锈钢及其制备方法。
背景技术
红土镍矿资源在地球上的储量多达几千亿吨,其在地球表面几米到几十米深的矿层中依照含镍量进行地质分层。其中的中层矿含镍较高,可以达到1.0%以上,具有冶炼镍金属的价值,一般会成为300系不锈钢的原料。
红土镍矿是一种高铁含量的天然合金矿,是一个巨大的资源。红土镍矿虽然表层矿含铁较高,包括铬、镍、钴等有价值合金在内,金属含量可以达到55%以上,但是因其含镍低、含磷高,成为没有利用价值的废弃物。
而传统的铁素体不锈钢,由于它优良的耐腐蚀性能、良好的力学性能、良好的冷轧性能、与普通碳钢几乎相同的膨胀系数、易于焊接等优良特性,已经被广泛使用,甚至在建筑领域作为结构钢使用。
镍对于钢的力学性能是一个有利元素,尤其是对于钢的延展性是有益的;特别是对于双相不锈钢、奥氏体不锈钢,镍更是属于其关键性元素。镍对于奥氏体不锈钢有保证钢的无磁性能的作用,镍在少部分铁素体不锈钢中也有使用。依据国际镍协会的观点,在不锈钢中减少镍的使用是从成本、价格上考虑做出的工艺选择,没有任何资料显示镍对于不锈钢结构和性能的不良影响。
面对红土镍矿的几千亿吨甚至上万亿吨的资源量,镍含量低于1%的表层资源至少占40%以上,也至少有几千亿吨的量。充分利用这些矿的铁镍铬元素 的冶炼技术能够填补不锈钢生产资源开发方面极大的技术空白。
为了充分利用红土镍矿表层矿资源,尤其是矿中高含量的铁铬镍元素,本发明提出了一种资源充分利用的不锈钢—含镍铁素体不锈钢。本发明提出的通过红土镍矿镍含量低于1%的表层矿资源来制备含有1.6wt%以下镍含量的铁素体不锈钢,就是利用这些几近废弃的红土镍矿表层矿的经济有效的工业制备方法。
发明内容
本发明所要解决的技术问题是如何利用几近废弃的红土镍矿表层矿来制备含镍铁素体不锈钢,并满足热轧和冷轧的薄板类材料使用需求,适合不要求无磁性的场合以及用作抗震吸能钢,也可以根据耐腐蚀场景的要求选择相应耐腐蚀性能的含镍铁素体不锈钢。
本发明提供一种红土镍矿冶炼的含镍铁素体不锈钢,所述含镍铁素体不锈钢的基本成分按质量百分比计为:C 0.01-0.07wt%,Si≤0.8wt%,Mn≤0.8wt%,Cr 14-26wt%,Ni≤1.6wt%,P≤0.05wt%,S≤0.030wt%,Al 0.01-0.05wt%,全O≤40ppm,其余为Fe和不可避免的杂质。
优选地,所述含镍铁素体不锈钢金相组织是:在铁素体基体上均匀分布少量纳米级碳化物,碳化物平均尺寸控制在400纳米以下,晶粒平均尺寸小于8微米;屈服强度σ 0.2≥350MPa,断裂强度≥450MPa,延伸率≥20%。
优选地,所述含镍铁素体不锈钢除包括Cr 14-17wt%的中等铬含镍铁素体不锈钢和Cr 17-26wt%的高铬含镍铁素体不锈钢外,还包括Cr 17-26wt%、Mo 0.6-0.8wt%的高铬含镍耐点蚀铁素体不锈钢。
优选地,所述中等铬含镍铁素体不锈钢的耐中性盐雾腐蚀能力等同或优于奥氏体不锈钢304不锈钢,与铁素体不锈钢430接近。
优选地,所述高铬含镍铁素体不锈钢的耐中性盐雾腐蚀能力等同或优于316不锈钢。
优选地,所述高铬含镍耐点蚀铁素体不锈钢的耐中性盐雾腐蚀能力等同或优于2205双相不锈钢和316不锈钢,同时具有一定的耐点蚀能力。
一种所述含镍铁素体不锈钢的制备方法,所述制备方法具体包括以下步骤:
S1、原料为低镍红土镍矿表层矿,通过高炉冶炼或矿热电炉冶炼成铁水,送AOD吹炼;或者由感应炉、电弧炉冶炼低镍铁块获得的铁水送AOD吹炼;AOD吹炼过程中根据所述含镍铁素体不锈钢的Cr成分要求完成Cr成分的下限目标的调整,并完成主要合金元素Ni、Mn、Si的成分下限目标的调整;
S2、将S1中AOD吹炼的钢水转入LF炉,并使得进入LF炉的钢水的C含量、P含量进入最终成分下限以下,防止后期增C,留出后期操作增C和增P余量;
S3、向LF炉加入200-300mm厚度的还原精炼渣,对进入LF炉的钢水进行还原精炼,以便脱氧和脱硫及进行成分精确调整;还原精炼渣应将碱度CaO/SiO 2控制在2-3的范围内,还原精炼渣的成分按质量百分比计为CaO:50-60wt%,其中高品质CaCO 3中CaO含量总量比>50wt%;SiO 2:25-30wt%;CaF 2:10wt%;其余高铝耐火砖块状料;还原精炼渣的块度小于20mm,不能有粉状料,且需要以密封防潮袋袋装;
S4、LF炉吹氩气搅拌,LF炉吹氩气搅拌的程度达到渣面吹破即可;然后按每吨钢加入Al 0.8-1.2kg的方式加入铝,后续过程中钢水不再加入铝脱氧;在促进白渣形成时可以在LF炉渣表面加入铝粒,但不得用铝粉替代,防止铝粉的剧烈燃烧;
S5、LF炉吹氩气搅拌10分钟后开始保持白渣,炉渣过稀时,加入高钙比例石灰石调渣,以保持炉渣的发泡性,使得LF炉精炼与调整成分能够顺利进行;保持LF精炼与调整成分所消耗的时间一般不大于40分钟;
S6、精炼结束后,通过碱金属包芯线对钢水中的夹杂物进行变性处理,使得钢水的成分满足所述含镍铁素体不锈钢的基本成分;
S7、S6中精炼结束得到的钢水送连铸机铸成板坯或方坯或矩形坯;
S8、板坯或方坯或矩形坯经过冷却后送检验修磨,之后在轧机中进行控轧控冷的轧制工艺和热处理制得所需的钢材。
优选地,所述中等铬含镍铁素体不锈钢或所述高铬含镍铁素体不锈钢的S8中控轧控冷的轧制和热处理为:钢坯的初轧温度1080-1120℃,终轧温度 910-950℃,获得所需规格的钢材;终轧结束后,立即对钢材进行喷淋冷却至670-730℃,紧接着进入等温保温炉处理,等温保温时间控制在4-6小时然后出炉,出炉之后立即喷淋或通过其它冷却方式直接冷却至200℃以下。
优选地,所述高铬含镍耐点蚀铁素体不锈钢的S1中需要控制铬含量为17-26wt%,在S2中需要添加0.6-0.8wt%的Mo,在S8中控轧控冷的轧制和热处理为:钢坯的初轧温度1080-1120℃,终轧温度910-950℃,获得所需规格的钢材;终轧结束,将钢材送入1080-1120℃的固溶炉,进行1.5-2.0小时的等温处理,达到所添加的Mo元素固溶于所述高铬含镍耐点蚀铁素体不锈钢中的目的;固溶结束后,立即对钢材进行喷淋冷却至670-730℃,紧接着进入等温保温炉处理,等温保温时间控制在4-6小时,出炉之后立即喷淋或通过其它冷却方式直接冷却至200℃以下;所述高铬含镍耐点蚀铁素体不锈钢可在热轧状态加工使用。
优选地,所述含镍铁素体不锈钢需要生产冷轧材时,等温保温处理需要在670-730℃保持8-12小时。
本发明的上述技术方案的有益效果如下:
本发明根据红土镍矿表层矿资源的铁与合金价值,进行***的合金设计和热处理工艺设计。通过在冶炼过程中合理配矿,经过高炉或者矿热炉、转炉或AOD炉冶炼,在LF精炼炉中适当补加调整少量合金,生产出系列含镍铁素体不锈钢,中等铬含镍铁素体不锈钢、高铬含镍铁素体不锈钢和高铬含镍耐点蚀铁素体不锈钢。本发明使这些几近废弃的红土镍矿表层矿资源化、价值化,满足不锈钢的功能性需要。
本发明的含镍铁素体不锈钢通过控轧控冷实现了细晶化,晶粒尺寸平均小于8微米,而这对于减少晶间腐蚀和点腐蚀起到重要作用。LF炉中Mo元素的添加,在用合金元素较少的条件下,实现了抗点腐蚀的功能。
此外,本发明提供的含镍铁素体不锈钢抗拉强度≥450MPa,屈服强度≥350MPa,断后伸长率≥22%;断面收缩率≥40%,适合于热轧和冷轧的薄板类材料使用,也适合不要求无磁性的场合,更可用作抗震吸能钢,也可以根据耐 腐蚀场景的要求选择相应耐腐蚀性能的含镍铁素体不锈钢。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合具体实施例进行详细描述。
本发明要解决的技术问题是如何利用几近废弃的红土镍矿表层矿来制备含镍铁素体不锈钢,并满足热轧和冷轧的薄板类材料使用需求,适合不要求无磁性的场合以及用作抗震吸能钢,也可以根据耐腐蚀场景的要求选择相应耐腐蚀性能的含镍铁素体不锈钢。
为解决上述技术问题,本发明提供一种红土镍矿冶炼的含镍铁素体不锈钢,所述含镍铁素体不锈钢的基本成分按质量百分比计为:C 0.01-0.07wt%,Si≤0.8wt%,Mn≤0.8wt%,Cr 14-26wt%,Ni≤1.6wt%,P≤0.05wt%,S≤0.030wt%,Al 0.01-0.05wt%,全O≤40ppm,其余为Fe和不可避免的杂质。
其中,所述含镍铁素体不锈钢金相组织是:在铁素体基体上均匀分布少量纳米级碳化物,碳化物平均尺寸控制在400纳米以下,晶粒平均尺寸小于8微米;屈服强度σ 0.2≥350MPa,断裂强度≥450MPa,延伸率≥20%。
其中,所述含镍铁素体不锈钢除包括Cr 14-17wt%的中等铬含镍铁素体不锈钢和Cr 17-26wt%的高铬含镍铁素体不锈钢外,还包括Cr 17-26wt%、Mo 0.6-0.8wt%的高铬含镍耐点蚀铁素体不锈钢。
其中,所述中等铬含镍铁素体不锈钢的耐中性盐雾腐蚀能力等同或优于奥氏体不锈钢304不锈钢,与铁素体不锈钢430接近。
其中,所述高铬含镍铁素体不锈钢的耐中性盐雾腐蚀能力等同或优于316不锈钢。
其中,所述高铬含镍耐点蚀铁素体不锈钢的耐中性盐雾腐蚀能力等同或优于2205双相不锈钢和316不锈钢,同时具有一定的耐点蚀能力。
一种所述含镍铁素体不锈钢的制备方法,所述制备方法具体包括以下步骤:
S1、原料为低镍红土镍矿表层矿,通过高炉冶炼或矿热电炉冶炼成铁水,送AOD吹炼;或者由感应炉、电弧炉冶炼低镍铁块获得的铁水送AOD吹炼;AOD 吹炼过程中根据所述含镍铁素体不锈钢的Cr成分要求完成Cr成分的下限目标的调整,并完成主要合金元素Ni、Mn、Si的成分下限目标的调整;
S2、将S1中AOD吹炼的钢水转入LF炉,并使得进入LF炉的钢水的C含量、P含量进入最终成分下限以下,防止后期增C,留出后期操作增C和增P余量;
S3、向LF炉加入200-300mm厚度的还原精炼渣,对进入LF炉的钢水进行还原精炼,以便脱氧和脱硫及进行成分精确调整;还原精炼渣应将碱度CaO/SiO 2控制在2-3的范围内,还原精炼渣的成分按质量百分比计为CaO:50-60wt%,其中高品质CaCO 3中CaO含量总量比>50wt%;SiO 2:25-30wt%;CaF 2:10wt%;其余高铝耐火砖块状料;还原精炼渣的块度小于20mm,不能有粉状料,且需要以密封防潮袋袋装;
S4、LF炉吹氩气搅拌,LF炉吹氩气搅拌的程度达到渣面吹破即可;然后按每吨钢加入Al 0.8-1.2kg的方式加入铝,后续过程中钢水不再加入铝脱氧;在促进白渣形成时可以在LF炉渣表面加入铝粒,但不得用铝粉替代,防止铝粉的剧烈燃烧;
S5、LF炉吹氩气搅拌10分钟后开始保持白渣,炉渣过稀时,加入高钙比例石灰石调渣,以保持炉渣的发泡性,使得LF炉精炼与调整成分能够顺利进行;保持LF精炼与调整成分所消耗的时间一般不大于40分钟;
S6、精炼结束后,通过碱金属包芯线对钢水中的夹杂物进行变性处理,使得钢水的成分满足所述含镍铁素体不锈钢的基本成分;
S7、S6中精炼结束得到的钢水送连铸机铸成板坯或方坯或矩形坯;
S8、板坯或方坯或矩形坯经过冷却后送检验修磨,之后在轧机中进行控轧控冷的轧制工艺和热处理制得所需的钢材。
其中,所述中等铬含镍铁素体不锈钢或所述高铬含镍铁素体不锈钢的S8中控轧控冷的轧制和热处理为:钢坯的初轧温度1080-1120℃,终轧温度910-950℃,获得所需规格的钢材;终轧结束后,立即对钢材进行喷淋冷却至670-730℃,紧接着进入等温保温炉处理,等温保温时间控制在4-6小时然后出炉,出炉之后立即喷淋或通过其它冷却方式直接冷却至200℃以下。
其中,所述高铬含镍耐点蚀铁素体不锈钢的S1中需要控制铬含量为 17-26wt%,在S2中需要添加0.6-0.8wt%的Mo,在S8中控轧控冷的轧制和热处理为:钢坯的初轧温度1080-1120℃,终轧温度910-950℃,获得所需规格的钢材;终轧结束,将钢材送入1080-1120℃的固溶炉,进行1.5-2.0小时的等温处理,达到所添加的Mo元素固溶于所述高铬含镍耐点蚀铁素体不锈钢中的目的;固溶结束后,立即对钢材进行喷淋冷却至670-730℃,紧接着进入等温保温炉处理,等温保温时间控制在4-6小时,出炉之后立即喷淋或通过其它冷却方式直接冷却至200℃以下;所述高铬含镍耐点蚀铁素体不锈钢可在热轧状态加工使用。
其中,所述含镍铁素体不锈钢需要生产冷轧材时,等温保温处理需要在670-730℃保持8-12小时。
具体含镍铁素体不锈钢及其制备方法结合以下实施例进行说明:
实施例一:
一种红土镍矿冶炼的中等铬含镍铁素体不锈钢的基本成分按质量百分比计为:C 0.01-0.07%,Si≤0.8%,Mn≤0.8%,Cr 16%,Ni≤1.6%,P≤0.05%,S≤0.030%,Al 0.01-0.05%,全O≤40ppm,其余为Fe和不可避免的杂质。
其中,所述中等铬含镍铁素体不锈钢的金相组织是:在铁素体基体上均匀分布少量纳米级碳化物,碳化物平均尺寸控制在400纳米以下,晶粒平均尺寸小于8微米;屈服强度σ 0.2≥350MPa,断裂强度≥450MPa,延伸率≥20%。
其中,所述中等铬含镍铁素体不锈钢的耐中性盐雾腐蚀能力等同或优于奥氏体不锈钢304不锈钢,与铁素体不锈钢430接近。
其中,所述中等铬含镍铁素体不锈钢的制备方法包括以下步骤:
S1、原料为低镍红土镍矿表层矿,通过高炉冶炼或矿热电炉冶炼成铁水,送AOD吹炼;或者由感应炉、电弧炉冶炼低镍铁块获得的铁水送AOD吹炼;AOD吹炼过程中完成主要合金元素Cr、Ni、Mn、Si的成分下限目标的调整;
S2、将S1中AOD吹炼的钢水转入LF炉,并使得进入LF炉的钢水的C含量、P含量进入最终成分下限以下,防止后期增C,留出后期操作增C和增P余量;
S3、向LF炉加入200-300mm厚度的还原精炼渣,对进入LF炉的钢水进行还原精炼,以便脱氧和脱硫及进行成分精确调整;还原精炼渣应将碱度CaO/SiO 2控制在2-3的范围内,还原精炼渣的成分按质量百分比计为CaO:50-60%,其中高品质CaCO 3中CaO含量总量比>50%;SiO 2:25-30%;CaF 2:10%;其余高铝耐火砖块状料;还原精炼渣的块度小于20mm,不能有粉状料,且需要以密封防潮袋袋装;
S4、LF炉吹氩气搅拌,LF炉吹氩气搅拌的程度达到渣面吹破即可;然后按每吨钢加入Al 0.8-1.2kg的方式加入铝,后续过程中钢水不再加入铝脱氧;在促进白渣形成时可以在LF炉渣表面加入铝粒,但不得用铝粉替代,防止铝粉的剧烈燃烧;
S5、LF炉吹氩气搅拌10分钟后开始保持白渣,炉渣过稀时,加入高钙比例石灰石调渣,以保持炉渣的发泡性,使得LF炉精炼与调整成分能够顺利进行;保持LF精炼与调整成分所消耗的时间一般不大于40分钟;
S6、精炼结束后,通过碱金属包芯线对钢水中的夹杂物进行变性处理,使得钢水的成分满足所述含镍铁素体不锈钢的基本成分;
S7、S6中精炼结束得到的钢水送连铸机铸成板坯或方坯或矩形坯;
S8、板坯或方坯或矩形坯经过冷却后送检验修磨,之后在轧机中进行控轧控冷的轧制工艺和热处理制得所需的钢材。
其中,所述中等铬含镍铁素体不锈钢的S8中控轧控冷的轧制和热处理为:钢坯的初轧温度1080-1120℃,终轧温度910-950℃,获得所需规格的钢材;终轧结束后,立即对钢材进行喷淋冷却至670-730℃,紧接着进入等温保温炉处理,等温保温时间控制在4-6小时然后出炉,出炉之后立即喷淋或通过其它冷却方式直接冷却至200℃以下。
其中,所述含镍铁素体不锈钢需要生产冷轧材时,等温保温处理需要在670-730℃保持8-12小时。
实施例二:
一种红土镍矿冶炼高铬含镍铁素体不锈钢的基本成分按质量百分比计为:C 0.01-0.07%,Si≤0.8%,Mn≤0.8%,Cr 24%,Ni≤1.6%,P≤0.05%,S≤0.030%, Al 0.01-0.05%,全O≤40ppm,其余为Fe和不可避免的杂质。
其中,所述高铬含镍铁素体不锈钢的金相组织是:在铁素体基体上均匀分布少量纳米级碳化物,碳化物平均尺寸控制在400纳米以下,晶粒平均尺寸小于8微米;屈服强度σ 0.2≥350MPa,断裂强度≥450MPa,延伸率≥20%。
其中,所述高铬含镍铁素体不锈钢的耐中性盐雾腐蚀能力等同或优于316不锈钢。
其中,所述高铬含镍铁素体不锈钢的制备方法包括以下步骤:
S1、原料为低镍红土镍矿表层矿,通过高炉冶炼或矿热电炉冶炼成铁水,送AOD吹炼;或者由感应炉、电弧炉冶炼低镍铁块获得的铁水送AOD吹炼;AOD吹炼过程中完成主要合金元素Cr、Ni、Mn、Si的成分下限目标的调整;
S2、将S1中AOD吹炼的钢水转入LF炉,并使得进入LF炉的钢水的碳含量、磷含量进入最终成分下限以下,防止后期增碳,留出后期操作增C和增P余量;
S3、向LF炉加入200-300mm厚度的还原精炼渣,对进入LF炉的钢水进行还原精炼,以便脱氧和脱硫及进行成分精确调整;还原精炼渣应将碱度CaO/SiO 2控制在2-3的范围内,还原精炼渣的成分按质量百分比计为CaO:50-60%wt,其中高品质CaCO 3中CaO含量总量比>50wt%;SiO 2:25-30wt%;CaF 2:10wt%;其余高铝耐火砖块状料;还原精炼渣的块度小于20mm,不能有粉状料,且需要以密封防潮袋袋装;
S4、LF炉吹氩气搅拌,LF炉吹氩气搅拌的程度达到渣面吹破即可;然后按每吨钢加入Al 0.8-1.2kg的方式加入铝,后续过程中钢水不再加入铝脱氧;在促进白渣形成时可以在LF炉渣表面加入铝粒,但不得用铝粉替代,防止铝粉的剧烈燃烧;
S5、LF炉吹氩气搅拌10分钟后开始保持白渣,炉渣过稀时,加入高钙比例石灰石调渣,以保持炉渣的发泡性,使得LF炉精炼与调整成分能够顺利进行;保持LF精炼与调整成分所消耗的时间一般不大于40分钟;
S6、精炼结束后,通过碱金属包芯线对钢水中的夹杂物进行变性处理,使得钢水的成分满足所述含镍铁素体不锈钢的基本成分;
S7、S6中精炼结束得到的钢水送连铸机铸成板坯或方坯或矩形坯;
S8、板坯或方坯或矩形坯经过冷却后送检验修磨,之后在轧机中进行控轧控冷的轧制工艺和热处理制得所需的钢材。
其中,所述高铬含镍铁素体不锈钢,控轧控冷的轧制和热处理工艺方法:钢坯的初轧温度1080-1120℃,终轧温度910-950℃;终轧结束,立即进行喷淋冷却至670-730℃进入等温保温炉处理,等温保温时间控制在4-6小时,出炉之后立即喷淋或其它直接冷却至200℃以下。
其中,所述高铬含镍铁素体不锈钢的S8中控轧控冷的轧制和热处理为:钢坯的初轧温度1080-1120℃,终轧温度910-950℃,获得所需规格的钢材;终轧结束后,立即对钢材进行喷淋冷却至670-730℃,紧接着进入等温保温炉处理,等温保温时间控制在4-6小时然后出炉,出炉之后立即喷淋或通过其它冷却方式直接冷却至200℃以下。
其中,所述含镍铁素体不锈钢需要生产冷轧材时,等温保温处理需要在670-730℃保持8-12小时。
实施例三:
一种红土镍矿冶炼高铬含镍耐点蚀铁素体不锈钢的基本成分按质量百分比计为:C 0.01-0.07%,Si≤0.8%,Mn≤0.8%,Cr 26%,Ni≤1.6%,P≤0.05%,S≤0.030%,Mo 0.8%,Al 0.01-0.05%,全O≤40ppm,其余为Fe和不可避免的杂质。
其中,所述高铬含镍耐点蚀铁素体不锈钢的金相组织是:在铁素体基体上均匀分布少量纳米级碳化物,碳化物平均尺寸控制在400纳米以下,晶粒平均尺寸小于8微米;屈服强度σ 0.2≥350MPa,断裂强度≥450MPa,延伸率≥20%。
其中,所述高铬含镍耐点蚀铁素体不锈钢的耐中性盐雾腐蚀能力等同或优于2205双相不锈钢和316不锈钢,同时具有一定的耐点蚀能力。
其中,所述高铬含镍耐点蚀铁素体不锈钢,所述制备方法包括以下步骤:
S1、原料为低镍红土镍矿表层矿,通过高炉冶炼或矿热电炉冶炼成铁水,送AOD吹炼;或者由感应炉、电弧炉冶炼低镍铁块获得的铁水送AOD吹炼;AOD吹炼过程中完成主要合金元素Cr、Ni、Mn、Si的成分下限目标的调整;
S2、将S1中AOD吹炼的钢水转入LF炉,并使得进入LF炉的钢水的碳 含量、磷含量进入最终成分下限以下,防止后期增碳,留出后期操作增C和增P余量;
S3、向LF炉加入200-300mm厚度的还原精炼渣,对进入LF炉的钢水进行还原精炼,以便脱氧和脱硫及进行成分精确调整;还原精炼渣应将碱度CaO/SiO 2控制在2-3的范围内,还原精炼渣的成分按质量百分比计为CaO:50-60%,其中高品质CaCO 3中CaO含量总量比>50%;SiO 2:25-30%;CaF 2:10%;其余高铝耐火砖块状料;还原精炼渣的块度小于20mm,不能有粉状料,且需要以密封防潮袋袋装;
S4、LF炉吹氩气搅拌,LF炉吹氩气搅拌的程度达到渣面吹破即可;然后按每吨钢加入Al 0.8-1.2kg的方式加入铝,后续过程中钢水不再加入铝脱氧;在促进白渣形成时可以在LF炉渣表面加入铝粒,但不得用铝粉替代,防止铝粉的剧烈燃烧;
S5、LF炉吹氩气搅拌10分钟后开始保持白渣,炉渣过稀时,加入高钙比例石灰石调渣,以保持炉渣的发泡性,使得LF炉精炼与调整成分能够顺利进行;保持LF精炼与调整成分所消耗的时间一般不大于40分钟;
S6、精炼结束后,通过碱金属包芯线对钢水中的夹杂物进行变性处理,使得钢水的成分满足所述含镍铁素体不锈钢的基本成分;
S7、S6中精炼结束得到的钢水送连铸机铸成板坯或方坯或矩形坯;
S8、板坯或方坯或矩形坯经过冷却后送检验修磨,之后在轧机中进行控轧控冷的轧制工艺和热处理制得所需的钢材。
其中,所述高铬含镍耐点蚀铁素体不锈钢的S1中需要控制铬含量为17-26wt%,在S2中需要添加0.6-0.8wt%的Mo,在S8中控轧控冷的轧制和热处理为:钢坯的初轧温度1080-1120℃,终轧温度910-950℃,获得所需规格的钢材;终轧结束,将钢材送入1080-1120℃的固溶炉,进行1.5-2.0小时的等温处理,达到所添加的Mo元素固溶于所述高铬含镍耐点蚀铁素体不锈钢中的目的;固溶结束后,立即对钢材进行喷淋冷却至670-730℃,紧接着进入等温保温炉处理,等温保温时间控制在4-6小时,出炉之后立即喷淋或通过其它冷却方式直接冷却至200℃以下;所述高铬含镍耐点蚀铁素体不锈钢可在热轧状态加工使用。
其中,所述含镍铁素体不锈钢需要生产冷轧材时,等温保温处理需要在670-730℃保持8-12小时。
综上可见,本发明根据红土镍矿表层矿资源的铁与合金价值,进行***的合金设计和热处理工艺设计。通过在冶炼过程中合理配矿,经过高炉或者矿热炉、转炉或AOD炉冶炼,在LF精炼炉中适当补加调整少量合金,生产出系列含镍铁素体不锈钢,中等铬含镍铁素体不锈钢、高铬含镍铁素体不锈钢和高铬含镍耐点蚀铁素体不锈钢。本发明使这些几近废弃的红土镍矿表层矿资源化、价值化,满足不锈钢的功能性需要。
本发明的含镍铁素体不锈钢通过控轧控冷实现了细晶化,晶粒尺寸平均小于8微米,而这对于减少晶间腐蚀和点腐蚀起到重要作用。LF炉中Mo元素的添加,在用合金元素较少的条件下,实现了抗点腐蚀的功能。
此外,本发明提供的含镍铁素体不锈钢抗拉强度≥450MPa,屈服强度≥350MPa,断后伸长率≥22%;断面收缩率≥40%,适合于热轧和冷轧的薄板类材料使用,也适合不要求无磁性的场合,更可用作抗震吸能钢,也可以根据耐腐蚀场景的要求选择相应耐腐蚀性能的含镍铁素体不锈钢。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种红土镍矿冶炼的含镍铁素体不锈钢,其特征在于,所述含镍铁素体不锈钢的基本成分按质量百分比计为:C 0.01-0.07wt%,Si≤0.8wt%,Mn≤0.8wt%,Cr 14-26wt%,Ni≤1.6wt%,P≤0.05wt%,S≤0.030wt%,Al 0.01-0.05wt%,全O≤40ppm,其余为Fe和不可避免的杂质。
  2. 根据权利要求1所述含镍铁素体不锈钢,其特征在于,所述含镍铁素体不锈钢金相组织是:在铁素体基体上均匀分布少量纳米级碳化物,碳化物平均尺寸控制在400纳米以下,晶粒平均尺寸小于8微米;屈服强度σ 0.2≥350MPa,断裂强度≥450MPa,延伸率≥20%。
  3. 根据权利要求1所述含镍铁素体不锈钢,其特征在于,所述含镍铁素体不锈钢除包括Cr14-17wt%的中等铬含镍铁素体不锈钢和Cr17-26wt%的高铬含镍铁素体不锈钢外,还包括Cr17-26wt%、Mo 0.6-0.8wt%的高铬含镍耐点蚀铁素体不锈钢。
  4. 根据权利要求3所述含镍铁素体不锈钢,其特征在于,所述中等铬含镍铁素体不锈钢的耐中性盐雾腐蚀能力等同或优于奥氏体不锈钢304不锈钢,与铁素体不锈钢430接近。
  5. 根据权利要求3所述含镍铁素体不锈钢,其特征在于,所述高铬含镍铁素体不锈钢的耐中性盐雾腐蚀能力等同或优于316不锈钢。
  6. 根据权利要求3所述含镍铁素体不锈钢,其特征在于,所述高铬含镍耐点蚀铁素体不锈钢的耐中性盐雾腐蚀能力等同或优于2205双相不锈钢和316不锈钢。
  7. 一种权利要求1-6任一所述含镍铁素体不锈钢的制备方法,其特征在于,所述制备方法具体包括以下步骤:
    S1、原料为低镍红土镍矿表层矿,通过高炉冶炼或矿热电炉冶炼成铁水,送AOD吹炼;或者由感应炉、电弧炉冶炼低镍铁块获得的铁水送AOD吹炼;AOD吹炼过程中根据所述含镍铁素体不锈钢的Cr成分要求完成Cr成分的下限目标的调整,并完成主要合金元素Ni、Mn、Si的成分下限目标的调整;
    S2、将S1中AOD吹炼的钢水转入LF炉,并使得进入LF炉的钢水的C含 量、P含量进入最终成分下限以下,防止后期增C,留出后期操作增C和增P余量;
    S3、向LF炉加入200-300mm厚度的还原精炼渣,对进入LF炉的钢水进行还原精炼,以便脱氧和脱硫及进行成分精确调整;还原精炼渣应将碱度CaO/SiO 2控制在2-3的范围内,还原精炼渣的成分按质量百分比计为CaO:50-60wt%,其中高品质CaCO 3中CaO含量总量比>50wt%;SiO 2:25-30wt%;CaF 2:10wt%;其余高铝耐火砖块状料;还原精炼渣的块度小于20mm,不能有粉状料,且需要以密封防潮袋袋装;
    S4、LF炉吹氩气搅拌,LF炉吹氩气搅拌的程度达到渣面吹破即可;然后按每吨钢加入Al 0.8-1.2kg的方式加入铝,后续过程中钢水不再加入铝脱氧;在促进白渣形成时可以在LF炉渣表面加入铝粒,但不得用铝粉替代,防止铝粉的剧烈燃烧;
    S5、LF炉吹氩气搅拌10分钟后开始保持白渣,炉渣过稀时,加入高钙比例石灰石调渣,以保持炉渣的发泡性,使得LF炉精炼与调整成分能够顺利进行;保持LF精炼与调整成分所消耗的时间一般不大于40分钟;
    S6、精炼结束后,通过碱金属包芯线对钢水中的夹杂物进行变性处理,使得钢水的成分满足所述含镍铁素体不锈钢的基本成分;
    S7、S6中精炼结束得到的钢水送连铸机铸成板坯或方坯或矩形坯;
    S8、板坯或方坯或矩形坯经过冷却后送检验修磨,之后在轧机中进行控轧控冷的轧制工艺和热处理制得所需的钢材。
  8. 根据权利要求7所述含镍铁素体不锈钢的制备方法,其特征在于,所述中等铬含镍铁素体不锈钢或所述高铬含镍铁素体不锈钢的S8中控轧控冷的轧制和热处理为:钢坯的初轧温度1080-1120℃,终轧温度910-950℃,获得所需规格的钢材;终轧结束后,立即对钢材进行喷淋冷却至670-730℃,紧接着进入等温保温炉处理,等温保温时间控制在4-6小时然后出炉,出炉之后立即喷淋或通过其它冷却方式直接冷却至200℃以下。
  9. 根据权利要求7所述含镍铁素体不锈钢的制备方法,其特征在于,所述高铬含镍耐点蚀铁素体不锈钢的S1中需要控制铬含量为17-26wt%,在S2中需要添加0.6-0.8wt%的Mo,在S8中控轧控冷的轧制和热处理为:钢坯的 初轧温度1080-1120℃,终轧温度910-950℃,获得所需规格的钢材;终轧结束,将钢材送入1080-1120℃的固溶炉,进行1.5-2.0小时的等温处理,达到所添加的Mo元素固溶于所述高铬含镍耐点蚀铁素体不锈钢中的目的;固溶结束后,立即对钢材进行喷淋冷却至670-730℃,紧接着进入等温保温炉处理,等温保温时间控制在4-6小时,出炉之后立即喷淋或通过其它冷却方式直接冷却至200℃以下。
  10. 根据权利要求7所述含镍铁素体不锈钢的制备方法,其特征在于,所述含镍铁素体不锈钢需要生产冷轧材时,等温保温处理需要在670-730℃保持8-12小时。
PCT/CN2019/109535 2019-09-24 2019-09-30 一种红土镍矿冶炼的含镍铁素体不锈钢及其制备方法 WO2021056602A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PH12021551517A PH12021551517A1 (en) 2019-09-24 2021-06-24 Nickel-containing ferritic stainless steel smelted from laterite nickel ore, and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910906296.6A CN110592494B (zh) 2019-09-24 2019-09-24 一种红土镍矿冶炼的含镍铁素体不锈钢及其制备方法
CN201910906296.6 2019-09-24

Publications (1)

Publication Number Publication Date
WO2021056602A1 true WO2021056602A1 (zh) 2021-04-01

Family

ID=68862904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109535 WO2021056602A1 (zh) 2019-09-24 2019-09-30 一种红土镍矿冶炼的含镍铁素体不锈钢及其制备方法

Country Status (3)

Country Link
CN (1) CN110592494B (zh)
PH (1) PH12021551517A1 (zh)
WO (1) WO2021056602A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113106322A (zh) * 2021-04-22 2021-07-13 安徽富凯特材有限公司 一种超纯铁素体不锈钢冶炼方法
CN113523240A (zh) * 2021-07-19 2021-10-22 青岛力晨新材料科技有限公司 一种双金属复合板及其制备方法
CN113714281A (zh) * 2021-08-28 2021-11-30 金鼎重工有限公司 一种Ф22mm大规格热轧盘条生产方法
CN114182177A (zh) * 2021-12-08 2022-03-15 浙江青山钢铁有限公司 一种含硫含碲易切削铁素体不锈钢及其制造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111172461A (zh) * 2020-01-22 2020-05-19 王平 一种表层低镍红土镍矿生产的不锈钢及其制备方法
CN111893382B (zh) * 2020-07-20 2021-11-26 振石集团东方特钢有限公司 一种食品用链条不锈钢及其制备方法
CN113249540B (zh) * 2021-05-14 2022-08-23 山西太钢不锈钢股份有限公司 使用aod炉以氢氧化镍为原料冶炼镍系不锈钢的生产方法
CN114214571A (zh) * 2021-11-24 2022-03-22 广西北海综红科技开发有限公司 一种铁素体不锈钢及其制备方法
CN114703432A (zh) * 2022-04-08 2022-07-05 山西太钢不锈钢股份有限公司 铌稳定型含镍铁素体不锈钢及其制备方法
CN114875206B (zh) * 2022-04-11 2023-09-19 辽宁石源科技有限公司 一种红土镍矿冶炼含铬高磷金属液的去磷保铬二重工艺
CN117604399A (zh) * 2022-05-07 2024-02-27 广西柳州钢铁集团有限公司 一种410铁素体不锈钢制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101469391A (zh) * 2007-12-29 2009-07-01 中冶东方工程技术有限公司上海分公司 一种含Ni不锈钢冶炼方法
CN102534409A (zh) * 2012-02-08 2012-07-04 河北联合大学 一种低成本抗皱铁素体不锈钢及其生产方法
CN103436797A (zh) * 2013-09-10 2013-12-11 郑州永通特钢有限公司 使用褐铁型红土矿生产含磷铁素体不锈钢的方法及其产品
JP2018154857A (ja) * 2017-03-15 2018-10-04 日新製鋼株式会社 フェライト系ステンレス鋼熱延鋼帯および鋼帯の製造方法
WO2018198834A1 (ja) * 2017-04-25 2018-11-01 Jfeスチール株式会社 フェライト系ステンレス鋼板およびその製造方法
JP2019147986A (ja) * 2018-02-27 2019-09-05 日本製鉄株式会社 ステンレス鋼材、構成部材、セルおよび燃料電池スタック

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3508715B2 (ja) * 2000-10-20 2004-03-22 住友金属工業株式会社 高Cr鋼鋳片および継目無鋼管
JP4655432B2 (ja) * 2001-08-20 2011-03-23 Jfeスチール株式会社 塗装皮膜の密着性と耐食性に優れたフェライト系ステンレス鋼板およびその製造方法
CN1542156A (zh) * 2003-04-30 2004-11-03 王光煌 一种高硅、高铝铁素体不锈钢及其在制备耐热钢管中的应用
CN1526844A (zh) * 2003-09-23 2004-09-08 束润涛 一种超低碳铁素体不锈钢焊接钢管的换热器
CN107012401A (zh) * 2017-04-07 2017-08-04 邢台钢铁有限责任公司 一种低碳铁素体软磁不锈钢及其生产方法
CN107747063B (zh) * 2017-11-29 2019-08-23 郑州永通特钢有限公司 一种高强韧马氏体不锈钢
CN108193131A (zh) * 2017-12-31 2018-06-22 余永海 一种不锈钢件及用于加工该不锈钢件的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101469391A (zh) * 2007-12-29 2009-07-01 中冶东方工程技术有限公司上海分公司 一种含Ni不锈钢冶炼方法
CN102534409A (zh) * 2012-02-08 2012-07-04 河北联合大学 一种低成本抗皱铁素体不锈钢及其生产方法
CN103436797A (zh) * 2013-09-10 2013-12-11 郑州永通特钢有限公司 使用褐铁型红土矿生产含磷铁素体不锈钢的方法及其产品
JP2018154857A (ja) * 2017-03-15 2018-10-04 日新製鋼株式会社 フェライト系ステンレス鋼熱延鋼帯および鋼帯の製造方法
WO2018198834A1 (ja) * 2017-04-25 2018-11-01 Jfeスチール株式会社 フェライト系ステンレス鋼板およびその製造方法
JP2019147986A (ja) * 2018-02-27 2019-09-05 日本製鉄株式会社 ステンレス鋼材、構成部材、セルおよび燃料電池スタック

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113106322A (zh) * 2021-04-22 2021-07-13 安徽富凯特材有限公司 一种超纯铁素体不锈钢冶炼方法
CN113106322B (zh) * 2021-04-22 2022-01-28 安徽富凯特材有限公司 一种超纯铁素体不锈钢冶炼方法
CN113523240A (zh) * 2021-07-19 2021-10-22 青岛力晨新材料科技有限公司 一种双金属复合板及其制备方法
CN113714281A (zh) * 2021-08-28 2021-11-30 金鼎重工有限公司 一种Ф22mm大规格热轧盘条生产方法
CN114182177A (zh) * 2021-12-08 2022-03-15 浙江青山钢铁有限公司 一种含硫含碲易切削铁素体不锈钢及其制造方法

Also Published As

Publication number Publication date
PH12021551517A1 (en) 2022-02-28
CN110592494B (zh) 2021-01-15
CN110592494A (zh) 2019-12-20

Similar Documents

Publication Publication Date Title
WO2021056602A1 (zh) 一种红土镍矿冶炼的含镍铁素体不锈钢及其制备方法
CN103014550B (zh) 高铬多元合金耐磨球及其制造方法
CN111534751A (zh) 一种hrb400e超细晶高强韧直条抗震钢筋及其制备方法
CN111748741B (zh) 一种厚规格管线钢及其低压缩比生产工艺
CN102080193A (zh) 一种超大热输入焊接用结构钢及其制造方法
CN104032229B (zh) 五金工具专用钢及其制备方法
CN110565012B (zh) 一种超高铬铁素体不锈钢连铸制造方法
CN102994874A (zh) 屈服强度500MPa级高止裂韧性钢板及其生产方法
CN102703811A (zh) 钛微合金化400MPa级高强度钢筋及其生产方法
WO2022022040A1 (zh) 一种355MPa级别海洋工程用耐低温热轧H型钢及其制备方法
CN107964624A (zh) 一种屈服强度500MPa级结构钢及其制备方法
CN102424933A (zh) 一种热轧高强带钢及其制造方法
CN113234999B (zh) 一种高效焊接桥梁钢及其制造方法
CN111101079A (zh) 一种大规格细晶高强抗震钢筋及其制备方法
CN110106441A (zh) TMCP型屈服370MPa高性能桥梁钢板及生产方法
CN106756511A (zh) 一种双金属锯条背材用d6a热轧宽带钢及其生产方法
JP2017066449A (ja) 疲労特性に優れた高強度ステンレス鋼板およびその製造方法
CN102268615B (zh) 心部低温冲击韧性优良及抗层状撕裂的工程钢材的生产方法
CN102978511B (zh) 低成本生产汽车大梁钢用热轧钢板的方法
CN109881121B (zh) 一种耐氯离子腐蚀的高强度抗震钢筋及其生产方法和用途
CN111172461A (zh) 一种表层低镍红土镍矿生产的不锈钢及其制备方法
CN109295390A (zh) 一种超高强耐腐蚀钢筋及其生产方法
CN110578101B (zh) 一种海洋用回火索氏体高强韧不锈结构钢及其制备方法
CN105112810B (zh) 一种抗大线能量焊接用钢及其制备方法
WO2021046882A1 (zh) 一种抗震耐火高强韧不锈结构钢及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19946550

Country of ref document: EP

Kind code of ref document: A1