WO2021049377A1 - 重合体組成物、架橋重合体、及びタイヤ - Google Patents

重合体組成物、架橋重合体、及びタイヤ Download PDF

Info

Publication number
WO2021049377A1
WO2021049377A1 PCT/JP2020/033111 JP2020033111W WO2021049377A1 WO 2021049377 A1 WO2021049377 A1 WO 2021049377A1 JP 2020033111 W JP2020033111 W JP 2020033111W WO 2021049377 A1 WO2021049377 A1 WO 2021049377A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer
conjugated diene
carbon atoms
compound
Prior art date
Application number
PCT/JP2020/033111
Other languages
English (en)
French (fr)
Inventor
瀚洋 秦
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to EP20862800.8A priority Critical patent/EP4029911A4/en
Priority to CN202080054521.9A priority patent/CN114207009A/zh
Priority to KR1020227000636A priority patent/KR102619412B1/ko
Priority to JP2021545242A priority patent/JPWO2021049377A1/ja
Publication of WO2021049377A1 publication Critical patent/WO2021049377A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/22Incorporating nitrogen atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • C08C19/44Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F136/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F136/02Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F136/04Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • C08F8/32Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/34Monomers containing two or more unsaturated aliphatic radicals
    • C08F212/36Divinylbenzene

Definitions

  • the present invention relates to a polymer composition, a crosslinked polymer, and a tire prepared by using the crosslinked polymer.
  • Patent Document 1 discloses that when this material is used as a tread material for a tire, it is excellent in heat generation, wear resistance, and wet grip.
  • a polymer composition suitable for producing a tire having good workability and a highly balanced balance in impact resilience, wet grip property, low loss property and tensile strength can be obtained.
  • some aspects of the present invention provide a tire that is highly balanced in impact resilience, wet grip, low loss and tensile strength.
  • the present invention has been made to solve at least a part of the above-mentioned problems, and can be realized as any of the following aspects.
  • One aspect of the polymer composition according to the present invention is (A) A polymer having an active polymerization terminal obtained by polymerizing a conjugated diene compound or a conjugated diene compound and an aromatic vinyl compound in the presence of an alkali metal compound or an alkaline earth metal compound, and the following general formula (1).
  • a conjugated diene polymer which is a reaction product with the compound represented by any of (3),
  • B Conjugated diene polymer particles and Contains.
  • a 2 is a monovalent group bonded to L 2 with an imino group, an amide group, a (thio) carbonyl group, a (thio) carbonyloxy group, a sulfide or a polysulfide, or is protected.
  • L 3 , R 3 , R 4 and n 2 are the same as those in the formula (1), and * indicates a site that binds to L 2.
  • a 3 are each independently, an imino group, an amido group, (thio) carbonyl group, a (thio) carbonyl group, secondary amino group, or a tertiary amino group
  • Z is a nitrogen atom
  • L 4 represents a single bond or a hydrocarbylene group having 1 to 20 carbon atoms
  • L 5 represents a hydrocarbylene group having 1 to 20 carbon atoms.
  • R 5 and R 6 each independently represent a hydrocarbyl group having 1 to 4 carbon atoms, n3 is 0 or 1, and t is 2 or 3).
  • R 7 and R 8 each independently represent a hydrocarbyl group having 1 to 20 carbon atoms
  • R 9 is a hydrocarbyl group having 1 to 20 carbon atoms, a hydrogen atom contained in the alkyl group, and -CH.
  • At least one of 2- is a substituted alkyl group having 1 to 20 carbon atoms substituted with a group containing at least one element selected from the group consisting of silicon, nitrogen, phosphorus, oxygen and sulfur, or nitrogen.
  • the (B) conjugated diene polymer particles can be contained in an amount of 1% by mass or more and 50% by mass or less.
  • the polystyrene-equivalent weight average molecular weight of the conjugated diene polymer (A) measured by gel permeation chromatography can be 100,000 to 2,000,000.
  • the number average particle diameter of the conjugated diene polymer particles (B) measured by a light scattering method can be 10 nm or more and 800 nm or less.
  • the (B) conjugated diene-based polymer particles can be crosslinked particles.
  • a cross-linking agent can be contained.
  • One aspect of the crosslinked polymer according to the present invention is It is produced by using the polymer composition of any one of the above embodiments.
  • One aspect of the tire according to the present invention is It is the one using the crosslinked polymer of the said aspect.
  • the polymer composition according to the present invention it is possible to produce a crosslinked polymer (tire) having good workability and a highly balanced balance in impact resilience, wet grip property, low loss property and tensile strength. it can.
  • (meth) acrylic acid- is a concept including both acrylic acid-and methacrylic acid-
  • "-(meth) acrylate” includes both ⁇ acrylate and ⁇ methacrylate. It is a concept.
  • the polymer composition according to the embodiment of the present invention is obtained by polymerizing a conjugated diene compound or a conjugated diene compound and an aromatic vinyl compound in the presence of (A) an alkali metal compound or an alkaline earth metal compound.
  • a conjugated diene-based polymer (hereinafter, "(A)), which is a reaction product of the obtained polymer having an active polymerization terminal and a compound represented by any of the following general formulas (1) to (3). (Also referred to as “conjugated diene-based polymer”) and (B) conjugated diene-based polymer particles.
  • the polymer composition according to the present embodiment is unvulcanized obtained by kneading (A) conjugated diene-based polymer and (B) conjugated diene-based polymer particles with other additives, if necessary. It is a polymer composition of.
  • the polymer composition according to the present embodiment forms a crosslinked polymer by subjecting it to a crosslinking treatment such as vulcanization.
  • the polymer composition according to the present embodiment polymerizes a conjugated diene compound or a conjugated diene compound and an aromatic vinyl compound in the presence of (A) an alkali metal compound or an alkaline earth metal compound. It contains a conjugated diene-based polymer which is a reaction product of the obtained polymer having an active polymerization terminal and a compound represented by any of the following general formulas (1) to (3).
  • a 2 is a monovalent group bonded to L 2 with an imino group, an amide group, a (thio) carbonyl group, a (thio) carbonyloxy group, a sulfide or a polysulfide, or is protected.
  • L 3 , R 3 , R 4 and n 2 are the same as those in the formula (1), and * indicates a site that binds to L 2.
  • a 3 are each independently, an imino group, an amido group, (thio) carbonyl group, a (thio) carbonyl group, secondary amino group, or a tertiary amino group
  • Z is a nitrogen atom
  • L 4 represents a single bond or a hydrocarbylene group having 1 to 20 carbon atoms
  • L 5 represents a hydrocarbylene group having 1 to 20 carbon atoms.
  • R 5 and R 6 each independently represent a hydrocarbyl group having 1 to 4 carbon atoms, n3 is 0 or 1, and t is 2 or 3).
  • R 7 and R 8 each independently represent a hydrocarbyl group having 1 to 20 carbon atoms
  • R 9 is a hydrocarbyl group having 1 to 20 carbon atoms, a hydrogen atom contained in the alkyl group, and -CH.
  • At least one of 2- is a substituted alkyl group having 1 to 20 carbon atoms substituted with a group containing at least one element selected from the group consisting of silicon, nitrogen, phosphorus, oxygen and sulfur, or nitrogen.
  • the conjugated diene-based polymer has a structural unit derived from the conjugated diene compound, and has a structure derived from any of the compounds of the above general formulas (1) to (3) at the active polymerization terminal.
  • a conjugated diene-based polymer (A) first, a monomer containing a conjugated diene compound is polymerized in the presence of an alkali metal compound or an alkaline earth metal compound to obtain a polymer having an active polymerization terminal. (Polymerization step), then, by reacting the polymer having an active polymerization terminal with the compound of any of the above general formulas (1) to (3) (hereinafter, also referred to as "specific modifier"). Can be obtained (modification step).
  • Examples of the conjugated diene compound that can be used in the polymerization include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, and 1,3-heptadiene. , 2-Phenyl-1,3-butadiene, 3-methyl-1,3-pentadiene, 2-chloro-1,3-butadiene and the like. Among these, 1,3-butadiene, isoprene and 2,3-dimethyl-1,3-butadiene are preferable.
  • the conjugated diene compound may be used alone or in combination of two or more.
  • the conjugated diene-based polymer (A) may be a homopolymer of the conjugated diene compound, but from the viewpoint of increasing the strength of the crosslinked polymer, it must be a copolymer of the conjugated diene compound and an aromatic vinyl compound. Is preferable. Above all, a copolymer containing 1,3-butadiene and styrene in a monomer composition is preferable in terms of high living property in anionic polymerization.
  • the (A) conjugated diene polymer is a copolymer of a conjugated diene compound and an aromatic vinyl compound
  • the (A) conjugated diene polymer is typically a conjugated diene compound and an aromatic vinyl compound. It may have a random copolymerized moiety having an irregular distribution of, and further have a block moiety composed of structural units derived from a conjugated diene compound or an aromatic vinyl compound.
  • aromatic vinyl compound examples include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, ⁇ -methylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, and the like.
  • the content of the aromatic vinyl compound is the low loss property of the obtained crosslinked polymer.
  • the content is preferably 3 to 55% by mass, preferably 5 to 50% by mass, based on 100% by mass of the total of the conjugated diene compound and the aromatic vinyl compound used for polymerization. It is more preferable to do so.
  • the aromatic vinyl content of the (A) conjugated diene polymer can be measured by 1 1 H-NMR.
  • a monomer other than the conjugated diene compound and the aromatic vinyl compound may be used.
  • examples of other monomers include acrylonitrile, methyl (meth) acrylate, ethyl (meth) acrylate, hydroxyethyl (meth) acrylate and the like.
  • the amount of the other monomer used is preferably 25% by mass or less, more preferably 15% by mass or less, and preferably 10% by mass or less, based on 100% by mass of the total amount of the monomers used for the polymerization. Especially preferable.
  • any of a solution polymerization method, a gas phase polymerization method and a bulk polymerization method may be used, but the solution polymerization method is particularly preferable.
  • the polymerization type either a batch type or a continuous type may be used.
  • the solution polymerization method as an example of a specific polymerization method, a monomer containing a conjugated diene compound is polymerized in an organic solvent in the presence of a polymerization initiator and a randomizer used as necessary. The method can be mentioned.
  • an alkali metal compound or an alkaline earth metal compound can be used as the polymerization initiator.
  • alkyllithiums such as methyllithium, ethyllithium, n-propyllithium, n-butyllithium, sec-butyllithium and tert-butyllithium, 1,4-dilithiobutane, phenyllithium and stillbenlithium.
  • the total amount of the polymerization initiator used is preferably 0.2 to 20 mmol with respect to 100 g of the monomer used for the polymerization.
  • the polymerization initiator may be used alone or in combination of two or more.
  • the polymerization reaction is carried out in the presence of a compound obtained by mixing an alkali metal compound or an alkaline earth metal compound with a compound having a functional group that interacts with silica (hereinafter, also referred to as "modification initiator"). You may go with.
  • a modification initiator By carrying out the polymerization in the presence of a modification initiator, a functional group that interacts with silica can be introduced into the polymerization initiation terminal of the (A) conjugated diene-based polymer.
  • “interaction” means an intermolecular force (for example, an ion-dipole interaction, a dipole-dipole interaction, etc.) that forms a covalent bond between molecules or is weaker than a covalent bond.
  • the "functional group that interacts with silica” preferably has at least one selected from the group consisting of nitrogen atoms, sulfur atoms, phosphorus atoms and oxygen atoms.
  • the modification initiator is preferably a reaction product of a lithium compound such as alkyllithium and a nitrogen-containing compound such as a secondary amine compound.
  • a nitrogen-containing compound such as a secondary amine compound.
  • nitrogen-containing compound include, for example, dimethylamine, diethylamine, dipropylamine, dibutylamine, dodecamethyleneimine, N, N'-dimethyl-N'-trimethylsilyl-1,6-diaminohexane, piperidine, pyrrolidine, and the like.
  • a modification initiator is prepared by previously mixing an alkali metal compound or an alkaline earth metal compound with a compound having a functional group that interacts with silica.
  • the prepared modification initiator may be added to the polymerization system to carry out the polymerization.
  • an alkali metal compound or an alkaline earth metal compound and a compound having a functional group that interacts with silica are added to the polymerization system, and both are mixed in the polymerization system to prepare a modification initiator.
  • Polymerization may be carried out.
  • a nitrogen-containing alkyllithium compound can also be used.
  • a reaction product of 3-dimethylaminopropyllithium and isoprene can be used.
  • the randomizer can be used for the purpose of adjusting the vinyl bond content, which represents the content of vinyl bonds (1,2-bonds and 3,4-bonds) in the polymer.
  • randomizers include dimethoxybenzene, tetrahydrofuran, dimethoxyethane, diethylene glycol dibutyl ether, diethylene glycol dimethyl ether, 2,2-di (tetrahydrofuryl) propane, 2- (2-ethoxyethoxy) -2-methylpropane, triethylamine, pyridine. , N-Methylmorpholine, tetramethylethylenediamine and the like. These can be used alone or in combination of two or more.
  • the organic solvent used for the polymerization may be any organic solvent that is inert to the reaction, and for example, aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons and the like can be used. Of these, hydrocarbons having 3 to 8 carbon atoms are preferable, and specific examples thereof include propane, n-butene, isopentane, n-pentane, isopentane, n-hexane, cyclohexane, propene, 1-butene, isobutene, and trans-.
  • 2-Butene, cis-2-butene, 1-pentyne, 2-pentyne, 1-hexene, 2-hexene, benzene, toluene, xylene, ethylbenzene, heptane, cyclopentane, methylcyclopentane, methylcyclohexane, 1-pentene, 2-Pentyne, cyclohexene and the like can be mentioned.
  • the organic solvent may be used alone or in combination of two or more.
  • the monomer concentration in the reaction solvent is preferably 5 to 50% by mass, preferably 10 to 30% by mass, from the viewpoint of maintaining a balance between productivity and ease of polymerization control. More preferred.
  • the temperature of the polymerization reaction is preferably ⁇ 20 ° C. to 150 ° C., more preferably 0 ° C. to 120 ° C., and particularly preferably 20 ° C. to 100 ° C. Further, it is preferable that the polymerization reaction is carried out under a pressure sufficient to keep the monomer in a substantially liquid phase. Such pressure can be obtained by a method such as pressurizing the inside of the reactor with a gas that is inert to the polymerization reaction. By such a polymerization reaction, a conjugated diene-based polymer having an active polymerization terminal can be obtained.
  • the vinyl bond content in the structural unit derived from the conjugated diene compound is preferably 30 to 65 mol%, more preferably 33 to 62 mol%, and 35. It is particularly preferably ⁇ 60 mol%. If the vinyl bond content is less than 30 mol%, the grip characteristics tend to be too low, and if it exceeds 65 mol%, the wear resistance of the obtained crosslinked polymer tends to be deteriorated.
  • the "vinyl bond content” is a value indicating the content ratio of the structural unit having a vinyl bond to all the structural units derived from the conjugated diene compound in the conjugated diene-based polymer, and is 1 H-. It is a value measured by NMR.
  • a 2 is a monovalent group bonded to L 2 with an imino group, an amide group, a (thio) carbonyl group, a (thio) carbonyloxy group, a sulfide or a polysulfide, or is protected.
  • L 3 , R 3 , R 4 and n 2 are the same as those in the formula (1), and * indicates a site that binds to L 2.
  • the hydrocarbylene group having 1 to 20 carbon atoms of L 2 and L 3 is a linear or branched alkanediyl group having 1 to 20 carbon atoms and a cyclo having 3 to 20 carbon atoms. Examples thereof include an alkylene group and an arylene group having 6 to 20 carbon atoms.
  • the hydrocarbyl group having 1 to 4 carbon atoms of R 3 and R 4 a linear or branched alkyl group having 1 to 4 carbon atoms and a cycloalkyl group having 3 to 4 carbon atoms are used. Can be mentioned.
  • Specific examples of the compound represented by the above general formula (1) include N, N-bis (trimethoxysilylpropyl) aminopropyl-3-imidazole and N, N-bis (triethoxysilylpropyl) aminopropyl-1.
  • -Imidazole N, N-bis (trimethoxysilyl) aminopropylmethyldiethylsilane, N, N, N-tris (triethoxysilylpropyl) amine, N, N, N', N'-tetrakis (3-triethoxy) Cyrilpropyl) -1,3-diaminopropane and the like can be mentioned.
  • a 3 are each independently, an imino group, an amido group, (thio) carbonyl group, a (thio) carbonyl group, secondary amino group, or a tertiary amino group
  • Z is a nitrogen atom
  • L 4 represents a single bond or a hydrocarbylene group having 1 to 20 carbon atoms
  • L 5 represents a hydrocarbylene group having 1 to 20 carbon atoms.
  • R 5 and R 6 each independently represent a hydrocarbyl group having 1 to 4 carbon atoms, n3 is 0 or 1, and t is 2 or 3).
  • Z is a divalent or trivalent group having 1 to 20 carbon atoms which may contain a nitrogen atom, but preferably contains a nitrogen atom.
  • hydrocarbylene group of 1 to 20 carbon atoms hydrocarbylene group and L 5 of the L 4 having 1 to 20 carbon atoms, having 1 to 20 carbon atoms linear or branched Examples thereof include an alkanediyl group, a cycloalkylene group having 3 to 20 carbon atoms, and an arylene group having 6 to 20 carbon atoms.
  • Specific examples of the compound represented by the general formula (2) include compounds represented by the following formulas (M-1) to (M-4).
  • R 11 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms
  • n5 represents an integer of 1 to 10.
  • R 7 and R 8 each independently represent a hydrocarbyl group having 1 to 20 carbon atoms
  • R 9 is a hydrocarbyl group having 1 to 20 carbon atoms, a hydrogen atom contained in the alkyl group, and -CH.
  • At least one of 2- is a substituted alkyl group having 1 to 20 carbon atoms substituted with a group containing at least one element selected from the group consisting of silicon, nitrogen, phosphorus, oxygen and sulfur, or nitrogen.
  • the hydrocarbyl groups having 1 to 20 carbon atoms of R 7 and R 8 include linear or branched alkyl groups having 1 to 20 carbon atoms and cycloalkyl groups having 3 to 20 carbon atoms. Examples thereof include an aryl group having 6 to 20 carbon atoms.
  • Specific examples of the compound represented by the above general formula (3) include N-phenyl-2,2-dimethoxy-1-aza-2-silacyclopentane, N- (3-triethoxysilylpropyl) -2, Examples thereof include 2-dimethoxy-1-aza-2-silacyclopentane.
  • the specific modifier may be used alone, but the specific modifier and the modifier other than the specific modifier (hereinafter, "other modifiers") ”) May be used.
  • the other denaturing agent is not particularly limited as long as it is a compound having a functional group that interacts with the filler and can react with the active polymerization terminal of the polymer.
  • the above denaturation reaction can be carried out as, for example, a solution reaction.
  • This solution reaction may be carried out using a solution containing an unreacted monomer after the completion of the polymerization reaction.
  • the conjugated diene polymer contained in the solution may be isolated and dissolved in an appropriate solvent such as cyclohexane. You may go.
  • the denaturation reaction may be carried out by either a batch type or a continuous type.
  • the method of adding the denaturant is not particularly limited, and examples thereof include a method of adding the denaturant all at once, a method of adding the denaturant in divided portions, and a method of continuously adding the denaturant.
  • the ratio of the specific modifier (the total amount when two or more kinds are used) is preferably 0.2 mol or more with respect to 1 mol of the metal atom involved in the polymerization reaction of the polymerization initiator. More preferably, it is 0.4 mol or more.
  • the amount is 0.2 mol or more, the modification reaction of the polymer terminal by the specific modifier can be sufficiently proceeded, and the interaction with the filler at the terminal modification site can be sufficiently strengthened.
  • the upper limit of the usage ratio of the specific modifier is 1.5 with respect to 1 mol of the metal atom involved in the polymerization reaction of the polymerization initiator.
  • the amount is preferably less than 1.2 mol, more preferably less than 1.2 mol.
  • the proportion of the other denaturing agent used is specified from the viewpoint of sufficiently advancing the reaction between the conjugated diene polymer and the specific denaturing agent. It is preferably 30 mol% or less, more preferably 20 mol% or less, and particularly preferably 10 mol% or less, based on the total usage ratio of the denaturant and other denaturants.
  • the temperature of the denaturation reaction is usually the same as the temperature of the polymerization reaction, preferably ⁇ 20 ° C. to 150 ° C., more preferably 0 ° C. to 120 ° C., and preferably 20 ° C. to 100 ° C. Especially preferable.
  • the reaction time of the denaturation reaction is preferably 1 minute to 5 hours, more preferably 2 minutes to 1 hour.
  • the (A) conjugated diene polymer contained in the reaction solution can be isolated by a known desolvation method such as steam stripping and a drying operation such as heat treatment.
  • the Mooney viscosity of the obtained (A) conjugated diene-based polymer may be adjusted by adding a stretching oil or the like, if necessary. By this treatment, workability can be improved.
  • the spreading oil include aroma oil, naphthenic oil, paraffin oil and the like.
  • the blending amount of the spreading oil may be appropriately set according to the monomer used for the polymerization and the like, and is, for example, 10 to 50 parts by mass with respect to 100 parts by mass of the conjugated diene-based polymer.
  • the (A) conjugated diene-based polymer can be obtained.
  • compatibility with the filler can be improved, and a polymer composition having improved processability can be obtained.
  • heat generation, tensile strength, wear resistance, fuel efficiency, wet grip, etc. required for applications such as automobile tires can be obtained. It is possible to obtain a tire (crosslinked polymer) which is excellent in low loss property as well as excellent.
  • the conjugated diene-based polymer (A) preferably has a structure derived from any of the compounds of the above general formulas (1) to (3) at at least one end of the polymer.
  • the conjugated diene polymer (A) has such a structure, the dispersibility of a filler such as carbon black or silica is further improved when applied to, for example, tire applications, and in terms of low loss property and wet grip property. , It is preferable in that it produces a higher improvement effect.
  • the polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of the conjugated diene polymer is preferably 100,000 to 2,000,000.
  • Mw is smaller than 100,000, the crosslinked polymer of the polymer composition according to the present embodiment tends to have low loss resistance and wear resistance, and when it is larger than 2,000,000, it tends to be deteriorated.
  • the processability of the polymer composition tends to decrease.
  • the weight average molecular weight (Mw) of the obtained conjugated diene polymer (A) is more preferably 150,000 to 1,500,000, still more preferably 200,000 to 1,000,000.
  • the molecular weight distribution of the conjugated diene polymer that is, the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is preferably 1.5 to 3.0, more preferably. Is 1.5 to 2.5, particularly preferably 1.5 to 2.2.
  • the polymer composition according to the present embodiment contains (B) conjugated diene polymer particles.
  • the conjugated diene polymer particles (B) are preferably crosslinked particles, and are isoprene rubber, butadiene rubber, styrene-butadiene copolymer rubber, styrene-isoprene copolymer rubber, butadiene-isoprene copolymer rubber, and styrene-butadiene.
  • -A rubber polymer selected from the group consisting of isoprene copolymer rubber, styrene-acrylonitrile-butadiene copolymer rubber, acrylonitrile-butadiene copolymer rubber, ethylene- ⁇ -olefin diene copolymer rubber, chloroprene rubber and butyl halide rubber (hereinafter, butyl polymer).
  • specific rubber polymer a conjugated diene compound (hereinafter, also referred to as “conjugated diene-based monomer”) and / or a styrene compound (hereinafter, “styrene-based single amount”).
  • conjugated diene compound hereinafter, also referred to as “conjugated diene-based monomer”
  • styrene-based single amount examples thereof include particles of at least one polymer selected from a graft polymer (hereinafter, also referred to as “specific rubber graft polymer”) obtained by
  • Specific rubber graft polymers include a graft polymer obtained by graft-polymerizing a conjugated diene-based monomer, a graft polymer obtained by graft-polymerizing a styrene-based monomer, a conjugated diene-based monomer and a styrene-based polymer. Examples thereof include a graft polymer obtained by graft-polymerizing.
  • butadiene rubber and styrene-butadiene copolymer rubber are preferable from the viewpoint of compounding processability.
  • the number average particle size of the conjugated diene polymer particles is preferably 10 to 800 nm, more preferably 30 to 700 nm.
  • the number average particle diameter of the (B) conjugated diene-based polymer particles is a value measured by a light scattering method.
  • Such (B) conjugated diene-based polymer particles can be produced by an emulsion polymerization method or a suspension polymerization method.
  • the (B) conjugated diene-based polymer particles are made of a specific rubber polymer
  • a monomer for obtaining the specific rubber polymer in the medium hereinafter, “rubber particle formation”.
  • a rubber particle made of a specific rubber polymer can be obtained by subjecting the "use monomer") to a polymerization reaction by using a polymerization initiator, an emulsifier, and a suspension stabilizer, if necessary.
  • the conjugated diene polymer particles are made of a specific graft polymer
  • the conjugated diene monomer and the conjugated diene polymer are added to the specific rubber polymer obtained by the emulsification polymerization method or the suspension polymerization method.
  • rubber particles made of a graft polymer can be obtained by graft-polymerizing a styrene-based monomer.
  • the rubber particle forming monomer an appropriate compound is used depending on the type of polymer to be formed, but in order to form a crosslinked structure, for example, a polyfunctional compound having a polymerizable unsaturated group (hereinafter referred to as a polyfunctional compound). Also referred to as a "crosslinked structure forming compound”) is used.
  • a polyfunctional compound having a polymerizable unsaturated group hereinafter referred to as a polyfunctional compound.
  • crosslinked structure forming compound also referred to as a "crosslinked structure forming compound”.
  • Examples of the compound for forming a crosslinked structure include divinylbenzene, diallyl phthalate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, propanediol di (meth) acrylate, and butanediol di (meth).
  • the ratio of the compound for forming a crosslinked structure in the monomer for forming rubber particles is 0.5 to 5 parts by mass with respect to 100 parts by mass in total of the monomer (monomer for forming rubber particles) to be polymerized. Is preferable. When the ratio of the compound for forming a crosslinked structure is within the above range, the impact resilience of the obtained crosslinked polymer (tire) may be good.
  • a functional group-containing compound (hereinafter, "dispersability") is used for the purpose of improving the dispersibility of the (B) conjugated diene-based polymer particles in the rubber composition.
  • (Also referred to as an improving compound) ”) may be used. That is, (B) conjugated diene-based polymer particles may have a structural unit derived from a functional group-containing compound.
  • the dispersibility improving compound examples include hydroxyethyl methacrylate, hydroxypropyl methacrylate, hydroxybutyl methacrylate, ethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, pentaerythritol tetramethritol, tert-butoxydimethylsilyl styrene and isopropoxydimethylsilyl.
  • examples include styrene.
  • hydroxyethyl methacrylate is preferable from the viewpoint of rolling resistance in the obtained crosslinked polymer (tire).
  • Ethylene glycol dimethacrylate, trimethylolpropane trimethacrylate and pentaerythritol tetramethacrylate also have an action as the above-mentioned compound for forming a crosslinked structure.
  • the proportion of the compound for improving dispersibility is preferably 0.5 to 10 parts by mass with respect to 100 parts by mass in total of the monomers (rubber particle forming monomers) to be polymerized.
  • the proportion of the compound for improving dispersibility is within the above range, the low loss property and the impact resilience of the obtained crosslinked polymer (tire) can be highly balanced.
  • a radical polymerization initiator is used as the polymerization initiator.
  • the radical polymerization initiator include organics such as benzoyl peroxide, lauroyl peroxide, tert-butyl hydroperoxide, cumene hydroperoxide, p-menthan hydroperoxide, di-tert-butyl peroxide, and dicumyl peroxide.
  • Peroxides, diazo compounds such as adbisisobutyronitrile, inorganic peroxides such as potassium persulfate, and redox catalysts such as combinations of these peroxides and ferrous sulfate can be used.
  • a chain transfer agent such as tert-dodecyl mercaptan, n-dodecyl mercaptan and other mercaptans, carbon tetrachloride, thioglycols, deterpen, terpinene, and ⁇ -terpinene, together with the polymerization initiator Can also be used together.
  • an anionic surfactant As the emulsifier used in the emulsification polymerization method, an anionic surfactant, a nonionic surfactant, a cationic surfactant, an amphoteric surfactant, and a fluorine-based surfactant can also be used.
  • the emulsifier one type can be used alone, or two or more types can be used in combination.
  • suspension stabilizer used in the suspension polymerization method examples include polyvinyl alcohol, sodium polyacrylate, hydroxyethyl cellulose and the like.
  • the suspension stabilizer one type can be used alone, or two or more types can be used in combination.
  • the content ratio of the (B) conjugated diene-based polymer particles in the polymer composition according to the present embodiment is 100% by mass when the total amount of the conjugated diene-based polymer components contained in the polymer composition is 100% by mass. It is preferably 1 to 50% by mass, more preferably 3 to 40% by mass, and particularly preferably 5 to 30% by mass. (B) When the content ratio of the conjugated diene polymer particles is within the above range, the impact resilience of the obtained crosslinked polymer (tire) is likely to be improved.
  • the polymer composition according to the present embodiment contains (A) conjugated diene-based polymer and (B) conjugated diene-based polymer particles, which are essential components, as well as optional components, if necessary. You may be.
  • conjugated diene-based polymer and (B) conjugated diene-based polymer particles which are essential components, for example, natural rubber, butadiene rubber, butyl rubber, synthetic isoprene rubber, etc.
  • Other weights such as styrene-butadiene copolymer rubber, ethylene- ⁇ -olefin copolymer rubber, ethylene- ⁇ -olefin-diene copolymer rubber, acrylonitrile-butadiene copolymer rubber, chloroprene rubber and butyl halide rubber, and mixtures thereof. It may contain a coalescing component.
  • the obtained crosslinked polymer (tire) contains natural rubber or butadiene rubber because it can achieve a high balance between low loss property and wet grip property while maintaining wear resistance.
  • the proportion of the other polymer component used is preferably 10 to 45% by mass based on 100% by mass of the polymer component.
  • Optional components other than the polymer component include, for example, fillers such as silica and carbon black, silane coupling agents, acidic compounds, cross-linking agents such as sulfur, extension oils, antiaging agents, vulcanization aids such as zinc oxide, and the like. Examples include vulcanization accelerators and waxes.
  • silica As silica, silica generally used as a filler can be used, but in order to obtain a highly balanced balance between low loss property and impact resilience of the obtained crosslinked polymer (tire). , Synthetic silicic acid having a primary particle size of 50 nm or less is preferable.
  • the ratio of silica used is preferably 20 to 100 parts by mass with respect to 100 parts by mass of the polymer component.
  • the content ratio of silica is within the above range, the low loss property and the impact resilience of the obtained crosslinked polymer (tire) can be highly balanced.
  • Carbon black that is generally used as a filler can be used.
  • Specific examples of carbon black include GPF, FEF, HAF, ISAF, SAF and the like. Among these, ISAF, SAF, and HAF are preferable, and ISAF is more preferable.
  • the ratio of carbon black used is preferably 0.5 to 100 parts by mass, and more preferably 1 to 50 parts by mass with respect to 100 parts by mass of the polymer component.
  • silane coupling agent examples include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-triethoxysilylpropyl) disulfide, and bis (2-triethoxy).
  • Cyrilethyl) tetrasulfide bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercaptoethyl Trimethoxysilane, 2-mercaptoethyltriethoxysilane; 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyltetrasulfide, 3-triethoxysilylpropyl-N, N-dimethylthiocarbamoyltetrasulfide, 2-triethoxy Cyrilethyl-N, N-dimethylthiocarbamoyltetrasulfide, 3-trimethoxysilylpropylbenzothiazolyltetrasulfide, 3-trie
  • the ratio of the silane coupling agent used is preferably 0.5 to 20 parts by mass with respect to 100 parts by mass of the filler component.
  • the ratio of the silane coupling agent used is within the above range, sufficient reinforcing properties and fracture resistance can be imparted to the crosslinked polymer formed from the polymer composition, and the abrasion resistance of the crosslinked polymer is improved. You may be able to do it.
  • saturated fatty acids having 12 to 24 carbon atoms and metal salts thereof are preferably used.
  • Specific examples of acidic compounds include lauric acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, margaric acid, stearic acid, nonadecylic acid, arachidic acid, henicosylic acid, bechenic acid, tricosylic acid, lignoceric acid, and these.
  • saturated fatty acids include calcium salt and zinc salt. These acidic compounds can be used alone or in combination of two or more. Of these, stearic acid is preferred.
  • the ratio of the acidic compound used is preferably 0.3 to 15 parts by mass with respect to 100 parts by mass of the polymer component.
  • Cross-linking agent examples include sulfur, sulfur halides, organic peroxides, quinonedioximes, organic polyvalent amine compounds, alkylphenol resins having a methylol group, and the like. Of these, sulfur is usually used as the cross-linking agent.
  • the ratio of the cross-linking agent used is preferably 0.1 to 10 parts by mass, and more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the polymer component.
  • the spreading oil examples include aroma oil, naphthenic oil, paraffin oil and the like.
  • the proportion of the spreading oil used is preferably 0 to 50 parts by mass with respect to 100 parts by mass of the polymer component.
  • antiaging agent examples include N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine, N-phenyl-N'-isopropyl-p-phenylenediamine and the like.
  • the proportion of the antiaging agent used is preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the polymer component.
  • vulcanization aid examples include zinc oxide and the like.
  • the ratio of the vulcanization aid used is preferably 1 to 5 parts by mass with respect to 100 parts by mass of the polymer component.
  • vulcanization accelerator examples include guadinin-based, aldehyde-amine-based, aldehyde-ammonia-based, thiazole-based, sulfenamide-based, thiourea-based, thiuram-based, dithiocarbamate-based, and zantate-based compounds.
  • Preferred specific examples of the vulcanization accelerator are sulfenamides such as N-cyclohexyl-2-benzothiazyl sulfenamide (CBS) and N-tetra-butyl-2-benzothiazyl sulfenamide (TBBS).
  • CBS N-cyclohexyl-2-benzothiazyl sulfenamide
  • TBBS N-tetra-butyl-2-benzothiazyl sulfenamide
  • vulcanization accelerators examples include vulcanization accelerators.
  • the proportion of the vulcanization accelerator used is appropriately determined in consideration of the type and
  • the polymer composition according to the present embodiment can be prepared by kneading each of the above components using, for example, a kneader such as a plastomill, a Banbury mixer, a roll, or an internal mixer. it can. For example, it is preferable to prepare by the following method.
  • first-stage kneading it is preferable to knead the (A) conjugated diene-based polymer and the (B) conjugated diene-based polymer particles together with a filler and a silane coupling agent to be added as needed. Further, in the first-stage kneading, other polymers, a spreading oil, an antiaging agent and the like are also kneaded together, if necessary. Further, in the first-stage kneading, the acidic compounds, which are preferably kneaded in the second-stage kneading, may be kneaded together.
  • the filler By applying the filler to the first-stage kneading, the dispersibility of these is likely to be improved, and the fuel efficiency performance of the tire (crosslinked polymer) formed from the obtained polymer composition may be improved.
  • a silane coupling agent When a silane coupling agent is used for the first-stage kneading, first, (A) conjugated diene-based polymer, (B) conjugated diene-based polymer particles, other polymers, and if necessary, a filler are added. It is preferable to knead and then add (post-add) a silane coupling agent to further knead.
  • the obtained polymer composition becomes more processable, and the crosslinked polymer formed from the polymer composition has more excellent low loss. It will have sex. Further, when the polymer composition contains silica as a filler, the dispersibility of silica can be improved.
  • the timing of adding the silane coupling agent depends on the type of silica, the ratio of silica used, the kneading conditions, and the like, (A) conjugated diene polymer, and (B) conjugated diene. It is appropriately determined in consideration of the usage ratio of the system polymer particles and other polymers.
  • (A) conjugated diene-based polymer, (B) conjugated diene-based polymer particles, and other polymers are blended and kneaded for 0.5 to 10 minutes. After that, it is preferable to add a silane coupling agent and knead for 0.5 to 10 minutes.
  • the kneading machine used for the first-stage kneading examples include an open type or a closed type kneader such as a plast mill, a Banbury mixer, a roll, and an internal mixer. Further, in the first-stage kneading, the kneading temperature is set to 30 ° C. to 180 ° C., preferably 50 ° C. to 160 ° C.
  • the method is not limited to the method of adding the silane coupling agent afterwards and kneading, and the silane coupling agent is used for the first-stage kneading.
  • a kneaded product containing a silane coupling agent may be obtained by a method of kneading all the components at the same time.
  • other polymers and additives are added. It may be a method of doing.
  • the second-stage kneading is a step of adding at least a cross-linking agent to the kneaded product obtained in the first-stage kneading and kneading the kneaded product and the cross-linking agent to obtain a polymer composition.
  • the acidic compound is kneaded together with the kneaded product obtained in the first-stage kneading and the cross-linking agent.
  • zinc oxide and the vulcanization accelerator are also kneaded together, if necessary.
  • a polymer composition is obtained by a method of simultaneously kneading an acidic compound and other components such as zinc oxide and a vulcanization accelerator.
  • the obtained polymer composition has more excellent processability, and the crosslinked polymer formed from the polymer composition has more excellent low loss property. Will have.
  • the kneading machine used in the first stage kneading is used. Further, in the second stage kneading, the kneading temperature is set to 30 ° C. to 130 ° C., preferably 50 ° C. to 110 ° C.
  • the polymer composition obtained by the above-mentioned production method is an unvulcanized polymer composition, and a crosslinked polymer is formed by performing a crosslinking treatment such as vulcanization, for example.
  • the crosslinked polymer formed from the polymer composition according to this embodiment is suitably used as a tire, specifically, a tread of a tire.
  • the tire formed from the polymer composition according to the present embodiment has high strength in the tread and a desired shape in the tread, so that excellent performance can be obtained.
  • the crosslinked polymer formed from the polymer composition according to the present embodiment can also be used as a tire member other than a tread, a vibration-proof rubber, a fender, a belt, a hose, and other industrial products.
  • a polymer particle dispersion containing polymer particles made of a styrene-butadiene copolymer was obtained by adding 0.15 parts by mass of formaldehyde and sodium sulfoxylate and polymerizing over 12 hours. Next, the obtained polymer particle dispersion was coagulated with sulfuric acid and a salt to form a crumb, and then dried with a hot air dryer to obtain conjugated diene-based polymer particles having an average particle diameter of 200 nm (hereinafter, “polymer particles”). (B1) ”) was obtained.
  • a plast mill (content capacity 250 cc) with a temperature control device, as the first stage kneading, under the conditions of a filling rate of 72% and a rotation speed of 60 rpm, the polymer components shown in Table 3 below, silica, spreading oil, and carbon black , Silica coupling agent, stearic acid, anti-aging agent, zinc oxide were kneaded.
  • the second-stage kneading the kneaded product obtained above is cooled to room temperature, and then sulfur and a vulcanization accelerator are kneaded to form the polymers of Examples 1 to 6 and Comparative Examples 1 to 4. I got something.
  • each of the obtained polymer compositions was molded and vulcanized at 160 ° C. for a predetermined time with a vulcanization press to obtain each crosslinked polymer having a predetermined shape to be subjected to the following evaluation test.
  • ⁇ Wet grip performance (0 ° C tan ⁇ )> The measurement was performed using a dynamic spectrometer (manufactured by Leometrics, USA) under the conditions of a tensile strain of 0.14%, an angular velocity of 100 radians per second, and a temperature of 0 ° C.
  • Table 3 below shows an index when the value of the crosslinked polymer according to Comparative Example 1 is 100. According to the index, it is shown that the larger the value, the larger and better the wet skid resistance. Is done.
  • Table 1 shows the physical characteristics of each conjugated diene polymer synthesized above.
  • Table 2 shows the compounds used in the production of the conjugated diene polymer particles synthesized above and their usage ratios.
  • Table 3 shows the composition and evaluation results of each polymer composition.
  • the present invention is not limited to the above embodiment, and various modifications are possible.
  • the present invention includes substantially the same configurations as those described in the embodiments (eg, configurations with the same function, method and result, or configurations with the same purpose and effect).
  • the present invention also includes a configuration in which a non-essential part of the configuration described in the above embodiment is replaced with another configuration.
  • the present invention also includes a configuration that exhibits the same effects as the configuration described in the above embodiment or a configuration that can achieve the same object.
  • the present invention also includes a configuration in which a known technique is added to the configuration described in the above embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

加工性が良好であり、反発弾性、ウェットグリップ性、低ロス性及び引張強度において高度にバランスに優れたタイヤの製造に適した重合体組成物を提供すること。 本発明に係る重合体組成物は、(A)アルカリ金属化合物又はアルカリ土類金属化合物の存在下で共役ジエン化合物又は共役ジエン化合物と芳香族ビニル化合物を重合して得られる、活性重合末端を有する重合体と、一般式(1)~(3)のいずれかで表される化合物との反応生成物である、共役ジエン系重合体と、(B)共役ジエン系重合体粒子と、を含有する。

Description

重合体組成物、架橋重合体、及びタイヤ
 本発明は、重合体組成物、架橋重合体、及び該架橋重合体を用いて作成されたタイヤに関する。
 近年、環境問題への関心の高まりに伴う世界的な二酸化炭素排出規制の動きに関連して、自動車の低燃費化に対する要求が強まりつつある。このような要求に対応するため、タイヤ性能についても転がり抵抗の低減が求められている。従来、タイヤの転がり抵抗を減少させる手法として、タイヤ構造を最適化する手法が検討されてきたが、タイヤに適用される重合体組成物について、tanδが低く(以下、「低ヒステリシスロス性」又は「低ロス性」ともいう。)、低発熱性の優れたものを用いることも、現在一般的な手法として行われている。
 このような発熱性の低い重合体組成物を得る方法としては、カーボンブラックやシリカ等のフィラーの減量、又は大粒径のカーボンブラックの使用等が考えられるが、いずれの方法でも、重合体組成物の補強性、耐摩耗性及び湿潤路面でのグリップ性(以下、「ウェットグリップ性」ともいう。)の低下が避けられない。
 そこで、例えば、金属末端を有する活性重合体を形成し、該活性重合体に特定の変性剤を導入して変性させた変性共役ジエン系重合体をタイヤのトレッド材料として使用する検討がなされている(例えば、特許文献1参照)。特許文献1には、この材料をタイヤのトレッド材料として使用すると、発熱性、耐摩耗性、及びウェットグリップ性に優れたものとなることが開示されている。
特表2016-528369号公報
 しかしながら、特許文献1に開示された変性共役ジエン系重合体をタイヤのトレッド材料として使用した場合、重合体組成物に含有されるシリカ等のフィラーの分散性が過度に大きくなることによっては、反発弾性の点で十分な性能が得られ難いという課題があった。
 そこで、本発明に係る幾つかの態様は、加工性が良好であり、反発弾性、ウェットグリップ性、低ロス性及び引張強度において高度にバランスに優れたタイヤの製造に適した重合体組成物を提供する。また、本発明に係る幾つかの態様は、反発弾性、ウェットグリップ性、低ロス性及び引張強度において高度にバランスに優れたタイヤを提供する。
 本発明は上述の課題の少なくとも一部を解決するためになされたものであり、以下のいずれかの態様として実現することができる。
 本発明に係る重合体組成物の一態様は、
 (A)アルカリ金属化合物又はアルカリ土類金属化合物の存在下で共役ジエン化合物又は共役ジエン化合物と芳香族ビニル化合物を重合して得られる、活性重合末端を有する重合体と、下記一般式(1)~(3)のいずれかで表される化合物との反応生成物である、共役ジエン系重合体と、
 (B)共役ジエン系重合体粒子と、
を含有する。
Figure JPOXMLDOC01-appb-C000005
 
(式(1)中、Aは、イミノ基、アミド基、(チオ)カルボニル基、(チオ)カルボニルオキシ基、スルフィドもしくはポリスルフィドでLと結合した1価の基であるか、又は、保護された一級アミノ基、保護された二級アミノ基、三級アミノ基、ニトリル基、ピリジル基、(チオ)エポキシ基、(チオ)イソシアネート基、(チオ)ホルミル基、(チオ)カルボン酸エステル、(チオ)カルボン酸エステルの金属塩、カルボン酸ハロゲン化合物、イミダゾリル基、もしくは下記式(1a)で示される基を表し、L及びLはそれぞれ独立に単結合もしくは炭素数1~20のヒドロカルビレン基を表し、R及びRはそれぞれ独立に炭素数1~4のヒドロカルビル基を表し、n2は0~3であり、m1は0または1である。)
Figure JPOXMLDOC01-appb-C000006
 
(式(1a)中、L、R、R及びn2は式(1)と同様であり、*はLと結合する部位を示す。)
Figure JPOXMLDOC01-appb-C000007
 
(式(2)中、Aはそれぞれ独立に、イミノ基、アミド基、(チオ)カルボニル基、(チオ)カルボニルオキシ基、二級アミノ基、又は三級アミノ基を表し、Zは窒素原子を含む又は含まない炭素数1~20のt価の基を表し、Lは単結合又は炭素数1~20のヒドロカルビレン基を表し、Lは炭素数1~20のヒドロカルビレン基を表し、R及びRはそれぞれ独立に炭素数1~4のヒドロカルビル基を表し、n3は0又は1であり、tは2又は3である。)
Figure JPOXMLDOC01-appb-C000008
 
(式(3)中、R及びRは、それぞれ独立に炭素数1~20のヒドロカルビル基を表し、Rは、炭素数1~20のヒドロカルビル基、アルキル基が有する水素原子及び-CH-の少なくとも1個がケイ素、窒素、リン、酸素及び硫黄よりなる群から選択される少なくとも1種の元素を含む基で置換された炭素数1~20の置換アルキル基であるか、又は窒素、リン、酸素及び硫黄よりなる群から選択される少なくとも1種の元素を含む炭素数6~20の芳香族基を表し、R10は、炭素数1~20のアルカンジイル基を表す。n4は1または2である。)
 前記重合体組成物の一態様において、
 重合体組成物中に含有される共役ジエン系重合体成分全体を100質量%としたときに、前記(B)共役ジエン系重合体粒子を1質量%以上50質量%以下含有することができる。
 前記重合体組成物のいずれかの態様において、
 前記(A)共役ジエン系重合体の、ゲルパーミエーションクロマトグラフィーで測定したポリスチレン換算の重量平均分子量が100,000~2,000,000であることができる。
 前記重合体組成物のいずれかの態様において、
 前記(B)共役ジエン系重合体粒子の、光散乱法で測定した数平均粒径が10nm以上800nm以下であることができる。
 前記重合体組成物のいずれかの態様において、
 前記(B)共役ジエン系重合体粒子が架橋粒子であることができる。
 前記重合体組成物のいずれかの態様において、
 更に、架橋剤を含有することができる。
 本発明に係る架橋重合体の一態様は、
 前記いずれかの態様の重合体組成物を用いて製造されたものである。
 本発明に係るタイヤの一態様は、
 前記態様の架橋重合体を使用したものである。
 本発明に係る重合体組成物によれば、加工性が良好であり、反発弾性、ウェットグリップ性、低ロス性及び引張強度において高度にバランスに優れた架橋重合体(タイヤ)を製造することができる。
 以下、本発明に係る好適な実施形態について詳細に説明する。なお、本発明は、以下に記載された実施形態のみに限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変形例も含むものとして理解されるべきである。
 本明細書において、「X~Y」のように記載された数値範囲は、数値Xを下限値として含み、かつ、数値Yを上限値として含むものとして解釈される。
 本明細書において、「(メタ)アクリル酸~」とは、アクリル酸~及びメタクリル酸~の双方を含む概念であり、「~(メタ)アクリレート」とは、~アクリレート及び~メタクリレートの双方を含む概念である。
 1.重合体組成物
 本発明の一実施形態に係る重合体組成物は、(A)アルカリ金属化合物又はアルカリ土類金属化合物の存在下で共役ジエン化合物又は共役ジエン化合物と芳香族ビニル化合物を重合して得られる、活性重合末端を有する重合体と、下記一般式(1)~(3)のいずれかで表される化合物との反応生成物である、共役ジエン系重合体(以下、「(A)共役ジエン系重合体」ともいう。)と、(B)共役ジエン系重合体粒子と、を含有する。
 本実施形態に係る重合体組成物は、(A)共役ジエン系重合体及び(B)共役ジエン系重合体粒子と、必要に応じて他の添加剤とを混練することにより得られる未加硫の重合体組成物である。本実施形態に係る重合体組成物は、例えば加硫などの架橋処理をすることにより、架橋重合体を形成するものである。
 以下、本実施形態に係る重合体組成物に含まれる各成分について説明する。
 1.1.(A)共役ジエン系重合体
 本実施形態に係る重合体組成物は、(A)アルカリ金属化合物又はアルカリ土類金属化合物の存在下で共役ジエン化合物又は共役ジエン化合物と芳香族ビニル化合物を重合して得られる、活性重合末端を有する重合体と、下記一般式(1)~(3)のいずれかで表される化合物との反応生成物である、共役ジエン系重合体を含有する。
Figure JPOXMLDOC01-appb-C000009
 
(式(1)中、Aは、イミノ基、アミド基、(チオ)カルボニル基、(チオ)カルボニルオキシ基、スルフィドもしくはポリスルフィドでLと結合した1価の基であるか、又は、保護された一級アミノ基、保護された二級アミノ基、三級アミノ基、ニトリル基、ピリジル基、(チオ)エポキシ基、(チオ)イソシアネート基、(チオ)ホルミル基、(チオ)カルボン酸エステル、(チオ)カルボン酸エステルの金属塩、カルボン酸ハロゲン化合物、イミダゾリル基、もしくは下記式(1a)で示される基を表し、L及びLはそれぞれ独立に単結合もしくは炭素数1~20のヒドロカルビレン基を表し、R及びRはそれぞれ独立に炭素数1~4のヒドロカルビル基を表し、n2は0~3であり、m1は0または1である。)
Figure JPOXMLDOC01-appb-C000010
 
(式(1a)中、L、R、R及びn2は式(1)と同様であり、*はLと結合する部位を示す。)
Figure JPOXMLDOC01-appb-C000011
 
(式(2)中、Aはそれぞれ独立に、イミノ基、アミド基、(チオ)カルボニル基、(チオ)カルボニルオキシ基、二級アミノ基、又は三級アミノ基を表し、Zは窒素原子を含む又は含まない炭素数1~20のt価の基を表し、Lは単結合又は炭素数1~20のヒドロカルビレン基を表し、Lは炭素数1~20のヒドロカルビレン基を表し、R及びRはそれぞれ独立に炭素数1~4のヒドロカルビル基を表し、n3は0又は1であり、tは2又は3である。)
Figure JPOXMLDOC01-appb-C000012
 
(式(3)中、R及びRは、それぞれ独立に炭素数1~20のヒドロカルビル基を表し、Rは、炭素数1~20のヒドロカルビル基、アルキル基が有する水素原子及び-CH-の少なくとも1個がケイ素、窒素、リン、酸素及び硫黄よりなる群から選択される少なくとも1種の元素を含む基で置換された炭素数1~20の置換アルキル基であるか、又は窒素、リン、酸素及び硫黄よりなる群から選択される少なくとも1種の元素を含む炭素数6~20の芳香族基を表し、R10は、炭素数1~20のアルカンジイル基を表す。n4は1または2である。)
 (A)共役ジエン系重合体は、共役ジエン化合物に由来する構造単位を有し、かつ活性重合末端に、上記一般式(1)~(3)のいずれかの化合物に由来する構造を有する。このような(A)共役ジエン系重合体は、まず、アルカリ金属化合物又はアルカリ土類金属化合物の存在下で共役ジエン化合物を含む単量体を重合して活性重合末端を有する重合体を得て(重合工程)、次いで、活性重合末端を有する重合体と、上記一般式(1)~(3)のいずれかの化合物(以下、「特定変性剤」ともいう。)と、を反応させることにより得ることができる(変性工程)。
<重合工程>
 重合に際して使用し得る共役ジエン化合物としては、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、1,3-ヘプタジエン、2-フェニル-1,3-ブタジエン、3-メチル-1,3-ペンタジエン、2-クロロ-1,3-ブタジエン等が挙げられる。これらの中でも、1,3-ブタジエン、イソプレン及び2,3-ジメチル-1,3-ブタジエンが好ましい。共役ジエン化合物は、1種を単独で又は2種以上を組み合わせて使用することができる。
 (A)共役ジエン系重合体は、共役ジエン化合物の単独重合体であってもよいが、架橋重合体の強度を高める観点から、共役ジエン化合物と芳香族ビニル化合物との共重合体であることが好ましい。中でも、アニオン重合におけるリビング性が高い点において、1,3-ブタジエンとスチレンとをモノマー組成に含む共重合体であることが好ましい。(A)共役ジエン系重合体が共役ジエン化合物と芳香族ビニル化合物との共重合体である場合、(A)共役ジエン系重合体は、典型的には、共役ジエン化合物と芳香族ビニル化合物との分布が不規則なランダム共重合部分を有し、さらに、共役ジエン化合物又は芳香族ビニル化合物に由来する構造単位からなるブロック部分を有していてもよい。
 重合に際して使用し得る芳香族ビニル化合物としては、例えば、スチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、α-メチルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、5-tert-ブチル-2-メチルスチレン、ビニルエチルベンゼン、ジビニルベンゼン、トリビニルベンゼン、ジビニルナフタレン、tert-ブトキシスチレン、ビニルベンジルジメチルアミン、(4-ビニルベンジル)ジメチルアミノエチルエーテル、N,N-ジメチルアミノエチルスチレン、N,N-ジメチルアミノメチルスチレン、2-エチルスチレン、3-エチルスチレン、4-エチルスチレン、2-tert-ブチルスチレン、3-tert-ブチルスチレン、4-tert-ブチルスチレン、ビニルキシレン、ビニルナフタレン、ビニルピリジン、ジフェニルエチレン、3級アミノ基含有ジフェニルエチレン(例えば、1-(4-N,N-ジメチルアミノフェニル)-1-フェニルエチレンなど)等が挙げられる。これらの中でも、スチレン及びα-メチルスチレンが好ましい。芳香族ビニル化合物は、1種を単独で又は2種以上を組み合わせて使用することができる。
 (A)共役ジエン系重合体が共役ジエン化合物と芳香族ビニル化合物との共重合体である場合、芳香族ビニル化合物の含有量(芳香族ビニル含量)は、得られる架橋重合体の低ロス性とウェットグリップ性とのバランスを良好にする観点から、重合に使用する共役ジエン化合物及び芳香族ビニル化合物の合計100質量%中、3~55質量%とすることが好ましく、5~50質量%とすることがより好ましい。なお、(A)共役ジエン系重合体の芳香族ビニル含量は、H-NMRによって測定することができる。
 重合に際しては、共役ジエン化合物及び芳香族ビニル化合物以外の他のモノマーを使用してもよい。他のモノマーとしては、例えばアクリロニトリル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ヒドロキシエチル等が挙げられる。他のモノマーの使用量は、重合に使用するモノマーの全体量100質量%中、25質量%以下とすることが好ましく、15質量%以下とすることがより好ましく、10質量%以下とすることが特に好ましい。
 使用する重合方法としては、溶液重合法、気相重合法、バルク重合法のいずれを用いてもよいが、溶液重合法が特に好ましい。また、重合形式としては、回分式及び連続式のいずれを用いてもよい。溶液重合法を用いる場合、具体的な重合方法の一例としては、有機溶媒中において、共役ジエン化合物を含む単量体を、重合開始剤及び必要に応じて用いられるランダマイザーの存在下で重合する方法が挙げられる。
 重合開始剤としては、アルカリ金属化合物又はアルカリ土類金属化合物を用いることができる。これらの具体例としては、例えばメチルリチウム、エチルリチウム、n-プロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム等のアルキルリチウム、1,4-ジリチオブタン、フェニルリチウム、スチルベンリチウム、ナフチルリチウム、1,3-ビス(1-リチオ-1,3-ジメチルペンチル)ベンゼン、1,3-フェニレンビス(3-メチル-1-フェニルペンチリデン)ジリチウム、3-(ジメチルアミノ)プロピルリチウム、ナフチルナトリウム、ナフチルカリウム、ジ-n-ブチルマグネシウム、ジ-n-ヘキシルマグネシウム、エトキシカリウム、ステアリン酸カルシウム等が挙げられる。これらの中でも、リチウム化合物が好ましい。重合開始剤の合計の使用量は、重合に使用するモノマー100gに対して、0.2~20mmolとすることが好ましい。なお、重合開始剤は、1種を単独で又は2種以上を組み合わせて使用することができる。
 また、重合反応は、アルカリ金属化合物又はアルカリ土類金属化合物と、シリカと相互作用する官能基を有する化合物とを混合して得られる化合物(以下、「変性開始剤」ともいう。)の存在下で行ってもよい。変性開始剤の存在下で重合を行うことにより、(A)共役ジエン系重合体の重合開始末端に、シリカと相互作用する官能基を導入することができる。なお、本明細書において「相互作用」とは、分子間で共有結合を形成するか、又は共有結合よりも弱い分子間力(例えば、イオン-双極子相互作用、双極子-双極子相互作用、水素結合、ファンデルワールス力等といった分子間に働く電磁気学的な力)を形成することを意味する。「シリカと相互作用する官能基」は、窒素原子、硫黄原子、リン原子及び酸素原子よりなる群から選択される少なくとも1種を有することが好ましい。
 変性開始剤としては、アルキルリチウム等のリチウム化合物と、第2級アミン化合物などの窒素含有化合物との反応生成物であることが好ましい。当該窒素含有化合物の具体例としては、例えばジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ドデカメチレンイミン、N,N’-ジメチル-N’-トリメチルシリル-1,6-ジアミノヘキサン、ピペリジン、ピロリジン、ヘキサメチレンイミン、ヘプタメチレンイミン、ジシクロヘキシルアミン、N-メチルベンジルアミン、ジ-(2-エチルヘキシル)アミン、ジアリルアミン、モルホリン、N-(トリメチルシリル)ピペラジン、N-(tert-ブチルジメチルシリル)ピペラジン、1,3-ジトリメチルシリル-1,3,5-トリアジナン等が挙げられる。なお、変性開始剤の存在下で重合を行う場合、アルカリ金属化合物又はアルカリ土類金属化合物と、シリカと相互作用する官能基を有する化合物とを予め混合することにより変性開始剤を調製し、その調製した変性開始剤を重合系中に添加して重合を行ってもよい。あるいは、重合系中に、アルカリ金属化合物又はアルカリ土類金属化合物と、シリカと相互作用する官能基を有する化合物とを添加し、重合系中で両者を混合することにより変性開始剤を調製して重合を行ってもよい。又は、窒素含有のアルキルリチウム化合物を使用することもできる。窒素含有のアルキルリチウム化合物の具体例としては、3-ジメチルアミノプロピルリチウムとイソプレンとの反応物等を使用することができる。
 ランダマイザーは、重合体中におけるビニル結合(1,2-結合及び3,4-結合)の含有率を表すビニル結合含量の調整等を目的として用いることができる。ランダマイザーの例としては、ジメトキシベンゼン、テトラヒドロフラン、ジメトキシエタン、ジエチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、2,2-ジ(テトラヒドロフリル)プロパン、2-(2-エトキシエトキシ)-2-メチルプロパン、トリエチルアミン、ピリジン、N-メチルモルホリン、テトラメチルエチレンジアミン等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。
 重合に使用する有機溶媒としては、反応に不活性な有機溶媒であればよく、例えば脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素などを用いることができる。中でも、炭素数3~8の炭化水素が好ましく、その具体例としては、例えばプロパン、n-ブタン、イソブタン、n-ペンタン、イソペンタン、n-ヘキサン、シクロヘキサン、プロペン、1-ブテン、イソブテン、トランス-2-ブテン、シス-2-ブテン、1-ペンチン、2-ペンチン、1-ヘキセン、2-ヘキセン、ベンゼン、トルエン、キシレン、エチルベンゼン、ヘプタン、シクロペンタン、メチルシクロペンタン、メチルシクロヘキサン、1-ペンテン、2-ペンテン、シクロヘキセン等が挙げられる。なお、有機溶媒は、1種を単独で又は2種以上を組み合わせて使用することができる。
 溶液重合を用いる場合、反応溶媒中のモノマー濃度は、生産性と重合コントロールの容易性のバランスを維持する観点から、5~50質量%であることが好ましく、10~30質量%であることがより好ましい。重合反応の温度は、-20℃~150℃であることが好ましく、0℃~120℃であることがより好ましく、20℃~100℃であることが特に好ましい。また、重合反応は、単量体を実質的に液相に保つのに十分な圧力の下で行うことが好ましい。このような圧力は、重合反応に対して不活性なガスによって、反応器内を加圧する等の方法によって得ることができる。こうした重合反応により、活性重合末端を有する共役ジエン系重合体を得ることができる。
 活性重合末端を有する共役ジエン系重合体において、共役ジエン化合物に由来する構造単位におけるビニル結合含量は、30~65モル%であることが好ましく、33~62モル%であることがより好ましく、35~60モル%であることが特に好ましい。ビニル結合含量が30モル%未満であると、グリップ特性が低くなり過ぎる傾向があり、65モル%を超えると、得られる架橋重合体の耐摩耗性が悪化しやすくなる傾向にある。なお、本明細書において「ビニル結合含量」は、共役ジエン系重合体中において、共役ジエン化合物に由来する全構造単位に対する、ビニル結合を有する構造単位の含有割合を示す値であり、H-NMRによって測定した値である。
<変性工程>
 次いで、上記重合反応により得られた共役ジエン系重合体につき、該重合体の活性重合末端と、下記一般式(1)~(3)で表される化合物(特定変性剤)とを反応させる。こうした工程を経ることにより、特定変性剤で末端変性された(A)共役ジエン系重合体を得ることができる。このような特定変性剤で末端変性された(A)共役ジエン系重合体は、末端変性部位においてフィラーとの相互作用が強くなるので、ウェットグリップ性及び低ロス性が向上し、またイミンの持つ分岐特性によって引張強度及び加工性も向上する。
Figure JPOXMLDOC01-appb-C000013
 
(式(1)中、Aは、イミノ基、アミド基、(チオ)カルボニル基、(チオ)カルボニルオキシ基、スルフィドもしくはポリスルフィドでLと結合した1価の基であるか、又は、保護された一級アミノ基、保護された二級アミノ基、三級アミノ基、ニトリル基、ピリジル基、(チオ)エポキシ基、(チオ)イソシアネート基、(チオ)ホルミル基、(チオ)カルボン酸エステル、(チオ)カルボン酸エステルの金属塩、カルボン酸ハロゲン化合物、イミダゾリル基、もしくは下記式(1a)で示される基を表し、L及びLはそれぞれ独立に単結合もしくは炭素数1~20のヒドロカルビレン基を表し、R及びRはそれぞれ独立に炭素数1~4のヒドロカルビル基を表し、n2は0~3であり、m1は0または1である。)
Figure JPOXMLDOC01-appb-C000014
 
(式(1a)中、L、R、R及びn2は式(1)と同様であり、*はLと結合する部位を示す。)
 上記式(1)において、L及びLの炭素数1~20のヒドロカルビレン基としては、炭素数1~20の直鎖状または分岐状のアルカンジイル基、炭素数3~20のシクロアルキレン基、炭素数6~20のアリーレン基等が挙げられる。上記式(1)において、R及びRの炭素数1~4のヒドロカルビル基としては、炭素数1~4の直鎖状または分岐状のアルキル基、炭素数3~4のシクロアルキル基が挙げられる。
 上記一般式(1)で表される化合物の具体例としては、N,N-ビス(トリメトキシシリルプロピル)アミノプロピル-3-イミダゾール、N,N-ビス(トリエトキシシリルプロピル)アミノプロピル-1-イミダゾール、N,N-ビス(トリメトキシシリル)アミノプロピルメチルジエチルシラン、N,N,N-トリス(トリエトキシシリルプロピル)アミン、N,N,N’,N’-テトラキス(3-トリエトキシシリルプロピル)-1,3-ジアミノプロパン等が挙げられる。
Figure JPOXMLDOC01-appb-C000015
 
(式(2)中、Aはそれぞれ独立に、イミノ基、アミド基、(チオ)カルボニル基、(チオ)カルボニルオキシ基、二級アミノ基、又は三級アミノ基を表し、Zは窒素原子を含む又は含まない炭素数1~20のt価の基を表し、Lは単結合又は炭素数1~20のヒドロカルビレン基を表し、Lは炭素数1~20のヒドロカルビレン基を表し、R及びRはそれぞれ独立に炭素数1~4のヒドロカルビル基を表し、n3は0又は1であり、tは2又は3である。)
 上記式(2)において、Zは、窒素原子を含んでもよい炭素数1~20の2価もしくは3価の基であるが、窒素原子を含んでいることが好ましい。上記式(2)において、Lの炭素数1~20のヒドロカルビレン基及びLの炭素数1~20のヒドロカルビレン基としては、炭素数1~20の直鎖状または分岐状のアルカンジイル基、炭素数3~20のシクロアルキレン基、炭素数6~20のアリーレン基等が挙げられる。上記式(2)において、R及びRの炭素数1~4のヒドロカルビル基としては、炭素数1~4の直鎖状または分岐状のアルキル基、炭素数3~4のシクロアルキル基が挙げられる。
 上記一般式(2)で表される化合物の具体例としては、下記式(M-1)~(M-4)で示される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000016
 
 上記式(M-1)中、R11は水素原子又は炭素数1~20のアルキル基を表し、n5は1~10の整数を表す。
Figure JPOXMLDOC01-appb-C000017
 
(式(3)中、R及びRは、それぞれ独立に炭素数1~20のヒドロカルビル基を表し、Rは、炭素数1~20のヒドロカルビル基、アルキル基が有する水素原子及び-CH-の少なくとも1個がケイ素、窒素、リン、酸素及び硫黄よりなる群から選択される少なくとも1種の元素を含む基で置換された炭素数1~20の置換アルキル基であるか、又は窒素、リン、酸素及び硫黄よりなる群から選択される少なくとも1種の元素を含む炭素数6~20の芳香族基を表し、R10は、炭素数1~20のアルカンジイル基を表す。n4は1または2である。)
 上記式(3)において、R及びRの炭素数1~20のヒドロカルビル基としては、炭素数1~20の直鎖状または分岐状のアルキル基、炭素数3~20のシクロアルキル基、炭素数6~20のアリール基等が挙げられる。
 上記一般式(3)で表される化合物の具体例としては、N-フェニル-2,2-ジメトキシ-1-アザ-2-シラシクロペンタン、N-(3-トリエトキシシリルプロピル)-2,2-ジメトキシ-1-アザ-2-シラシクロペンタン等が挙げられる。
 なお、活性重合末端を有する共役ジエン系重合体の変性反応に際しては、特定変性剤を単独で使用してもよいが、特定変性剤とともに特定変性剤以外の変性剤(以下、「その他の変性剤」ともいう。)を使用してもよい。その他の変性剤は、フィラーと相互作用する官能基を有し、かつ重合体の活性重合末端と反応し得る化合物であれば特に限定されない。
 上記の変性反応は、例えば溶液反応として行うことができる。この溶液反応は、重合反応の終了後の未反応モノマーを含む溶液を用いて行ってもよく、当該溶液に含まれる共役ジエン系重合体を単離し、シクロヘキサン等の適当な溶媒に溶解した上で行ってもよい。また、変性反応は、回分式及び連続式のいずれを用いて行ってもよい。このとき、変性剤の添加方法は特に制限されず、一括して添加する方法、分割して添加する方法、連続的に添加する方法などが挙げられる。
 特定変性剤の使用割合(二種以上使用する場合にはその合計量)は、重合開始剤が有する重合反応に関与する金属原子1モルに対して、0.2モル以上とすることが好ましく、0.4モル以上とすることがより好ましい。0.2モル以上とすることにより、特定変性剤による重合体末端の変性反応を十分に進行させることができ、末端変性部位におけるフィラーとの相互作用を十分に強くすることができる。また、変性反応後における溶液中の未反応物を少なくする点で、特定変性剤の使用割合の上限値は、重合開始剤が有する重合反応に関与する金属原子1モルに対して、1.5モル未満とすることが好ましく、1.2モル未満とすることがより好ましい。
 なお、変性反応に際し、特定変性剤とその他の変性剤とを併用する場合、その他の変性剤の使用割合は、共役ジエン系重合体と特定変性剤との反応を十分に進行させる観点から、特定変性剤とその他の変性剤との合計の使用割合に対して、30モル%以下とすることが好ましく、20モル%以下とすることがより好ましく、10モル%以下とすることが特に好ましい。
 変性反応の温度は、通常、重合反応の温度と同じであり、-20℃~150℃とすることが好ましく、0℃~120℃とすることがより好ましく、20℃~100℃とすることが特に好ましい。変性反応の温度が低いと、変性後の共役ジエン系重合体の粘度が上昇する傾向がある。一方、変性反応の温度が高いと、重合体の活性末端が失活しやすくなる。変性反応の反応時間は、好ましくは1分~5時間であり、より好ましくは2分~1時間である。
 反応溶液に含まれる(A)共役ジエン系重合体を単離するには、例えばスチームストリッピング等の公知の脱溶媒方法及び熱処理等の乾燥の操作によって行うことができる。得られた(A)共役ジエン系重合体は、必要に応じて伸展油等を添加することによりムーニー粘度を調整してもよい。この処理により、加工性を良好にすることができる。伸展油としては、例えばアロマ油、ナフテン油、パラフィン油等が挙げられる。伸展油の配合量は、重合に用いるモノマー等に応じて適宜設定すればよいが、例えば共役ジエン系重合体100質量部に対し、10~50質量部である。
 このようにして、(A)共役ジエン系重合体を得ることができる。(A)共役ジエン系重合体によれば、フィラーとの相容性を向上させることができ、加工性が改善された重合体組成物を得ることができる。このような(A)共役ジエン系重合体を含有する重合体組成物を用いることで、自動車タイヤ等の用途において求められる発熱性、引張強度、耐摩耗性、低燃費性及びウェットグリップ性などに優れていながらも、低ロス性にも優れたタイヤ(架橋重合体)を得ることができる。
 (A)共役ジエン系重合体は、該重合体の少なくとも片末端に、上記一般式(1)~(3)のいずれかの化合物に由来する構造を有することが好ましい。(A)共役ジエン系重合体がこのような構造を有することにより、例えばタイヤ用途に適用した場合に、カーボンブラックやシリカ等のフィラーの分散性がより改善され、低ロス性及びウェットグリップ性において、より高い改善効果を奏する点で好ましい。
 (A)共役ジエン系重合体のゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算の重量平均分子量(Mw)は、好ましくは100,000~2,000,000である。Mwが100,000よりも小さいと、本実施形態に係る重合体組成物の架橋重合体において、低ロス性及び耐摩耗性が低下しやすい傾向にあり、2,000,000よりも大きいと、重合体組成物の加工性が低下しやすい傾向にある。得られる(A)共役ジエン系重合体の重量平均分子量(Mw)は、より好ましくは150,000~1,500,000であり、さらに好ましくは200,000~1,000,000である。
 (A)共役ジエン系重合体の分子量分布、すなわち重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、好ましくは1.5~3.0であり、より好ましくは1.5~2.5であり、特に好ましくは1.5~2.2である。(A)共役ジエン系重合体の分子量分布が前記範囲にあると、より優れた低ロス性、耐摩耗性、ウェットグリップ性能及び機械的特性が得られやすい。
 1.2.(B)共役ジエン系重合体粒子
 本実施形態に係る重合体組成物は、(B)共役ジエン系重合体粒子を含有する。(B)共役ジエン系重合体粒子を含有することで、得られる架橋重合体(タイヤ)の耐摩耗性や反発弾性が向上する。
 (B)共役ジエン系重合体粒子としては、架橋粒子であることが好ましく、イソプレンゴム、ブタジエンゴム、スチレン-ブタジエン共重合ゴム、スチレン-イソプレン共重合ゴム、ブタジエン-イソプレン共重合ゴム、スチレン-ブタジエン-イソプレン共重合ゴム、スチレン-アクリロニトリル-ブタジエン共重合ゴム、アクリロニトリル-ブタジエン共重合ゴム、エチレン-α-オレフィンジエン共重合ゴム、クロロプレンゴム及びハロゲン化ブチルゴムよりなる群から選ばれるゴム重合体(以下、「特定ゴム重合体」ともいう。)、並びにこの特定ゴム重合体に、共役ジエン化合物(以下、「共役ジエン系単量体」ともいう。)及び/又はスチレン化合物(以下、「スチレン系単量体」ともいう。)をグラフト重合することによって得られるグラフト重合体(以下、「特定ゴムグラフト重合体」ともいう。)から選ばれる少なくとも1種の重合体の粒子が挙げられる。
 特定ゴムグラフト重合体としては、共役ジエン系単量体がグラフト重合されてなるグラフト重合体、スチレン系単量体がグラフト重合されてなるグラフト重合体、共役ジエン系単量体及びスチレン系量体がグラフト重合されてなるグラフト重合体が挙げられる。
 これらの中でも、配合加工性の観点から、ブタジエンゴム及びスチレン-ブタジエン共重合ゴムが好ましい。
 (B)共役ジエン系重合体粒子の数平均粒径は、好ましくは10~800nmであり、より好ましくは30~700nmである。ここで、(B)共役ジエン系重合体粒子の数平均粒径は、光散乱法によって測定された値である。(B)共役ジエン系重合体粒子の数平均粒径が前記範囲にあると、得られる架橋重合体(タイヤ)の耐摩耗性及び反発弾性を高度にバランスにも優れたものとすることができる。
 このような(B)共役ジエン系重合体粒子は、乳化重合法または懸濁重合法によって製造することができる。
 具体的には、(B)共役ジエン系重合体粒子が特定ゴム重合体よりなるものである場合には、媒体中において、特定ゴム重合体を得るための単量体(以下、「ゴム粒子形成用単量体」ともいう。)を、必要に応じて重合開始剤、乳化剤、懸濁安定剤を用いることによって重合反応させることにより、特定ゴム重合体よりなるゴム粒子を得ることができる。
 また、(B)共役ジエン系重合体粒子が特定グラフト重合体よりなるものである場合には、乳化重合法または懸濁重合法によって得られた特定ゴム重合体に、共役ジエン系単量体及び/又はスチレン系単量体をグラフト重合することによってグラフト重合体よりなるゴム粒子を得ることができる。
 ゴム粒子形成用単量体としては、形成すべき重合体の種類に応じて適宜の化合物が用いられるが、架橋構造を形成するために、例えば重合性不飽和基を有する多官能化合物(以下、「架橋構造形成用化合物」ともいう。)が用いられる。
 架橋構造形成用化合物としては、ジビニルベンゼン、ジアリルフタレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、プロパンジオールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ハイドロキノン、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等が挙げられる。これらの中でも、汎用性、すなわちコストを抑えられる観点から、ジビニルベンゼン及びトリメチロールプロパントリメタクリレートが好ましい。
 ゴム粒子形成用単量体における架橋構造形成用化合物の割合は、重合に供される単量体(ゴム粒子形成用単量体)の合計100質量部に対して、0.5~5質量部であることが好ましい。架橋構造形成用化合物の割合が前記範囲にあると、得られる架橋重合体(タイヤ)の反発弾性が良好となる場合がある。
 また、ゴム粒子形成用単量体としては、(B)共役ジエン系重合体粒子のゴム組成物中における分散性を良好なものとすることを目的として、官能基含有化合物(以下、「分散性向上用化合物」ともいう。)が用いられていてもよい。すなわち、(B)共役ジエン系重合体粒子が官能基含有化合物に由来の構造単位を有するものであってもよい。
 分散性向上用化合物の具体例としては、ヒドロキシエチルメタクリレート、ヒドロキシプロピルメタクリレート、ヒドロキシブチルメタクリレート、エチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート、ペンタエリスリトールテトラメタクリレート、tert-ブトキシジメチルシリルスチレン及びイソプロポキシジメチルシリルスチレン等が挙げられる。これらの中でも、得られる架橋重合体(タイヤ)における転がり抵抗の観点から、ヒドロキシエチルメタクリレートが好ましい。なお、エチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート及びペンタエリスリトールテトラメタクリレートは、上記架橋構造形成用化合物としての作用をも有するものである。
 分散性向上用化合物の使用割合は、重合に供される単量体(ゴム粒子形成用単量体)の合計100質量部に対して、0.5~10質量部であることが好ましい。分散性向上用化合物の使用割合が前記範囲にあると、得られる架橋重合体(タイヤ)の低ロス性及び反発弾性を高度にバランスに優れたものとすることができる。
 乳化重合法においては、重合開始剤としては、ラジカル重合開始剤が用いられる。ラジカル重合開始剤としては、例えばベンゾイルパーオキサイド、ラウロイルパーオキサイド、tert-ブチルヒドロパーオキサイド、クメンヒドロパーオキサイド、p-メンタンヒドロパーオキサイド、ジ-tert-ブチルパーオキサイド、ジクミルパーオキサイド等の有機過酸化物、アドビスイソブチロニトリル等のジアゾ化合物、過硫酸カリウム等の無機過酸化物、及びこれらの過酸化物と硫酸第一鉄との組み合わせ等のレドックス系触媒などを用いることができる。
 また、乳化重合法においては、重合開始剤と共に、例えばtert-ドデシルメルカプタン、n-ドデシルメルカプタン等のメルカプタン類、四塩化炭素、チオグリコール類、デテルペン、ターピノーレン、及びγ-テルピネン類などの連鎖移動剤を併用することもできる。
 乳化重合法において用いられる乳化剤としては、アニオン系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤及び両性界面活性剤の他、フッ素系界面活性剤を用いることもできる。乳化剤としては、1種を単独で、あるいは2種以上を組み合わせて用いることができる。
 懸濁重合法において用いられる懸濁安定剤としては、ポリビニルアルコール、ポリアクリル酸ナトリウム、ヒドロキシエチルセルロース等が挙げられる。懸濁安定剤としては、1種を単独で、あるいは2種以上を組み合わせて用いることができる。
 本実施形態に係る重合体組成物中の(B)共役ジエン系重合体粒子の含有割合は、重合体組成物中に含有される共役ジエン系重合体成分全体を100質量%としたときに、好ましくは1~50質量%であり、より好ましくは3~40質量%であり、特に好ましくは5~30質量%である。(B)共役ジエン系重合体粒子の含有割合が前記範囲にあると、得られる架橋重合体(タイヤ)の反発弾性が向上しやすい。
 1.3.その他の成分
 本実施形態に係る重合体組成物は、必須成分である、(A)共役ジエン系重合体及び(B)共役ジエン系重合体粒子の他、必要に応じて、任意成分が含有されていてもよい。
 重合体成分においては、必須成分である、(A)共役ジエン系重合体及び(B)共役ジエン系重合体粒子以外の、任意成分として、例えば、天然ゴム、ブタジエンゴム、ブチルゴム、合成イソプレンゴム、スチレン-ブタジエン共重合ゴム、エチレン-α-オレフィン共重合ゴム、エチレン-α-オレフィン-ジエン共重合ゴム、アクリロニトリル-ブタジエン共重合ゴム、クロロプレンゴム及びハロゲン化ブチルゴム、並びにこれらの混合物などの他の重合体成分が含有されていてもよい。これらの中でも、得られる架橋重合体(タイヤ)において、耐摩耗性を維持しつつ、低ロス性とウェットグリップ性とのバランスを高次に達成できるという理由から、天然ゴムあるいはブタジエンゴムを含有することが好ましい。他の重合体成分の使用割合は、重合体成分100質量%中、10~45質量%であることが好ましい。
 重合体成分以外の任意成分としては、例えば、シリカやカーボンブラック等のフィラー、シランカップリング剤、酸性化合物、硫黄等の架橋剤、伸展油、老化防止剤、酸化亜鉛等の加硫助剤、加硫促進剤、ワックス等が挙げられる。
<シリカ>
 シリカとしては、一般的に充填剤として用いられているシリカを用いることができるが、得られる架橋重合体(タイヤ)の低ロス性及び反発弾性を高度にバランスに優れたものとするためには、一次粒子径が50nm以下である合成ケイ酸が好ましい。
 シリカの使用割合は、重合体成分100質量部に対して、好ましくは20~100質量部である。シリカの含有割合が前記範囲にあると、得られる架橋重合体(タイヤ)の低ロス性及び反発弾性を高度にバランスに優れたものとすることができる。
<カーボンブラック>
 カーボンブラックとしては、一般的に充填剤として用いられているカーボンブラックを用いることができる。カーボンブラックの具体例としては、例えば、GPF、FEF、HAF、ISAF、SAFなどが挙げられる。これらの中では、ISAF、SAF、HAFが好ましく、ISAFがより好ましい。
 カーボンブラックの使用割合は、重合体成分100質量部に対して、好ましくは0.5~100質量部であり、より好ましくは1~50質量部である。
<シランカップリング剤>
 シランカップリング剤としては、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン;3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3-トリエトキシシリルプロピルベンゾリルテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィド、ビス(3-ジエトキシメチルシリルプロピル)テトラスルフィド、3-メルカプトプロピルジメトキシメチルシラン、ジメトキシメチルシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、ジメトキシメチルシリルプロピルベンゾチアゾリルテトラスルフィド、3-オクタノイルチオ-1-プロピルトリエトキシシランなどが挙げられる。これらの化合物は、1種単独でまたは2種以上組み合わせて用いることができる。また、これらの中では、補強性改善効果などの観点から、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、3-トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィドが好ましい。
 シランカップリング剤の使用割合は、フィラー成分100質量部に対して、好ましくは0.5~20質量部である。シランカップリング剤の使用割合が前記範囲にあると、重合体組成物から形成される架橋重合体に十分な補強性及び耐破壊特性を付与することができ、架橋重合体の耐摩耗性を向上できる場合がある。
<酸性化合物>
 酸性化合物としては、炭素数12~24の飽和脂肪酸及びそれらの金属塩が好適に用いられる。酸性化合物の具体例としては、ラウリル酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、マルガリン酸、ステアリン酸、ノナデシル酸、アラキジン酸、ヘンイコシル酸、ベヘン酸、トリコシル酸、リグノセリン酸、及びこれらの飽和脂肪酸の、カルシウム塩、亜鉛塩などが挙げられる。これらの酸性化合物は、1種単独でまたは2種以上組み合わせて用いることができる。これらの中では、ステアリン酸が好ましい。酸性化合物の使用割合は、重合体成分100質量部に対して、好ましくは0.3~15質量部である。
<架橋剤>
 架橋剤としては、硫黄、ハロゲン化硫黄、有機過酸化物、キノンジオキシム類、有機多価アミン化合物、メチロール基を有するアルキルフェノール樹脂等が挙げられる。これらの中では、通常、架橋剤としては硫黄が用いられる。架橋剤の使用割合は、重合体成分100質量部に対して、好ましくは0.1~10質量部であり、より好ましくは0.5~5質量部である。
<他の添加剤>
 伸展油としては、例えば、アロマ油、ナフテン油、パラフィン油等が挙げられる。伸展油の使用割合は、重合体成分100質量部に対して、好ましくは0~50質量部である。
 老化防止剤としては、例えば、N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン、N-フェニル-N’-イソプロピル-p-フェニレンジアミン等が挙げられる。老化防止剤の使用割合は、重合体成分100質量部に対して、好ましくは0.5~5質量部である。
 加硫助剤としては、例えば、酸化亜鉛等が挙げられる。加硫助剤の使用割合は、重合体成分100質量部に対して、好ましくは1~5質量部である。
 加硫促進剤としては、グアジニン系、アルデヒド-アミン系、アルデヒド-アンモニア系、チアゾール系、スルフェンアミド系、チオ尿素系、チウラム系、ジチオカルバメート系、ザンテート系等の化合物が挙げられる。加硫促進剤の好ましい具体例としては、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド(CBS)、N-テトラ-ブチル-2-ベンゾチアジルスルフェンアミド(TBBS)等のスルフェンアミド系加硫促進剤が挙げられる。加硫促進剤の使用割合は、塩基性化合物の種類及び使用割合を考慮して適宜に定められるが、重合体成分100質量部に対して、好ましくは0.5~5質量部である。
 1.4.重合体組成物の製造方法
 本実施形態に係る重合体組成物は、上記の各成分を、例えばプラストミル、バンバリーミキサー、ロール、インターナルミキサー等の混練機を用いて混練することによって調製することができる。例えば、下記の方法によって調製することが好ましい。
<一段目の混練>
 一段目の混練においては、(A)共役ジエン系重合体、(B)共役ジエン系重合体粒子と共に、必要に応じて添加されるフィラー及びシランカップリング剤が混練されることが好ましい。また、一段目の混練においては、必要に応じて、その他の重合体、伸展油及び老化防止剤なども共に混練される。また、一段目の混練においては、二段目の混練において混練されることが好ましいとされる、酸性化合物が共に混練されてもよい。
 フィラーを一段目の混練に供することによって、これらの分散性が良好となりやすく、得られる重合体組成物から形成されるタイヤ(架橋重合体)の低燃費性能が向上する場合がある。
 また、一段目の混練にシランカップリング剤を供する場合には、先ず、(A)共役ジエン系重合体、(B)共役ジエン系重合体粒子、その他の重合体、及び必要に応じてフィラーを混練し、その後、シランカップリング剤を添加(後添加)して更に混練することが好ましい。
 一段目の混練においてシランカップリング剤を後添加することにより、得られる重合体組成物がより加工性に優れたものとなり、該重合体組成物から形成される架橋重合体がより優れた低ロス性を有するものとなる。また、重合体組成物がフィラーとしてシリカを含有する場合においては、シリカの分散性をより良好なものとすることができる。
 シランカップリング剤を後添加する場合において、シランカップリング剤の添加タイミングは、シリカの種類、シリカの使用割合及び混練条件などに応じて、(A)共役ジエン系重合体、(B)共役ジエン系重合体粒子及びその他の重合体の使用割合などを考慮して適宜に定められる。
 また、シランカップリング剤を後添加する場合においては、(A)共役ジエン系重合体、(B)共役ジエン系重合体粒子、及びその他の重合体を配合して0.5~10分間にわたって混練した後、シランカップリング剤を添加して0.5~10分間にわたって混練することが好ましい。
 一段目の混練に用いられる混練機としては、プラストミル、バンバリーミキサー、ロール、インターナルミキサーなどの開放式または密閉式の混練機が挙げられる。また、一段目の混練において、混練温度は、30℃~180℃とされ、好ましくは50℃~160℃である。
 また、一段目の混練にシランカップリング剤を供する場合においては、シランカップリング剤を後添加して混練する手法に限定されず、シランカップリング剤を、一段目の混練に供される他の全ての成分と共に一斉に混練する手法によって、シランカップリング剤を含有する混練物を得てもよい。また、(A)共役ジエン系重合体、(B)共役ジエン系重合体粒子、フィラーとしてのシリカ及びシランカップリング剤が混練されるマスターバッチを作製した後に、その他の重合体、添加剤を添加する方法でもよい。
<二段目の混練>
 二段目の混練は、一段目の混練において得られた混練物に、少なくとも架橋剤を添加し、当該混練物と架橋剤とを混練し、重合体組成物を得る工程である。この二段目の混練においては、一段目の混練において得られた混練物と架橋剤と共に、酸性化合物が混練されることが好ましい。また、二段目の混練においては、必要に応じて、酸化亜鉛及び加硫促進剤も共に混練される。そして、二段目の混練においては、通常、当該二段目の混練に供される全ての成分(具体的には、一段目の混練において得られた混練物、架橋剤、並びに、必要に応じて供される、酸性化合物及び酸化亜鉛や加硫促進剤などのその他の成分)を一斉に混練する手法によって重合体組成物が得られる。
 二段目の混練に酸性化合物を供することにより、得られる重合体組成物がより加工性に優れたものとなり、また、重合体組成物から形成される架橋重合体が、より優れた低ロス性を有するものとなる。
 二段目の混練においては、一段目の混練において用いた混練機が用いられる。また、二段目の混練において、混練温度は、30℃~130℃とされ、好ましくは50℃~110℃である。
 以上のような製造方法によって得られる重合体組成物は、未加硫の重合体組成物であり、例えば加硫などの架橋処理をすることによって架橋重合体が形成されるものである。
 1.5.用途
 本実施形態に係る重合体組成物から形成される架橋重合体は、タイヤ、具体的にはタイヤのトレッドとして好適に用いられる。本実施形態に係る重合体組成物から形成されるタイヤには、トレッドに高い強度が得られ、またトレッドに所望の形状が得られるため、優れた性能が得られる。また、本実施形態に係る重合体組成物から形成される架橋重合体は、トレッド以外のタイヤ部材、防振ゴム、防舷材、ベルト、ホース、及びその他の工業品などとして用いることもできる。
 2.実施例
 以下、本発明の具体的な実施例について説明するが、本発明はこれらの実施例に限定されるものではない。なお、下記製造例、実施例及び比較例中の「%」は、特に断りのない限り質量基準である。
 2.1.(A)共役ジエン系重合体の製造例及び物性測定
<製造例1>
 窒素置換された内容積5リットルのオートクレーブ反応器に、シクロヘキサン2500g、ビニル基含量調整剤(ランダマイザー)としてテトラヒドロフラン50g、並びに、モノマーとしてスチレン125g及び1,3-ブタジエン365gを仕込んだ。反応器の内容物の温度を10℃に調整した後、重合開始剤としてn-ブチルリチウム5.20mmolを添加して重合を開始した。重合は断熱条件で実施し、最高温度は85℃に達した。
 重合転化率が99%に達した時点(重合開始から25分経過後)で、1,3-ブタジエン10gを1分間かけて追加し、その後、変性剤としてN,N,N’,N’-テトラキス(3-トリエトキシシリルプロピル)-1,3-ジアミノプロパン0.575mmolを加えて15分間反応を行った。
 得られた変性共役ジエン系共重合体を含む重合体溶液に、2,6-ジ-tert-ブチル-p-クレゾールを4.40g添加した。次いで、スチームストリッピングにより脱溶媒を行い、110℃に調温された熱ロールにより乾燥を行うことにより変性共役ジエン系共重合体(以下、「SBR-1」ともいう。)を得た。
<製造例2>
 製造例1において、N,N,N’,N’-テトラキス(3-トリエトキシシリルプロピル)-1,3-ジアミノプロパンに代えて、N-(3-イミダゾリルプロピル)-N,N-ビス(3-トリメトキシシリルプロピル)アミンを1.15mmol添加した以外は同様の操作を行い、変性共役ジエン系共重合体(以下、「SBR-2」ともいう。)を得た。
<製造例3>
製造例1において、N,N,N’,N’-テトラキス(3-トリエトキシシリルプロピル)-1,3-ジアミノプロパンに代えて、N,N-ジメチルアミノプロピルトリメトキシシランを2.30mmol添加した以外は同様の操作を行い、共役ジエン系共重合体(以下、「SBR-3」ともいう。)を得た。
<数平均分子量(Mn)及び重量平均分子量(Mw)の測定>
 上記で製造された各重合体について、ゲルパーミエーションクロマトグラフィー(GPC)(東ソー社製の「HLC-8120」)を用い、下記のGPC条件で得られたGPC曲線の最大ピークの頂点に相当する保持時間から、ポリスチレン換算の数平均分子量(Mn)及び重量平均分子量(Mw)を算出した。
(GPC条件)
 カラム:商品名「GMHXL」(東ソー社製)2本
 カラム温度:40℃
 移動相:テトラヒドロフラン
 流速:1.0ml/分
 サンプル濃度:10mg/20ml
<ビニル含量、結合スチレン含量の測定>
・ビニル含量(%):400MHzのH-NMR測定によって測定した。
・結合スチレン含量(%):400MHzのH-NMR測定によって測定した。結合スチレン含量は、芳香族ビニル含量に相当するパラメータである。
 2.2.(B)共役ジエン系重合体粒子の製造例
<製造例1>
 先ず、重合用容器に、水200質量部及びロジン酸石鹸4.5質量部と共に、単量体として、1,3-ブタジエン63質量部、スチレン35質量部及び架橋構造形成用化合物としてのジビニルベンゼン2質量部を仕込んだ。この重合用容器の温度を5℃に調整した後、ラジカル重合開始剤としてヒドロペルオキシメタン0.1質量部、エチレンジアミン四酢酸ナトリウム0.07質量部、硫酸第1鉄7水和物0.05質量部及びホルムアルデヒド・スルホキシル酸ナトリウム0.15質量部を添加して12時間かけて重合させることにより、スチレン-ブタジエン共重合体よりなる重合体粒子を含有する重合体粒子分散液を得た。
 次いで、得られた重合体粒子分散液を硫酸と塩により凝固させてクラムとした後、熱風乾燥機により乾燥させることにより、平均粒子径200nmの共役ジエン系重合体粒子(以下、「重合体粒子(B1)」ともいう。)を得た。
<製造例2>
 上記製造例1において、単量体として、1,3-ブタジエン60質量部と、スチレン33質量部と、架橋構造形成用化合物としてのジビニルベンゼン2質量部と、分散性向上用化合物としてのヒドロキシエチルメタクリレート5質量部とを用いたこと以外は重合体粒子(B1)の製造例1と同様の手法により、スチレン-ブタジエン共重合体よりなる、平均粒子径180nmの共役ジエン系重合体粒子(以下、「重合体粒子(B2)」ともいう。)を得た。
<製造例3>
 上記製造例1において、単量体として、1,3-ブタジエン60質量部と、スチレン33質量部と、架橋構造形成用化合物及び分散性向上用化合物としてのトリメチロールプロパントリメタクリレート2質量部と、分散性向上用化合物としてのヒドロキシエチルメタクリレ-ト5質量部とを用いたこと以外は重合体粒子(B1)の製造例1と同様の手法により、スチレン-ブタジエン共重合体よりなる、平均粒子径200nmの共役ジエン系重合体粒子(以下、「重合体粒子(B3)」ともいう。)を得た。
<製造例4>
 上記製造例1において、単量体として、1,3-ブタジエン100質量部と、架橋構造形成用化合物としてのジビニルベンゼン2質量部と、分散性向上用化合物としてのヒドロキシエチルメタクリレート5質量部とを用いたこと以外は重合体粒子(B1)の製造例1と同様の手法により、ブタジエンゴムよりなる、平均粒子径200nmの共役ジエン系重合体粒子(以下、「重合体粒子(B4)」ともいう。)を得た。
 2.3.実施例1~6及び比較例1~4
 2.3.1.重合体組成物及び架橋重合体の製造
 下表3に示す配合処方により各成分を配合し、それらを混練することによって重合体組成物を製造した。混練は以下の方法で行った。
 温度制御装置を付属したプラストミル(内容量250cc)を使用し、一段目の混練として、充填率72%、回転数60rpmの条件で、下表3に示す重合体成分、シリカ、伸展油、カーボンブラック、シランカップリング剤、ステアリン酸、老化防止剤、酸化亜鉛を混練した。次いで、二段目の混練として、上記で得られた混練物を室温まで冷却後、硫黄、加硫促進剤を混練することにより、実施例1~6及び比較例1~4の各重合体組成物を得た。
 次に、得られた各重合体組成物を成形し、160℃で所定時間、加硫プレスにて加硫し、下記の評価試験に供する所定の形状を有する各架橋重合体を得た。
 2.3.2.架橋重合体の評価
 得られた各架橋重合体について、以下の評価試験を行った。結果を下表3に示す。
<反発弾性>
 トリプソ式反発弾性試験(東洋精機製作所製)を用い、50℃の条件で測定した。下表3には比較例1に係る架橋重合体の値を100としたときの指数が示されており、その指数によれば、数値が大きいほど反発弾性が大きく良好であることが示される。
<ウェットグリップ性能(0℃tanδ)>
 動的スペクトロメーター(米国レオメトリックス社製)を用い、引張動歪0.14%、角速度100ラジアン毎秒、温度0℃の条件で測定した。下表3には比較例1に係る架橋重合体の値を100としたときの指数が示されており、その指数によれば、数値が大きいほどウェットスキッド抵抗性が大きく良好であることが示される。
<低ヒステリシスロス性能(50℃tanδ)>
 動的スペクトロメーター(米国レオメトリックス社製)を使用し、引張動歪0.7%、角速度100ラジアン毎秒、温度50℃の条件で測定した。下表3には比較例1に係る架橋重合体の値を100としたときの指数が示されており、その指数によれば、数値が大きいほど低ヒステリシスロス性が大きく良好であることが示される。
<引張強度>
 上記で得られた架橋重合体を測定用試料とし、JIS K6251:2010に従って300%モジュラス(M300)を測定した。下表3には比較例1に係る架橋重合体の値を100としたときの指数が示されており、その指数によれば、数値が大きいほど引張強度が高く、良好であることを示す。
<加工性(配合ムーニー粘度)>
 加硫前の重合体組成物を測定用試料とし、JIS K6300-1:2013に準拠し、Lローターを使用して、予熱1分、ローター作動時間4分、温度100℃の条件でムーニー粘度を測定した。下表3には比較例1に係る重合体組成物の値を100としたときの指数が示されており、その指数によれば、数値が大きいほど加工性が良好であることを示す。
 2.4.評価結果
 下表1に、上記で合成した各共役ジエン系重合体の物性値を示す。下表2に、上記で合成した各共役ジエン系重合体粒子の製造に用いた化合物及びその使用割合を示す。下表3に、各重合体組成物の組成及び評価結果を示す。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
 上表3中、重合体組成物の組成中の各成分の数値は質量部を表す。なお、上表3に示す各材料は、それぞれ以下の商品を用いた。
・BR:JSR社製、商品名「BR-01」、非粒子のポリブタジエンゴム
・シリカ:東ソー・シリカ社製、商品名「ニプシルAQ」、平均一次粒子径15nm
・伸展油:三共油化工業社製、商品名「SNH46」
・カーボンブラック:三菱ケミカル社製、商品名「ダイアブラックN339」
・シランカップリング剤:エボニック社製、商品名「Si-69」、ビス(トリエトキシシリルプロピル)テトラスルファン
・ステアリン酸:日油社製、商品名「ビーズステアリン酸つばき」
・老化防止剤:大内新興化学工業社製、商品名「ノクラック810NA」、N-フェニル-N’-イソプロピル-p-フェニレンジアミン
・酸化亜鉛:三井金属鉱業社製、商品名「亜鉛華1号」
・加硫促進剤CZ:大内新興化学工業社製、商品名「ノクセラCZ」、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド
・加硫促進剤D:大内新興化学工業社製、商品名「ノクセラD」、1,3-ジフェニルグアニジン
・硫黄:鶴見化学工業社製、商品名「金華印油入微粉硫黄」
 上表3の結果から、(A)共役ジエン系重合体及び(B)共役ジエン系重合体粒子を含有する実施例1~6に係る重合体組成物によれば、比較例1に係る重合体組成物に比べて、反発弾性、ウェットグリップ性及び低ヒステリシスロス性だけでなく、イミンの持つ分岐特性により引張強度及び加工性を改善できていることがわかる。
 本発明は、上記の実施形態に限定されるものではなく、種々の変形が可能である。本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法および結果が同一の構成、あるいは目的および効果が同一の構成)を包含する。また本発明は、上記の実施形態で説明した構成の本質的でない部分を他の構成に置き換えた構成を包含する。さらに本発明は、上記の実施形態で説明した構成と同一の作用効果を奏する構成または同一の目的を達成することができる構成をも包含する。さらに本発明は、上記の実施形態で説明した構成に公知技術を付加した構成をも包含する。
 

Claims (8)

  1.  (A)アルカリ金属化合物又はアルカリ土類金属化合物の存在下で共役ジエン化合物又は共役ジエン化合物と芳香族ビニル化合物を重合して得られる、活性重合末端を有する重合体と、下記一般式(1)~(3)のいずれかで表される化合物との反応生成物である、共役ジエン系重合体と、
     (B)共役ジエン系重合体粒子と、
    を含有する、重合体組成物。
    Figure JPOXMLDOC01-appb-C000001
     
    (式(1)中、Aは、イミノ基、アミド基、(チオ)カルボニル基、(チオ)カルボニルオキシ基、スルフィドもしくはポリスルフィドでLと結合した1価の基であるか、又は、保護された一級アミノ基、保護された二級アミノ基、三級アミノ基、ニトリル基、ピリジル基、(チオ)エポキシ基、(チオ)イソシアネート基、(チオ)ホルミル基、(チオ)カルボン酸エステル、(チオ)カルボン酸エステルの金属塩、カルボン酸ハロゲン化合物、イミダゾリル基、もしくは下記式(1a)で示される基を表し、L及びLはそれぞれ独立に単結合もしくは炭素数1~20のヒドロカルビレン基を表し、R及びRはそれぞれ独立に炭素数1~4のヒドロカルビル基を表し、n2は0~3であり、m1は0または1である。)
    Figure JPOXMLDOC01-appb-C000002
     
    (式(1a)中、L、R、R及びn2は式(1)と同様であり、*はLと結合する部位を示す。)
    Figure JPOXMLDOC01-appb-C000003
     
    (式(2)中、Aはそれぞれ独立に、イミノ基、アミド基、(チオ)カルボニル基、(チオ)カルボニルオキシ基、二級アミノ基、又は三級アミノ基を表し、Zは窒素原子を含む又は含まない炭素数1~20のt価の基を表し、Lは単結合又は炭素数1~20のヒドロカルビレン基を表し、Lは炭素数1~20のヒドロカルビレン基を表し、R及びRはそれぞれ独立に炭素数1~4のヒドロカルビル基を表し、n3は0又は1であり、tは2又は3である。)
    Figure JPOXMLDOC01-appb-C000004
     
    (式(3)中、R及びRは、それぞれ独立に炭素数1~20のヒドロカルビル基を表し、Rは、炭素数1~20のヒドロカルビル基、アルキル基が有する水素原子及び-CH-の少なくとも1個がケイ素、窒素、リン、酸素及び硫黄よりなる群から選択される少なくとも1種の元素を含む基で置換された炭素数1~20の置換アルキル基であるか、又は窒素、リン、酸素及び硫黄よりなる群から選択される少なくとも1種の元素を含む炭素数6~20の芳香族基を表し、R10は、炭素数1~20のアルカンジイル基を表す。n4は1または2である。)
  2.  重合体組成物中に含有される共役ジエン系重合体成分全体を100質量%としたときに、前記(B)共役ジエン系重合体粒子を1質量%以上50質量%以下含有する、請求項1に記載の重合体組成物。
  3.  前記(A)共役ジエン系重合体の、ゲルパーミエーションクロマトグラフィーで測定したポリスチレン換算の重量平均分子量が100,000~2,000,000である、請求項1または請求項2に記載の重合体組成物。
  4.  前記(B)共役ジエン系重合体粒子の、光散乱法で測定した数平均粒径が10nm以上800nm以下である、請求項1ないし請求項3のいずれか一項に記載の重合体組成物。
  5.  前記(B)共役ジエン系重合体粒子が架橋粒子である、請求項1ないし請求項4のいずれか一項に記載の重合体組成物。
  6.  更に、架橋剤を含有する、請求項1ないし請求項5のいずれか一項に記載の重合体組成物。
  7.  請求項6に記載の重合体組成物を用いて製造された架橋重合体。
  8.  請求項7に記載の架橋重合体を使用したタイヤ。
     
PCT/JP2020/033111 2019-09-10 2020-09-01 重合体組成物、架橋重合体、及びタイヤ WO2021049377A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20862800.8A EP4029911A4 (en) 2019-09-10 2020-09-01 POLYMER COMPOSITION, CROSSLINKED POLYMER AND TIRES
CN202080054521.9A CN114207009A (zh) 2019-09-10 2020-09-01 聚合物组合物、交联聚合物及轮胎
KR1020227000636A KR102619412B1 (ko) 2019-09-10 2020-09-01 중합체 조성물, 가교 중합체 및, 타이어
JP2021545242A JPWO2021049377A1 (ja) 2019-09-10 2020-09-01

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-164427 2019-09-10
JP2019164427 2019-09-10

Publications (1)

Publication Number Publication Date
WO2021049377A1 true WO2021049377A1 (ja) 2021-03-18

Family

ID=74866596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033111 WO2021049377A1 (ja) 2019-09-10 2020-09-01 重合体組成物、架橋重合体、及びタイヤ

Country Status (6)

Country Link
EP (1) EP4029911A4 (ja)
JP (1) JPWO2021049377A1 (ja)
KR (1) KR102619412B1 (ja)
CN (1) CN114207009A (ja)
TW (1) TW202116900A (ja)
WO (1) WO2021049377A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202124483A (zh) * 2019-12-06 2021-07-01 日商Jsr股份有限公司 聚合物組成物的製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111640A1 (ja) * 2011-02-14 2012-08-23 Jsr株式会社 ゴム組成物およびその製造方法並びにタイヤ
WO2013031599A1 (ja) * 2011-08-26 2013-03-07 旭化成ケミカルズ株式会社 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、変性共役ジエン系重合体組成物、ゴム組成物、及びタイヤ
JP2013108036A (ja) * 2011-11-24 2013-06-06 Sumitomo Rubber Ind Ltd ゴム組成物及び空気入りタイヤ
WO2017221943A1 (ja) * 2016-06-24 2017-12-28 Jsr株式会社 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、重合体組成物、架橋体、タイヤ及び化合物
JP2018507302A (ja) * 2015-02-18 2018-03-15 トリンゼオ ヨーロッパ ゲゼルシャフト ミット ベシュレンクテル ハフツング タイヤ用ポリマーブレンド
JP2018095777A (ja) * 2016-12-15 2018-06-21 東洋ゴム工業株式会社 タイヤ用ゴム組成物、及びそれを用いた空気入りタイヤ
JP2019089911A (ja) * 2017-11-13 2019-06-13 株式会社ブリヂストン タイヤ用ゴム組成物およびタイヤ
JP2019131810A (ja) * 2018-02-02 2019-08-08 旭化成株式会社 共役ジエン系重合体のクラム及びベール成形体

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10061543A1 (de) * 2000-12-11 2002-06-13 Bayer Ag Gelhaltige Kautschukmischungen mit multifunktionellen Isocyanaten und Polyolen
CN105658676B (zh) 2013-10-17 2017-07-04 Lg化学株式会社 改性的基于共轭二烯的聚合物,其制备方法以及包含所述聚合物的橡胶组合物
ES2636745T3 (es) * 2015-01-14 2017-10-09 Trinseo Europe Gmbh Composiciones de polímero elastomérico funcionalizado, sus procedimientos de preparación, y composiciones de caucho reticuladas de las mismas
JP6754616B2 (ja) * 2016-05-24 2020-09-16 旭化成株式会社 共役ジエン重合体組成物の製造方法
JP6769780B2 (ja) * 2016-08-19 2020-10-14 旭化成株式会社 変性共役ジエン系重合体及びそのゴム組成物、並びにタイヤ
JPWO2018225564A1 (ja) * 2017-06-09 2020-04-16 株式会社ブリヂストン ゴム組成物、ゴム製品、及びタイヤ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111640A1 (ja) * 2011-02-14 2012-08-23 Jsr株式会社 ゴム組成物およびその製造方法並びにタイヤ
WO2013031599A1 (ja) * 2011-08-26 2013-03-07 旭化成ケミカルズ株式会社 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、変性共役ジエン系重合体組成物、ゴム組成物、及びタイヤ
JP2013108036A (ja) * 2011-11-24 2013-06-06 Sumitomo Rubber Ind Ltd ゴム組成物及び空気入りタイヤ
JP2018507302A (ja) * 2015-02-18 2018-03-15 トリンゼオ ヨーロッパ ゲゼルシャフト ミット ベシュレンクテル ハフツング タイヤ用ポリマーブレンド
WO2017221943A1 (ja) * 2016-06-24 2017-12-28 Jsr株式会社 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、重合体組成物、架橋体、タイヤ及び化合物
JP2018095777A (ja) * 2016-12-15 2018-06-21 東洋ゴム工業株式会社 タイヤ用ゴム組成物、及びそれを用いた空気入りタイヤ
JP2019089911A (ja) * 2017-11-13 2019-06-13 株式会社ブリヂストン タイヤ用ゴム組成物およびタイヤ
JP2019131810A (ja) * 2018-02-02 2019-08-08 旭化成株式会社 共役ジエン系重合体のクラム及びベール成形体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4029911A4 *

Also Published As

Publication number Publication date
CN114207009A (zh) 2022-03-18
JPWO2021049377A1 (ja) 2021-03-18
KR102619412B1 (ko) 2023-12-28
TW202116900A (zh) 2021-05-01
EP4029911A4 (en) 2022-11-09
KR20220019031A (ko) 2022-02-15
EP4029911A1 (en) 2022-07-20

Similar Documents

Publication Publication Date Title
JP6191685B2 (ja) 変性共役ジエン系重合体の製造方法、重合体組成物の製造方法、架橋重合体の製造方法及びタイヤの製造方法
JP7494173B2 (ja) 重合体組成物、架橋重合体、及びタイヤ
JP4846250B2 (ja) ゴム組成物及びそれを用いた空気入りタイヤ
WO2021020189A1 (ja) 重合体組成物、架橋重合体、及びタイヤ
JP5548615B2 (ja) ゴム組成物及びそれを用いたタイヤ
JP2019094390A (ja) 変性共役ジエン系重合体の製造方法、重合体組成物、架橋体及びタイヤ
KR102619412B1 (ko) 중합체 조성물, 가교 중합체 및, 타이어
JP7099918B2 (ja) ゴム組成物、架橋体及びタイヤ
JP2016074880A (ja) ゴム組成物および空気入りタイヤ
WO2021112167A1 (ja) 重合体組成物の製造方法
JP7366050B2 (ja) 重合体組成物、架橋重合体、及びタイヤ
JP6610655B2 (ja) 変性共役ジエン系重合体、変性共役ジエン系重合体の製造方法、重合体組成物、架橋重合体及びタイヤ
JP7194641B2 (ja) 重合体組成物及びその製造方法、並びにタイヤ
JP5121300B2 (ja) ゴム組成物及びそれを用いた空気入りタイヤ
JP6330578B2 (ja) 共役ジエン系重合体及びその製造方法、重合体組成物、架橋重合体並びにタイヤ
JP7458373B2 (ja) 重合体組成物、架橋重合体、及びタイヤ
WO2020179705A1 (ja) 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、重合体組成物、架橋体及びタイヤ
WO2022024219A1 (ja) 重合体組成物、架橋重合体、及びタイヤ
JP2020180218A (ja) 重合体組成物、架橋重合体、及びタイヤ
WO2021125259A1 (ja) 重合体組成物、架橋重合体、及びタイヤ
WO2021256419A1 (ja) 重合体組成物、架橋重合体、及びタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20862800

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021545242

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227000636

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020862800

Country of ref document: EP

Effective date: 20220411