WO2021046930A1 - 一种高透明自修复固体材料及其制备方法与应用 - Google Patents

一种高透明自修复固体材料及其制备方法与应用 Download PDF

Info

Publication number
WO2021046930A1
WO2021046930A1 PCT/CN2019/108312 CN2019108312W WO2021046930A1 WO 2021046930 A1 WO2021046930 A1 WO 2021046930A1 CN 2019108312 W CN2019108312 W CN 2019108312W WO 2021046930 A1 WO2021046930 A1 WO 2021046930A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
healing
solid material
highly transparent
hydrogen bond
Prior art date
Application number
PCT/CN2019/108312
Other languages
English (en)
French (fr)
Inventor
何明辉
李仁爱
陈广学
田君飞
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2021046930A1 publication Critical patent/WO2021046930A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/02Acids; Metal salts or ammonium salts thereof, e.g. maleic acid or itaconic acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/12Esters of phenols or saturated alcohols
    • C08F222/14Esters having no free carboxylic acid groups, e.g. dialkyl maleates or fumarates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/12Esters of phenols or saturated alcohols
    • C08F222/20Esters containing oxygen in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/19Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances

Definitions

  • the present invention relates to the technical field of self-healing materials, in particular, the present invention relates to a high-transparent self-healing solid material and a preparation method and application thereof.
  • Eutectic solvents are a subset of ionic liquids. On the basis of inheriting the advantages of ionic liquids low vapor pressure, non-aqueous biocompatibility, non-flammability, chemical stability, and high solubility, it also has low cost and low toxicity. , The preparation process has the characteristics of 100% atom utilization and environmental friendliness, and it is expected to replace ionic liquids in the future. At present, eutectic solvents are mainly used in areas such as capturing carbon dioxide, dissolving metal oxides, dissolving drugs and purifying, catalysts, electrodeposition, material preparation, and processing biopolymers. However, there are relatively few reports about polymerizable eutectic solvents in the preparation of polymers in current research, and there is no report that polymerizable eutectic solvents can be used to directly prepare solid self-healing materials.
  • the synthesis method of the material is complicated, a large amount of organic solvents are used in the preparation process, which causes certain harm to the environment, and the prepared polymer material is optically opaque, electrically insulating, and requires strong external pressure to promote the repair behavior, which limits Development of hard self-healing materials.
  • the present invention overcomes the defects of the prior art and provides a highly transparent self-healing solid material.
  • the highly transparent self-healing solid material of the present invention has high transparency and high Young's modulus, and also has excellent self-healing properties. Function and conductivity, it can be self-repairing in a solid form, and the high-transparent self-repairing solid material is completely green and environmentally friendly, opening up a brand-new road for the development of solid self-repairing materials.
  • Another object of the present invention is to provide a method for preparing the highly transparent self-healing solid material.
  • the preparation method is fast and simple, energy-saving and environmentally friendly.
  • Another object of the present invention is to provide applications of the highly transparent self-healing solid material.
  • a high-transparent self-healing solid material including:
  • Acrylic acid and/or methacrylic acid are Acrylic acid and/or methacrylic acid
  • the molar ratio of the hydrogen bond acceptor, acrylic acid and/or methacrylic acid, acrylamide and/or methacrylamide is 1: (1-3): (1-2);
  • the amount of the photoinitiator/thermal initiator is 0.05% to 5% of the total mass of the hydrogen bond acceptor, acrylic acid and/or methacrylic acid, acrylamide and/or methacrylamide.
  • the hydrogen bond acceptor and hydrogen bond donor can be prepared by controlling the ratio.
  • the polymerizable eutectic solvent can be cured under the action of an initiator to obtain a highly transparent solid material with a self-repairing function, and the obtained highly transparent solid material also has excellent electrical conductivity and high Young's modulus.
  • the selection of hydrogen bond donors in the present invention, the molar ratio of acrylic acid and/or methacrylic acid, acrylamide and/or methacrylamide, and the molar ratio of the hydrogen bond acceptor to the hydrogen bond acceptor are critical to whether it is possible to prepare highly transparent and self-contained It is very important to repair solid materials. If the amount of hydrogen bond donor (acrylic acid and/or methacrylic acid and acrylamide and/or methacrylamide) or hydrogen bond acceptor is not suitable, it is difficult to form a eutectic solvent.
  • the type of bond donor is not properly selected, it cannot have a self-healing function, and if the ratio of acrylic acid and/or methacrylic acid, acrylamide and/or methacrylamide is not appropriate, a solid self-healing material cannot be formed.
  • the high-transparency self-healing solid material further includes a cross-linking agent, and adding a cross-linking agent to the high-transparency self-healing solid material system can further increase the Young's modulus of the high-transparency self-healing solid material.
  • the crosslinking agent is tripropylene glycol diacrylate, polyethylene glycol diacrylate, dipropylene glycol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, One or more of phthalic acid diethylene glycol diacrylate, trimethylolpropane triacrylate, and pentaerythritol tetraacrylate.
  • the amount of the crosslinking agent used is 0.5%-10% of the total mass of the hydrogen bond acceptor, acrylic acid and/or methacrylic acid, acrylamide and/or methacrylamide. More preferably, the amount of the crosslinking agent used is 1% to 5% of the total mass of the hydrogen bond acceptor, acrylic acid and/or methacrylic acid, acrylamide and/or methacrylamide.
  • the hydrogen bond acceptor is choline chloride, betaine anhydrous, betaine monohydrate, ammonium chloride, methyltriphenylphosphonium bromide, benzyltriphenylphosphonium chloride, N, N -One or more of diethylethanolammonium chloride.
  • the hydrogen bond acceptor is one or more of choline chloride, acetylcholine chloride, betaine anhydrous, and betaine monohydrate.
  • the preparation method of the high transparent self-healing solid material includes the following steps:
  • the photoinitiator is one or more of benzoin and its derivative photoinitiators, benzil photoinitiators, alkylphenone photoinitiators, and acyl phosphor oxide photoinitiators .
  • the benzoin and derivative photoinitiators may be benzoin, benzoin dimethyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin butyl ether, and the like.
  • the benzyl-based initiator can be diphenyl ethyl ketone, ⁇ , ⁇ -dimethoxy- ⁇ -phenylacetophenone, and the like.
  • the alkyl phenones may be ⁇ , ⁇ -diethoxy acetophenone, ⁇ -hydroxyalkyl phenone, ⁇ -aminoalkyl phenone, and the like.
  • the acyl phosphorus oxide may be aroyl phosphine oxide, bisbenzoyl phenyl phosphine oxide, and the like.
  • the photoinitiator can be 1173 (2-hydroxy-2-methyl-1-phenylacetone), 184 (1-hydroxycyclohexyl phenyl ketone), TPO-L (2,4, 6-trimethylbenzoyl phenyl phosphonic acid ethyl ester), 819DW (phenyl bis(2,4,6-trimethylbenzoyl) phosphine oxide), 2959 (2-hydroxy-4'-(2 -Hydroxyethoxy)-2-methylpropiophenone).
  • the thermal initiator is an organic peroxide initiator or an azo initiator.
  • the organic peroxide initiator is benzoyl peroxide, lauroyl peroxide, cumene hydroperoxide, tert-butyl hydroperoxide, di-tert-butyl peroxide, dicumyl peroxide , One or more of tert-butyl peroxybenzoate and tert-butyl peroxy-tert-valerate.
  • the azo initiator is azobisisobutyronitrile or azobisisoheptonitrile.
  • the amount of the photoinitiator/thermal initiator is 0.05%-2% of the total mass of the hydrogen bond acceptor, acrylic acid and/or methacrylic acid, acrylamide and/or methacrylamide.
  • the curing energy of the ultraviolet light is 1 to 3Kw.
  • the curing time of the ultraviolet light is 1 min to 5 min.
  • the high-transparency self-repairing solid material of the present invention has good self-repairing ability and high transparency, and can be used for preparing self-repairing organic glass. Glass is usually hard and brittle, and it tends to break when it is impacted, thereby threatening the life of the user. After it is broken, it often cannot be repaired and can only be replaced, thereby increasing the cost of use.
  • the high-transparency self-repairing solid material of the present invention not only has high transparency similar to glass, but can also be solid-state self-repairing, and has considerable application prospects in the direction of self-repairing organic glass.
  • the application of the high-transparency self-repairing solid material in self-repair coating and self-repair conductive film After uniformly mixing the photoinitiator/thermal initiator and the polymerizable eutectic solvent, it is coated on the substrate, and after UV curing or thermal curing, it can be prepared into a self-healing coating, a self-healing conductive film, etc.
  • the application of the high-transparency self-repairing solid material in a building base material Building substrates are prone to cracks when exposed to sunlight, rain washing, etc., and are difficult to repair.
  • the high-transparent self-repairing solid material of the present invention can also be widely used in the direction of building substrates.
  • the beneficial effect of the present invention is that the present invention explores and screens hydrogen bond donors, and finds that when acrylic acid and/or methacrylic acid, and acrylamide and/or methacrylamide are selected as hydrogen bond donors, and hydrogen bond donors are combined with hydrogen
  • the bond receptors are matched in a specific ratio, a highly transparent solid material with self-healing function can be obtained; the resulting highly transparent self-healing solid material has high light transmittance, good conductivity, and high Young's modulus And good self-healing performance, high-transparency self-healing solid material has good environmental stability.
  • the method for preparing the high-transparent self-repairing solid material is simple, without any pollution, and low cost; the high-transparent self-repairing solid material of the present invention can be applied to self-repairing glass, self-repairing coating, self-repairing conductive film, and building substrate And other fields, has considerable application prospects.
  • Fig. 1 is an external view of the folded state of the highly transparent self-healing solid material in Example 1 of the present invention.
  • Fig. 3 is a graph showing stress-strain test curves of the highly transparent self-healing solid materials prepared in Examples 1 to 3.
  • Figure 5 is a thermogravimetric test diagram of the highly transparent self-healing solid materials prepared in Examples 1 to 3.
  • Fig. 6 is a DSC test chart of the highly transparent self-healing solid materials prepared in Examples 1 to 3.
  • Example 7 is a view showing the appearance change of the self-repairing high-transparency self-repairing solid material prepared in Example 1.
  • FIG. 8 is a test diagram of the tensile performance of the highly transparent self-healing solid material prepared in Example 1 after self-repair.
  • Example 10 is a graph showing the stress-strain test curve of the highly transparent self-healing solid material prepared in Example 1 after self-healing.
  • a high-transparent self-healing solid material including:
  • the preparation process of the high transparent self-healing solid material is as follows:
  • a high-transparent self-healing solid material including:
  • the preparation process of the high-transparency self-healing solid material is the same as the embodiment, and will not be repeated here.
  • a high-transparent self-healing solid material including:
  • the preparation process of the high-transparency self-healing solid material is the same as the embodiment, and will not be repeated here.
  • a high-transparent self-healing solid material including:
  • the preparation process of the high-transparency self-healing solid material is the same as the embodiment, and will not be repeated here.
  • a high-transparent self-healing solid material including:
  • the preparation process of the high-transparency self-healing solid material is the same as the embodiment, and will not be repeated here.
  • a high-transparent self-healing solid material including:
  • the preparation process of the high-transparency self-healing solid material is the same as the embodiment, and will not be repeated here.
  • a high-transparent self-healing solid material including:
  • the preparation process of the high-transparency self-healing solid material is the same as the embodiment, and will not be repeated here.
  • a high-transparent self-healing solid material including:
  • the preparation process of the high-transparency self-healing solid material is the same as the embodiment, and will not be repeated here.
  • a high-transparent self-healing solid material including:
  • the preparation process of the high-transparency self-healing solid material is the same as the embodiment, and will not be repeated here.
  • a high-transparent self-healing solid material including:
  • the preparation process of the high transparent self-healing solid material is as follows:
  • a high-transparent self-healing solid material including:
  • the preparation process of the high-transparency self-healing solid material is basically the same as that of Example 10, and will not be repeated here.
  • a highly transparent self-healing solid material including:
  • the preparation process of the high-transparency self-healing solid material is basically the same as that of Embodiment 10, and will not be repeated here.
  • the high-transparent self-healing solid material prepared in the above-mentioned embodiment has good bending performance in addition to being solid.
  • Figure 1 shows the highly transparent self-healing solid material prepared in Example 1. Its form is a sheet-like solid, which will not be broken if it is bent.
  • the optical properties, mechanical properties, and electrical properties of the flake solids prepared in Examples 1 to 12 were tested.
  • the optical properties were tested for light transmittance
  • the mechanical properties were tested for stress-strain, Young’s modulus
  • the electrical properties were tested.
  • the test results of electrical conductivity, light transmittance, Young's modulus, and electrical conductivity are shown in Table 1.
  • Example 1 91.3 0.32 1.25
  • Example 2 93.1 0.28 0.58
  • Example 3 93.2 0.54 0.45
  • Example 4 92.2 0.59 0.54
  • Example 5 92.6 1.23 0.29
  • Example 6 91.5 1.03 0.64
  • Example 7 90.6 2.14 0.14
  • Example 8 91.5 1.39 0.27
  • Example 9 93.6 1.57 0.19
  • Example 10 90.4 3.21 0.08
  • Example 11 92.5 3.64 0.09
  • Example 12 88.9 5.27 0.06
  • the light transmittance test chart, the stress-strain test chart (thickness 1mm), and the AC impedance chart of the highly transparent self-healing solid materials prepared in Examples 1 to 3 are shown in Figure 2, Figure 3, and Figure 4, respectively.
  • the optical transmittance of the high-transparency self-healing solid materials is above 90%, which is particularly suitable for glass, automobile coatings or display screens.
  • the high-transparent self-healing solid material has certain conductivity, and the equivalent resistances of the high-transparent self-healing solid materials prepared in Examples 1 to 3 are about 8k ⁇ , 20k ⁇ and 27k ⁇ , respectively.
  • thermogravimetry and solid DSC of the highly transparent self-healing solid materials prepared in Examples 1 to 3 are shown in Figure 5 and Figure 6, respectively. From Figure 5, the prepared materials have good thermal stability below 200 degrees. It can be seen from Figure 6 that the prepared material has a relatively high glass transition temperature and is solid at room temperature.
  • the high-transparent self-healing solid materials prepared in Examples 1 to 12 were cut with a blade, cut into two pieces, and then pieced together for observation. It was found that the high-transparent self-healing solid materials prepared in Examples 1-12 stuck together after 1 min after cutting, and there were cracks at the joints, but the two high-transparent self-healing solid materials did not separate. After standing for a period of time When it is stretched, it will not break. It can be seen that the high-transparent self-healing solid materials described in Embodiments 1-12 have good self-healing capabilities and can realize self-healing functions in a solid state.
  • Figure 7 is an experimental comparison diagram of the original shape (Figure 7a), the cut shape ( Figure 7b) and the self-healing shape (Figure 7c) of the highly transparent self-healing solid material prepared in Example 1. Put the two separated flake solids of Example 1 together and let them stand for 12 hours, and then carry out the tensile test.
  • the test method is shown in Figure 8: Clamp a clip on both ends of the flake solid and hold it by hand. On one end of the clamp, clamp a weight of 1.5 kg on the clamp at the other end. After observation, the self-repaired flake solid will not break under the pulling force of the weight.
  • Figure 9a is the optical microscope image when it is just placed together
  • Figure 9b is the optical microscope image when placed together for 24 hours. It can also be seen from Figure 9a and Figure 9b that the broken flake solids are stuck together again.
  • the high transparent self-healing solid materials prepared in Examples 1 to 12 were subjected to stress-strain tests on the sheet-like solids that were placed together for 24 hours after self-healing after being cut, as shown in Fig. 10 with thicknesses of Example 1, Example 2, and Example 3
  • the stress-strain test chart of the prepared 1mm flake solid It can be seen from FIG. 10 that the maximum tensile deformations of the materials prepared in Examples 1 to 3 after repair are 2.3%, 1.5%, and 0.02%, respectively, and the maximum tensile stresses are 2.26 MPa, 1.3 MPa, and 0.65 MPa, respectively. Comparing Fig. 10 and Fig.
  • a highly transparent material whose composition and preparation process are basically the same as those of Example 1. The difference is that in this comparative example, 7.7 g of N,N-methylenebisacrylamide is used instead of acrylamide in Example 1.
  • a highly transparent material whose composition and preparation process are basically the same as those of Example 1, except that in this comparative example, the amount of choline chloride is 13.96 g.
  • Comparative Example 1 prepared a highly transparent hard solid
  • Comparative Example 2 prepared a highly transparent elastomer. Cut it into two pieces respectively, then put the two pieces of solid/elastomer together, and then take it out for observation.
  • the results show that: the highly transparent solid material prepared in Comparative Example 1 cannot be bonded together, and the material does not have the self-healing function; the highly transparent elastomer material prepared in Comparative Example 2 can be bonded together and has the self-repairing function, but its shape is different.
  • Example 1 is different.
  • the comparative example 2 is not a solid material, but a soft elastomer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

公开了一种高透明自修复固体材料及其制备方法与应用,所述高透明自修复固体材料包括氢键受体、丙烯酸和/或甲基丙烯酸、丙烯酰胺和/或甲基丙烯酰胺、光引发剂/热引发剂;其中,所述氢键受体、丙烯酸和/或甲基丙烯酸、丙烯酰胺和/或甲基丙烯酰胺的摩尔比为1:(1~3):(1~2);所述光引发剂/热引发剂的用量为氢键受体、丙烯酸和/或甲基丙烯酸、丙烯酰胺和/或甲基丙烯酰胺总质量的0.05%~5%。所述的高透明自修复固体材料具有高透明度和高杨氏模量,还具有优异的自修复功能和导电性,其在固体形态下能做到自修复,为固体自修复材料的发展开辟了一条崭新的道路。

Description

一种高透明自修复固体材料及其制备方法与应用 技术领域
本发明涉及自修复材料技术领域,具体地,本发明涉及一种高透明自修复固体材料及其制备方法与应用。
背景技术
低共熔溶剂是离子液体的一个子集,在继承离子液体低蒸气压、非水生物相容性、不燃性、化学稳定性、高溶解能力等优点的基础上,还具有成本低、低毒、制备过程100%的原子利用率和环境友好性等特点,并有望在将来替代离子液体。目前低共熔溶剂主要应用在如捕捉二氧化碳、溶解金属氧化物、溶解药物和提纯、催化剂、电沉积、材料制备和处理生物高分子等方面。但目前的研究对于可聚合低共熔溶剂在聚合物的制备方面报道相对较少,目前尚无报道可聚合低共熔溶剂可用于直接制备固体自修复材料。
高透明、高杨氏模量、导电、自修复固体材料具有很强的可塑性,尤其在制备自修复玻璃、自修复导电膜或者自修复涂层等领域具有非常大的应用空间。目前,对于固体自修复材料的报道非常少,因为设计出具有高杨氏模量和自修复性能的材料具有极大的挑战性,而且看起来是矛盾的。高杨氏模量要求分子链段之间的缠结非常紧密,聚合物网络中会形成大量的结晶,导致分子链段之间的运动非常困难;而具有自修复性能则要求分子链段间具有较好的运动性,通过分子间的运动使链段之间重新接触缠结在一起达到自修复的作用。因此制备出具备高杨氏模量和自修复性能的聚合物材料是一项很大的挑战。
最近,日本的Aida课题组(Yanagisawa,Yu,et al.Science 359.6371(2018):72-76.)报道了一种基于聚(醚-硫脲)的高分子无定形材料。该材料具有高杨氏模量(0.2-1.9GPa)和较好的自修复效果。尽管该聚合物材料具有高机械强度网络,该网络中含有的致密硫脲单元可以通过在断裂表面压缩而实现自修复。但该材料合成方法复杂,制备过程中使用大量的有机溶剂,对环境造成一定的危害性,且制备的高分子材料光学上不透明、电绝缘且需要外界的强压力促使修复行为的进行,限制了硬质自修复材料的发展。
因此需要探索一种新型的高透明、高杨氏模量、导电、自修复固体材料,既可以保证 高的透光性、自发地自修复性能和导电性,又能实现环境友好性和较低的成本。
发明内容
基于此,本发明在于克服现有技术的缺陷,提供一种高透明自修复固体材料,本发明所述的高透明自修复固体材料具有高透明度和高杨氏模量,还具有优异的自修复功能和导电性,其在固体形态下能做到自修复,且所述高透明自修复固体材料完全绿色环保,为固体自修复材料的发展开辟了一条崭新的道路。
本发明的另一目的在于提供所述高透明自修复固体材料的制备方法。所述制备方法快速简单,节能环保。
本发明的另一目的在于提供所述高透明自修复固体材料的应用。
其技术方案如下:
一种高透明自修复固体材料,包括:
氢键受体;
丙烯酸和/或甲基丙烯酸;
丙烯酰胺和/或甲基丙烯酰胺;
光引发剂/热引发剂;
其中,所述氢键受体、丙烯酸和/或甲基丙烯酸、丙烯酰胺和/或甲基丙烯酰胺的摩尔比为1:(1~3):(1~2);
所述光引发剂/热引发剂的用量为氢键受体、丙烯酸和/或甲基丙烯酸、丙烯酰胺和/或甲基丙烯酰胺总质量的0.05%~5%。
发明人通过实验发现,当氢键供体为丙烯酸和/或甲基丙烯酸与丙烯酰胺和/或甲基丙烯酰胺时,通过控制其配比,由氢键受体和氢键供体制备得到的可聚合低共熔溶剂在引发剂作用下能够固化得到具有自修复功能的高透明固体材料,且所得的高透明固体材料还具有优异的导电性能和高杨氏模量。本发明中氢键供体的选择,丙烯酸和/或甲基丙烯酸、丙烯酰胺和/或甲基丙烯酰胺的摩尔比,以及其与氢键受体的摩尔比,对是否能制备出高透明自修复固体材料至关重要,氢键供体(丙烯酸和/或甲基丙烯酸与丙烯酰胺和/或甲基丙烯酰胺)或者氢键受体的用量若不合适,则难以形成低共熔溶剂,氢键供体的种类选择若不合适,无法具有自修复功能,丙烯酸和/或甲基丙烯酸、丙烯酰胺和/或甲基丙烯酰胺的比例若不合适,则无法形成固态自修复材料。
优选地,所述高透明自修复固体材料还包括交联剂,上述高透明自修复固体材料体系中加入交联剂,可以进一步提高所述高透明自修复固体材料的杨氏模量。
优选地,所述交联剂为二缩三丙二醇二丙烯酸酯、聚乙二醇二丙烯酸酯、二丙二醇二丙烯酸酯、1,6-己二醇二丙烯酸酯、新戊二醇二丙烯酸酯、邻苯二甲酸二乙二醇二丙烯酸酯、三羟甲基丙烷三丙烯酸酯、季戊四醇四丙烯酸酯中的一种或多种。
进一步优选地,所述交联剂的用量为氢键受体、丙烯酸和/或甲基丙烯酸、丙烯酰胺和/或甲基丙烯酰胺总质量的0.5%~10%。更优选地,所述交联剂的用量为氢键受体、丙烯酸和/或甲基丙烯酸、丙烯酰胺和/或甲基丙烯酰胺总质量的1%~5%。
优选地,所述氢键受体为氯化胆碱、无水甜菜碱、一水甜菜碱、氯化铵、甲基三苯基溴化磷、苄基三苯基氯化磷、N,N-二乙基乙醇氯化铵中的一种或多种。进一步优选地,所述氢键受体为氯化胆碱、氯化乙酰胆碱、无水甜菜碱、一水甜菜碱中的一种或者多种。
所述高透明自修复固体材料的制备方法,包括如下步骤:
S1、制备可聚合低共熔溶剂:将氢键受体、丙烯酸和/或甲基丙烯酸、丙烯酰胺和/或甲基丙烯酰胺于60~100℃下反应0.5~2h得到澄清透明的可聚合低共熔溶剂;
S2、制备高透明自修复固体材料:将光引发剂/热引发剂与所述可聚合低共熔溶剂混合均匀,并在紫外光照射下固化或进行热固化,得到高透明自修复固体材料。
优选地,所述光引发剂为苯偶姻及衍生物光引发剂、苯偶酰类光引发剂、烷基苯酮类光引发剂、酰基磷氧化物光引发剂中的一种或多种。具体的,所述苯偶姻及衍生物光引发剂可以为安息香、安息香双甲醚、安息香***、安息香异丙醚、安息香丁醚等。所述苯偶酰类引发剂可以为二苯基乙酮、α,α-二甲氧基-α-苯基苯乙酮等。所述烷基苯酮类可以为α,α-二乙氧基苯乙酮、α-羟烷基苯酮、α-胺烷基苯酮等。所述酰基磷氧化物可以为芳酰基膦氧化物、双苯甲酰基苯基氧化膦等。更具体的,所述光引发剂可以为1173(2-羟基-2-甲基-1-苯基丙酮)、184(1-羟基环己基苯基甲酮)、TPO-L(2,4,6-三甲基苯甲酰基苯基膦酸乙酯)、819DW(苯基双(2,4,6-三甲基苯甲酰基)氧化膦)、2959(2-羟基-4'-(2-羟乙氧基)-2-甲基苯丙酮)中的一种或多种。
优选地,所述热引发剂为有机过氧化物引发剂或偶氮类引发剂。具体的,所述有机过氧化物引发剂为过氧化苯甲酰、过氧化月桂酰、异丙苯过氧化氢、叔丁基过氧化氢、过氧化二叔丁基、过氧化二异丙苯、过氧化苯甲酸叔丁酯、过氧化叔戊酸叔丁基酯中的一种或多种。所述偶氮类引发剂为偶氮二异丁腈或偶氮二异庚腈。
优选地,所述光引发剂/热引发剂的用量为氢键受体、丙烯酸和/或甲基丙烯酸、丙烯酰胺和/或甲基丙烯酰胺总质量的0.05%~2%。
优选地,所述紫外光的固化能量为1~3Kw。
优选地,所述紫外光的固化时间为1min~5min。
所述的高透明自修复固体材料在自修复玻璃中的应用。本发明所述的高透明自修复固体材料具有良好的自修复能力和高透明度,能够用于制备自修复有机玻璃。玻璃通常质硬且脆,其在受到撞击时往往会发生碎裂,从而威胁着使用人的生命安全,且其发生碎裂之后往往无法修复,只能够进行更换,从而增加了使用成本。本发明所述的高透明自修复固体材料既具有与玻璃相似的高透明性,又能做到固态自修复,在自修复有机玻璃方向具有可观的应用前景。
所述的高透明自修复固体材料在自修复涂层、自修复导电膜中的应用。将光引发剂/热引发剂与可聚合低共熔溶剂混合均匀后,将其涂布在基材上,进行紫外固化或热固化后,可以制备成自修复涂层、自修复导电膜等。
所述高透明自修复固体材料在建筑基材中的应用。建筑基材受阳光暴晒、雨水冲刷等容易产生裂纹,难以修复,本发明所述的高透明自修复固体材料也可以广泛地应用在建筑基材方向。
本发明的有益效果在于:本发明通过对氢键供体进行探究和筛选,发现当选用丙烯酸和/或甲基丙烯酸、和丙烯酰胺和/或甲基丙烯酰胺作为氢键供体,并与氢键受体按照特定比例搭配时,可得到能够用于制备具有自修复功能的高透明固体材料;所得高透明自修复固体材料具有高的透光性、较好的导电性、高杨氏模量以及良好的自修复性能,高透明自修复固体材料环境稳定性好。制备所述高透明自修复固体材料的方法简单,无任何污染,成本低廉;本发明所述高透明自修复固体材料可以应用于自修复玻璃、自修复涂层、自修复导电膜、建筑基材等领域,具有可观的应用前景。
附图说明
图1为本发明实施例1高透明自修复固体材料弯折状态外观图。
图2为实施例1至3所制备的高透明自修复固体材料透光率测试图。
图3为实施例1至3所制备的高透明自修复固体材料的应力-应变测试曲线图。
图4为实施例1至3所制备的高透明自修复固体材料的交流阻抗图。
图5为实施例1至3所制备的高透明自修复固体材料的热重测试图。
图6为实施例1至3所制备的高透明自修复固体材料的DSC测试图。
图7为实施例1所制备的高透明自修复固体材料自修复外观变化图。
图8为实施例1所制备的高透明自修复固体材料自修复后的抗拉性能测试图。
图9为实施例1所制备的高透明自修复固体材料自修复前后的光学显微镜图。
图10为实施例1所制备的高透明自修复固体材料自修复后的应力-应变测试曲线图。
具体实施方式
本发明附图仅用于示例性说明,不能理解为对本发明的限制。此处所描述的具体实施方式仅用以解释本发明,并不限定本发明的保护范围。
实施例1
一种高透明自修复固体材料,包括:
Figure PCTCN2019108312-appb-000001
所述高透明自修复固体材料的制备过程如下:
S1、制备可聚合低共熔溶剂:将氢键受体氯化胆碱、丙烯酸、丙烯酰胺于70℃下反应0.5h得到澄清透明的可聚合低共熔溶剂;
S2、制备高透明自修复固体材料:将光引发剂与所述可聚合低共熔溶剂混合均匀,然后倒入覆盖有离型膜的两片玻璃板中,并在紫外光(2Kw)下固化1min,得到外观透明的固体,即得到高透明自修复固体材料。
实施例2
一种高透明自修复固体材料,包括:
Figure PCTCN2019108312-appb-000002
所述高透明自修复固体材料的制备过程与实施例相同,此处不再赘述。
实施例3
一种高透明自修复固体材料,包括:
Figure PCTCN2019108312-appb-000003
所述高透明自修复固体材料的制备过程与实施例相同,此处不再赘述。
实施例4
一种高透明自修复固体材料,包括:
Figure PCTCN2019108312-appb-000004
所述高透明自修复固体材料的制备过程与实施例相同,此处不再赘述。
实施例5
一种高透明自修复固体材料,包括:
Figure PCTCN2019108312-appb-000005
所述高透明自修复固体材料的制备过程与实施例相同,此处不再赘述。
实施例6
一种高透明自修复固体材料,包括:
Figure PCTCN2019108312-appb-000006
所述高透明自修复固体材料的制备过程与实施例相同,此处不再赘述。
实施例7
一种高透明自修复固体材料,包括:
Figure PCTCN2019108312-appb-000007
所述高透明自修复固体材料的制备过程与实施例相同,此处不再赘述。
实施例8
一种高透明自修复固体材料,包括:
Figure PCTCN2019108312-appb-000008
所述高透明自修复固体材料的制备过程与实施例相同,此处不再赘述。
实施例9
一种高透明自修复固体材料,包括:
Figure PCTCN2019108312-appb-000009
所述高透明自修复固体材料的制备过程与实施例相同,此处不再赘述。
实施例10
一种高透明自修复固体材料,包括:
Figure PCTCN2019108312-appb-000010
所述高透明自修复固体材料的制备过程如下:
S1、制备可聚合低共熔溶剂:将氢键受体氯化胆碱、丙烯酸、丙烯酰胺于80℃下反应 4h得到澄清透明的可聚合低共熔溶剂;
S2、制备高透明自修复固体材料:将光引发剂、交联剂与所述可聚合低共熔溶剂混合均匀,然后倒入覆盖有离型膜的两片玻璃板中,并在紫外光(2Kw)下固化5min,得到外观透明的固体,即得到高透明自修复固体材料。
实施例11
一种高透明自修复固体材料,包括:
Figure PCTCN2019108312-appb-000011
所述高透明自修复固体材料的制备过程与实施例10基本相同,此处不再赘述。
实施例12
一种高透明自修复固体材料,包括:
Figure PCTCN2019108312-appb-000012
所述高透明自修复固体材料的制备过程与实施例10基本相同,此处不再赘述。
上述实施例制备得到的高透明自修复固体材料除了本身是固态外,还具有较好的弯折性能。如图1所示为实施例1制备得到的高透明自修复固体材料,其形态为片状固体,将其进行弯折,其不会发生断裂。
对实施例1至实施例12制备的片状固体进行光学性能、力学性能、电学性能测试,其中光学性能测试其透光率,力学性能测试其应力-应变、杨氏模量,电学性能测试其导电率,透光率、杨氏模量、导电率测试结果见表1。
表1
  透光率/% 杨氏模量/GPa 导电率/×10 -5(s/cm)
实施例1 91.3 0.32 1.25
实施例2 93.1 0.28 0.58
实施例3 93.2 0.54 0.45
实施例4 92.2 0.59 0.54
实施例5 92.6 1.23 0.29
实施例6 91.5 1.03 0.64
实施例7 90.6 2.14 0.14
实施例8 91.5 1.39 0.27
实施例9 93.6 1.57 0.19
实施例10 90.4 3.21 0.08
实施例11 92.5 3.64 0.09
实施例12 88.9 5.27 0.06
其中,实施例1至3所制备的高透明自修复固体材料的透光率测试图、应力应变测试图(厚度1mm)、交流阻抗图、分别见图2、图3、图4。
从图2可知,所述的高透明自修复固体材料光学透过率均在90%以上,特别适用于如玻璃、汽车涂层或显示屏幕等。
从图3可知,实施例1至3所制备的高透明自修复固体材料的最大拉伸伸长率分别为9%,78%和17%;而最大拉伸应力分别为35MPa,28MPa和26.5MPa,以上拉伸测试结果表明所制备的材料具有优异的机械性能。
从图4可知,所述的高透明自修复固体材料具有一定的导电性,其中实施例1至3所制备的高透明自修复固体材料的等效电阻分别约为8kΩ,20kΩ和27kΩ。
其中,实施例1至3所制备的高透明自修复固体材料的热重和固体DSC分别见图5、图6。从图5,所制备的材料在200度以下均具有较好的热稳定性。从图6可知,所制备的材料玻璃化转变温度较高,在室温下均呈现固态。
用刀片切割上述实施例1至12制得的高透明自修复固体材料,将其切成两块,然后再将其拼凑在一起后观察。结果发现,实施例1-12所制备的高透明自修复固体材料在切割后过1min又粘连在一起了,连接处有裂痕,但两块高透明自修复固体材料不分离,静置一段时间后对其进行拉伸时,也不会断。由此可见,本实施1-12所述的高透明自修复固体材料具有 良好的自修复能力,能在固态状态下实现自修复功能。如图7为实施例1制备得到的高透明自修复固体材料的原本形态(图7a)、切割后形态(图7b)和自修复后形态(图7c)的实验对比图。将实施例1两块分离的片状固体拼凑在一起静置12h,然后进行抗拉实验测试,测试方法如图8所示:在片状固体的两端分别夹上一个夹子,用手捏住夹子的一端,在另一端的夹子上夹一个重量为1.5kg的砝码。经观察,自修复后的片状固体在砝码的拉力作用下不会发生断裂。
实施例1制备的片状固体在切割成两片后,放置在一起的光学显微镜图见图9,图9a为刚放置在一起时的光学显微镜图,图9b为放置在一起24h的光学显微镜图。从图9a和图9b也可知,断裂的片状固体又粘连在一起了。
对实施例1至实施例12制得的高透明自修复固体材料切割后放置在一起自修复24h的片状固体进行应力-应变测试,如图10厚度为实施例1、实施例2、实施例3制备的1mm片状固体的应力-应变测试图。从图10可知,实施例1至3所制备材料修复后的最大拉伸形变分别为2.3%,1.5%和0.02%,最大拉伸应力分别为2.26MPa,1.3MPa和0.65MPa。对比图10和图3可知,经过静放一段时间后的样品均获得了一定的自修复性能,尽管难以恢复至初始值一样的机械强度,但是修复的高透明固体仍具有较好的机械性能,对固体自修复材料而言已是巨大的突破。
对比例1
一种高透明材料,其组份和制备过程与实施例1基本相同,区别在于,本对比例中,用7.7g的N,N-亚甲基双丙烯酰胺代替实施例1中的丙烯酰胺。
对比例2
一种高透明材料,其组份和制备过程与实施例1基本相同,区别在于,本对比例中,氯化胆碱的用量为13.96g。
对比例1制备得到的是一种高透明硬质固体,对比例2所制备得到的是高透明弹性体。分别将其将其切成两块,然后再将切开的两块固体/弹性体拼凑在一起,再取出观察。结果表明:对比例1制备的高透明固体材料无法粘连在一起,该材料不具备自修复功能;对比例2所制备的高透明弹性体材料能够粘连在一起,具有自修复功能,但其形态与实施例1不一样,该对比例2不是固体材料,而是柔软的弹性体。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾, 都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
显然,本发明的上述实施例仅仅是为清楚地说明本发明技术方案所作的举例,而并非是对本发明的具体实施方式的限定。凡在本发明权利要求书的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

  1. 一种高透明自修复固体材料,其特征在于,包括:
    氢键受体;
    丙烯酸和/或甲基丙烯酸;
    丙烯酰胺和/或甲基丙烯酰胺;
    光引发剂/热引发剂;
    其中,所述氢键受体、丙烯酸和/或甲基丙烯酸、丙烯酰胺和/或甲基丙烯酰胺的摩尔比为1:(1~3):(1~2);
    所述光引发剂/热引发剂的用量为氢键受体、丙烯酸和/或甲基丙烯酸、丙烯酰胺和/或甲基丙烯酰胺总质量的0.05%~5%。
  2. 根据权利要求1所述的高透明自修复固体材料,其特征在于,所述高透明自修复固体材料还包括交联剂。
  3. 根据权利要求2所述的高透明自修复固体材料,其特征在于,所述交联剂为二缩三丙二醇二丙烯酸酯、聚乙二醇二丙烯酸酯、二丙二醇二丙烯酸酯、1,6-己二醇二丙烯酸酯、新戊二醇二丙烯酸酯、邻苯二甲酸二乙二醇二丙烯酸酯、三羟甲基丙烷三丙烯酸酯、季戊四醇四丙烯酸酯中的一种或多种。
  4. 根据权利要求2或3所述的高透明自修复固体材料,其特征在于,所述交联剂的用量为氢键受体、丙烯酸和/或甲基丙烯酸、丙烯酰胺和/或甲基丙烯酰胺总质量的0.5%~10%。
  5. 根据权利要求1所述的高透明自修复固体材料,其特征在于,所述氢键受体为氯化胆碱、氯化乙酰胆碱、无水甜菜碱、一水甜菜碱、氯化铵、甲基三苯基溴化磷、苄基三苯基氯化磷、N,N-二乙基乙醇氯化铵中的一种或多种。
  6. 根据权利要求5所述的高透明自修复固体材料,其特征在于,所述氢键受体为氯化胆碱、氯化乙酰胆碱、无水甜菜碱、一水甜菜碱中的一种或者多种。
  7. 权利要求1至3或5或6任一权利要求所述的高透明自修复固体材料的制备方法,其特征在于,包括如下步骤:
    S1、制备可聚合低共熔溶剂:将氢键受体、丙烯酸和/或甲基丙烯酸、丙烯酰胺和/或甲基丙烯酰胺于60~100℃下反应0.5~2h得到澄清透明的可聚合低共熔溶剂;
    S2、制备高透明自修复固体材料:将光引发剂/热引发剂与所述可聚合低共熔溶剂混合均匀,并在紫外光照射下固化或进行热固化,得到高透明自修复固体材料。
  8. 权利要求1至3或5或6任一权利要求所述的高透明自修复固体材料在自修复有机玻璃中 的应用。
  9. 权利要求1至3或5或6任一权利要求所述的高透明自修复固体材料在自修复涂层、自修复导电膜中的应用。
  10. 权利要求1至3或5或6任一权利要求所述的高透明自修复固体材料在建筑基材中的应用。
PCT/CN2019/108312 2019-09-10 2019-09-26 一种高透明自修复固体材料及其制备方法与应用 WO2021046930A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910853528.6A CN112552446B (zh) 2019-09-10 2019-09-10 一种高透明自修复固体材料及其制备方法与应用
CN201910853528.6 2019-09-10

Publications (1)

Publication Number Publication Date
WO2021046930A1 true WO2021046930A1 (zh) 2021-03-18

Family

ID=74867172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108312 WO2021046930A1 (zh) 2019-09-10 2019-09-26 一种高透明自修复固体材料及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN112552446B (zh)
WO (1) WO2021046930A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114539487A (zh) * 2022-03-25 2022-05-27 深圳市华星光电半导体显示技术有限公司 导电材料、电子装置及其制作方法
CN114702697A (zh) * 2022-04-26 2022-07-05 中国林业科学研究院林产化学工业研究所 基于低共熔溶剂的半纤维素基水凝胶及其制备方法和应用
CN114907507A (zh) * 2022-06-09 2022-08-16 南京林业大学 基于可聚合疏水低共熔溶剂水下自修复弹性体及合成方法
CN115304637A (zh) * 2022-08-17 2022-11-08 广州市白云化工实业有限公司 自愈合剂、自愈合缩合型硅酮密封胶及其制备方法
CN115651118A (zh) * 2022-11-11 2023-01-31 南京林业大学 水下自粘附、自修复的透明离子导电弹性体及其合成方法
CN115894965A (zh) * 2022-11-24 2023-04-04 武汉轻工大学 一种马来酸丙烯酰胺共聚水凝胶及其制备方法
CN115895157A (zh) * 2022-11-18 2023-04-04 大连工业大学 一种太阳光直接引发低共熔溶剂聚合成多功能离子凝胶的绿色合成方法
CN116004185A (zh) * 2022-12-28 2023-04-25 中国科学院兰州化学物理研究所 一种湿度响应性自修复摩擦材料
CN116217980A (zh) * 2023-03-16 2023-06-06 四川大学 一种具有生物传感性能与抗菌作用的共析凝胶及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114262403B (zh) * 2021-12-17 2023-01-31 江南大学 一种高透明自修复自粘导电弹性材料及其制备方法
CN115575341B (zh) * 2022-12-07 2023-04-18 之江实验室 一种基于透射光谱变化的自愈合材料表征方法
CN116200843B (zh) * 2023-01-09 2024-05-17 华南理工大学 光学自愈合柔性光纤的制备方法、光学自愈合柔性光纤及其应用
CN116496436B (zh) * 2023-04-28 2024-07-05 西安理工大学 多氢键网络基自修复高透明导电弹性体的制备方法及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269303A (ja) * 2005-03-24 2006-10-05 Sumitomo Bakelite Co Ltd イオン伝導性電解質及び該イオン伝導性電解質を用いた二次電池
CN109355725A (zh) * 2018-08-23 2019-02-19 浙江理工大学 一种自愈性水凝胶纤维的制备方法
CN110054721A (zh) * 2019-05-10 2019-07-26 华南理工大学 低共熔溶剂在离子凝胶中的应用和离子凝胶及制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11111330B2 (en) * 2015-06-24 2021-09-07 The Regents Of The University Of California Synthesis of multiphase self-healing polymers from commodity monomers
CN107177024B (zh) * 2017-05-23 2019-07-30 广州纽楷美新材料科技有限公司 可聚合低共熔溶剂在制备透明导电弹性体中的应用
CN108468207A (zh) * 2018-06-21 2018-08-31 东华大学 一种石墨烯耐久整理织物的制备方法
CN109971000A (zh) * 2019-03-15 2019-07-05 广东海洋大学 一种可生物降解三网络超分子弹性体水凝胶材料及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269303A (ja) * 2005-03-24 2006-10-05 Sumitomo Bakelite Co Ltd イオン伝導性電解質及び該イオン伝導性電解質を用いた二次電池
CN109355725A (zh) * 2018-08-23 2019-02-19 浙江理工大学 一种自愈性水凝胶纤维的制备方法
CN110054721A (zh) * 2019-05-10 2019-07-26 华南理工大学 低共熔溶剂在离子凝胶中的应用和离子凝胶及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, REN'AI: "A highly transparent, stretchable, conductive hydrogel for capacitive sensor", IMAGING SCIENCE AND PHOTOCHEMISTRY, vol. 37, no. 4, 1 July 2019 (2019-07-01), pages 267 - 273, XP055790056 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114539487A (zh) * 2022-03-25 2022-05-27 深圳市华星光电半导体显示技术有限公司 导电材料、电子装置及其制作方法
CN114539487B (zh) * 2022-03-25 2024-07-09 深圳市华星光电半导体显示技术有限公司 导电材料、电子装置及其制作方法
CN114702697A (zh) * 2022-04-26 2022-07-05 中国林业科学研究院林产化学工业研究所 基于低共熔溶剂的半纤维素基水凝胶及其制备方法和应用
CN114907507A (zh) * 2022-06-09 2022-08-16 南京林业大学 基于可聚合疏水低共熔溶剂水下自修复弹性体及合成方法
CN114907507B (zh) * 2022-06-09 2023-08-04 南京林业大学 基于可聚合疏水低共熔溶剂水下自修复弹性体及合成方法
CN115304637A (zh) * 2022-08-17 2022-11-08 广州市白云化工实业有限公司 自愈合剂、自愈合缩合型硅酮密封胶及其制备方法
CN115304637B (zh) * 2022-08-17 2023-08-15 广州市白云化工实业有限公司 自愈合剂、自愈合缩合型硅酮密封胶及其制备方法
CN115651118B (zh) * 2022-11-11 2023-08-04 南京林业大学 水下自粘附、自修复的透明离子导电弹性体及其合成方法
CN115651118A (zh) * 2022-11-11 2023-01-31 南京林业大学 水下自粘附、自修复的透明离子导电弹性体及其合成方法
CN115895157A (zh) * 2022-11-18 2023-04-04 大连工业大学 一种太阳光直接引发低共熔溶剂聚合成多功能离子凝胶的绿色合成方法
CN115895157B (zh) * 2022-11-18 2023-09-22 大连工业大学 一种太阳光直接引发低共熔溶剂聚合成多功能离子凝胶的绿色合成方法
CN115894965A (zh) * 2022-11-24 2023-04-04 武汉轻工大学 一种马来酸丙烯酰胺共聚水凝胶及其制备方法
CN116004185A (zh) * 2022-12-28 2023-04-25 中国科学院兰州化学物理研究所 一种湿度响应性自修复摩擦材料
CN116217980A (zh) * 2023-03-16 2023-06-06 四川大学 一种具有生物传感性能与抗菌作用的共析凝胶及其制备方法

Also Published As

Publication number Publication date
CN112552446A (zh) 2021-03-26
CN112552446B (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
WO2021046930A1 (zh) 一种高透明自修复固体材料及其制备方法与应用
CN111253520B (zh) 自修复材料用可聚合低共熔溶剂、导电弹性体及制备方法
Peng et al. Strong and tough self-healing elastomers enabled by dual reversible networks formed by ionic interactions and dynamic covalent bonds
Song et al. Tunable “soft and stiff”, self-healing, recyclable, thermadapt shape memory biomass polymers based on multiple hydrogen bonds and dynamic imine bonds
CN107177024B (zh) 可聚合低共熔溶剂在制备透明导电弹性体中的应用
Pan et al. From fragile plastic to room-temperature self-healing elastomer: Tuning quadruple hydrogen bonding interaction through one-pot synthesis
KR101548784B1 (ko) 기재 필름 및 그의 제조방법
JP2014201681A (ja) 制電性組成物、その製造方法、制電性被覆物、成形品、塗料および粘着剤
JP2002020410A (ja) セルロースエステルドープ組成物、セルロースエステルフィルムの製造方法、セルロースエステルフィルム及びそれを用いた偏光板
TW200934795A (en) Photocurable composition, method for producing fine patterned body, and optical device
JP2016512897A (ja) プラスチックフィルム
CN111032811B (zh) 粘合剂组合物和粘合膜
TW201304953A (zh) 透明導電性層合體及透明觸控面板
TW200916510A (en) Eco-optical sheet
WO2014182127A1 (ko) 고분자 필름, 플렉서블 발광 소자 디스플레이 장치 및 감김 가능 디스플레이 장치
JPWO2019142601A1 (ja) インプリント用光硬化性組成物
KR20190089030A (ko) 액체 접착제 조성물, 접착제 시트, 및 접착 결합 방법
TW201323205A (zh) 光學膜、包括其的背光單元和包括其的光學顯示設備
Wang et al. Self‐Contained Underwater Adhesion and Informational Labeling Enabled by Arene‐Functionalized Polymeric Ionogels
WO2014157964A1 (ko) 편광자 보호 필름용 수지 조성물, 편광자 보호 필름, 이를 포함하는 편광판 및 편광판의 제조방법
CN115625957A (zh) 用于柔性显示装置的覆盖窗和柔性显示装置
JP2011231182A (ja) 光学部材用粘着剤組成物、光学部材用粘着剤層、粘着型光学部材及び画像表示装置
JP2004091724A (ja) 有機・無機複合体及びその製造方法
JPH11152341A (ja) 難燃性メタクリル系樹脂板、その製造法および遮音板
JP5654208B2 (ja) 有機無機複合ゲル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/08/2022).

122 Ep: pct application non-entry in european phase

Ref document number: 19944757

Country of ref document: EP

Kind code of ref document: A1