WO2021045127A1 - Barrier film, laminate using said barrier film, packaging product using said laminate - Google Patents

Barrier film, laminate using said barrier film, packaging product using said laminate Download PDF

Info

Publication number
WO2021045127A1
WO2021045127A1 PCT/JP2020/033327 JP2020033327W WO2021045127A1 WO 2021045127 A1 WO2021045127 A1 WO 2021045127A1 JP 2020033327 W JP2020033327 W JP 2020033327W WO 2021045127 A1 WO2021045127 A1 WO 2021045127A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
base material
plasma
barrier
barrier film
Prior art date
Application number
PCT/JP2020/033327
Other languages
French (fr)
Japanese (ja)
Inventor
誠一郎 小柴
岸本 好弘
拓志 義原
正泰 高橋
浩之 岩橋
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2021045127A1 publication Critical patent/WO2021045127A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment

Definitions

  • the present invention relates to a barrier film, a laminate using the barrier film, and a packaged product using the laminate.
  • a barrier laminated film in which a barrier layer made of a thin film such as aluminum oxide is provided on a plastic film to have a barrier function against oxygen and water vapor has also been developed.
  • Patent Document 1 describes aluminum hydroxide by removing water contained in a reaction space in which an oxidation reaction between oxygen gas and evaporated aluminum occurs at the time of vapor deposition. It is disclosed that the formation of substances is suppressed and the heat resistance and water resistance are improved.
  • An object of the present invention is to provide a barrier film provided with an aluminum oxide vapor-deposited film, which has a higher barrier property, and a laminate using the barrier film.
  • the growth of the aluminum oxide vapor-deposited film on the surface of the aluminum hydroxide proceeds in two-dimensional growth, and a more dense aluminum oxide-deposited film is formed. That is, the aluminum oxide film deposited on the surface of the aluminum hydroxide has a feature of exhibiting an excellent barrier property against oxygen and water vapor as compared with aluminum oxide deposited directly on the surface of the plastic film.
  • an alumina hydroxide region is formed in the vicinity of the plastic film and the aluminum vapor deposition interface, and the alumina hydroxide region is mainly oxidized.
  • the aluminum region it is possible to provide a higher barrier property.
  • the structure of such a vapor-deposited film is supported by the presence of a downwardly convex peak derived from the elemental bond OH by TOF-SIMS analysis and the depth position of the peak.
  • the present invention (first invention) provides the following.
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • the intensity derived from the elemental bond OH has a downwardly convex peak, and the downwardly convex peak is located at a depth of 10% or more and 60% or less from the surface side of the organic coating layer in the aluminum oxide vapor-deposited film.
  • a laminate comprising the barrier film according to any one of (1) to (3) and a sealant layer.
  • the barrier film of the present invention has even higher barrier properties.
  • FIG. 1A is a cross-sectional view showing an example of a barrier film according to the present embodiment.
  • Barrier films produced by using the film deposition apparatus of this embodiment for example, as a barrier film A 1 shown in FIG. 1 (a), a substrate 1, a deposited film 2, and the organic coating layer 3a , Equipped with.
  • the vapor deposition film 2 is located on one surface of the base material 1.
  • the barrier film A is laminated in the order of the base material 1, the vapor-deposited film 2, and the organic coating layer 3a, and the organic coating layer 3a is located on the surface of the barrier film. ..
  • laminated in this order means that the base material, the aluminum oxide vapor deposition film, and the organic coating layer are laminated in this order, and between these layers, For example, layers other than the primer may be laminated.
  • the base material 1 is a layer mainly containing a resin.
  • the resin is not particularly limited, and a known resin film or sheet can be used.
  • a resin film containing a resin or the like can be used.
  • polyester-based resins are preferably used, and further, among polyester-based resins, polyethylene terephthalate-based resins and polybutylene terephthalate-based resins are preferably used.
  • the polyester film used as the base material 1 may be stretched in a predetermined direction.
  • the polyester film may be a uniaxially stretched film stretched in a predetermined unidirectional direction, or may be a biaxially stretched film stretched in a predetermined bidirectional direction.
  • a film made of polyethylene terephthalate is used as the base material 1
  • a biaxially stretched polyethylene terephthalate film can be used.
  • the thickness of the polyester film used as the base material 1 as described above is not particularly limited, and it is possible to perform pretreatment or film formation treatment when the vapor deposition film 2 is formed by a film forming apparatus described later. It may be possible, but from the viewpoint of flexibility and shape retention, a range of 6 ⁇ m or more and 100 ⁇ m or less is preferable. When the thickness of the polyester film is within the above range, it is easy to bend and is not torn during transportation, and is easy to handle in a film forming apparatus used for manufacturing a barrier film having a vapor-deposited film 2 having improved adhesion. ..
  • PET film polyethylene terephthalate film
  • a biomass PET film, a recycled PET film, or a high stiffness PET film may be used as the base material 1.
  • the biomass PET film is a resin film containing a polyester derived from biomass, and the polyester derived from biomass is an ethylene glycol derived from biomass as a diol unit and a dicarboxylic acid derived from a fossil fuel as a dicarboxylic acid unit.
  • biomass-derived ethylene glycol has the same chemical structure as conventional fossil fuel-derived ethylene glycol
  • polyester films synthesized using biomass-derived ethylene glycol are mechanically similar to conventional fossil fuel-derived polyester films. It is not inferior in terms of physical properties such as physical characteristics. Therefore, since the base material using the polyester film derived from biomass has a layer made of carbon-neutral material, the amount of fossil fuel used is reduced as compared with the base material produced from the raw material obtained from the conventional fossil fuel. And can reduce the environmental load.
  • Biomass-derived ethylene glycol is made from ethanol (biomass ethanol) produced from biomass such as sugar cane and corn.
  • biomass-derived ethylene glycol can be obtained from biomass ethanol by a method of producing ethylene glycol via ethylene oxide by a conventionally known method.
  • commercially available biomass ethylene glycol may be used, and for example, biomass ethylene glycol commercially available from India Glycol Co., Ltd. can be preferably used.
  • the dicarboxylic acid unit of polyester uses a fossil fuel-derived dicarboxylic acid.
  • dicarboxylic acid aromatic dicarboxylic acid, aliphatic dicarboxylic acid, and derivatives thereof can be used.
  • aromatic dicarboxylic acid include terephthalic acid and isophthalic acid
  • the derivative of the aromatic dicarboxylic acid include lower alkyl esters of the aromatic dicarboxylic acid, specifically, methyl ester, ethyl ester, propyl ester and butyl. Esters and the like can be mentioned.
  • terephthalic acid is preferable, and dimethyl terephthalate is preferable as the derivative of the aromatic dicarboxylic acid.
  • Biomass-derived polyester can be obtained by a conventionally known method of polycondensing a diol unit and a dicarboxylic acid unit. Specifically, a general method of melt polymerization such as an esterification reaction and / or a transesterification reaction between the above dicarboxylic acid component and a diol component and then a polycondensation reaction under reduced pressure, or an organic solvent. It can be produced by a known solution heating dehydration condensation method using.
  • the resin composition constituting the resin film containing the biomass-derived polyester may be composed of only the biomass-derived polyester, or may contain a fossil fuel-derived polyester in addition to the biomass-derived polyester.
  • Polyester derived from fossil fuel is composed of diol unit and dicarboxylic acid unit, and is obtained by polycondensation reaction using ethylene glycol of fossil fuel-derived diol as diol unit and dicarboxylic acid derived from fossil fuel as dicarboxylic acid unit. It is a thing.
  • the resin in the resin composition constituting the resin film containing the biomass-derived polyester may contain recycled polyester in addition to the biomass-derived polyester.
  • the recycled polyester may be a recycled polyester derived from biomass or a recycled polyester derived from fossil fuel.
  • the resin composition constituting the resin film containing biomass-derived polyester can contain various additives.
  • Additives include, for example, plasticizers, UV stabilizers, color inhibitors, matting agents, deodorants, flame retardants, weathering agents, antistatic agents, friction reducing agents, mold release agents, antioxidants, ion exchange. Agents, coloring pigments and the like can be mentioned.
  • the additive is preferably contained in the entire resin composition containing PET in the range of 5% by mass or more and 50% by mass or less, preferably 5% by mass or more and 20% by mass or less.
  • a resin film containing a biomass-derived polyester can be formed, for example, by forming a film by the T-die method. Specifically, after the above-mentioned PET is dried, it is supplied to a melt extruder heated to a temperature (Tm) to Tm + 70 ° C. above the melting point of PET to melt the resin composition, for example, a T die.
  • the film can be formed by extruding the extruded sheet-like material into a sheet from a die such as, and quenching and solidifying the extruded sheet-like material with a rotating cooling drum or the like.
  • melt extruder a single-screw extruder, a twin-screw extruder, a vent extruder, a tandem extruder and the like can be used depending on the purpose.
  • Tm melting point
  • Tg glass transition point
  • the 14C content in a plant that grows by taking in the carbon dioxide in the atmosphere, for example, corn is also about 105.5 pMC. It is known. It is also known that fossil fuels contain almost no 14C. Therefore, the proportion of biomass-derived carbon can be calculated by measuring the proportion of 14C contained in all carbon atoms in polyester. In the present invention, the "biomass degree" indicates the mass ratio of biomass-derived components.
  • PET polyethylene terephthalate
  • PET is obtained by polymerizing ethylene glycol containing 2 carbon atoms and terephthalic acid containing 8 carbon atoms at a molar ratio of 1: 1 and is derived from biomass as ethylene glycol.
  • the mass ratio of the biomass-derived component of the fossil fuel-derived polyester is 0%, and the biomass degree of the fossil fuel-derived polyester is 0%.
  • the degree of biomass in the resin film containing the polyester derived from biomass is preferably 5.0% or more, more preferably 10.0% or more, and preferably 30.0% or less.
  • the resin film containing the biomass-derived polyester is biaxially stretched.
  • Biaxial stretching can be performed by a conventionally known method.
  • the film extruded onto the cooling drum as described above is subsequently heated by roll heating, infrared heating, or the like, and stretched in the vertical direction to obtain a vertically stretched film.
  • This stretching is preferably performed by utilizing the difference in peripheral speed between two or more rolls.
  • the longitudinal stretching is usually carried out in a temperature range of 50 to 100 ° C.
  • the magnification of longitudinal stretching depends on the required characteristics of the film application, but is preferably 2.5 times or more and 4.2 times or less. When the draw ratio is less than 2.5 times, the thickness unevenness of the polyester film becomes large, and it is difficult to obtain a good film.
  • the vertically stretched film is subsequently subjected to each of the treatment steps of lateral stretching, heat fixing, and heat relaxation to become a biaxially stretched film.
  • the transverse stretching is usually carried out in a temperature range of 50 to 100 ° C.
  • the lateral stretching ratio depends on the required characteristics of this application, but is preferably 2.5 times or more and 5.0 times or less. If it is less than 2.5 times, the thickness unevenness of the film becomes large and it is difficult to obtain a good film, and if it exceeds 5.0 times, breakage is likely to occur during film formation.
  • the heat fixing treatment is subsequently performed, and the preferable temperature range of the heat fixing is Tg + 70 to Tm-10 ° C. of polyester.
  • the heat fixing time is preferably 1 to 60 seconds. Further, for applications that require a reduction in the heat shrinkage rate, heat relaxation treatment may be performed as necessary.
  • the thickness of the resin film containing the biomass-derived polyester is arbitrary depending on its use, but is usually about 5 to 500 ⁇ m.
  • Breaking strength of a resin film comprising a polyester derived from biomass is 5 ⁇ 35kgf / mm 2 at 5 ⁇ 40kgf / mm 2, TD direction MD direction, elongation at break, 50 to 350% in MD direction, It is 50 to 300% in the TD direction.
  • the shrinkage rate when left in a temperature environment of 150 ° C. for 30 minutes is 0.1 to 5%.
  • the resin film containing polyester derived from biomass can be suitably used for applications such as bags, lid materials, packaging products such as Lami tubes, various label materials, and sheet molded products.
  • the thickness of the stretched film is preferably 5 to 30 ⁇ m.
  • the recycled PET film is a resin film containing recycled PET, and includes PET recycled by mechanical recycling. Specifically, it contains PET in which a PET bottle is recycled by mechanical recycling, and this PET contains ethylene glycol as a diol component and terephthalic acid and isophthalic acid as a dicarboxylic acid component.
  • mechanical recycling generally refers to crushing a recovered polyethylene terephthalate resin product such as a PET bottle, cleaning it with an alkali to remove stains and foreign substances on the surface of the PET resin product, and then drying it at a high temperature and under reduced pressure for a certain period of time.
  • This is a method in which the pollutants remaining inside the PET resin are diffused and decontaminated to remove stains on the resin product made of the PET resin, and the resin product is returned to the PET resin again.
  • polyethylene terephthalate obtained by recycling PET bottles will be referred to as "recycled polyethylene terephthalate (hereinafter, also referred to as recycled PET)", and non-recycled polyethylene terephthalate shall be referred to as “virgin polyethylene terephthalate (hereinafter, also referred to as virgin PET)”. ..
  • the content of the isophthalic acid component in the PET contained in the base material is preferably 0.5 mol% or more and 5 mol% or less, and 1.0 mol% or more, in the total dicarboxylic acid component constituting the PET. More preferably, it is 2.5 mol% or less. If the content of the isophthalic acid component is less than 0.5 mol%, the flexibility may not be improved, while if it exceeds 5 mol%, the melting point of PET may be lowered and the heat resistance may be insufficient.
  • the PET may be a biomass-derived PET as well as a normal fossil fuel-derived PET.
  • This biomass-derived PET is a PET containing ethylene glycol derived from biomass as a diol component and a dicarboxylic acid derived from fossil fuel as a dicarboxylic acid component.
  • the PET used in the PET bottle can be obtained by a conventionally known method of polycondensing the above-mentioned diol component and dicarboxylic acid component. Specifically, a general method of melt polymerization such as an esterification reaction and / or an ester exchange reaction between the above diol component and a dicarboxylic acid component and then a polycondensation reaction under reduced pressure, or an organic solvent. It can be produced by a known solution heating dehydration condensation method or the like using the above.
  • the amount of the diol component used in producing the PET is substantially equimolar to 100 mol of the dicarboxylic acid or its derivative, but generally, esterification and / or transesterification reaction and / or polycondensation.
  • the polycondensation reaction is preferably carried out in the presence of a polymerization catalyst.
  • the timing of adding the polymerization catalyst is not particularly limited as long as it is before the polycondensation reaction, and it may be added at the time of raw material preparation or at the start of reduced pressure.
  • PET bottles made from recycled PET bottles are polymerized and solidified as described above, and then solid-phase polymerization is performed as necessary in order to further increase the degree of polymerization and remove oligomers such as cyclic trimers. You may go. Specifically, in solid-phase polymerization, PET is chipped and dried, and then heated at a temperature of 100 ° C. or higher and 180 ° C. or lower for about 1 to 8 hours to pre-crystallize the PET, followed by 190 ° C. It is carried out by heating at a temperature of 230 ° C. or lower for 1 hour to several tens of hours in an inert gas atmosphere or under reduced pressure.
  • the ultimate viscosity of PET contained in recycled PET is preferably 0.58 dl / g or more and 0.80 dl / g or less. If the ultimate viscosity is less than 0.58 dl / g, the mechanical properties required for the PET film as a resin base material may be insufficient. On the other hand, if the ultimate viscosity exceeds 0.80 dl / g, the productivity in the film forming process may be impaired. The ultimate viscosity is measured with an orthochlorophenol solution at 35 ° C.
  • the recycled PET preferably contains recycled PET in a proportion of 50% by mass or more and 95% by mass or less, and may contain virgin PET in addition to recycled PET.
  • the diol component as described above may be ethylene glycol
  • the dicarboxylic acid component may be PET containing terephthalic acid and isophthalic acid
  • the dicarboxylic acid component may be PET containing no isophthalic acid. May be good.
  • an aliphatic dicarboxylic acid or the like may be contained in addition to the aromatic dicarboxylic acid such as terephthalic acid and isophthalic acid.
  • the aliphatic dicarboxylic acid include chains having 2 to 40 carbon atoms, such as oxalic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, dodecanedioic acid, dimer acid, and cyclohexanedicarboxylic acid.
  • the shape or alicyclic dicarboxylic acid can be mentioned.
  • the derivative of the aliphatic dicarboxylic acid include lower alkyl esters such as methyl ester, ethyl ester, propyl ester and butyl ester of the aliphatic dicarboxylic acid, and cyclic acid anhydride of the aliphatic dicarboxylic acid such as succinic anhydride.
  • aliphatic dicarboxylic acid adipic acid, succinic acid, dimer acid or a mixture thereof is preferable, and one containing succinic acid as a main component is particularly preferable.
  • succinic acid a methyl ester of adipic acid and succinic acid, or a mixture thereof is more preferable.
  • the resin in the resin composition constituting the resin film containing recycled PET may be composed of only recycled PET, or may contain virgin PET in addition to recycled PET. Further, the recycled PET film may be a single layer or a multilayer.
  • the intermediate layer is a layer composed of only recycled PET or a mixed layer of recycled PET and virgin PET, and the innermost layers on both sides and the outermost layer.
  • the outermost layer is preferably a layer composed of only virgin PET. As described above, by using only virgin PET for the innermost layer and the outermost layer, it is possible to prevent the recycled PET from being exposed from the front surface or the back surface of the resin film. Therefore, the hygiene of the laminated body can be ensured.
  • one layer is a layer composed of only recycled PET or a mixed layer of recycled PET and virgin PET, and the other layer is composed of only virgin PET. It is preferable to use a layer.
  • a resin film containing recycled PET is formed by mixing recycled PET and virgin PET in a single layer, there are a method of separately supplying the resin film to a molding machine, a method of supplying the resin film after mixing with a dry blend or the like, and the like. Above all, the method of mixing by dry blend is preferable from the viewpoint of easy operation.
  • the resin composition constituting the resin film containing recycled polyethylene PET can contain various additives in the manufacturing process thereof or after the manufacturing thereof as long as the characteristics are not impaired.
  • Additives include, for example, plasticizers, UV stabilizers, color inhibitors, matting agents, deodorants, flame retardants, weathering agents, antistatic agents, friction reducing agents, mold release agents, antioxidants, ion exchange. Agents, coloring pigments and the like can be mentioned.
  • the additive is preferably contained in the entire resin composition containing PET in the range of 5% by mass or more and 50% by mass or less, preferably 5% by mass or more and 20% by mass or less.
  • the resin film containing recycled PET can be formed, for example, by forming a film by the T-die method. Specifically, after the above-mentioned PET is dried, it is supplied to a melt extruder heated to a temperature (Tm) to Tm + 70 ° C. above the melting point of PET to melt the resin composition, for example, a T die.
  • the film can be formed by extruding the extruded sheet-like material into a sheet from a die such as, and quenching and solidifying the extruded sheet-like material with a rotating cooling drum or the like.
  • a single-screw extruder, a twin-screw extruder, a vent extruder, a tandem extruder and the like can be used depending on the purpose.
  • the resin film containing recycled PET is biaxially stretched.
  • Biaxial stretching can be performed by a conventionally known method.
  • the film extruded onto the cooling drum as described above is subsequently heated by roll heating, infrared heating, or the like, and stretched in the vertical direction to obtain a vertically stretched film.
  • This stretching is preferably performed by utilizing the difference in peripheral speed between two or more rolls.
  • the longitudinal stretching is usually carried out in a temperature range of 50 ° C. or higher and 100 ° C. or lower. Further, the magnification of longitudinal stretching depends on the required characteristics of the film application, but is preferably 2.5 times or more and 4.2 times or less.
  • the thickness unevenness of the PET film becomes large and it is difficult to obtain a good film.
  • the vertically stretched film is subsequently subjected to each of the treatment steps of transverse stretching, heat fixing, and heat relaxation to obtain a biaxially stretched film.
  • the transverse stretching is usually carried out in a temperature range of 50 ° C. or higher and 100 ° C. or lower.
  • the lateral stretching ratio depends on the required characteristics of this application, but is preferably 2.5 times or more and 5.0 times or less. If it is less than 2.5 times, the thickness unevenness of the film becomes large and it is difficult to obtain a good film, and if it exceeds 5.0 times, breakage is likely to occur during film formation.
  • the heat fixing treatment is subsequently performed, and the preferable temperature range of the heat fixing is Tg + 70 to Tm-10 ° C. of PET.
  • the heat fixing time is preferably 1 second or more and 60 seconds or less. Further, for applications that require a reduction in the heat shrinkage rate, heat relaxation treatment may be performed as necessary.
  • the thickness of the resin film containing recycled PET is arbitrary depending on the intended use, but is usually about 5 to 500 ⁇ m.
  • Breaking strength of the resin film containing the recycled PET is a MD direction 5 kgf / mm 2 or more 40 kgf / mm 2 or less, at 35 kgf / mm 2 or less 5 kgf / mm 2 or more in the TD direction, elongation at break, MD direction Is 50% or more and 350% or less, and 50% or more and 300% or less in the TD direction.
  • the shrinkage rate when left in a temperature environment of 150 ° C. for 30 minutes is 0.1% or more and 5% or less.
  • the virgin PET may be fossil fuel polyethylene terephthalate (hereinafter, also referred to as fossil fuel PET) or biomass PET.
  • the "fossil fuel PET” has a diol derived from fossil fuel as a diol component and a dicarboxylic acid derived from fossil fuel as a dicarboxylic acid component.
  • the recycled PET may be obtained by recycling a PET resin product formed by using fossil fuel PET, or may be obtained by recycling a PET resin product formed by using biomass PET. There may be.
  • the resin film containing recycled PET can be suitably used for applications such as bags, lid materials, packaging products such as Lami tubes, various label materials, and sheet molded products.
  • the thickness of the stretched film is preferably 5 to 30 ⁇ m.
  • the high-stiffness PET film contains polyester as a main component and has a loop stiffness of 0.0017 N / 15 mm or more in at least one direction.
  • the high stiffness film has a loop stiffness of 0.0017 N or more in at least one of the flow direction (MD) and the vertical direction (TD), for example.
  • the high stiffness film may have a loop stiffness of 0.0017 N or more in both the flow direction (MD) and the vertical direction (TD), for example.
  • Loop stiffness is a parameter that indicates the strength of the film.
  • a method for measuring loop stiffness will be described with reference to FIGS. 15 to 20.
  • the measuring method described below can be used not only for a single-layer film such as a stretched plastic film but also for a film containing a plurality of layers such as a vapor-deposited film and a laminated film.
  • the thin-film film is a film including a single-layer film such as a stretched plastic film and a thin-film film formed on the single-layer film.
  • the laminated film is a film containing a plurality of laminated films.
  • FIG. 15 is a plan view showing the test piece 40 and the loop stiffness measuring instrument 45
  • FIG. 16 is a cross-sectional view of the test piece 40 and the loop stiffness measuring instrument 45 of FIG. 15 along lines IV-IV.
  • the test piece 40 is a rectangular film having a long side and a short side.
  • the length L1 of the long side of the test piece 40 is 150 mm
  • the length L2 of the short side is 15 mm.
  • the loop stiffness measuring instrument 45 for example, No. 1 manufactured by Toyo Seiki Co., Ltd. 581 Loop Steph NESSA (registered trademark) LOOP STIFFNESS TESTER DA type can be used.
  • the length L1 of the long side of the test piece 40 can be adjusted as long as the test piece 40 can be gripped by the pair of chuck portions 46 described later.
  • the loop stiffness measuring instrument 45 has a pair of chuck portions 46 for gripping a pair of end portions in the long side direction of the test piece 40, and a support member 47 for supporting the chuck portions 46.
  • the chuck portion 46 includes a first chuck 461 and a second chuck 462.
  • the test piece 40 is arranged on the pair of first chucks 461, and the second chuck 462 still grips the test piece 40 with the first chuck 461.
  • the test piece 40 is gripped between the first chuck 461 and the second chuck 462 of the chuck portion 46.
  • the second chuck 462 may be connected to the first chuck 461 via a hinge mechanism.
  • the test piece 40 is manufactured by cutting the film to be measured. You may. Further, the test piece 40 may be manufactured by cutting a packaged product manufactured from a packaging material such as a packaging bag and taking out a film to be measured.
  • the test piece 40 is placed on the first chuck 461 of the pair of chuck portions 46 arranged at intervals L3.
  • the interval L3 is set so that the length of the loop portion 41 (hereinafter, also referred to as the loop length) described later is 60 mm.
  • the test piece 40 includes an inner surface 40x located on the side of the first chuck 461 and an outer surface 40y located on the opposite side of the inner surface 40x.
  • the inner surface 40x and the outer surface 40y of the test piece 40 correspond to the inner surface and the outer surface of the packaging material.
  • the inner surface 40x is located inside the loop portion 41 and the outer surface 40y is located outside the loop portion 41.
  • the second chuck 462 is arranged on the test piece 40 so as to grip the end portion of the test piece 40 in the long side direction with the first chuck 461.
  • the test piece 40 shown in FIG. 18 has a loop portion 41, a pair of intermediate portions 42, and a pair of fixing portions 43.
  • the pair of fixing portions 43 are portions of the test piece 40 that are gripped by the pair of chuck portions 46.
  • the pair of intermediate portions 42 are portions of the test piece 40 located between the loop portion 41 and the pair of intermediate portions 42.
  • the chuck portion 46 is slid on the support member 47 until the inner surfaces 40x of the pair of intermediate portions 42 come into contact with each other.
  • the loop portion 41 having a loop length of 60 mm can be formed.
  • the loop length of the loop portion 41 is the position P1 at which the surface of one second chuck 462 on the loop portion 41 side and the test piece 40 intersect, and the surface of the other second chuck 462 on the loop portion 41 side and the test piece 40. It is the length of the test piece 40 with respect to the position P2 where the test pieces intersect.
  • the above-mentioned interval L3 is a value obtained by adding 2 ⁇ t to the length of the loop portion 41 when the thickness of the test piece 40 is ignored. t is the thickness of the second chuck 462 of the chuck portion 46.
  • the posture of the chuck portion 46 is adjusted so that the protruding direction Y of the loop portion 41 with respect to the chuck portion 46 is in the horizontal direction.
  • the posture of the chuck portion 46 supported by the support member 47 is adjusted by moving the support member 47 so that the normal direction of the support member 47 faces the horizontal direction.
  • the protruding direction Y of the loop portion 41 coincides with the thickness direction of the chuck portion.
  • the load cell 48 is prepared at a position separated from the second chuck 462 by a distance Z1 in the protruding direction Y of the loop portion 41. In the present application, the distance Z1 is set to 50 mm.
  • the load cell 48 is moved toward the loop portion 41 of the test piece 40 at a speed V by the distance Z2 shown in FIG.
  • the distance Z2 is set so that the load cell 48 comes into contact with the loop portion 41 and then the load cell 48 pushes the loop portion 41 toward the chuck portion 46, as shown in FIGS. 19 and 20.
  • the distance Z2 is set to 40 mm.
  • the distance Z3 between the load cell 48 and the second chuck 462 of the chuck portion 46 in the state where the load cell 48 is pushing the loop portion 41 toward the chuck portion 46 is 10 mm.
  • the speed V for moving the load cell 48 was set to 3.3 mm / sec.
  • the load cell 48 is moved toward the chuck portion 46 by a distance Z2, and is added to the load cell 48 from the loop portion 41 in a state where the load cell 48 is pushing the loop portion 41 of the test piece 40. After the load value stabilizes, record the load value.
  • the value of the load thus obtained is adopted as the loop stiffness of the film constituting the test piece 40.
  • the environment at the time of measuring the loop stiffness is a temperature of 23 ° C. and a relative humidity of 50%.
  • the piercing strength of the stretched plastic film can be increased.
  • the puncture strength of the laminated film can be made, for example, 13 N or more, more preferably 14 N or more, and further preferably 15 N or more or 16 N or more. it can.
  • a high-stiffness film is a high-stiffness PET film containing 51% by mass or more of PET.
  • the content of PET in the high-stiffness PET film may be 80% by mass or more, 90% by mass or more, or 95% by mass or more.
  • the thickness of the high stiffness film is preferably 5 ⁇ m or more, more preferably 7 ⁇ m or more.
  • the thickness of the high stiffness film may be 10 ⁇ m or more, or 14 ⁇ m or more.
  • the thickness of the high stiffness film is preferably 30 ⁇ m or less, 25 ⁇ m or less, or 20 ⁇ m or less.
  • the preferable mechanical properties of the high stiffness film will be further described.
  • the piercing strength of the high stiffness film is preferably 10 N or more, more preferably 11 N or more.
  • the tensile strength of the high stiffness film in at least one direction is preferably 250 MPa or more, more preferably 280 MPa or more.
  • the tensile strength of the high stiffness film in the flow direction is preferably 250 MPa or more, more preferably 280 MPa or more.
  • the tensile strength of the high stiffness film in the vertical direction is preferably 250 MPa or more, more preferably 280 MPa or more.
  • the tensile elongation of the high stiffness film in at least one direction is preferably 130% or less, more preferably 120% or less.
  • the tensile elongation of the high stiffness film in the flow direction is preferably 130% or less, more preferably 120% or less.
  • the tensile elongation of the high stiffness film in the vertical direction is preferably 120% or less, more preferably 110% or less.
  • the tensile strength of the high stiffness film divided by the tensile elongation is 2.0 [MPa /%] or more.
  • the value obtained by dividing the tensile strength of the high stiffness film in the vertical direction (TD) by the tensile elongation is preferably 2.0 [MPa /%] or more, and more preferably 2.2 [MPa /%] or more. Is.
  • the value obtained by dividing the tensile strength of the high stiffness film in the flow direction (MD) by the tensile elongation is preferably 1.8 [MPa /%] or more, and more preferably 2.0 [MPa /%] or more. ..
  • the heat shrinkage of the high stiffness film in at least one direction is preferably 0.7% or less, more preferably 0.5% or less.
  • the heat shrinkage rate of the high stiffness film in the flow direction is preferably 0.7% or less, and more preferably 0.5% or less.
  • the heat shrinkage of the high stiffness film in the vertical direction is preferably 0.7% or less, more preferably 0.5% or less.
  • the heating temperature when measuring the heat shrinkage rate is 100 ° C., and the heating time is 40 minutes.
  • the Young's modulus of the high stiffness film in at least one direction is preferably 4.0 GPa or more, more preferably 4.5 GPa or more.
  • the Young's modulus of a high-stiffness film in the flow direction is preferably 4.0 GPa or more, and more preferably 4.5 GPa or more.
  • the Young's modulus of the high stiffness film in the vertical direction is preferably 4.0 GPa or more, and more preferably 4.5 GPa or more.
  • Young's modulus can be measured in accordance with JIS K7127 as well as tensile strength and tensile elongation.
  • a tensile tester STA-1150 manufactured by Orientec Co., Ltd. can be used.
  • As the test piece a high-stiffness film cut out into a rectangular film having a width of 15 mm and a length of 150 mm can be used.
  • the distance at the start of measurement between the pair of chucks holding the test piece is 100 mm, and the tensile speed is 300 mm / min.
  • the length of the test piece can be adjusted as long as the test piece can be gripped by a pair of chucks.
  • the environment at the time of measuring Young's modulus is a temperature of 25 ° C. and a relative humidity of 50%.
  • the high-stiffness film has the same mechanical properties as a single high-stiffness film even when a vapor-deposited film is provided.
  • the high stiffness film provided with the aluminum oxide vapor deposition film 3 has a loop stiffness of 0.0017 N or more in at least one direction.
  • the organic coating layer is further provided on the vapor-deposited film, it has the same mechanical properties as a single high-stiffness film.
  • a high-stiffness film provided with an aluminum oxide vapor-deposited film and an organic coating layer has a loop stiffness of 0.0017 N or more in at least one direction.
  • a plastic film obtained by melting and molding polyester is tripled to 4.5 times at 90 ° C. to 145 ° C. in the flow direction and the vertical direction, respectively.
  • the first stretching step of stretching is carried out.
  • a second stretching step of stretching the plastic film 1.1 to 3.0 times at 100 ° C. to 145 ° C. in the flow direction and the vertical direction is carried out.
  • heat fixing is performed at a temperature of 190 ° C. to 220 ° C.
  • a relaxation treatment (a treatment for reducing the film width) of about 0.2% to 2.5% is carried out at a temperature of 100 ° C. to 190 ° C.
  • the high stiffness film As a specific example of the high stiffness film, XP-55 manufactured by Toray Industries, Inc. can be used. This high stiffness film is biaxially stretched, contains 90% by mass or more of PET, and has a thickness of 16 ⁇ m. The measured value of the loop stiffness of this high-stiffness PET film was 0.0021N in both the flow direction and the vertical direction. The Young's modulus of the high-stiffness PET film in the flow direction was 4.8 GPa, and the Young's modulus of the high-stiffness PET film in the vertical direction was 4.7 GPa.
  • the tensile strength of the high-stiffness PET film in the flow direction was 292 MPa, and the tensile strength of the high-stiffness PET film in the vertical direction was 257 MPa.
  • the tensile elongation of the high-stiffness PET film in the flow direction was 107%, and the tensile elongation of the high-stiffness PET film in the vertical direction was 102%.
  • the value obtained by dividing the tensile strength of the high-stiffness PET film in the flow direction by the tensile elongation is 2.73 [MPa /%]
  • the tensile strength of the high-stiffness PET film in the vertical direction is divided by the tensile elongation.
  • the value is 2.52 [MPa /%].
  • the heat shrinkage of the high-stiffness PET film in the flow direction and the vertical direction was 0.4%.
  • the base material 1 may have a single layer or a multi-layer structure of two or more layers, and in the case of a multi-layer structure, it may be a layer having the same composition or a layer having a different composition. Further, in the case of a multi-layer structure, each layer may be bonded with an adhesive layer or the like interposed therebetween.
  • the vapor-deposited film 2 contains aluminum oxide.
  • Aluminum exists in the vapor-deposited film 2 in a state where, for example, an element bond Al 2 O 3 is formed.
  • the vapor deposition film 2 further includes metal oxides such as silicon oxide, silicon nitride, silicon oxide nitride, silicon carbide, magnesium oxide, titanium oxide, tin oxide, indium oxide, zinc oxide, and zirconium oxide, or metals thereof. It may contain nitrides and carbides.
  • the thickness of the vapor-deposited film 2 is preferably 3 nm or more and 100 nm or less, more preferably 5 nm or more and 50 nm or less, and particularly preferably 5 nm or more and 15 nm or less.
  • the "aluminum oxide vapor-deposited film” in the present invention means "aluminum oxide-containing vapor-deposited film” as described above, and in addition to aluminum oxide Al 2 O 3 , aluminum hydroxide Al 2 O 4 H and the like are used. It may be included.
  • FIG. 9 shows the elements contained in the barrier film A by etching the barrier film A shown in FIG. 1 from the surface side of the organic coating layer 3a using a time-of-flight secondary ion mass spectrometry (TOF-SIMS).
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • TOF-SIMS Time-of-Flight Secondary Ion Mass Spectrometry
  • TOF-SIMS Time-of-Flight Secondary Ion Mass Spectrometry
  • the transition time with respect to the data of the time transition of the ionic strength of the secondary ion, that is, the element to be detected or the molecular ion bonded to the element to be detected. Is converted into the depth, so that the concentration distribution of the element to be detected in the depth direction of the sample surface can be known.
  • the depth of the dent formed on the sample surface by the irradiation of the primary ion is measured in advance using a surface roughness meter, and the average sputter rate is calculated from the depth of the dent and the transition time. It is possible to calculate the depth (spatter amount) from the irradiation time (that is, transition time) or the number of irradiation cycles under the assumption that the sputter rate is constant.
  • the vapor deposition film 2 and the base material 1 are used by using a flight time type secondary ion mass spectrometer while repeating soft etching from the outermost surface of the organic coating layer 3a with a Cs (cesium) ion gun at a constant speed.
  • a Cs cesium
  • each graph can be obtained for the measured elements and elemental bonds.
  • FIG. 9 from the barrier film according to the present embodiment, the strength derived from OH, the strength derived from Si, the strength derived from Al 2 O 3 , and AL 2 O are shown. At least the intensity derived from 4H and the intensity derived from C6 are detected. In the example shown in FIG. 9, an example in which the strength of these five types of elemental bonds is measured is shown.
  • the position of Et time T 1 at which the intensity of strength derived from C6 is halved (the strongest strength) is defined as the interface between the plastic base material and aluminum oxide.
  • the position of Et time T 2 at which the intensity of Si-derived strength constituting the organic coating layer is halved (the strongest strength) is defined as the interface between the organic coating film and aluminum oxide.
  • T 1 to T 2 are formed as an aluminum oxide vapor-deposited film (X in FIG. 9).
  • the intensity derived from OH exists in the aluminum oxide vapor deposition film, that is, within the range of X in FIG. 9, and the intensity derived from OH is mainly present in the region of the organic coating layer on the left side of X in the figure. It is the strength derived from the organic coating layer, and in the region of the base material on the right side of X in the figure, it is the strength mainly derived from the base material (moisture).
  • the intensity derived from OH is a peak mainly derived from aluminum hydroxide. That is, in the region of X, the change in strength derived from OH reflects the change in the abundance of aluminum hydroxide. Then, according to FIG. 9, there is a downwardly convex peak Tp in the region of X.
  • the peak (Tp) depth position (corresponding to Y / X in FIG. 9) at X is preferably 10% or more and 60% or less from the surface side (organic coating layer side) of the vapor-deposited film. Is present in 10% or more and 50% or less, more preferably 10% or more and 40% or less.
  • Tp is present on the organic coating layer side of the vapor-deposited film. That is, while the main region of Al 2 O 4 H exists on the substrate side of the vapor deposition film, the ratio of Al 2 O 4 H is small in the region on the organic coating side of the vapor deposition film, and mainly of Al 2 O 3 It means that there is a region of state. As a result, the barrier performance can be improved.
  • the presence of the downwardly convex peak Tp derived from OH and the depth position of Tp are determined by the conditions of pretreatment, especially oxygen plasma treatment, plasma assist treatment during vapor deposition, and the formation of an aluminum oxide vapor deposition film. It can be adjusted by controlling the combination of the oxygen concentration at the time of vapor deposition in.
  • the intensity derived from Al 2 O 4 H (mass number 118.93) in FIG. 9 has two peaks in the vicinity of 3100 cycles and in the vicinity of 3600 cycles. Since the former peak is the intensity that may contain the derivative AlSiO 4 generated at the interface between the organic coating layer and the aluminum oxide layer, the intensity of Al2O4H can be determined by separating the two from each other and observing only the latter peak. Although it can be supplemented directly, according to the present invention, the distribution of the intensity of Al 2 O 4 H in the vapor-deposited film can be known by measuring the intensity derived from OH regardless of this.
  • a profile with a mass number of 118.93 obtained by TOF-SIMS is subjected to non-linear curve fitting using a Gaussian function, and overlapping peaks are separated using a least squares Levenberg-Marquardt algorithm. Just do.
  • Organic coating layer 3a laminated on the surface of the aluminum oxide vapor-deposited film 2 mechanically and chemically protects the aluminum oxide-deposited film and improves the barrier performance of the laminated film having a barrier property.
  • the organic coating layer 3a coated to form a barrier laminated film having retort resistance having excellent barrier properties will be described.
  • the organic coating layer 3a is formed by applying a barrier coating agent on an aluminum oxide vapor deposition film and solidifying it.
  • the barrier coating agent is composed of a metal alkoxide, a water-soluble polymer, a silane coupling agent added as needed, a sol-gel method catalyst, an acid and the like.
  • the general formula R1 n M (OR 2 ) m (where R 1 and R 2 represent organic groups having 1 to 8 carbon atoms, M represents a metal atom, and n represents a metal atom. Represents an integer of 0 or more, m represents an integer of 1 or more, and n + m represents the valence of M.)
  • At least one kind of metal alkoxide represented by M, and a metal atom represented by M of the metal alkoxide include silicon, zirconium, titanium, aluminum, and the like.
  • the above alkoxysilane is represented by, for example, the general formula Si (ORa) 4 (where Ra represents a lower alkyl group in the formula).
  • Ra a methyl group, an ethyl group, an n-propyl group, an n-butyl group, etc. are used.
  • Specific examples of the above alkoxysilane include tetramethoxysilane Si (OCH 3 ) 4 , tetraethoxysilane Si (OC 2 H 5 ) 4 , tetrapropoxysilane Si (OC 3 H 7 ) 4, and tetrabutoxysilane Si. (OC 4 H 9 ) 4 , etc. can be used. Two or more kinds of the above alkoxides may be used in combination.
  • silane coupling agent one having a reactive group such as a vinyl group, an epoxy group, a methacryl group and an amino group can be used.
  • organoalkoxysilane having an epoxy group is preferable, for example, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, ⁇ -glycidoxypropyldimethylmethoxysilane, ⁇ -glycidoxy.
  • Propyltriethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ -glycidoxypropyldimethylethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane and the like can be used.
  • the above-mentioned silane coupling agent may be used alone or in combination of two or more.
  • the cross-linking density of the cured film of the organic coating layer using bifunctionality such as ⁇ -glycidoxypropylmethyldimethoxysilane and ⁇ -glycidoxypropylmethyldiethoxysilane was determined in the system using trialkoxysilane. It is lower than the crosslink density. Therefore, while being excellent as a film having gas barrier properties and heat-resistant water treatment properties, it becomes a flexible cured film and also has excellent bending resistance. Therefore, the packaging material using the barrier film has gas barrier properties even after the Gelboflex test. Hard to deteriorate.
  • a polyvinyl alcohol-based resin or an ethylene / vinyl alcohol copolymer can be used alone, or a polyvinyl alcohol-based resin and an ethylene / vinyl alcohol copolymer can be used in combination. can do.
  • a polyvinyl alcohol-based resin is suitable.
  • the polyvinyl alcohol-based resin generally, one obtained by saponifying polyvinyl acetate can be used.
  • the polyvinyl alcohol-based resin may be a partially saponified polyvinyl alcohol-based resin in which several tens of percent of acetic acid groups remain, a completely saponified polyvinyl alcohol in which no acetic acid groups remain, or a modified polyvinyl alcohol-based resin in which OH groups are modified.
  • the degree of saponification it is necessary to use at least a polyvinyl alcohol-based resin that is crystallized to improve the film hardness of the gas barrier coating film, and the degree of saponification is preferably 70% or more.
  • the degree of polymerization can be used as long as it is in the range (about 100 to 5000) used in the conventional sol-gel method.
  • a saponified product of a copolymer of ethylene and vinyl acetate that is, a product obtained by saponifying an ethylene-vinyl acetate random copolymer
  • it includes, and is not particularly limited, from a partially saponified product in which several tens of mol% of acetic acid groups remain to a completely saponified product in which only a few mol% of acetic acid groups remain or no acetic acid groups remain.
  • the degree of saponification is preferably 80% or more, more preferably 90% or more, further preferably 95% or more and 100% or less, and particularly preferably 99% or more and 100% or less. It is preferable to do so.
  • an acid or amine compound is suitable.
  • the acid for example, mineral acids such as sulfuric acid, hydrochloric acid and nitric acid, and organic acids such as acetic acid and tartaric acid can be used.
  • the acid content is preferably 0.001 to 0.05 mol%, more preferably 0.01 to 0.03 mol%, based on the total molar amount of the alkoxy groups of the metal alkoxide. If it is less than 0.001% mol, the catalytic effect is too small, and if it is more than 0.05 mol%, the catalytic effect is too strong and the reaction rate becomes too fast, which tends to cause non-uniformity.
  • amine compound a tertiary amine that is substantially insoluble in water and soluble in an organic solvent is preferable.
  • N, N-dimethylbenzylamine, tripropylamine, tributylamine, tripentylamine and the like can be used.
  • N, N-dimethylbenzylamine is preferable.
  • the content of the amine compound is preferably 0.01 to 1.0 parts by mass, particularly 0.03 to 0.3 parts by mass, per 100 parts by mass of the metal alkoxide. If it is less than 0.01 part by mass, the catalytic effect is too small, and if it is more than 1.0 part by mass, the catalytic effect is too strong and the reaction rate becomes too fast, which tends to cause non-uniformity.
  • the solvent it is preferable to use water, alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropanol and n-butanol.
  • alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropanol and n-butanol.
  • the barrier coating layer formed as described above has a layer thickness of 100 to 500 nm. This range is preferable because the coating film does not crack and sufficiently covers the surface of the vapor-deposited film.
  • the composition of the barrier coating agent is 5 to 10 parts by mass of a water-soluble polymer such as a polyvinyl alcohol resin and 1 part by mass of the silane coupling agent with respect to 100 parts by mass of alkoxysilane. It can be used within the range of ⁇ 10 mass parts. As a result, the flexibility of the film can be maintained and the retort resistance can be enhanced. In the above, when the silane coupling agent is used in an amount of more than 20 parts by mass, the rigidity and brittleness of the formed barrier coating film are increased, which is not preferable.
  • the silane coupling agent When the silane coupling agent is not contained, the amount ratio of the metal alkoxide is lowered by using 10 to 20 parts by mass of a water-soluble polymer such as a polyvinyl alcohol resin with respect to 100 parts by mass of alkoxysilane. Therefore, the barrier property can be enhanced.
  • the film forming apparatus 10 includes a base material transport mechanism 11A for transporting the base material 1, a plasma pretreatment mechanism 11B for performing plasma pretreatment on the surface of the base material 1, and a thin-film deposition film 2.
  • a film forming mechanism 11C for forming a film is provided.
  • the film forming apparatus 10 further includes a pressure reducing chamber 12.
  • the decompression chamber 12 has a decompression mechanism such as a vacuum pump described later that adjusts the atmosphere of at least a part of the space inside the decompression chamber 12 to atmospheric pressure or less.
  • the decompression chamber 12 is composed of a base material transfer chamber 12A in which the base material transfer mechanism 11A is located, a plasma pretreatment chamber 12B in which the plasma pretreatment mechanism 11B is located, and a film forming mechanism 11C. Membrane chamber 12C and.
  • the decompression chamber 12 is preferably configured to prevent the atmosphere inside each chamber from mixing with each other.
  • the decompression chamber 12 is formed between the base material transfer chamber 12A and the plasma pretreatment chamber 12B, between the plasma pretreatment chamber 12B and the film formation chamber 12C, and between the base material transfer chamber 12A and the film formation. It may have partition walls 35a to 35c that are located between the chambers 12C and separate the chambers.
  • the base material transfer chamber 12A, the plasma pretreatment chamber 12B, and the film formation chamber 12C will be described.
  • the plasma pretreatment chamber 12B and the film forming chamber 12C are each provided in contact with the base material transfer chamber 12A, and each has a portion connected to the base material transfer chamber 12A.
  • the base material 1 can be transported between the base material transport chamber 12A and the plasma pretreatment chamber 12B and between the base material transport chamber 12A and the film forming chamber 12C without being exposed to the atmosphere.
  • the base material 1 can be transported through the opening provided in the partition wall 35a.
  • the base material transport chamber 12A and the film forming chamber 12C have the same structure, and the base material 1 can be transported between the base material transport chamber 12A and the film forming chamber 12C.
  • the decompression mechanism of the decompression chamber 12 is configured to be able to depressurize the atmosphere of the space in which at least the plasma pretreatment mechanism 11B or the film forming mechanism 11C of the film forming apparatus 10 is arranged to be below atmospheric pressure.
  • the decompression mechanism may be configured so that each of the base material transport chamber 12A, the plasma pretreatment chamber 12B, and the film forming chamber 12C, which are partitioned by the partition walls 35a to 35c, can be depressurized to atmospheric pressure or lower.
  • the decompression chamber 12 may have, for example, a vacuum pump connected to the plasma pretreatment chamber 12B.
  • a vacuum pump By adjusting the vacuum pump, the pressure in the plasma pretreatment chamber 12B when performing the plasma pretreatment described later can be appropriately controlled. Further, it is possible to suppress the diffusion of the plasma supplied into the plasma pretreatment chamber 12B to another chamber by the method described later.
  • the decompression mechanism of the decompression chamber 12 may have a vacuum pump connected to the film forming chamber 12C as well as a vacuum pump connected to the plasma pretreatment chamber 12B.
  • a vacuum pump a dry pump, a turbo molecular pump, a cryopump, a rotary pump, a diffusion pump and the like can be used.
  • the base material transport mechanism 11A of the base material 1 of the film forming apparatus 10 will be described together with the transport path of the base material 1.
  • the base material transport mechanism 11A is a mechanism for transporting the base material 1 arranged in the base material transport chamber 12A.
  • the base material transport mechanism 11A includes a winding roller 13 to which the roll-shaped raw fabric of the base material 1 is attached, a winding roller 15 for winding the base material 1, and guide rolls 14a to 14d.
  • the base material 1 sent out from the base material transfer mechanism 11A is then divided into a pretreatment roller 20 described later arranged in the plasma pretreatment chamber 12B and a film forming roller 25 described later arranged in the film forming chamber 12C. , Transported by.
  • the base material transport mechanism 11A may further have a tension pickup roller. Since the base material transport mechanism 11A has the tension pickup roller, the base material 1 can be transported while adjusting the tension applied to the base material 1.
  • the plasma pretreatment mechanism 11B is a mechanism for applying plasma pretreatment to the surface of the base material 1.
  • the plasma pretreatment mechanism 11B shown in FIG. 2 generates plasma P, and uses the generated plasma P to perform plasma pretreatment on the surface of the base material 1.
  • the plasma pretreatment activates the surface of the base material 1 so that the nitrogen contained inside the base material 1 easily collects on the surface of the base material 1, or the nitrogen contained in the environment surrounding the base material 1 is the base material. It can be easily taken into the surface of 1.
  • the plasma pretreatment mechanism 11B shown in FIG. 2 is between the pretreatment roller 20 arranged in the plasma pretreatment chamber 12B, the electrode portion 21 facing the pretreatment roller 20, and the pretreatment roller 20 and the electrode portion 21. It has a magnetic field forming unit 23 that forms a magnetic field in the.
  • FIG. 3 is an enlarged view of the portion surrounded by the alternate long and short dash line with the reference numeral VI in FIG.
  • the pretreatment roller 20 has a rotation axis X.
  • the pretreatment roller 20 is provided so that at least the rotation axis X is located in the plasma pretreatment chamber 12B partitioned by the partition walls 35a and 35b.
  • a base material 1 having dimensions in the direction of the rotation axis X is wound around the pretreatment roller 20.
  • the dimension of the base material 1 in the direction of the rotation axis X is also referred to as the width of the base material 1.
  • the direction of the rotation axis X is also referred to as the width direction of the base material 1.
  • the pretreatment roller 20 may be provided so that a part thereof is exposed on the base material transport chamber 12A side.
  • the plasma pretreatment chamber 12B and the base material transfer chamber 12A are connected via an opening provided in the partition wall 35a, and a part of the pretreatment roller 20 is connected through the opening. Is exposed on the base material transport chamber 12A side.
  • the base material 1 can be conveyed.
  • the pretreatment roller 20 may be provided so that the entire pretreatment roller 20 is located in the plasma pretreatment chamber 12B.
  • the pretreatment roller 20 may have a temperature adjusting mechanism for adjusting the temperature of the surface of the pretreatment roller 20.
  • the pretreatment roller 20 may have a temperature adjustment mechanism inside the pretreatment roller 20 including a pipe for circulating a temperature adjustment medium such as a refrigerant or a heat medium.
  • the temperature adjusting mechanism adjusts the surface temperature of the pretreatment roller 20 to a target temperature in the range of, for example, ⁇ 20 ° C. or higher and 100 ° C. or lower.
  • the pretreatment roller 20 has a temperature adjusting mechanism, it is possible to suppress shrinkage or breakage of the base material 1 due to heat during plasma pretreatment.
  • the pretreatment roller 20 is formed of a material containing at least one or more of stainless steel, iron, copper and chromium.
  • the surface of the pretreatment roller 20 may be subjected to a hard chrome hard coat treatment or the like in order to prevent scratches. These materials are easy to process. Further, by using the above-mentioned material as the material of the pretreatment roller 20, the thermal conductivity of the pretreatment roller 20 itself is increased, so that the temperature of the pretreatment roller 20 can be easily controlled.
  • the electrode portion 21 will be described.
  • the electrode portion 21 has a first surface 21c facing the pretreatment roller 20 and a second surface 21d located on the opposite side of the first surface 21c.
  • the electrode portion 21 is a plate-shaped member, and both the first surface 21c and the second surface 21d are flat surfaces.
  • the electrode portion 21 generates plasma with the pretreatment roller 20 by applying an AC voltage with the pretreatment roller 20.
  • the electrode portion 21 preferably applies an electric field between the pretreatment roller 20 and the plasma so that the generated plasma moves in a direction perpendicular to the surface of the base material 1 so as to be directed toward the surface of the base material 1. Form. Thereby, the base material 1 can be efficiently pretreated.
  • the peak intensity H1 of the peak of the element-bonded CN formed at the interface between the base material 1 and the vapor-deposited film 2 is increased. It can be made larger.
  • the number of electrode portions 21 is preferably 2 or more.
  • the two or more electrode portions 21 are preferably arranged along the transport direction of the base material 1. In the examples shown in FIGS. 2 and 3, an example in which the film forming apparatus 10 has two electrode portions 21 is shown.
  • the number of electrode portions 21 is, for example, 12 or less.
  • the effect of arranging two or more electrode portions 21 along the transport direction of the base material 1 will be described.
  • plasma is generated between the electrode portion 21 and the pretreatment roller 20.
  • the region where plasma is generated expands as the size of the electrode portion 21 in the transport direction increases.
  • the electrode portion 21 is a flat plate-shaped member, the larger the dimension of the electrode portion 21 in the transport direction, the more the first surface 21c of the electrode portion 21 in the transport direction faces the pretreatment roller 20.
  • the distance from the end of the pretreatment roller 20 to the pretreatment roller 20 becomes large, and the processing capacity by plasma decreases.
  • two or more electrode portions 21 are lined up along the transport direction of the base material 1. Therefore, even when the size of the electrode portion 21 in the transport direction of the base material 1 is small, plasma can be generated over a wide range in the transport direction. Further, by reducing the size of the electrode portion 21, the distance from the end of the first surface 21c of the electrode portion 21 to the pretreatment roller 20 in the transport direction can be reduced, and plasma is uniformly generated in the transport direction. Can be made to.
  • the electrode portion 21 has a first end portion 21e and a second end portion 21f located on the first surface 21c of the electrode portion 21.
  • the first end portion 21e is an upstream end portion in the transport direction of the base material 1
  • the second end portion 21f is a downstream end portion in the transport direction of the base material 1.
  • the angle ⁇ is an angle formed by a straight line passing through the first end portion 21e and the rotation axis X and a straight line passing through the second end portion 21f and the rotation axis X.
  • the angle ⁇ is preferably 20 ° or more and 90 ° or less, more preferably 60 ° or less, and further preferably 45 ° or less.
  • the material of the electrode portion 21 is not particularly limited as long as it has conductivity. Specifically, aluminum, copper, and stainless steel are preferably used as the material of the electrode portion 21.
  • the thickness L3 of the electrode portion 21 when viewed in the direction perpendicular to the first surface 21c of the electrode portion 21 is not particularly limited, but is, for example, 15 mm or less.
  • the magnetic field forming portion 23 can effectively form a magnetic field between the pretreatment roller 20 and the electrode portion 21.
  • the thickness L3 of the electrode portion 21 is, for example, 3 mm or more.
  • the magnetic field forming unit 23 will be described. As shown in FIGS. 2 and 3, the magnetic field forming portion 23 is provided on the side of the electrode portion 21 opposite to the side facing the pretreatment roller 20.
  • the magnetic field forming portion 23 is a member that forms a magnetic field between the pretreatment roller 20 and the electrode portion 21.
  • the magnetic field between the pretreatment roller 20 and the electrode portion 21 contributes to the generation of higher density plasma, for example, when plasma is generated using the plasma pretreatment mechanism 11B.
  • the magnetic field forming portion 23 shown in FIGS. 2 and 3 has a first magnet 231 and a second magnet 232 provided on the second surface 21d of the electrode portion 21.
  • the number of magnetic field forming portions 23 is preferably 2 or more.
  • each of the two or more magnetic field forming portions 23 is a respective of the two or more electrode portions 21.
  • the pretreatment roller 20 is provided on the side opposite to the side facing the pretreatment roller 20. In the examples shown in FIGS. 2 and 3, each of the two magnetic field forming portions 23 is provided on the second surface 21d of each of the two electrode portions 21.
  • the first magnet 231 and the second magnet 232 have an north pole and an south pole, respectively.
  • Reference numeral N shown in FIGS. 2 and 3 indicates the north pole of the first magnet 231 or the second magnet 232.
  • reference numeral S shown in FIGS. 2 and 3 indicates the S pole of the first magnet 231 or the second magnet 232.
  • One of the north pole or the south pole of the first magnet 231 is located closer to the base material 1 than the other.
  • the other of the north pole or the south pole of the second magnet 232 is located closer to the base material 1 than one. In the examples shown in FIGS.
  • the north pole of the first magnet 231 is located closer to the base material 1 than the south pole of the first magnet 231 and the south pole of the second magnet 232 is the second magnet. It is located on the base material 1 side of the north pole.
  • the S pole of the first magnet 231 is located on the base material 1 side of the N pole of the first magnet 231 and the N pole of the second magnet 232 is based on the S pole of the second magnet 232. It may be located on the material 1 side.
  • FIG. 4 is a plan view of the electrode portion 21 and the magnetic field forming portion 23 shown in FIG. 2 as viewed from the magnetic field forming portion 23 side.
  • FIG. 5 is a cross-sectional view showing a cross section taken along the line VIII-VIII of FIG. Further, in FIG. 4, the direction D1 is the direction in which the rotation axis X of the pretreatment roller 20 extends.
  • the first magnet 231 has a first axial portion 231c. As shown in FIG. 4, the first axial portion 231c extends along the direction D1, that is, along the rotation axis X of the pretreatment roller 20.
  • the first magnet 231 provided on one electrode portion 21 may have one first axial portion 231c, or may have two or more first axial portions 231c. In the example shown in FIG. 4, the first magnet 231 provided on one electrode portion 21 has one first axial direction portion 231c.
  • the second magnet 232 has a second axial portion 232c. As shown in FIG. 4, the second axial portion 232c also extends along the direction D1, that is, along the rotation axis X, like the first axial portion 231c.
  • the uniformity of the strength of the magnetic field formed around the base material 1 in the width direction of the base material 1 is enhanced. be able to. Thereby, the uniformity of the distribution density of the plasma formed around the base material 1 in the width direction of the base material 1 can be enhanced.
  • the second magnet 232 provided on one electrode portion 21 may have one second axial portion 232c, or may have two or more second axial portions 232c. In the examples shown in FIGS. 4 and 5, the second magnet 232 provided on one electrode portion 21 has two second axial portions 232c. The two second axial portions 232c may be positioned so as to sandwich the first axial portion 231c in the direction D2 orthogonal to the rotation axis X in the surface direction of the second surface 21d of the electrode portion 21.
  • the dimension L4 of the first axial portion 231c and the dimension L5 of the second axial portion 232c in the transport direction of the base material 1 shown in FIG. 5 are not particularly limited. Further, the ratio of the dimension L4 of the first axial portion 231c and the dimension L5 of the second axial portion 232c in the transport direction of the base material 1 is not particularly limited. The dimension L4 of the first axial portion 231c and the dimension L5 of the second axial portion 232c may be equal to each other, and the dimension L4 of the first axial portion 231c may be larger than the dimension L5 of the second axial portion 232c. ..
  • the distance L6 between the first axial portion 231c and the second axial portion 232c in the direction D2 is such that the magnetic field generated by the first axial portion 231c and the second axial portion 232c is between the pretreatment roller 20 and the electrode portion 21. Is set to be formed in.
  • the second magnet 232 may surround the first magnet 231 when the magnetic field forming portion 23 is viewed along the normal direction of the second surface 21d of the electrode portion 21.
  • the second magnet 232 has two second axial portions 232c and two connecting portions 232d provided to connect the two second axial portions 232c. May be good.
  • the magnetic flux density of the magnets of the magnetic field forming unit 23 such as the first magnet 231 and the second magnet 232 is, for example, 100 gauss or more and 10,000 gauss or less.
  • the magnetic flux density is 100 gauss or more, a sufficiently high density plasma can be generated by forming a sufficiently strong magnetic field between the pretreatment roller 20 and the electrode portion 21, and a good pretreatment surface can be generated. Can be formed at high speed.
  • an expensive magnet or a magnetic field generation mechanism is required.
  • the plasma pretreatment mechanism 11B may have a plasma raw material gas supply unit.
  • the plasma raw material gas supply unit supplies the plasma raw material gas into the plasma pretreatment chamber 12B.
  • the configuration of the plasma raw material gas supply unit is not particularly limited.
  • the plasma raw material gas supply unit is provided on the wall surface of the plasma pretreatment chamber 12B and includes a hole for ejecting a gas as a raw material for plasma.
  • the plasma raw material gas supply unit may have a nozzle for discharging the plasma raw material gas at a position closer to the base material 1 than the wall surface of the plasma pretreatment chamber 12B.
  • the plasma raw material gas supplied by the plasma raw material gas supply unit for example, an inert gas such as argon, an active gas such as oxygen, nitrogen, carbon dioxide gas, or ethylene, or a mixed gas of these gases is supplied.
  • an inert gas such as argon
  • an active gas such as oxygen, nitrogen, carbon dioxide gas, or ethylene
  • a mixed gas of these gases is supplied.
  • the plasma raw material gas regardless of whether one of the inert gases is used alone or one of the active gases is used alone, the inert gas or two or more kinds of gases contained in the active gas You may use the mixed gas of.
  • the plasma raw material gas it is preferable to use a mixed gas of an inert gas such as argon and an active gas.
  • the plasma raw material gas supply unit supplies a mixed gas of argon (Ar) and oxygen (O 2).
  • Plasma pretreatment mechanism 11B is, for example, supplied between the pretreatment roller 20 and the electrode portion 21 of the plasma density 100W ⁇ sec / m 2 or more 8000W ⁇ sec / m 2 or less of the plasma.
  • the plasma pretreatment mechanism 11B is arranged in the plasma pretreatment chamber 12B separated from the base material transport chamber 12A and the film forming chamber 12C by a partition wall.
  • the atmosphere of the plasma pretreatment chamber 12B can be easily adjusted independently. As a result, for example, it becomes easy to control the plasma raw material gas concentration in the space where the pretreatment roller 20 and the electrode portion 21 face each other, and the productivity of the laminated film is improved.
  • the voltage applied between the pretreatment roller 20 of the plasma pretreatment mechanism 11B and the electrode portion 21 is an AC voltage.
  • an AC voltage By applying an AC voltage, plasma is generated between the pretreatment roller 20 and the electrode portion 21.
  • an electric field is formed so that the generated plasma moves toward the surface of the base material 1 in a direction perpendicular to the surface of the base material 1.
  • the value of the AC voltage applied between the pretreatment roller 20 and the electrode portion 21 is preferably 250 V or more and 1000 V or less.
  • the value of the AC voltage means the effective value Ve.
  • the effective value Ve of the AC voltage is calculated by the following formula when the maximum value of the AC voltage is Vm.
  • the AC voltage applied between the pretreatment roller 20 and the electrode portion 21 has, for example, a frequency of 20 kHz or more and 500 kHz or less.
  • the film forming mechanism 11C (Film formation mechanism) Next, the film forming mechanism 11C will be described.
  • the film forming mechanism 11C has a film forming roller 25 arranged in the film forming chamber 12C and an evaporation mechanism 24.
  • the film forming roller 25 will be described.
  • the film forming roller 25 is a roller that winds and conveys the base material 1 with the treatment surface of the base material 1 pretreated by the plasma pretreatment mechanism 11B on the outside.
  • the material of the film forming roller 25 will be described.
  • the film forming roller 25 is preferably formed of a material containing at least one or more of stainless steel, iron, copper and chromium.
  • the surface of the film forming roller 25 may be subjected to a hard chrome hard coat treatment or the like in order to prevent scratches. These materials are easy to process. Further, by using the above-mentioned material as the material of the film forming roller 25, the thermal conductivity of the film forming roller 25 itself is increased, so that the temperature controllability is excellent when the temperature is controlled.
  • the surface average roughness Ra of the surface of the film forming roller 25 is, for example, 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the film forming roller 25 may have a temperature adjusting mechanism for adjusting the temperature of the surface of the film forming roller 25.
  • the temperature adjusting mechanism has, for example, a circulation path for circulating the cooling medium or the heat source medium inside the film forming roller 25.
  • the cooling medium (refrigerant) is, for example, an ethylene glycol aqueous solution
  • the heat source medium heat medium
  • the temperature adjusting mechanism may have a heater installed at a position facing the film forming roller 25.
  • the temperature adjusting mechanism preferably sets the temperature of the surface of the film forming roller 25 to ⁇ 20 from the viewpoint of heat resistance restrictions and versatility of related mechanical parts. Adjust to the target temperature within the range of ° C or higher and 200 ° C or lower. Since the film forming roller 25 has a temperature adjusting mechanism, it is possible to suppress fluctuations in the temperature of the base material 1 due to heat generated during film formation.
  • FIG. 6 is an enlargement of the portion surrounded by the alternate long and short dash line in FIG. 2, showing a specific form of the evaporation mechanism 24 which was omitted in FIG. 5, and was omitted in FIG. It is a figure which showed the vapor deposition material supply part 61 which supplies the vapor deposition material.
  • the evaporation mechanism 24 is a mechanism for evaporating a vaporized material containing aluminum. When the evaporated vaporized material adheres to the base material 1, a thin-film vapor-deposited film containing aluminum is formed on the surface of the base material 1.
  • the evaporation mechanism 24 in this embodiment adopts a resistance heating type.
  • the evaporation mechanism 24 has a boat 24b.
  • the boat 24b has a power source (not shown) and a resistor (not shown) electrically connected to the power source.
  • a plurality of boats 24b may be arranged in the width direction of the base material 1.
  • the film forming mechanism 11C may have a vapor deposition material supply unit 61 that supplies the vapor deposition material to the evaporation mechanism 24.
  • FIG. 6 shows an example in which the thin-film deposition material supply unit 61 continuously sends out a metal wire rod made of aluminum.
  • the film forming mechanism 11C has a gas supply mechanism.
  • the gas supply mechanism is a mechanism for supplying gas between the evaporation mechanism 24 and the film forming roller 25.
  • the gas supply mechanism supplies at least oxygen gas.
  • the oxygen gas evaporates from the evaporation mechanism 24 and reacts with or combines with an evaporative material such as aluminum heading toward the base material 1 on the film forming roller 25. As a result, a vapor-deposited film containing aluminum oxide can be formed on the surface of the base material 1.
  • the film forming mechanism 11C includes a plasma supply mechanism 50 that supplies plasma between the surface of the base material 1 and the evaporation mechanism 24.
  • the plasma supply mechanism 50 has a hollow cathode 51.
  • the hollow cathode 51 is a cathode having a hollow portion that is partially open.
  • the hollow cathode 51 can generate plasma in the cavity.
  • the hollow cathode 51 is provided so that the opening of the cavity of the hollow cathode 51 is located obliquely above the boat 24b.
  • the plasma supply mechanism 50 according to the present embodiment has an anode facing the opening that draws plasma from the opening of the hollow portion of the hollow cathode 51.
  • the plasma supply mechanism 50 generates plasma in the cavity of the hollow cathode 51, and pulls the plasma between the surface of the base material 1 and the evaporation mechanism 24 by the opposing anodes, thereby causing the base material.
  • a strong plasma can be generated between the surface of 1 and the evaporation mechanism 24.
  • the position of the facing anode is not particularly limited as long as the facing anode can draw plasma from the opening of the hollow portion of the hollow cathode 51 and supply the plasma between the surface of the base material 1 and the evaporation mechanism 24. ..
  • the opposing anodes are arranged on both sides of the boat 24b in the width direction of the base material 1 will be described.
  • the film forming mechanism 11C has a plurality of boats 24b and a plurality of opposing anodes, and even if the plurality of boats 24b and the plurality of facing anodes are alternately arranged in the width direction of the base material 1.
  • the plasma supply mechanism 50 may have a raw material supply device that supplies plasma raw material gas at least in the cavity of the hollow cathode 51.
  • a gas similar to the gas that can be used as the plasma raw material gas supplied by the plasma raw material gas supply unit of the plasma pretreatment mechanism 11B can be used.
  • the plasma supply mechanism 50 supplies plasma between the surface of the base material 1 and the evaporation mechanism 24.
  • the aluminum and oxygen gas evaporated in the evaporation mechanism 24 are activated.
  • the reaction or bond between aluminum and oxygen gas can be promoted.
  • the ratio of aluminum in the vapor-deposited film 2 formed on the surface of the base material 1 as aluminum oxide can be increased, and the characteristics of the vapor-deposited film 2 can be stabilized.
  • the film forming apparatus 10 is caused by the film formation by the film forming mechanism 11C in the portion of the base material conveying chamber 12A located on the downstream side in the conveying direction of the base material 1 with respect to the film forming chamber 12C.
  • a base material charge removing portion for performing post-treatment for removing the charge generated on the base material 1 may be provided.
  • the base material charge removing portion may be provided so as to remove the charge on one side of the base material 1, or may be provided so as to remove the charge on both sides of the base material 1.
  • the device used as the base material charge removing unit for post-treating the base material 1 is not particularly limited, and examples thereof include a plasma discharge device, an electron beam irradiation device, an ultraviolet irradiation device, a static elimination bar, a glow discharge device, and a corona treatment device. Can be used.
  • post-treatment When post-treatment is performed by forming a discharge using a plasma treatment device or a glow discharge device, a single discharge gas such as argon, oxygen, nitrogen, or helium, or a mixed gas thereof is supplied in the vicinity of the base material 1.
  • post-processing can be performed using any discharge method such as AC (AC) plasma, DC (DC) plasma, arc discharge, microwave, and surface wave plasma.
  • AC AC
  • DC DC
  • arc discharge arc discharge
  • microwave and surface wave plasma
  • the base material charge removing portion is installed in a portion of the base material transport chamber 12A located downstream of the film forming chamber 12C in the transport direction of the base material 1, and the base material 1 is removed from the charge.
  • the material 1 can be quickly separated from the film forming roller 25 at a predetermined position and conveyed. Therefore, stable transfer of the base material is possible, damage to the base material 1 and deterioration of quality due to charging can be prevented, and the wettability of the front and back surfaces of the base material can be improved to improve post-processing suitability.
  • the film forming apparatus 10 further includes a power supply 32 electrically connected to the pretreatment roller 20 and the electrode portion 21.
  • the power supply 32 is electrically connected to the pretreatment roller 20 and the electrode portion 21 via the power supply wiring 31.
  • the power supply 32 is, for example, an AC power supply.
  • the power supply 32 can apply an AC voltage having a frequency of, for example, 20 kHz or more and 500 kHz or less between the pretreatment roller 20 and the electrode portion 21.
  • the input power that can be applied by the power source 32 (the power that can be applied per 1 m width of the electrode portion 21 in the width direction of the base material 1) is not particularly limited, but is, for example, 0.5 kW / m or more and 20 kW / m or less. is there.
  • the pretreatment roller 20 may be electrically installed at the ground level or electrically at the floating level.
  • a method for producing the barrier film shown in FIG. 1 will be described using the film forming apparatus 10 described above.
  • a film forming method for forming the vapor deposition film 2 on the surface of the base material 1 will be described.
  • the substrate 1 is transported along the above-mentioned transport path of the base material 1, and the surface of the base material 1 is subjected to plasma pretreatment using the plasma pretreatment mechanism 11B.
  • a plasma pretreatment step and a film forming step of forming a vapor-deposited film on the surface of the base material 1 are performed using the film-forming mechanism 11C.
  • the transport speed of the base material 1 is preferably 200 m / min or more, more preferably 400 m / min or more and 1000 m / min or less.
  • the plasma pretreatment step is performed by, for example, the following method. First, the plasma raw material gas is supplied into the plasma pretreatment chamber 12B. Next, the above-mentioned AC voltage is applied between the pretreatment roller 20 and the electrode portion 21. When applying the AC voltage, input power control, impedance control, or the like may be performed.
  • oxygen alone or a mixed gas of oxygen gas and an inert gas is supplied from the gas storage unit via a flow rate controller while measuring the gas flow rate.
  • the inert gas include one or more mixed gases selected from the group of argon, helium, and nitrogen.
  • the mixing ratio of the oxygen gas and the inert gas and the oxygen gas / inert gas are preferably 6/1 to 1/1, more preferably 5/2 to 3 / 2.5.
  • the mixing ratio By setting the mixing ratio to 6/1 to 1/1, the film forming energy of the vapor-deposited aluminum on the resin base material increases, and by further setting it to 5/2 to 3/2, the oxide of the aluminum oxide-deposited film is oxidized. It is possible to increase the degree and secure the adhesion between the aluminum oxide vapor deposition film and the base material.
  • Plasma is generated at the same time as glow discharge by applying an AC voltage, and the plasma P becomes denser between the pretreatment roller 20 and the magnetic field forming unit 23. In this way, the plasma P can be supplied between the pretreatment roller 20 and the magnetic field forming unit 23. With this plasma P, the surface of the base material 1 can be subjected to plasma (ion) pretreatment.
  • the plasma intensity of the plasma pretreatment is preferably 100 W ⁇ sec / m 2 or more and 1000 W ⁇ sec / m 2 or less in order to form an aluminum oxide layer.
  • the pressure in the plasma pretreatment chamber 12B when an AC voltage is applied between the pretreatment roller 20 and the electrode portion 21 is reduced to atmospheric pressure or less by the pressure reducing chamber 12.
  • the atmospheric pressure in the plasma pretreatment chamber 12B is adjusted so that a glow discharge can be generated between the pretreatment roller 20 and the electrode portion 21 by applying an AC voltage, for example.
  • the degree of vacuum in the plasma pretreatment chamber 12B when an AC voltage is applied between the pretreatment roller 20 and the electrode portion 21 can be set and maintained at about 0.1 Pa or more and 100 Pa or less, and in particular, 1 Pa or more. 20 Pa or less is preferable.
  • the magnetic field forming portion 23 forms a magnetic field between the pretreatment roller 20 and the electrode portion 21.
  • the magnetic field can act to capture and accelerate the electrons present between the pretreatment roller 20 and the electrode section 21. Therefore, in the region where the magnetic field is formed, the frequency of collision between the electrons and the plasma raw material gas can be increased, the density of the plasma can be increased, and the plasma can be localized, so that the efficiency of the plasma pretreatment can be improved. it can.
  • the film forming mechanism 11C is used to form a film on the surface of the base material 1.
  • the film forming process a case where the aluminum oxide vapor deposition film is formed by using the film forming mechanism 11C having the evaporation mechanism 24 shown in FIG. 6 will be described.
  • a vapor deposition material containing aluminum is supplied into the boat 24b of the evaporation mechanism 24 so as to face the film forming roller 25.
  • the vapor deposition material an aluminum metal wire can be used.
  • the vapor deposition material is supplied to the boat 24b by continuously sending the aluminum metal wire into the boat 24b by the vapor deposition material supply unit 61.
  • Aluminum is evaporated in the boat 24b by heating.
  • FIG. 6 illustrates the evaporated aluminum vapor 63 for convenience.
  • the oxygen gas that oxidizes aluminum may be supplied as a simple substance of oxygen or a mixed gas with an inert gas such as argon, but by controlling the amount of oxygen, both barrier property and transparency can be achieved.
  • the degree of vacuum at this time is preferably 0.05 Pa or more and 8.00 Pa or less.
  • a method of supplying plasma between the surface of the base material 1 and the evaporation mechanism 24 by the plasma supply mechanism 50 that is, plasma assist at the time of vapor deposition will be described.
  • plasma is generated in the cavity of the hollow cathode 51 of the plasma supply mechanism 50.
  • a discharge is generated between the hollow cathode 51 and the anode facing the hollow cathode 51, and the plasma in the cavity of the hollow cathode 51 is drawn out between the surface of the base material 1 and the evaporation mechanism 24.
  • the discharge generated between the hollow cathode 51 and the anode facing the hollow cathode 51 is an arc discharge.
  • the arc discharge means for example, a discharge in which the value of the current is 10 A or more.
  • Plasma is supplied to the aluminum vapor 63 by evaporating aluminum while supplying plasma between the surface of the base material 1 and the evaporation mechanism 24.
  • the supply of plasma can promote the reaction or bond between the aluminum vapor 63 and the oxygen gas.
  • the aluminum vapor 63 can be oxidized before reaching the surface of the base material 1.
  • an aluminum oxide vapor-deposited film can be formed on the surface of the base material 1 to produce the barrier film shown in FIG.
  • the plasma raw material gas supplied by the plasma supply mechanism 50 is preferably oxygen alone or a mixed gas of oxygen gas and an inert gas.
  • a plasma pretreatment step of supplying plasma to the surface of the base material 1 is carried out before the film forming step.
  • an AC voltage is applied between the electrode portion 21 and the pretreatment roller 20.
  • the space between the electrode portion 21 and the pretreatment roller 20 is utilized by using the magnetic field forming portion 23 located on the side of the surface of the electrode portion 21 opposite to the surface facing the pretreatment roller 20. Generates a magnetic field in. Therefore, plasma can be efficiently generated in the space between the electrode portion 21 and the pretreatment roller 20, or the plasma can be made to enter perpendicularly to the surface of the base material 1 wound around the pretreatment roller 20. can do. Therefore, it is possible to improve the adhesion between the film formed by the film forming step and the base material 1.
  • the organic coating layer 3a can be produced by the following method. First, the above metal alkoxide, a water-soluble polymer, a silane coupling agent added as needed, a sol-gel method catalyst, an acid, and an organic solvent such as water as a solvent, an alcohol such as methyl alcohol, ethyl alcohol, or isopropanol are mixed. And prepare a barrier coating agent. Next, the above barrier coating agent is applied onto the aluminum oxide vapor deposition film by a conventional method and dried. By this drying step, polycondensation of the metal alkoxide, the silane coupling agent and the water-soluble polymer further proceeds, and a coating film is formed.
  • the above coating operation may be repeated to form a plurality of coating films composed of two or more layers. Further, the heat treatment is carried out at a temperature of 20 to 200 ° C. and lower than the melting point of the plastic substrate, preferably in the temperature range of 50 to 180 ° C. for 3 seconds to 10 minutes. As a result, the organic coating layer 3a made of the barrier coating agent can be formed on the aluminum oxide vapor deposition film.
  • FIG. 7A is a diagram showing an example of a laminated body 40a formed by using the barrier film according to the present embodiment.
  • the laminated body 40a includes the barrier film shown in FIG. 1 and the sealant layer 7. Specifically, the laminated body 40a is further formed on the organic coating layer of the barrier film shown in FIG. 1, an adhesive layer 4, a second base material 5 composed of polyamide or the like, an adhesive layer 6, and a sealant. Layers 7 are provided in this order.
  • the laminate of the present invention is obtained by laminating at least one heat-sealable layer on a barrier film, and the heat-sealable thermoplastic resin is used as the innermost layer with or without an adhesive layer. It is laminated and has a sealing property such as a heat seal.
  • thermoplastic resin constituting the sealant layer 7 examples include low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear (linear) low-density polyethylene, polypropylene, polymethylpentene, polystyrene, and ethylene-vinyl acetate. Contains one or more resins such as polymers, ionomer resins, ethylene-acrylic acid copolymers, ethyl ethylene-ethyl acrylate copolymers, ethylene-methyl methacrylate copolymers, ethylene-propylene copolymers, and elastomers. A film can be exemplified.
  • the thickness of the sealant layer 7 is preferably 3 to 100 ⁇ m, more preferably 15 to 70 ⁇ m.
  • the above-mentioned laminate is useful when used as a packaging material for producing a packaging bag for containing contents such as food.
  • a barrier film that maintains high adhesion even after heat treatment can be suitably used as a material for packaging bags.
  • the above-mentioned barrier film can suppress peeling of the layers constituting the barrier film in the packaged product when the packaged product is produced using the barrier film as a material.
  • a packaging bag made of a barrier film is subjected to a heat sterilization treatment using hot water, for example, a retort treatment or a boil treatment
  • the layers constituting the barrier film are peeled off, particularly the vapor deposition film 2.
  • the peeling from the base material 1 can be suppressed.
  • the retort treatment is a treatment in which the contents are filled in the packaging bag, the packaging bag is sealed, and then the packaging bag is heated in a pressurized state using steam or heated hot water.
  • the temperature of the retort treatment is, for example, 120 ° C. or higher.
  • the boil treatment is a treatment in which the contents are filled in a packaging bag, the packaging bag is sealed, and then the packaging bag is boiled in hot water under atmospheric pressure.
  • the temperature of the boiling treatment is, for example, 90 ° C. or higher and 100 ° C. or lower.
  • the barrier films according to Examples 1 and 2, Reference Examples 1 and 2, and Comparative Example 1 were produced by using the film forming apparatus 1 which is the film forming apparatus according to the present embodiment and the film forming method. .. Table 1 summarizes the pretreatment conditions, vapor deposition conditions, and the like.
  • " ⁇ " in the evaluation of "presence or absence of plasma pretreatment” means that plasma pretreatment is present
  • "x” means that there is no plasma pretreatment.
  • " ⁇ ” in the evaluation of "presence or absence of plasma assist during vapor deposition” means that plasma assist is present during vapor deposition
  • "x" means that there is no plasma assist during vapor deposition.
  • Example 1 A biaxially stretched polyethylene terephthalate film (PET film) having a thickness of 12 ⁇ m was used as the base material 1, and a plasma pretreatment step and a film forming step were performed using the film forming apparatus 10 shown in FIG.
  • PET film polyethylene terephthalate film
  • the vapor deposition film 2 containing aluminum oxide was deposited by the vacuum vapor deposition method using the evaporation mechanism 24 as shown in FIG. Specifically, after adjusting the degree of vacuum in the film forming chamber 12C to 1.5 Pa, the boat uses a resistance heating type evaporation mechanism 24 while supplying an aluminum metal wire as a vapor deposition material into the boat 24b. The vapor-deposited material in 24b was heated to evaporate the aluminum so as to reach the surface of the base material 1, and the vapor-deposited film 2 was formed on the surface of the base material 1 while supplying oxygen at 12500 sccm.
  • the plasma by opposing the anode, substrate It was pulled out between the surface of No. 1 and the evaporation mechanism 24 to perform plasma assist during vapor deposition.
  • the vapor deposition film 2 was laminated on the base material 1 by the above method. At this time, the transport speed was 600 m / min, and the thickness of the vapor-deposited film 2 was 8 nm.
  • organic coating layer 3a (organic coating layer A in Tables 1 and 2) was laminated on the vapor-deposited film 2.
  • 307 g of water, 147 g of isopropyl alcohol and 7.3 g of 0.5N hydrochloric acid were mixed, and 175 g of tetraethoxysilane as a metal alkoxide and glycidoxypropyltrimethoxysilane as a silane coupling agent were added to a solution adjusted to pH 2.2.
  • Solution A was prepared by mixing 7 g while cooling to 10 ° C.
  • a solution B was prepared by mixing 14.7 g of polyvinyl alcohol having a degree of polymerization of 2400 with a degree of polymerization of 99% or more, 324 g of water, and 17 g of isopropyl alcohol.
  • the solution obtained by mixing the solution A and the solution B so as to have a mass ratio of 6.5: 3.5 was used as a barrier coating agent.
  • the barrier coating agent prepared above was coated on the aluminum oxide vapor-deposited film of the PET film by a spin coating method. Then, it was heat-treated in an oven at 180 ° C. for 60 seconds to form a barrier coating layer having a thickness of about 400 nm on an aluminum oxide vapor-deposited film to form an organic coating layer A, and the barrier film of Example 1 was formed. Manufactured.
  • Example 2 In Example 1, the barrier film of Example 2 was produced in the same manner as in Example 1 except that the transport speed was 480 m / min and the thickness of the vapor-deposited film 2 was 13 nm.
  • Reference example 1 As shown in Table 1, in Example 1, EB (electron beam) type evaporation mechanism (not shown) was used instead of the resistance heating type evaporation mechanism 24 without performing plasma pretreatment, and plasma during vapor deposition was used.
  • the barrier film of Reference Example 1 was produced in the same manner as in Example 1 except that the oxygen supply amount was 8500 sccm and the vacuum degree at the time of vaporization was 0.15 Pa without performing the assist treatment.
  • Reference example 2 As shown in Table 1, in Example 1, the air pressure in the plasma pretreatment chamber 12B was 3.5 Pa, the plasma assist treatment during vapor deposition was not performed, the oxygen supply amount was 10000 sccm, and the degree of vacuum during vapor deposition was 0.
  • the barrier film of Reference Example 2 was produced in the same manner as in Example 1 except that it was set to .02 Pa.
  • Comparative Example 1 As shown in Table 1, the barrier film of Comparative Example 1 was produced in the same manner as in Reference Example 2 except that the transport speed was 480 m / min and the thickness of the vapor-deposited film 2 was 13 nm in Reference Example 3.
  • Examples 3 to 5, Comparative Example 2 Barrier films of Examples 3 to 5 and Comparative Example 2 were produced under the film-forming conditions shown in Table 2 using a film-forming device 2 different from the above-mentioned film-forming device 1.
  • organic coating layer B 197 g of water, 34 g of isopropyl alcohol and 4.7 g of 0.5N hydrochloric acid were mixed, and 145 g of tetraethoxysilane as a metal alkoxide was cooled to 15 ° C. in a solution adjusted to pH 2.2.
  • Solution A was prepared by mixing with each other.
  • a solution B was prepared by mixing 8.3 g of polyvinyl alcohol having a degree of polymerization of 2400 with a degree of polymerization of 99% or more, 182 g of water, and 9.6 g of isopropyl alcohol.
  • the solution obtained by mixing the solution A and the solution B so as to have a mass ratio of 4.0: 6.0 was used as a barrier coating agent.
  • the barrier coating agent prepared above was coated on the aluminum oxide vapor-deposited film of the PET film by a spin coating method. Then, it was heat-treated in an oven at 180 ° C. for 60 seconds to form a barrier coating layer having a thickness of about 400 nm on an aluminum oxide vapor-deposited film to form an organic coating layer B.
  • TOF-SIMS analysis For the barrier films of Examples 1 to 5 and Comparative Examples 1 and 2, the surface of the vapor-deposited film of the barrier film was subjected to the following measurement conditions using a time-of-flight secondary ion mass spectrometer (TOF.SIMS5 manufactured by ION TOF). From the side, while repeating soft etching at a constant speed with a Cs (cesium) ion gun, C 6 derived from a resin substrate (mass number 72.00) and Al 2 O 3 derived from an aluminum oxide vapor deposition film (mass number 101.
  • TOF.SIMS5 manufactured by ION TOF
  • FIGS. 8 to 10 Graph analysis diagrams of the measurement results of the film forming apparatus 1 are shown in FIGS. 8 to 10.
  • FIG. 8 is the measurement result of Example 1
  • FIG. 9 is the measurement result of Example 2
  • FIG. 10 is the measurement result of Comparative Example 1.
  • FIGS. 11 to 14. 11 is a measurement result of Example 3
  • FIG. 12 is a measurement result of Example 4
  • FIG. 13 is a measurement result of Example 5, and FIG.
  • TOF-SIMS measurement conditions Primary ion type: Bi 3 ++ (0.2 pA, 100 ⁇ s) -Measurement area: 150 x 150 ⁇ m 2 ⁇ Etching gun type: Cs (1keV, 60nA) ⁇ Etching area: 600 ⁇ 600 ⁇ m 2 ⁇ Etching rate: 10 sec / Cycle
  • the position representing the intensity peak of the measured elemental bond OH (mass number 17.00) is determined by the number of etching seconds (peak position Y), and the depth position (peak position Y) from the surface of the vapor-deposited film on the organic coating layer side at that position ( The peak position Y / X in FIG. 9 (unit:%) was determined.
  • the water vapor transmittance was measured using a water vapor transmittance measuring device (manufactured by Mocon Co., Ltd., product name "Permatlan”) under the measurement conditions of 40 ° C. and 100% RH in accordance with the JIS K7129B method.
  • the oxygen permeability is based on JIS K 7126-2 under the measurement conditions of 23 ° C and 90% RH using an oxygen permeability measuring device (manufactured by Mocon, product name "OXTRAN"). It was measured. The results are shown in Tables 5 and 6.
  • a two-component curable polyurethane-based laminating adhesive is applied onto the organic coating layer 3a of the barrier films of Examples 1 and 2, Reference Examples 1 to 3, and Comparative Example 1 produced by the above method, and a gravure roll coating method is applied. It was used to coat a thickness of 4.0 g / m 2 (dry state) to form an adhesive layer 4, and then on the surface of the adhesive layer 4, biaxially stretched nylon having a thickness of 15 ⁇ m as a second base material 5. The 6 films were opposed to each other, dry-laminated and laminated.
  • an adhesive layer 6 for laminating is formed on the surface of the second base material 5 in the same manner as the adhesive layer 4 described above, and then the thickness of the sealant layer 7 is formed on the surface of the adhesive layer 6.
  • a 70 ⁇ m unstretched polypropylene film was dry-laminated and laminated to produce a laminated body having a layer structure as shown in FIG. 7.
  • the laminated body having this layer structure was formed into a pouch by facing the sealant layers so as to face each other and heat-sealing them. After filling the pouch with water, it was retorted at 135 ° C. for 40 minutes. The value of the watering peel strength was measured for each of the laminated bodies in the state after the retort treatment. The results are summarized in Tables 5 and 6.
  • the watering peel strength was measured by the following method. First, each of the laminated bodies in the state after the retort treatment was cut into strips to obtain a rectangular test piece having a width of 15 mm. Next, the vapor-deposited film of the test piece and the base material were partially peeled off in the longitudinal direction of the test piece (the direction orthogonal to the width direction of the test piece). The peeling of the vapor-deposited film and the base material was performed so that the vapor-deposited film and the base material maintained a bond in part.
  • the peel strength at the interface between the vapor-deposited film and the substrate was measured under the conditions of a peeling angle of 180 ° and a peeling speed of 50 mm / min in accordance with JIS Z6854-2.
  • the tensile force required to proceed the peeling over 30 mm was measured, and the average value of the tensile force was calculated.
  • the strength derived from the elemental bond OH has a downwardly convex peak, and the downwardly convex peak is located at a depth of 10% or more and 60% or less from the surface side of the organic coating layer in the vapor deposition film.
  • the barrier property is higher than that of the comparative example.
  • the growth of the aluminum oxide vapor-deposited film on the surface of the aluminum hydroxide proceeds in two-dimensional growth, and a more dense aluminum oxide-deposited film is formed. That is, the aluminum oxide film deposited on the surface of the aluminum hydroxide has a feature of exhibiting an excellent barrier property against oxygen and water vapor as compared with aluminum oxide deposited directly on the surface of the plastic film.
  • an alumina hydroxide region is formed in the vicinity of the plastic film and the aluminum vapor deposition interface, and the alumina hydroxide region is mainly oxidized.
  • the aluminum region it is possible to provide a higher barrier property.
  • the present invention (second invention) provides the following.
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • the element bond Al 2 O 3 and the element bond Al 2 O 4 H-derived intensity was detected,
  • the intensity ratio of the element bond Al 2 O 4 H to the element bond Al 2 O 3 detected at a depth position of 1/3 in the film thickness direction from the surface of the vapor deposition film (Al 2 O 4).
  • the aluminum oxide vapor-deposited film has an infrared absorption spectrum from the surface side of the thin-film film of the barrier film.
  • the ratio of the absorption intensity of the absorption peak of 3350 cm -1 or more and 3550 cm -1 or less derived from the OH bond to the absorption intensity of the absorption peak of 940 cm -1 or more and 960 cm -1 or less derived from the Al—O bond is 0.
  • the barrier film according to (3) which is 20 or less.
  • a laminate comprising the barrier film according to any one of (1) to (4) and a sealant layer.
  • FIG. 1B is a cross-sectional view showing an example of a barrier film according to the present embodiment.
  • the barrier film produced by using the film forming apparatus according to the present embodiment includes a base material 1 and a vapor-deposited film 2 as in the barrier film A 2 shown in FIG. 1 (b), for example.
  • the vapor deposition film 2 is located on one surface of the base material 1. Further, in the example shown in FIG. 1B, the vapor deposition film 2 is located on the surface of the barrier film.
  • FIG. 22 shows that the barrier film A 2 shown in FIG. 1 (b) is etched into the barrier film from the surface side of the vapor deposition film 2 by using the time-of-flight secondary ion mass spectrometry (TOF-SIMS).
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • At least the element bond AL 2 O 3 and the element bond AL 2 O 4 H and the element bond C 6 are detected from the barrier film according to the present embodiment.
  • an example in which the strength of these three types of elemental bonds is measured is shown.
  • the position of Et time T 1 in which the integrity of the graph of the element C6 becomes half of the strongest strength is set as the interface between the plastic base material and aluminum oxide, and the surface of the barrier film (T 0 ) to the interface T 1 is oxidized. It is treated as an aluminum vapor-deposited film (X in FIG. 9), and the position of 1/3 of the Et time from T 0 to T 1 , that is, 1/3 X is T 2.
  • the ratio (I 22 / I 21 ) of the strength I 22 of the element bond Al 2 O 4 H to the strength I 21 of the element bond Al 2 O 3 in T 2 is 0.30 or less, preferably 0. It is 20 or less, more preferably 0.10 or less.
  • the ratio of the element-bonded Al 2 O 4 H is small, and there is a region mainly in the state of Al 2 O 3 , so that the barrier performance can be improved.
  • the maximum peak Tp of the element-bonded Al 2 O 4 H intensity is present in the aluminum oxide vapor-deposited film.
  • the first peak from the surface side of the vapor deposition film is the maximum peak.
  • the region from Tp to the interface T 1 is referred to as a transition region.
  • the depth position of the maximum peak (Tp) with respect to X corresponding to the thickness of the thin-film deposition film exists at 55% or more and 95% or less from the surface side (opposite side to the base material side) of the thin-film deposition film. It is preferable to do so.
  • the ratio of the strength I P2 of the element bond Al 2 O 4 H to the strength I P 1 of the element bond Al 2 O 3 at the position Tp (IP2 / IP1 ) is preferably 0.10 or more and 4.00 or less.
  • the maximum peak derived from the elemental bond Al 2 O 4 H is 55% or more and 95% or less, that is, it is present on the base material side, so that the main region of Al 2 O 4 H is present on the base material side of the vapor deposition film.
  • the region near the surface of the vapor-deposited film there is mainly a region in the state of Al 2 O 3. That is, it has a configuration of Al 2 O 4 main region / Al 2 O 4 H main region / base material, and this configuration enables high barrier properties.
  • the ratio of the strength I 22 of the elemental bond Al 2 O 4 H to the strength I 21 of the elemental bond Al 2 O 3 in T 2 (I 22 / I 21 ), the depth position of the maximum peak (Tp), and the depth position of the maximum peak (Tp).
  • the ratio of the strength I P2 of the elemental bond Al 2 O 4 H to the strength I P1 of the elemental bond Al 2 O 3 at the position Tp (IP2 / IP1 ) is determined by the conditions of the pretreatment, especially the oxygen plasma treatment, and the time of vapor deposition. It can be adjusted by controlling the combination of the conditions of the plasma assist treatment and the oxygen concentration at the time of vapor deposition at the time of forming the aluminum oxide vapor deposition film.
  • the ratio of the absorption intensity of the absorption peak of 3350 cm -1 or more and 3550 cm -1 or less derived from the OH bond to the absorption intensity of the absorption peak of 940 cm -1 or more and 960 cm -1 or less derived from the Al—O bond is 0.20.
  • it is preferably 0.10 or less, and if it is within this range, the composition is close to that of a complete oxide film of aluminum oxide, and the barrier property is improved.
  • the FT-IR measurement conditions were measured under the conditions described in the examples.
  • FIG. 7B is a diagram showing an example of a laminated body 40b formed by using the barrier film according to the present embodiment.
  • the laminated body 40b includes the barrier film shown in FIG. 1 (b) and the sealant layer 7.
  • the laminated body 40b includes an adhesive layer 4, a second base material 5 composed of polyamide and the like, and an adhesive layer 6 on the vapor-deposited film of the barrier film shown in FIG. 1 (b).
  • the sealant layer 7 is provided in this order.
  • the laminate of the present invention is obtained by laminating at least one heat-sealable layer on a barrier film, and the heat-sealable thermoplastic resin is used as the innermost layer with or without an adhesive layer. It is laminated and has a sealing property such as a heat seal.
  • Example 1 A biaxially stretched polyethylene terephthalate film (PET film) having a thickness of 12 ⁇ m was used as the base material 1, and a plasma pretreatment step and a film forming step were performed using the film forming apparatus 10 shown in FIG.
  • PET film polyethylene terephthalate film
  • the vapor deposition film 2 containing aluminum oxide was deposited by the vacuum vapor deposition method using the evaporation mechanism 24 as shown in FIG. Specifically, after adjusting the degree of vacuum in the film forming chamber 12C to 1.5 Pa, the boat uses a resistance heating type evaporation mechanism 24 while supplying an aluminum metal wire as a vapor deposition material into the boat 24b. The vapor-deposited material in 24b was heated to evaporate the aluminum so as to reach the surface of the base material 1, and the vapor-deposited film 2 was formed on the surface of the base material 1 while supplying oxygen at 12500 sccm.
  • the plasma by opposing the anode, substrate It was pulled out between the surface of No. 1 and the evaporation mechanism 24 to perform plasma assist during vapor deposition.
  • a barrier film including the base material 1 shown in FIG. 1 and the vapor-deposited film 2 was produced at a transport speed of 600 m / min.
  • the thickness of the vapor-deposited film 2 of the produced barrier film was 8 nm.
  • Example 2 In Example 1, the barrier film of Example 2 was produced in the same manner as in Example 1 except that the transport speed was 480 m / min and the thickness of the vapor-deposited film 2 was 13 nm.
  • Example 3 the barrier film of Example 3 was produced in the same manner as in Example 2 except that the plasma pretreatment was not performed.
  • Example 4 Using a film-forming apparatus different from those of Examples 1 to 3, the barrier film of Example 4 was produced in the same manner as in Example 3 except that the production conditions in Table 1 were changed.
  • Example 5 Using a film-forming apparatus different from those of Examples 1 to 3, the barrier film of Example 5 was subjected to plasma pretreatment in the same manner as in Example 1 except that the production conditions in Table 1 were changed.
  • Comparative Example 1 As shown in Table 1, in Example 1, EB (electron beam) type evaporation mechanism (not shown) was used instead of the resistance heating type evaporation mechanism 24 without performing plasma pretreatment, and plasma during vapor deposition was used.
  • the barrier film of Comparative Example 1 was produced in the same manner as in Example 1 except that the oxygen supply amount was 8500 sccm and the vacuum degree at the time of vaporization was 0.15 Pa without performing the assist treatment.
  • Comparative Example 2 As shown in Table 7, in Example 1, the degree of vacuum in the plasma pretreatment chamber 12B was 3.5 Pa, the plasma assist treatment during vapor deposition was not performed, the oxygen supply amount was 10000 sccm, and the degree of vacuum during vapor deposition was set. A barrier film of Comparative Example 2 was produced in the same manner as in Example 1 except that the value was 0.02 Pa.
  • Comparative Example 3 As shown in Table 7, the barrier film of Comparative Example 3 was produced in the same manner as in Comparative Example 2 except that the transport speed was 480 m / min and the thickness of the vapor-deposited film 2 was 13 nm in Comparative Example 2.
  • TOF-SIMS analysis For the barrier films of Examples 1 to 5 and Comparative Examples 1 and 2, a barrier using a time-of-flight secondary ion mass spectrometer (TOF.SIMS5 manufactured by ION TOF) under the same measurement conditions as in the first invention. From the surface side of the vapor-deposited film of the film, while repeating soft etching at a constant speed with a Cs (cesium) ion gun, C 6 (mass number 72.00) derived from the resin substrate and Al 2 O 3 derived from the aluminum oxide vapor-deposited film (mass number 101.94), aluminum oxide deposited film from the Al 2 O 4 H (mass number 118.93), was the mass spectrometry.
  • Cs cesium
  • FIGS. 21 to 27 Graph analysis diagrams of the measurement results are shown in FIGS. 21 to 27.
  • 21 is the measurement result of Example 1
  • FIG. 22 is the measurement result of Example 2
  • FIG. 23 is the measurement result of Example 3
  • FIG. 24 is the measurement result of Example 4.
  • FIG. 26 is the measurement result of Comparative Example 1
  • FIG. 27 is the measurement result of Comparative Example 2.
  • the unit on the vertical axis is the common logarithm of the intensity of ions
  • the unit on the horizontal axis (Ettimes (s)) is the number of seconds after etching.
  • the film base material and aluminum oxide vapor deposition The interface of the film was defined as the aluminum oxide vapor-deposited film from the surface of the vapor-deposited film (position before etching) to the interface, and the position of 1/3 from the surface of the vapor-deposited film in the total vapor-deposited film thickness was determined. Then, the ratio of the element-bonded Al 2 O 4 H strength to the element-bonded Al 2 O 3 strength (Al 2 O 4 H / Al 2 O 3 ) at a position 1/3 from the surface of the vapor-deposited film was determined.
  • the position representing the intensity peak of the measured elemental bond Al 2 O 4 H (mass number 118.93) is obtained by the number of etching seconds (peak position Y), and the depth position (peak) from the surface of the vapor-deposited film at that position is obtained.
  • the ratio (Al 2 O 4 H / Al 2 O 3 ) of the element bond Al 2 O 4 H strength to the element bond Al 2 O 3 strength at the position (position Y / X, unit%) was determined.
  • the layer of FIG. 7B is the same as that of the first invention, except that the adhesive layer 4 is formed by coating the vapor-deposited film 2 of the barrier film with a two-component curable polyurethane-based laminating adhesive. A laminated body having a structure was manufactured. Moreover, the value of the watering peel strength was measured by the same method as in the first invention. The results are shown in Table 10.
  • the ratio of the element-bonded Al 2 O 4 H strength to the element-bonded Al 2 O 3 strength at the position 1/3 from the surface of the vapor-deposited film by TOF-SIMS (Al 2 O 4 H / Al 2).
  • the barrier property is higher than that in Comparative Examples 1 to 3.
  • absorption peaks exist at 940 cm -1 or more and 960 cm -1 or less derived from Al—O bond by FT-IR, and 940 cm -1 or more and 960 cm derived from Al—O bond.
  • the ratio of the absorption intensity of the absorption peak derived from the OH bond to the absorption intensity of the absorption peak of -1 or less is within the range of the present invention of 3350 cm -1 or more and 3550 cm -1 or less. It has a higher barrier property than 1.
  • the present invention (third invention) provides the following.
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • a laminate comprising the barrier film according to (1) or (2) and a sealant layer.
  • a packaged product having the laminate described in (4) and (3) having the laminate described in (4) and (3).
  • FIG. 1C is a cross-sectional view showing an example of a barrier film according to the present embodiment.
  • Barrier films produced by using the film deposition apparatus of this embodiment for example, as a barrier film A 3 shown in FIG. 1 (c), a substrate 1, a deposited film 2, and the primer layer 3b, To be equipped.
  • the vapor deposition film 2 is located on one surface of the base material 1.
  • the barrier film A is laminated in the order of the base material 1, the vapor-deposited film 2, and the primer layer 3b, and the primer layer 3b is located on the surface of the barrier film.
  • FIG. 30 is a barrier film A 3 shown in FIG. 1 (c), the etching is performed using linear time-of from the surface side of the primer layer 3b ion mass spectrometry (TOF-SIMS), the barrier film
  • TOF-SIMS ion mass spectrometry
  • This is an example of a graph analysis diagram showing the strength of elements and element bonds when the contained elements and element bonds are measured.
  • the unit (intensity) on the vertical axis of the graph is the common logarithm of the ion intensity.
  • the unit (Et times) on the horizontal axis of the graph is the etching time.
  • At least the strength derived from CNO, the strength derived from Al 2 O 3 , and the strength derived from Al 2 O 4 H are detected from the barrier film according to the present embodiment.
  • FIG. 30 an example in which the strength of these three types of elemental bonds is measured is shown.
  • the intensity derived from Al 2 O 3 has an upward convex peak, and the range in which this peak exists is the range of the aluminum oxide vapor-deposited film.
  • the position of Et time T 1 where the intensity peak derived from Al 2 O 3 is reduced on the base material side and the integrity is halved is defined as the interface between the plastic base material and aluminum oxide.
  • the position of Et time T 2 where the intensity peak derived from Al 2 O 3 decreases on the primer layer side and the integrity is halved is defined as the interface between the primer layer and aluminum oxide.
  • T 1 to T 2 are formed as an aluminum oxide vapor-deposited film (X in FIG. 30).
  • the strength derived from CNO exists in the aluminum oxide vapor deposition film, that is, in the range of X in FIG. 30.
  • the strength derived from CNO is the strength derived from the urethane resin of the primer layer because CNO is a urethane bond.
  • the intensity derived from CNO has a downwardly convex peak Tp.
  • the depth position of the peak (Tp) at X is 0% or more and 70% or less, preferably 70% or less, from the surface side (primer layer side) of the vapor-deposited film. It is present in 10% or more and 70% or less, more preferably 20% or more and 70% or less, further preferably 30% or more and 70% or less, and particularly preferably 40% or more and 70% or less.
  • Tp is present on the primer layer side of the vapor deposition film. That is, it is suggested that the component containing CNO, which is presumed to have a low molecular weight, is mainly migrated into the vapor-deposited film in the primer layer. In the present invention, since the degree of this migration is small, as a result, the influence on the aluminum oxide vapor-deposited film is small, and the barrier performance can be improved by maintaining a dense aluminum oxide-deposited film.
  • the presence of the downwardly convex peak Tp derived from CNO and the depth position of Tp are determined by the conditions of pretreatment, especially oxygen plasma treatment, plasma assist treatment during vapor deposition, and the formation of an aluminum oxide vapor deposition film. It can be adjusted by controlling the combination of the oxygen concentration at the time of vapor deposition in.
  • the primer layer 3b laminated on the surface of the aluminum oxide vapor-deposited film 2 improves the adhesion when laminating the aluminum oxide and other layers, and also improves the barrier performance.
  • the primer layer 3b will be described.
  • the primer layer is formed by applying a primer solution containing a urethane resin and solidifying it. Then, if necessary, a silane coupling agent or silica fine particles may be further contained.
  • the film thickness of the primer layer after drying is preferably 0.01 to 30 ⁇ m, more preferably 0.1 to 10 ⁇ m.
  • the primer layer contains urethane resin
  • the primer layer has appropriate elasticity or flexibility, the influence on the inorganic vapor deposition layer due to pressing during printing or laminating can be reduced, and deterioration of gas barrier properties can be suppressed.
  • the urethane resin either a conventionally known polyester urethane resin or a polyether urethane resin can be used.
  • a reaction product of a polyol such as a polyester polyol or a polyether polyol and a polyisocyanate can be used.
  • polyester polyol examples include a polyester polyol obtained by reacting a low molecular weight polyol with a polycarboxylic acid; and a polyester polyol obtained by ring-opening polymerization reaction of a cyclic ester compound such as ⁇ -caprolacton; Examples thereof include polyester polyols obtained by copolymerization. These polyester polyols can be used alone or in combination of two or more.
  • low molecular weight polyol examples include ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, neopentyl glycol, and 1,3-butanediol having a molecular weight of about 50 to 300.
  • examples thereof include certain aliphatic polyols; polyols having an aliphatic cyclic structure such as cyclohexanedimethanol; polyols having an aromatic structure such as bisphenol A and bisphenol F.
  • polyester polyols examples include aliphatic polycarboxylic acids such as succinic acid, adipic acid, sebacic acid, and dodecandicarboxylic acid; terephthalic acid, isophthalic acid, phthalic acid, naphthalenedicarboxylic acid and the like. Aromatic polycarboxylic acids; examples thereof include anhydrides or esterified products thereof.
  • a polyester polyurethane polyol having a urethane bond in the molecular structure which is obtained by modifying the above polyester polyol with polyisocyanate, can also be used. These polyester polyols can be used alone or in combination of two or more.
  • Examples of the above-mentioned polyether polyol include those obtained by addition polymerization of an alkylene oxide using one or more compounds having two or more active hydrogen atoms as an initiator.
  • Examples of the compound having two or more active hydrogen atoms include propylene glycol, trimethylolglycol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, glycerin, and di. Examples thereof include glycerin, trimethylolethane, trimethylolpropane, water and hexanetriol.
  • alkylene oxide examples include propylene oxide, butylene oxide, styrene oxide, epichlorohydrin, and tetrahydrofuran.
  • polyether polyol a polyether polyurethane polyol having a urethane bond in the molecular structure, which is obtained by modifying the above-mentioned polyether polyol with a polyisocyanate, can also be used. These polyether polyols can be used alone or in combination of two or more.
  • polyisocyanate examples include polyisocyanates having an aliphatic cyclic structure such as cyclohexanediisocyanate, dicyclohexylmethane diisocyanate, and isophorone diisocyanate; 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, and carbodiimide-modified diphenylmethane diisocyanate.
  • Aromatic polyisocyanates such as crude diphenylmethane diisocyanate, phenylenediisocyanate, tolylene diisocyanate, naphthalenediocyanate; and aliphatic polyisocyanates such as hexamethylene diisocyanate, lysine diisocyanate, xylylene diisocyanate and tetramethylxylylene diisocyanate.
  • 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, carbodiimide-modified diphenylmethane diisocyanate, and crude diphenylmethane diisocyanate are preferable.
  • these polyisocyanates can be used alone or in combination of two or more.
  • silane coupling agent a conventionally known silane coupling agent can be used, and for example, the same one as that used for the above-mentioned gas barrier resin composition is preferably used.
  • silane coupling agent By containing a silane coupling agent in the primer layer, the adhesiveness with the vapor-deposited film can be improved.
  • silica can be used as the silica fine particles.
  • the primer layer containing silica fine particles makes it possible to suppress blocking during winding in the manufacturing process of the gas barrier vapor-deposited film.
  • Primer layer forming step examples of the means for forming the primer layer by coating include a roll coating such as a gravure roll coater, a spray coating, a spin coating, a dipping, a brush, a bar code, and an applicator.
  • the primer layer may be formed by one or more applications.
  • On the first coating film the above coating operation may be repeated to form a plurality of coating films composed of two or more layers.
  • the heat treatment is carried out at a temperature of 20 to 200 ° C. and lower than the melting point of the plastic substrate, preferably a temperature in the range of 50 to 180 ° C. for 0.2 seconds to 10 minutes.
  • the primer layer 3b can be formed on the aluminum oxide vapor deposition film.
  • FIG. 7C is a diagram showing an example of a laminated body 40c formed by using the barrier film according to the present embodiment.
  • the laminated body 40c includes the barrier film shown in FIG. 1 (c) and the sealant layer 7.
  • the laminated body 40c includes an adhesive layer 4, a second base material 5 composed of polyamide and the like, and an adhesive layer 6 on the primer layer of the barrier film shown in FIG. 1 (c).
  • the sealant layer 7 is provided in this order.
  • the laminate of the present invention is obtained by laminating at least one heat-sealable layer on a barrier film, and the heat-sealable thermoplastic resin is used as the innermost layer with or without an adhesive layer. It is laminated and has a sealing property such as a heat seal.
  • Example 1 A biaxially stretched polyethylene terephthalate film (PET film) having a thickness of 12 ⁇ m was used as the base material 1, and a plasma pretreatment step and a film forming step were performed using the film forming apparatus 10 shown in FIG.
  • PET film polyethylene terephthalate film
  • the vapor deposition film 2 containing aluminum oxide was deposited by the vacuum vapor deposition method using the evaporation mechanism 24 as shown in FIG. Specifically, after adjusting the degree of vacuum in the film forming chamber 12C to 1.5 Pa, the boat uses a resistance heating type evaporation mechanism 24 while supplying an aluminum metal wire as a vapor deposition material into the boat 24b. The vapor-deposited material in 24b was heated to evaporate the aluminum so as to reach the surface of the base material 1, and the vapor-deposited film 2 was formed on the surface of the base material 1 while supplying oxygen at 12500 sccm.
  • the plasma by opposing the anode, substrate It was pulled out between the surface of No. 1 and the evaporation mechanism 24 to perform plasma assist during vapor deposition.
  • the vapor deposition film 2 was laminated on the base material 1 by the above method. At this time, the transport speed was 600 m / min, and the thickness of the vapor-deposited film 2 was 8 nm.
  • primer layer 3b was formed on the aluminum oxide vapor deposition film of the gas barrier vapor deposition film obtained above.
  • a liquid in which a polyester urethane resin (manufactured by Dainichi Seika Kogyo Co., Ltd.) (100 g), which is a cured product of polyester polyol and polyisocyanate, is dissolved is used as a main component, and an isocyanate compound (5 g), which is a curing agent, is mixed.
  • a primer solution was prepared.
  • the primer solution prepared above was coated on the aluminum oxide vapor deposition film of the gas barrier vapor deposition film formed above by the spin coating method.
  • a primer layer 3b having a thickness of about 200 nm is formed adjacently on the aluminum oxide vapor-deposited film, and the barrier of Example 1 having the primer layer 3b is formed.
  • the film was manufactured.
  • Example 2 Using a film-forming device different from that of Example 1, a barrier film of Example 2 was produced in the same manner as in Example 1 except that the production conditions in Table 11 were changed.
  • Example 3 Using a film-forming device different from that of Example 1, the barrier film of Example 3 was subjected to plasma pretreatment in the same manner as in Example 1 except that the production conditions in Table 11 were changed.
  • Comparative Example 1 In Example 1, the oxygen / argon ratio during plasma pretreatment was 2: 1, the degree of vacuum in the plasma pretreatment chamber 12B was 3.5 Pa, the plasma assist treatment during vapor deposition was not performed, and the oxygen supply amount was 9000 sccm.
  • the barrier film of Comparative Example 1 was produced in the same manner as in Example 1 except that the degree of vacuum at the time of vapor deposition was 0.02 Pa.
  • TOF-SIMS analysis For the barrier films of Example 1 and Comparative Example 1, a time-of-flight secondary ion mass spectrometer (TOF.SIMS5 manufactured by ION TOF) was used, and the vapor-deposited film of the barrier film was used under the same measurement conditions as in the first invention. From the surface side, while repeating soft etching at a constant speed with a Cs (cesium) ion gun, C 6 derived from a resin substrate (mass number 72.00) and Al 2 O 3 derived from an aluminum oxide vapor deposition film (mass number 101).
  • Cs cesium
  • FIGS. 30 to 32 Graph analysis diagrams of the measurement results are shown in FIGS. 30 to 32.
  • FIG. 30 is the measurement result of Example 1
  • FIG. 31 is the measurement result of Comparative Example 1.
  • FIG. 32 is a measurement result of Example 3.
  • the unit on the vertical axis (intensity) is the common logarithm of the intensity of ions
  • the unit on the horizontal axis is the number of seconds after etching.
  • the position representing the intensity peak of the measured elemental bond CNO (mass number 41.99) is determined by the number of etching seconds (peak position Y), and the depth position from the primer layer side surface of the vapor-deposited film at that position (FIG. The peak position Y / X at 8, unit%) was determined.
  • the layer of FIG. 7C is the same as that of the first invention, except that the primer layer 3b of the barrier film is coated with a two-component curable polyurethane-based laminating adhesive to form the adhesive layer 4.
  • a laminate of the composition was manufactured.
  • the value of the watering peel strength was measured by the same method as in the first invention. The results are shown in Table 13.
  • the intensity derived from the elemental bond CNO has a downwardly convex peak, and the downwardly convex peak exists at a depth position of 0% or more and 70% or less from the surface side of the primer layer in the vapor deposition film.
  • the barrier property is higher than that in Comparative Example 1 in which a downward convex peak does not exist.
  • the strength derived from CNO is present throughout the vapor-deposited film, and the component having the CNO bond of the primer layer is migrated and migrated into the vapor-deposited film.

Abstract

Provided are: a barrier film having high barrier properties; and a laminate using the same. This barrier film includes a substrate, an aluminum oxide deposition film, and an organic coating layer which are laminated in this order, wherein: when the aluminum oxide deposition film is etched from the surface side of the organic coating layer of the barrier film by time-of-flight secondary ion mass spectrometry (TOF-SIMS), an intensity derived from an elemental bond OH is detected; the intensity derived from the elemental bond OH has a downward convex peak; and the downward convex peak is present in the aluminum oxide deposition film at a 10-60% depth position from the surface side of the organic coating layer.

Description

バリアフィルム、該バリアフィルムを用いた積層体、該積層体を用いた包装製品Barrier film, laminate using the barrier film, packaging product using the laminate
 本発明は、バリアフィルム、該バリアフィルムを用いた積層体、該積層体を用いた包装製品に関する。 The present invention relates to a barrier film, a laminate using the barrier film, and a packaged product using the laminate.
 往来、プラスチックなどの長尺状のフィルムやシートの基材上に成膜された膜を備えた積層フィルムが、様々な用途で利用されている。例えば、プラスチックフィルム上に、酸化アルミニウムなどの薄膜からなるバリア層を設けて、酸素及び水蒸気に対するバリア性の機能を持たせたバリア性積層フィルムも開発されている。 In the traffic, long films such as plastics and laminated films with a film formed on the base material of the sheet are used for various purposes. For example, a barrier laminated film in which a barrier layer made of a thin film such as aluminum oxide is provided on a plastic film to have a barrier function against oxygen and water vapor has also been developed.
 酸化アルミニウム薄膜を備えるバリアフィルムの製造手法として、例えば、特許文献1には、酸素ガスと、蒸発したアルミニウムとの酸化反応が生じる反応空間に含まれる水分を蒸着時に除去することにより、アルミ水酸化物の生成を抑制し、耐熱水性を改善することが開示されている。 As a method for producing a barrier film provided with an aluminum oxide thin film, for example, Patent Document 1 describes aluminum hydroxide by removing water contained in a reaction space in which an oxidation reaction between oxygen gas and evaporated aluminum occurs at the time of vapor deposition. It is disclosed that the formation of substances is suppressed and the heat resistance and water resistance are improved.
特開2016-203427号公報Japanese Unexamined Patent Publication No. 2016-203427
 本発明は、酸化アルミニウム蒸着膜を備えるバリアフィルムであって、更に高いバリア性を有するバリアフィルム及び該バリアフィルムを用いた積層体を提供することを目的とする。 An object of the present invention is to provide a barrier film provided with an aluminum oxide vapor-deposited film, which has a higher barrier property, and a laminate using the barrier film.
<第1発明>
 本発明者らは、上記課題を解決するために鋭意検討をした結果、TOF-SIMS分析における元素結合OH由来の下に凸のピークの存在と位置に着目することによって、更に高いバリア性を有するバリアフィルムを得ることが可能となることを見出し、本発明を完成するに至った。
<First invention>
As a result of diligent studies to solve the above problems, the present inventors have a higher barrier property by paying attention to the existence and position of the downwardly convex peak derived from the element bond OH in the TOF-SIMS analysis. We have found that it is possible to obtain a barrier film, and have completed the present invention.
 アルミ水酸化物は水分子と親和性が高いため、アルミ水酸化物からなる膜中に水分子が浸透し、水蒸気に対するバリア性を低下させる。ここで、特許文献1の方法では、酸化アルミニウムの膜全体における水酸基(水素原子)が少なくなる。 Since aluminum hydroxide has a high affinity with water molecules, water molecules permeate into the film made of aluminum hydroxide, which lowers the barrier property against water vapor. Here, in the method of Patent Document 1, the number of hydroxyl groups (hydrogen atoms) in the entire aluminum oxide film is reduced.
 しかしながら、本発明者らの知見によれば、アルミ水酸化物の面上における酸化アルミニウムの蒸着膜成長は、2次元成長で進行し、より緻密な酸化アルミニウム蒸着膜が形成される。つまり、アルミ水酸化物の面上に堆積する酸化アルミニウム膜は、プラスチックフィルムの面上に直接堆積する酸化アルミニウムよりも、酸素及び水蒸気に対して、優れたバリア性を示す特徴を持つ。 However, according to the findings of the present inventors, the growth of the aluminum oxide vapor-deposited film on the surface of the aluminum hydroxide proceeds in two-dimensional growth, and a more dense aluminum oxide-deposited film is formed. That is, the aluminum oxide film deposited on the surface of the aluminum hydroxide has a feature of exhibiting an excellent barrier property against oxygen and water vapor as compared with aluminum oxide deposited directly on the surface of the plastic film.
 故に、高いバリア性能を有するバリアフィルムを実現するためには、プラスチックフィルムとアルミ蒸着界面との近傍にはアルミナ水酸化物の領域を形成し、このアルミナ水酸化物領域の上には、主として酸化アルミニウム領域を形成することで、更に高いバリア性を備えることが可能となる。このような蒸着膜の構成は、TOF-SIMS分析による元素結合OH由来の下に凸のピークの存在と、該ピークの深さ位置によって裏付けられる。 Therefore, in order to realize a barrier film having high barrier performance, an alumina hydroxide region is formed in the vicinity of the plastic film and the aluminum vapor deposition interface, and the alumina hydroxide region is mainly oxidized. By forming the aluminum region, it is possible to provide a higher barrier property. The structure of such a vapor-deposited film is supported by the presence of a downwardly convex peak derived from the elemental bond OH by TOF-SIMS analysis and the depth position of the peak.
 具体的には、本発明(第1発明)は以下のものを提供する。 Specifically, the present invention (first invention) provides the following.
 (1)基材と、酸化アルミニウム蒸着膜と、有機被覆層と、がこの順に積層されているバリアフィルムであって、
 前記酸化アルミニウム蒸着膜は、前記バリアフィルムの前記有機被覆層表面側から、飛行時間型二次イオン質量分析法(TOF-SIMS)によりエッチングした際に、元素結合OH由来の強度が検出され、
 前記元素結合OH由来の強度は下に凸のピークを有し、前記下に凸のピークは、前記酸化アルミニウム蒸着膜における、前記有機被覆層表面側から10%以上60%以下の深さ位置に存在する、バリアフィルム。
(1) A barrier film in which a base material, an aluminum oxide vapor-deposited film, and an organic coating layer are laminated in this order.
When the aluminum oxide vapor-deposited film was etched from the surface side of the organic coating layer of the barrier film by time-of-flight secondary ion mass spectrometry (TOF-SIMS), the strength derived from the element bond OH was detected.
The intensity derived from the elemental bond OH has a downwardly convex peak, and the downwardly convex peak is located at a depth of 10% or more and 60% or less from the surface side of the organic coating layer in the aluminum oxide vapor-deposited film. A barrier film that exists.
 (2)前記有機被覆層は、金属アルコキシドと、水酸基含有水溶性樹脂とを含む樹脂組成物の硬化物である、(1)に記載のバリアフィルム。 (2) The barrier film according to (1), wherein the organic coating layer is a cured product of a resin composition containing a metal alkoxide and a hydroxyl group-containing water-soluble resin.
 (3)前記樹脂組成物は、更にシランカップリング剤を含有する、(2)に記載のバリアフィルム。 (3) The barrier film according to (2), wherein the resin composition further contains a silane coupling agent.
 (4)(1)から(3)のいずれか1項に記載のバリアフィルムと、シーラント層とを備える積層体。 (4) A laminate comprising the barrier film according to any one of (1) to (3) and a sealant layer.
 (5)(4)に記載の積層体を備える包装製品。 A packaged product having the laminate according to (5) and (4).
 本発明のバリアフィルムは、更に高いバリア性を有する。 The barrier film of the present invention has even higher barrier properties.
本実施の形態に係るバリアフィルムの一例を示す断面図である。It is sectional drawing which shows an example of the barrier film which concerns on this embodiment. 本発明の実施の形態に係る成膜装置の一例を示す図である。It is a figure which shows an example of the film forming apparatus which concerns on embodiment of this invention. 成膜装置のプラズマ前処理機構の一例を示す断面図である。It is sectional drawing which shows an example of the plasma pretreatment mechanism of a film forming apparatus. 成膜装置のプラズマ前処理機構の電極部及び磁場形成部の一例を示す平面図である。It is a top view which shows an example of the electrode part and the magnetic field formation part of the plasma pretreatment mechanism of a film forming apparatus. 成膜装置のプラズマ前処理機構の電極部及び磁場形成部の一例を示す断面図である。It is sectional drawing which shows an example of the electrode part and the magnetic field formation part of the plasma pretreatment mechanism of a film forming apparatus. 成膜装置の成膜機構の一例を示す断面図である。It is sectional drawing which shows an example of the film forming mechanism of a film forming apparatus. 本発明の実施の形態に係るバリアフィルムを備える積層体の一例を示す断面図である。It is sectional drawing which shows an example of the laminated body provided with the barrier film which concerns on embodiment of this invention. 第1発明における、実施例1のバリアフィルムのTOF-SIMSによる測定結果を示すグラフ解析図である。It is a graph analysis figure which shows the measurement result by TOF-SIMS of the barrier film of Example 1 in 1st invention. 第1発明における、実施例2のバリアフィルムのTOF-SIMSによる測定結果を示すグラフ解析図である。It is a graph analysis figure which shows the measurement result by TOF-SIMS of the barrier film of Example 2 in 1st invention. 第1発明における、比較例1のバリアフィルムのTOF-SIMSによる測定結果を示すグラフ解析図である。It is a graph analysis figure which shows the measurement result by TOF-SIMS of the barrier film of the comparative example 1 in 1st invention. 第1発明における、実施例3のバリアフィルムのTOF-SIMSによる測定結果を示すグラフ解析図である。It is a graph analysis figure which shows the measurement result by TOF-SIMS of the barrier film of Example 3 in 1st invention. 第1発明における、実施例4のバリアフィルムのTOF-SIMSによる測定結果を示すグラフ解析図である。It is a graph analysis figure which shows the measurement result by TOF-SIMS of the barrier film of Example 4 in 1st invention. 第1発明における、実施例5のバリアフィルムのTOF-SIMSによる測定結果を示すグラフ解析図である。It is a graph analysis figure which shows the measurement result by TOF-SIMS of the barrier film of Example 5 in 1st invention. 第1発明における、比較例2のバリアフィルムのTOF-SIMSによる測定結果を示すグラフ解析図である。It is a graph analysis figure which shows the measurement result by TOF-SIMS of the barrier film of the comparative example 2 in 1st invention. ループスティフネス測定器の一例を示す平面図である。It is a top view which shows an example of a loop stiffness measuring instrument. 図15のループスティフネス測定器の線V-Vに沿った断面図である。It is sectional drawing along the line VV of the loop stiffness measuring instrument of FIG. ループスティフネス測定器に試験片を取り付ける工程を説明するための図である。It is a figure for demonstrating the process of attaching a test piece to a loop stiffness measuring instrument. 試験片にループ部を形成する工程を説明するための図である。It is a figure for demonstrating the process of forming a loop part in a test piece. 試験片のループ部に荷重を加える工程を説明するための図である。It is a figure for demonstrating the process of applying a load to the loop part of a test piece. 試験片のループ部に荷重を加える工程を説明するための図である。It is a figure for demonstrating the process of applying a load to the loop part of a test piece. 第2発明における、実施例1のバリアフィルムのTOF-SIMSによる測定結果を示すグラフ解析図である。It is a graph analysis figure which shows the measurement result by TOF-SIMS of the barrier film of Example 1 in 2nd invention. 第2発明における、実施例2のバリアフィルムのTOF-SIMSによる測定結果を示すグラフ解析図である。It is a graph analysis figure which shows the measurement result by TOF-SIMS of the barrier film of Example 2 in 2nd invention. 第2発明における、実施例3のバリアフィルムのTOF-SIMSによる測定結果を示すグラフ解析図である。It is a graph analysis figure which shows the measurement result by TOF-SIMS of the barrier film of Example 3 in 2nd invention. 第2発明における、実施例4のバリアフィルムのTOF-SIMSによる測定結果を示すグラフ解析図である。It is a graph analysis figure which shows the measurement result by TOF-SIMS of the barrier film of Example 4 in 2nd invention. 第2発明における、実施例5のバリアフィルムのTOF-SIMSによる測定結果を示すグラフ解析図である。It is a graph analysis figure which shows the measurement result by TOF-SIMS of the barrier film of Example 5 in 2nd invention. 第2発明における、比較例1のバリアフィルムのTOF-SIMSによる測定結果を示すグラフ解析図である。It is a graph analysis figure which shows the measurement result by TOF-SIMS of the barrier film of the comparative example 1 in 2nd invention. 第2発明における、比較例2のバリアフィルムのTOF-SIMSによる測定結果を示すグラフ解析図である。It is a graph analysis figure which shows the measurement result by TOF-SIMS of the barrier film of the comparative example 2 in 2nd invention. 第2発明における、実施例及び比較例のバリアフィルムのFT-IRによる測定結果を示すグラフである。It is a graph which shows the measurement result by FT-IR of the barrier film of an Example and a comparative example in 2nd invention. 第2発明における、実施例及び比較例のバリアフィルムのFT-IRによる測定結果を示すグラフである。It is a graph which shows the measurement result by FT-IR of the barrier film of an Example and a comparative example in 2nd invention. 第3発明における、実施例1のバリアフィルムのTOF-SIMSによる測定結果を示すグラフ解析図である。It is a graph analysis figure which shows the measurement result by TOF-SIMS of the barrier film of Example 1 in 3rd invention. 第3発明における、比較例1のバリアフィルムのTOF-SIMSによる測定結果を示すグラフ解析図である。It is a graph analysis figure which shows the measurement result by TOF-SIMS of the barrier film of the comparative example 1 in 3rd invention. 第3発明における、実施例3のバリアフィルムのTOF-SIMSによる測定結果を示すグラフ解析図である。It is a graph analysis figure which shows the measurement result by TOF-SIMS of the barrier film of Example 3 in 3rd invention.
 以下、本発明の具体的な実施形態について、詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。また、本明細書において、「X~Y」(X、Yは任意の数値)との表記は、「X以上Y以下」を意味する。 Hereinafter, specific embodiments of the present invention will be described in detail, but the present invention is not limited to the following embodiments, and the present invention is carried out with appropriate modifications within the scope of the object of the present invention. can do. Further, in the present specification, the notation of "X to Y" (X and Y are arbitrary numerical values) means "X or more and Y or less".
<第1発明>
 図1(a)は、本実施の形態に係るバリアフィルムの一例を示す断面図である。本実施の形態に係る成膜装置を用いて製造されるバリアフィルムは、例えば図1(a)に示すバリアフィルムAのように、基材1と、蒸着膜2と、有機被覆層3aと、を備える。図1(a)に示す例において、蒸着膜2は、基材1の一方の面上に位置する。また、図1(a)に示す例において、バリアフィルムAは、基材1、蒸着膜2、有機被覆層3aの順に積層されており、有機被覆層3aはバリアフィルムの表面に位置している。
<First invention>
FIG. 1A is a cross-sectional view showing an example of a barrier film according to the present embodiment. Barrier films produced by using the film deposition apparatus of this embodiment, for example, as a barrier film A 1 shown in FIG. 1 (a), a substrate 1, a deposited film 2, and the organic coating layer 3a , Equipped with. In the example shown in FIG. 1A, the vapor deposition film 2 is located on one surface of the base material 1. Further, in the example shown in FIG. 1A, the barrier film A is laminated in the order of the base material 1, the vapor-deposited film 2, and the organic coating layer 3a, and the organic coating layer 3a is located on the surface of the barrier film. ..
 なお、本明細書において「この順に積層」とは、基材と、酸化アルミニウム蒸着膜と、有機被覆層と、がこの順番に並ぶように積層されていればよく、これらの層の間に、例えばプライマー他の層が積層されていてもよい。 In the present specification, the term "laminated in this order" means that the base material, the aluminum oxide vapor deposition film, and the organic coating layer are laminated in this order, and between these layers, For example, layers other than the primer may be laminated.
 以下、バリアフィルムAを構成する各層について説明する。 The following describes each layer constituting the barrier film A 1.
 [基材]
 基材1は主に樹脂を含む層である。樹脂は特に制限されるものではなく、公知の樹脂フィルム又はシートを使用することができる。例えば、ポリエチレンテレフタレート系樹脂、ポリブチレンテレフタレート系樹脂、ポリエチレンナフタレート系樹脂などを含むポリエステル系樹脂や、ポリアミド系樹脂;ポリエチレン、ポリプロピレンなどのα-オレフィンの重合体や共重合体などを含むポリオレフィン系樹脂等、を含む樹脂フィルムを用いることができる。
[Base material]
The base material 1 is a layer mainly containing a resin. The resin is not particularly limited, and a known resin film or sheet can be used. For example, a polyester resin containing a polyethylene terephthalate resin, a polybutylene terephthalate resin, a polyethylene naphthalate resin, or a polyamide resin; a polyolefin resin containing an α-olefin polymer such as polyethylene or polypropylene or a copolymer. A resin film containing a resin or the like can be used.
 これらの樹脂の中でも、ポリエステル系樹脂が好適に用いられ、更には、ポリエステル系樹脂の中でも、ポリエチレンテレフタレート系樹脂やポリブチレンテレフタレート系樹脂を用いることが好ましい。基材1として用いられるポリエステルフィルムは、所定の方向において延伸されていてもよい。この場合、ポリエステルフィルムは、所定の一方向において延伸された一軸延伸フィルムであってもよく、所定の二方向において延伸された二軸延伸フィルムであってもよい。例えば、基材1としてポリエチレンテレフタレートからなるフィルムを用いる場合には、二軸延伸ポリエチレンテレフタレートフィルムを用いることができる。 Among these resins, polyester-based resins are preferably used, and further, among polyester-based resins, polyethylene terephthalate-based resins and polybutylene terephthalate-based resins are preferably used. The polyester film used as the base material 1 may be stretched in a predetermined direction. In this case, the polyester film may be a uniaxially stretched film stretched in a predetermined unidirectional direction, or may be a biaxially stretched film stretched in a predetermined bidirectional direction. For example, when a film made of polyethylene terephthalate is used as the base material 1, a biaxially stretched polyethylene terephthalate film can be used.
 上記のような基材1として用いられるポリエステルフィルムの厚さは、特に制限を受けるものではなく、後述する成膜装置により蒸着膜2を成膜する際の前処理や成膜処理をすることができるものであればよいが、可撓性及び形態保持性の観点からは、6μm以上100μm以下の範囲が好ましい。ポリエステルフィルムの厚さが前記範囲内にあると、曲げやすい上に搬送中に破けることもなく、密着性が向上された蒸着膜2を有するバリアフィルムの製造に用いられる成膜装置で取り扱いやすい。 The thickness of the polyester film used as the base material 1 as described above is not particularly limited, and it is possible to perform pretreatment or film formation treatment when the vapor deposition film 2 is formed by a film forming apparatus described later. It may be possible, but from the viewpoint of flexibility and shape retention, a range of 6 μm or more and 100 μm or less is preferable. When the thickness of the polyester film is within the above range, it is easy to bend and is not torn during transportation, and is easy to handle in a film forming apparatus used for manufacturing a barrier film having a vapor-deposited film 2 having improved adhesion. ..
 ポリエチレンテレフタレートフィルム(PETフィルム)としては、従来公知のPETフィルム以外に、バイオマスPETフィルム、リサイクルPETフィルム、高スティッフネスPETフィルム(強靭PETフィルム)を基材1として用いてもよい。 As the polyethylene terephthalate film (PET film), in addition to the conventionally known PET film, a biomass PET film, a recycled PET film, or a high stiffness PET film (tough PET film) may be used as the base material 1.
 <バイオマスPETフィルム>
 バイオマスPETフィルムは、バイオマス由来のポリエステルを含む樹脂フィルムであり、バイオマス由来のポリエステルは、ジオール単位がバイオマス由来のエチレングリコールで、ジカルボン酸単位が化石燃料由来のジカルボン酸である。
<Biomass PET film>
The biomass PET film is a resin film containing a polyester derived from biomass, and the polyester derived from biomass is an ethylene glycol derived from biomass as a diol unit and a dicarboxylic acid derived from a fossil fuel as a dicarboxylic acid unit.
 バイオマス由来のエチレングリコールは、従来の化石燃料由来のエチレングリコールと化学構造が同じであるため、バイオマス由来のエチレングリコールを用いて合成されたポリエステルのフィルムは、従来の化石燃料由来のポリエステルフィルムと機械的特性等の物性面で遜色がない。したがって、バイオマス由来のポリエステルフィルムを使用した基材は、カーボンニュートラルな材料からなる層を有するため、従来の化石燃料から得られる原料から製造された基材に比べて、化石燃料の使用量を削減することができ、環境負荷を減らすことができる。 Since biomass-derived ethylene glycol has the same chemical structure as conventional fossil fuel-derived ethylene glycol, polyester films synthesized using biomass-derived ethylene glycol are mechanically similar to conventional fossil fuel-derived polyester films. It is not inferior in terms of physical properties such as physical characteristics. Therefore, since the base material using the polyester film derived from biomass has a layer made of carbon-neutral material, the amount of fossil fuel used is reduced as compared with the base material produced from the raw material obtained from the conventional fossil fuel. And can reduce the environmental load.
 バイオマス由来のエチレングリコールは、サトウキビ、トウモロコシ等のバイオマスを原料として製造されたエタノール(バイオマスエタノール)を原料としたものである。例えば、バイオマスエタノールを、従来公知の方法により、エチレンオキサイドを経由してエチレングリコールを生成する方法等により、バイオマス由来のエチレングリコールを得ることができる。また、市販のバイオマスエチレングリコールを使用してもよく、例えば、インディアグライコール社から市販されているバイオマスエチレングリコールを好適に使用することができる。 Biomass-derived ethylene glycol is made from ethanol (biomass ethanol) produced from biomass such as sugar cane and corn. For example, biomass-derived ethylene glycol can be obtained from biomass ethanol by a method of producing ethylene glycol via ethylene oxide by a conventionally known method. Further, commercially available biomass ethylene glycol may be used, and for example, biomass ethylene glycol commercially available from India Glycol Co., Ltd. can be preferably used.
 ポリエステルのジカルボン酸単位は、化石燃料由来のジカルボン酸を使用する。ジカルボン酸としては、芳香族ジカルボン酸、脂肪族ジカルボン酸、及びそれらの誘導体を使用することができる。芳香族ジカルボン酸としては、テレフタル酸及びイソフタル酸等が挙げられ、芳香族ジカルボン酸の誘導体としては、芳香族ジカルボン酸の低級アルキルエステル、具体的には、メチルエステル、エチルエステル、プロピルエステル及びブチルエステル等が挙げられる。これらの中でも、テレフタル酸が好ましく、芳香族ジカルボン酸の誘導体としては、ジメチルテレフタレートが好ましい。 The dicarboxylic acid unit of polyester uses a fossil fuel-derived dicarboxylic acid. As the dicarboxylic acid, aromatic dicarboxylic acid, aliphatic dicarboxylic acid, and derivatives thereof can be used. Examples of the aromatic dicarboxylic acid include terephthalic acid and isophthalic acid, and examples of the derivative of the aromatic dicarboxylic acid include lower alkyl esters of the aromatic dicarboxylic acid, specifically, methyl ester, ethyl ester, propyl ester and butyl. Esters and the like can be mentioned. Among these, terephthalic acid is preferable, and dimethyl terephthalate is preferable as the derivative of the aromatic dicarboxylic acid.
 バイオマス由来のポリエステルは、ジオール単位とジカルボン酸単位とを重縮合させる従来公知の方法により得ることができる。具体的には、上記のジカルボン酸成分とジオール成分とのエステル化反応及び/又はエステル交換反応を行った後、減圧下での重縮合反応を行うといった溶融重合の一般的な方法や、有機溶媒を用いた公知の溶液加熱脱水縮合方法によって製造することができる。 Biomass-derived polyester can be obtained by a conventionally known method of polycondensing a diol unit and a dicarboxylic acid unit. Specifically, a general method of melt polymerization such as an esterification reaction and / or a transesterification reaction between the above dicarboxylic acid component and a diol component and then a polycondensation reaction under reduced pressure, or an organic solvent. It can be produced by a known solution heating dehydration condensation method using.
 バイオマス由来のポリエステルを含む樹脂フィルムを構成する樹脂組成物は、バイオマス由来のポリエステルのみで構成されていてもよいし、バイオマス由来のポリエステルに加えて、化石燃料由来のポリエステルを含んでいてもよい。化石燃料由来のポリエステルは、ジオール単位とジカルボン酸単位とからなり、ジオール単位として化石燃料由来のジオールのエチレングリコールを用い、ジカルボン酸単位として化石燃料由来のジカルボン酸を用いて重縮合反応により得られたものである。 The resin composition constituting the resin film containing the biomass-derived polyester may be composed of only the biomass-derived polyester, or may contain a fossil fuel-derived polyester in addition to the biomass-derived polyester. Polyester derived from fossil fuel is composed of diol unit and dicarboxylic acid unit, and is obtained by polycondensation reaction using ethylene glycol of fossil fuel-derived diol as diol unit and dicarboxylic acid derived from fossil fuel as dicarboxylic acid unit. It is a thing.
 バイオマス由来のポリエステルを含む樹脂フィルムを構成する樹脂組成物中の樹脂は、バイオマス由来のポリエステルに加えて、リサイクルポリエステルを含んでいてもよい。リサイクルポリエステルは、バイオマス由来のポリエステルをリサイクルしたものであってもよいし、化石燃料由来のポリエステルをリサイクルしたものであってもよい。 The resin in the resin composition constituting the resin film containing the biomass-derived polyester may contain recycled polyester in addition to the biomass-derived polyester. The recycled polyester may be a recycled polyester derived from biomass or a recycled polyester derived from fossil fuel.
 バイオマス由来のポリエステルを含む樹脂フィルムを構成する樹脂組成物は、各種の添加剤を含有することができる。添加剤として、例えば、可塑剤、紫外線安定化剤、着色防止剤、艶消し剤、消臭剤、難燃剤、耐候剤、帯電防止剤、摩擦低減剤、離型剤、抗酸化剤、イオン交換剤、着色顔料などが挙げられる。添加剤は、PETを含む樹脂組成物全体中に、5質量%以上50質量%以下、好ましくは5質量%以上20質量%以下の範囲で含有されることが好ましい。 The resin composition constituting the resin film containing biomass-derived polyester can contain various additives. Additives include, for example, plasticizers, UV stabilizers, color inhibitors, matting agents, deodorants, flame retardants, weathering agents, antistatic agents, friction reducing agents, mold release agents, antioxidants, ion exchange. Agents, coloring pigments and the like can be mentioned. The additive is preferably contained in the entire resin composition containing PET in the range of 5% by mass or more and 50% by mass or less, preferably 5% by mass or more and 20% by mass or less.
 バイオマス由来のポリエステルを含む樹脂フィルムは、例えば、Tダイ法によってフィルム化することにより形成することができる。具体的には、上記したPETを乾燥させた後、PETの融点以上の温度(Tm)~Tm+70℃の温度に加熱された溶融押出機に供給して、樹脂組成物を溶融し、例えばTダイなどのダイよりシート状に押出し、押出されたシート状物を回転している冷却ドラムなどで急冷固化することによりフィルムを成形することができる。溶融押出機としては、一軸押出機、二軸押出機、ベント押出機、タンデム押出機等を目的に応じて使用することができる。なお、以下必要に応じて融点をTm、ガラス転移点をTgと表記することがある。 A resin film containing a biomass-derived polyester can be formed, for example, by forming a film by the T-die method. Specifically, after the above-mentioned PET is dried, it is supplied to a melt extruder heated to a temperature (Tm) to Tm + 70 ° C. above the melting point of PET to melt the resin composition, for example, a T die. The film can be formed by extruding the extruded sheet-like material into a sheet from a die such as, and quenching and solidifying the extruded sheet-like material with a rotating cooling drum or the like. As the melt extruder, a single-screw extruder, a twin-screw extruder, a vent extruder, a tandem extruder and the like can be used depending on the purpose. Hereinafter, the melting point may be referred to as Tm and the glass transition point may be referred to as Tg, if necessary.
 大気中の二酸化炭素には、14Cが一定割合(105.5pMC)で含まれているため、大気中の二酸化炭素を取り入れて成長する植物、例えばトウモロコシ中の14C含有量も105.5pMC程度であることが知られている。また、化石燃料中には14Cが殆ど含まれていないことも知られている。したがって、ポリエステル中の全炭素原子中に含まれる14Cの割合を測定することにより、バイオマス由来の炭素の割合を算出することができる。本発明において、「バイオマス度」とは、バイオマス由来成分の質量比率を示すものである。PET(ポリエチレンテレフタレート)を例にとると、PETは、2炭素原子を含むエチレングリコールと8炭素原子を含むテレフタル酸とがモル比1:1で重合したものであり、エチレングリコールとしてバイオマス由来のもののみを使用した場合、PET中のバイオマス由来成分の質量比率は31.25%であるため、バイオマス度は31.25%となる(バイオマス由来のエチレングリコール由来の分子量/ポリエステルの重合1単位の分子量=60÷192)。また、化石燃料由来のポリエステルのバイオマス由来成分の質量比率は0%であり、化石燃料由来のポリエステルのバイオマス度は0%となる。本発明において、バイオマス由来のポリエステルを含む樹脂フィルム中のバイオマス度は、5.0%以上であることが好ましく、更に好ましくは10.0%以上であり、好ましくは30.0%以下である。 Since 14C is contained in the carbon dioxide in the atmosphere at a constant ratio (105.5 pMC), the 14C content in a plant that grows by taking in the carbon dioxide in the atmosphere, for example, corn, is also about 105.5 pMC. It is known. It is also known that fossil fuels contain almost no 14C. Therefore, the proportion of biomass-derived carbon can be calculated by measuring the proportion of 14C contained in all carbon atoms in polyester. In the present invention, the "biomass degree" indicates the mass ratio of biomass-derived components. Taking PET (polyethylene terephthalate) as an example, PET is obtained by polymerizing ethylene glycol containing 2 carbon atoms and terephthalic acid containing 8 carbon atoms at a molar ratio of 1: 1 and is derived from biomass as ethylene glycol. When only is used, the mass ratio of the biomass-derived component in PET is 31.25%, so that the degree of biomass is 31.25% (molecular weight derived from ethylene glycol derived from biomass / molecular weight of 1 unit of polymerization of polyester). = 60 ÷ 192). Further, the mass ratio of the biomass-derived component of the fossil fuel-derived polyester is 0%, and the biomass degree of the fossil fuel-derived polyester is 0%. In the present invention, the degree of biomass in the resin film containing the polyester derived from biomass is preferably 5.0% or more, more preferably 10.0% or more, and preferably 30.0% or less.
 バイオマス由来のポリエステルを含む樹脂フィルムは二軸延伸されていることが好ましい。二軸延伸は従来公知の方法で行うことができる。例えば、上記のようにして冷却ドラム上に押し出されたフィルムを、続いて、ロール加熱、赤外線加熱などで加熱し、縦方向に延伸して縦延伸フィルムとする。この延伸は2個以上のロールの周速差を利用して行うのが好ましい。縦延伸は、通常、50~100℃の温度範囲で行われる。また、縦延伸の倍率は、フィルム用途の要求特性にもよるが、2.5倍以上4.2倍以下とするのが好ましい。延伸倍率が2.5倍未満の場合は、ポリエステルフィルムの厚み斑が大きくなり良好なフィルムを得ることが難しい。 It is preferable that the resin film containing the biomass-derived polyester is biaxially stretched. Biaxial stretching can be performed by a conventionally known method. For example, the film extruded onto the cooling drum as described above is subsequently heated by roll heating, infrared heating, or the like, and stretched in the vertical direction to obtain a vertically stretched film. This stretching is preferably performed by utilizing the difference in peripheral speed between two or more rolls. The longitudinal stretching is usually carried out in a temperature range of 50 to 100 ° C. Further, the magnification of longitudinal stretching depends on the required characteristics of the film application, but is preferably 2.5 times or more and 4.2 times or less. When the draw ratio is less than 2.5 times, the thickness unevenness of the polyester film becomes large, and it is difficult to obtain a good film.
 縦延伸されたフィルムは、続いて横延伸、熱固定、熱弛緩の各処理工程を順次施して二軸延伸フィルムとなる。横延伸は、通常、50~100℃の温度範囲で行われる。横延伸の倍率は、この用途の要求特性にもよるが、2.5倍以上5.0倍以下が好ましい。2.5倍未満の場合はフィルムの厚み斑が大きくなり良好なフィルムが得られにくく、5.0倍を超える場合は製膜中に破断が発生しやすくなる。 The vertically stretched film is subsequently subjected to each of the treatment steps of lateral stretching, heat fixing, and heat relaxation to become a biaxially stretched film. The transverse stretching is usually carried out in a temperature range of 50 to 100 ° C. The lateral stretching ratio depends on the required characteristics of this application, but is preferably 2.5 times or more and 5.0 times or less. If it is less than 2.5 times, the thickness unevenness of the film becomes large and it is difficult to obtain a good film, and if it exceeds 5.0 times, breakage is likely to occur during film formation.
 横延伸のあと、続いて熱固定処理を行うが、好ましい熱固定の温度範囲は、ポリエステルのTg+70~Tm-10℃である。また、熱固定時間は1~60秒が好ましい。更に熱収縮率の低滅が必要な用途については、必要に応じて熱弛緩処理を行ってもよい。 After the transverse stretching, the heat fixing treatment is subsequently performed, and the preferable temperature range of the heat fixing is Tg + 70 to Tm-10 ° C. of polyester. The heat fixing time is preferably 1 to 60 seconds. Further, for applications that require a reduction in the heat shrinkage rate, heat relaxation treatment may be performed as necessary.
 バイオマス由来のポリエステルを含む樹脂フィルムの厚さは、その用途に応じて任意であるが、通常、5~500μm程度である。バイオマス由来のポリエステルを含む樹脂フィルムの破断強度は、MD方向で5~40kgf/mm、TD方向で5~35kgf/mmであり、また、破断伸度は、MD方向で50~350%、TD方向で50~300%である。また、150℃の温度環境下に30分放置した時の収縮率は、0.1~5%である。 The thickness of the resin film containing the biomass-derived polyester is arbitrary depending on its use, but is usually about 5 to 500 μm. Breaking strength of a resin film comprising a polyester derived from biomass is 5 ~ 35kgf / mm 2 at 5 ~ 40kgf / mm 2, TD direction MD direction, elongation at break, 50 to 350% in MD direction, It is 50 to 300% in the TD direction. The shrinkage rate when left in a temperature environment of 150 ° C. for 30 minutes is 0.1 to 5%.
 バイオマス由来のポリエステルを含む樹脂フィルムは、袋、蓋材、ラミチューブなどの包装製品、各種ラベル材料、シート成型品等の用途に好適に使用することができる。なお、リサイクルPETを含む樹脂フィルムを包装製品の用途に使用する場合、延伸フィルムの厚さは、5~30μmであることが好ましい。 The resin film containing polyester derived from biomass can be suitably used for applications such as bags, lid materials, packaging products such as Lami tubes, various label materials, and sheet molded products. When a resin film containing recycled PET is used for packaging products, the thickness of the stretched film is preferably 5 to 30 μm.
 <リサイクルPETフィルム>
 リサイクルPETフィルムは、リサイクルPETを含む樹脂フィルムであり、メカニカルリサイクルによりリサイクルされたPETを含む。具体的には、PETボトルをメカニカルリサイクルによりリサイクルしたPETを含み、このPETは、ジオール成分がエチレングリコールであり、ジカルボン酸成分としてテレフタル酸及びイソフタル酸を含む。
<Recycled PET film>
The recycled PET film is a resin film containing recycled PET, and includes PET recycled by mechanical recycling. Specifically, it contains PET in which a PET bottle is recycled by mechanical recycling, and this PET contains ethylene glycol as a diol component and terephthalic acid and isophthalic acid as a dicarboxylic acid component.
 ここで、メカニカルリサイクルとは、一般に、回収されたPETボトル等のポリエチレンテレフタレート樹脂製品を粉砕、アルカリ洗浄してPET樹脂製品の表面の汚れ、異物を除去した後、高温・減圧下で一定時間乾燥してPET樹脂の内部に留まっている汚染物質を拡散させ除染を行い、PET樹脂からなる樹脂製品の汚れを取り除き、再びPET樹脂に戻す方法である。 Here, mechanical recycling generally refers to crushing a recovered polyethylene terephthalate resin product such as a PET bottle, cleaning it with an alkali to remove stains and foreign substances on the surface of the PET resin product, and then drying it at a high temperature and under reduced pressure for a certain period of time. This is a method in which the pollutants remaining inside the PET resin are diffused and decontaminated to remove stains on the resin product made of the PET resin, and the resin product is returned to the PET resin again.
 以下、PETボトルをリサイクルしたポリエチレンテレフタレートを「リサイクルポリエチレンテレフタレート(以下、リサイクルPETとも記す)」といい、リサイクルされていないポリエチレンテレフタレートを「ヴァージンポリエチレンテレフタレート(以下、ヴァージンPETとも記す)」というものとする。 Hereinafter, polyethylene terephthalate obtained by recycling PET bottles will be referred to as "recycled polyethylene terephthalate (hereinafter, also referred to as recycled PET)", and non-recycled polyethylene terephthalate shall be referred to as "virgin polyethylene terephthalate (hereinafter, also referred to as virgin PET)". ..
 基材に含まれるPETのうち、イソフタル酸成分の含有量は、PETを構成する全ジカルボン酸成分中に、0.5モル%以上5モル%以下であることが好ましく、1.0モル%以上2.5モル%以下であることがより好ましい。イソフタル酸成分の含有量が0.5モル%未満であると柔軟性が向上しない場合があり、一方、5モル%を超えるとPETの融点が下がり耐熱性が不十分となる場合がある。 The content of the isophthalic acid component in the PET contained in the base material is preferably 0.5 mol% or more and 5 mol% or less, and 1.0 mol% or more, in the total dicarboxylic acid component constituting the PET. More preferably, it is 2.5 mol% or less. If the content of the isophthalic acid component is less than 0.5 mol%, the flexibility may not be improved, while if it exceeds 5 mol%, the melting point of PET may be lowered and the heat resistance may be insufficient.
 なお、PETは、通常の化石燃料由来のPETの他、バイオマス由来のPETであってもよい。このバイオマス由来のPETは、バイオマス由来のエチレングリコールをジオール成分とし、化石燃料由来のジカルボン酸をジカルボン酸成分とするPETである。 The PET may be a biomass-derived PET as well as a normal fossil fuel-derived PET. This biomass-derived PET is a PET containing ethylene glycol derived from biomass as a diol component and a dicarboxylic acid derived from fossil fuel as a dicarboxylic acid component.
 PETボトルに用いられるPETは、上記したジオール成分とジカルボン酸成分とを重縮合させる従来公知の方法により得ることができる。具体的には、上記のジオール成分とジカルボン酸成分とのエステル化反応及び/又はエステル交換反応を行った後、減圧下での重縮合反応を行うといった溶融重合の一般的な方法、又は有機溶媒を用いた公知の溶液加熱脱水縮合方法などによって製造することができる。上記PETを製造する際に用いるジオール成分の使用量は、ジカルボン酸又はその誘導体100モルに対し、実質的に等モルであるが、一般には、エステル化及び/又はエステル交換反応及び/又は縮重合反応中の留出があることから、0.1モル%以上20モル%以下過剰に用いられる。また、重縮合反応は、重合触媒の存在下で行うことが好ましい。重合触媒の添加時期は、重縮合反応以前であれば特に限定されず、原料仕込み時に添加しておいてもよく、減圧開始時に添加してもよい。 The PET used in the PET bottle can be obtained by a conventionally known method of polycondensing the above-mentioned diol component and dicarboxylic acid component. Specifically, a general method of melt polymerization such as an esterification reaction and / or an ester exchange reaction between the above diol component and a dicarboxylic acid component and then a polycondensation reaction under reduced pressure, or an organic solvent. It can be produced by a known solution heating dehydration condensation method or the like using the above. The amount of the diol component used in producing the PET is substantially equimolar to 100 mol of the dicarboxylic acid or its derivative, but generally, esterification and / or transesterification reaction and / or polycondensation. Since there is distillation during the reaction, it is used in excess of 0.1 mol% or more and 20 mol% or less. Further, the polycondensation reaction is preferably carried out in the presence of a polymerization catalyst. The timing of adding the polymerization catalyst is not particularly limited as long as it is before the polycondensation reaction, and it may be added at the time of raw material preparation or at the start of reduced pressure.
 PETボトルをリサイクルしたPETは、上記のようにして重合して固化させた後、更に重合度を高めたり、環状三量体などのオリゴマーを除去したりするため、必要に応じて固相重合を行ってもよい。具体的には、固相重合は、PETをチップ化して乾燥させた後、100℃以上180℃以下の温度で1時間から8時間程度加熱してPETを予備結晶化させ、続いて、190℃以上230℃以下の温度で、不活性ガス雰囲気下又は減圧下において1時間~数十時間加熱することにより行われる。 PET bottles made from recycled PET bottles are polymerized and solidified as described above, and then solid-phase polymerization is performed as necessary in order to further increase the degree of polymerization and remove oligomers such as cyclic trimers. You may go. Specifically, in solid-phase polymerization, PET is chipped and dried, and then heated at a temperature of 100 ° C. or higher and 180 ° C. or lower for about 1 to 8 hours to pre-crystallize the PET, followed by 190 ° C. It is carried out by heating at a temperature of 230 ° C. or lower for 1 hour to several tens of hours in an inert gas atmosphere or under reduced pressure.
 リサイクルPETに含まれるPETの極限粘度は、0.58dl/g以上0.80dl/g以下であることが好ましい。極限粘度が0.58dl/g未満の場合は、樹脂基材としてPETフィルムに要求される機械特性が不足する可能性がある。他方、極限粘度が0.80dl/gを超えると、フィルム製膜工程における生産性が損なわれる場合がある。なお、極限粘度は、オルトクロロフェノール溶液で、35℃において測定される。 The ultimate viscosity of PET contained in recycled PET is preferably 0.58 dl / g or more and 0.80 dl / g or less. If the ultimate viscosity is less than 0.58 dl / g, the mechanical properties required for the PET film as a resin base material may be insufficient. On the other hand, if the ultimate viscosity exceeds 0.80 dl / g, the productivity in the film forming process may be impaired. The ultimate viscosity is measured with an orthochlorophenol solution at 35 ° C.
 リサイクルPETは、リサイクルPETを50質量%以上95質量%以下の割合で含むことが好ましく、リサイクルPETの他、ヴァージンPETを含んでいてもよい。ヴァージンPETとしては、上記したようなジオール成分がエチレングリコールであり、ジカルボン酸成分がテレフタル酸及びイソフタル酸を含むPETであってもよく、また、ジカルボン酸成分がイソフタル酸を含まないPETであってもよい。例えば、ジカルボン酸成分として、テレフタル酸及びイソフタル酸などの芳香族ジカルボン酸以外にも、脂肪族ジカルボン酸等が含まれていてもよい。 The recycled PET preferably contains recycled PET in a proportion of 50% by mass or more and 95% by mass or less, and may contain virgin PET in addition to recycled PET. As the virgin PET, the diol component as described above may be ethylene glycol, the dicarboxylic acid component may be PET containing terephthalic acid and isophthalic acid, and the dicarboxylic acid component may be PET containing no isophthalic acid. May be good. For example, as the dicarboxylic acid component, an aliphatic dicarboxylic acid or the like may be contained in addition to the aromatic dicarboxylic acid such as terephthalic acid and isophthalic acid.
 脂肪族ジカルボン酸としては、具体的には、シュウ酸、コハク酸、グルタル酸、アジピン酸、セバシン酸、ドデカン二酸、ダイマー酸並びにシクロヘキサンジカルボン酸などの、通常炭素数が2以上40以下の鎖状又は脂環式ジカルボン酸が挙げられる。脂肪族ジカルボン酸の誘導体としては、上記脂肪族ジカルボン酸のメチルエステル、エチルエステル、プロピルエステル及びブチルエステルなどの低級アルキルエステル、無水コハク酸などの上記脂肪族ジカルボン酸の環状酸無水物が挙げられる。これらの中でも、脂肪族ジカルボン酸としては、アジピン酸、コハク酸、ダイマー酸又はこれらの混合物が好ましく、コハク酸を主成分とするものが特に好ましい。脂肪族ジカルボン酸の誘導体としては、アジピン酸及びコハク酸のメチルエステル、又はこれらの混合物がより好ましい。 Specific examples of the aliphatic dicarboxylic acid include chains having 2 to 40 carbon atoms, such as oxalic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, dodecanedioic acid, dimer acid, and cyclohexanedicarboxylic acid. The shape or alicyclic dicarboxylic acid can be mentioned. Examples of the derivative of the aliphatic dicarboxylic acid include lower alkyl esters such as methyl ester, ethyl ester, propyl ester and butyl ester of the aliphatic dicarboxylic acid, and cyclic acid anhydride of the aliphatic dicarboxylic acid such as succinic anhydride. .. Among these, as the aliphatic dicarboxylic acid, adipic acid, succinic acid, dimer acid or a mixture thereof is preferable, and one containing succinic acid as a main component is particularly preferable. As the derivative of the aliphatic dicarboxylic acid, a methyl ester of adipic acid and succinic acid, or a mixture thereof is more preferable.
 リサイクルPETを含む樹脂フィルムを構成する樹脂組成物中の樹脂は、リサイクルPETのみで構成されていてもよいし、リサイクルPETに加えて、ヴァージンPETを含んでいてもよい。また、リサイクルPETフィルムは、単層であってもよく、多層であってもよい。リサイクルPETを含む樹脂フィルムを最内層/中間層/最外層の3層とする場合、中間層をリサイクルPETのみから構成される層又はリサイクルPETとヴァージンPETとの混合層とし、両側の最内層及び最外層は、ヴァージンPETのみから構成される層とすることが好ましい。このように、最内層及び最外層にヴァージンPETのみを用いることにより、リサイクルPETが樹脂フィルムの表面又は裏面から表出することを防止することができる。このため、積層体の衛生性を確保することができる。また、リサイクルPETを含む樹脂フィルムを2層とする場合、一方の層をリサイクルPETのみから構成される層又はリサイクルPETとヴァージンPETとの混合層とし、他方の層は、ヴァージンPETのみから構成される層とすることが好ましい。リサイクルPETとヴァージンPETとを混合してリサイクルPETを含む樹脂フィルムを単層で成形する場合には、別々に成形機に供給する方法、ドライブレンド等で混合した後に供給する方法などがある。中でも、操作が簡便であるという観点から、ドライブレンドで混合する方法が好ましい。 The resin in the resin composition constituting the resin film containing recycled PET may be composed of only recycled PET, or may contain virgin PET in addition to recycled PET. Further, the recycled PET film may be a single layer or a multilayer. When the resin film containing recycled PET has three layers of innermost layer / intermediate layer / outermost layer, the intermediate layer is a layer composed of only recycled PET or a mixed layer of recycled PET and virgin PET, and the innermost layers on both sides and the outermost layer. The outermost layer is preferably a layer composed of only virgin PET. As described above, by using only virgin PET for the innermost layer and the outermost layer, it is possible to prevent the recycled PET from being exposed from the front surface or the back surface of the resin film. Therefore, the hygiene of the laminated body can be ensured. When the resin film containing recycled PET is used as two layers, one layer is a layer composed of only recycled PET or a mixed layer of recycled PET and virgin PET, and the other layer is composed of only virgin PET. It is preferable to use a layer. When a resin film containing recycled PET is formed by mixing recycled PET and virgin PET in a single layer, there are a method of separately supplying the resin film to a molding machine, a method of supplying the resin film after mixing with a dry blend or the like, and the like. Above all, the method of mixing by dry blend is preferable from the viewpoint of easy operation.
 リサイクルポリエチレンPETを含む樹脂フィルムを構成する樹脂組成物は、その製造工程において、又はその製造後に、その特性が損なわれない範囲において各種の添加剤を含有することができる。添加剤として、例えば、可塑剤、紫外線安定化剤、着色防止剤、艶消し剤、消臭剤、難燃剤、耐候剤、帯電防止剤、摩擦低減剤、離型剤、抗酸化剤、イオン交換剤、着色顔料などが挙げられる。添加剤は、PETを含む樹脂組成物全体中に、5質量%以上50質量%以下、好ましくは5質量%以上20質量%以下の範囲で含有されることが好ましい。 The resin composition constituting the resin film containing recycled polyethylene PET can contain various additives in the manufacturing process thereof or after the manufacturing thereof as long as the characteristics are not impaired. Additives include, for example, plasticizers, UV stabilizers, color inhibitors, matting agents, deodorants, flame retardants, weathering agents, antistatic agents, friction reducing agents, mold release agents, antioxidants, ion exchange. Agents, coloring pigments and the like can be mentioned. The additive is preferably contained in the entire resin composition containing PET in the range of 5% by mass or more and 50% by mass or less, preferably 5% by mass or more and 20% by mass or less.
 リサイクルPETを含む樹脂フィルムは、例えば、Tダイ法によってフィルム化することにより形成することができる。具体的には、上記したPETを乾燥させた後、PETの融点以上の温度(Tm)~Tm+70℃の温度に加熱された溶融押出機に供給して、樹脂組成物を溶融し、例えばTダイなどのダイよりシート状に押出し、押出されたシート状物を回転している冷却ドラムなどで急冷固化することによりフィルムを成形することができる。溶融押出機としては、一軸押出機、二軸押出機、ベント押出機、タンデム押出機等を目的に応じて使用することができる。 The resin film containing recycled PET can be formed, for example, by forming a film by the T-die method. Specifically, after the above-mentioned PET is dried, it is supplied to a melt extruder heated to a temperature (Tm) to Tm + 70 ° C. above the melting point of PET to melt the resin composition, for example, a T die. The film can be formed by extruding the extruded sheet-like material into a sheet from a die such as, and quenching and solidifying the extruded sheet-like material with a rotating cooling drum or the like. As the melt extruder, a single-screw extruder, a twin-screw extruder, a vent extruder, a tandem extruder and the like can be used depending on the purpose.
 リサイクルPETを含む樹脂フィルムは二軸延伸されていることが好ましい。二軸延伸は従来公知の方法で行うことができる。例えば、上記のようにして冷却ドラム上に押し出されたフィルムを、続いて、ロール加熱、赤外線加熱などで加熱し、縦方向に延伸して縦延伸フィルムとする。この延伸は2個以上のロールの周速差を利用して行うのが好ましい。縦延伸は、通常、50℃以上100℃以下の温度範囲で行われる。また、縦延伸の倍率は、フィルム用途の要求特性にもよるが、2.5倍以上4.2倍以下とするのが好ましい。延伸倍率が2.5倍未満の場合は、PETフィルムの厚み斑が大きくなり良好なフィルムを得ることが難しい。縦延伸されたフィルムは、続いて横延伸、熱固定、熱弛緩の各処理工程を順次施して二軸延伸フィルムとなる。横延伸は、通常、50℃以上100℃以下の温度範囲で行われる。横延伸の倍率は、この用途の要求特性にもよるが、2.5倍以上5.0倍以下が好ましい。2.5倍未満の場合はフィルムの厚み斑が大きくなり良好なフィルムが得られにくく、5.0倍を超える場合は製膜中に破断が発生しやすくなる。横延伸のあと、続いて熱固定処理を行うが、好ましい熱固定の温度範囲は、PETのTg+70~Tm-10℃である。また、熱固定時間は1秒以上60秒以下が好ましい。更に熱収縮率の低滅が必要な用途については、必要に応じて熱弛緩処理を行ってもよい。 It is preferable that the resin film containing recycled PET is biaxially stretched. Biaxial stretching can be performed by a conventionally known method. For example, the film extruded onto the cooling drum as described above is subsequently heated by roll heating, infrared heating, or the like, and stretched in the vertical direction to obtain a vertically stretched film. This stretching is preferably performed by utilizing the difference in peripheral speed between two or more rolls. The longitudinal stretching is usually carried out in a temperature range of 50 ° C. or higher and 100 ° C. or lower. Further, the magnification of longitudinal stretching depends on the required characteristics of the film application, but is preferably 2.5 times or more and 4.2 times or less. When the draw ratio is less than 2.5 times, the thickness unevenness of the PET film becomes large and it is difficult to obtain a good film. The vertically stretched film is subsequently subjected to each of the treatment steps of transverse stretching, heat fixing, and heat relaxation to obtain a biaxially stretched film. The transverse stretching is usually carried out in a temperature range of 50 ° C. or higher and 100 ° C. or lower. The lateral stretching ratio depends on the required characteristics of this application, but is preferably 2.5 times or more and 5.0 times or less. If it is less than 2.5 times, the thickness unevenness of the film becomes large and it is difficult to obtain a good film, and if it exceeds 5.0 times, breakage is likely to occur during film formation. After the transverse stretching, the heat fixing treatment is subsequently performed, and the preferable temperature range of the heat fixing is Tg + 70 to Tm-10 ° C. of PET. The heat fixing time is preferably 1 second or more and 60 seconds or less. Further, for applications that require a reduction in the heat shrinkage rate, heat relaxation treatment may be performed as necessary.
 リサイクルPETを含む樹脂フィルムの厚さは、その用途に応じて任意であるが、通常、5~500μm程度である。リサイクルPETを含む樹脂フィルムの破断強度は、MD方向で5kgf/mm以上40kgf/mm以下、TD方向で5kgf/mm以上35kgf/mm以下であり、また、破断伸度は、MD方向で50%以上350%以下、TD方向で50%以上300%以下である。また、150℃の温度環境下に30分放置した時の収縮率は、0.1%以上5%以下である。 The thickness of the resin film containing recycled PET is arbitrary depending on the intended use, but is usually about 5 to 500 μm. Breaking strength of the resin film containing the recycled PET is a MD direction 5 kgf / mm 2 or more 40 kgf / mm 2 or less, at 35 kgf / mm 2 or less 5 kgf / mm 2 or more in the TD direction, elongation at break, MD direction Is 50% or more and 350% or less, and 50% or more and 300% or less in the TD direction. The shrinkage rate when left in a temperature environment of 150 ° C. for 30 minutes is 0.1% or more and 5% or less.
 なお、ヴァージンPETは、化石燃料ポリエチレンテレフタレート(以下化石燃料PETとも記す)であってもよく、バイオマスPETであってもよい。ここで、「化石燃料PET」とは、化石燃料由来のジオールをジオール成分とし、化石燃料由来のジカルボン酸をジカルボン酸成分とするものである。また、リサイクルPETは、化石燃料PETを用いて形成されたPET樹脂製品をリサイクルして得られるものであってもよく、バイオマスPETを用いて形成されたPET樹脂製品をリサイクルして得られるものであってもよい。 The virgin PET may be fossil fuel polyethylene terephthalate (hereinafter, also referred to as fossil fuel PET) or biomass PET. Here, the "fossil fuel PET" has a diol derived from fossil fuel as a diol component and a dicarboxylic acid derived from fossil fuel as a dicarboxylic acid component. Further, the recycled PET may be obtained by recycling a PET resin product formed by using fossil fuel PET, or may be obtained by recycling a PET resin product formed by using biomass PET. There may be.
 リサイクルPETを含む樹脂フィルムは、袋、蓋材、ラミチューブなどの包装製品、各種ラベル材料、シート成型品等の用途に好適に使用することができる。なお、リサイクルPETを含む樹脂フィルムを包装製品の用途に使用する場合、延伸フィルムの厚さは、5~30μmであることが好ましい。 The resin film containing recycled PET can be suitably used for applications such as bags, lid materials, packaging products such as Lami tubes, various label materials, and sheet molded products. When a resin film containing recycled PET is used for packaging products, the thickness of the stretched film is preferably 5 to 30 μm.
 <高スティッフネスPETフィルム(強靭PETフィルム)>
 高スティフネスPETフィルムは、ポリエステルを主成分として含み、少なくとも1つの方向において0.0017N/15mm以上のループスティフネスを有する。高スティフネスフィルムは、例えば流れ方向(MD)又は垂直方向(TD)の少なくとも一方において0.0017N以上のループスティフネスを有する。高スティフネスフィルムは、例えば流れ方向(MD)及び垂直方向(TD)の両方において0.0017N以上のループスティフネスを有していてもよい。
<High stiffness PET film (tough PET film)>
The high-stiffness PET film contains polyester as a main component and has a loop stiffness of 0.0017 N / 15 mm or more in at least one direction. The high stiffness film has a loop stiffness of 0.0017 N or more in at least one of the flow direction (MD) and the vertical direction (TD), for example. The high stiffness film may have a loop stiffness of 0.0017 N or more in both the flow direction (MD) and the vertical direction (TD), for example.
 ループスティフネスとは、フィルムのこしの強さを表すパラメータである。以下、図15~図20を参照して、ループスティフネスの測定方法を説明する。なお、以下に説明する測定方法は、延伸プラスチックフィルムなどの単層のフィルムだけでなく、蒸着フィルム、積層フィルムなどの、複数の層を含むフィルムに関しても使用可能である。蒸着フィルムとは、延伸プラスチックフィルムなどの単層のフィルムと、単層のフィルム上に形成されている蒸着膜と、を含むフィルムである。積層フィルムとは、積層された複数のフィルムを含むフィルムである。 Loop stiffness is a parameter that indicates the strength of the film. Hereinafter, a method for measuring loop stiffness will be described with reference to FIGS. 15 to 20. The measuring method described below can be used not only for a single-layer film such as a stretched plastic film but also for a film containing a plurality of layers such as a vapor-deposited film and a laminated film. The thin-film film is a film including a single-layer film such as a stretched plastic film and a thin-film film formed on the single-layer film. The laminated film is a film containing a plurality of laminated films.
 図15は、試験片40及びループスティフネス測定器45を示す平面図であり、図16は、図15の試験片40及びループスティフネス測定器45の線IV-IVに沿った断面図である。試験片40は、長辺及び短辺を有する矩形状のフィルムである。本願においては、試験片40の長辺の長さL1を150mmとし、短辺の長さL2を15mmとした。ループスティフネス測定器45としては、例えば、東洋精機社製のNo.581ループステフネステスタ(登録商標)LOOP STIFFNESS TESTER DA型を用いることができる。なお、試験片40の長辺の長さL1は、後述する一対のチャック部46によって試験片40を把持することができる限りにおいて、調整可能である。 FIG. 15 is a plan view showing the test piece 40 and the loop stiffness measuring instrument 45, and FIG. 16 is a cross-sectional view of the test piece 40 and the loop stiffness measuring instrument 45 of FIG. 15 along lines IV-IV. The test piece 40 is a rectangular film having a long side and a short side. In the present application, the length L1 of the long side of the test piece 40 is 150 mm, and the length L2 of the short side is 15 mm. As the loop stiffness measuring instrument 45, for example, No. 1 manufactured by Toyo Seiki Co., Ltd. 581 Loop Steph NESSA (registered trademark) LOOP STIFFNESS TESTER DA type can be used. The length L1 of the long side of the test piece 40 can be adjusted as long as the test piece 40 can be gripped by the pair of chuck portions 46 described later.
 ループスティフネス測定器45は、試験片40の長辺方向の一対の端部を把持するための一対のチャック部46と、チャック部46を支持する支持部材47と、を有する。チャック部46は、第1チャック461及び第2チャック462を含む。図15及び図16に示す状態において、試験片40は、一対の第1チャック461の上に配置されており、第2チャック462は、第1チャック461との間で試験片40を未だ把持していない。後述するように、測定時、試験片40は、チャック部46の第1チャック461と第2チャック462との間に把持される。第2チャック462は、ヒンジ機構を介して第1チャック461に連結されていてもよい。 The loop stiffness measuring instrument 45 has a pair of chuck portions 46 for gripping a pair of end portions in the long side direction of the test piece 40, and a support member 47 for supporting the chuck portions 46. The chuck portion 46 includes a first chuck 461 and a second chuck 462. In the state shown in FIGS. 15 and 16, the test piece 40 is arranged on the pair of first chucks 461, and the second chuck 462 still grips the test piece 40 with the first chuck 461. Not. As will be described later, at the time of measurement, the test piece 40 is gripped between the first chuck 461 and the second chuck 462 of the chuck portion 46. The second chuck 462 may be connected to the first chuck 461 via a hinge mechanism.
 延伸プラスチックフィルム、蒸着フィルム、積層フィルムなどの測定対象のフィルムを、フィルムが包装製品に加工される前の状態で入手可能な場合、試験片40は、測定対象のフィルムを切断することによって製造されてもよい。また、試験片40は、包装袋などの、包装材料から製造された包装製品を切断し、測定対象のフィルムを取り出すことによって製造されてもよい。 When the film to be measured, such as a stretched plastic film, a vapor-deposited film, or a laminated film, is available in a state before the film is processed into a packaged product, the test piece 40 is manufactured by cutting the film to be measured. You may. Further, the test piece 40 may be manufactured by cutting a packaged product manufactured from a packaging material such as a packaging bag and taking out a film to be measured.
 ループスティフネス測定器45を用いて試験片40のループスティフネスを測定する方法について説明する。まず、図15及び図16に示すように、間隔L3を空けて配置されている一対のチャック部46の第1チャック461上に試験片40を載置する。本願においては、後述するループ部41の長さ(以下、ループ長とも称する)が60mmになるよう、間隔L3を設定した。試験片40は、第1チャック461側に位置する内面40xと、内面40xの反対側に位置する外面40yと、を含む。試験片40が包装材料からなる場合、試験片40の内面40x及び外面40yは、包装材料の内面及び外面に一致する。後述するループ部41を試験片40に形成する際、内面40xがループ部41の内側に位置し、外面40yがループ部41の外側に位置する。続いて、図17に示すように、第1チャック461との間で試験片40の長辺方向の端部を把持するよう、第2チャック462を試験片40の上に配置する。 A method of measuring the loop stiffness of the test piece 40 using the loop stiffness measuring device 45 will be described. First, as shown in FIGS. 15 and 16, the test piece 40 is placed on the first chuck 461 of the pair of chuck portions 46 arranged at intervals L3. In the present application, the interval L3 is set so that the length of the loop portion 41 (hereinafter, also referred to as the loop length) described later is 60 mm. The test piece 40 includes an inner surface 40x located on the side of the first chuck 461 and an outer surface 40y located on the opposite side of the inner surface 40x. When the test piece 40 is made of a packaging material, the inner surface 40x and the outer surface 40y of the test piece 40 correspond to the inner surface and the outer surface of the packaging material. When the loop portion 41 described later is formed on the test piece 40, the inner surface 40x is located inside the loop portion 41 and the outer surface 40y is located outside the loop portion 41. Subsequently, as shown in FIG. 17, the second chuck 462 is arranged on the test piece 40 so as to grip the end portion of the test piece 40 in the long side direction with the first chuck 461.
 続いて、図18に示すように、一対のチャック部46の間の間隔が縮まる方向において、一対のチャック部46の少なくとも一方を支持部材47上でスライドさせる。これにより、試験片40にループ部41を形成することができる。図18に示す試験片40は、ループ部41と、一対の中間部42及び一対の固定部43とを有する。一対の固定部43は、試験片40のうち一対のチャック部46によって把持されている部分である。一対の中間部42は、試験片40のうちループ部41と一対の中間部42との間に位置している部分である。図18に示すように、チャック部46は、一対の中間部42の内面40x同士が接触するまで支持部材47上でスライドされる。これにより、60mmのループ長を有するループ部41を形成することができる。ループ部41のループ長は、一方の第2チャック462のループ部41側の面と試験片40とが交わる位置P1と、他方の第2チャック462のループ部41側の面と試験片40とが交わる位置P2との間における、試験片40の長さである。上述の間隔L3は、試験片40の厚みを無視する場合、ループ部41の長さに2×tを加えた値になる。tは、チャック部46の第2チャック462の厚みである。 Subsequently, as shown in FIG. 18, at least one of the pair of chuck portions 46 is slid on the support member 47 in the direction in which the distance between the pair of chuck portions 46 is reduced. As a result, the loop portion 41 can be formed on the test piece 40. The test piece 40 shown in FIG. 18 has a loop portion 41, a pair of intermediate portions 42, and a pair of fixing portions 43. The pair of fixing portions 43 are portions of the test piece 40 that are gripped by the pair of chuck portions 46. The pair of intermediate portions 42 are portions of the test piece 40 located between the loop portion 41 and the pair of intermediate portions 42. As shown in FIG. 18, the chuck portion 46 is slid on the support member 47 until the inner surfaces 40x of the pair of intermediate portions 42 come into contact with each other. As a result, the loop portion 41 having a loop length of 60 mm can be formed. The loop length of the loop portion 41 is the position P1 at which the surface of one second chuck 462 on the loop portion 41 side and the test piece 40 intersect, and the surface of the other second chuck 462 on the loop portion 41 side and the test piece 40. It is the length of the test piece 40 with respect to the position P2 where the test pieces intersect. The above-mentioned interval L3 is a value obtained by adding 2 × t to the length of the loop portion 41 when the thickness of the test piece 40 is ignored. t is the thickness of the second chuck 462 of the chuck portion 46.
 その後、図19に示すように、チャック部46に対するループ部41の突出方向Yが水平方向になるよう、チャック部46の姿勢を調整する。例えば、支持部材47の法線方向が水平方向を向くように支持部材47を動かすことにより、支持部材47によって支持されているチャック部46の姿勢を調整する。図19に示す例において、ループ部41の突出方向Yは、チャック部の厚み方向に一致している。また、ループ部41の突出方向Yにおいて第2チャック462から距離Z1だけ離れた位置にロードセル48を準備する。本願においては、距離Z1を50mmとした。続いて、ロードセル48を、試験片40のループ部41に向けて、図19に示す距離Z2だけ速度Vで移動させる。距離Z2は、図19及び図20に示すように、ロードセル48がループ部41に接触し、その後、ロードセル48がループ部41をチャック部46側に押し込むよう、設定される。本願においては、距離Z2を40mmとした。この場合、ロードセル48がループ部41をチャック部46側に押し込んでいる状態におけるロードセル48とチャック部46の第2チャック462との間の距離Z3は、10mmになる。ロードセル48を移動させる速度Vは、3.3mm/秒とした。 After that, as shown in FIG. 19, the posture of the chuck portion 46 is adjusted so that the protruding direction Y of the loop portion 41 with respect to the chuck portion 46 is in the horizontal direction. For example, the posture of the chuck portion 46 supported by the support member 47 is adjusted by moving the support member 47 so that the normal direction of the support member 47 faces the horizontal direction. In the example shown in FIG. 19, the protruding direction Y of the loop portion 41 coincides with the thickness direction of the chuck portion. Further, the load cell 48 is prepared at a position separated from the second chuck 462 by a distance Z1 in the protruding direction Y of the loop portion 41. In the present application, the distance Z1 is set to 50 mm. Subsequently, the load cell 48 is moved toward the loop portion 41 of the test piece 40 at a speed V by the distance Z2 shown in FIG. The distance Z2 is set so that the load cell 48 comes into contact with the loop portion 41 and then the load cell 48 pushes the loop portion 41 toward the chuck portion 46, as shown in FIGS. 19 and 20. In the present application, the distance Z2 is set to 40 mm. In this case, the distance Z3 between the load cell 48 and the second chuck 462 of the chuck portion 46 in the state where the load cell 48 is pushing the loop portion 41 toward the chuck portion 46 is 10 mm. The speed V for moving the load cell 48 was set to 3.3 mm / sec.
 続いて、図20に示す、ロードセル48をチャック部46側に距離Z2だけ移動させ、ロードセル48が試験片40のループ部41を押し込んでいる状態において、ループ部41からロードセル48に加えられている荷重の値が安定した後、荷重の値を記録する。このようにして得られた荷重の値を、試験片40を構成するフィルムのループスティフネスとして採用する。本願において、特に断らない限り、ループスティフネスの測定時の環境は、温度23℃、相対湿度50%である。 Subsequently, as shown in FIG. 20, the load cell 48 is moved toward the chuck portion 46 by a distance Z2, and is added to the load cell 48 from the loop portion 41 in a state where the load cell 48 is pushing the loop portion 41 of the test piece 40. After the load value stabilizes, record the load value. The value of the load thus obtained is adopted as the loop stiffness of the film constituting the test piece 40. In the present application, unless otherwise specified, the environment at the time of measuring the loop stiffness is a temperature of 23 ° C. and a relative humidity of 50%.
 少なくとも1つの方向において0.0017N以上のループスティフネスを有する高スティフネスフィルムを延伸プラスチックフィルムとして用いることにより、延伸プラスチックフィルムの突き刺し強度を高めることができる。これにより、高スティフネスフィルムを備える積層フィルムにおいて、積層フィルムの突き刺し強度を例えば13N以上にすることができ、より好ましくは14N以上にすることができ、更に好ましくは15N以上又は16N以上にすることができる。 By using a high stiffness film having a loop stiffness of 0.0017 N or more in at least one direction as the stretched plastic film, the piercing strength of the stretched plastic film can be increased. Thereby, in the laminated film provided with the high stiffness film, the puncture strength of the laminated film can be made, for example, 13 N or more, more preferably 14 N or more, and further preferably 15 N or more or 16 N or more. it can.
 高スティフネスフィルムの例としては、51質量%以上のPETを含む高スティフネスPETフィルムを挙げることができる。高スティフネスPETフィルムにおけるPETの含有率は、80質量%以上であってもよく、90質量%以上であってもよく、95質量%以上であってもよい。高スティフネスフィルムの厚みは、好ましくは5μm以上であり、より好ましくは7μm以上である。高スティフネスフィルムの厚みは、10μm以上であってもよく、14μm以上であってもよい。また、高スティフネスフィルムの厚みは、好ましくは30μm以下であり、25μm以下であってもよく、20μm以下であってもよい。 An example of a high-stiffness film is a high-stiffness PET film containing 51% by mass or more of PET. The content of PET in the high-stiffness PET film may be 80% by mass or more, 90% by mass or more, or 95% by mass or more. The thickness of the high stiffness film is preferably 5 μm or more, more preferably 7 μm or more. The thickness of the high stiffness film may be 10 μm or more, or 14 μm or more. The thickness of the high stiffness film is preferably 30 μm or less, 25 μm or less, or 20 μm or less.
 高スティフネスフィルムの好ましい機械特性について更に説明する。高スティフネスフィルムの突き刺し強度は、好ましくは10N以上であり、より好ましくは11N以上である。少なくとも1つの方向における高スティフネスフィルムの引張強度は、好ましくは250MPa以上であり、より好ましくは280MPa以上である。例えば、流れ方向における高スティフネスフィルムの引張強度は、好ましくは250MPa以上であり、より好ましくは280MPa以上である。垂直方向における高スティフネスフィルムの引張強度は、好ましくは250MPa以上であり、より好ましくは280MPa以上である。少なくとも1つの方向における高スティフネスフィルムの引張伸度は、好ましくは130%以下であり、より好ましくは120%以下である。例えば、流れ方向における高スティフネスフィルムの引張伸度は、好ましくは130%以下であり、より好ましくは120%以下である。垂直方向における高スティフネスフィルムの引張伸度は、好ましくは120%以下であり、より好ましくは110%以下である。好ましくは、少なくとも1つの方向において、高スティフネスフィルムの引張強度を引張伸度で割った値が2.0〔MPa/%〕以上である。例えば、垂直方向(TD)における高スティフネスフィルムの引張強度を引張伸度で割った値は、好ましくは2.0〔MPa/%〕以上であり、より好ましくは2.2〔MPa/%〕以上である。流れ方向(MD)における高スティフネスフィルムの引張強度を引張伸度で割った値は、好ましくは1.8〔MPa/%〕以上であり、より好ましくは2.0〔MPa/%〕以上である。 The preferable mechanical properties of the high stiffness film will be further described. The piercing strength of the high stiffness film is preferably 10 N or more, more preferably 11 N or more. The tensile strength of the high stiffness film in at least one direction is preferably 250 MPa or more, more preferably 280 MPa or more. For example, the tensile strength of the high stiffness film in the flow direction is preferably 250 MPa or more, more preferably 280 MPa or more. The tensile strength of the high stiffness film in the vertical direction is preferably 250 MPa or more, more preferably 280 MPa or more. The tensile elongation of the high stiffness film in at least one direction is preferably 130% or less, more preferably 120% or less. For example, the tensile elongation of the high stiffness film in the flow direction is preferably 130% or less, more preferably 120% or less. The tensile elongation of the high stiffness film in the vertical direction is preferably 120% or less, more preferably 110% or less. Preferably, in at least one direction, the tensile strength of the high stiffness film divided by the tensile elongation is 2.0 [MPa /%] or more. For example, the value obtained by dividing the tensile strength of the high stiffness film in the vertical direction (TD) by the tensile elongation is preferably 2.0 [MPa /%] or more, and more preferably 2.2 [MPa /%] or more. Is. The value obtained by dividing the tensile strength of the high stiffness film in the flow direction (MD) by the tensile elongation is preferably 1.8 [MPa /%] or more, and more preferably 2.0 [MPa /%] or more. ..
 少なくとも1つの方向における高スティフネスフィルムの熱収縮率は、0.7%以下であることが好ましく、0.5%以下であることがより好ましい。例えば、流れ方向における高スティフネスフィルムの熱収縮率は、0.7%以下であることが好ましく、0.5%以下であることがより好ましい。垂直方向における高スティフネスフィルムの熱収縮率は、0.7%以下であることが好ましく、0.5%以下であることがより好ましい。熱収縮率を測定する際の加熱温度は100℃であり、加熱時間は40分である。 The heat shrinkage of the high stiffness film in at least one direction is preferably 0.7% or less, more preferably 0.5% or less. For example, the heat shrinkage rate of the high stiffness film in the flow direction is preferably 0.7% or less, and more preferably 0.5% or less. The heat shrinkage of the high stiffness film in the vertical direction is preferably 0.7% or less, more preferably 0.5% or less. The heating temperature when measuring the heat shrinkage rate is 100 ° C., and the heating time is 40 minutes.
 少なくとも1つの方向における高スティフネスフィルムのヤング率は、好ましくは4.0GPa以上であり、より好ましくは4.5GPa以上である。例えば、流れ方向における高スティフネスフィルムのヤング率は、好ましくは4.0GPa以上であり、より好ましくは4.5GPa以上である。垂直方向における高スティフネスフィルムのヤング率は、好ましくは4.0GPa以上であり、より好ましくは4.5GPa以上である。 The Young's modulus of the high stiffness film in at least one direction is preferably 4.0 GPa or more, more preferably 4.5 GPa or more. For example, the Young's modulus of a high-stiffness film in the flow direction is preferably 4.0 GPa or more, and more preferably 4.5 GPa or more. The Young's modulus of the high stiffness film in the vertical direction is preferably 4.0 GPa or more, and more preferably 4.5 GPa or more.
 ヤング率は、引張強度及び引張伸度と同様に、JIS K7127に準拠して測定され得る。測定器としては、オリエンテック社製の引張試験機 STA-1150を用いることができる。試験片としては、高スティフネスフィルムを幅15mm、長さ150mmの矩形状のフィルムに切り出したものを用いることができる。試験片を保持する一対のチャックの間の、測定開始時の間隔は100mmであり、引張速度は300mm/分である。なお、試験片の長さは、一対のチャックによって試験片を把持することができる限りにおいて、調整可能である。本願において、特に断らない限り、ヤング率の測定時の環境は、温度25℃、相対湿度50%である。 Young's modulus can be measured in accordance with JIS K7127 as well as tensile strength and tensile elongation. As the measuring instrument, a tensile tester STA-1150 manufactured by Orientec Co., Ltd. can be used. As the test piece, a high-stiffness film cut out into a rectangular film having a width of 15 mm and a length of 150 mm can be used. The distance at the start of measurement between the pair of chucks holding the test piece is 100 mm, and the tensile speed is 300 mm / min. The length of the test piece can be adjusted as long as the test piece can be gripped by a pair of chucks. In the present application, unless otherwise specified, the environment at the time of measuring Young's modulus is a temperature of 25 ° C. and a relative humidity of 50%.
 高スティフネスフィルムは、蒸着膜が設けられた場合であっても、単体の高スティフネスフィルムと同等の機械特性を有している。例えば、酸化アルミニウム蒸着膜3が設けられている高スティフネスフィルムは、少なくとも1つの方向において0.0017N以上のループスティフネスを有している。また、更に蒸着膜の上に有機被覆層が設けられた場合であっても、単体の高スティフネスフィルムと同等の機械特性を有している。例えば、酸化アルミニウム蒸着膜及び有機被覆層が設けられている高スティフネスフィルムは、少なくとも1つの方向において0.0017N以上のループスティフネスを有している。 The high-stiffness film has the same mechanical properties as a single high-stiffness film even when a vapor-deposited film is provided. For example, the high stiffness film provided with the aluminum oxide vapor deposition film 3 has a loop stiffness of 0.0017 N or more in at least one direction. Further, even when the organic coating layer is further provided on the vapor-deposited film, it has the same mechanical properties as a single high-stiffness film. For example, a high-stiffness film provided with an aluminum oxide vapor-deposited film and an organic coating layer has a loop stiffness of 0.0017 N or more in at least one direction.
 高スティフネスフィルムの製造工程においては、例えば、まず、ポリエステルを溶融及び成形することによって得られたプラスチックフィルムを、流れ方向及び垂直方向において、それぞれ90℃~145℃で3倍~4.5倍に延伸する第1延伸工程を実施する。続いて、プラスチックフィルムを、流れ方向及び垂直方向において、それぞれ100℃~145℃で1.1倍~3.0倍に延伸する第2延伸工程を実施する。その後、190℃~220℃の温度で熱固定を行う。続いて、流れ方向及び垂直方向において、100℃~190℃の温度で0.2%~2.5%程度の弛緩処理(フィルム幅を縮める処理)を実施する。これらの工程において、延伸倍率、延伸温度、熱固定温度、弛緩処理率を調整することにより、上述の機械特性を備える高スティフネスフィルムを得ることができる。 In the process of manufacturing a high-stiffness film, for example, first, a plastic film obtained by melting and molding polyester is tripled to 4.5 times at 90 ° C. to 145 ° C. in the flow direction and the vertical direction, respectively. The first stretching step of stretching is carried out. Subsequently, a second stretching step of stretching the plastic film 1.1 to 3.0 times at 100 ° C. to 145 ° C. in the flow direction and the vertical direction is carried out. Then, heat fixing is performed at a temperature of 190 ° C. to 220 ° C. Subsequently, in the flow direction and the vertical direction, a relaxation treatment (a treatment for reducing the film width) of about 0.2% to 2.5% is carried out at a temperature of 100 ° C. to 190 ° C. By adjusting the stretching ratio, stretching temperature, heat fixing temperature, and relaxation treatment rate in these steps, a high-stiffness film having the above-mentioned mechanical properties can be obtained.
 高スティフネスフィルムの具体例としては、東レ株式会社製のXP-55を用いることができる。この高スティフネスフィルムは二軸延伸されており、90質量%以上のPETを含み、厚みは16μmである。この高スティフネスPETフィルムのループスティフネスの測定値は、流れ方向及び垂直方向のいずれにおいても0.0021Nであった。また、流れ方向における高スティフネスPETフィルムのヤング率は4.8GPaであり、垂直方向における高スティフネスPETフィルムのヤング率は4.7GPaであった。また、流れ方向における高スティフネスPETフィルムの引張強度は292MPaであり、垂直方向における高スティフネスPETフィルムの引張強度は257MPaであった。また、流れ方向における高スティフネスPETフィルムの引張伸度は107%であり、垂直方向における高スティフネスPETフィルムの引張伸度は102%であった。この場合、流れ方向における高スティフネスPETフィルムの引張強度を引張伸度で割った値は2.73〔MPa/%〕であり、垂直方向における高スティフネスPETフィルムの引張強度を引張伸度で割った値は2.52〔MPa/%〕である。また、流れ方向及び垂直方向における高スティフネスPETフィルムの熱収縮率はいずれも0.4%であった。 As a specific example of the high stiffness film, XP-55 manufactured by Toray Industries, Inc. can be used. This high stiffness film is biaxially stretched, contains 90% by mass or more of PET, and has a thickness of 16 μm. The measured value of the loop stiffness of this high-stiffness PET film was 0.0021N in both the flow direction and the vertical direction. The Young's modulus of the high-stiffness PET film in the flow direction was 4.8 GPa, and the Young's modulus of the high-stiffness PET film in the vertical direction was 4.7 GPa. The tensile strength of the high-stiffness PET film in the flow direction was 292 MPa, and the tensile strength of the high-stiffness PET film in the vertical direction was 257 MPa. The tensile elongation of the high-stiffness PET film in the flow direction was 107%, and the tensile elongation of the high-stiffness PET film in the vertical direction was 102%. In this case, the value obtained by dividing the tensile strength of the high-stiffness PET film in the flow direction by the tensile elongation is 2.73 [MPa /%], and the tensile strength of the high-stiffness PET film in the vertical direction is divided by the tensile elongation. The value is 2.52 [MPa /%]. The heat shrinkage of the high-stiffness PET film in the flow direction and the vertical direction was 0.4%.
 基材1は、1層であっても、2層以上の多層構成であってもよく、多層構成の場合には、同一組成の層であっても、異なる組成の層であってもよい。また、多層構成の場合に、各層間は、接着剤層等が介在して接着されていてもよい。 The base material 1 may have a single layer or a multi-layer structure of two or more layers, and in the case of a multi-layer structure, it may be a layer having the same composition or a layer having a different composition. Further, in the case of a multi-layer structure, each layer may be bonded with an adhesive layer or the like interposed therebetween.
[酸化アルミニウム蒸着膜]
 次に、蒸着膜2について説明する。蒸着膜2は、酸化アルミニウムを含む。アルミニウムは、蒸着膜2において、例えば、元素結合Alを形成した状態などの状態で存在する。蒸着膜2は、更に、ケイ素酸化物、ケイ素窒化物、ケイ素酸化窒化物、ケイ素炭化物、酸化マグネシウム、酸化チタン、酸化スズ、酸化インジウム、酸化亜鉛、酸化ジルコニウムなどの金属酸化物、又はこれらの金属窒化物、炭化物を含んでいてもよい。蒸着膜2の厚さは、3nm以上、100nm以下が好ましく、更に好ましくは、5nm以上、50nm以下、特に好ましくは、5nm以上、15nm以下である。なお、本発明における「酸化アルミニウム蒸着膜」とは、上記のように「酸化アルミニウムを含む蒸着膜」の意味であり、酸化アルミニウムAl以外に、水酸化アルミニウムAlHなどを含んでいてもよい。
[Aluminum oxide vapor deposition film]
Next, the vapor deposition film 2 will be described. The vapor-deposited film 2 contains aluminum oxide. Aluminum exists in the vapor-deposited film 2 in a state where, for example, an element bond Al 2 O 3 is formed. The vapor deposition film 2 further includes metal oxides such as silicon oxide, silicon nitride, silicon oxide nitride, silicon carbide, magnesium oxide, titanium oxide, tin oxide, indium oxide, zinc oxide, and zirconium oxide, or metals thereof. It may contain nitrides and carbides. The thickness of the vapor-deposited film 2 is preferably 3 nm or more and 100 nm or less, more preferably 5 nm or more and 50 nm or less, and particularly preferably 5 nm or more and 15 nm or less. The "aluminum oxide vapor-deposited film" in the present invention means "aluminum oxide-containing vapor-deposited film" as described above, and in addition to aluminum oxide Al 2 O 3 , aluminum hydroxide Al 2 O 4 H and the like are used. It may be included.
 (TOF-SIMS分析)
 本実施の形態に係るバリアフィルムの組成について、後述する実施例2の図9を用いて詳細に説明する。図9は、図1で示すバリアフィルムAを、有機被覆層3aの表面側から飛行時間型二次イオン質量分析法(TOF-SIMS)を用いてエッチングを行うことにより、バリアフィルムに含まれる元素及び元素結合を測定した場合における、元素及び元素結合の強度を示すグラフ解析図の一例である。グラフの縦軸の単位(intensity)は、イオンの強度について常用対数をとって表示したものである。グラフの横軸の単位(Et times)は、エッチングをした時間である。
(TOF-SIMS analysis)
The composition of the barrier film according to this embodiment will be described in detail with reference to FIG. 9 of Example 2 described later. FIG. 9 shows the elements contained in the barrier film A by etching the barrier film A shown in FIG. 1 from the surface side of the organic coating layer 3a using a time-of-flight secondary ion mass spectrometry (TOF-SIMS). This is an example of a graph analysis diagram showing the strength of the element and the element bond when the element bond is measured. The unit (intensity) on the vertical axis of the graph is the common logarithm of the ion intensity. The unit (Et times) on the horizontal axis of the graph is the etching time.
 TOF-SIMS(飛行時間型二次イオン質量分析法、Time-of-Flight Secondary Ion Mass Spectrometry)は、一次イオン銃から一次イオンビームを被分析固体試料表面に照射して、試料表面からスパッタリングされて放出される二次イオンを、その飛行時間差(飛行時間は重さの平方根に比例)を利用して質量分離して、質量分析する方法である。 TOF-SIMS (Time-of-Flight Secondary Ion Mass Spectrometry) irradiates the surface of a solid sample to be analyzed with a primary ion beam from a primary ion gun and is sputtered from the sample surface. This is a method of mass spectrometric analysis of the emitted secondary ions by mass separation using the time difference in flight time (the flight time is proportional to the square root of the weight).
 ここで、スパッタリングを進行させつつ二次イオン強度を検出することによって、二次イオン、即ち被検出元素イオン又は被検出元素と結合した分子イオンのイオン強度の時間推移のデータに対して、推移時間を深さに換算することで、該試料表面の深さ方向の被検出元素の濃度分布を知ることができる。 Here, by detecting the secondary ion intensity while proceeding with sputtering, the transition time with respect to the data of the time transition of the ionic strength of the secondary ion, that is, the element to be detected or the molecular ion bonded to the element to be detected. Is converted into the depth, so that the concentration distribution of the element to be detected in the depth direction of the sample surface can be known.
 そして、予め、一次イオンの照射により試料表面に形成された窪みの深さを、表面粗さ計を用いて測定して、この窪みの深さと推移時間とから平均スパッタ速度を算出しておき、スパッタ速度が一定であるとの仮定の下に、照射時間(即ち、推移時間)又は照射サイクル数から、深さ(スパッタ量)を算出することが可能である。 Then, the depth of the dent formed on the sample surface by the irradiation of the primary ion is measured in advance using a surface roughness meter, and the average sputter rate is calculated from the depth of the dent and the transition time. It is possible to calculate the depth (spatter amount) from the irradiation time (that is, transition time) or the number of irradiation cycles under the assumption that the sputter rate is constant.
 具体的には、有機被覆層3aの最表面からCs(セシウム)イオン銃により一定の速度でソフトエッチングを繰り返しながら、飛行時間型二次イオン質量分析計を用いて、蒸着膜2と基材1との界面の元素及び元素結合並びに蒸着膜2の元素及び元素結合を測定することにより、測定された元素及び元素結合についてそれぞれのグラフを得ることができる。具体的な例を示すと、図9に示すように、本実施の形態に係るバリアフィルムからは、OH由来の強度と、Si由来の強度と、Al由来の強度と、ALH由来の強度と、C6由来の強度が少なくとも検出される。図9に示す例においては、この5種の元素結合の強度を測定した例を示している。 Specifically, the vapor deposition film 2 and the base material 1 are used by using a flight time type secondary ion mass spectrometer while repeating soft etching from the outermost surface of the organic coating layer 3a with a Cs (cesium) ion gun at a constant speed. By measuring the elements and elemental bonds at the interface with and the elements and elemental bonds of the vapor deposition film 2, each graph can be obtained for the measured elements and elemental bonds. As a specific example, as shown in FIG. 9, from the barrier film according to the present embodiment, the strength derived from OH, the strength derived from Si, the strength derived from Al 2 O 3 , and AL 2 O are shown. At least the intensity derived from 4H and the intensity derived from C6 are detected. In the example shown in FIG. 9, an example in which the strength of these five types of elemental bonds is measured is shown.
 図9において、C6由来の強度のIntensityが(最強強度の)半分になるEt time Tの位置をプラスチック基材と酸化アルミニウムの界面とする。次に、有機被覆層を構成するSi由来の強度のIntensityが(最強強度の)半分になるEt time Tの位置を有機被覆膜と酸化アルミニウムの界面とする。そして、TからTまでを酸化アルミニウム蒸着膜とする(図9におけるX)。 In FIG. 9, the position of Et time T 1 at which the intensity of strength derived from C6 is halved (the strongest strength) is defined as the interface between the plastic base material and aluminum oxide. Next, the position of Et time T 2 at which the intensity of Si-derived strength constituting the organic coating layer is halved (the strongest strength) is defined as the interface between the organic coating film and aluminum oxide. Then, T 1 to T 2 are formed as an aluminum oxide vapor-deposited film (X in FIG. 9).
 図9において、酸化アルミニウム蒸着膜中、つまり図9におけるXの範囲内には、OH由来の強度が存在し、OH由来の強度は、図中Xより左側の有機被覆層の領域においては、主として有機被覆層由来の強度であり、図中Xより右側の基材の領域においては、主として基材(水分)由来の強度である。そして、図中Xの領域においては、OH由来の強度というのは主として水酸化アルミニウムに由来するピークである。つまり、Xの領域においてはOH由来の強度変化は水酸化アルミニウムの存在量の変化を反映する。そして、図9によれば、Xの領域内で下に凸のピークTpが存在する。 In FIG. 9, the intensity derived from OH exists in the aluminum oxide vapor deposition film, that is, within the range of X in FIG. 9, and the intensity derived from OH is mainly present in the region of the organic coating layer on the left side of X in the figure. It is the strength derived from the organic coating layer, and in the region of the base material on the right side of X in the figure, it is the strength mainly derived from the base material (moisture). In the region X in the figure, the intensity derived from OH is a peak mainly derived from aluminum hydroxide. That is, in the region of X, the change in strength derived from OH reflects the change in the abundance of aluminum hydroxide. Then, according to FIG. 9, there is a downwardly convex peak Tp in the region of X.
 更に、図9においては、Xにおける、ピーク(Tp)の深さ位置(図9におけるY/Xに相当)が、蒸着膜の表面側(有機被覆層側)から10%以上60%以下、好ましくは10%以上50%以下、より好ましくは10%以上40%以下に存在する。このことは、Tpが蒸着膜のより有機被覆層側に存在することを意味する。つまり、蒸着膜の基材側にはAlHの主領域が存在する一方、蒸着膜の有機被覆側の領域においては、AlHの比率が小さく、主としてAlの状態の領域が存在することを意味する。これにより、バリア性能を高めることができる。 Further, in FIG. 9, the peak (Tp) depth position (corresponding to Y / X in FIG. 9) at X is preferably 10% or more and 60% or less from the surface side (organic coating layer side) of the vapor-deposited film. Is present in 10% or more and 50% or less, more preferably 10% or more and 40% or less. This means that Tp is present on the organic coating layer side of the vapor-deposited film. That is, while the main region of Al 2 O 4 H exists on the substrate side of the vapor deposition film, the ratio of Al 2 O 4 H is small in the region on the organic coating side of the vapor deposition film, and mainly of Al 2 O 3 It means that there is a region of state. As a result, the barrier performance can be improved.
 なお、OH由来の下に凸のピークTpの存在や、Tpの深さ位置は、前処理、特に酸素プラズマ処理の条件と、蒸着時のプラズマアシスト処理の条件と、酸化アルミニウム蒸着膜の形成時における蒸着時の酸素濃度と、の組み合わせを制御することで調整することができる。 The presence of the downwardly convex peak Tp derived from OH and the depth position of Tp are determined by the conditions of pretreatment, especially oxygen plasma treatment, plasma assist treatment during vapor deposition, and the formation of an aluminum oxide vapor deposition film. It can be adjusted by controlling the combination of the oxygen concentration at the time of vapor deposition in.
 なお、図9におけるAlH(質量数118.93)由来の強度は、3100サイクル付近と、3600サイクル付近に二つのピークを有している。前者のピークは有機被覆層と酸化アルミ層の界面に生じる反応物AlSiO由来を含む可能性のある強度であるから、両者を波形分離して後者のピークのみをみることで、Al2O4Hの強度を直接補足することもできるが、本発明によれば、これに因らずに、OH由来の強度を測定することで、蒸着膜中のAlHの強度の分布を知ることができる。 The intensity derived from Al 2 O 4 H (mass number 118.93) in FIG. 9 has two peaks in the vicinity of 3100 cycles and in the vicinity of 3600 cycles. Since the former peak is the intensity that may contain the derivative AlSiO 4 generated at the interface between the organic coating layer and the aluminum oxide layer, the intensity of Al2O4H can be determined by separating the two from each other and observing only the latter peak. Although it can be supplemented directly, according to the present invention, the distribution of the intensity of Al 2 O 4 H in the vapor-deposited film can be known by measuring the intensity derived from OH regardless of this.
 なお、波形分離は、例えば、TOF-SIMSで得られた、質量数118.93のプロファイルを、Gaussian関数を用いて非線形のカーブフィッティングを行い最小二乗法Levenberg Marquardt アルゴリズムを使用して重複ピークの分離を行えばよい。 For waveform separation, for example, a profile with a mass number of 118.93 obtained by TOF-SIMS is subjected to non-linear curve fitting using a Gaussian function, and overlapping peaks are separated using a least squares Levenberg-Marquardt algorithm. Just do.
 (有機被覆層)
 酸化アルミニウム蒸着膜2の表面上に積層される有機被覆層3aは、酸化アルミニウム蒸着膜を機械的・化学的に保護するとともに、バリア性を有する積層フィルムのバリア性能を向上させるものである。以下、バリア性に優れたレトルト耐性を備えるバリア性積層フィルムを形成するためコートされる有機被覆層3aについて説明する。
(Organic coating layer)
The organic coating layer 3a laminated on the surface of the aluminum oxide vapor-deposited film 2 mechanically and chemically protects the aluminum oxide-deposited film and improves the barrier performance of the laminated film having a barrier property. Hereinafter, the organic coating layer 3a coated to form a barrier laminated film having retort resistance having excellent barrier properties will be described.
 有機被覆層3aは、バリアコート剤を酸化アルミニウム蒸着膜上に塗布し固化して形成されるものである。バリアコート剤は金属アルコキシド、水溶性高分子、必要に応じて加えられるシランカップリング剤、ゾルゲル法触媒、酸などから構成される。 The organic coating layer 3a is formed by applying a barrier coating agent on an aluminum oxide vapor deposition film and solidifying it. The barrier coating agent is composed of a metal alkoxide, a water-soluble polymer, a silane coupling agent added as needed, a sol-gel method catalyst, an acid and the like.
 金属アルコキシドとしては、一般式R1M(OR(ただし、式中、R、Rは、炭素数1~8の有機基を表し、Mは、金属原子を表し、nは、0以上の整数を表し、mは、1以上の整数を表し、n+mは、Mの原子価を表す。)で表される少なくとも1種以上の金属アルコキシド、金属アルコキシドのMで表される金属原子としては、ケイ素、ジルコニウム、チタン、アルミニウム、その他等を例示することができ、例えば、MがSiであるアルコキシシランを使用することが好ましいものである。 As the metal alkoxide, the general formula R1 n M (OR 2 ) m (where R 1 and R 2 represent organic groups having 1 to 8 carbon atoms, M represents a metal atom, and n represents a metal atom. Represents an integer of 0 or more, m represents an integer of 1 or more, and n + m represents the valence of M.) At least one kind of metal alkoxide represented by M, and a metal atom represented by M of the metal alkoxide. Examples thereof include silicon, zirconium, titanium, aluminum, and the like. For example, it is preferable to use an alkoxysilane in which M is Si.
 上記のアルコキシシランとしては、例えば、一般式Si(ORa)(ただし、式中、Raは、低級アルキル基を表す。)で表されるものである。上記において、Raとしては、メチル基、エチル基、n-プロピル基、n-ブチル基、その他等が用いられる。上記のアルコキシシランの具体例としては、例えば、テトラメトキシシランSi(OCH、テトラエトキシシランSi(OC、テトラプロポキシシランSi(OC)4、テトラブトキシシランSi(OC、その他等を使用することができる。上記アルコキシドは、2種以上を併用してもよい。 The above alkoxysilane is represented by, for example, the general formula Si (ORa) 4 (where Ra represents a lower alkyl group in the formula). In the above, as Ra, a methyl group, an ethyl group, an n-propyl group, an n-butyl group, etc. are used. Specific examples of the above alkoxysilane include tetramethoxysilane Si (OCH 3 ) 4 , tetraethoxysilane Si (OC 2 H 5 ) 4 , tetrapropoxysilane Si (OC 3 H 7 ) 4, and tetrabutoxysilane Si. (OC 4 H 9 ) 4 , etc. can be used. Two or more kinds of the above alkoxides may be used in combination.
 シランカップリング剤として、ビニル基、エポキシ基、メタクリル基、アミノ基などの反応基を有するものを用いることができる。特にエポキシ基を有するオルガノアルコキシシランが好適であり、例えば、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルジメチルメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルジメチルエトキシシラン、あるいは、β-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン等を使用することができる。上記のようなシランカップリング剤は、1種又は2種以上を混合して用いてもよい。 As the silane coupling agent, one having a reactive group such as a vinyl group, an epoxy group, a methacryl group and an amino group can be used. In particular, organoalkoxysilane having an epoxy group is preferable, for example, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropyldimethylmethoxysilane, γ-glycidoxy. Propyltriethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropyldimethylethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane and the like can be used. The above-mentioned silane coupling agent may be used alone or in combination of two or more.
 なかでも、γ-グリシドキシプロピルメチルジメトキシシランやγ-グリシドキシプロピルメチルジエトキシシランなどの2官能を用いた有機被覆層の硬化膜の架橋密度は、トリアルコキシシランを用いた系での架橋密度より低くなる。そのため、ガスバリア性及び耐熱水処理性のある膜として優れながら、柔軟性のある硬化膜となり、耐屈曲性にも優れるため、当該バリアフィルムを用いた包装材料はゲルボフレックス試験後でもガスバリア性が劣化し難い。 Among them, the cross-linking density of the cured film of the organic coating layer using bifunctionality such as γ-glycidoxypropylmethyldimethoxysilane and γ-glycidoxypropylmethyldiethoxysilane was determined in the system using trialkoxysilane. It is lower than the crosslink density. Therefore, while being excellent as a film having gas barrier properties and heat-resistant water treatment properties, it becomes a flexible cured film and also has excellent bending resistance. Therefore, the packaging material using the barrier film has gas barrier properties even after the Gelboflex test. Hard to deteriorate.
 水溶性高分子は、ポリビニルアルコール系樹脂、又はエチレン・ビニルアルコ一ル共重合体を単独で各々使用することができ、あるいは、ポリビニルアルコ一ル系樹脂及びエチレン・ビニルアルコール共重合体を組み合わせて使用することができる。本実施の形態に係る有機被覆層3aでは、ポリビニルアルコール系樹脂が好適である。 As the water-soluble polymer, a polyvinyl alcohol-based resin or an ethylene / vinyl alcohol copolymer can be used alone, or a polyvinyl alcohol-based resin and an ethylene / vinyl alcohol copolymer can be used in combination. can do. In the organic coating layer 3a according to the present embodiment, a polyvinyl alcohol-based resin is suitable.
 ポリビニルアルコ一ル系樹脂としては、一般に、ポリ酢酸ビニルをケン化して得られるものを使用することができる。ポリビニルアルコール系樹脂としては、酢酸基が数10%残存している部分ケン化ポリビニルアルコール系樹脂でも、酢酸基が残存しない完全ケン化ポリビニルアルコールでも、OH基が変性された変性ポリビニルアルコール系樹脂でもよい。ポリビニルアルコール系樹脂として、ケン化度については、ガスバリア性塗膜の膜硬度が向上する結晶化が行われるものを少なくとも用いることが必要で、好ましくは、ケン化度が70%以上である。また、その重合度としても、従来のゾルゲル法で用いられている範囲(100~5000程度)のものであれば用いることができる。このようなポリビニルアルコール系樹脂としては、株式会社クラレ製のRS樹脂である「RS-110(ケン化度=99%、重合度=1,000)」、日本合成化学工業株式会社製の「ゴーセノールNM-14(ケン化度=99%、重合度=1,400)」等を挙げることができる。 As the polyvinyl alcohol-based resin, generally, one obtained by saponifying polyvinyl acetate can be used. The polyvinyl alcohol-based resin may be a partially saponified polyvinyl alcohol-based resin in which several tens of percent of acetic acid groups remain, a completely saponified polyvinyl alcohol in which no acetic acid groups remain, or a modified polyvinyl alcohol-based resin in which OH groups are modified. Good. As for the degree of saponification, it is necessary to use at least a polyvinyl alcohol-based resin that is crystallized to improve the film hardness of the gas barrier coating film, and the degree of saponification is preferably 70% or more. Further, the degree of polymerization can be used as long as it is in the range (about 100 to 5000) used in the conventional sol-gel method. Examples of such polyvinyl alcohol-based resins include "RS-110 (degree of polymerization = 99%, degree of polymerization = 1,000)", which is an RS resin manufactured by Kuraray Co., Ltd., and "Gosenol" manufactured by Nippon Synthetic Chemical Industry Co., Ltd. NM-14 (degree of saponification = 99%, degree of polymerization = 1,400) ”and the like can be mentioned.
 エチレン・ビニルアルコール共重合体としては、エチレンと酢酸ビニルとの共重合体のケン化物、すなわち、エチレン-酢酸ビニルランダム共重合体をケン化して得られるものを使用することができる。例えば、酢酸基が数10モル%残存している部分ケン化物から、酢酸基が数モル%しか残存していないか又は酢酸基が残存しない完全ケン化物まで含み、特に限定されるものではない。ただし、バリア性の観点から好ましいケン化度は、80%以上、より好ましくは、90%以上、更に好ましくは、95%以上100%以下、特に好ましくは99%以上100%以下であるものを使用することが好ましい。 As the ethylene-vinyl alcohol copolymer, a saponified product of a copolymer of ethylene and vinyl acetate, that is, a product obtained by saponifying an ethylene-vinyl acetate random copolymer can be used. For example, it includes, and is not particularly limited, from a partially saponified product in which several tens of mol% of acetic acid groups remain to a completely saponified product in which only a few mol% of acetic acid groups remain or no acetic acid groups remain. However, from the viewpoint of barrier properties, the degree of saponification is preferably 80% or more, more preferably 90% or more, further preferably 95% or more and 100% or less, and particularly preferably 99% or more and 100% or less. It is preferable to do so.
 ゾルゲル法触媒としては、酸又はアミン系化合物が好適である。 As the sol-gel method catalyst, an acid or amine compound is suitable.
 酸としては、例えば、硫酸、塩酸、硝酸などの鉱酸、並びに、酢酸、酒石酸な等の有機酸等を用いることができる。 As the acid, for example, mineral acids such as sulfuric acid, hydrochloric acid and nitric acid, and organic acids such as acetic acid and tartaric acid can be used.
 酸の含有量は、金属アルコキシドのアルコキシ基の総モル量に対して、好ましくは0.001~0.05モル%であり、より好ましくは0.01~0.03モル%である。0.001%モルよりも少ないと触媒効果が小さすぎ、0.05モル%よりも多いと触媒効果が強すぎて反応速度が速くなり過ぎ、不均一になりやすい傾向になる。 The acid content is preferably 0.001 to 0.05 mol%, more preferably 0.01 to 0.03 mol%, based on the total molar amount of the alkoxy groups of the metal alkoxide. If it is less than 0.001% mol, the catalytic effect is too small, and if it is more than 0.05 mol%, the catalytic effect is too strong and the reaction rate becomes too fast, which tends to cause non-uniformity.
 アミン系化合物としては、水に実質的に不溶であり、且つ有機溶媒に可溶な第3級アミンが好適である。具体的には、例えば、N,N-ジメチルベンジルアミン、トリプロピルアミン、トリブチルアミン、トリペンチルアミン等を使用することができる。特に、N,N-ジメチルベンジルアミンが好適である。 As the amine compound, a tertiary amine that is substantially insoluble in water and soluble in an organic solvent is preferable. Specifically, for example, N, N-dimethylbenzylamine, tripropylamine, tributylamine, tripentylamine and the like can be used. In particular, N, N-dimethylbenzylamine is preferable.
 アミン系化合物の含有量は、金属アルコキシド100質量部当り、例えば0.01~1.0質量部、特に0.03~0.3質量部を含有することが好ましい。0.01質量部よりも少ないと触媒効果が小さすぎ、1.0質量部よりも多いと触媒効果が強すぎて反応速度が速くなり過ぎ、不均一になりやすい傾向になる。 The content of the amine compound is preferably 0.01 to 1.0 parts by mass, particularly 0.03 to 0.3 parts by mass, per 100 parts by mass of the metal alkoxide. If it is less than 0.01 part by mass, the catalytic effect is too small, and if it is more than 1.0 part by mass, the catalytic effect is too strong and the reaction rate becomes too fast, which tends to cause non-uniformity.
 溶媒としては、水や、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロパノール、n-ブタノール等のアルコール等を用いることが好ましい。 As the solvent, it is preferable to use water, alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropanol and n-butanol.
 上記にように形成されるバリア性被覆層は、層厚が100~500nmである。この範囲であれば、コート膜が割れず蒸着膜表面を十分に被覆するため好ましい。 The barrier coating layer formed as described above has a layer thickness of 100 to 500 nm. This range is preferable because the coating film does not crack and sufficiently covers the surface of the vapor-deposited film.
 バリアコート剤の組成は、シランカップリング剤を含有する場合、アルコキシシラン100質量部に対して、ポリビニルアルコ-ル系樹脂などの水溶性高分子を5~10質量部、シランカップリング剤を1~10質量部位の範囲内で使用することができる。これにより、膜の柔軟性を維持し、レトルト耐性を高めることができる。上記において、シランカップリング剤を20質量部超えて使用すると、形成されるバリア性塗膜の剛性と脆性とが大きくなり、好ましくない。 When the silane coupling agent is contained, the composition of the barrier coating agent is 5 to 10 parts by mass of a water-soluble polymer such as a polyvinyl alcohol resin and 1 part by mass of the silane coupling agent with respect to 100 parts by mass of alkoxysilane. It can be used within the range of ~ 10 mass parts. As a result, the flexibility of the film can be maintained and the retort resistance can be enhanced. In the above, when the silane coupling agent is used in an amount of more than 20 parts by mass, the rigidity and brittleness of the formed barrier coating film are increased, which is not preferable.
 また、シランカップリング剤を含有しない場合、アルコキシシラン100質量部に対して、ポリビニルアルコ-ル系樹脂などの水溶性高分子を10~20質量部とすることで、金属アルコキシドの量比を下げて、バリア性を高めることができる。 When the silane coupling agent is not contained, the amount ratio of the metal alkoxide is lowered by using 10 to 20 parts by mass of a water-soluble polymer such as a polyvinyl alcohol resin with respect to 100 parts by mass of alkoxysilane. Therefore, the barrier property can be enhanced.
 (成膜装置)
 次に、バリアフィルムの製造方法に用いられる成膜装置10の一例について説明する。成膜装置10は、図2に示すように、基材1を搬送するための基材搬送機構11Aと、基材1の表面にプラズマ前処理を施すプラズマ前処理機構11Bと、蒸着膜2を成膜する成膜機構11Cと、を備える。図5に示す例においては、成膜装置10は、更に減圧チャンバ12を備える。減圧チャンバ12は、後述する真空ポンプなど、減圧チャンバ12の内部の空間の少なくとも一部の雰囲気を大気圧以下に調整する減圧機構を有する。
(Film formation equipment)
Next, an example of the film forming apparatus 10 used in the method for producing a barrier film will be described. As shown in FIG. 2, the film forming apparatus 10 includes a base material transport mechanism 11A for transporting the base material 1, a plasma pretreatment mechanism 11B for performing plasma pretreatment on the surface of the base material 1, and a thin-film deposition film 2. A film forming mechanism 11C for forming a film is provided. In the example shown in FIG. 5, the film forming apparatus 10 further includes a pressure reducing chamber 12. The decompression chamber 12 has a decompression mechanism such as a vacuum pump described later that adjusts the atmosphere of at least a part of the space inside the decompression chamber 12 to atmospheric pressure or less.
  図2に示す例において、減圧チャンバ12は、基材搬送機構11Aが位置する基材搬送室12Aと、プラズマ前処理機構11Bが位置するプラズマ前処理室12Bと、成膜機構11Cが位置する成膜室12Cと、を含む。減圧チャンバ12は、好ましくは、各室の内部の雰囲気が互いに混ざり合うことを抑制するよう構成されている。例えば図2に示すように、減圧チャンバ12は、基材搬送室12Aとプラズマ前処理室12Bとの間、プラズマ前処理室12Bと成膜室12Cとの間、基材搬送室12Aと成膜室12Cとの間に位置し、各室を隔てる隔壁35a~35cを有していてもよい。 In the example shown in FIG. 2, the decompression chamber 12 is composed of a base material transfer chamber 12A in which the base material transfer mechanism 11A is located, a plasma pretreatment chamber 12B in which the plasma pretreatment mechanism 11B is located, and a film forming mechanism 11C. Membrane chamber 12C and. The decompression chamber 12 is preferably configured to prevent the atmosphere inside each chamber from mixing with each other. For example, as shown in FIG. 2, the decompression chamber 12 is formed between the base material transfer chamber 12A and the plasma pretreatment chamber 12B, between the plasma pretreatment chamber 12B and the film formation chamber 12C, and between the base material transfer chamber 12A and the film formation. It may have partition walls 35a to 35c that are located between the chambers 12C and separate the chambers.
 基材搬送室12A、プラズマ前処理室12B及び成膜室12Cについて説明する。プラズマ前処理室12B及び成膜室12Cは、それぞれ基材搬送室12Aと接して設けられており、それぞれ基材搬送室12Aと接続する部分を有する。これにより、基材搬送室12Aとプラズマ前処理室12Bとの間、及び基材搬送室12Aと成膜室12Cとの間において、基材1を大気に触れさせずに搬送することができる。例えば、基材搬送室12Aとプラズマ前処理室12Bとの間においては、隔壁35aに設けられた開口部を介して基材1を搬送することができる。基材搬送室12Aと成膜室12Cとの間も同様の構造となっており、基材搬送室12Aと成膜室12Cとの間において、基材1を搬送することができる。 The base material transfer chamber 12A, the plasma pretreatment chamber 12B, and the film formation chamber 12C will be described. The plasma pretreatment chamber 12B and the film forming chamber 12C are each provided in contact with the base material transfer chamber 12A, and each has a portion connected to the base material transfer chamber 12A. As a result, the base material 1 can be transported between the base material transport chamber 12A and the plasma pretreatment chamber 12B and between the base material transport chamber 12A and the film forming chamber 12C without being exposed to the atmosphere. For example, between the base material transport chamber 12A and the plasma pretreatment chamber 12B, the base material 1 can be transported through the opening provided in the partition wall 35a. The base material transport chamber 12A and the film forming chamber 12C have the same structure, and the base material 1 can be transported between the base material transport chamber 12A and the film forming chamber 12C.
 減圧チャンバ12の減圧機構の機能について説明する。減圧チャンバ12の減圧機構は、成膜装置10の少なくともプラズマ前処理機構11B又は成膜機構11Cが配置されている空間の雰囲気を大気圧以下に減圧できるように構成されている。減圧機構は、隔壁35a~35cにより区画された、基材搬送室12A、プラズマ前処理室12B、成膜室12Cのそれぞれを大気圧以下に減圧することができるよう構成されていてもよい。 The function of the decompression mechanism of the decompression chamber 12 will be described. The decompression mechanism of the decompression chamber 12 is configured to be able to depressurize the atmosphere of the space in which at least the plasma pretreatment mechanism 11B or the film forming mechanism 11C of the film forming apparatus 10 is arranged to be below atmospheric pressure. The decompression mechanism may be configured so that each of the base material transport chamber 12A, the plasma pretreatment chamber 12B, and the film forming chamber 12C, which are partitioned by the partition walls 35a to 35c, can be depressurized to atmospheric pressure or lower.
 減圧チャンバ12の減圧機構の構成について説明する。減圧チャンバ12は、例えば、プラズマ前処理室12Bに接続されている真空ポンプを有していてもよい。真空ポンプを調整することにより、後述するプラズマ前処理を実施する際のプラズマ前処理室12B内の圧力を適切に制御することができる。また、後述の方法によりプラズマ前処理室12B内に供給したプラズマが他室に拡散することを抑制できる。減圧チャンバ12の減圧機構は、プラズマ前処理室12Bに接続されている真空ポンプと同様に、成膜室12Cに接続されている真空ポンプを有していてもよい。真空ポンプとしては、ドライポンプ、ターボ分子ポンプ、クライオポンプ、ロータリーポンプ、ディフュージョンポンプなどを用いることができる。 The configuration of the decompression mechanism of the decompression chamber 12 will be described. The decompression chamber 12 may have, for example, a vacuum pump connected to the plasma pretreatment chamber 12B. By adjusting the vacuum pump, the pressure in the plasma pretreatment chamber 12B when performing the plasma pretreatment described later can be appropriately controlled. Further, it is possible to suppress the diffusion of the plasma supplied into the plasma pretreatment chamber 12B to another chamber by the method described later. The decompression mechanism of the decompression chamber 12 may have a vacuum pump connected to the film forming chamber 12C as well as a vacuum pump connected to the plasma pretreatment chamber 12B. As the vacuum pump, a dry pump, a turbo molecular pump, a cryopump, a rotary pump, a diffusion pump and the like can be used.
 本実施の形態に係る成膜装置10の基材1の基材搬送機構11Aについて、基材1の搬送経路とともに説明する。基材搬送機構11Aは、基材搬送室12Aに配置された、基材1を搬送するための機構である。図2に示す例においては、基材搬送機構11Aは、基材1のロール状の原反が取り付けられた巻き出しローラー13、基材1を巻き取る巻き取りローラー15及びガイドロール14a~14dを有する。基材搬送機構11Aから送り出された基材1は、その後、プラズマ前処理室12Bに配置された、後述する前処理ローラー20と、成膜室12Cに配置された、後述する成膜ローラー25と、によって搬送される。 The base material transport mechanism 11A of the base material 1 of the film forming apparatus 10 according to the present embodiment will be described together with the transport path of the base material 1. The base material transport mechanism 11A is a mechanism for transporting the base material 1 arranged in the base material transport chamber 12A. In the example shown in FIG. 2, the base material transport mechanism 11A includes a winding roller 13 to which the roll-shaped raw fabric of the base material 1 is attached, a winding roller 15 for winding the base material 1, and guide rolls 14a to 14d. Have. The base material 1 sent out from the base material transfer mechanism 11A is then divided into a pretreatment roller 20 described later arranged in the plasma pretreatment chamber 12B and a film forming roller 25 described later arranged in the film forming chamber 12C. , Transported by.
 なお、図示はしないが、基材搬送機構11Aは、張力ピックアップローラーを更に有していてもよい。基材搬送機構11Aが張力ピックアップローラーを有することにより、基材1に加わる張力を調整しながら、基材1を搬送することができる。 Although not shown, the base material transport mechanism 11A may further have a tension pickup roller. Since the base material transport mechanism 11A has the tension pickup roller, the base material 1 can be transported while adjusting the tension applied to the base material 1.
 (プラズマ前処理機構)
 プラズマ前処理機構11Bについて説明する。プラズマ前処理機構11Bは、基材1の表面にプラズマ前処理を施すための機構である。図2に示すプラズマ前処理機構11Bは、プラズマPを発生させ、発生させたプラズマPを用いて基材1の表面にプラズマ前処理を施す。プラズマ前処理によって、基材1の表面を活性化し、基材1の内部に含まれる窒素が基材1の表面に集まりやすくし、又は基材1の周囲の環境中に含まれる窒素が基材1の表面に取り込まれやすくすることができる。このため、プラズマ前処理を施した基材1の表面に蒸着膜2を形成した際に、基材1と蒸着膜2との界面に元素結合CNのピークを形成することができる。図2に示すプラズマ前処理機構11Bは、プラズマ前処理室12Bに配置されている前処理ローラー20と、前処理ローラー20に対向する電極部21と、前処理ローラー20と電極部21との間に磁場を形成する磁場形成部23と、を有する。
(Plasma pretreatment mechanism)
The plasma pretreatment mechanism 11B will be described. The plasma pretreatment mechanism 11B is a mechanism for applying plasma pretreatment to the surface of the base material 1. The plasma pretreatment mechanism 11B shown in FIG. 2 generates plasma P, and uses the generated plasma P to perform plasma pretreatment on the surface of the base material 1. The plasma pretreatment activates the surface of the base material 1 so that the nitrogen contained inside the base material 1 easily collects on the surface of the base material 1, or the nitrogen contained in the environment surrounding the base material 1 is the base material. It can be easily taken into the surface of 1. Therefore, when the vapor-deposited film 2 is formed on the surface of the base material 1 subjected to the plasma pretreatment, the peak of the element-bonded CN can be formed at the interface between the base material 1 and the vapor-deposited film 2. The plasma pretreatment mechanism 11B shown in FIG. 2 is between the pretreatment roller 20 arranged in the plasma pretreatment chamber 12B, the electrode portion 21 facing the pretreatment roller 20, and the pretreatment roller 20 and the electrode portion 21. It has a magnetic field forming unit 23 that forms a magnetic field in the.
 前処理ローラー20について説明する。図3は、図2において符号VIが付された一点鎖線で囲まれた部分を拡大した図である。なお、図3においては、図2に示されている電源32と後述する電極部21とを接続する電力供給配線31、及びプラズマ前処理機構11Bが発生させるプラズマPの記載を省略している。前処理ローラー20は、回転軸Xを有する。前処理ローラー20は、少なくとも回転軸Xが、隔壁35a、35bによって区画されるプラズマ前処理室12B内に位置するよう、設けられている。前処理ローラー20には、回転軸Xの方向における寸法を有する基材1が巻き掛けられる。以下の説明において、回転軸Xの方向における基材1の寸法のことを、基材1の幅とも称する。また、回転軸Xの方向のことを、基材1の幅方向とも称する。 The pretreatment roller 20 will be described. FIG. 3 is an enlarged view of the portion surrounded by the alternate long and short dash line with the reference numeral VI in FIG. In FIG. 3, the description of the power supply wiring 31 connecting the power supply 32 shown in FIG. 2 and the electrode portion 21 described later and the plasma P generated by the plasma pretreatment mechanism 11B is omitted. The pretreatment roller 20 has a rotation axis X. The pretreatment roller 20 is provided so that at least the rotation axis X is located in the plasma pretreatment chamber 12B partitioned by the partition walls 35a and 35b. A base material 1 having dimensions in the direction of the rotation axis X is wound around the pretreatment roller 20. In the following description, the dimension of the base material 1 in the direction of the rotation axis X is also referred to as the width of the base material 1. Further, the direction of the rotation axis X is also referred to as the width direction of the base material 1.
 図2に示すように、前処理ローラー20は、その一部が基材搬送室12A側に露出するように設けられていてもよい。図2に示す例においては、プラズマ前処理室12Bと基材搬送室12Aとは、隔壁35aに設けられた開口部を介して接続されており、その開口部を通じて、前処理ローラー20の一部が基材搬送室12A側に露出している。基材搬送室12Aとプラズマ前処理室12Bとの間の隔壁35aと、前処理ローラー20との間には隙間があいており、その隙間を通じて、基材搬送室12Aからプラズマ前処理室12Bへと、基材1を搬送することができる。図示はしないが、前処理ローラー20は、その全体がプラズマ前処理室12B内に位置するよう設けられていてもよい。 As shown in FIG. 2, the pretreatment roller 20 may be provided so that a part thereof is exposed on the base material transport chamber 12A side. In the example shown in FIG. 2, the plasma pretreatment chamber 12B and the base material transfer chamber 12A are connected via an opening provided in the partition wall 35a, and a part of the pretreatment roller 20 is connected through the opening. Is exposed on the base material transport chamber 12A side. There is a gap between the partition wall 35a between the base material transfer chamber 12A and the plasma pretreatment chamber 12B and the pretreatment roller 20, and through the gap, from the base material transfer chamber 12A to the plasma pretreatment chamber 12B. And, the base material 1 can be conveyed. Although not shown, the pretreatment roller 20 may be provided so that the entire pretreatment roller 20 is located in the plasma pretreatment chamber 12B.
 図示はしないが、前処理ローラー20は、前処理ローラー20の表面の温度を調整する温度調整機構を有していてもよい。例えば、前処理ローラー20は、冷媒や熱媒などの温度調整媒体を循環させる配管を含む温度調整機構を前処理ローラー20の内部に有していてもよい。温度調整機構は、前処理ローラー20の表面の温度を例えば-20℃以上100℃以下の範囲内の目標温度に調整する。 Although not shown, the pretreatment roller 20 may have a temperature adjusting mechanism for adjusting the temperature of the surface of the pretreatment roller 20. For example, the pretreatment roller 20 may have a temperature adjustment mechanism inside the pretreatment roller 20 including a pipe for circulating a temperature adjustment medium such as a refrigerant or a heat medium. The temperature adjusting mechanism adjusts the surface temperature of the pretreatment roller 20 to a target temperature in the range of, for example, −20 ° C. or higher and 100 ° C. or lower.
 前処理ローラー20が温度調整機構を有することにより、プラズマ前処理時、熱による基材1の収縮や破損が生じることを抑制することができる。 Since the pretreatment roller 20 has a temperature adjusting mechanism, it is possible to suppress shrinkage or breakage of the base material 1 due to heat during plasma pretreatment.
  前処理ローラー20は、少なくともステンレス、鉄、銅及びクロムのいずれか1以上を含む材料により形成される。前処理ローラー20の表面には、傷つき防止のために、硬質のクロムハードコート処理などを施してもよい。これらの材料は加工が容易である。また、前処理ローラー20の材料として上記の材料を用いることにより、前処理ローラー20自体の熱伝導性が高くなるので、前処理ローラー20の温度の制御が容易になる。 The pretreatment roller 20 is formed of a material containing at least one or more of stainless steel, iron, copper and chromium. The surface of the pretreatment roller 20 may be subjected to a hard chrome hard coat treatment or the like in order to prevent scratches. These materials are easy to process. Further, by using the above-mentioned material as the material of the pretreatment roller 20, the thermal conductivity of the pretreatment roller 20 itself is increased, so that the temperature of the pretreatment roller 20 can be easily controlled.
 電極部21について説明する。図2及び図3に示す例において、電極部21は、前処理ローラー20に対向する第1面21cと、第1面21cの反対側に位置する第2面21dとを有する。図2及び図3に示す例において、電極部21は板状の部材であり、第1面21c及び第2面21dはいずれも平面である。電極部21は、前処理ローラー20との間で交流電圧を印加されることにより、前処理ローラー20との間においてプラズマを発生させる。電極部21は、好ましくは、前処理ローラー20との間において、発生したプラズマが、基材1の表面に向かうように、基材1の表面に対して垂直方向に運動するように、電場を形成する。これにより、効率的に基材1を前処理することができる。このため、プラズマ前処理を施した基材1の表面に蒸着膜2を形成した際に、基材1と蒸着膜2との界面に形成される元素結合CNのピークのピーク強度H1を、より大きくすることができる。 The electrode portion 21 will be described. In the examples shown in FIGS. 2 and 3, the electrode portion 21 has a first surface 21c facing the pretreatment roller 20 and a second surface 21d located on the opposite side of the first surface 21c. In the examples shown in FIGS. 2 and 3, the electrode portion 21 is a plate-shaped member, and both the first surface 21c and the second surface 21d are flat surfaces. The electrode portion 21 generates plasma with the pretreatment roller 20 by applying an AC voltage with the pretreatment roller 20. The electrode portion 21 preferably applies an electric field between the pretreatment roller 20 and the plasma so that the generated plasma moves in a direction perpendicular to the surface of the base material 1 so as to be directed toward the surface of the base material 1. Form. Thereby, the base material 1 can be efficiently pretreated. Therefore, when the vapor-deposited film 2 is formed on the surface of the base material 1 subjected to plasma pretreatment, the peak intensity H1 of the peak of the element-bonded CN formed at the interface between the base material 1 and the vapor-deposited film 2 is increased. It can be made larger.
 電極部21の数は、好ましくは2以上である。2以上の電極部21は、好ましくは、基材1の搬送方向に沿って並んでいる。図2及び図3に示す例においては、成膜装置10が2つの電極部21を有する例が示されている。また、電極部21の数は、例えば12以下である。 The number of electrode portions 21 is preferably 2 or more. The two or more electrode portions 21 are preferably arranged along the transport direction of the base material 1. In the examples shown in FIGS. 2 and 3, an example in which the film forming apparatus 10 has two electrode portions 21 is shown. The number of electrode portions 21 is, for example, 12 or less.
 2以上の電極部21が基材1の搬送方向に沿って並んでいることの効果について説明する。上述の通り、プラズマは、電極部21と前処理ローラー20との間に発生する。プラズマが発生する領域は、搬送方向における電極部21の寸法が大きくなるほど拡大する。一方、電極部21が平坦な板状の部材である場合、搬送方向における電極部21の寸法が大きくなるほど、搬送方向における電極部21の、前処理ローラー20に対向する面である第1面21cの端部から前処理ローラー20までの距離が大きくなり、プラズマによる処理能力が低下してしまう。 The effect of arranging two or more electrode portions 21 along the transport direction of the base material 1 will be described. As described above, plasma is generated between the electrode portion 21 and the pretreatment roller 20. The region where plasma is generated expands as the size of the electrode portion 21 in the transport direction increases. On the other hand, when the electrode portion 21 is a flat plate-shaped member, the larger the dimension of the electrode portion 21 in the transport direction, the more the first surface 21c of the electrode portion 21 in the transport direction faces the pretreatment roller 20. The distance from the end of the pretreatment roller 20 to the pretreatment roller 20 becomes large, and the processing capacity by plasma decreases.
 成膜装置10においては、2以上の電極部21が基材1の搬送方向に沿って並んでいる。このため、基材1の搬送方向における電極部21の寸法が小さい場合であっても、搬送方向における広い範囲にわたってプラズマを発生させることができる。また、電極部21の寸法を小さくすることにより、搬送方向における電極部21の第1面21cの端部から前処理ローラー20までの距離を小さくすることができ、プラズマを搬送方向に均一に発生させることができる。 In the film forming apparatus 10, two or more electrode portions 21 are lined up along the transport direction of the base material 1. Therefore, even when the size of the electrode portion 21 in the transport direction of the base material 1 is small, plasma can be generated over a wide range in the transport direction. Further, by reducing the size of the electrode portion 21, the distance from the end of the first surface 21c of the electrode portion 21 to the pretreatment roller 20 in the transport direction can be reduced, and plasma is uniformly generated in the transport direction. Can be made to.
 図2及び図3に示すように、電極部21は、電極部21の第1面21c上に位置する第1端部21e及び第2端部21fを有する。第1端部21eは、基材1の搬送方向における上流側の端部であり、第2端部21fは、基材1の搬送方向における下流側の端部である。上述のように、基材1の搬送方向における電極部21の寸法を小さくすることにより、搬送方向における電極部21の第1端部21e及び第2端部21fから前処理ローラー20までの距離を小さくすることができる。基材1の搬送方向における電極部21の寸法は、図3に示す角度θに対応する。角度θは、第1端部21e及び回転軸Xを通る直線と、第2端部21f及び回転軸Xを通る直線とがなす角度である。角度θは、20°以上90°以下となることが好ましく、60°以下となることがより好ましく、45°以下となることが更に好ましい。角度θが上記の範囲となることにより、電極部21の第1面21cが平面である場合に、電極部21と前処理ローラー20との間において、プラズマを搬送方向に均一に発生させることができる。 As shown in FIGS. 2 and 3, the electrode portion 21 has a first end portion 21e and a second end portion 21f located on the first surface 21c of the electrode portion 21. The first end portion 21e is an upstream end portion in the transport direction of the base material 1, and the second end portion 21f is a downstream end portion in the transport direction of the base material 1. As described above, by reducing the size of the electrode portion 21 in the transport direction of the base material 1, the distance from the first end portion 21e and the second end portion 21f of the electrode portion 21 in the transport direction to the pretreatment roller 20 can be increased. It can be made smaller. The dimensions of the electrode portion 21 in the transport direction of the base material 1 correspond to the angle θ shown in FIG. The angle θ is an angle formed by a straight line passing through the first end portion 21e and the rotation axis X and a straight line passing through the second end portion 21f and the rotation axis X. The angle θ is preferably 20 ° or more and 90 ° or less, more preferably 60 ° or less, and further preferably 45 ° or less. By setting the angle θ within the above range, when the first surface 21c of the electrode portion 21 is flat, plasma can be uniformly generated between the electrode portion 21 and the pretreatment roller 20 in the transport direction. it can.
 電極部21の材料は、導電性を有する限り、特に限定されない。具体的には、電極部21の材料として、アルミニウム、銅、ステンレスが好適に用いられる。 The material of the electrode portion 21 is not particularly limited as long as it has conductivity. Specifically, aluminum, copper, and stainless steel are preferably used as the material of the electrode portion 21.
 電極部21の第1面21cに垂直な方向に見た場合における電極部21の厚みL3は、特に限定されないが、例えば15mm以下である。電極部21の厚みが上記の値であることにより、磁場形成部23によって、前処理ローラー20と電極部21との間に磁場を効果的に形成することができる。また、電極部21の厚みL3は、例えば3mm以上である。 The thickness L3 of the electrode portion 21 when viewed in the direction perpendicular to the first surface 21c of the electrode portion 21 is not particularly limited, but is, for example, 15 mm or less. When the thickness of the electrode portion 21 is the above value, the magnetic field forming portion 23 can effectively form a magnetic field between the pretreatment roller 20 and the electrode portion 21. The thickness L3 of the electrode portion 21 is, for example, 3 mm or more.
 磁場形成部23について説明する。図2及び図3に示すように、磁場形成部23は、電極部21の、前処理ローラー20と対向する側とは反対の側に設けられている。磁場形成部23は、前処理ローラー20と電極部21との間に磁場を形成する部材である。前処理ローラー20と電極部21との間の磁場は、例えば、プラズマ前処理機構11Bを用いてプラズマを発生させる場合において、より高密度のプラズマの発生に寄与する。図2及び図3に示す磁場形成部23は、電極部21の第2面21d上に設けられている第1磁石231及び第2磁石232を有する。 The magnetic field forming unit 23 will be described. As shown in FIGS. 2 and 3, the magnetic field forming portion 23 is provided on the side of the electrode portion 21 opposite to the side facing the pretreatment roller 20. The magnetic field forming portion 23 is a member that forms a magnetic field between the pretreatment roller 20 and the electrode portion 21. The magnetic field between the pretreatment roller 20 and the electrode portion 21 contributes to the generation of higher density plasma, for example, when plasma is generated using the plasma pretreatment mechanism 11B. The magnetic field forming portion 23 shown in FIGS. 2 and 3 has a first magnet 231 and a second magnet 232 provided on the second surface 21d of the electrode portion 21.
 磁場形成部23の数は、好ましくは2以上である。プラズマ前処理機構11Bが、2以上の電極部21と、2以上の磁場形成部23と、を有する場合においては、2以上の磁場形成部23のそれぞれは、2以上の電極部21のそれぞれの、前処理ローラー20と対向する側とは反対の側に設けられていることが好ましい。図2及び図3に示す例においては、2つの磁場形成部23のそれぞれが、2つの電極部21のそれぞれの第2面21d上に設けられている。 The number of magnetic field forming portions 23 is preferably 2 or more. When the plasma pretreatment mechanism 11B has two or more electrode portions 21 and two or more magnetic field forming portions 23, each of the two or more magnetic field forming portions 23 is a respective of the two or more electrode portions 21. , It is preferable that the pretreatment roller 20 is provided on the side opposite to the side facing the pretreatment roller 20. In the examples shown in FIGS. 2 and 3, each of the two magnetic field forming portions 23 is provided on the second surface 21d of each of the two electrode portions 21.
 電極部21の第2面21dの法線方向における第1磁石231及び第2磁石232の構造について説明する。図2及び図3に示すように、第1磁石231及び第2磁石232はそれぞれ、N極及びS極を有する。図2及び図3に示す符号Nは、第1磁石231又は第2磁石232のN極を示す。また、図2及び図3に示す符号Sは、第1磁石231又は第2磁石232のS極を示す。第1磁石231のN極又はS極の一方は、他方よりも基材1側に位置する。また、第2磁石232のN極又はS極の他方は、一方よりも基材1側に位置する。図2及び図3に示す例においては、第1磁石231のN極が、第1磁石231のS極よりも基材1側に位置し、第2磁石232のS極が、第2磁石のN極よりも基材1側に位置する。図示はしないが、第1磁石231のS極が、第1磁石231のN極よりも基材1側に位置し、第2磁石232のN極が、第2磁石232のS極よりも基材1側に位置していてもよい。 The structure of the first magnet 231 and the second magnet 232 in the normal direction of the second surface 21d of the electrode portion 21 will be described. As shown in FIGS. 2 and 3, the first magnet 231 and the second magnet 232 have an north pole and an south pole, respectively. Reference numeral N shown in FIGS. 2 and 3 indicates the north pole of the first magnet 231 or the second magnet 232. Further, reference numeral S shown in FIGS. 2 and 3 indicates the S pole of the first magnet 231 or the second magnet 232. One of the north pole or the south pole of the first magnet 231 is located closer to the base material 1 than the other. Further, the other of the north pole or the south pole of the second magnet 232 is located closer to the base material 1 than one. In the examples shown in FIGS. 2 and 3, the north pole of the first magnet 231 is located closer to the base material 1 than the south pole of the first magnet 231 and the south pole of the second magnet 232 is the second magnet. It is located on the base material 1 side of the north pole. Although not shown, the S pole of the first magnet 231 is located on the base material 1 side of the N pole of the first magnet 231 and the N pole of the second magnet 232 is based on the S pole of the second magnet 232. It may be located on the material 1 side.
続いて、電極部21の第2面21dの面方向における第1磁石231及び第2磁石232の構造について説明する。図4は、図2に示す電極部21及び磁場形成部23を、磁場形成部23側からみた平面図である。図5は図4のVIII-VIII線に沿った断面を示す断面図である。また、図4において、方向D1は、前処理ローラー20の回転軸Xが延びる方向である。 Subsequently, the structures of the first magnet 231 and the second magnet 232 in the plane direction of the second surface 21d of the electrode portion 21 will be described. FIG. 4 is a plan view of the electrode portion 21 and the magnetic field forming portion 23 shown in FIG. 2 as viewed from the magnetic field forming portion 23 side. FIG. 5 is a cross-sectional view showing a cross section taken along the line VIII-VIII of FIG. Further, in FIG. 4, the direction D1 is the direction in which the rotation axis X of the pretreatment roller 20 extends.
 図4及び図5に示すように、第1磁石231は、第1軸方向部分231cを有する。図4に示すように、第1軸方向部分231cは、方向D1に沿って、すなわち前処理ローラー20の回転軸Xに沿って延びている。1つの電極部21に設けられた第1磁石231は、1つの第1軸方向部分231cを有していてもよく、2つ以上の第1軸方向部分231cを有していてもよい。図4に示す例においては、1つの電極部21に設けられた第1磁石231は、1つの第1軸方向部分231cを有している。 As shown in FIGS. 4 and 5, the first magnet 231 has a first axial portion 231c. As shown in FIG. 4, the first axial portion 231c extends along the direction D1, that is, along the rotation axis X of the pretreatment roller 20. The first magnet 231 provided on one electrode portion 21 may have one first axial portion 231c, or may have two or more first axial portions 231c. In the example shown in FIG. 4, the first magnet 231 provided on one electrode portion 21 has one first axial direction portion 231c.
 また、図4及び図5に示すように、第2磁石232は、第2軸方向部分232cを有する。図4に示すように、第2軸方向部分232cも、第1軸方向部分231cと同様に、方向D1に沿って、すなわち回転軸Xに沿って延びている。 Further, as shown in FIGS. 4 and 5, the second magnet 232 has a second axial portion 232c. As shown in FIG. 4, the second axial portion 232c also extends along the direction D1, that is, along the rotation axis X, like the first axial portion 231c.
 第1磁石231及び第2磁石232がいずれも回転軸Xに沿って延びる部分を含むことにより、基材1の周囲に形成される磁場の強度の、基材1の幅方向における均一性を高めることができる。これにより、基材1の周囲に形成されるプラズマの分布密度の、基材1の幅方向における均一性を高めることができる。 By including a portion in which both the first magnet 231 and the second magnet 232 extend along the rotation axis X, the uniformity of the strength of the magnetic field formed around the base material 1 in the width direction of the base material 1 is enhanced. be able to. Thereby, the uniformity of the distribution density of the plasma formed around the base material 1 in the width direction of the base material 1 can be enhanced.
 1つの電極部21に設けられた第2磁石232は、1つの第2軸方向部分232cを有していてもよく、2つ以上の第2軸方向部分232cを有していてもよい。図4及び図5に示す例においては、1つの電極部21に設けられた第2磁石232は、2つの第2軸方向部分232cを有している。2つの第2軸方向部分232cは、電極部21の第2面21dの面方向のうち回転軸Xに直交する方向D2において第1軸方向部分231cを挟むように位置していてもよい。 The second magnet 232 provided on one electrode portion 21 may have one second axial portion 232c, or may have two or more second axial portions 232c. In the examples shown in FIGS. 4 and 5, the second magnet 232 provided on one electrode portion 21 has two second axial portions 232c. The two second axial portions 232c may be positioned so as to sandwich the first axial portion 231c in the direction D2 orthogonal to the rotation axis X in the surface direction of the second surface 21d of the electrode portion 21.
 図5に示す、基材1の搬送方向における第1軸方向部分231cの寸法L4、及び第2軸方向部分232cの寸法L5は、特に限定されない。また、基材1の搬送方向における第1軸方向部分231cの寸法L4と第2軸方向部分232cの寸法L5との比率は、特に限定されない。第1軸方向部分231cの寸法L4と第2軸方向部分232cの寸法L5とが等しくてもよく、第1軸方向部分231cの寸法L4が第2軸方向部分232cの寸法L5より大きくてもよい。 The dimension L4 of the first axial portion 231c and the dimension L5 of the second axial portion 232c in the transport direction of the base material 1 shown in FIG. 5 are not particularly limited. Further, the ratio of the dimension L4 of the first axial portion 231c and the dimension L5 of the second axial portion 232c in the transport direction of the base material 1 is not particularly limited. The dimension L4 of the first axial portion 231c and the dimension L5 of the second axial portion 232c may be equal to each other, and the dimension L4 of the first axial portion 231c may be larger than the dimension L5 of the second axial portion 232c. ..
 方向D2における第1軸方向部分231cと第2軸方向部分232cとの間隔L6は、第1軸方向部分231c及び第2軸方向部分232cによって生じる磁場が前処理ローラー20と電極部21との間に形成されるよう設定される。 The distance L6 between the first axial portion 231c and the second axial portion 232c in the direction D2 is such that the magnetic field generated by the first axial portion 231c and the second axial portion 232c is between the pretreatment roller 20 and the electrode portion 21. Is set to be formed in.
 第2磁石232は、電極部21の第2面21dの法線方向に沿って磁場形成部23を見た場合に、第1磁石231を囲んでいてもよい。例えば図4に示すように、第2磁石232は、2つの第2軸方向部分232cとともに、2つの第2軸方向部分232cを接続するように設けられた2つの接続部分232dを有していてもよい。 The second magnet 232 may surround the first magnet 231 when the magnetic field forming portion 23 is viewed along the normal direction of the second surface 21d of the electrode portion 21. For example, as shown in FIG. 4, the second magnet 232 has two second axial portions 232c and two connecting portions 232d provided to connect the two second axial portions 232c. May be good.
 第1磁石231及び第2磁石232など、磁場形成部23として用いられる磁石の種類の例としては、フェライト磁石や、ネオジウム、サマリウムコバルト(サマコバ)などの希土類磁石などの永久磁石を挙げることができる。また、磁場形成部23として、電磁石を用いることもできる。 Examples of the types of magnets used as the magnetic field forming unit 23, such as the first magnet 231 and the second magnet 232, include ferrite magnets and permanent magnets such as rare earth magnets such as neodium and samarium-cobalt (samarium-cobalt). .. Further, an electromagnet can also be used as the magnetic field forming unit 23.
 第1磁石231及び第2磁石232などの磁場形成部23の磁石の磁束密度は、例えば100ガウス以上10000ガウス以下である。磁束密度が100ガウス以上であれば、前処理ローラー20と電極部21との間に十分に強い磁場を形成することによって、十分に高密度のプラズマを発生させることができ、良好な前処理面を高速で形成することができる。一方、基材1の表面での磁束密度を10000ガウスよりも高くするには、高価な磁石又は磁場発生機構が必要となる。 The magnetic flux density of the magnets of the magnetic field forming unit 23 such as the first magnet 231 and the second magnet 232 is, for example, 100 gauss or more and 10,000 gauss or less. When the magnetic flux density is 100 gauss or more, a sufficiently high density plasma can be generated by forming a sufficiently strong magnetic field between the pretreatment roller 20 and the electrode portion 21, and a good pretreatment surface can be generated. Can be formed at high speed. On the other hand, in order to increase the magnetic flux density on the surface of the base material 1 to more than 10,000 gauss, an expensive magnet or a magnetic field generation mechanism is required.
 図示はしないが、プラズマ前処理機構11Bは、プラズマ原料ガス供給部を有していてもよい。プラズマ原料ガス供給部は、プラズマの原料となるガスをプラズマ前処理室12B内に供給する。プラズマ原料ガス供給部の構成は特に限定されない。例えば、プラズマ原料ガス供給部は、プラズマ前処理室12Bの壁面に設けられ、プラズマの原料となるガスを噴出する穴を含む。また、プラズマ原料ガス供給部は、プラズマ前処理室12Bの壁面よりも基材1に近い位置においてプラズマ原料ガスを放出するノズルを有していてもよい。プラズマ原料ガス供給部によって供給されるプラズマ原料ガスとしては、例えば、アルゴンなどの不活性ガス、酸素、窒素、炭酸ガス、エチレンなどの活性ガス、又は、それらのガスの混合ガスを供給する。プラズマ原料ガスとしては、不活性ガスのうち1種を単体で用いても、活性ガスのうち1種を単体で用いても、不活性ガス又は活性ガスに含まれるガスのうち2種類以上のガスの混合ガスを用いてもよい。プラズマ原料ガスとしては、アルゴンのような不活性ガスと、活性ガスとの混合ガスを用いることが好ましい。一例として、プラズマ原料ガス供給部は、アルゴン(Ar)と酸素(O)との混合ガスを供給する。 Although not shown, the plasma pretreatment mechanism 11B may have a plasma raw material gas supply unit. The plasma raw material gas supply unit supplies the plasma raw material gas into the plasma pretreatment chamber 12B. The configuration of the plasma raw material gas supply unit is not particularly limited. For example, the plasma raw material gas supply unit is provided on the wall surface of the plasma pretreatment chamber 12B and includes a hole for ejecting a gas as a raw material for plasma. Further, the plasma raw material gas supply unit may have a nozzle for discharging the plasma raw material gas at a position closer to the base material 1 than the wall surface of the plasma pretreatment chamber 12B. As the plasma raw material gas supplied by the plasma raw material gas supply unit, for example, an inert gas such as argon, an active gas such as oxygen, nitrogen, carbon dioxide gas, or ethylene, or a mixed gas of these gases is supplied. As the plasma raw material gas, regardless of whether one of the inert gases is used alone or one of the active gases is used alone, the inert gas or two or more kinds of gases contained in the active gas You may use the mixed gas of. As the plasma raw material gas, it is preferable to use a mixed gas of an inert gas such as argon and an active gas. As an example, the plasma raw material gas supply unit supplies a mixed gas of argon (Ar) and oxygen (O 2).
 プラズマ前処理機構11Bは、例えば、プラズマ密度100W・sec/m以上8000W・sec/m以下のプラズマを前処理ローラー20と電極部21との間に供給する。 Plasma pretreatment mechanism 11B is, for example, supplied between the pretreatment roller 20 and the electrode portion 21 of the plasma density 100W · sec / m 2 or more 8000W · sec / m 2 or less of the plasma.
 図2に示す例において、プラズマ前処理機構11Bは、基材搬送室12A及び成膜室12Cから隔壁によって隔てられたプラズマ前処理室12B内に配置されている。プラズマ前処理室12Bを基材搬送室12A及び成膜室12Cなどの他の領域と区分することにより、プラズマ前処理室12Bの雰囲気を独立して調整しやすくなる。これにより、例えば、前処理ローラー20と電極部21とが対向する空間におけるプラズマ原料ガス濃度の制御が容易となり、積層フィルムの生産性が向上する。 In the example shown in FIG. 2, the plasma pretreatment mechanism 11B is arranged in the plasma pretreatment chamber 12B separated from the base material transport chamber 12A and the film forming chamber 12C by a partition wall. By separating the plasma pretreatment chamber 12B from other regions such as the substrate transfer chamber 12A and the film formation chamber 12C, the atmosphere of the plasma pretreatment chamber 12B can be easily adjusted independently. As a result, for example, it becomes easy to control the plasma raw material gas concentration in the space where the pretreatment roller 20 and the electrode portion 21 face each other, and the productivity of the laminated film is improved.
 本実施の形態において、プラズマ前処理機構11Bの前処理ローラー20と電極部21との間に印加される電圧は、交流電圧である。交流電圧の印加により、前処理ローラー20と電極部21との間にプラズマを発生させる。好ましくは、交流電圧の印加により、発生したプラズマが、基材1の表面に向かうように、基材1の表面に対して垂直方向に運動するように、電場が形成される。 In the present embodiment, the voltage applied between the pretreatment roller 20 of the plasma pretreatment mechanism 11B and the electrode portion 21 is an AC voltage. By applying an AC voltage, plasma is generated between the pretreatment roller 20 and the electrode portion 21. Preferably, by applying an AC voltage, an electric field is formed so that the generated plasma moves toward the surface of the base material 1 in a direction perpendicular to the surface of the base material 1.
 前処理ローラー20と電極部21との間に印加される交流電圧の値は、250V以上1000V以下であることが好ましい。交流電圧が上記の値を有する場合には、十分なプラズマ密度を有するプラズマを、前処理ローラー20と電極部21との間に発生させることができる。ここで、交流電圧の値とは、実効値Veを意味する。交流電圧の実効値Veは、交流電圧の最大値をVmとした場合に、以下の式により求められる。 The value of the AC voltage applied between the pretreatment roller 20 and the electrode portion 21 is preferably 250 V or more and 1000 V or less. When the AC voltage has the above values, plasma having a sufficient plasma density can be generated between the pretreatment roller 20 and the electrode portion 21. Here, the value of the AC voltage means the effective value Ve. The effective value Ve of the AC voltage is calculated by the following formula when the maximum value of the AC voltage is Vm.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 前処理ローラー20と電極部21との間に印加される交流電圧は、例えば20kHz以上500kHz以下の周波数を有する。 The AC voltage applied between the pretreatment roller 20 and the electrode portion 21 has, for example, a frequency of 20 kHz or more and 500 kHz or less.
 (成膜機構)
 次に、成膜機構11Cについて説明する。図2に示す例において、成膜機構11Cは、成膜室12Cに配置された成膜ローラー25と、蒸発機構24とを有する。
(Film formation mechanism)
Next, the film forming mechanism 11C will be described. In the example shown in FIG. 2, the film forming mechanism 11C has a film forming roller 25 arranged in the film forming chamber 12C and an evaporation mechanism 24.
 成膜ローラー25について説明する。成膜ローラー25は、プラズマ前処理機構11Bにおいて前処理された基材1の処理面を外側にして基材1を巻きかけて搬送するローラーである。 The film forming roller 25 will be described. The film forming roller 25 is a roller that winds and conveys the base material 1 with the treatment surface of the base material 1 pretreated by the plasma pretreatment mechanism 11B on the outside.
 成膜ローラー25の材料について説明する。成膜ローラー25は、少なくともステンレス、鉄、銅及びクロムのうちいずれかを1以上含む材料から形成されることが好ましい。成膜ローラー25の表面には、傷つき防止のために、硬質のクロムハードコート処理などを施してもよい。これらの材料は加工が容易である。また、成膜ローラー25の材料として上記の材料を用いることにより、成膜ローラー25自体の熱伝導性が高くなるので、温度制御を行う際に、温度制御性が優れたものとなる。成膜ローラー25の表面の表面平均粗さRaは、例えば0.1μm以上10μm以下である。 The material of the film forming roller 25 will be described. The film forming roller 25 is preferably formed of a material containing at least one or more of stainless steel, iron, copper and chromium. The surface of the film forming roller 25 may be subjected to a hard chrome hard coat treatment or the like in order to prevent scratches. These materials are easy to process. Further, by using the above-mentioned material as the material of the film forming roller 25, the thermal conductivity of the film forming roller 25 itself is increased, so that the temperature controllability is excellent when the temperature is controlled. The surface average roughness Ra of the surface of the film forming roller 25 is, for example, 0.1 μm or more and 10 μm or less.
 また、図示はしないが、成膜ローラー25は、成膜ローラー25の表面の温度を調整する温度調整機構を有していてもよい。温度調整機構は、例えば、冷却媒体又は熱源媒体を循環させる循環路を成膜ローラー25の内部に有する。冷却媒体(冷媒)は、例えばエチレングリコール水溶液であり、熱源媒体(熱媒)は、例えばシリコンオイルである。温度調整機構は、成膜ローラー25と対向する位置に設置されたヒータを有していてもよい。成膜機構11Cが蒸着法により膜を成膜する場合、関連する機械部品の耐熱性の制約や汎用性の面から、好ましくは、温度調整機構は、成膜ローラー25の表面の温度を-20℃以上200℃以下の範囲内の目標温度に調整する。成膜ローラー25が温度調整機構を有することによって、成膜時に発生する熱に起因する基材1の温度の変動を抑えることができる。 Although not shown, the film forming roller 25 may have a temperature adjusting mechanism for adjusting the temperature of the surface of the film forming roller 25. The temperature adjusting mechanism has, for example, a circulation path for circulating the cooling medium or the heat source medium inside the film forming roller 25. The cooling medium (refrigerant) is, for example, an ethylene glycol aqueous solution, and the heat source medium (heat medium) is, for example, silicon oil. The temperature adjusting mechanism may have a heater installed at a position facing the film forming roller 25. When the film forming mechanism 11C forms a film by a thin film deposition method, the temperature adjusting mechanism preferably sets the temperature of the surface of the film forming roller 25 to −20 from the viewpoint of heat resistance restrictions and versatility of related mechanical parts. Adjust to the target temperature within the range of ° C or higher and 200 ° C or lower. Since the film forming roller 25 has a temperature adjusting mechanism, it is possible to suppress fluctuations in the temperature of the base material 1 due to heat generated during film formation.
 蒸発機構24について説明する。図6は、図2において符号IXが付された一点鎖線で囲まれた部分を拡大し、図5においては省略されていた蒸発機構24の具体的形態を示し、図2においては省略されていた、蒸着材料を供給する、蒸着材料供給部61を示した図である。なお、図6においては、減圧チャンバ12及び隔壁35b、35cの記載は省略している。蒸発機構24は、アルミニウムを含む蒸着材料を蒸発させる機構である。蒸発した蒸着材料が基材1に付着することにより、基材1の表面にアルミニウムを含む蒸着膜が形成される。本実施の形態における蒸発機構24は、抵抗加熱式を採用している。図6に示す例において、蒸発機構24は、ボート24bを有する。本実施の形態において、ボート24bは、図示しない電源と、電源に電気的に接続された図示しない抵抗体と、を有する。ボート24bは、基材1の幅方向に複数並んでいてもよい。 The evaporation mechanism 24 will be described. FIG. 6 is an enlargement of the portion surrounded by the alternate long and short dash line in FIG. 2, showing a specific form of the evaporation mechanism 24 which was omitted in FIG. 5, and was omitted in FIG. It is a figure which showed the vapor deposition material supply part 61 which supplies the vapor deposition material. In FIG. 6, the description of the decompression chamber 12 and the partition walls 35b and 35c is omitted. The evaporation mechanism 24 is a mechanism for evaporating a vaporized material containing aluminum. When the evaporated vaporized material adheres to the base material 1, a thin-film vapor-deposited film containing aluminum is formed on the surface of the base material 1. The evaporation mechanism 24 in this embodiment adopts a resistance heating type. In the example shown in FIG. 6, the evaporation mechanism 24 has a boat 24b. In this embodiment, the boat 24b has a power source (not shown) and a resistor (not shown) electrically connected to the power source. A plurality of boats 24b may be arranged in the width direction of the base material 1.
 図6に示すように、成膜機構11Cは、蒸発機構24に蒸着材料を供給する蒸着材料供給部61を有していてもよい。図6においては、蒸着材料供給部61がアルミニウムの金属線材を連続的に送り出す例を示している。 As shown in FIG. 6, the film forming mechanism 11C may have a vapor deposition material supply unit 61 that supplies the vapor deposition material to the evaporation mechanism 24. FIG. 6 shows an example in which the thin-film deposition material supply unit 61 continuously sends out a metal wire rod made of aluminum.
 図示はしないが、成膜機構11Cは、ガス供給機構を有する。ガス供給機構は、蒸発機構24と成膜ローラー25との間にガスを供給する機構である。ガス供給機構は、少なくとも酸素ガスを供給する。酸素ガスは、蒸発機構24から蒸発して成膜ローラー25上の基材1に向かっているアルミニウムなどの蒸発材料と反応又は結合する。これにより、基材1の表面に酸化アルミニウムを含む蒸着膜を形成することができる。 Although not shown, the film forming mechanism 11C has a gas supply mechanism. The gas supply mechanism is a mechanism for supplying gas between the evaporation mechanism 24 and the film forming roller 25. The gas supply mechanism supplies at least oxygen gas. The oxygen gas evaporates from the evaporation mechanism 24 and reacts with or combines with an evaporative material such as aluminum heading toward the base material 1 on the film forming roller 25. As a result, a vapor-deposited film containing aluminum oxide can be formed on the surface of the base material 1.
 また、成膜機構11Cは、基材1の表面と蒸発機構24との間にプラズマを供給するプラズマ供給機構50を備える。図2及び図6に示す例において、プラズマ供給機構50は、ホローカソード51を有する。本実施の形態において、ホローカソード51は、一部において開口した空洞部を有する陰極である。ホローカソード51は、空洞部内にプラズマを発生させることができる。図6に示す例において、ホローカソード51は、ホローカソード51の空洞部の開口がボート24bの斜め上に位置するように設けられている。また、図示はしないが、本実施の形態に係るプラズマ供給機構50は、ホローカソード51の空洞部の開口からプラズマを引き出す、開口と対向するアノードを有する。本実施の形態に係るプラズマ供給機構50は、ホローカソード51の空洞部内にプラズマを発生させ、そのプラズマを対向するアノードによって基材1の表面と蒸発機構24との間に引き出すことによって、基材1の表面と蒸発機構24との間に強力なプラズマを発生させることができる。対向するアノードの位置は、対向するアノードによってホローカソード51の空洞部の開口からプラズマを引き出し、基材1の表面と蒸発機構24との間にプラズマを供給することができる限り、特に限られない。本実施の形態においては、対向するアノードが、ボート24bの、基材1の幅方向における両側に配置されている場合について説明する。この場合、成膜機構11Cは複数のボート24bと複数の対向するアノードとを有し、複数のボート24bと複数の対向するアノードとは、基材1の幅方向に交互に並べられていてもよい。図示はしないが、プラズマ供給機構50は、少なくともホローカソード51の空洞部内にプラズマ原料ガスを供給する、原料供給装置を有していてもよい。原料供給装置が供給するプラズマ原料ガスとしては、例えばプラズマ前処理機構11Bのプラズマ原料ガス供給部が供給するプラズマ原料ガスとして用いることのできるガスと同様のガスを用いることができる。 Further, the film forming mechanism 11C includes a plasma supply mechanism 50 that supplies plasma between the surface of the base material 1 and the evaporation mechanism 24. In the examples shown in FIGS. 2 and 6, the plasma supply mechanism 50 has a hollow cathode 51. In the present embodiment, the hollow cathode 51 is a cathode having a hollow portion that is partially open. The hollow cathode 51 can generate plasma in the cavity. In the example shown in FIG. 6, the hollow cathode 51 is provided so that the opening of the cavity of the hollow cathode 51 is located obliquely above the boat 24b. Although not shown, the plasma supply mechanism 50 according to the present embodiment has an anode facing the opening that draws plasma from the opening of the hollow portion of the hollow cathode 51. The plasma supply mechanism 50 according to the present embodiment generates plasma in the cavity of the hollow cathode 51, and pulls the plasma between the surface of the base material 1 and the evaporation mechanism 24 by the opposing anodes, thereby causing the base material. A strong plasma can be generated between the surface of 1 and the evaporation mechanism 24. The position of the facing anode is not particularly limited as long as the facing anode can draw plasma from the opening of the hollow portion of the hollow cathode 51 and supply the plasma between the surface of the base material 1 and the evaporation mechanism 24. .. In the present embodiment, the case where the opposing anodes are arranged on both sides of the boat 24b in the width direction of the base material 1 will be described. In this case, the film forming mechanism 11C has a plurality of boats 24b and a plurality of opposing anodes, and even if the plurality of boats 24b and the plurality of facing anodes are alternately arranged in the width direction of the base material 1. Good. Although not shown, the plasma supply mechanism 50 may have a raw material supply device that supplies plasma raw material gas at least in the cavity of the hollow cathode 51. As the plasma raw material gas supplied by the raw material supply device, for example, a gas similar to the gas that can be used as the plasma raw material gas supplied by the plasma raw material gas supply unit of the plasma pretreatment mechanism 11B can be used.
 プラズマ供給機構50によって、基材1の表面と蒸発機構24との間にプラズマを供給する、蒸着時のプラズマアシストを行うことにより、蒸発機構24において蒸発したアルミニウム、及び酸素ガスを活性化させ、アルミニウムと酸素ガスとの反応又は結合を促進することができる。これにより、基材1の表面に形成される蒸着膜2中のアルミニウムが酸化アルミニウムとして存在する比率を高めることができ、蒸着膜2の特性を安定化することができる。 The plasma supply mechanism 50 supplies plasma between the surface of the base material 1 and the evaporation mechanism 24. By performing plasma assist at the time of vaporization, the aluminum and oxygen gas evaporated in the evaporation mechanism 24 are activated. The reaction or bond between aluminum and oxygen gas can be promoted. As a result, the ratio of aluminum in the vapor-deposited film 2 formed on the surface of the base material 1 as aluminum oxide can be increased, and the characteristics of the vapor-deposited film 2 can be stabilized.
 図示はしないが、成膜装置10は、基材搬送室12Aのうち、成膜室12Cよりも基材1の搬送方向の下流側に位置する部分に、成膜機構11Cによる成膜に起因して基材1に発生した帯電を除去する後処理を行う基材帯電除去部を備えてもよい。基材帯電除去部は、基材1の片面の帯電を除去するように設けられていてもよく、基材1の両面の帯電を除去するように設けられていてもよい。 Although not shown, the film forming apparatus 10 is caused by the film formation by the film forming mechanism 11C in the portion of the base material conveying chamber 12A located on the downstream side in the conveying direction of the base material 1 with respect to the film forming chamber 12C. A base material charge removing portion for performing post-treatment for removing the charge generated on the base material 1 may be provided. The base material charge removing portion may be provided so as to remove the charge on one side of the base material 1, or may be provided so as to remove the charge on both sides of the base material 1.
 基材1に後処理を行う基材帯電除去部として用いられる装置は、特に限定されないが、例えばプラズマ放電装置、電子線照射装置、紫外線照射装置、除電バー、グロー放電装置、コロナ処理装置などを用いることができる。 The device used as the base material charge removing unit for post-treating the base material 1 is not particularly limited, and examples thereof include a plasma discharge device, an electron beam irradiation device, an ultraviolet irradiation device, a static elimination bar, a glow discharge device, and a corona treatment device. Can be used.
 プラズマ処理装置、グロー放電装置を用いて放電を形成することにより後処理を行う場合、基材1の近傍に、アルゴン、酸素、窒素、ヘリウムなどの放電用ガス単体、又はこれらの混合ガスを供給し、交流(AC)プラズマ、直流(DC)プラズマ、アーク放電、マイクロウェーブ、表面波プラズマなど、任意の放電方式を用いて後処理を行うことが可能である。減圧環境下では、プラズマ放電装置を用いて後処理を行うことが最も好ましい。 When post-treatment is performed by forming a discharge using a plasma treatment device or a glow discharge device, a single discharge gas such as argon, oxygen, nitrogen, or helium, or a mixed gas thereof is supplied in the vicinity of the base material 1. However, post-processing can be performed using any discharge method such as AC (AC) plasma, DC (DC) plasma, arc discharge, microwave, and surface wave plasma. In a reduced pressure environment, it is most preferable to perform post-treatment using a plasma discharge device.
 基材帯電除去部を、基材搬送室12Aのうち、成膜室12Cよりも基材1の搬送方向の下流側に位置する部分に設置し、基材1の帯電を除去することにより、基材1を成膜ローラー25から所定位置で速やかに離して搬送することができる。このため、安定した基材搬送が可能となり、帯電に起因する基材1の破損や品質低下を防ぎ、基材表裏面の濡れ性改善により後加工適正の向上を図ることができる。 The base material charge removing portion is installed in a portion of the base material transport chamber 12A located downstream of the film forming chamber 12C in the transport direction of the base material 1, and the base material 1 is removed from the charge. The material 1 can be quickly separated from the film forming roller 25 at a predetermined position and conveyed. Therefore, stable transfer of the base material is possible, damage to the base material 1 and deterioration of quality due to charging can be prevented, and the wettability of the front and back surfaces of the base material can be improved to improve post-processing suitability.
 (電源)
 図2に示す例において、成膜装置10は、前処理ローラー20と、電極部21と、に電気的に接続された、電源32を更に備える。図5に示す例において、電源32は、電力供給配線31を介して、前処理ローラー20、及び電極部21に電気的に接続されている。電源32は、例えば交流電源である。電源32が交流電源である場合には、電源32は、例えば20kHz以上500kHz以下の周波数を有する交流電圧を前処理ローラー20と電極部21との間に印加することが可能である。電源32によって印加可能な投入電力(基材1の幅方向において、電極部21の1m幅あたりに印加可能な電力)は、特に限定されないが、例えば、0.5kW/m以上20kW/m以下である。前処理ローラー20は、電気的にアースレベルに設置されてもよく、電気的にフローティングレベルに設置されてもよい。
(power supply)
In the example shown in FIG. 2, the film forming apparatus 10 further includes a power supply 32 electrically connected to the pretreatment roller 20 and the electrode portion 21. In the example shown in FIG. 5, the power supply 32 is electrically connected to the pretreatment roller 20 and the electrode portion 21 via the power supply wiring 31. The power supply 32 is, for example, an AC power supply. When the power supply 32 is an AC power supply, the power supply 32 can apply an AC voltage having a frequency of, for example, 20 kHz or more and 500 kHz or less between the pretreatment roller 20 and the electrode portion 21. The input power that can be applied by the power source 32 (the power that can be applied per 1 m width of the electrode portion 21 in the width direction of the base material 1) is not particularly limited, but is, for example, 0.5 kW / m or more and 20 kW / m or less. is there. The pretreatment roller 20 may be electrically installed at the ground level or electrically at the floating level.
 (バリアフィルムの製造方法)
 次に、上述の成膜装置10を使用して、図1に示すバリアフィルムを製造する方法について説明する。まず、基材1の表面に蒸着膜2を成膜する成膜方法について説明する。成膜装置10を使用した成膜においては、上述の基材1の搬送経路に沿って基材1を搬送しつつ、プラズマ前処理機構11Bを用いて基材1の表面にプラズマ前処理を施すプラズマ前処理工程、及び成膜機構11Cを用いて基材1の表面に蒸着膜を成膜する成膜工程を行う。基材1の搬送速度は、好ましくは200m/min以上であり、より好ましくは400m/min以上1000m/min以下である。
(Manufacturing method of barrier film)
Next, a method for producing the barrier film shown in FIG. 1 will be described using the film forming apparatus 10 described above. First, a film forming method for forming the vapor deposition film 2 on the surface of the base material 1 will be described. In the film formation using the film forming apparatus 10, the substrate 1 is transported along the above-mentioned transport path of the base material 1, and the surface of the base material 1 is subjected to plasma pretreatment using the plasma pretreatment mechanism 11B. A plasma pretreatment step and a film forming step of forming a vapor-deposited film on the surface of the base material 1 are performed using the film-forming mechanism 11C. The transport speed of the base material 1 is preferably 200 m / min or more, more preferably 400 m / min or more and 1000 m / min or less.
 (プラズマ前処理工程)
 プラズマ前処理工程は、例えば以下の方法により行われる。まず、プラズマ前処理室12B内にプラズマ原料ガスを供給する。次に、前処理ローラー20と電極部21との間に、上述の交流電圧を印加する。交流電圧の印加の際には、投入電力制御、又はインピーダンス制御などを行ってもよい。
(Plasma pretreatment process)
The plasma pretreatment step is performed by, for example, the following method. First, the plasma raw material gas is supplied into the plasma pretreatment chamber 12B. Next, the above-mentioned AC voltage is applied between the pretreatment roller 20 and the electrode portion 21. When applying the AC voltage, input power control, impedance control, or the like may be performed.
 前処理において供給されるプラズマ原料ガスは、酸素単独又は酸素ガスと不活性ガスとの混合ガスが、ガス貯留部から流量制御器を介することでガスの流量を計測しつつ供給される。不活性ガスとしては、アルゴン、ヘリウム、窒素なる群から選ばれる、1種又は2種以上の混合ガスが挙げられる。 As the plasma raw material gas supplied in the pretreatment, oxygen alone or a mixed gas of oxygen gas and an inert gas is supplied from the gas storage unit via a flow rate controller while measuring the gas flow rate. Examples of the inert gas include one or more mixed gases selected from the group of argon, helium, and nitrogen.
 プラズマ処理としては、酸素ガスと前記不活性ガスとの混合比率、酸素ガス/不活性ガスは、6/1~1/1が好ましく、5/2~3/2.5がより好ましい。 As the plasma treatment, the mixing ratio of the oxygen gas and the inert gas and the oxygen gas / inert gas are preferably 6/1 to 1/1, more preferably 5/2 to 3 / 2.5.
 混合比率を6/1~1/1とすることで、樹脂基材上での蒸着アルミニウムの膜形成エネルギーが増加し、更に5/2~3/2とすることで、酸化アルミニウム蒸着膜の酸化度を上げて酸化アルミニウム蒸着膜と基材との密着性を確保することができる。 By setting the mixing ratio to 6/1 to 1/1, the film forming energy of the vapor-deposited aluminum on the resin base material increases, and by further setting it to 5/2 to 3/2, the oxide of the aluminum oxide-deposited film is oxidized. It is possible to increase the degree and secure the adhesion between the aluminum oxide vapor deposition film and the base material.
 交流電圧の印加によりグロー放電と同時にプラズマが生成し、前処理ローラー20と磁場形成部23との間にプラズマPが高密度化する。このようにして、前処理ローラー20と磁場形成部23との間にプラズマPを供給することができる。このプラズマPによって、基材1の表面にプラズマ(イオン)前処理を施すことができる。 Plasma is generated at the same time as glow discharge by applying an AC voltage, and the plasma P becomes denser between the pretreatment roller 20 and the magnetic field forming unit 23. In this way, the plasma P can be supplied between the pretreatment roller 20 and the magnetic field forming unit 23. With this plasma P, the surface of the base material 1 can be subjected to plasma (ion) pretreatment.
 プラズマ処理における単位面積あたりのプラズマ強度として50W・sec/m以上8000W・sec/m以下であり、50W・sec/m以下では、プラズマ前処理の効果がみられず、また、8000W・sec/m以上では、樹脂基材の消耗、破損着色、焼成などプラズマによる樹脂基材の劣化が起きる傾向にある。特に、酸化アルミウム層とするためプラズマ前処理のプラズマ強度としては、100W・sec/m以上1000W・sec/m以下が好ましい。 And 8000W · sec / m 2 or less 50 W · sec / m 2 or more as the plasma intensity per unit area in the plasma processing, the 50 W · sec / m 2 or less, without the effect of the plasma pretreatment was observed, also, 8000W · At sec / m 2 or more, the resin base material tends to deteriorate due to plasma such as wear, damage coloring, and firing of the resin base material. In particular, the plasma intensity of the plasma pretreatment is preferably 100 W · sec / m 2 or more and 1000 W · sec / m 2 or less in order to form an aluminum oxide layer.
 前処理ローラー20と電極部21との間に交流電圧を印加する際のプラズマ前処理室12B内の気圧は、減圧チャンバ12によって、大気圧以下に減圧される。この場合、プラズマ前処理室12B内の気圧は、例えば、交流電圧の印加により前処理ローラー20と電極部21との間にグロー放電を生じさせることができるように調整される。前処理ローラー20と電極部21との間に交流電圧を印加する際のプラズマ前処理室12B内の真空度は、0.1Pa以上100Pa以下程度に設定、維持することができ、特に、1Pa以上20Pa以下が好ましい。 The pressure in the plasma pretreatment chamber 12B when an AC voltage is applied between the pretreatment roller 20 and the electrode portion 21 is reduced to atmospheric pressure or less by the pressure reducing chamber 12. In this case, the atmospheric pressure in the plasma pretreatment chamber 12B is adjusted so that a glow discharge can be generated between the pretreatment roller 20 and the electrode portion 21 by applying an AC voltage, for example. The degree of vacuum in the plasma pretreatment chamber 12B when an AC voltage is applied between the pretreatment roller 20 and the electrode portion 21 can be set and maintained at about 0.1 Pa or more and 100 Pa or less, and in particular, 1 Pa or more. 20 Pa or less is preferable.
 プラズマ前処理工程における磁場形成部23の作用について説明する。磁場形成部23は、前処理ローラー20と電極部21との間に磁場を形成する。磁場は、前処理ローラー20と電極部21との間に存在する電子を捕捉し加速させるよう作用し得る。このため、磁場が形成されている領域において、電子とプラズマ原料ガスの衝突の頻度を高め、プラズマの密度を高め、且つ局在化させることがきるので、プラズマ前処理の効率を向上させることができる。 The operation of the magnetic field forming unit 23 in the plasma pretreatment step will be described. The magnetic field forming portion 23 forms a magnetic field between the pretreatment roller 20 and the electrode portion 21. The magnetic field can act to capture and accelerate the electrons present between the pretreatment roller 20 and the electrode section 21. Therefore, in the region where the magnetic field is formed, the frequency of collision between the electrons and the plasma raw material gas can be increased, the density of the plasma can be increased, and the plasma can be localized, so that the efficiency of the plasma pretreatment can be improved. it can.
 (成膜工程)
 成膜工程においては、成膜機構11Cを用いて、基材1の表面に成膜する。成膜工程の一例として、図6に示す蒸発機構24を有する成膜機構11Cを用いて、酸化アルミニウム蒸着膜を成膜する場合について説明する。
(Film formation process)
In the film forming step, the film forming mechanism 11C is used to form a film on the surface of the base material 1. As an example of the film forming process, a case where the aluminum oxide vapor deposition film is formed by using the film forming mechanism 11C having the evaporation mechanism 24 shown in FIG. 6 will be described.
 まず、蒸発機構24のボート24b内に、成膜ローラー25に対向するように、アルミニウムを含む蒸着材料を供給する。蒸着材料としては、アルミニウムの金属線材を用いることができる。図6に示す例においては、蒸着材料供給部61によってアルミニウムの金属線材を連続的にボート24b内に送り出すことにより、ボート24bに蒸着材料を供給している。 First, a vapor deposition material containing aluminum is supplied into the boat 24b of the evaporation mechanism 24 so as to face the film forming roller 25. As the vapor deposition material, an aluminum metal wire can be used. In the example shown in FIG. 6, the vapor deposition material is supplied to the boat 24b by continuously sending the aluminum metal wire into the boat 24b by the vapor deposition material supply unit 61.
 加熱により、アルミニウムをボート24b内で蒸発させる。図6には、便宜的に、蒸発したアルミニウム蒸気63を図示している。アルミニウムを酸化する酸素ガスは、酸素単体でも、アルゴンのような不活性ガスとの混合ガスでの供給でもよいが、酸素量を制御することにより、バリア性、透明性を両立できる。このときの真空度は0.05Pa以上8.00Pa以下が好ましい。 Aluminum is evaporated in the boat 24b by heating. FIG. 6 illustrates the evaporated aluminum vapor 63 for convenience. The oxygen gas that oxidizes aluminum may be supplied as a simple substance of oxygen or a mixed gas with an inert gas such as argon, but by controlling the amount of oxygen, both barrier property and transparency can be achieved. The degree of vacuum at this time is preferably 0.05 Pa or more and 8.00 Pa or less.
 更に、プラズマ供給機構50によって基材1の表面と蒸発機構24との間にプラズマを供給する方法、すなわち蒸着時のプラズマアシストについて説明する。本実施の形態においては、プラズマ供給機構50のホローカソード51の空洞部内でプラズマを発生させる。次に、ホローカソード51と対向するアノードとの間に放電を発生させ、ホローカソード51の空洞部内のプラズマを基材1の表面と蒸発機構24との間に引き出す。 Further, a method of supplying plasma between the surface of the base material 1 and the evaporation mechanism 24 by the plasma supply mechanism 50, that is, plasma assist at the time of vapor deposition will be described. In the present embodiment, plasma is generated in the cavity of the hollow cathode 51 of the plasma supply mechanism 50. Next, a discharge is generated between the hollow cathode 51 and the anode facing the hollow cathode 51, and the plasma in the cavity of the hollow cathode 51 is drawn out between the surface of the base material 1 and the evaporation mechanism 24.
 本実施の形態において、ホローカソード51と対向するアノードとの間において発生させる放電は、アーク放電である。アーク放電は、例えば電流の値が10A以上であるような放電を意味する。 In the present embodiment, the discharge generated between the hollow cathode 51 and the anode facing the hollow cathode 51 is an arc discharge. The arc discharge means, for example, a discharge in which the value of the current is 10 A or more.
 基材1の表面と蒸発機構24との間にプラズマを供給しつつ、アルミニウムを蒸発させることにより、アルミニウム蒸気63にプラズマが供給される。プラズマの供給により、アルミニウム蒸気63と酸素ガスとの反応又は結合を促進することができる。これにより、アルミニウム蒸気63が基材1の表面に到達する前に、アルミニウム蒸気63を酸化させることができる。蒸発し、酸化したアルミニウムが基材1に付着することによって、基材1の表面に酸化アルミニウム蒸着膜を成膜し、図1に示すバリアフィルムを製造ことができる。 Plasma is supplied to the aluminum vapor 63 by evaporating aluminum while supplying plasma between the surface of the base material 1 and the evaporation mechanism 24. The supply of plasma can promote the reaction or bond between the aluminum vapor 63 and the oxygen gas. Thereby, the aluminum vapor 63 can be oxidized before reaching the surface of the base material 1. By adhering the evaporated and oxidized aluminum to the base material 1, an aluminum oxide vapor-deposited film can be formed on the surface of the base material 1 to produce the barrier film shown in FIG.
 プラズマ供給機構50で供給されるプラズマ原料ガスは、酸素単独又は酸素ガスと不活性ガスとの混合ガスが好ましい。 The plasma raw material gas supplied by the plasma supply mechanism 50 is preferably oxygen alone or a mixed gas of oxygen gas and an inert gas.
 本実施の形態においては、成膜工程の前に、基材1の表面にプラズマを供給するプラズマ前処理工程を実施している。プラズマ前処理工程においては、電極部21と前処理ローラー20との間に交流電圧を印加する。また、電極部21の面のうち前処理ローラー20と対向する面とは反対側の面の側に位置する磁場形成部23を利用して、電極部21と前処理ローラー20との間の空間に磁場を生じさせる。このため、電極部21と前処理ローラー20との間の空間に効率良くプラズマを発生させたり、プラズマを前処理ローラー20に巻き掛けられている基材1の表面に対して垂直に入射させたりすることができる。したがって、成膜工程によって成膜される膜と基材1との間の密着性を高めることができる。 In the present embodiment, a plasma pretreatment step of supplying plasma to the surface of the base material 1 is carried out before the film forming step. In the plasma pretreatment step, an AC voltage is applied between the electrode portion 21 and the pretreatment roller 20. Further, the space between the electrode portion 21 and the pretreatment roller 20 is utilized by using the magnetic field forming portion 23 located on the side of the surface of the electrode portion 21 opposite to the surface facing the pretreatment roller 20. Generates a magnetic field in. Therefore, plasma can be efficiently generated in the space between the electrode portion 21 and the pretreatment roller 20, or the plasma can be made to enter perpendicularly to the surface of the base material 1 wound around the pretreatment roller 20. can do. Therefore, it is possible to improve the adhesion between the film formed by the film forming step and the base material 1.
 (有機被覆層形成工程)
 有機被覆層3aは、以下の方法で製造することができる。まず、上記金属アルコキシド、水溶性高分子、必要に応じて添加するシランカップリング剤、ゾルゲル法触媒、酸、及び溶媒としての水、メチルアルコール、エチルアルコール、イソプロパノール等のアルコール等の有機溶媒を混合し、バリアコート剤を調製する。次いで、酸化アルミニウム蒸着膜の上に、常法により、上記のバリアコート剤を塗布し、乾燥する。この乾燥工程によって、上記金属アルコキシド、シランカップリング剤及び水溶性高分子の重縮合が更に進行し、塗膜が形成される。第一の塗膜の上に、更に上記塗布操作を繰り返して、2層以上からなる複数の塗膜を形成してもよい。更に、20~200℃、かつプラスチック基材の融点以下の温度、好ましくは、50~180℃の範囲の温度で、3秒~10分間加熱処理する。これによって、酸化アルミニウム蒸着膜の上に、上記バリアコート剤による有機被覆層3aを形成することができる。
(Organic coating layer forming process)
The organic coating layer 3a can be produced by the following method. First, the above metal alkoxide, a water-soluble polymer, a silane coupling agent added as needed, a sol-gel method catalyst, an acid, and an organic solvent such as water as a solvent, an alcohol such as methyl alcohol, ethyl alcohol, or isopropanol are mixed. And prepare a barrier coating agent. Next, the above barrier coating agent is applied onto the aluminum oxide vapor deposition film by a conventional method and dried. By this drying step, polycondensation of the metal alkoxide, the silane coupling agent and the water-soluble polymer further proceeds, and a coating film is formed. On the first coating film, the above coating operation may be repeated to form a plurality of coating films composed of two or more layers. Further, the heat treatment is carried out at a temperature of 20 to 200 ° C. and lower than the melting point of the plastic substrate, preferably in the temperature range of 50 to 180 ° C. for 3 seconds to 10 minutes. As a result, the organic coating layer 3a made of the barrier coating agent can be formed on the aluminum oxide vapor deposition film.
 (積層体)
 本実施の形態に係るバリアフィルムを用いることによって形成される積層体の例について説明する。図7(a)は、本実施の形態に係るバリアフィルムを用いることによって形成される積層体40aの一例を示す図である。積層体40aは、図1に示すバリアフィルムと、シーラント層7とを備える。具体的には、積層体40aは、図1に示すバリアフィルムの有機被覆層上に、更に接着剤層4と、ポリアミドなどで構成される第2基材5と、接着剤層6と、シーラント層7とを、この順に備える。本発明の積層体は、バリアフィルムに少なくとも1層のヒートシール可能な層を積層したものであって、ヒートシール可能な熱可塑性樹脂が、接着層を介して、あるいは介することなく、最内層として積層され、ヒートシールなどのシール性が付与されたものである。
(Laminated body)
An example of a laminated body formed by using the barrier film according to the present embodiment will be described. FIG. 7A is a diagram showing an example of a laminated body 40a formed by using the barrier film according to the present embodiment. The laminated body 40a includes the barrier film shown in FIG. 1 and the sealant layer 7. Specifically, the laminated body 40a is further formed on the organic coating layer of the barrier film shown in FIG. 1, an adhesive layer 4, a second base material 5 composed of polyamide or the like, an adhesive layer 6, and a sealant. Layers 7 are provided in this order. The laminate of the present invention is obtained by laminating at least one heat-sealable layer on a barrier film, and the heat-sealable thermoplastic resin is used as the innermost layer with or without an adhesive layer. It is laminated and has a sealing property such as a heat seal.
 シーラント層7を構成する熱可塑性樹脂としては、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状(線状)低密度ポリエチレン、ポリプロピレン、ポリメチルペンテン、ポリスチレン、エチレン-酢酸ビニル共重合体、アイオノマー樹脂、エチレンーアクリル酸共重合体、エチレンーアクリル酸エチル共重合体、エチレンーメタクリル酸メチル共重合体、エチレンープロピレン共重合体、エラストマー等の樹脂の一種ないしそれ以上を含むフィルムが例示できる。シーラント層7の厚さとしては3~100μmが好ましく、15~70μmがより好ましい。 Examples of the thermoplastic resin constituting the sealant layer 7 include low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear (linear) low-density polyethylene, polypropylene, polymethylpentene, polystyrene, and ethylene-vinyl acetate. Contains one or more resins such as polymers, ionomer resins, ethylene-acrylic acid copolymers, ethyl ethylene-ethyl acrylate copolymers, ethylene-methyl methacrylate copolymers, ethylene-propylene copolymers, and elastomers. A film can be exemplified. The thickness of the sealant layer 7 is preferably 3 to 100 μm, more preferably 15 to 70 μm.
 (包装材料)
 上記の積層体は、食品などの内容物を収容する包装袋を作製するための包装材料として用いる場合に有用である。特に、熱処理を施した場合においても高い密着性が維持されるバリアフィルムは、包装袋の材料として好適に使用できる。上記のバリアフィルムは、バリアフィルムを材料として包装製品を作成した場合に、包装製品において、バリアフィルムを構成する層の剥離を抑制することができる。例えば、バリアフィルムを材料として作製した包装袋に対して、熱水を用いた加熱殺菌処理、例えばレトルト処理又はボイル処理を施した場合に、バリアフィルムを構成する層の剥離、特に蒸着膜2の基材1からの剥離を抑制できる。
(Packaging material)
The above-mentioned laminate is useful when used as a packaging material for producing a packaging bag for containing contents such as food. In particular, a barrier film that maintains high adhesion even after heat treatment can be suitably used as a material for packaging bags. The above-mentioned barrier film can suppress peeling of the layers constituting the barrier film in the packaged product when the packaged product is produced using the barrier film as a material. For example, when a packaging bag made of a barrier film is subjected to a heat sterilization treatment using hot water, for example, a retort treatment or a boil treatment, the layers constituting the barrier film are peeled off, particularly the vapor deposition film 2. The peeling from the base material 1 can be suppressed.
 なお、レトルト処理とは、内容物を包装袋に充填して包装袋を密封した後、蒸気又は加熱温水を利用して包装袋を加圧状態で加熱する処理である。レトルト処理の温度は、例えば120℃以上である。ボイル処理とは、内容物を包装袋に充填して包装袋を密封した後、包装袋を大気圧下で湯煎する処理である。ボイル処理の温度は、例えば90℃以上且つ100℃以下である。 The retort treatment is a treatment in which the contents are filled in the packaging bag, the packaging bag is sealed, and then the packaging bag is heated in a pressurized state using steam or heated hot water. The temperature of the retort treatment is, for example, 120 ° C. or higher. The boil treatment is a treatment in which the contents are filled in a packaging bag, the packaging bag is sealed, and then the packaging bag is boiled in hot water under atmospheric pressure. The temperature of the boiling treatment is, for example, 90 ° C. or higher and 100 ° C. or lower.
 以下、実施例により、本発明を更に詳細に説明するが、本発明はこれらの記載に何ら制限を受けるものではない。まず、本実施の形態に記載の成膜装置である製膜装置1、及び成膜方法を用いて、実施例1、2、参考例1、2、及び比較例1に係るバリアフィルムを製造した。前処理条件、蒸着条件などにつき、まとめて表1に示す。なお、以後の表において、「プラズマ前処理有無」における評価の「〇」はプラズマ前処理有り、「×」はプラズマ前処理無し、を意味する。また、「蒸着時プラズマアシスト有無」における評価の「〇」は蒸着時プラズマアシスト有り、「×」は蒸着時プラズマアシスト無し、を意味する。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these descriptions. First, the barrier films according to Examples 1 and 2, Reference Examples 1 and 2, and Comparative Example 1 were produced by using the film forming apparatus 1 which is the film forming apparatus according to the present embodiment and the film forming method. .. Table 1 summarizes the pretreatment conditions, vapor deposition conditions, and the like. In the following table, "○" in the evaluation of "presence or absence of plasma pretreatment" means that plasma pretreatment is present, and "x" means that there is no plasma pretreatment. Further, "○" in the evaluation of "presence or absence of plasma assist during vapor deposition" means that plasma assist is present during vapor deposition, and "x" means that there is no plasma assist during vapor deposition.
 (実施例1)
 基材1として、厚さ12μmの二軸延伸ポリエチレンテレフタレートフィルム(PETフィルム)を用い、図2に示す成膜装置10を用いて、プラズマ前処理工程、及び成膜工程を行った。
(Example 1)
A biaxially stretched polyethylene terephthalate film (PET film) having a thickness of 12 μm was used as the base material 1, and a plasma pretreatment step and a film forming step were performed using the film forming apparatus 10 shown in FIG.
 前処理工程においては、図2及び図3に示すプラズマ前処理機構11Bを用いて、基材1の表面にプラズマ前処理を施した。具体的には、まず、プラズマ前処理室12Bに、プラズマ原料ガス供給部を用いて酸素(O):アルゴン(Ar)との混合ガス(O:Ar=2.5:1)を供給しつつ、減圧チャンバ12を用いて、プラズマ前処理室12B内の気圧を調整した。次に、前処理ローラー20と電極部21との間に電圧を印加してプラズマを発生させ、基材1の表面にプラズマ前処理を施した。プラズマ前処理室12B内の気圧は6.2Pa、磁場形成部23として1000ガウスの永久磁石を用いた。プラズマ密度は417W・sec/mであった。 In the pretreatment step, the surface of the base material 1 was subjected to plasma pretreatment using the plasma pretreatment mechanism 11B shown in FIGS. 2 and 3. Specifically, first, a mixed gas (O 2 : Ar = 2.5: 1) of oxygen (O 2 ): argon (Ar) is supplied to the plasma pretreatment chamber 12B using the plasma raw material gas supply unit. While doing so, the air pressure in the plasma pretreatment chamber 12B was adjusted using the decompression chamber 12. Next, a voltage was applied between the pretreatment roller 20 and the electrode portion 21 to generate plasma, and the surface of the base material 1 was subjected to plasma pretreatment. The atmospheric pressure in the plasma pretreatment chamber 12B was 6.2 Pa, and a permanent magnet of 1000 gauss was used as the magnetic field forming portion 23. The plasma density was 417 W · sec / m 2 .
 成膜工程においては、図6に示すような蒸発機構24を用いて、真空蒸着法により、酸化アルミニウムを含む蒸着膜2を成膜した。具体的には、成膜室12C内の真空度を1.5Paに調整した上で、蒸着材料としてアルミニウムの金属線材をボート24b内に供給しつつ、抵抗加熱式の蒸発機構24を用い、ボート24b内の蒸着材料を加熱し、基材1の表面に到達するようにアルミニウムを蒸発させるとともに、12500sccmで酸素を供給しながら、基材1の表面に蒸着膜2を成膜した。 In the film forming step, the vapor deposition film 2 containing aluminum oxide was deposited by the vacuum vapor deposition method using the evaporation mechanism 24 as shown in FIG. Specifically, after adjusting the degree of vacuum in the film forming chamber 12C to 1.5 Pa, the boat uses a resistance heating type evaporation mechanism 24 while supplying an aluminum metal wire as a vapor deposition material into the boat 24b. The vapor-deposited material in 24b was heated to evaporate the aluminum so as to reach the surface of the base material 1, and the vapor-deposited film 2 was formed on the surface of the base material 1 while supplying oxygen at 12500 sccm.
 また、プラズマ供給機構50として、図6に示すホローカソード51と、ボート24bからみて、基材1の幅方向における両側に配置された、ホローカソード51の空洞部の開口と対向する図示しないアノードと、を有する形態を用い、ホローカソード51の空洞部にプラズマ原料ガス(O:Ar=35:1)を供給し、放電させてプラズマを励起し、このプラズマを、対向するアノードによって、基材1の表面と蒸発機構24との間に引き出して、蒸着時のプラズマアシストを行った。 Further, as the plasma supply mechanism 50, a hollow cathode 51 shown in FIG. 6 and an anode (not shown) facing the opening of the hollow portion of the hollow cathode 51 arranged on both sides in the width direction of the base material 1 as viewed from the boat 24b. , using a form having a hollow cathode 51 cavity to the plasma source gas (O 2: Ar = 35: 1) to supply, to discharge to excite a plasma, the plasma, by opposing the anode, substrate It was pulled out between the surface of No. 1 and the evaporation mechanism 24 to perform plasma assist during vapor deposition.
 以上の方法により基材1上に蒸着膜2を積層した。このときの搬送速度600m/分であり、蒸着膜2の厚さは8nmであった。 The vapor deposition film 2 was laminated on the base material 1 by the above method. At this time, the transport speed was 600 m / min, and the thickness of the vapor-deposited film 2 was 8 nm.
 更に、蒸着膜2上に有機被覆層3a(表1、表2における有機被覆層A)を積層した。水307g、イソプロピルアルコール147g及び0.5N塩酸7.3gを混合し、pH2.2に調整した溶液に、金属アルコキシドとしてテトラエトキシシラン175gと、シランカップリング剤としてグリシドキシプロピルトリメトキシシラン8.7gを10℃となるよう冷却しながら混合させて溶液Aを調製した。水溶性高分子として、ケン価度99%以上の重合度2400のポリビニルアルコール14.7g、水324g、イソプロピルアルコール17gを混合した溶液Bを調製した。A液とB液を質量比6.5:3.5となるよう混合して得られた溶液をバリアコート剤とした。上記のPETフィルムの酸化アルミニウム蒸着膜上に、上記で調製したバリアコート剤をスピンコート法によりコーティングした。その後、180℃で60秒間、オーブンにて加熱処理して、厚さ約400nmのバリア性被覆層を酸化アルミニウム蒸着膜上に形成して、有機被覆層Aを形成し、実施例1のバリアフィルムを製造した。 Further, the organic coating layer 3a (organic coating layer A in Tables 1 and 2) was laminated on the vapor-deposited film 2. 307 g of water, 147 g of isopropyl alcohol and 7.3 g of 0.5N hydrochloric acid were mixed, and 175 g of tetraethoxysilane as a metal alkoxide and glycidoxypropyltrimethoxysilane as a silane coupling agent were added to a solution adjusted to pH 2.2. Solution A was prepared by mixing 7 g while cooling to 10 ° C. As a water-soluble polymer, a solution B was prepared by mixing 14.7 g of polyvinyl alcohol having a degree of polymerization of 2400 with a degree of polymerization of 99% or more, 324 g of water, and 17 g of isopropyl alcohol. The solution obtained by mixing the solution A and the solution B so as to have a mass ratio of 6.5: 3.5 was used as a barrier coating agent. The barrier coating agent prepared above was coated on the aluminum oxide vapor-deposited film of the PET film by a spin coating method. Then, it was heat-treated in an oven at 180 ° C. for 60 seconds to form a barrier coating layer having a thickness of about 400 nm on an aluminum oxide vapor-deposited film to form an organic coating layer A, and the barrier film of Example 1 was formed. Manufactured.
 (実施例2)
 実施例1において、搬送速度480m/分、蒸着膜2の厚さを13nmとした以外は実施例1と同様にして、実施例2のバリアフィルムを製造した。
(Example 2)
In Example 1, the barrier film of Example 2 was produced in the same manner as in Example 1 except that the transport speed was 480 m / min and the thickness of the vapor-deposited film 2 was 13 nm.
 (参考例1)
 表1に示すように、実施例1において、プラズマ前処理を行わず、抵抗加熱式の蒸発機構24に換えてEB(電子ビーム)方式の蒸発機構(図示せず)を用い、蒸着時のプラズマアシスト処理を行わず、酸素供給量を8500sccmとし、蒸着時の真空度を0.15Paとした以外は実施例1と同様にして、参考例1のバリアフィルムを製造した。
(Reference example 1)
As shown in Table 1, in Example 1, EB (electron beam) type evaporation mechanism (not shown) was used instead of the resistance heating type evaporation mechanism 24 without performing plasma pretreatment, and plasma during vapor deposition was used. The barrier film of Reference Example 1 was produced in the same manner as in Example 1 except that the oxygen supply amount was 8500 sccm and the vacuum degree at the time of vaporization was 0.15 Pa without performing the assist treatment.
 (参考例2)
 表1に示すように、実施例1において、プラズマ前処理室12B内の気圧を3.5Paとし、蒸着時のプラズマアシスト処理を行わず、酸素供給量を10000sccmとし、蒸着時の真空度を0.02Paとした以外は実施例1と同様にして、参考例2のバリアフィルムを製造した。
(Reference example 2)
As shown in Table 1, in Example 1, the air pressure in the plasma pretreatment chamber 12B was 3.5 Pa, the plasma assist treatment during vapor deposition was not performed, the oxygen supply amount was 10000 sccm, and the degree of vacuum during vapor deposition was 0. The barrier film of Reference Example 2 was produced in the same manner as in Example 1 except that it was set to .02 Pa.
 (比較例1)
 表1に示すように、参考例3において、搬送速度480m/分、蒸着膜2の厚さを13nmとした以外は参考例2と同様にして、比較例1のバリアフィルムを製造した。
(Comparative Example 1)
As shown in Table 1, the barrier film of Comparative Example 1 was produced in the same manner as in Reference Example 2 except that the transport speed was 480 m / min and the thickness of the vapor-deposited film 2 was 13 nm in Reference Example 3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (実施例3から5、比較例2)
 上記の製膜装置1とは別の製膜装置2を用い、表2の製膜条件で、実施例3から5、比較例2のバリアフィルムを製造した。
(Examples 3 to 5, Comparative Example 2)
Barrier films of Examples 3 to 5 and Comparative Example 2 were produced under the film-forming conditions shown in Table 2 using a film-forming device 2 different from the above-mentioned film-forming device 1.
 なお、有機被覆層Bは、水197g、イソプロピルアルコール34g及び0.5N塩酸4.7gを混合し、pH2.2に調整した溶液に、金属アルコキシドとしてテトラエトキシシラン145gを15℃となるよう冷却しながら混合させて溶液Aを調製した。水溶性高分子として、ケン価度99%以上の重合度2400のポリビニルアルコール8.3g、水182g、イソプロピルアルコール9.6gを混合した溶液Bを調製した。A液とB液を質量比4.0:6.0となるよう混合して得られた溶液をバリアコート剤とした。上記のPETフィルムの酸化アルミニウム蒸着膜上に、上記で調製したバリアコート剤をスピンコート法によりコーティングした。その後、180℃で60秒間、オーブンにて加熱処理して、厚さ約400nmのバリア性被覆層を酸化アルミニウム蒸着膜上に形成して、有機被覆層Bを形成した。 In the organic coating layer B, 197 g of water, 34 g of isopropyl alcohol and 4.7 g of 0.5N hydrochloric acid were mixed, and 145 g of tetraethoxysilane as a metal alkoxide was cooled to 15 ° C. in a solution adjusted to pH 2.2. Solution A was prepared by mixing with each other. As a water-soluble polymer, a solution B was prepared by mixing 8.3 g of polyvinyl alcohol having a degree of polymerization of 2400 with a degree of polymerization of 99% or more, 182 g of water, and 9.6 g of isopropyl alcohol. The solution obtained by mixing the solution A and the solution B so as to have a mass ratio of 4.0: 6.0 was used as a barrier coating agent. The barrier coating agent prepared above was coated on the aluminum oxide vapor-deposited film of the PET film by a spin coating method. Then, it was heat-treated in an oven at 180 ° C. for 60 seconds to form a barrier coating layer having a thickness of about 400 nm on an aluminum oxide vapor-deposited film to form an organic coating layer B.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[TOF-SIMS分析]
 実施例1から5、比較例1、2のバリアフィルムについて、飛行時間型二次イオン質量分析計(ION TOF社製、TOF.SIMS5)を用いて、下記測定条件で、バリアフィルムの蒸着膜表面側から、Cs(セシウム)イオン銃により一定の速度でソフトエッチングを繰り返しながら、樹脂基材由来のC(質量数72.00)、酸化アルミニウム蒸着膜由来のAl(質量数101.94)、酸化アルミニウム蒸着膜由来のAlH(質量数118.93)、有機被覆層由来のSi(質量数27.97)、OH(質量数17.00)の質量分析を行った。製膜装置1の測定結果のグラフ解析図を図8から図10に示す。図8は実施例1の測定結果であり、図9は実施例2の測定結果であり、図10は比較例1の測定結果である。製膜装置2の測定結果のグラフ解析図を図11から図14に示す。図11は実施例3の測定結果であり、図12は実施例4の測定結果であり、図13は実施例5の測定結果であり、図14は比較例2の測定結果である。図中、縦軸の単位(intensity)は、イオンの強度の常用対数であり、横軸の単位(Et times(s))は、エッチングを行った秒数である。
[TOF-SIMS analysis]
For the barrier films of Examples 1 to 5 and Comparative Examples 1 and 2, the surface of the vapor-deposited film of the barrier film was subjected to the following measurement conditions using a time-of-flight secondary ion mass spectrometer (TOF.SIMS5 manufactured by ION TOF). From the side, while repeating soft etching at a constant speed with a Cs (cesium) ion gun, C 6 derived from a resin substrate (mass number 72.00) and Al 2 O 3 derived from an aluminum oxide vapor deposition film (mass number 101. 94), mass spectrometry of Al 2 O 4 H (mass number 118.93) derived from the aluminum oxide vapor deposition film, Si (mass number 27.97) derived from the organic coating layer, and OH (mass number 17.00) was performed. .. Graph analysis diagrams of the measurement results of the film forming apparatus 1 are shown in FIGS. 8 to 10. FIG. 8 is the measurement result of Example 1, FIG. 9 is the measurement result of Example 2, and FIG. 10 is the measurement result of Comparative Example 1. Graph analysis diagrams of the measurement results of the film forming apparatus 2 are shown in FIGS. 11 to 14. 11 is a measurement result of Example 3, FIG. 12 is a measurement result of Example 4, FIG. 13 is a measurement result of Example 5, and FIG. 14 is a measurement result of Comparative Example 2. In the figure, the unit on the vertical axis (intensity) is the common logarithm of the intensity of ions, and the unit on the horizontal axis (Ettimes (s)) is the number of seconds after etching.
  TOF-SIMS測定条件
   ・一次イオン種類:Bi3++(0.2pA,100μs)
   ・測定面積:150×150μm
   ・エッチング銃種類:Cs(1keV、60nA)
   ・エッチング面積:600×600μm
   ・エッチングレート:10sec/Cycle
TOF-SIMS measurement conditions-Primary ion type: Bi 3 ++ (0.2 pA, 100 μs)
-Measurement area: 150 x 150 μm 2
・ Etching gun type: Cs (1keV, 60nA)
・ Etching area: 600 × 600 μm 2
・ Etching rate: 10 sec / Cycle
 また、測定された元素結合OH(質量数17.00)の強度ピークを表す位置をエッチング秒数で求め(ピーク位置Y)、その位置の蒸着膜の有機被覆層側表面からの深さ位置(図9におけるピーク位置Y/X、単位%)を求めた。これらの結果をまとめて表3、表4に示す。 Further, the position representing the intensity peak of the measured elemental bond OH (mass number 17.00) is determined by the number of etching seconds (peak position Y), and the depth position (peak position Y) from the surface of the vapor-deposited film on the organic coating layer side at that position ( The peak position Y / X in FIG. 9 (unit:%) was determined. These results are summarized in Tables 3 and 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 (バリア性の評価)
 上記の方法によって製造した実施例1から5、参考例1、2、比較例1、2のバリアフィルムのそれぞれについて、水蒸気透過率及び酸素透過率の値を測定した。
(Evaluation of barrier property)
The values of water vapor permeability and oxygen permeability were measured for each of the barrier films of Examples 1 to 5, Reference Examples 1 and 2, and Comparative Examples 1 and 2 produced by the above method.
 水蒸気透過率は、水蒸気透過率測定装置(モコン社製、製品名「パーマトラン」)を用いて、40℃、100%RHの測定条件で、JIS K 7129 B法に準拠し、測定した。また、酸素透過率は、酸素透過率測定装置(モコン社製、製品名「オクストラン(OXTRAN)」)を用いて、23℃、90%RHの測定条件で、JIS K 7126-2に準拠して測定した。結果を表5、表6に示す。 The water vapor transmittance was measured using a water vapor transmittance measuring device (manufactured by Mocon Co., Ltd., product name "Permatlan") under the measurement conditions of 40 ° C. and 100% RH in accordance with the JIS K7129B method. In addition, the oxygen permeability is based on JIS K 7126-2 under the measurement conditions of 23 ° C and 90% RH using an oxygen permeability measuring device (manufactured by Mocon, product name "OXTRAN"). It was measured. The results are shown in Tables 5 and 6.
 (密着性の評価)
 上記の方法によって製造した実施例1、2、参考例1~3、比較例1のバリアフィルムの有機被覆層3a上に、2液硬化型のポリウレタン系ラミネート用接着剤を、グラビアロールコート法を用いて厚さ4.0g/m(乾燥状態)にコーティングして接着剤層4を形成し、次いで、接着剤層4の面に、第2基材5として厚さ15μmの二軸延伸ナイロン6フィルムを対向させ、ドライラミネートして積層した。次に、第2基材5の面に、上記の接着剤層4と同様に、ラミネート用の接着剤層6を形成し、次に、接着剤層6の面に、シーラント層7として厚さ70μmの無延伸ポリプロピレンフィルムをドライラミネートして積層して、図7に示すような層構成の積層体を製造した。
(Evaluation of adhesion)
A two-component curable polyurethane-based laminating adhesive is applied onto the organic coating layer 3a of the barrier films of Examples 1 and 2, Reference Examples 1 to 3, and Comparative Example 1 produced by the above method, and a gravure roll coating method is applied. It was used to coat a thickness of 4.0 g / m 2 (dry state) to form an adhesive layer 4, and then on the surface of the adhesive layer 4, biaxially stretched nylon having a thickness of 15 μm as a second base material 5. The 6 films were opposed to each other, dry-laminated and laminated. Next, an adhesive layer 6 for laminating is formed on the surface of the second base material 5 in the same manner as the adhesive layer 4 described above, and then the thickness of the sealant layer 7 is formed on the surface of the adhesive layer 6. A 70 μm unstretched polypropylene film was dry-laminated and laminated to produce a laminated body having a layer structure as shown in FIG. 7.
 次に、この層構成の積層体を、シーラント層同士が向き合うように対向させ、ヒートシールすることによって、パウチに成形した。パウチに水を充填した後、135℃、40分のレトルト処理を行った。レトルト処理を行なった後の状態の積層体のそれぞれについて、水付け剥離強度の値を測定した。結果をまとめて表5、6に示す。 Next, the laminated body having this layer structure was formed into a pouch by facing the sealant layers so as to face each other and heat-sealing them. After filling the pouch with water, it was retorted at 135 ° C. for 40 minutes. The value of the watering peel strength was measured for each of the laminated bodies in the state after the retort treatment. The results are summarized in Tables 5 and 6.
 水付け剥離強度は、以下の方法によって測定した。まず、レトルト処理を行った後の状態の積層体のそれぞれを短冊切りし、幅15mmの矩形の試験片を得た。次に、試験片の蒸着膜と基材とを、試験片の長手方向(試験片の幅方向と直交する方向)に向かって部分的に引き剥がした。蒸着膜と基材との引き剥がしは、蒸着膜と基材とが、一部においては接合を維持するように行った。次に、テンシロン万能材料試験機を用いて、JIS Z6854-2に準拠し、蒸着膜と基材との界面の剥離強度を、剥離角度180°、剥離速度50mm/minの条件にて測定した。水付け剥離強度の測定においては、試験片の長手方向に沿ってみた場合における、蒸着膜と基材とが接合を維持している部分と、蒸着膜と基材とが引き剥がされている部分との境界部分にスポイトで水を滴下した状態で、30mmにわたって剥離を進行させるために要した引張力を測定し、引張力の平均値を算出した。実施例1から5、参考例1、2、比較例1、2のそれぞれについて、6個の試験片について引張力の平均値をそれぞれ算出し、その平均値を、実施例1から5、参考例1、2、比較例1、2のそれぞれにおける水付け剥離強度とした。結果を表5、表6に示す。 The watering peel strength was measured by the following method. First, each of the laminated bodies in the state after the retort treatment was cut into strips to obtain a rectangular test piece having a width of 15 mm. Next, the vapor-deposited film of the test piece and the base material were partially peeled off in the longitudinal direction of the test piece (the direction orthogonal to the width direction of the test piece). The peeling of the vapor-deposited film and the base material was performed so that the vapor-deposited film and the base material maintained a bond in part. Next, using a Tencilon universal material tester, the peel strength at the interface between the vapor-deposited film and the substrate was measured under the conditions of a peeling angle of 180 ° and a peeling speed of 50 mm / min in accordance with JIS Z6854-2. In the measurement of watering peel strength, the portion where the vapor-deposited film and the base material maintain the bond and the portion where the vapor-deposited film and the base material are peeled off when viewed along the longitudinal direction of the test piece. With water dropped on the boundary portion with the dropper, the tensile force required to proceed the peeling over 30 mm was measured, and the average value of the tensile force was calculated. For each of Examples 1 to 5, Reference Examples 1 and 2, and Comparative Examples 1 and 2, the average value of the tensile force was calculated for each of the six test pieces, and the average value was calculated from Examples 1 to 5 and Reference Example. The water peeling strength in each of 1 and 2 and Comparative Examples 1 and 2 was used. The results are shown in Tables 5 and 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表5、表6より、元素結合OH由来の強度は下に凸のピークを有し、下に凸のピークが、蒸着膜における有機被覆層表面側から10%以上60%以下の深さ位置に存在する実施例1から5においては、比較例に比べて高いバリア性を有している。 From Tables 5 and 6, the strength derived from the elemental bond OH has a downwardly convex peak, and the downwardly convex peak is located at a depth of 10% or more and 60% or less from the surface side of the organic coating layer in the vapor deposition film. In the existing Examples 1 to 5, the barrier property is higher than that of the comparative example.
<第2発明>
 以下の第2発明及び第3発明の説明においては、上記の第1発明と同様の構成要素については、第1発明の説明を援用して説明を省略する。
 本発明者らは、上記課題を解決するために鋭意検討をした結果、酸化アルミニウム蒸着膜中における、酸化アルミニウムと、アルミ水酸化物との分布に着目することによって、更に高いバリア性を有するバリアフィルムを得ることが可能となることを見出し、本発明を完成するに至った。
<Second invention>
In the following description of the second invention and the third invention, the description of the same components as those of the first invention will be omitted with reference to the description of the first invention.
As a result of diligent studies to solve the above problems, the present inventors have focused on the distribution of aluminum oxide and aluminum hydroxide in the aluminum oxide vapor deposition film, and as a result, a barrier having a higher barrier property. We have found that it is possible to obtain a film, and have completed the present invention.
 アルミ水酸化物は水分子と親和性が高いため、アルミ水酸化物からなる膜中に水分子が浸透し、水蒸気に対するバリア性を低下させる。ここで、特許文献1の方法では、酸化アルミニウムの膜全体における水酸基(水素原子)が少なくなる。 Since aluminum hydroxide has a high affinity with water molecules, water molecules permeate into the film made of aluminum hydroxide, which lowers the barrier property against water vapor. Here, in the method of Patent Document 1, the number of hydroxyl groups (hydrogen atoms) in the entire aluminum oxide film is reduced.
 しかしながら、本発明者らの知見によれば、アルミ水酸化物の面上における酸化アルミニウムの蒸着膜成長は、2次元成長で進行し、より緻密な酸化アルミニウム蒸着膜が形成される。つまり、アルミ水酸化物の面上に堆積する酸化アルミニウム膜は、プラスチックフィルムの面上に直接堆積する酸化アルミニウムよりも、酸素及び水蒸気に対して、優れたバリア性を示す特徴を持つ。 However, according to the findings of the present inventors, the growth of the aluminum oxide vapor-deposited film on the surface of the aluminum hydroxide proceeds in two-dimensional growth, and a more dense aluminum oxide-deposited film is formed. That is, the aluminum oxide film deposited on the surface of the aluminum hydroxide has a feature of exhibiting an excellent barrier property against oxygen and water vapor as compared with aluminum oxide deposited directly on the surface of the plastic film.
 故に、高いバリア性能を有するバリアフィルムを実現するためには、プラスチックフィルムとアルミ蒸着界面との近傍にはアルミナ水酸化物の領域を形成し、このアルミナ水酸化物領域の上には、主として酸化アルミニウム領域を形成することで、更に高いバリア性を備えることが可能となる。 Therefore, in order to realize a barrier film having high barrier performance, an alumina hydroxide region is formed in the vicinity of the plastic film and the aluminum vapor deposition interface, and the alumina hydroxide region is mainly oxidized. By forming the aluminum region, it is possible to provide a higher barrier property.
 具体的には、本発明(第2発明)は以下のものを提供する。 Specifically, the present invention (second invention) provides the following.
 (1)基材と、酸化アルミニウム蒸着膜と、がこの順に積層されているバリアフィルムであって、
前記酸化アルミニウム蒸着膜は、前記バリアフィルムの前記蒸着膜表面側から、飛行時間型二次イオン質量分析法(TOF-SIMS)によりエッチングした際に、元素結合Al及び元素結合AlH由来の強度が検出され、
前記酸化アルミニウム蒸着膜における、前記蒸着膜表面から膜厚方向1/3の深さ位置に検出される、前記元素結合Alに対する元素結合AlHの強度比率(AlH/Al)が0.30以下である、バリアフィルム。
(1) A barrier film in which a base material and an aluminum oxide vapor-deposited film are laminated in this order.
When the aluminum oxide vapor-deposited film is etched from the surface side of the vapor-deposited film of the barrier film by time-of-flight secondary ion mass spectrometry (TOF-SIMS), the element bond Al 2 O 3 and the element bond Al 2 O 4 H-derived intensity was detected,
In the aluminum oxide vapor deposition film, the intensity ratio of the element bond Al 2 O 4 H to the element bond Al 2 O 3 detected at a depth position of 1/3 in the film thickness direction from the surface of the vapor deposition film (Al 2 O 4). A barrier film having H / Al 2 O 3 ) of 0.30 or less.
(2)前記元素結合AlH由来の強度が極大ピークを有し、前記極大ピークは、前記蒸着膜表面から55%以上95%以下の深さ位置に存在する(1)に記載のバリアフィルム。 (2) The above-described (1), wherein the intensity derived from the elemental bond Al 2 O 4 H has a maximum peak, and the maximum peak exists at a depth position of 55% or more and 95% or less from the surface of the vapor-deposited film. Barrier film.
 (3)前記酸化アルミニウム蒸着膜は、前記バリアフィルムの前記蒸着膜表面側からの赤外吸収スペクトルにおいて、
 Al-O結合に由来する940cm-1以上960cm-1以下に、吸収ピークが存在する、(1)又は(2)に記載のバリアフィルム。
(3) The aluminum oxide vapor-deposited film has an infrared absorption spectrum from the surface side of the thin-film film of the barrier film.
The barrier film according to (1) or (2), wherein an absorption peak exists at 940 cm -1 or more and 960 cm -1 or less derived from the Al—O bond.
 (4)前記Al-O結合に由来する940cm-1以上960cm-1以下の吸収ピークの吸収強度に対する、OH結合に由来する3350cm-1以上3550cm-1以下の吸収ピークの吸収強度の比が0.20以下である、(3)に記載のバリアフィルム。 (4) The ratio of the absorption intensity of the absorption peak of 3350 cm -1 or more and 3550 cm -1 or less derived from the OH bond to the absorption intensity of the absorption peak of 940 cm -1 or more and 960 cm -1 or less derived from the Al—O bond is 0. The barrier film according to (3), which is 20 or less.
 (5)(1)から(4)のいずれか1項に記載のバリアフィルムと、シーラント層とを備える積層体。 (5) A laminate comprising the barrier film according to any one of (1) to (4) and a sealant layer.
 (6)(5)に記載の積層体を備える包装製品。 A packaged product having the laminate according to (6) and (5).
 図1(b)は、本実施の形態に係るバリアフィルムの一例を示す断面図である。本実施の形態に係る成膜装置を用いて製造されるバリアフィルムは、例えば図1(b)に示すバリアフィルムAのように、基材1と、蒸着膜2と、を備える。図1(b)に示す例において、蒸着膜2は、基材1の一方の面上に位置する。また、図1(b)に示す例において、蒸着膜2は、バリアフィルムの表面に位置している。 FIG. 1B is a cross-sectional view showing an example of a barrier film according to the present embodiment. The barrier film produced by using the film forming apparatus according to the present embodiment includes a base material 1 and a vapor-deposited film 2 as in the barrier film A 2 shown in FIG. 1 (b), for example. In the example shown in FIG. 1 (b), the vapor deposition film 2 is located on one surface of the base material 1. Further, in the example shown in FIG. 1B, the vapor deposition film 2 is located on the surface of the barrier film.
 (TOF-SIMS分析)
 本実施の形態に係るバリアフィルムの組成について、後述する実施例2の図22を用いて詳細に説明する。図22は、図1(b)で示すバリアフィルムAを、蒸着膜2の表面側から飛行時間型二次イオン質量分析法(TOF-SIMS)を用いてエッチングを行うことにより、バリアフィルムに含まれる元素及び元素結合を測定した場合における、元素及び元素結合の強度を示すグラフ解析図の一例である。グラフの縦軸の単位(intensity)は、イオンの強度について常用対数をとって表示したものである。グラフの横軸の単位(Et times)は、エッチングをした時間である。
(TOF-SIMS analysis)
The composition of the barrier film according to this embodiment will be described in detail with reference to FIG. 22 of Example 2 described later. FIG. 22 shows that the barrier film A 2 shown in FIG. 1 (b) is etched into the barrier film from the surface side of the vapor deposition film 2 by using the time-of-flight secondary ion mass spectrometry (TOF-SIMS). This is an example of a graph analysis diagram showing the strength of elements and element bonds when the contained elements and element bonds are measured. The unit (intensity) on the vertical axis of the graph is the common logarithm of the ion intensity. The unit (Et times) on the horizontal axis of the graph is the etching time.
 図22に示すように、本実施の形態に係るバリアフィルムからは、元素結合AL及び元素結合ALH及び元素結合C6が少なくとも検出される。図22に示す例においては、この3種の元素結合の強度を測定した例を示している。 As shown in FIG. 22, at least the element bond AL 2 O 3 and the element bond AL 2 O 4 H and the element bond C 6 are detected from the barrier film according to the present embodiment. In the example shown in FIG. 22, an example in which the strength of these three types of elemental bonds is measured is shown.
 図22において、元素C6のグラフのIntensityが最強強度の半分になるEt time Tの位置をプラスチック基材と酸化アルミニウムの界面として、当該バリアフィルム表面(T)から前記界面Tまでを酸化アルミニウム蒸着膜として扱い(図9におけるX)、TからTまでのEt timeの1/3、つまり、1/3Xの位置をTとする。 In FIG. 22, the position of Et time T 1 in which the integrity of the graph of the element C6 becomes half of the strongest strength is set as the interface between the plastic base material and aluminum oxide, and the surface of the barrier film (T 0 ) to the interface T 1 is oxidized. It is treated as an aluminum vapor-deposited film (X in FIG. 9), and the position of 1/3 of the Et time from T 0 to T 1 , that is, 1/3 X is T 2.
 このとき、Tにおける、元素結合Alの強度I21に対する元素結合AlHの強度I22の比率(I22/I21)が0.30以下であり、好ましくは0.20以下であり、更に好ましくは0.10以下である。これにより、蒸着膜の表面近傍領域においては、元素結合AlHの比率が小さく、主としてAlの状態の領域が存在するので、バリア性能を高めることができる。 At this time, the ratio (I 22 / I 21 ) of the strength I 22 of the element bond Al 2 O 4 H to the strength I 21 of the element bond Al 2 O 3 in T 2 is 0.30 or less, preferably 0. It is 20 or less, more preferably 0.10 or less. As a result, in the region near the surface of the vapor-deposited film, the ratio of the element-bonded Al 2 O 4 H is small, and there is a region mainly in the state of Al 2 O 3 , so that the barrier performance can be improved.
 また、図22において、酸化アルミニウム蒸着膜中には、元素結合AlH強度の極大ピークTpが存在する。極大ピークが複数あると認められるときは蒸着膜の表面側から最初のピークが極大ピークである。なお、Tpから界面Tまでの領域を遷移領域と称する。本発明においては、蒸着膜の厚さに相当するXに対する、極大ピーク(Tp)の深さ位置が、蒸着膜の表面側(基材側とは反対側)から55%以上95%以下に存在することが好ましい。また、位置Tpにおける、元素結合Alの強度IP1に対する元素結合AlHの強度IP2の比率(IP2/IP1)は、0.10以上4.00以下が好ましい。 Further, in FIG. 22, the maximum peak Tp of the element-bonded Al 2 O 4 H intensity is present in the aluminum oxide vapor-deposited film. When it is recognized that there are a plurality of maximum peaks, the first peak from the surface side of the vapor deposition film is the maximum peak. Incidentally, the region from Tp to the interface T 1 is referred to as a transition region. In the present invention, the depth position of the maximum peak (Tp) with respect to X corresponding to the thickness of the thin-film deposition film exists at 55% or more and 95% or less from the surface side (opposite side to the base material side) of the thin-film deposition film. It is preferable to do so. Further, the ratio of the strength I P2 of the element bond Al 2 O 4 H to the strength I P 1 of the element bond Al 2 O 3 at the position Tp (IP2 / IP1 ) is preferably 0.10 or more and 4.00 or less.
 元素結合AlH由来の極大ピークが、55%以上95%以下、つまり、より基材側に存在することで、蒸着膜の基材側にはAlHの主領域が存在する一方、上記のように蒸着膜の表面近傍領域においては、主としてAlの状態の領域が存在する。つまり、Al主領域/AlH主領域/基材の構成となり、この構成が高いバリア性を可能としている。 The maximum peak derived from the elemental bond Al 2 O 4 H is 55% or more and 95% or less, that is, it is present on the base material side, so that the main region of Al 2 O 4 H is present on the base material side of the vapor deposition film. On the other hand, as described above, in the region near the surface of the vapor-deposited film, there is mainly a region in the state of Al 2 O 3. That is, it has a configuration of Al 2 O 4 main region / Al 2 O 4 H main region / base material, and this configuration enables high barrier properties.
 なお、Tにおける、元素結合Alの強度I21に対する元素結合AlHの強度I22の比率(I22/I21)や、極大ピーク(Tp)の深さ位置や、位置Tpにおける、元素結合Alの強度IP1に対する元素結合AlHの強度IP2の比率(IP2/IP1)は、前処理、特に酸素プラズマ処理の条件と、蒸着時のプラズマアシスト処理の条件と、酸化アルミニウム蒸着膜の形成時における蒸着時の酸素濃度と、の組み合わせを制御することで調整することができる。 The ratio of the strength I 22 of the elemental bond Al 2 O 4 H to the strength I 21 of the elemental bond Al 2 O 3 in T 2 (I 22 / I 21 ), the depth position of the maximum peak (Tp), and the depth position of the maximum peak (Tp). The ratio of the strength I P2 of the elemental bond Al 2 O 4 H to the strength I P1 of the elemental bond Al 2 O 3 at the position Tp (IP2 / IP1 ) is determined by the conditions of the pretreatment, especially the oxygen plasma treatment, and the time of vapor deposition. It can be adjusted by controlling the combination of the conditions of the plasma assist treatment and the oxygen concentration at the time of vapor deposition at the time of forming the aluminum oxide vapor deposition film.
 (FT-IR評価)
 本発明のバリアフィルムは、蒸着膜表面側からの赤外吸収スペクトルにおいて、940cm-1以上960cm-1以下、好ましくは950cm-1以上960cm-1以下に吸収ピークが存在する。この940cm-1以上960cm-1以下はAl-O結合に由来するピークであり、このピークの存在により、酸化アルミニウムの膜密度が向上する。
(FT-IR evaluation)
Barrier films of the present invention, in the infrared absorption spectrum of the deposited film surface side, 940 cm -1 or more 960 cm -1 or less, preferably present an absorption peak below 950 cm -1 or 960 cm -1. The 940 cm -1 or more 960 cm -1 or less is a peak derived from Al-O bond, the presence of this peak, improved film density of the aluminum oxide.
 また、Al-O結合に由来する940cm-1以上960cm-1以下の吸収ピークの吸収強度に対する、OH結合に由来する3350cm-1以上3550cm-1以下の吸収ピークの吸収強度の比が0.20以下、好ましくは0.10以下である、この範囲内であれば、酸化アルミニウムの完全な酸化膜に近い組成となり、バリア性が向上する。 In addition, the ratio of the absorption intensity of the absorption peak of 3350 cm -1 or more and 3550 cm -1 or less derived from the OH bond to the absorption intensity of the absorption peak of 940 cm -1 or more and 960 cm -1 or less derived from the Al—O bond is 0.20. Hereinafter, it is preferably 0.10 or less, and if it is within this range, the composition is close to that of a complete oxide film of aluminum oxide, and the barrier property is improved.
 なお、FT-IRの測定条件は、実施例に記載の条件にて測定したものである。 The FT-IR measurement conditions were measured under the conditions described in the examples.
 (積層体)
 本実施の形態に係るバリアフィルムを用いることによって形成される積層体の例について説明する。図7(b)は、本実施の形態に係るバリアフィルムを用いることによって形成される積層体40bの一例を示す図である。積層体40bは、図1(b)に示すバリアフィルムと、シーラント層7とを備える。具体的には、積層体40bは、図1(b)に示すバリアフィルムの蒸着膜上に、さらに接着剤層4と、ポリアミドなどで構成される第2基材5と、接着剤層6と、シーラント層7とを、この順に備える。本発明の積層体は、バリアフィルムに少なくとも1層のヒートシール可能な層を積層したものであって、ヒートシール可能な熱可塑性樹脂が、接着層を介して、あるいは介することなく、最内層として積層され、ヒートシールなどのシール性が付与されたものである。
(Laminated body)
An example of a laminated body formed by using the barrier film according to the present embodiment will be described. FIG. 7B is a diagram showing an example of a laminated body 40b formed by using the barrier film according to the present embodiment. The laminated body 40b includes the barrier film shown in FIG. 1 (b) and the sealant layer 7. Specifically, the laminated body 40b includes an adhesive layer 4, a second base material 5 composed of polyamide and the like, and an adhesive layer 6 on the vapor-deposited film of the barrier film shown in FIG. 1 (b). , The sealant layer 7 is provided in this order. The laminate of the present invention is obtained by laminating at least one heat-sealable layer on a barrier film, and the heat-sealable thermoplastic resin is used as the innermost layer with or without an adhesive layer. It is laminated and has a sealing property such as a heat seal.
<第2発明の実施例>
 (実施例1)
 基材1として、厚さ12μmの二軸延伸ポリエチレンテレフタレートフィルム(PETフィルム)を用い、図2に示す成膜装置10を用いて、プラズマ前処理工程、及び成膜工程を行った。
<Example of the second invention>
(Example 1)
A biaxially stretched polyethylene terephthalate film (PET film) having a thickness of 12 μm was used as the base material 1, and a plasma pretreatment step and a film forming step were performed using the film forming apparatus 10 shown in FIG.
 前処理工程においては、図2及び図3に示すプラズマ前処理機構11Bを用いて、基材1の表面にプラズマ前処理を施した。具体的には、まず、プラズマ前処理室12Bに、プラズマ原料ガス供給部を用いて酸素(O):アルゴン(Ar)との混合ガス(O:Ar=2.5:1)を供給しつつ、減圧チャンバ12を用いて、プラズマ前処理室12B内の気圧を調整した。次に、前処理ローラー20と電極部21との間に電圧を印加してプラズマを発生させ、基材1の表面にプラズマ前処理を施した。プラズマ前処理室12B内の気圧は6.2Pa、磁場形成部23として1000ガウスの永久磁石を用いた。プラズマ密度は417W・sec/mであった。 In the pretreatment step, the surface of the base material 1 was subjected to plasma pretreatment using the plasma pretreatment mechanism 11B shown in FIGS. 2 and 3. Specifically, first, a mixed gas (O 2 : Ar = 2.5: 1) of oxygen (O 2 ): argon (Ar) is supplied to the plasma pretreatment chamber 12B using the plasma raw material gas supply unit. While doing so, the air pressure in the plasma pretreatment chamber 12B was adjusted using the decompression chamber 12. Next, a voltage was applied between the pretreatment roller 20 and the electrode portion 21 to generate plasma, and the surface of the base material 1 was subjected to plasma pretreatment. The atmospheric pressure in the plasma pretreatment chamber 12B was 6.2 Pa, and a permanent magnet of 1000 gauss was used as the magnetic field forming portion 23. The plasma density was 417 W · sec / m 2 .
 成膜工程においては、図6に示すような蒸発機構24を用いて、真空蒸着法により、酸化アルミニウムを含む蒸着膜2を成膜した。具体的には、成膜室12C内の真空度を1.5Paに調整した上で、蒸着材料としてアルミニウムの金属線材をボート24b内に供給しつつ、抵抗加熱式の蒸発機構24を用い、ボート24b内の蒸着材料を加熱し、基材1の表面に到達するようにアルミニウムを蒸発させるとともに、12500sccmで酸素を供給しながら、基材1の表面に蒸着膜2を成膜した。 In the film forming step, the vapor deposition film 2 containing aluminum oxide was deposited by the vacuum vapor deposition method using the evaporation mechanism 24 as shown in FIG. Specifically, after adjusting the degree of vacuum in the film forming chamber 12C to 1.5 Pa, the boat uses a resistance heating type evaporation mechanism 24 while supplying an aluminum metal wire as a vapor deposition material into the boat 24b. The vapor-deposited material in 24b was heated to evaporate the aluminum so as to reach the surface of the base material 1, and the vapor-deposited film 2 was formed on the surface of the base material 1 while supplying oxygen at 12500 sccm.
 また、プラズマ供給機構50として、図6に示すホローカソード51と、ボート24bからみて、基材1の幅方向における両側に配置された、ホローカソード51の空洞部の開口と対向する図示しないアノードと、を有する形態を用い、ホローカソード51の空洞部にプラズマ原料ガス(O:Ar=35:1)を供給し、放電させてプラズマを励起し、このプラズマを、対向するアノードによって、基材1の表面と蒸発機構24との間に引き出して、蒸着時のプラズマアシストを行った。 Further, as the plasma supply mechanism 50, a hollow cathode 51 shown in FIG. 6 and an anode (not shown) facing the opening of the hollow portion of the hollow cathode 51 arranged on both sides in the width direction of the base material 1 as viewed from the boat 24b. , using a form having a hollow cathode 51 cavity to the plasma source gas (O 2: Ar = 35: 1) to supply, to discharge to excite a plasma, the plasma, by opposing the anode, substrate It was pulled out between the surface of No. 1 and the evaporation mechanism 24 to perform plasma assist during vapor deposition.
 以上の方法により、図1に示す基材1と、蒸着膜2とを備えるバリアフィルムを搬送速度600m/分にて製造した。製造したバリアフィルムの蒸着膜2の厚さは8nmであった。 By the above method, a barrier film including the base material 1 shown in FIG. 1 and the vapor-deposited film 2 was produced at a transport speed of 600 m / min. The thickness of the vapor-deposited film 2 of the produced barrier film was 8 nm.
 (実施例2)
 実施例1において、搬送速度480m/分、蒸着膜2の厚さを13nmとした以外は実施例1と同様にして、実施例2のバリアフィルムを製造した。
(Example 2)
In Example 1, the barrier film of Example 2 was produced in the same manner as in Example 1 except that the transport speed was 480 m / min and the thickness of the vapor-deposited film 2 was 13 nm.
 (実施例3)
 実施例2において、プラズマ前処理を行わなかった以外は実施例2と同様にして、実施例3のバリアフィルムを製造した。
(Example 3)
In Example 2, the barrier film of Example 3 was produced in the same manner as in Example 2 except that the plasma pretreatment was not performed.
 (実施例4)
 実施例1から3とは別の製膜装置を用い、表1の製造条件に変更した以外は、実施例3と同様にして、プラズマ前処理を行わない実施例4のバリアフィルムを製造した。
(Example 4)
Using a film-forming apparatus different from those of Examples 1 to 3, the barrier film of Example 4 was produced in the same manner as in Example 3 except that the production conditions in Table 1 were changed.
 (実施例5)
 実施例1から3とは別の製膜装置を用い、表1の製造条件に変更した以外は、実施例1と同様にして、プラズマ前処理を行なった実施例5のバリアフィルムを製造した。
(Example 5)
Using a film-forming apparatus different from those of Examples 1 to 3, the barrier film of Example 5 was subjected to plasma pretreatment in the same manner as in Example 1 except that the production conditions in Table 1 were changed.
 (比較例1)
 表1に示すように、実施例1において、プラズマ前処理を行わず、抵抗加熱式の蒸発機構24に換えてEB(電子ビーム)方式の蒸発機構(図示せず)を用い、蒸着時のプラズマアシスト処理を行わず、酸素供給量を8500sccmとし、蒸着時の真空度を0.15Paとした以外は実施例1と同様にして、比較例1のバリアフィルムを製造した。
(Comparative Example 1)
As shown in Table 1, in Example 1, EB (electron beam) type evaporation mechanism (not shown) was used instead of the resistance heating type evaporation mechanism 24 without performing plasma pretreatment, and plasma during vapor deposition was used. The barrier film of Comparative Example 1 was produced in the same manner as in Example 1 except that the oxygen supply amount was 8500 sccm and the vacuum degree at the time of vaporization was 0.15 Pa without performing the assist treatment.
 (比較例2)
 表7に示すように、実施例1において、プラズマ前処理室12B内の真空度を3.5Paとし、蒸着時のプラズマアシスト処理を行わず、酸素供給量を10000sccmとし、蒸着時の真空度を0.02Paとした以外は実施例1と同様にして、比較例2のバリアフィルムを製造した。
(Comparative Example 2)
As shown in Table 7, in Example 1, the degree of vacuum in the plasma pretreatment chamber 12B was 3.5 Pa, the plasma assist treatment during vapor deposition was not performed, the oxygen supply amount was 10000 sccm, and the degree of vacuum during vapor deposition was set. A barrier film of Comparative Example 2 was produced in the same manner as in Example 1 except that the value was 0.02 Pa.
 (比較例3)
 表7に示すように、比較例2において、搬送速度480m/分、蒸着膜2の厚さを13nmとした以外は比較例2と同様にして、比較例3のバリアフィルムを製造した。
(Comparative Example 3)
As shown in Table 7, the barrier film of Comparative Example 3 was produced in the same manner as in Comparative Example 2 except that the transport speed was 480 m / min and the thickness of the vapor-deposited film 2 was 13 nm in Comparative Example 2.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 [TOF-SIMS分析]
 実施例1~5、比較例1、2のバリアフィルムについて、飛行時間型二次イオン質量分析計(ION TOF社製、TOF.SIMS5)を用いて、第1発明と同様の測定条件で、バリアフィルムの蒸着膜表面側から、Cs(セシウム)イオン銃により一定の速度でソフトエッチングを繰り返しながら、樹脂基材由来のC(質量数72.00)、酸化アルミニウム蒸着膜由来のAl(質量数101.94)、酸化アルミニウム蒸着膜由来のAlH(質量数118.93)、の質量分析を行った。測定結果のグラフ解析図を図21から図27に示す。図21は実施例1の測定結果であり、図22は実施例2の測定結果であり、図23は実施例3の測定結果であり、図24は実施例4の測定結果であり、図25は実施例5の測定結果であり、図26は比較例1の測定結果であり、図27は比較例2の測定結果である。図中、縦軸の単位(intensity)は、イオンの強度の常用対数であり、横軸の単位(Et times(s))は、エッチングを行った秒数である。
[TOF-SIMS analysis]
For the barrier films of Examples 1 to 5 and Comparative Examples 1 and 2, a barrier using a time-of-flight secondary ion mass spectrometer (TOF.SIMS5 manufactured by ION TOF) under the same measurement conditions as in the first invention. From the surface side of the vapor-deposited film of the film, while repeating soft etching at a constant speed with a Cs (cesium) ion gun, C 6 (mass number 72.00) derived from the resin substrate and Al 2 O 3 derived from the aluminum oxide vapor-deposited film (mass number 101.94), aluminum oxide deposited film from the Al 2 O 4 H (mass number 118.93), was the mass spectrometry. Graph analysis diagrams of the measurement results are shown in FIGS. 21 to 27. 21 is the measurement result of Example 1, FIG. 22 is the measurement result of Example 2, FIG. 23 is the measurement result of Example 3, and FIG. 24 is the measurement result of Example 4. Is the measurement result of Example 5, FIG. 26 is the measurement result of Comparative Example 1, and FIG. 27 is the measurement result of Comparative Example 2. In the figure, the unit on the vertical axis (intensity) is the common logarithm of the intensity of ions, and the unit on the horizontal axis (Ettimes (s)) is the number of seconds after etching.
 プラスチック基材の構成材料であるC6の強度が、最大強度の半分になる位置(C6半減時間1/2C6(表中、C6半減時間(X)として記載))を、フィルム基材と酸化アルミニウム蒸着膜の界面と定義して、蒸着膜表面(エッチン前の位置)から当該界面までを酸化アルミニウム蒸着膜とし、全蒸着膜厚さにおける蒸着膜表面から1/3の位置を決定した。そして、蒸着膜表面から1/3の位置における、元素結合Al強度に対する元素結合AlH強度の比(AlH/Al)を求めた。 At the position where the strength of C6, which is a constituent material of the plastic base material, becomes half of the maximum strength (C6 half time 1 / 2C6 (indicated as C6 half time (X) in the table)), the film base material and aluminum oxide vapor deposition The interface of the film was defined as the aluminum oxide vapor-deposited film from the surface of the vapor-deposited film (position before etching) to the interface, and the position of 1/3 from the surface of the vapor-deposited film in the total vapor-deposited film thickness was determined. Then, the ratio of the element-bonded Al 2 O 4 H strength to the element-bonded Al 2 O 3 strength (Al 2 O 4 H / Al 2 O 3 ) at a position 1/3 from the surface of the vapor-deposited film was determined.
 また、測定された元素結合AlH(質量数118.93)の強度ピークを表す位置をエッチング秒数で求め(ピーク位置Y)、その位置の蒸着膜表面からの深さ位置(ピーク位置Y/X、単位%)と、その位置における、元素結合Al強度に対する元素結合AlH強度の比(AlH/Al)を求めた。これらの結果をまとめて表8に示す。 Further, the position representing the intensity peak of the measured elemental bond Al 2 O 4 H (mass number 118.93) is obtained by the number of etching seconds (peak position Y), and the depth position (peak) from the surface of the vapor-deposited film at that position is obtained. The ratio (Al 2 O 4 H / Al 2 O 3 ) of the element bond Al 2 O 4 H strength to the element bond Al 2 O 3 strength at the position (position Y / X, unit%) was determined. These results are summarized in Table 8.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 [FT-IR分析]
 実施例1~3、比較例1のバリアフィルムについて、FT-IR(日本分光株式会社製 、FT-610)を用いて、下記測定条件で、バリアフィルムの蒸着膜表面側から、反射ATR法にて測定し、基材のみのFT-IRとの差スペクトルを求めた。測定結果を図28、図29、表9に示す。
[FT-IR analysis]
For the barrier films of Examples 1 to 3 and Comparative Example 1, using FT-IR (manufactured by JASCO Corporation, FT-610), the reflection ATR method was applied from the surface side of the vapor-deposited film of the barrier film under the following measurement conditions. The difference spectrum from the FT-IR of the base material alone was obtained. The measurement results are shown in FIGS. 28, 29 and 9.
  FT-IR測定条件
・供給ガス:窒素ガスによる窒素パージ
・ATR結晶:ゲルマニウムGe(波数範囲5500-600cm-1、潜り込み深さ0.7μm)
・分解能:4cm-1
・入射角:45度
・測定温度:室温
・積算回数:128回
・差分計算用PET基材の測定方法(延伸方向を合わせて裏面測定、1410cm-1のピークが最小になるように差分をとり測定)
FT-IR measurement conditions ・ Supply gas: Nitrogen purge with nitrogen gas ・ ATR crystal: Germanium Ge (wave number range 5500-600 cm -1 , diving depth 0.7 μm)
・ Resolution: 4 cm -1
・ Incident angle: 45 degrees ・ Measurement temperature: Room temperature ・ Number of integrations: 128 times ・ Measurement method of PET base material for difference calculation (measurement on the back side by matching the stretching direction, take the difference so that the peak of 1410 cm -1 is minimized Measurement)
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 (バリア性の評価)
 上記の方法によって製造した実施例1~5、比較例1~3のバリアフィルムのそれぞれについて、第1発明と同様に水蒸気透過率及び酸素透過率の値を測定した。結果を表10に示す。
(Evaluation of barrier property)
The values of water vapor permeability and oxygen permeability were measured for each of the barrier films of Examples 1 to 5 and Comparative Examples 1 to 3 produced by the above method in the same manner as in the first invention. The results are shown in Table 10.
 (密着性の評価)
 バリアフィルムの蒸着膜2の上に、2液硬化型のポリウレタン系ラミネート用接着剤をコーティングして接着剤層4を形成した以外は、第1発明と同様にして、図7(b)の層構成の積層体を製造した。また、第1発明と同様の方法で水付け剥離強度の値を測定した。結果を表10に示す。
(Evaluation of adhesion)
The layer of FIG. 7B is the same as that of the first invention, except that the adhesive layer 4 is formed by coating the vapor-deposited film 2 of the barrier film with a two-component curable polyurethane-based laminating adhesive. A laminated body having a structure was manufactured. Moreover, the value of the watering peel strength was measured by the same method as in the first invention. The results are shown in Table 10.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表8、表10より、TOF-SIMSによる、蒸着膜表面から1/3の位置における、元素結合Al強度に対する元素結合AlH強度の比(AlH/Al)が本発明の範囲内である実施例1から3においては、比較例1から3に比べて高いバリア性を有している。 From Tables 8 and 10, the ratio of the element-bonded Al 2 O 4 H strength to the element-bonded Al 2 O 3 strength at the position 1/3 from the surface of the vapor-deposited film by TOF-SIMS (Al 2 O 4 H / Al 2). In Examples 1 to 3 in which O 3 ) is within the scope of the present invention, the barrier property is higher than that in Comparative Examples 1 to 3.
 また、表2、表4より、TOF-SIMSによる、蒸着膜表面から55%以上95%以下の深さ位置に元素結合AlH由来の強度が極大ピークを有する実施例1から5においては、比較例1から3に比べて高いバリア性を有している。 Further, from Tables 2 and 4, in Examples 1 to 5 in which the intensity derived from the element bond Al 2 O 4 H has a maximum peak at a depth position of 55% or more and 95% or less from the surface of the vapor-deposited film by TOF-SIMS. Has a higher barrier property than Comparative Examples 1 to 3.
 また、表3、表4より、FT-IRによる、Al-O結合に由来する940cm-1以上960cm-1以下に吸収ピークが存在し、また、Al-O結合に由来する940cm-1以上960cm-1以下の吸収ピークの吸収強度に対する、OH結合に由来する3350cm-1以上3550cm-1以下の吸収ピークの吸収強度の比が本発明の範囲内である実施例1から3においては、比較例1に比べて高いバリア性を有している。 Further, from Tables 3 and 4, absorption peaks exist at 940 cm -1 or more and 960 cm -1 or less derived from Al—O bond by FT-IR, and 940 cm -1 or more and 960 cm derived from Al—O bond. In Examples 1 to 3, the ratio of the absorption intensity of the absorption peak derived from the OH bond to the absorption intensity of the absorption peak of -1 or less is within the range of the present invention of 3350 cm -1 or more and 3550 cm -1 or less. It has a higher barrier property than 1.
<第3発明>
 本発明者らは、上記課題を解決するために鋭意検討をした結果、TOF-SIMS分析における元素結合CNO由来の下に凸のピークの存在と位置に着目することによって、更に高いバリア性を有するバリアフィルムを得ることが可能となることを見出し、本発明を完成するに至った。
<Third invention>
As a result of diligent studies to solve the above problems, the present inventors have a higher barrier property by paying attention to the existence and position of the downwardly convex peak derived from the elemental bond CNO in the TOF-SIMS analysis. We have found that it is possible to obtain a barrier film, and have completed the present invention.
 本発明者らが鋭意検討した結果、酸化アルミニウム蒸着層上にウレタン樹脂を含むプライマー層が形成される場合には、プライマーを構成する低分子量成分は、酸化アルミニウム蒸着層にマイグレーション(移行)し、酸化アルミニウム蒸着層の緻密性を損ない、これがバリア性を低下させることが判明した。 As a result of diligent studies by the present inventors, when a primer layer containing a urethane resin is formed on the aluminum oxide vapor deposition layer, the low molecular weight components constituting the primer migrate (migrate) to the aluminum oxide vapor deposition layer. It has been found that the denseness of the aluminum oxide vapor-deposited layer is impaired, which reduces the barrier property.
 このため、酸化アルミニウム蒸着層上に、ウレタン樹脂を含むプライマー層が形成される場合に高いバリア性を維持するためには、酸化アルミニウム蒸着層へのプライマー成分のマイグレーションを抑制することが効果的である。このような蒸着膜の構成は、TOF-SIMS分析による元素結合CNO由来の下に凸のピークの存在と、該ピークの深さ位置によって裏付けられる。 Therefore, in order to maintain high barrier properties when a primer layer containing a urethane resin is formed on the aluminum oxide vapor deposition layer, it is effective to suppress the migration of the primer component to the aluminum oxide vapor deposition layer. is there. The composition of such a thin-film deposition film is supported by the presence of a downwardly convex peak derived from the elemental bond CNO by TOF-SIMS analysis and the depth position of the peak.
 具体的には、本発明(第3発明)は以下のものを提供する。 Specifically, the present invention (third invention) provides the following.
 (1)基材と、酸化アルミニウム蒸着膜と、ウレタン樹脂を含むプライマー層と、がこの順に積層されているバリアフィルムであって、
 前記酸化アルミニウム蒸着膜は、前記バリアフィルムの前記プライマー層表面側から、飛行時間型二次イオン質量分析法(TOF-SIMS)によりエッチングした際に、元素結合CNO由来の強度が検出され、
 前記元素結合CNO由来の強度は下に凸のピークを有し、前記下に凸のピークは、前記酸化アルミニウム蒸着膜における、前記プライマー層表面側から0%以上70%以下の深さ位置に存在する、バリアフィルム。
(1) A barrier film in which a base material, an aluminum oxide vapor-deposited film, and a primer layer containing a urethane resin are laminated in this order.
When the aluminum oxide vapor-deposited film was etched from the surface side of the primer layer of the barrier film by time-of-flight secondary ion mass spectrometry (TOF-SIMS), the strength derived from the element-bonded CNO was detected.
The intensity derived from the elemental bond CNO has a downwardly convex peak, and the downwardly convex peak exists at a depth position of 0% or more and 70% or less from the surface side of the primer layer in the aluminum oxide vapor-deposited film. Barrier film.
 (2)前記下に凸のピークは、前記酸化アルミニウム蒸着膜における、前記プライマー層表面側から30%以上70%以下の深さ位置に存在する、(1)に記載のバリアフィルム。 (2) The barrier film according to (1), wherein the downwardly convex peak exists at a depth position of 30% or more and 70% or less from the surface side of the primer layer in the aluminum oxide vapor-deposited film.
 (3)(1)又は(2)に記載のバリアフィルムと、シーラント層とを備える積層体。 (3) A laminate comprising the barrier film according to (1) or (2) and a sealant layer.
 (4)(3)に記載の積層体を備える包装製品。 A packaged product having the laminate described in (4) and (3).
 図1(c)は、本実施の形態に係るバリアフィルムの一例を示す断面図である。本実施の形態に係る成膜装置を用いて製造されるバリアフィルムは、例えば図1(c)に示すバリアフィルムAのように、基材1と、蒸着膜2と、プライマー層3bと、を備える。図1(c)に示す例において、蒸着膜2は、基材1の一方の面上に位置する。また、図1(c)に示す例において、バリアフィルムAは、基材1、蒸着膜2、プライマー層3bの順に積層されており、プライマー層3bはバリアフィルムの表面に位置している。 FIG. 1C is a cross-sectional view showing an example of a barrier film according to the present embodiment. Barrier films produced by using the film deposition apparatus of this embodiment, for example, as a barrier film A 3 shown in FIG. 1 (c), a substrate 1, a deposited film 2, and the primer layer 3b, To be equipped. In the example shown in FIG. 1 (c), the vapor deposition film 2 is located on one surface of the base material 1. Further, in the example shown in FIG. 1C, the barrier film A is laminated in the order of the base material 1, the vapor-deposited film 2, and the primer layer 3b, and the primer layer 3b is located on the surface of the barrier film.
 (TOF-SIMS分析)
 本実施の形態に係るバリアフィルムの組成について、後述する実施例1の図30を用いて詳細に説明する。図30は、図1(c)で示すバリアフィルムAを、プライマー層3bの表面側から飛行時間型二次イオン質量分析法(TOF-SIMS)を用いてエッチングを行うことにより、バリアフィルムに含まれる元素及び元素結合を測定した場合における、元素及び元素結合の強度を示すグラフ解析図の一例である。グラフの縦軸の単位(intensity)は、イオンの強度について常用対数をとって表示したものである。グラフの横軸の単位(Et times)は、エッチングをした時間である。
(TOF-SIMS analysis)
The composition of the barrier film according to this embodiment will be described in detail with reference to FIG. 30 of Example 1 described later. Figure 30 is a barrier film A 3 shown in FIG. 1 (c), the etching is performed using linear time-of from the surface side of the primer layer 3b ion mass spectrometry (TOF-SIMS), the barrier film This is an example of a graph analysis diagram showing the strength of elements and element bonds when the contained elements and element bonds are measured. The unit (intensity) on the vertical axis of the graph is the common logarithm of the ion intensity. The unit (Et times) on the horizontal axis of the graph is the etching time.
 図30に示すように、本実施の形態に係るバリアフィルムからは、CNO由来の強度と、Al由来の強度と、AlH由来の強度と、が少なくとも検出される。図30に示す例においては、この3種の元素結合の強度を測定した例を示している。 As shown in FIG. 30, at least the strength derived from CNO, the strength derived from Al 2 O 3 , and the strength derived from Al 2 O 4 H are detected from the barrier film according to the present embodiment. In the example shown in FIG. 30, an example in which the strength of these three types of elemental bonds is measured is shown.
 図30において、Al由来の強度は上に凸のピークを有し、このピークが存在する範囲が酸化アルミニウム蒸着膜の範囲である。具体的には、Al由来の強度ピークが基材側で減少し、Intensityが半分になるEt time Tの位置をプラスチック基材と酸化アルミニウムの界面とする。次に、Al由来の強度ピークがプライマー層側で減少し、Intensityが半分になるEt time Tの位置をプライマー層と酸化アルミニウムの界面とする。そして、TからTまでを酸化アルミニウム蒸着膜とする(図30におけるX)。 In FIG. 30, the intensity derived from Al 2 O 3 has an upward convex peak, and the range in which this peak exists is the range of the aluminum oxide vapor-deposited film. Specifically, the position of Et time T 1 where the intensity peak derived from Al 2 O 3 is reduced on the base material side and the integrity is halved is defined as the interface between the plastic base material and aluminum oxide. Next, the position of Et time T 2 where the intensity peak derived from Al 2 O 3 decreases on the primer layer side and the integrity is halved is defined as the interface between the primer layer and aluminum oxide. Then, T 1 to T 2 are formed as an aluminum oxide vapor-deposited film (X in FIG. 30).
 図30において、酸化アルミニウム蒸着膜中、つまり図30におけるXの範囲内には、CNO由来の強度が存在する。CNO由来の強度は、CNOがウレタン結合であるから、プライマー層のウレタン樹脂由来の強度である。そして、図30によれば、Xの領域内で、CNO由来の強度には、下に凸のピークTpが存在する。 In FIG. 30, the strength derived from CNO exists in the aluminum oxide vapor deposition film, that is, in the range of X in FIG. 30. The strength derived from CNO is the strength derived from the urethane resin of the primer layer because CNO is a urethane bond. Then, according to FIG. 30, in the region of X, the intensity derived from CNO has a downwardly convex peak Tp.
 更に、図30においては、Xにおける、ピーク(Tp)の深さ位置(図30におけるY/Xに相当)が、蒸着膜の表面側(プライマー層側)から0%以上70%以下、好ましくは10%以上70%以下、より好ましくは20%以上70%以下、更に好ましくは30%以上70%以下、特に好ましくは40%以上70%以下に存在する。 Further, in FIG. 30, the depth position of the peak (Tp) at X (corresponding to Y / X in FIG. 30) is 0% or more and 70% or less, preferably 70% or less, from the surface side (primer layer side) of the vapor-deposited film. It is present in 10% or more and 70% or less, more preferably 20% or more and 70% or less, further preferably 30% or more and 70% or less, and particularly preferably 40% or more and 70% or less.
 このことは、Tpが蒸着膜のよりプライマー層側に存在することを意味する。つまり、プライマー層のうち、主に低分子量と推定されるCNOを含む成分が、蒸着膜中にマイグレーション(移行)していることを示唆している。本発明においては、このマイグレーションの程度が小さいので、結果として、酸化アルミニウム蒸着膜に与える影響が少なく、緻密な酸化アルミニウム蒸着膜を維持することで、バリア性能を高めることができる。 This means that Tp is present on the primer layer side of the vapor deposition film. That is, it is suggested that the component containing CNO, which is presumed to have a low molecular weight, is mainly migrated into the vapor-deposited film in the primer layer. In the present invention, since the degree of this migration is small, as a result, the influence on the aluminum oxide vapor-deposited film is small, and the barrier performance can be improved by maintaining a dense aluminum oxide-deposited film.
 なお、CNO由来の下に凸のピークTpの存在や、Tpの深さ位置は、前処理、特に酸素プラズマ処理の条件と、蒸着時のプラズマアシスト処理の条件と、酸化アルミニウム蒸着膜の形成時における蒸着時の酸素濃度と、の組み合わせを制御することで調整することができる。 The presence of the downwardly convex peak Tp derived from CNO and the depth position of Tp are determined by the conditions of pretreatment, especially oxygen plasma treatment, plasma assist treatment during vapor deposition, and the formation of an aluminum oxide vapor deposition film. It can be adjusted by controlling the combination of the oxygen concentration at the time of vapor deposition in.
 (プライマー層)
 酸化アルミニウム蒸着膜2の表面上に積層されるプライマー層3bは、酸化アルミニウム他の層を積層する際の密着性を向上させるとともに、バリア性能を向上させるものである。以下、プライマー層3bについて説明する。
(Primer layer)
The primer layer 3b laminated on the surface of the aluminum oxide vapor-deposited film 2 improves the adhesion when laminating the aluminum oxide and other layers, and also improves the barrier performance. Hereinafter, the primer layer 3b will be described.
 プライマー層は、ウレタン樹脂を含有するプライマー液を塗布して、固化し、形成されたものである。そして、必要に応じて、更に、シランカップリング剤やシリカ微粒子を含んでもよい。 The primer layer is formed by applying a primer solution containing a urethane resin and solidifying it. Then, if necessary, a silane coupling agent or silica fine particles may be further contained.
 プライマー層の乾燥後の膜厚は、0.01~30μmが好ましく、0.1~10μmがより好ましい。 The film thickness of the primer layer after drying is preferably 0.01 to 30 μm, more preferably 0.1 to 10 μm.
 プライマー層がウレタン樹脂を含むことで、プライマー層が適度な弾性ないし柔軟性を有し、印刷やラミネート時の押圧による無機蒸着層への影響を軽減し、ガスバリア性の劣化を抑制できる。ウレタン樹脂としては、従来公知のポリエステルウレタン樹脂及びポリエーテルウレタン樹脂のいずれも用いることができる。このようなウレタン樹脂としては、ポリエステルポリオールやポリエーテルポリオール等のポリオールと、ポリイソシアネートとの反応物を用いることができる。 Since the primer layer contains urethane resin, the primer layer has appropriate elasticity or flexibility, the influence on the inorganic vapor deposition layer due to pressing during printing or laminating can be reduced, and deterioration of gas barrier properties can be suppressed. As the urethane resin, either a conventionally known polyester urethane resin or a polyether urethane resin can be used. As such a urethane resin, a reaction product of a polyol such as a polyester polyol or a polyether polyol and a polyisocyanate can be used.
 上記のポリエステルポリオールとしては、低分子量のポリオールと、ポリカルボン酸とを反応して得られるポリエステルポリオール;ε-カプローラークトン等の環状エステル化合物を開環重合反応して得られるポリエステルポリオール;これらを共重合して得られるポリエステルポリオール等が挙げられる。これらのポリエステルポリオールは、単独で用いることも2種以上を併用することもできる。 Examples of the polyester polyol include a polyester polyol obtained by reacting a low molecular weight polyol with a polycarboxylic acid; and a polyester polyol obtained by ring-opening polymerization reaction of a cyclic ester compound such as ε-caprolacton; Examples thereof include polyester polyols obtained by copolymerization. These polyester polyols can be used alone or in combination of two or more.
 低分子量のポリオールとしては、例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、ネオペンチルグリコール、1,3-ブタンジオール等の分子量が50~300程度である脂肪族ポリオール;シクロヘキサンジメタノール等の脂肪族環式構造を有するポリオール;ビスフェノールA及びビスフェノールF等の芳香族構造を有するポリオールが挙げられる。ポリエステルポリオールの製造に使用可能なポリカルボン酸としては、例えば、コハク酸、アジピン酸、セバシン酸、ドデカンジカルボン酸等の脂肪族ポリカルボン酸;テレフタル酸、イソフタル酸、フタル酸、ナフタレンジカルボン酸等の芳香族ポリカルボン酸;それらの無水物又はエステル化物等が挙げられる。また、ポリエステルポリオールとして、上記のポリエステルポリオールをポリイソシアネートで変性して得られる、分子構造内にウレタン結合を持つポリエステルポリウレタンポリオールを用いることもできる。これらのポリエステルポリオールは、単独で用いることも2種以上を併用することもできる。 Examples of the low molecular weight polyol include ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, neopentyl glycol, and 1,3-butanediol having a molecular weight of about 50 to 300. Examples thereof include certain aliphatic polyols; polyols having an aliphatic cyclic structure such as cyclohexanedimethanol; polyols having an aromatic structure such as bisphenol A and bisphenol F. Examples of polycarboxylic acids that can be used for producing polyester polyols include aliphatic polycarboxylic acids such as succinic acid, adipic acid, sebacic acid, and dodecandicarboxylic acid; terephthalic acid, isophthalic acid, phthalic acid, naphthalenedicarboxylic acid and the like. Aromatic polycarboxylic acids; examples thereof include anhydrides or esterified products thereof. Further, as the polyester polyol, a polyester polyurethane polyol having a urethane bond in the molecular structure, which is obtained by modifying the above polyester polyol with polyisocyanate, can also be used. These polyester polyols can be used alone or in combination of two or more.
 上記のポリエーテルポリオールとしては、例えば、活性水素原子を2つ以上有する化合物の1種又は2種以上を開始剤として、アルキレンオキサイドを付加重合させたものが挙げられる。前記活性水素原子を2つ以上有する化合物としては、例えば、プロピレングリコール、トリメチレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、グリセリン、ジグリセリン、トリメチロールエタン、トリメチロールプロパン、水、ヘキサントリオール等が挙げられる。また、前記アルキレンオキサイドとしては、例えば、プロピレンオキサイド、ブチレンオキサイド、スチレンオキサイド、エピクロルヒドリン、テトラヒドロフラン等が挙げられる。また、ポリエーテルポリオールとして、上記のポリエーテルポリオールをポリイソシアネートで変性して得られる、分子構造内にウレタン結合を持つポリエーテルポリウレタンポリオールを用いることもできる。これらのポリエーテルポリオールは、単独で用いることも2種以上を併用することもできる。 Examples of the above-mentioned polyether polyol include those obtained by addition polymerization of an alkylene oxide using one or more compounds having two or more active hydrogen atoms as an initiator. Examples of the compound having two or more active hydrogen atoms include propylene glycol, trimethylolglycol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, glycerin, and di. Examples thereof include glycerin, trimethylolethane, trimethylolpropane, water and hexanetriol. Examples of the alkylene oxide include propylene oxide, butylene oxide, styrene oxide, epichlorohydrin, and tetrahydrofuran. Further, as the polyether polyol, a polyether polyurethane polyol having a urethane bond in the molecular structure, which is obtained by modifying the above-mentioned polyether polyol with a polyisocyanate, can also be used. These polyether polyols can be used alone or in combination of two or more.
 上記のポリイソシアネートとしては、例えば、シクロヘキサンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート等の脂肪族環式構造を有するポリイソシアネート;4,4’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、カルボジイミド変性ジフェニルメタンジイソシアネート、クルードジフェニルメタンジイソシアネート、フェニレンジイソシアネート、トリレンジイソシアネート、ナフタレンジイソシアネート等の芳香族ポリイソシアネート;ヘキサメチレンジイソシアネート、リジンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート等の脂肪族ポリイソシアネートが挙げられる。これらの中でも4,4’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、カルボジイミド変性ジフェニルメタンジイソシアネート、クルードジフェニルメタンジイソシアネートが好ましい。また、これらのポリイソシアネートは、単独で用いることも2種以上を併用することもできる。 Examples of the above-mentioned polyisocyanate include polyisocyanates having an aliphatic cyclic structure such as cyclohexanediisocyanate, dicyclohexylmethane diisocyanate, and isophorone diisocyanate; 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, and carbodiimide-modified diphenylmethane diisocyanate. , Aromatic polyisocyanates such as crude diphenylmethane diisocyanate, phenylenediisocyanate, tolylene diisocyanate, naphthalenediocyanate; and aliphatic polyisocyanates such as hexamethylene diisocyanate, lysine diisocyanate, xylylene diisocyanate and tetramethylxylylene diisocyanate. Of these, 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, carbodiimide-modified diphenylmethane diisocyanate, and crude diphenylmethane diisocyanate are preferable. In addition, these polyisocyanates can be used alone or in combination of two or more.
 シランカップリング剤としては、従来公知のシランカップリング剤を用いることができ、例えば上述のガスバリア樹脂組成物に用いられるものと同様のものが好適に用いられる。プライマー層はシランカップリング剤を含むことで、蒸着膜との接着性を向上させることができる。 As the silane coupling agent, a conventionally known silane coupling agent can be used, and for example, the same one as that used for the above-mentioned gas barrier resin composition is preferably used. By containing a silane coupling agent in the primer layer, the adhesiveness with the vapor-deposited film can be improved.
 シリカ微粒子としては、従来公知のシリカを用いることができる。特に、ウレタン樹脂がポリエーテルポリウレタンの場合に、プライマー層がシリカ微粒子を含むことで、ガスバリア性蒸着フィルムの製造工程において、巻き取り時のブロッキングを抑制することができる。 Conventionally known silica can be used as the silica fine particles. In particular, when the urethane resin is a polyether polyurethane, the primer layer containing silica fine particles makes it possible to suppress blocking during winding in the manufacturing process of the gas barrier vapor-deposited film.
 (プライマー層形成工程)
 プライマー層を塗布によって形成する手段としては、例えば、グラビアロールコーターなどのロールコート、スプレーコート、スピンコート、ディッピング、刷毛、バーコード、アプリケータ等の塗布手段が挙げられる。プライマー層は、1回あるいは複数回の塗布によって形成されてもよい。第一の塗膜の上に、更に上記塗布操作を繰り返して、2層以上からなる複数の塗膜を形成してもよい。更に、20~200℃、かつプラスチック基材の融点以下の温度、好ましくは、50~180℃の範囲の温度で、0.2秒~10分間加熱処理する。これによって、酸化アルミニウム蒸着膜の上に、プライマー層3bを形成することができる。
(Primer layer forming step)
Examples of the means for forming the primer layer by coating include a roll coating such as a gravure roll coater, a spray coating, a spin coating, a dipping, a brush, a bar code, and an applicator. The primer layer may be formed by one or more applications. On the first coating film, the above coating operation may be repeated to form a plurality of coating films composed of two or more layers. Further, the heat treatment is carried out at a temperature of 20 to 200 ° C. and lower than the melting point of the plastic substrate, preferably a temperature in the range of 50 to 180 ° C. for 0.2 seconds to 10 minutes. As a result, the primer layer 3b can be formed on the aluminum oxide vapor deposition film.
 (積層体)
 本実施の形態に係るバリアフィルムを用いることによって形成される積層体の例について説明する。図7(c)は、本実施の形態に係るバリアフィルムを用いることによって形成される積層体40cの一例を示す図である。積層体40cは、図1(c)に示すバリアフィルムと、シーラント層7とを備える。具体的には、積層体40cは、図1(c)に示すバリアフィルムのプライマー層上に、更に接着剤層4と、ポリアミドなどで構成される第2基材5と、接着剤層6と、シーラント層7とを、この順に備える。本発明の積層体は、バリアフィルムに少なくとも1層のヒートシール可能な層を積層したものであって、ヒートシール可能な熱可塑性樹脂が、接着層を介して、あるいは介することなく、最内層として積層され、ヒートシールなどのシール性が付与されたものである。
(Laminated body)
An example of a laminated body formed by using the barrier film according to the present embodiment will be described. FIG. 7C is a diagram showing an example of a laminated body 40c formed by using the barrier film according to the present embodiment. The laminated body 40c includes the barrier film shown in FIG. 1 (c) and the sealant layer 7. Specifically, the laminated body 40c includes an adhesive layer 4, a second base material 5 composed of polyamide and the like, and an adhesive layer 6 on the primer layer of the barrier film shown in FIG. 1 (c). , The sealant layer 7 is provided in this order. The laminate of the present invention is obtained by laminating at least one heat-sealable layer on a barrier film, and the heat-sealable thermoplastic resin is used as the innermost layer with or without an adhesive layer. It is laminated and has a sealing property such as a heat seal.
<第3発明の実施例>
 (実施例1)
 基材1として、厚さ12μmの二軸延伸ポリエチレンテレフタレートフィルム(PETフィルム)を用い、図2に示す成膜装置10を用いて、プラズマ前処理工程、及び成膜工程を行った。
<Example of the third invention>
(Example 1)
A biaxially stretched polyethylene terephthalate film (PET film) having a thickness of 12 μm was used as the base material 1, and a plasma pretreatment step and a film forming step were performed using the film forming apparatus 10 shown in FIG.
 前処理工程においては、図2及び図3に示すプラズマ前処理機構11Bを用いて、基材1の表面にプラズマ前処理を施した。具体的には、まず、プラズマ前処理室12Bに、プラズマ原料ガス供給部を用いて酸素(O):アルゴン(Ar)との混合ガス(O:Ar=2.5:1)を供給しつつ、減圧チャンバ12を用いて、プラズマ前処理室12B内の気圧を調整した。次に、前処理ローラー20と電極部21との間に電圧を印加してプラズマを発生させ、基材1の表面にプラズマ前処理を施した。プラズマ前処理室12B内の気圧は6.2Pa、磁場形成部23として1000ガウスの永久磁石を用いた。プラズマ密度は417W・sec/mであった。 In the pretreatment step, the surface of the base material 1 was subjected to plasma pretreatment using the plasma pretreatment mechanism 11B shown in FIGS. 2 and 3. Specifically, first, a mixed gas (O 2 : Ar = 2.5: 1) of oxygen (O 2 ): argon (Ar) is supplied to the plasma pretreatment chamber 12B using the plasma raw material gas supply unit. While doing so, the air pressure in the plasma pretreatment chamber 12B was adjusted using the decompression chamber 12. Next, a voltage was applied between the pretreatment roller 20 and the electrode portion 21 to generate plasma, and the surface of the base material 1 was subjected to plasma pretreatment. The atmospheric pressure in the plasma pretreatment chamber 12B was 6.2 Pa, and a permanent magnet of 1000 gauss was used as the magnetic field forming portion 23. The plasma density was 417 W · sec / m 2 .
 成膜工程においては、図6に示すような蒸発機構24を用いて、真空蒸着法により、酸化アルミニウムを含む蒸着膜2を成膜した。具体的には、成膜室12C内の真空度を1.5Paに調整した上で、蒸着材料としてアルミニウムの金属線材をボート24b内に供給しつつ、抵抗加熱式の蒸発機構24を用い、ボート24b内の蒸着材料を加熱し、基材1の表面に到達するようにアルミニウムを蒸発させるとともに、12500sccmで酸素を供給しながら、基材1の表面に蒸着膜2を成膜した。 In the film forming step, the vapor deposition film 2 containing aluminum oxide was deposited by the vacuum vapor deposition method using the evaporation mechanism 24 as shown in FIG. Specifically, after adjusting the degree of vacuum in the film forming chamber 12C to 1.5 Pa, the boat uses a resistance heating type evaporation mechanism 24 while supplying an aluminum metal wire as a vapor deposition material into the boat 24b. The vapor-deposited material in 24b was heated to evaporate the aluminum so as to reach the surface of the base material 1, and the vapor-deposited film 2 was formed on the surface of the base material 1 while supplying oxygen at 12500 sccm.
 また、プラズマ供給機構50として、図6に示すホローカソード51と、ボート24bからみて、基材1の幅方向における両側に配置された、ホローカソード51の空洞部の開口と対向する図示しないアノードと、を有する形態を用い、ホローカソード51の空洞部にプラズマ原料ガス(O:Ar=35:1)を供給し、放電させてプラズマを励起し、このプラズマを、対向するアノードによって、基材1の表面と蒸発機構24との間に引き出して、蒸着時のプラズマアシストを行った。 Further, as the plasma supply mechanism 50, a hollow cathode 51 shown in FIG. 6 and an anode (not shown) facing the opening of the hollow portion of the hollow cathode 51 arranged on both sides in the width direction of the base material 1 as viewed from the boat 24b. , using a form having a hollow cathode 51 cavity to the plasma source gas (O 2: Ar = 35: 1) to supply, to discharge to excite a plasma, the plasma, by opposing the anode, substrate It was pulled out between the surface of No. 1 and the evaporation mechanism 24 to perform plasma assist during vapor deposition.
 以上の方法により基材1上に蒸着膜2を積層した。このときの搬送速度600m/分であり、蒸着膜2の厚さは8nmであった。 The vapor deposition film 2 was laminated on the base material 1 by the above method. At this time, the transport speed was 600 m / min, and the thickness of the vapor-deposited film 2 was 8 nm.
 <プライマー層の形成>
 上記で得たガスバリア性蒸着フィルムの酸化アルミニウム蒸着膜の上に、下記のプライマー層3bを形成した。
<Formation of primer layer>
The following primer layer 3b was formed on the aluminum oxide vapor deposition film of the gas barrier vapor deposition film obtained above.
 まず、ポリエステルポリオールとポリイソシアネートの硬化物であるポリエステルウレタン樹脂(大日精化工業(株)社製)(100g)が溶解されている液を主剤とし、硬化剤であるイソシアネート化合物(5g)を混合して、プライマー液を調製した。次に、上記で形成したガスバリア性蒸着フィルムの酸化アルミニウム蒸着膜上に、上記で調製したプライマー液をスピンコート法によりコーティングした。そして、オーブン内で100℃、30秒間の加熱処理を行うことによって、厚さ約200nmのプライマー層3bを酸化アルミニウム蒸着膜上に隣接して形成して、プライマー層3bを有する実施例1のバリアフィルムを製造した。 First, a liquid in which a polyester urethane resin (manufactured by Dainichi Seika Kogyo Co., Ltd.) (100 g), which is a cured product of polyester polyol and polyisocyanate, is dissolved is used as a main component, and an isocyanate compound (5 g), which is a curing agent, is mixed. Then, a primer solution was prepared. Next, the primer solution prepared above was coated on the aluminum oxide vapor deposition film of the gas barrier vapor deposition film formed above by the spin coating method. Then, by performing a heat treatment at 100 ° C. for 30 seconds in an oven, a primer layer 3b having a thickness of about 200 nm is formed adjacently on the aluminum oxide vapor-deposited film, and the barrier of Example 1 having the primer layer 3b is formed. The film was manufactured.
 (実施例2)
 実施例1とは別の製膜装置を用い、表11の製造条件に変更した以外は、実施例1と同様にして、プラズマ前処理を行わない実施例2のバリアフィルムを製造した。
(Example 2)
Using a film-forming device different from that of Example 1, a barrier film of Example 2 was produced in the same manner as in Example 1 except that the production conditions in Table 11 were changed.
 (実施例3)
 実施例1とは別の製膜装置を用い、表11の製造条件に変更した以外は、実施例1と同様にして、プラズマ前処理を行なった実施例3のバリアフィルムを製造した。
(Example 3)
Using a film-forming device different from that of Example 1, the barrier film of Example 3 was subjected to plasma pretreatment in the same manner as in Example 1 except that the production conditions in Table 11 were changed.
 (比較例1)
実施例1において、プラズマ前処理時の酸素/アルゴン比を2:1とし、プラズマ前処理室12B内の真空度を3.5Paとし、蒸着時のプラズマアシスト処理を行わず、酸素供給量を9000sccmとし、蒸着時の真空度を0.02Paとした以外は実施例1と同様にして、比較例1のバリアフィルムを製造した。
(Comparative Example 1)
In Example 1, the oxygen / argon ratio during plasma pretreatment was 2: 1, the degree of vacuum in the plasma pretreatment chamber 12B was 3.5 Pa, the plasma assist treatment during vapor deposition was not performed, and the oxygen supply amount was 9000 sccm. The barrier film of Comparative Example 1 was produced in the same manner as in Example 1 except that the degree of vacuum at the time of vapor deposition was 0.02 Pa.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
[TOF-SIMS分析]
 実施例1、比較例1のバリアフィルムについて、飛行時間型二次イオン質量分析計(ION TOF社製、TOF.SIMS5)を用いて、第1発明と同様の測定条件で、バリアフィルムの蒸着膜表面側から、Cs(セシウム)イオン銃により一定の速度でソフトエッチングを繰り返しながら、樹脂基材由来のC(質量数72.00)、酸化アルミニウム蒸着膜由来のAl(質量数101.94)、酸化アルミニウム蒸着膜由来のAlH(質量数118.93)、プライマー層由来のCNO(質量数41.99)の質量分析を行った。測定結果のグラフ解析図を図30から図32に示す。図30は実施例1の測定結果であり、図31は比較例1の測定結果である。図32は実施例3の測定結果である。図中、縦軸の単位(intensity)は、イオンの強度の常用対数であり、横軸の単位(Et times(s))は、エッチングを行った秒数である。
[TOF-SIMS analysis]
For the barrier films of Example 1 and Comparative Example 1, a time-of-flight secondary ion mass spectrometer (TOF.SIMS5 manufactured by ION TOF) was used, and the vapor-deposited film of the barrier film was used under the same measurement conditions as in the first invention. From the surface side, while repeating soft etching at a constant speed with a Cs (cesium) ion gun, C 6 derived from a resin substrate (mass number 72.00) and Al 2 O 3 derived from an aluminum oxide vapor deposition film (mass number 101). .94), mass spectrometry of Al 2 O 4 H (mass number 118.93) derived from the aluminum oxide vapor deposition film and CNO (mass number 41.99) derived from the primer layer were performed. Graph analysis diagrams of the measurement results are shown in FIGS. 30 to 32. FIG. 30 is the measurement result of Example 1, and FIG. 31 is the measurement result of Comparative Example 1. FIG. 32 is a measurement result of Example 3. In the figure, the unit on the vertical axis (intensity) is the common logarithm of the intensity of ions, and the unit on the horizontal axis (Ettimes (s)) is the number of seconds after etching.
 また、測定された元素結合CNO(質量数41.99)の強度ピークを表す位置をエッチング秒数で求め(ピーク位置Y)、その位置の蒸着膜のプライマー層側表面からの深さ位置(図8におけるピーク位置Y/X、単位%)を求めた。これらの結果をまとめて表12に示す。 Further, the position representing the intensity peak of the measured elemental bond CNO (mass number 41.99) is determined by the number of etching seconds (peak position Y), and the depth position from the primer layer side surface of the vapor-deposited film at that position (FIG. The peak position Y / X at 8, unit%) was determined. These results are summarized in Table 12.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 (バリア性の評価)
 上記の方法によって製造した実施例1から3、比較例1のバリアフィルムのそれぞれについて、第1発明と同様に水蒸気透過率及び酸素透過率の値を測定した。結果を表13に示す。
(Evaluation of barrier property)
The values of water vapor permeability and oxygen permeability were measured for each of the barrier films of Examples 1 to 3 and Comparative Example 1 produced by the above method in the same manner as in the first invention. The results are shown in Table 13.
 (密着性の評価)
 バリアフィルムのプライマー層3bの上に、2液硬化型のポリウレタン系ラミネート用接着剤をコーティングして接着剤層4を形成した以外は、第1発明と同様にして、図7(c)の層構成の積層体を製造した。また、第1発明と同様の方法で水付け剥離強度の値を測定した。結果を表13に示す。
(Evaluation of adhesion)
The layer of FIG. 7C is the same as that of the first invention, except that the primer layer 3b of the barrier film is coated with a two-component curable polyurethane-based laminating adhesive to form the adhesive layer 4. A laminate of the composition was manufactured. Moreover, the value of the watering peel strength was measured by the same method as in the first invention. The results are shown in Table 13.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表12、表13より、元素結合CNO由来の強度が下に凸のピークを有し、下に凸のピークが、蒸着膜におけるプライマー層表面側から0%以上70%以下の深さ位置に存在する実施例1においては、下に凸のピークが存在しない比較例1に比べて高いバリア性を有している。比較例においては、CNO由来の強度が蒸着膜全体に亘って存在しており、プライマー層のCNO結合を有する成分がマイグレーションして蒸着膜中に移行していることが理解できる。 From Tables 12 and 13, the intensity derived from the elemental bond CNO has a downwardly convex peak, and the downwardly convex peak exists at a depth position of 0% or more and 70% or less from the surface side of the primer layer in the vapor deposition film. In Example 1, the barrier property is higher than that in Comparative Example 1 in which a downward convex peak does not exist. In the comparative example, it can be understood that the strength derived from CNO is present throughout the vapor-deposited film, and the component having the CNO bond of the primer layer is migrated and migrated into the vapor-deposited film.
1 基材
2 蒸着膜
3a 有機被覆層
3b プライマー層
4 接着剤層
5 第2基材
6 接着剤層
7 シーラント層
10 成膜装置
、A、A バリアフィルム
40a、40b、40c 積層体
P プラズマ
X 回転軸
11A 基材搬送機構
11B プラズマ前処理機構
11C 成膜機構
12 減圧チャンバ
12A 基材搬送室
12B プラズマ前処理室
12C 成膜室
13 巻き出しローラー
14a~d ガイドロール
15 巻き取りローラー
20 前処理ローラー
21 電極部
23 磁場形成部
23a 第1面
23b 第2面
231 第1磁石
231c 第1軸方向部分
232 第2磁石
232c 第2軸方向部分
232d 接続部分
24 蒸発機構
24b ボート
25 成膜ローラー
31 電力供給配線
32 電源
35a~35c 隔壁
50 プラズマ供給機構
51 ホローカソード
61 蒸着材料供給部
63 アルミニウム蒸気
1 Base material 2 Vapor film 3a Organic coating layer 3b Primer layer 4 Adhesive layer 5 Second base material 6 Adhesive layer 7 Sealant layer 10 Film deposition equipment A 1 , A 2 , A 3 Barrier film 40a, 40b, 40c Laminated body P Plasma X Rotating shaft 11A Substrate transfer mechanism 11B Plasma pretreatment mechanism 11C Film formation mechanism 12 Decompression chamber 12A Substrate transfer chamber 12B Plasma pretreatment chamber 12C Film formation chamber 13 Unwinding roller 14a to d Guide roll 15 Winding roller 20 Pretreatment roller 21 Electrode part 23 Magnetic field forming part 23a First surface 23b Second surface 231 First magnet 231c First axial part 232 Second magnet 232c Second axial part 232d Connection part 24 Evaporation mechanism 24b Boat 25 Film formation roller 31 Power supply wiring 32 Power supply 35a to 35c Partition 50 Plasma supply mechanism 51 Hollow cathode 61 Membrane material supply unit 63 Aluminum steam

Claims (5)

  1.  基材と、酸化アルミニウム蒸着膜と、有機被覆層と、がこの順に積層されているバリアフィルムであって、
     前記酸化アルミニウム蒸着膜は、前記バリアフィルムの前記有機被覆層表面側から、飛行時間型二次イオン質量分析法(TOF-SIMS)によりエッチングした際に、元素結合OH由来の強度が検出され、
     前記元素結合OH由来の強度は下に凸のピークを有し、前記下に凸のピークは、前記酸化アルミニウム蒸着膜における、前記有機被覆層表面側から10%以上60%以下の深さ位置に存在する、バリアフィルム。
    A barrier film in which a base material, an aluminum oxide vapor-deposited film, and an organic coating layer are laminated in this order.
    When the aluminum oxide vapor-deposited film was etched from the surface side of the organic coating layer of the barrier film by time-of-flight secondary ion mass spectrometry (TOF-SIMS), the strength derived from the element bond OH was detected.
    The intensity derived from the elemental bond OH has a downwardly convex peak, and the downwardly convex peak is located at a depth of 10% or more and 60% or less from the surface side of the organic coating layer in the aluminum oxide vapor-deposited film. A barrier film that exists.
  2.  前記有機被覆層は、金属アルコキシドと、水酸基含有水溶性樹脂とを含む樹脂組成物の硬化物である、請求項1に記載のバリアフィルム。 The barrier film according to claim 1, wherein the organic coating layer is a cured product of a resin composition containing a metal alkoxide and a hydroxyl group-containing water-soluble resin.
  3.  前記樹脂組成物は、更にシランカップリング剤を含有する、請求項2に記載のバリアフィルム。 The barrier film according to claim 2, wherein the resin composition further contains a silane coupling agent.
  4.  請求項1から3のいずれか1項に記載のバリアフィルムと、シーラント層とを備える積層体。 A laminate comprising the barrier film according to any one of claims 1 to 3 and a sealant layer.
  5.  請求項4に記載の積層体を備える包装製品。 A packaged product comprising the laminate according to claim 4.
PCT/JP2020/033327 2019-09-06 2020-09-02 Barrier film, laminate using said barrier film, packaging product using said laminate WO2021045127A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2019162843 2019-09-06
JP2019-162843 2019-09-06
JP2019170844 2019-09-19
JP2019-170844 2019-09-19
JP2019-170845 2019-09-19
JP2019170845 2019-09-19

Publications (1)

Publication Number Publication Date
WO2021045127A1 true WO2021045127A1 (en) 2021-03-11

Family

ID=74853235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033327 WO2021045127A1 (en) 2019-09-06 2020-09-02 Barrier film, laminate using said barrier film, packaging product using said laminate

Country Status (1)

Country Link
WO (1) WO2021045127A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220162740A1 (en) * 2019-06-12 2022-05-26 Dai Nippon Printing Co., Ltd. Barrier film, laminate, and packaging product

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008114444A (en) * 2006-11-02 2008-05-22 Toppan Printing Co Ltd Forming method of transparent multi-layer film, transparent multi-layer film having gas barrier property and sealing film formed thereby
JP2012196918A (en) * 2011-03-23 2012-10-18 Toppan Printing Co Ltd Packaging material for pressurizing/heating sterilization
WO2013100073A1 (en) * 2011-12-28 2013-07-04 大日本印刷株式会社 Vapor deposition apparatus having pretreatment device that uses plasma
JP2017177343A (en) * 2016-03-28 2017-10-05 東レフィルム加工株式会社 Laminate film and method for manufacturing the same
WO2019087960A1 (en) * 2017-10-30 2019-05-09 大日本印刷株式会社 Laminate film, barrier laminate film, and gas-barrier packaging material and gas-barrier packaged body each using said barrier laminate film
JP2019123925A (en) * 2018-01-19 2019-07-25 大日本印刷株式会社 Film deposition apparatus of vapor-deposited film, and film deposition method of vapor-deposited film
JP2020029095A (en) * 2018-08-20 2020-02-27 大日本印刷株式会社 Barrier film and packaging material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008114444A (en) * 2006-11-02 2008-05-22 Toppan Printing Co Ltd Forming method of transparent multi-layer film, transparent multi-layer film having gas barrier property and sealing film formed thereby
JP2012196918A (en) * 2011-03-23 2012-10-18 Toppan Printing Co Ltd Packaging material for pressurizing/heating sterilization
WO2013100073A1 (en) * 2011-12-28 2013-07-04 大日本印刷株式会社 Vapor deposition apparatus having pretreatment device that uses plasma
JP2017177343A (en) * 2016-03-28 2017-10-05 東レフィルム加工株式会社 Laminate film and method for manufacturing the same
WO2019087960A1 (en) * 2017-10-30 2019-05-09 大日本印刷株式会社 Laminate film, barrier laminate film, and gas-barrier packaging material and gas-barrier packaged body each using said barrier laminate film
JP2019123925A (en) * 2018-01-19 2019-07-25 大日本印刷株式会社 Film deposition apparatus of vapor-deposited film, and film deposition method of vapor-deposited film
JP2020029095A (en) * 2018-08-20 2020-02-27 大日本印刷株式会社 Barrier film and packaging material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220162740A1 (en) * 2019-06-12 2022-05-26 Dai Nippon Printing Co., Ltd. Barrier film, laminate, and packaging product

Similar Documents

Publication Publication Date Title
JP7192781B2 (en) LAMINATED FILM, BARRIER LAMINATED FILM, GAS BARRIER PACKAGING MATERIAL AND GAS BARRIER PACKAGE USING THE BARRIER LAMINATED FILM
JP6760416B2 (en) Transparent thin film
JP7248011B2 (en) Barrier laminated film and packaging material using the barrier laminated film
JP7056790B2 (en) Barrier film, laminate using the barrier film, packaging product using the laminate
JP7434766B2 (en) Gas barrier vapor deposited films, gas barrier laminates, gas barrier packaging materials and gas barrier packaging bodies.
JP7031772B2 (en) Barrier film, laminate using the barrier film, packaging product using the laminate
JP7434767B2 (en) Gas-barrier vapor-deposited film, and laminates, packaging materials, and packages using the gas-barrier vapor-deposited film
JP2020029095A (en) Barrier film and packaging material
JP2010000447A (en) Gas-barrier laminated film and method for manufacturing the same
KR20200135831A (en) Barrier resin film, barrier laminate, and packaging material using the barrier laminate
JP2020070429A (en) Oxygen plasma treated resin film, gas barrier vapor deposition film and gas barrier laminate using the gas barrier vapor deposition film, gas barrier packaging material, gas barrier package, gas barrier packaging bag and manufacturing method of these
WO2021045127A1 (en) Barrier film, laminate using said barrier film, packaging product using said laminate
JP2021041697A (en) Barrier film, laminate using the barrier film, and packaging product using the laminate
JP2009137092A (en) Member for ink cartridge
JP7338153B2 (en) Gas barrier vapor deposited film, gas barrier laminate, gas barrier packaging material, gas barrier packaging material, and method for producing gas barrier vapor deposited film
JP5034257B2 (en) Barrier film and method for producing the same
JP2021049780A (en) Barrier film, laminate using the barrier film, and packaging product using the laminate
JP7379963B2 (en) Adhesive barrier film and adherend with barrier film
WO2024070759A1 (en) Barrier film
JP2020147020A (en) Barrier laminate film, and method of manufacturing barrier laminate film, and packaging material having barrier laminate film
JP7355958B1 (en) barrier film
JP2008023848A (en) Transparent gas-barrier film, its manufacturing method, and packaging material using it
JP2020189689A (en) Packaging bag

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20861047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20861047

Country of ref document: EP

Kind code of ref document: A1