WO2021042723A1 - 含有三氮唑结构的谷氨酰胺酶gls1抑制剂或其可药用的盐、其制备方法及用途 - Google Patents

含有三氮唑结构的谷氨酰胺酶gls1抑制剂或其可药用的盐、其制备方法及用途 Download PDF

Info

Publication number
WO2021042723A1
WO2021042723A1 PCT/CN2020/084163 CN2020084163W WO2021042723A1 WO 2021042723 A1 WO2021042723 A1 WO 2021042723A1 CN 2020084163 W CN2020084163 W CN 2020084163W WO 2021042723 A1 WO2021042723 A1 WO 2021042723A1
Authority
WO
WIPO (PCT)
Prior art keywords
cpu
och
preparation
compound
hrms
Prior art date
Application number
PCT/CN2020/084163
Other languages
English (en)
French (fr)
Inventor
李志裕
卞金磊
徐熙
孟颖
王举波
Original Assignee
中国药科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国药科大学 filed Critical 中国药科大学
Publication of WO2021042723A1 publication Critical patent/WO2021042723A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to a glutaminase GLS1 inhibitor or a pharmaceutically acceptable salt thereof, a preparation method and application thereof, and particularly to a glutaminase GLS1 inhibitor containing a triazole structure or a pharmaceutically acceptable salt thereof, and a preparation method thereof And uses.
  • Metabolic reprogramming is an important sign of tumors. Tumors undergo metabolic reprogramming to meet the energy requirements and material synthesis requirements of rapid proliferation.
  • Classical tumor metabolic reprogramming has two characteristics, one is the aerobic glycolysis of glucose; the other is relying on glutamine to replenish the tricarboxylic acid cycle.
  • Glutamine can not only be used as a carbon source to replenish the tricarboxylic acid cycle, but also provide a nitrogen source for the synthesis of protein, hexose and nucleotides and other biological macromolecules. In addition, it is also one of the precursors of glutathione. An important way for the body to resist oxidative stress and maintain redox homeostasis.
  • Glutaminase catalyzes the reaction of glutamine deamination to produce glutamate. It is the rate-limiting enzyme of glutamine glycolysis. It controls the entrance of glutamine catabolism and the body’s influence on glutamine metabolism. The regulation is mainly achieved through GLS.
  • GLS Glutaminease
  • GLS1 is highly expressed in most tumors, and GLS2 is low.
  • GLS1 has a "pro-cancer effect", while GLS2 has an "anti-cancer effect”.
  • GLS plays an important role in the occurrence and development of a variety of tumors. GLS is of great significance to the diagnosis, progression and prognosis evaluation of tumors.
  • GLS1 is a potential target of tumor metabolism therapy, and its specific inhibitor is expected to become a new type of anti-tumor metabolism drug.
  • the object of the invention is to provide a glutaminase GLS1 inhibitor containing a triazole structure or a pharmaceutically acceptable salt thereof.
  • Another object of the present invention is to provide a pharmaceutical composition containing a therapeutically effective amount of one or more glutaminase GLS1 inhibitors of general formula (I) containing triazole structure or their pharmaceutically acceptable Salt, and a pharmaceutically acceptable carrier.
  • Another object of the present invention is to provide a pharmaceutical composition containing a therapeutically effective amount of one or more of the triazole-containing glutaminase GLS1 inhibitors of general formula (I) or Medicinal salts and pharmaceutically acceptable excipients.
  • Another object of the present invention is to provide a method for preparing the glutaminase GLS1 inhibitor containing a triazole structure or a pharmaceutically acceptable salt thereof.
  • the last objective of the present invention is to provide the use of the glutaminase GLS1 inhibitor containing the triazole structure or its pharmaceutically acceptable salt in the preparation of drugs for the treatment of diseases mediated by GLS1.
  • the present invention provides a glutaminase GLS1 inhibitor containing a triazole structure or a pharmaceutically acceptable salt thereof,
  • n is an integer of 1-4;
  • Y is: H or CH 2 O(CO) R 5 , R 5 is: H, substituted or unsubstituted alkyl, alkoxy, amino, heterocycloalkyl, aromatic cycloalkyl or heterocycloalkoxy ;
  • R 1 and R 2 are respectively: H, alkyl, alkoxy or hydroxyl
  • R 3 is: alkanes, substituted alkanes, aromatic hydrocarbons, aromatic alkanes, cyano groups, cycloalkanes, cycloaromatic alkanes, hydrogen, halogen, halogen-substituted alkanes, heteroatom aromatic hydrocarbons, heteroatom aromatic alkanes, heteroatom cycloalkanes, C(R 6 )(R 7 )(R 8 ), N(R 9 )(R 10 ), OR 11 , any hydroxyl group can be acetylated to C(O)R 7 ;
  • R 4 is: alkanes, substituted alkanes, cycloalkanes, aromatic hydrocarbons, aromatic alkanes, substituted aromatic hydrocarbons or substituted aromatic alkanes;
  • R 6 , R 7 , and R 8 are respectively: hydrogen, substituted or unsubstituted alkyl, hydroxyl, hydroxyalkyl, amino, acetamido, alkene, alkyne, alkoxy, aryl, arylalkyl, cycloalkane , Heterocyclic or heteroatom aromatic hydrocarbons;
  • R 9 and R 10 are respectively: hydrogen, substituted or unsubstituted alkyl, hydroxyl, hydroxyalkyl, amino, acetamido, alkene, alkyne, alkoxy, aryl, arylalkyl, cycloalkane, heterocycle , Heteroatom aromatic hydrocarbons, any hydroxyl group can be acetylated to C(O)R 7 ;
  • R 11 is: hydrogen, substituted or unsubstituted alkyl, hydroxy, hydroxyalkyl, amino, acetamido, alkene, alkyne, alkoxy, aryl, arylalkyl, cycloalkane, heterocycle, heteroatom aromatic
  • any hydroxyl group can be acetylated to C(O)R 7 .
  • the L is CH 2 CH 2 .
  • glutaminase GLS1 inhibitor with the general formula (I) containing a triazole structure or a pharmaceutically acceptable salt thereof is any one of the following:
  • R is -CH 2 CH 2 OH, -C(CH 3 ) 2 OH, -C(CH 3 )(OH)(C 2 H 5 ), -CH 2 CH 2 COOH, -COOC 2 H 5 , -Ph, 4'-CH 3 -Ph, 4'-CF 3 -Ph, 4'-F-Ph, 4'-Cl-Ph, 4'-Br-Ph, 4'-OCH 3 -Ph, 3' -OCH 3 -Ph, 3'-OH-Ph, 3'-NH 2 -Ph, 4'-NH 2 -Ph, 2'-Pyridine;
  • R is -Ph, 4'-CN-Ph, 4'-NO 2 -Ph, 4'-F-Ph, 4'-Cl-Ph, 4'-Br-Ph, 4'-CH 3 -Ph , 4'-OCH 3 -Ph, 3'-OCH 3 -4'-OCH 3 -Ph, 2'-CH 3 -4'-CH 3 -Ph, 2'-CH 3 -6'-CH 3 -Ph ;
  • R is 4'-CH 3 -Ph, 4'-CN-Ph, 4'-NO 2 -Ph, 4'-F-Ph, 4'-Cl-Ph, 4'-Br-Ph, 4' -OCH 3 -Ph, 3'-OCH 3 -4'-OCH 3 -Ph, 2'-CH 3 -4'-CH 3 -Ph, 2'-CH 3 -6'-CH 3 -Ph, 4' -CF 3 -Ph, 4'-OCF 3 -Ph;
  • R is -Ph, 4'-CN-Ph, 4'-NO 2 -Ph, 4'-F-Ph, 4'-Cl-Ph, 4'-Br-Ph, 4'-CH 3 -Ph , 4'-OCH 3 -Ph, 3'-OCH 3 -4'-OCH 3 -Ph, 4'-OCF 3 -Ph, 2'-CH 3 -6'-CH 3 -Ph, 4'-CF 3 -Ph;
  • R is -Ph, 4'-CN-Ph, 4'-NO 2 -Ph, 4'-F-Ph, 4'-Cl-Ph, 4'-Br-Ph, 4'-CH 3 -Ph , 4'-OCH 3 -Ph, 3'-OCH 3 -4'-OCH 3 -Ph, 4'-OCF 3 -Ph, 2'-CH 3 -6'-CH 3 -Ph, 4'-CF 3 -Ph;
  • R is -Ph, 4'-CN-Ph, 4'-NO 2 -Ph, 4'-F-Ph, 4'-Cl-Ph, 4'-Br-Ph, 4'-OCH 3 -Ph , 3'-OCH 3 -4'-OCH 3 -Ph, 4'-CH 3 -Ph, 2'-CH 3 -6'-CH 3 -Ph, 4'-CF 3 -Ph, 4'-OCF 3 -Ph;
  • R is -Ph, 4'-CN-Ph, 4'-NO 2 -Ph, 4'-F-Ph, 4'-Cl-Ph, 4'-Br-Ph, 4'-CH 3 -Ph , 4'-OCH 3 -Ph, 3'-OCH 3 -4'-OCH 3 -Ph, 4'-OCF 3 -Ph, 2'-CH 3 -6'-CH 3 -Ph, 4'-CF 3 -Ph;
  • R is -Ph, 4'-CN-Ph, 4'-NO 2 -Ph, 4'-F-Ph, 4'-Cl-Ph, 4'-Br-Ph, 4'-CH 3 -Ph , 4'-OCH 3 -Ph, 3'-OCH 3 -4'-OCH 3 -Ph, 4'-OCF 3 -Ph, 2'-CH 3 -6'-CH 3 -Ph, 4'-CF 3 -Ph;
  • R is -Ph, 4'-CN-Ph, 4'-NO 2 -Ph, 4'-F-Ph, 4'-Cl-Ph, 4'-Br-Ph, 4'-CH 3 -Ph , 4'-OCH 3 -Ph, 3'-OCH 3 -4'-OCH 3 -Ph, 4'-OCF 3 -Ph, 2'-CH 3 -6'-CH 3 -Ph, 4'-CF 3 -Ph;
  • R is -Ph, 4'-CN-Ph, 4'-NO 2 -Ph, 4'-F-Ph, 4'-Cl-Ph, 4'-Br-Ph, 4'-CH 3 -Ph , 4'-OCH 3 -Ph, 3'-OCH 3 -4'-OCH 3 -Ph, 4'-OCF 3 -Ph, 2'-CH 3 -6'-CH 3 -Ph, 4'-CF 3 -Ph;
  • R is -Ph, 4'-CN-Ph, 4'-NO 2 -Ph, 4'-F-Ph, 4'-Cl-Ph, 4'-Br-Ph, 4'-CH 3 -Ph , 4'-OCH 3 -Ph, 3'-OCH 3 -4'-OCH 3 -Ph, 4'-OCF 3 -Ph, 2'-CH 3 -6'-CH 3 -Ph, 4'-CF 3 -Ph;
  • R is -Ph, 4'-CN-Ph, 4'-NO 2 -Ph, 4'-F-Ph, 4'-Cl-Ph, 4'-Br-Ph, 4'-CH 3 -Ph , 4'-OCH 3 -Ph, 3'-OCH 3 -4'-OCH 3 -Ph, 4'-OCF 3 -Ph, 2'-CH 3 -6'-CH 3 -Ph, 4'-CF 3 -Ph.
  • the preparation method of the glutaminase GLS1 inhibitor containing the triazole structure with the general formula (I) or a pharmaceutically acceptable salt thereof includes the following steps:
  • Compound II reacts with different alkynes or azides to obtain corresponding compounds III-1 or III-2.
  • Compounds III-1 and III-2 undergo Click reactions with different azide compounds or alkynes, respectively, under the catalysis of CuI.
  • the final product of the glutaminase GLS1 inhibitor containing the triazole structure with the general formula (I) is obtained.
  • glutaminase GLS1 inhibitor with the general formula (I) containing a triazole structure or a pharmaceutically acceptable salt thereof in the preparation of a medicament for the treatment of diseases mediated by GLS1.
  • the disease is colon cancer, triple negative breast cancer or lung cancer.
  • the present invention has discovered a new drug drug with high efficiency and low toxicity for the treatment of cancer.
  • the triazole group is introduced into the structure and investigated The effect of different substituents on the triazole group on the activity, optimize the optimal configuration, and the overall structure-effect relationship.
  • the designed and synthesized compounds are targeted, can significantly inhibit the activity of glutaminase, block the hydrolysis of glutamine into glutamate, thereby cutting off the energy supply of tumor cells, and have a strong ability to inhibit glutamine-dependent tumors. And good therapeutic effects can be achieved through the combination of drugs.
  • the present invention designs and synthesizes a series of novel glutaminase inhibitor compounds containing a triazole structure based on the crystal structure of the allosteric site of glutaminase, which can significantly inhibit the biological activity of glutaminase.
  • Experimental results show that these compounds can significantly inhibit the activity of glutaminase at the molecular level, block the hydrolysis of glutamine to glutamate, and show good anti-tumor effects at the cellular level and animal levels, and can be used to prepare anti-tumor agents. drug.
  • Figure 1 shows the thermostable migration experiment of GLS1 inhibitor to GLS1 protein
  • Figure 2 shows (A) surface plasmon resonance test to determine the affinity of compound CPU-210 and GLS1 protein; (B) surface plasmon resonance test to determine the affinity of compound CPU-301 to GLS1 protein;
  • FIG. 3 shows the experiment of compound CPU-301 and CB839 on intracellular glutamate content
  • Figure 4 shows the experiment of compound CPU-301 and CB839 inducing the increase of intracellular ROS level.
  • the compound CPU-116 was prepared using m-aminophenylacetylene (8p) instead of 8a, with a yield of 42.5%. mp232 ⁇ 235°C; 1 HNMR(300MHz,DMSO-d 6 ): ⁇ 12.65(s,2H),8.42(s,1H),7.31(s,9H),5.51(s,2H),4.15(s, 1H),3.77(s,3H),2.99(s,4H),1.73(s,4H)ppm.HRMS(ESI):m/z,calcd for C 26 H 26 N 10 O 2 S 2 (M+H ] + ,575.1754; found:575.1741.
  • Cuprous iodide (0.38mg, 0.002mmol) was dissolved in water, and Intermediate 19 (5mg, 0.01mmol) and 11g (4.89mg, 0.03mmol) were dissolved in DMF and added to the above reaction solution respectively.
  • the reaction solution was poured into water, and solids were separated out, filtered with suction, and the filter cake was dried to obtain a crude product. A blue solid was obtained by column chromatography with a yield of 30.1%.
  • the compound CPU-312 was prepared by using 4-trifluoromethylbenzyl azide (11l) instead of 11g to obtain a blue solid. The yield was 25.5%. mp210 ⁇ 215°C; 1 H NMR(300MHz,DMSO-d 6 ): ⁇ 12.67(s,1H),11.03(s,1H),8.50(s,1H),8.20(s,1H),7.96(s ,1H), 7.68(s, 3H), 7.42(s, 4H), 7.28(d, 1H), 5.68(s, 2H), 4.02(s, 2H), 2.97(s, 4H), 2.88(d, 4H),1.74(s,4H)ppm.HRMS(ESI):m/z,calcd for C 30 H 29 F 3 N 10 O 2 S[M+H] + ,651.2226; found:651.2188.
  • Cuprous iodide (0.38mg, 0.002mmol) was dissolved in water and added to the DMF mixture of Intermediate 35 (5mg, 0.01mmol) and 4-nitrobenzylazide (11c) (3.99mg, 0.03mmol).
  • the reaction liquid was blue and turbid, and a gray solid precipitated out when poured into water. Purified by column chromatography to obtain a blue solid. The yield was 33.7%. mp243 ⁇ 247°C; HRMS(ESI): m/z,calcd for C 30 H 31 N 13 O 4 S[M+H] + ,670.2421; found: 670.2433.
  • the compound CPU-805 was prepared by using 4-chlorobenzyl azide (11e) instead of 11f to obtain a blue solid.
  • the yield was 31.1%. mp233 ⁇ 235°C; HRMS(ESI): m/z, calcd for C 29 H 29 ClN 12 O 2 S[M+H] + ,645.2024; found:645.1999.
  • the compound CPU-808 was prepared by using 4-methoxybenzyl azide (11h) instead of 11f to obtain a blue solid.
  • the yield was 32.5%. mp221 ⁇ 222°C; HRMS(ESI): m/z,calcd for C 30 H 32 N 12 O 3 S[M+H] + ,641.2519; found: 641.2512.
  • the compound CPU-810 was prepared by using 4-trifluoromethoxybenzyl azide (11m) instead of 11f to obtain a blue solid. The yield was 36.7%. mp243 ⁇ 247°C; HRMS(ESI): m/z, calcd for C 30 H 29 F 3 N 12 O 3 S[M+H] + ,695.2237; found: 695.2239.
  • the compound CPU-812 was prepared by using 4-trifluoromethylbenzyl azide (11l) instead of 11f to obtain a blue solid. The yield was 33.3%. mp219 ⁇ 221°C; HRMS(ESI): m/z, calcd for C 30 H 29 F 3 N 12 O 2 S[M+H] + ,679.2287; found: 679.2276.
  • the compound CPU-1002 was prepared by using 4-methoxybenzyl azide (11h) instead of 11 g to obtain a white solid. The yield was 41.3%. mp219 ⁇ 222°C; HRMS(ESI): m/z,calcd for C 30 H 32 N 12 O 3 S[M+H] + ,641.2519; found: 641.2512.
  • the compound CPU-1003 was prepared by using 4-trifluoromethylbenzyl azide (11 l) instead of 11 g to obtain a white solid.
  • the yield was 37.6%. mp194 ⁇ 198°C; HRMS(ESI): m/z, calcd for C 30 H 29 F 3 N 12 O 2 S[M+H] + ,679.2287; found: 679.2276.
  • the compound CPU-1004 was prepared by using 4-trifluoromethoxybenzyl azide (11m) instead of 11 g to obtain a white solid.
  • the yield was 39.0%. mp199 ⁇ 204°C; HRMS(ESI): m/z, calcd for C 30 H 29 F 3 N 12 O 3 S[M+H] + ,695.2237; found: 695.2239.
  • the compound CPU-1205 was prepared by using 4-chlorobenzyl azide (11e) instead of 11d to obtain a white solid.
  • the yield was 37.3%. mp200 ⁇ 203°C; HRMS(ESI): m/z,calcd for C 23 H 26 ClN 11 OS[M+H] + ,540.1809; found: 540.1830.
  • the compound CPU-1206 was prepared by using 4-bromobenzyl azide (11f) instead of 11d to obtain a white solid.
  • the yield was 32.1%. mp175 ⁇ 177°C; HRMS(ESI):m/z,calcd for C 23 H 26 BrN 11 OS[M+H] + ,584.1304; found:584.1297.
  • the compound CPU-1210 was prepared by using 4-trifluoromethoxybenzyl azide (11m) instead of 11d to obtain a white solid.
  • the yield was 34.4%. mp210 ⁇ 213°C; HRMS(ESI): m/z, calcd for C 24 H 27 F 3 N 11 O 2 S[M+H] + ,590.2022; found: 590.2010.
  • Example 9 Pharmacological tests and results of some compounds of the present invention:
  • Test purpose to observe the inhibitory effect of test compounds on tumor cell proliferation.
  • Mechanism studies have shown that triple-negative breast cancer MDA-MB-436 cells and colon cancer HCT116 cells are highly sensitive to glutamine, relying too much on glutamine to maintain cell growth and reproduction, showing "glutamine addiction.”
  • the tumor gene map showed that the glutaminase GLS1 gene and protein levels of MDA-MB-436 and HCT116 cells were highly expressed, and GLS1 showed strong enzymatic activity. Therefore, the compound's inhibitory effect on the proliferation of these two cell lines can reflect that the designed compound achieves the anti-tumor cell proliferation effect by inhibiting GLS1.
  • MTT analysis method uses living cell metabolite reducing agent MTT (full name 3-(4,5-dimethylthiazole-2)-2,5-diphenyltetrazolium bromide, trade name: Thiazole Blue ) As the basis. MTT is a yellow compound and a dye that accepts hydrogen ions. It can act on the respiratory chain in the mitochondria of living cells. Under the action of succinate dehydrogenase and cytochrome C, the tetrazolium ring is cracked to produce blue formazan crystals, formazan The amount of crystals produced is only proportional to the number of living cells (the succinate dehydrogenase disappears when the cells die, and MTT cannot be reduced). The reduced formazan crystals can be dissolved in DMSO, and the optical density OD value at 492nm is measured with a microplate reader to reflect the number of living cells.
  • MTT living cell metabolite reducing agent 3-(4,5-dimethylthiazole-2)-2,5-diphenyltetrazol
  • Test method 1) Inoculation of cells: After the cells grow to logarithmic growth phase in a culture medium containing 10% FBS, they are digested with trypsin and prepared into a single cell suspension, respectively, with 6000 HCT116 or 4000 MDA- per well.
  • MB-436 cells were seeded into 96-well plates; 2) Dosing: After culturing at 37°C and 5% CO 2 for 24 hours, dissolve the test compound with DMSO and dilute the dissolved compound to 0.1M/L with culture solution, respectively Concentration gradients of 10nM, 100nM, 1 ⁇ M, 10 ⁇ M, 100 ⁇ M were administered, and a blank group and a solvent control group were set; 3) 37°C, 5% CO 2 continued to incubate for 72 hours; 4) Color: add MTT solution (5mg/ ml) 20 ⁇ l, continue to incubate for 4 hours, carefully aspirate and discard the culture supernatant in the well.
  • CPU-106 1.70 17.7 CPU-107 3.46 3.51 CPU-201 1.16 4.78 CPU-202 2.95 5.14 CPU-203 10.67 1.05 CPU-204 0.35 1.09 CPU-205 1.1 3.41 CPU-206 4.06 1.85 CPU-207 1.79 1.57 CPU-301 0.18 0.15 CPU-307 0.63 0.23 CPU-308 0.40 0.38 CPU-309 0.20 0.72 CPU-310 0.34 0.27 CPU-403 2.0 0.81 CPU-404 6.5 1.32 CPU-405 8.6 2.40 CPU-406 4.2 1.94 CPU-407 2.2 1.02 CPU-408 1.57 0.83 CPU-409 1.58 0.96 CPU-410 24.4 14.1 CPU-411 0.21 0.92 CPU-412 1.07 1.3 CPU-603 2.83 7.25 CPU-604 3.08 1.15 CPU-605 1.42 1.02 CPU-606 1.19 0.56 CPU-607 2.04 1.45 CPU-608 2.26 2.75 CPU-609 0.47 0.57 CPU-610 1.03 1.24 CPU-611 1.02 1.24 CPU-612 0.84 1.06 CPU-807 1.14 0.68
  • CPU-808 1.54 0.49 CPU-812 1.73 0.79 CPU-1001 0.89 0.46 CPU-1002 0.38 0.65 CPU-1003 0.32 0.60 CPU-1004 2.50 1.39 CPU-1005 0.91 0.30 CPU-1006 0.42 0.51 CPU-1007 1.03 0.24
  • Test purpose to confirm whether the test compound affects the growth and reproduction of tumor cells by acting on GLS1, thereby blocking glutamine metabolism.
  • the surface plasmon resonance test was done with BIACORE T200 instrument (GE Healthcare).
  • the freshly purified EED protein (concentration 10 mg/ml) was diluted with 10 mM CH 3 COONa (pH 4.2) to 0.1 mg/ml, and the GLS1 protein was coupled to the CM5 chip by standard amino coupling methods.
  • Use HBS-EP buffer solution (10mM HEPES (pH 7.4), 150mM NaCl, 3mM EDTA, 0.005% (v/v)surfactant P20) to dilute the GLS1 inhibitor step by step, and then continuously inject the sample for 60s at a flow rate of 20 ⁇ l/s. Dissociate for 120s, and record the response signal changes with time during the process.
  • GLS1 inhibitors can block the hydrolysis of glutamine by inhibiting the activity of GLS1, which will result in the decrease of glutamate, the hydrolysate of glutamine in cells. Therefore, the inhibitory effect of the compound on GLS1 can be indirectly reflected by detecting the content of glutamate in the cell.
  • the experimental results show that the compounds CPU-301 and CB839 can significantly reduce the intracellular glutamate content in a concentration-dependent manner, which indirectly proves that the compound CPU-301 works by inhibiting GLS1.
  • ROS is a key regulator of cancer cell growth.
  • the induction of oxidative stress can lead to preferential killing of cancer cells.
  • Various drugs that have a direct or indirect effect on ROS have been used for effective cancer treatment.
  • Mechanism studies have shown that GLS1 inhibitors can promote the increase of ROS levels in tumor cells by blocking glutamine metabolism, thereby playing a certain role in killing tumors.
  • the experimental results show that the compounds CPU-301 and CB839 can obviously induce the increase of intracellular ROS level in a concentration-dependent manner, and cause a certain killing effect on tumor cells.

Abstract

本发明公开了含有三氮唑结构的谷氨酰胺酶GLS1抑制剂或其可药用的盐、其制备方法及用途,本发明的一系列含有三氮唑结构的化合物具有谷氨酰胺酶抑制活性,并可用于治疗与谷氨酰胺酶功能异常或谷氨酰胺酶活性升高相关的疾病和病症。这些化合物可有效结合在谷氨酰胺酶的变构位点,导致谷氨酰胺酶的构象发生变化,阻断其发挥生物学功能。体外实验表明:本发明化合物对于各类谷氨酰胺依赖的癌细胞,如结肠癌、三阴性乳腺癌、肺癌等均具有良好的抑制活性

Description

含有三氮唑结构的谷氨酰胺酶GLS1抑制剂或其可药用的盐、其制备方法及用途 技术领域
本发明涉及谷氨酰胺酶GLS1抑制剂或其可药用的盐、其制备方法及用途,特别涉及含有三氮唑结构的谷氨酰胺酶GLS1抑制剂或其可药用的盐、其制备方法及用途。
背景技术
代谢重编程是肿瘤的重要标志,肿瘤通过代谢重编程以满足快速增殖的能量需求和物质合成需求。经典的肿瘤代谢重编程有两个特点,其一是葡萄糖的有氧酵解;其二是依赖谷氨酰胺回补三羧酸循环。谷氨酰胺不仅能作为碳源回补三羧酸循环,还可为蛋白质、氨基己糖和核苷酸等生物大分子的合成提供氮源,此外还是谷胱甘肽的前体之一,是机体对抗氧化应激维持氧化还原稳态的重要途径。谷氨酰胺酶(glutaminase,GLS)催化谷氨酰胺脱氨基生成谷氨酸的反应,是谷氨酰胺酵解的限速酶,把持着谷氨酰胺分解代谢的入口,机体对谷氨酰胺代谢的调控主要通过GLS实现。
谷氨酰胺高度依赖是肿瘤细胞的重要代谢特点,也称之为“谷氨酰胺成瘾”,谷氨酰胺酶(GLS)催化谷氨酰胺生成谷氨酸的反应,是谷氨酰胺酵解的第一个代谢酶。GLS可分为肾型谷氨酰胺酶(GLS1)和肝型谷氨酰胺酶(GLS2)。大多数肿瘤中GLS1高表达,GLS2低表达。GLS1具有“促癌效应”,而GLS2具有“抗癌效应”。GLS在多种肿瘤的发生发展过程中起重要作用。GLS对肿瘤的诊断、进展及预后评估均具有十分重要的意义。GLS1是肿瘤代谢治疗的潜在靶点,其特异性抑制剂有望成为新型的抗肿瘤代谢药物。
发明内容
发明目的:本发明目的是提供含有三氮唑结构的谷氨酰胺酶GLS1抑制剂或其可药用的盐。
本发明另一目的是提供一种药物组合物,其含有治疗有效量的一种或多种具有通式(I)的含有三氮唑结构的谷氨酰胺酶GLS1抑制剂或其可药用的盐,及药学上可接受的载体。
本发明另一目的是提供一种药物组合物,其含有治疗有效量的一种或多种所述的具有通式(I)的含有三氮唑结构的谷氨酰胺酶GLS1抑制剂或其可药用的盐,及药学上可接受的辅料。
本发明另一目的是提供所述含有三氮唑结构的谷氨酰胺酶GLS1抑制剂或其可药用的盐的制备方法。
本发明最后一目的是提供所述含有三氮唑结构的谷氨酰胺酶GLS1抑制剂或其可药用的盐在制备治疗GLS1介导的疾病的药物中的用途。
技术方案:本发明提供一种含有三氮唑结构的谷氨酰胺酶GLS1抑制剂或其可药用的盐,
Figure PCTCN2020084163-appb-000001
其中,n为1-4的整数;
L为:CH 2SCH 2、CH 2CH 2、CH 2CH 2CH 2、CH 2、CH 2S、SCH 2、CH 2NHCH 2、CH=CH或者
Figure PCTCN2020084163-appb-000002
其中CH或者CH 2中的任何一个氢都可以被烷基或者烷氧基取代;-NH基团中的氢可以被烷基取代;-CH 2CH 2、CH 2CH 2CH 2基团中的单个CH 2可以被羟基取代;R 1和R 2两个基团与它们所连接的原子可以任选地一起形成环烷烃;
X 1、X 2分别为:S、O及CH=CH,其中CH中的任何一个氢都可以被烷基取代;
Y为:H或者CH 2O(CO)R 5,R 5为:H、取代的或者不取代的烷基、烷氧基、氨基、杂环烷基、芳香环烷基或者杂环烷氧基;
R 1、R 2分别为:H、烷基、烷氧基或羟基;
R 3为:烷烃、取代的烷烃、芳香烃、芳香烷烃、氰基、环烷烃、环芳香烷烃、氢、卤素、卤素取代的烷烃、杂原子芳香烃、杂原子芳香烷烃、杂原子环烷烃、C(R 6)(R 7)(R 8)、N(R 9)(R 10)、OR 11,任何羟基都可以乙酰化为C(O)R 7
R 4为:烷烃、取代的烷烃、环烷烃、芳香烃、芳香烷烃、取代的芳香烃或取代的芳香烷烃;
R 6、R 7、R 8分别为:氢、取代或者不取代的烷基、羟基、羟基烷基、氨基、乙酰氨基、烯烃、炔烃、烷氧基、芳香基、芳香烷基、环烷烃、杂环或杂原子芳香烃;
R 9、R 10分别为:氢、取代或者不取代的烷基、羟基、羟基烷基、氨基、乙酰氨基、烯烃、炔烃、烷氧基、芳香基、芳香烷基、环烷烃、杂环、杂原子芳香烃,任何羟基都可以乙酰化为C(O)R 7
R 11为:氢、取代或者不取代的烷基、羟基、羟基烷基、氨基、乙酰氨基、烯烃、炔烃、烷氧基、芳香基、芳香烷基、环烷烃、杂环、杂原子芳香烃,任何羟基都可以乙酰化为C(O)R 7
进一步地,所述L为CH 2CH 2
进一步地,所述的具有通式(I)的含有三氮唑结构的谷氨酰胺酶GLS1抑制剂或其可药用的盐,为以下任一种:
Figure PCTCN2020084163-appb-000003
其中,R为-CH 2CH 2OH、-C(CH 3) 2OH、-C(CH 3)(OH)(C 2H 5)、-CH 2CH 2COOH、-COOC 2H 5
Figure PCTCN2020084163-appb-000004
-Ph、4’-CH 3-Ph、4’-CF 3-Ph、4’-F-Ph、4’-Cl-Ph、4’-Br-Ph、4’-OCH 3-Ph、3’-OCH 3-Ph、3’-OH-Ph、3’-NH 2-Ph、4’-NH 2-Ph、2’-Pyridine;
Figure PCTCN2020084163-appb-000005
其中,R为-Ph、4’-CN-Ph、4’-NO 2-Ph、4’-F-Ph、4’-Cl-Ph、4’-Br-Ph、4’-CH 3-Ph、4’-OCH 3-Ph、3’-OCH 3-4’-OCH 3-Ph、2’-CH 3-4’-CH 3-Ph、2’-CH 3-6’-CH 3-Ph;
Figure PCTCN2020084163-appb-000006
其中,R为4’-CH 3-Ph、4’-CN-Ph、4’-NO 2-Ph、4’-F-Ph、4’-Cl-Ph、4’-Br-Ph、4’-OCH 3-Ph、3’-OCH 3-4’-OCH 3-Ph、2’-CH 3-4’-CH 3-Ph、2’-CH 3-6’-CH 3-Ph、4’-CF 3-Ph、4’-OCF 3-Ph;
Figure PCTCN2020084163-appb-000007
其中,R为-Ph、4’-CN-Ph、4’-NO 2-Ph、4’-F-Ph、4’-Cl-Ph、4’-Br-Ph、4’-CH 3-Ph、4’-OCH 3-Ph、3’-OCH 3-4’-OCH 3-Ph、4’-OCF 3-Ph、2’-CH 3-6’-CH 3-Ph、4’-CF 3-Ph;
Figure PCTCN2020084163-appb-000008
其中,R为-Ph、4’-CN-Ph、4’-NO 2-Ph、4’-F-Ph、4’-Cl-Ph、4’-Br-Ph、4’-CH 3-Ph、4’-OCH 3-Ph、3’-OCH 3-4’-OCH 3-Ph、4’-OCF 3-Ph、2’-CH 3-6’-CH 3-Ph、4’-CF 3-Ph;
Figure PCTCN2020084163-appb-000009
其中,R为-Ph、4’-CN-Ph、4’-NO 2-Ph、4’-F-Ph、4’-Cl-Ph、4’-Br-Ph、4’-OCH 3-Ph、3’-OCH 3-4’-OCH 3-Ph、4’-CH 3-Ph、2’-CH 3-6’-CH 3-Ph、4’-CF 3-Ph、4’-OCF 3-Ph;
Figure PCTCN2020084163-appb-000010
其中,R为-Ph、4’-CN-Ph、4’-NO 2-Ph、4’-F-Ph、4’-Cl-Ph、4’-Br-Ph、4’-CH 3-Ph、4’-OCH 3-Ph、3’-OCH 3-4’-OCH 3-Ph、4’-OCF 3-Ph、2’-CH 3-6’-CH 3-Ph、4’-CF 3-Ph;
Figure PCTCN2020084163-appb-000011
其中,R为-Ph、4’-CN-Ph、4’-NO 2-Ph、4’-F-Ph、4’-Cl-Ph、4’-Br-Ph、4’-CH 3-Ph、4’-OCH 3-Ph、3’-OCH 3-4’-OCH 3-Ph、4’-OCF 3-Ph、2’-CH 3-6’-CH 3-Ph、4’-CF 3-Ph;
Figure PCTCN2020084163-appb-000012
其中,R为-Ph、4’-CN-Ph、4’-NO 2-Ph、4’-F-Ph、4’-Cl-Ph、4’-Br-Ph、4’-CH 3-Ph、4’-OCH 3-Ph、 3’-OCH 3-4’-OCH 3-Ph、4’-OCF 3-Ph、2’-CH 3-6’-CH 3-Ph、4’-CF 3-Ph;
Figure PCTCN2020084163-appb-000013
其中,R为-Ph、4’-CN-Ph、4’-NO 2-Ph、4’-F-Ph、4’-Cl-Ph、4’-Br-Ph、4’-CH 3-Ph、4’-OCH 3-Ph、3’-OCH 3-4’-OCH 3-Ph、4’-OCF 3-Ph、2’-CH 3-6’-CH 3-Ph、4’-CF 3-Ph;
Figure PCTCN2020084163-appb-000014
其中,R为-Ph、4’-CN-Ph、4’-NO 2-Ph、4’-F-Ph、4’-Cl-Ph、4’-Br-Ph、4’-CH 3-Ph、4’-OCH 3-Ph、3’-OCH 3-4’-OCH 3-Ph、4’-OCF 3-Ph、2’-CH 3-6’-CH 3-Ph、4’-CF 3-Ph;
Figure PCTCN2020084163-appb-000015
其中,R为-Ph、4’-CN-Ph、4’-NO 2-Ph、4’-F-Ph、4’-Cl-Ph、4’-Br-Ph、4’-CH 3-Ph、4’-OCH 3-Ph、3’-OCH 3-4’-OCH 3-Ph、4’-OCF 3-Ph、2’-CH 3-6’-CH 3-Ph、4’-CF 3-Ph。
一种药物组合物,其含有治疗有效量的一种或多种所述的具有通式(I)的含有三氮唑结构的谷氨酰胺酶GLS1抑制剂或其可药用的盐,及药学上可接受的载体。
一种药物组合物,其含有治疗有效量的一种或多种所述的具有通式(I)的含有三氮唑结构的谷氨酰胺酶GLS1抑制剂或其可药用的盐,及药学上可接受的辅料。
所述的具有通式(I)的含有三氮唑结构的谷氨酰胺酶GLS1抑制剂或其可药用的盐的制备方法,包括如下步骤:
Figure PCTCN2020084163-appb-000016
化合物II分别和不同的炔或者叠氮反应,得到对应的化合物III-1或者III-2,化合物III-1、III-2在CuI的催化下,分别和不同的叠氮化合物或者炔发生Click反应得到具有通式(I)的含有三氮唑 结构的谷氨酰胺酶GLS1抑制剂终产物。
所述的具有通式(I)的含有三氮唑结构的谷氨酰胺酶GLS1抑制剂或其可药用的盐在制备治疗GLS1介导的疾病的药物中的用途。
进一步地,所述疾病为结肠癌、三阴性乳腺癌或肺癌。
本发明发现了具有靶向性的高效低毒治疗癌症的新药药物,根据谷氨酰胺酶和代表性GLS1抑制剂BPTES、CB839化合物的晶体结构,在结构中引入三氮唑基团,并且考察了三氮唑基团上不同取代基对活性的影响,优化最优配置,总结构效关系。设计合成的化合物具有靶向性,可以显著抑制谷氨酰胺酶的活性,阻断谷氨酰胺水解成谷氨酸,从而切断肿瘤细胞的能量供应,对谷氨酰胺依赖的肿瘤抑制能力非常强,并可通过药物联用取得很好的治疗效果。
有益效果:本发明基于谷氨酰胺酶变构位点的晶体结构,设计合成了一系列含有三氮唑结构的新型谷氨酰胺酶抑制剂化合物,可显著抑制谷氨酰胺酶的生物活性。实验结果表明这些化合物在分子水平可以显著地抑制谷氨酰胺酶的活性,阻断谷氨酰胺水解为谷氨酸,在细胞水平和动物水平均表现出良好的抗肿瘤作用,可用于制备抗肿瘤药物。
附图说明
图1为GLS1抑制剂对GLS1蛋白的热稳定迁移实验;
图2为(A)表面等离子共振实验测定化合物CPU-210与GLS1蛋白的亲和力;(B)表面等离子共振实验测定化合物CPU-301与GLS1蛋白的亲和力;
图3为化合物CPU-301和CB839对细胞内谷氨酸含量实验;
图4为化合物CPU-301和CB839诱导细胞内ROS水平升高实验。
具体实施方式
实施例1
通式化合物I(CPU101-CPU118)的制备
Figure PCTCN2020084163-appb-000017
5-(5-氨基-1,3,4-噻二唑基)戊酸乙酯(2)的制备
中间体1(10g,57.4mmol)溶于100mL POCl 3中,然后加入氨基硫脲(5.23g,57.4mmol),85℃反应4h。TLC检测反应完全后,反应液冷却至室温,加水稀释,然后用6M NaOH调pH=7,析出固体,抽滤,滤饼烘干得白色固体,收率41.85%。HRMS(ESI):m/z,calcd for C 9H 15N 3O 2S[M+H] +,230.0963;found:230.0962.
5-(5-(2-苯基乙酰氨基)-1,3,4-噻二唑)戊酸乙酯(3)的制备
中间体2(2.0g,8.73mmol)溶于20mL THF,然后加入三乙胺(1.3mL,9.62mmol)并逐滴加入苯乙酰氯(1.35g,8.73mmol)。将反应混合物在室温下搅拌24h,TLC检测反应完全后减压除去溶剂,用水打浆,得到白色固体,收率92.5%。HRMS(ESI):m/z,calcd for C 17H 21N 3O 3S 2[M+H] +,348.1382;found:348.1371.
5-(5-(2-苯基乙酰氨基)-1,3,4-噻二唑)戊酸(4)的制备
将化合物3(2.0g,5.76mmol)溶于4N NaOH(15mL)和MeOH(10mL)中,室温搅拌3h。反应完成后减压除去溶剂,4N HCl调pH=7,析出白色固体,抽滤烘干,收率90.4%。HRMS(ESI):m/z,calcd for C 15H 17N 3O 3S 2[M+H] +,320.1069;found:320.1064.
N-(5-(4-(5-氨基-1,3,4-噻二唑基)丁基)-1,3,4-噻二唑基)-2-苯基乙酰胺(5)的制备
中间体4(2g,6.2mmol)溶于10mL POCl 3中,然后加入氨基硫脲(0.629g,6.8mmol),85℃反应4h。TLC检测反应完全后,反应液冷却至室温,加水稀释,然后用6M NaOH调pH=7,析出固体,抽滤,滤饼烘干得黑色固体,收率43.5%。HRMS(ESI):m/z,calcd for C 16H 18N 6OS 2[M+H] +,375.1065;found:375.1056.
2-氯-N-(5-(4-(5-(2-苯基乙酰氨基)-1,3,4-噻二唑基)丁基)-1,3,4-噻二唑)乙酰胺(6)的制备
中间体5(3g,8.02mmol)溶于10mL DMF溶液中,加入TEA(2.43g,24.06mmol),然后滴加氯乙酰氯(1.8g,16.04mmol)。将反应混合物在室温下搅拌12h。冷却至室温,将反应混合物倒入水中。析出固体,抽滤得到白色固体,收率84.2%。HRMS(ESI):m/z,calcd for C 18H 19ClN 6O 2S 2[M+H] +,451.0772;found:451.0785.
2-叠氮基-N-(5-(4-(5-(2-苯基乙酰氨基)-1,3,4-噻二唑基)丁基)-1,3,4-噻二唑)乙酰胺(7)的制备
向化合物6(3.5g,7.78mmol)的DMF溶液中加入NaN 3(1.52g,23.3mmol)。反应液室温下搅拌12h。然后将反应液倒入水中,用DCM(30mL×3)萃取,合并有机层,水洗三遍,饱和食盐水洗三遍,无水硫酸钠干燥,减压蒸除溶剂,柱层析得白色固体,收率90%。HRMS(ESI):m/z,calcd for C 18H 20N 9O 2S 2[M+H] +,458.1176;found:458.1148
化合物CPU-101的制备
向化合物7(0.2g,0.44mmol)的DMF溶液中加入CuI(16.7mg,0.088mmol)水溶液和3-丁炔-1-醇(8a)(77.05mg,1.1mmol)。将反应混合物在微波300W,100℃,搅拌0.5h。反应液倒入水中,析出白色固体。抽滤得粗品,柱层析,得到白色固体,收率45.4%。m.p.208~210℃; 1H NMR(300MHz,DMSO-d 6):δ12.66(s,2H),7.90(s,1H),7.31(s,5H),5.43(s,2H),4.69(s,1H),3.79(s,2H),3.64(s,2H),3.00(s,4H),2.79(s,2H),1.74(s,4H)ppm.HRMS(ESI):m/z,calcd for C 25N 9O 3S 2[M+H] +,528.1595;found:528.1577.
化合物CPU-102的制备
如制备CPU-101所述,使用2-甲基-3-丁炔-2-醇(8b)代替8a制备化合物CPU-102,收率39.4%。m.p.210~212℃; 1H NMR(300MHz,DMSO-d 6):δ12.93(s,1H),12.67(s,1H),7.92(s,1H),7.32(s,5H),5.44(s,2H),5.15(s,1H),3.80(s,2H),3.01(s,4H),1.75(s,4H),1.48(s,6H)ppm.HRMS(ESI):m/z,calcd for C 23H 27N 9O 3S 2[M+H] +,542.1751;found:542.1740.
化合物CPU-103的制备
如制备CPU-101所述,使用3-甲基-1-戊炔-3-醇(8c)代替8a制备化合物CPU-103,收率40.8%。m.p.220~223℃; 1H NMR(300MHz,DMSO-d 6):δ12.93(s,1H),12.65(s,1H),7.90(s,1H),7.32(s, 5H),5.45(s,2H),5.00(s,1H),3.80(s,2H),3.02(s,4H),1.75(s,6H),1.44(s,3H),0.76(s,3H)ppm.HRMS(ESI):m/z,calcd for C 24H 29N 9O 3S 2[M+H] +,556.1908;found:556.1891.
化合物CPU-104的制备
如制备CPU-101所述,使用3-丁炔-1-酸(8d)代替8a制备CPU-104,收率35.7%。m.p.220~224℃; 1H NMR(300MHz,DMSO-d 6):δ12.96-12.86(m,1H),12.64(s,2H),7.89(s,1H),7.32(s,5H),5.43(s,2H),3.79(s,2H),3.00(s,6H),2.58(d,J=7.3Hz,2H),1.75(s,4H)ppm.HRMS(ESI):m/z,calcd for C 23H 25N 9O 4S 2[M+H] +,556.1544;found:556.1521.
化合物CPU-105的制备
如制备CPU-101所述,丙炔酸乙酯(8e)代替8a制备CPU-105,收率37.8%。m.p.204~208℃; 1H NMR(300MHz,DMSO-d 6):δ12.61(s,1H),8.76(s,1H),7.31(s,5H),5.57(s,2H),4.32(d,J=7.1Hz,2H),3.79(s,2H),2.99(s,4H),1.75(s,4H),1.31(t,J=6.6Hz,3H)ppm.HRMS(ESI):m/z,calcd for C 23H 25N 9O 4S 2[M+H] +,556.1544;found:556.1504.
化合物CPU-106的制备
如制备CPU-101所述,不同之处是使用乙炔基环丙烷(8f)代替8a制备化合物CPU-106,收率42.3%。m.p.215~218℃; 1H NMR(300MHz,DMSO-d 6):δ12.91(s,1H),12.64(s,1H),7.85(s,1H),7.32(s,5H),5.40(s,2H),3.79(s,2H),3.01(s,4H),1.96(s,1H),1.75(s,4H),0.90(s,2H),0.72(s,2H)ppm.HRMS(ESI):m/z,calcd for C 23H 25N 9O 2S 2[M+H] +,524.1645;found:524.1633.
化合物CPU-107的制备
如制备CPU-101所述,使用苯乙炔(8g)代替8a制备化合物CPU-107,收率45.1%。m.p.218~220℃; 1H NMR(300MHz,DMSO-d 6):δ12.64(s,1H),8.60(s,1H),7.85(s,1H),7.38(d,J=45.5Hz,9H),5.55(s,2H),3.78(s,2H),3.00(s,4H),1.74(s,4H)ppm.HRMS(ESI):m/z,calcd for C 26H 25N 9O 2S 2[M+H] +,560.1645;found:560.1617
化合物CPU-108的制备
如制备CPU-101所述,使用4-苯甲基乙炔(8h)代替8a制备化合物CPU-108,收率33.3%。m.p.237~242℃; 1H NMR(300MHz,DMSO-d 6):δ12.99(s,1H),12.66(s,1H),8.55(s,1H),7.75(s,2H),7.33(s,2H),7.29(s,5H),5.54(s,2H),3.79(d,J=12.5Hz,2H),3.01(s,4H),2.34(d,J=13.4Hz,3H),1.74(s,4H)ppm.HRMS(ESI):m/z,calcd for C 27H 27N 9O 2S 2[M+H] +,574.1802;found:574.1806.
化合物CPU-109的制备
如制备CPU-101所述,使用对三氟甲基苯乙炔(8i)代替8a制备化合物CPU-109,收率40.9%。m.p.109~111℃; 1H NMR(300MHz,DMSO-d 6):δ12.68(s,1H),8.79(s,1H),8.10(d,J=7.7Hz,2H),7.83(d,J=7.9Hz,2H),7.34-7.24(m,5H),5.60(s,2H),3.79(s,2H),3.00(s,4H),1.75(s,4H)ppm.HRMS(ESI):m/z,calcd for C 27H 24F 3N 9O 2S 2[M+H] +,628.1519;found:628.1528.
化合物CPU-110的制备
如制备CPU-101所述,使用4-氟苯乙炔(8j)代替8a制备化合物CPU-110,收率41.5%。m.p.249~250℃; 1H NMR(300MHz,DMSO-d 6):δ12.59(s,1H),8.51(s,1H),7.91-7.76(m,2H),7.23(s,5H),7.18(d,J=8.3Hz,2H),5.46(s,2H),3.71(s,2H),2.92(s,4H),1.67(s,4H)ppm.HRMS(ESI):m/z,calcd for C 26H 24FN 9O 2S 2[M+H] +,578.1551;found:578.1533.
化合物CPU-111的制备
如制备CPU-101所述,使用4-氯苯乙炔(8k)代替8a制备化合物CPU-111,收率43.9%。m.p.232~240℃; 1HNMR(300MHz,DMSO-d 6):δ12.64(s,1H),8.63(s,1H),7.88(d,J=8.1Hz,2H),7.51(d,J=8.2Hz,2H),7.27(d,J=14.2Hz,5H),5.55(s,2H),3.78(s,2H),2.99(s,4H),1.74(s,4H)ppm.HRMS(ESI):m/z,calcd for C 26H 24ClN 9O 2S 2[M+H] +,594.1256;found:594.1243.
化合物CPU-112的制备
如制备CPU-101所述,使用4-溴苯乙炔(8l)代替8a制备化合物CPU-112,收率30.6%。m.p. 235~240℃; 1HNMR(300MHz,DMSO-d 6):δ12.96(s,1H),12.62(s,1H),8.63(s,1H),7.82(d,J=8.0Hz,2H),7.65(d,J=8.2Hz,2H),7.38-7.24(m,5H),5.55(s,2H),3.78(s,2H),2.99(s,4H),1.74(s,4H)ppm.HRMS(ESI):m/z,calcd for C 26H 24BrN 9O 2S 2[M+H] +,638.0751;found:638.0739.
化合物CPU-113的制备
如制备CPU-101所述,使用4-乙炔基苯甲醚(8m)代替8a制备化合物CPU-113,收率42.2%。m.p.215~216℃; 1HNMR(300MHz,DMSO-d 6):δ13.02(s,1H),12.66(s,1H),8.48(s,1H),7.79(d,J=8.1Hz,2H),7.29(dd,J=14.4,3.7Hz,5H),7.03(d,J=8.3Hz,2H),5.54(s,2H),3.79(s,5H),3.00(s,4H),1.75(s,4H)ppm.HRMS(ESI):m/z,calcd for C 27H 27N 9O 3S 2[M+H] +,590.1751;found:590.1754.
化合物CPU-114的制备
如制备CPU-101所述,使用3-乙炔基苯甲醚(8n)代替8a制备化合物CPU-114,收率33.3%。m.p.227~229℃; 1HNMR(300MHz,DMSO-d 6):δ13.00(s,1H),12.65(s,1H),8.62(s,1H),7.47-7.36(m,3H),7.29(d,J=14.5Hz,5H),6.92(d,J=7.2Hz,1H),5.55(s,2H),3.80(d,J=8.9Hz,5H),3.00(s,4H),1.75(s,4H)ppm.HRMS(ESI):m/z,calcd for C 27H 27N 9O 3S 2[M+H] +,590.1751;found:590.1741.
化合物CPU-115的制备
如制备CPU-101所述,使用3-羟基乙炔(8o)代替8a制备化合物CPU-115,收率38.7%。m.p.235~239℃; 1HNMR(300MHz,DMSO-d 6):δ13.02-12.90(m,1H),12.63(s,1H),9.55(s,1H),8.50(s,1H),7.27(d,J=16.6Hz,8H),6.73(s,1H),5.52(s,2H),3.78(s,2H),2.99(s,4H),1.74(s,4H)ppm.HRMS(ESI):m/z,calcd for C 26H 25N 9O 3S 2[M+H] +,576.1595;found:576.1576.
化合物CPU-116的制备
如制备CPU-101所述,使用间氨基苯乙炔(8p)代替8a制备化合物CPU-116,收率42.5%。m.p.232~235℃; 1HNMR(300MHz,DMSO-d 6):δ12.65(s,2H),8.42(s,1H),7.31(s,9H),5.51(s,2H),4.15(s,1H),3.77(s,3H),2.99(s,4H),1.73(s,4H)ppm.HRMS(ESI):m/z,calcd for C 26H 26N 10O 2S 2[M+H] +,575.1754;found:575.1741.
化合物CPU-117的制备
如制备CPU-101所述,使用对氨基苯乙炔(8q)代替8a制备化合物CPU-117,收率40.0%。m.p.201~204℃; 1HNMR(300MHz,DMSO-d 6):δ12.66(s,1H),8.28(s,1H),7.52(d,J=6.5Hz,2H),7.31(s,5H),7.27(d,J=4.0Hz,2H),6.61(s,2H),5.49(s,2H),3.79(s,2H),3.00(s,4H),1.74(s,4H)ppm.HRMS(ESI):m/z,calcd for C 26H 26N 10O 2S 2[M+H] +,575.1754;found:575.1759.
化合物CPU-118的制备
如制备CPU-101所述,使用2-乙炔基吡啶(8r)代替8a制备化合物CPU-118,收率38.6%。m.p.223~227℃; 1HNMR(300MHz,DMSO-d 6):δ12.62(s,2H),8.67(s,2H),7.95(s,2H),7.29(s,5H),7.25(s,1H),5.59(s,2H),3.77(s,2H),2.98(s,4H),1.73(s,4H)ppm.HRMS(ESI):m/z,calcd for C 24N 10O 2S 2[M+H] +,561.1598;found:561.1597.
实施例2
通式化合物Ⅱ(CPU201-CPU211)的制备。
Figure PCTCN2020084163-appb-000018
中间体10的合成
将中间体5(0.255g,0.68mmol)、戊炔酸(0.073g,0.75mmol)、HATU(0.38g,1.02mmol)溶于DMF(2mL)中,室温搅拌10min。加入DIPEA(0.26g,2.04mmol),继续搅拌。20min后反应基本完成。反应液倒入水中,析出白色固体,抽滤,滤饼烘干得白色固体。产率61.5%。HRMS(ESI):m/z,calcd for C 21H 22N 6O 2S 2[M+H] +,455.1324;found:455.1310.
化合物CPU-201的制备
向中间体10(0.1g,0.202mmol)的DMF溶液中加入CuI(7.78mg,0.041mmol)水溶液和苄基叠氮(11a)(63.3mg,0.476mmol)。将反应混合物在微波300W,100℃下搅拌0.5小时。反应液倒入水中,析出白色固体。抽滤得粗品,柱层析,得到白色终产物,收率38.7%。 1HNMR(300MHz,DMSO-d 6):δ7.90(s,1H),7.30(t,J=11.1Hz,10H),5.54(s,2H),3.77(s,2H),3.04-2.92(m,6H),2.82(d,J=6.9Hz,2H),1.75(s,4H)ppm.HRMS(ESI):m/z,calcd for C 28H 29N 9O 2S 2[M+H] +,588.1958;found:588.1960.
化合物CPU-202的制备
如制备CPU-201所述,使用4-氰基苄基叠氮(11b)代替11a制备化合物CPU-202,收率43.6%。 1HNMR(300MHz,DMSO-d 6):δ12.67(s,1H),12.44(s,1H),7.95(s,1H),7.80(s,2H),7.32(s,7H),5.67(s,2H),3.80(s,2H),3.00(s,6H),2.84(s,2H),1.75(s,4H)ppm.HRMS(ESI):m/z,calcd for C 29H 28N 10O 2S 2[M+H] +,613.1911;found:613.1903.
化合物CPU-203的制备
如制备CPU-201所述,使用4-硝基苄基叠氮(11c)代替11a制备化合物CPU-203,收率40.2%。 1HNMR(300MHz,DMSO-d 6):δ12.65(s,1H),12.45(s,1H),8.19(d,J=8.6Hz,2H),7.97(s,1H),7.45(d,J=8.6Hz,2H),7.31(t,J=6.6Hz,5H),5.73(s,2H),3.80(s,2H),3.03-2.95(m,6H),2.84(t,J=6.9Hz,2H),1.75(s,4H)ppm.HRMS(ESI):m/z,calcd for C 28H 28N 10O 4S 2[M+H] +,633.1809;found:633.1808.
化合物CPU-204的制备
如制备CPU-201所述,使用4-氟苄基叠氮(11d)代替11a制备化合物CPU-204,收率34.8%。m.p.203~208℃; 1HNMR(300MHz,DMSO-d 6):δ12.65(s,1H),12.40(s,1H),7.87(s,1H),7.30(s,5H),7.14(t,J=7.8Hz,3H),5.51(s,2H),3.78(s,2H),2.98(s,6H),2.80(s,2H),1.73(s,4H)ppm.HRMS(ESI):m/z,calcd for C 28H 28FN 9O 2S 2[M+H] +,606.1864;found:606.1878.
化合物CPU-205的制备
如制备CPU-201所述,使用4-氯苄基叠氮(11e)代替11a制备化合物CPU-205,收率39.4%。m.p.203~204℃; 1HNMR(300MHz,DMSO-d 6):δ12.70(s,1H),12.45(s,1H),7.94(s,1H),7.39(dd,J= 18.3,6.0Hz,5H),7.29(d,J=7.9Hz,4H),5.58(s,2H),3.84(s,2H),3.02(d,J=13.0Hz,6H),2.87(d,J=6.5Hz,2H),1.79(s,4H)ppm.HRMS(ESI):m/z,calcd for C 28H 28ClN 9O 2S 2[M+H] +,622.1569;found:622.1528.
化合物CPU-206的制备
如制备CPU-201所述,使用4-溴苄基叠氮(11f)代替11a制备化合物CPU-206,收率36.5%。m.p.217~219℃; 1HNMR(300MHz,DMSO-d 6):δ12.69(s,1H),12.44(s,1H),7.93(s,1H),7.56(d,J=8.2Hz,2H),7.42-7.29(m,5H),7.23(d,J=8.2Hz,2H),5.57(s,2H),3.84(s,2H),3.02(d,J=14.2Hz,6H),2.86(s,2H),1.80(s,4H)ppm.HRMS(ESI):m/z,calcd for C 28H 28BrN 9O 2S 2[M+H] +,666.1064;found:666.1059.
化合物CPU-207的制备
如制备CPU-201所述,使用4-甲基苄基叠氮(11g)代替11a制备化合物CPU-207,收率44.3%。m.p.216~217℃; 1HNMR(300MHz,DMSO-d 6):δ12.67(s,1H),12.41(s,1H),7.85(s,1H),7.30(dd,J=14.6,3.9Hz,5H),7.13(s,4H),5.47(s,2H),3.80(s,2H),3.06-2.91(m,6H),2.83(d,J=6.2Hz,2H),2.25(s,3H),1.75(s,4H)ppm.HRMS(ESI):m/z,calcd for C 29H 31N 9O 2S 2[M+H] +,602.2115;found:602.2143.
化合物CPU-208的制备
如制备CPU-201所述,使用4-甲氧基苄基叠氮(11h)代替11a制备化合物CPU-208,收率46.4%。m.p.237~240℃; 1HNMR(300MHz,DMSO-d 6):δ12.67(s,1H),12.42(s,1H),7.84(s,1H),7.32(s,5H),7.22(d,J=8.3Hz,3H),6.88(d,J=8.2Hz,2H),5.45(s,2H),3.80(s,2H),3.72(s,3H),2.97(d,J=18.2Hz,6H),2.82(s,2H),1.75(s,4H)ppm.HRMS(ESI):m/z,calcd for C 29H 31N 9O 3S 2[M+H] +,618.2064;found:618.2070.
化合物CPU-209的制备
如制备CPU-201所述,使用3,4-二甲氧基苄基叠氮(11i)代替11a制备化合物CPU-209,收率48.1%。m.p.232~236℃; 1HNMR(300MHz,DMSO-d 6):δ12.66(s,1H),12.41(s,1H),7.84(s,1H),7.30(t,J=7.8Hz,5H),6.95(s,1H),6.88(d,J=8.1Hz,1H),6.79(d,J=8.3Hz,1H),5.43(s,2H),3.80(s,2H),3.74-3.67(m,6H),3.06-2.90(m,6H),2.83(d,J=6.8Hz,2H),1.75(s,4H)ppm.HRMS(ESI):m/z,calcd for C 30H 33N 9O 4S 2[M+H] +,648.217;found:648.2167.
化合物CPU-210的制备
如制备CPU-201所述,使用2,4-二甲基苄基叠氮(11j)代替11a制备化合物CPU-210,收率30.9%。m.p.228~231℃; 1HNMR(300MHz,DMSO-d 6):δ12.67(s,1H),12.41(s,1H),7.72(s,1H),7.32(s,5H),6.96(d,J=17.0Hz,3H),5.48(s,2H),3.80(s,2H),3.01(s,6H),2.81(s,2H),2.21(d,J=8.2Hz,6H),1.75(s,4H)ppm.HRMS(ESI):m/z,calcd for C 30H 33N 9O 2S 2[M+H] +,616.2271;found:616.2278.
化合物CPU-211的制备
如制备CPU-201所述,使用2,6-二甲基苄基叠氮(11k)代替11a制备化合物CPU-211,收率38.6%。m.p.205~210℃; 1HNMR(300MHz,DMSO-d 6):δ12.66(s,1H),12.37(s,1H),7.57(s,1H),7.30(s,5H),7.15-7.08(m,1H),7.02(d,J=7.2Hz,2H),5.50(s,2H),3.78(s,2H),2.95(d,J=22.9Hz,6H),2.77(s,2H),2.26(s,6H)ppm.HRMS(ESI):m/z,calcd for C 30H 33N 9O 2S 2[M+H] +,616.2271;found:616.2288.
实施例3
通式化合物III(CPU301-CPU310)的制备
Figure PCTCN2020084163-appb-000019
5-(3-丁炔基)-1,3,4-噻二唑-2-胺(14)的制备
向13(1.5g,0.015mol)的POCl 3溶液中加入氨基硫脲(1.39g,0.015mol),反应混合物在80℃下搅拌4小时。反应完成后冷却至室温,将混合物用6M NaOH调至pH=9,有固体析出,抽滤,滤饼干燥;滤液用乙酸乙酯萃取3次,合并有机层,用无水硫酸钠干燥,旋干得到黄褐色固体与上述滤饼合并,收率88.3%。 1HNMR(300MHz,DMSO-d 6):δ6.99(s,2H),2.95(t,J=7.0Hz,2H),2.83(d,J=2.4Hz,1H),2.50(dd,J=7.1,4.6Hz,2H)ppm.HRMS(ESI):m/z,calcd for C6H7N3S[M+H]+,154.0433;found:154.0434.
N-(5-(3-丁炔基)-1,3,4-噻二唑)-2-(2-吡啶)乙酰胺(15)的制备
中间体14(3g,0.02mol)溶于30mL DMF中,然后加入2-吡啶乙酸盐酸盐(3.74g,0.03mol),HATU(8.8g,0.039mmol),室温搅拌15min后加入DIPEA(7.5g,0.059mmol)。室温下搅拌2小时基本反应完全,将反应混合物倒入水中。用乙酸乙酯(30mL×3)萃取水层。将有机层用无水硫酸钠干燥,旋干,得到淡黄色固体,收率92.6%。 1HNMR(300MHz,DMSO-d 6):δ12.71(s,1H),8.50(d,J=4.8Hz,1H),7.78(td,J=7.7,1.7Hz,1H),7.40(d,J=7.7Hz,1H),7.29(dd,J=6.7,5.0Hz,1H),4.02(s,2H),3.16(t,J=7.0Hz,2H),2.88(t,J=2.6Hz,1H),2.62(td,J=7.0,2.6Hz,2H)ppm.HRMS(ESI):m/z,calcd for C 13H 12N 4OS[M+H] +,273.0805;found:273.0807.
N-(5-(4-(3-氨基哒嗪)-3-丁炔基)-1,3,4-噻二唑)-2-(2-吡啶)乙酰胺(17)的制备
向化合物15(2g,7.4mmol)的DMA(10mL)溶液中加入16(1.35g,6.11mmol),CuI(0.117g,0.613mmol),TEA(3.1g,30.65mmol)和四(三苯基膦)钯(0.708g,0.613mmol)。混合物在氮气保护下,60℃搅拌3.5h。冷却至室温后,将反应混合物在30mL异丙醚中稀释。分液收集下层红棕色油状物,加入水后,析出灰色固体。柱层析得到目标化合物,产率68.5%。 1HNMR(300MHz,DMSO-d 6):δ12.69(s,1H),8.49(d,J=4.0Hz,1H),7.76(t,J=7.1Hz,1H),7.39(d,J=7.8Hz,1H),7.33-7.17(m,2H),6.69(d,J=9.1Hz,1H),6.63(s,2H),4.01(s,2H),3.31-3.23(m,2H),2.90(t,J=6.8Hz,2H)ppm.HRMS(ESI):m/z,calcd for C 17H 15N 7OS[M+H] +,366.1132;found:366.1135.
N-(5-(4-(3-氨基哒嗪)丁基)-1,3,4-噻二唑)-2-(2-吡啶)乙酰胺(18)的制备
中间体17(1g,2.74mmol)溶于200mL甲醇溶液,加入Raney镍(2mL),通H 2,室温下搅拌48小时。TLC检测显示反应完成后,过滤除催化剂。旋干滤液,得到中间体18,为黄色固体,收率97.2%。 1HNMR(300MHz,DMSO-d 6):δ12.67(s,1H),8.50(d,J=4.9Hz,1H),7.77(td,J=7.7,1.8Hz,1H),7.40(d,J=7.8Hz,1H),7.29(dd,J=6.9,5.3Hz,1H),7.19(d,J=9.0Hz,1H),6.76(d,J=9.1Hz,1H),6.28(s,2H),4.01(s,2H),3.00(t,J=6.9Hz,2H),2.70(t,J=6.9Hz,2H),1.70(s,4H)ppm.HRMS(ESI):m/z,calcd for C 17H 19N 7OS[M+H] +,370.1445;found:370.1451.
N-(3-(4-(5-(2-(2-吡啶)乙酰氨基)-1,3,4-噻二唑)丁基)哒嗪)-4-戊炔酰胺(19)的制备
将中间体18(0.25g,0.68mmol)、戊炔酸(0.073g,0.75mmol)、HATU(0.38g,1.02mmol)溶于DMF中,室温搅拌10min。加入DIPEA(0.26g,2.04mmol)继续反应,每五分钟用TLC检测确定反应进 程。20min后反应基本完成。反应液倒入水中,析出固体,抽滤,滤饼干燥得白色固体,产率60.4%。 1H NMR(300MHz,DMSO-d 6):δ12.65(s,1H),11.05(s,1H),8.47(s,1H),8.22(d,1H),7.75(s,1H),7.56(d,1H),7.38(d,2H),3.98(s,2H),2.99(s,3H),2.87(s,3H),2.77(t,1H),2.63(s,2H),1.72(s,4H)ppm.HRMS(ESI):m/z,calcd for C 22H 23N 7O 2S[M+H] +,450.1712;found:450.1721.
化合物CPU-301的制备
碘化亚铜(0.38mg,0.002mmol)溶于水,将中间体19(5mg,0.01mmol)、11g(4.89mg,0.03mmol)溶于DMF,分别加入上述反应液中。微波,120℃,300W,反应5min,反应液为蓝色浑浊。反应液倒入水中,析出固体,抽滤,滤饼烘干得粗产物,柱层析得蓝色固体,产率30.1%。m.p.160~164℃; 1H NMR(300MHz,DMSO-d6):δ12.69(s,1H),11.04(s,1H),8.50(s,1H),8.22(d,1H),7.86(s,1H),7.78(s,1H),7.57(s,1H),7.41(d,1H),7.29(s,1H),7.14(d,4H),5.48(s,2H),4.01(s,2H),3.02-2.74(m,8H),2.26(s,3H),1.75(s,2H),1.24(s,2H)ppm.HRMS(ESI):m/z,calcd for C 30H 32N 10O 2S[M+H] +,597.2509;found:597.2487.
化合物CPU-307的制备
如制备CPU-301所述,使用4-甲氧基苄基叠氮苯(11h)代替11g制备化合物CPU-307,得蓝色固体。产率32.7%。m.p.115~120℃; 1H NMR(300MHz,DMSO-d6):δ12.68(s,1H),11.03(s,1H),8.50(s,1H),8.21(d,1H),7.96-7.77(m,3H),7.56(d,1H),7.41(s,1H),7.24(d,2H),6.88(d,2H),5.45(s,2H),4.01(s,2H),3.72(s,3H),3.01-2.75(m,8H),1.74(s,2H),1.23(s,2H)ppm.HRMS(ESI):m/z,calcd for C 30H 32N 10O 3S[M+H] +,613.2458;found:613.2439.
化合物CPU-308的制备
如制备CPU-301所述,使用3,4-二甲氧基苄基叠氮(11i)代替11g制备化合物CPU-308,得蓝色固体。产率32.2%。m.p.110~115℃; 1H NMR(300MHz,DMSO-d 6+D 2O):δ8.51(s,1H),8.19(t,1H),7.95-7.77(m,2H),7.56(d,1H),7.43(d,1H),7.30(s,1H),6.98-6.81(m,3H),5.43(s,2H),3.70(s,6H),3.00-2.73(m,8H),1.73(s,2H),1.23(s,2H)ppm.HRMS(ESI):m/z,calcd for C 31H 34N 10O 4S[M+H] +,643.2563;found:643.2574.
化合物CPU-309的制备
如制备CPU-301所述,使用3,4-二甲基苄基叠氮(11j)代替11g制备化合物CPU-309,得蓝色固体。产率33.4%。m.p.110~111℃; 1H NMR(300MHz,DMSO-d 6+D 2O):δ8.49(s,1H),8.16(s,1H),7.71(s,2H),7.56(d,1H),7.40(s,1H),7.29(s,1H),7.02-6.91(m,3H),5.47(s,2H),3.00-2.89(m,6H),2.79(s,2H),2.20(t,6H),1.72(s,2H),1.22(s,2H)ppm.HRMS(ESI):m/z,calcd for C 31H 34N 10O 2S[M+H] +,611.2665;found:611.2672.
化合物CPU-310的制备
如制备CPU-301所述,使用2,6-二甲基苄基叠氮(11k)代替11g制备化合物CPU-310,得蓝色固体。产率35.5%。m.p.210~215℃; 1H NMR(300MHz,DMSO-d 6):δ7.99(s,2H),7.71(s,2H),7.64(s,2H),7.43(d,2H),7.14(s,2H),5.53(s,2H),4.00(s,1H),3.02(s,1H),2.89(s,3H),2.77-2.73(m,3H),2.33(s,6H),1.74(s,2H),1.23(s,2H)ppm.HRMS(ESI):m/z,calcd for C 31H 34N 10O 2S[M+H] +,611.2665;found:611.2655.
化合物CPU-311的制备
如制备CPU-301所述,使用4-三氟甲基苄基叠氮(11l)代替11g制备化合物CPU-312,得蓝色固体。产率25.5%。m.p.210~215℃; 1H NMR(300MHz,DMSO-d 6):δ12.67(s,1H),11.03(s,1H),8.50(s,1H),8.20(s,1H),7.96(s,1H),7.68(s,3H),7.42(s,4H),7.28(d,1H),5.68(s,2H),4.02(s,2H),2.97(s,4H),2.88(d,4H),1.74(s,4H)ppm.HRMS(ESI):m/z,calcd for C 30H 29F 3N 10O 2S[M+H] +,651.2226;found:651.2188.
化合物CPU-312的制备
如制备CPU-301所述,使用4-三氟甲氧基苄基叠氮(11m)代替4-甲基苄基叠氮制备化合物 CPU-312,得蓝色固体。产率37.2%。m.p.210~215℃; 1H NMR(300MHz,DMSO-d 6):δ12.66(s,1H),11.02(s,1H),8.50(s,1H),8.22(d,1H),7.93(s,1H),7.77(t,1H),7.57(d,1H),7.37-7.31(m,6H),5.60(s,2H),4.01(s,2H),3.02(s,4H),2.93(t,2H),2.82(d,2H),1.75(s,4H)ppm.HRMS(ESI):m/z,calcd for C 30H 29F 3N 10O 3S[M+H] +,667.2175;found:667.2208.
实施例4
通式化合物IV(CPU401-CPU412)的制备
Figure PCTCN2020084163-appb-000020
1-(4-(5-氨基-1,3,4-噻二唑)氨基)哌啶-羧酸叔丁酯(23)的制备
将化合物21(0.5g,2.8mmol)、化合物22(0.556g,2.8mmol)和NaHCO 3(0.448g,11.2mmol)溶于10mL乙醇中,加热回流,搅拌,油浴至80℃。反应4.5h后,经TLC检测反应完全,停止反应。减压旋干溶剂,得白褐色固体。加水打浆,抽滤,得灰白色固体。产率为88%。HRMS(ESI):m/z,calcd for C 12H 21N 5O 2S[M+H] +,300.1494;found:300.1492.
1-(4-((5-(2-苯乙酰胺基)-1,3,4-噻二唑)氨基)哌啶-羧酸叔丁酯(24)的制备
将化合物23(0.1g,0.33mmol)、苯乙酸(0.05g,0.363mmol)、HATU(0.25g,0.66mmol)置于5mL N,N-二甲基甲酰胺(DMF)中,室温搅拌,呈淡黄色澄清溶液。反应15min后,加入DIPEA(0.128g,0.99mmol)。反应1h后,经TLC检测,反应完全。将反应液倒入水中,抽滤,得白色固体,产率87.6%。HRMS(ESI):m/z,calcd for C 20H 27N 5O 3S[M+H] +,418.1913;found:418.1908.
2-苯基-N-(5-(4-氨基哌啶)-1,3,4-噻二唑)乙酰胺(25)的制备
将化合物24(0.1g,0.24mmol)溶于1mL的二氯甲烷中,出现浑浊。再加入1mL的三氟乙酸,反应液澄清。常温水浴,搅拌。反应2h后,经TLC检测反应完全。用饱和的碳酸氢钠水溶液调pH=7,有固体析出。抽滤得黄色固体。产率73%。 1H NMR(300MHz,DMSO-d 6):δ7.51-7.48(m,1H),7.31(s,6H),6.47(s,2H),3.71(singlet overlapping with m,3H),3.16(s,2H),2.89-2.86(m,2H),2.04(s,2H),1.59-1.57(m,2H)ppm.HRMS(ESI):m/z,calcd for C 15H 19N 5OS[M+H] +,318.1389;found:318.1375.
2-苯基-N-(N-((1-(5-氨基-1,3,4-噻二唑)哌啶)氨基)-1,3,4-噻二唑)乙酰胺(26)的制备
将化合物25(0.1g,0.315mmol)、2-氨基-5-溴-1,3,4-噻二唑(0.06g,0.315mmol)和碳酸氢钠(0.05g,1.26mmol)溶于5mL乙醇中,加热回流。反应3h后,经TLC检测反应完全,停止反应。减压旋干溶剂,加水后析出固体。抽滤,柱层析得粉色固体。产率40%。 1H NMR(300MHz,DMSO-d 6):δ12.19(s,1H),7.38-7.26(m,6H),6.47(s,2H),3.71(singlet overlapping with m,3H),3.61-3.56(m,2H),3.10-3.03(m,2H),2.03-2.00(m,2H),1.55-1.44(m,2H)ppm.HRMS(ESI):m/z,calcd for C 17H 20N 8OS 2[M+H] +,417.1280;found:417.1266.
N-(5-(4-(5-(2-苯基乙酰氨基)-1,3,4-噻二唑)氨基)哌啶)-1,3,4-噻二唑)戊-4-炔酰胺(27)的制备
将化合物26(0.05g,0.12mmol)、戊炔酸(0.01g,0.12mmol)、HATU(0.07g,0.18mmol)置于单颈反应瓶中,反应液呈橘粉色澄清溶液。室温搅拌20min。加入DIPEA(0.06g,0.48mmol),继续室温下搅拌。反应1h后,经TLC检测,反应完全,停止反应。将反应液倒入蒸馏水中,析出固体。抽 滤,烘干。产率60%。 1H NMR(300MHz,DMSO-d 6):δ12.14(s,2H),7.38-7.31(m,6H),3.78-3.71(m,5H),3.24-3.16(m,2H),2.89(s,1H),2.81-2.69(m,2H),2.61-2.59(m,2H),2.07-2.04(m,2H),1.54-1.51(m,2H)ppm.HRMS(ESI):m/z,calcd for C 22H 24N 8O 2S 2[M+H] +,497.1542;found:497.1548.
化合物CPU-403的制备
将五水硫酸铜(0.05g,0.2016mmol)、抗坏血酸钠(0.04g,0.2016mmol)溶于2mL水中,溶液先呈现出黑色,搅拌一会儿后显黄色。然后加入化合物27(0.1g,0.2016mmol)和4-硝基苄基叠氮(11c)(0.07g,0.476mmol)。氮气保护,室温下反应,反应3h后经TLC检测,反应完全。反应液倒入水中,抽滤得粗品,柱层析,得到白色终产物,收率37.1%。m.p.250~255℃;HRMS(ESI):m/z,calcd for C 29H 30N 12O 4S 2[M+H] +,675.2033;found:675.2029.
化合物CPU-404的制备如制备CPU-403所述,使用4-氟苄基叠氮(11d)代替11c制备化合物CPU-404,得白色固体。产率33.6%。m.p.218~222℃; 1H NMR(300MHz,DMSO-d 6):δ12.19(s,1H),12.04(s,1H),7.88(s,1H),7.41-7.28(m,8H),7.20-7.14(m,2H),5.54(s,2H),3.79-3.72(m,5H),3.24-3.16(m,2H),2.93(t,J=12Hz,2H),2.76(t,J=12Hz,2H),2.11-2.04(m,2H),1.57-1.48(m,2H)ppm.HRMS(ESI):m/z,calcd for C 29H 30FN 11O 2S 2[M+H] +,648.2088;found:648.2079.
化合物CPU-405的制备
如制备CPU-403所述,使用4-氯苄基叠氮(11e)代替11c制备化合物CPU-405,得白色固体。产率37.5%。m.p.232~237℃;HRMS(ESI):m/z,calcd for C 29H 30ClN 11O 2S 2[M+H] +,664.1792;found:664.1796.
化合物CPU-406的制备如制备CPU-403所述,使用4-溴苄基叠氮(11f)代替11c制备化合物CPU-406,得白色固体。产率35.4%。m.p.258~261℃; 1H NMR(300MHz,DMSO-d 6):δ12.18(s,1H),12.04(s,1H),7.89(s,1H),7.54(d,J=9Hz,2H),7.35-7.25(m,6H),7.20(d,J=9Hz,2H),5.53(s,2H),3.78-3.71(m,5H),3.24-3.16(m,2H),2.95-2.93(m,2H),2.78-2.74(m,2H),2.11-2.04(m,2H),1.54-1.48(m,2H)ppm.HRMS(ESI):m/z,calcd for C 29H 30BrN 11O 2S 2[M+H] +,710.1267;found:710.1272.
化合物CPU-407的制备
如制备CPU-403所述,使用4-甲基苄基叠氮(11g)代替11c制备化合物CPU-407,得白色固体。产率32.3%。m.p.250~254℃;1H NMR(300MHz,DMSO-d6):δ12.19(s,1H),12.04(s,1H),7.85(s,1H),7.35-7.25(m,6H),7.13(s,2H),5.48(s,2H),3.78-3.71(m,5H),3.23-3.16(m,2H),2.92(s,2H),2.75(s,2H),2.26(s,3H),2.07-2.04(m,2H),1.54-1.50(m,2H)ppm.HRMS(ESI):m/z,calcd for C 30H 33N 11O 2S 2[M+H] +,644.2338;found:644.2322.
化合物CPU-408的制备
如制备CPU-403所述,使用4-甲氧基苄基叠氮(11h)代替11c制备化合物CPU-408,得白色固体。产率39.2%。m.p.237~241℃; 1H NMR(300MHz,DMSO-d 6):δ12.19(s,1H),12.04(s,1H),7.83(s,1H),7.35-7.28(m,6H),7.26-7.21(m,2H),6.90-6.87(m,2H),5.45(s,2H),3.78-3.69(m,8H),3.25-3.16(m,2H),2.91(s,2H),2.75(s,2H),2.07-2.04(m,2H),1.54-1.48(m,2H)ppm.HRMS(ESI):m/z,calcd for C 30H 33N 11O 3S 2[M+H] +,660.2288;found:660.2268.
化合物CPU-409的制备
如制备CPU-403所述,使用3,4-二甲氧基苄基叠氮(11i)代替11c制备化合物CPU-409,得白色固体。产率33.3%。m.p.150~155℃; 1H NMR(300MHz,DMSO-d 6):δ12.19(s,1H),12.01(s,1H),7.58(s,1H),7.32-7.25(m,6H),7.17-7.12(m,1H),7.06-7.04(m,1H),5.52(s,2H),3.78-3.71(m,5H),3.24-3.16(m,2H),2.89(s,2H),2.73(s,2H),2.29(s,6H),2.10-2.04(m,2H),1.54-1.51(m,2H)ppm.HRMS(ESI):m/z,calcd for C 31H 35N 11O 4S 2[M+H] +,690.2393;found:690.2370.
化合物CPU-410的制备
如制备CPU-403所述,使用4-三氟甲氧基苄基叠氮(11m)代替11c制备化合物CPU-410,得白色固体。产率32.5%。m.p.275~280℃; 1H NMR(300MHz,DMSO-d 6):δ7.92(s,1H),7.35-7.25(m,10H),5.60(s,2H),3.78-3.71(m,5H),3.24-3.16(m,2H),2.94(s,2H),2.77(s,2H),2.09-1.99(m,2H),1.59-1.51(m,2H)ppm.HRMS(ESI):m/z,calcd for C 30H 30F 3N 11O 2S 2[M+H] +,698.2056;found:698.2042.
化合物CPU-411的制备
如制备CPU-403所述,使用2,6-二甲基苄基叠氮(11k)代替11c制备化合物CPU-411,得白色固体。产率38.7%。m.p.258~263℃; 1H NMR(300MHz,DMSO-d 6):δ12.18(s,1H),12.05(s,1H),7.88(s,1H),7.35-7.31(m,6H),6.95(s,2H),6.89(d,J=9Hz,2H),6.80(d,J=9Hz,2H),5.44(s,2H),3.72-3.71(m,11H),3.23-3.16(m,2H),2.91(s,2H),2.76(s,2H),2.07-2.04(m,2H),1.53-1.51(m,2H)ppm.HRMS(ESI):m/z,calcd for C 31H 35N 11O 3S 2[M+H] +,658.2495;found:658.2475.
化合物CPU-412的制备
如制备CPU-403所述,使用4-三氟甲基苄基叠氮(11l)代替11c制备化合物CPU-412,得白色固体。产率32.6%。m.p.273~278℃; 1H NMR(300MHz,DMSO-d 6):δ12.17(s,1H),12.04(s,1H),7.95(s,1H),7.71-7.69(m,2H),7.43-7.31(m,8H),5.68(s,2H),3.78-3.71(m,5H),3.23-3.19(m,2H),2.95(s,2H),2.78(s,2H),2.08-2.04(m,2H),1.53-1.51(m,2H)ppm.HRMS(ESI):m/z,calcd for C 30H 30F 3N 11O 3S 2[M+H] +,714.2005;found:714.1987.
实施例5
通式化合物VI(CPU601-CPU612)的制备。
Figure PCTCN2020084163-appb-000021
N-(1-(3-氨基哒嗪)哌啶)氨基甲酸叔丁酯(31)的制备
29(1g,4.5mmol)、30(2.72g,13.6mmol)和三乙胺(1.5mL)溶于正丁醇中。将反应混合物在微波400W、180℃,搅拌1.5h,旋干溶剂,得油状产物。加二氯甲烷溶解后,水洗两遍,饱和食盐水洗两遍。用无水硫酸钠干燥有机层,黄色油状产物,柱层析得黄白色固体。产率25.7%。 1H NMR(300MHz,DMSO-d 6):δ7.13(d,J=9.63Hz,1H),6.80(s,1H),6.74(d,J=9.63Hz,1H),5.60(s,2H),3.94(d,2H),3.43(singlet overlapping with m,3H),2.80-2.73(m,2H),1.78(d,J=10.74Hz,2H),1.39(s,9H)ppm.HRMS(ESI):m/z,calcd for C 14H 23N 5O 2[M+H] +,294.1925;found:294.1925.
N-(1-(3-(戊-4-炔酰胺基)哒嗪)哌啶)氨基甲酸叔丁酯(32)的制备
将中间体31(0.2g,0.68mmol)、戊炔酸(0.073g,0.75mmol)、HATU(0.38g,1.02mmol)溶于DMF中,室温搅拌10-15min。加入DIPEA(0.26g,2.011mmol),继续反应,每五分钟用薄层色谱法确定反应进程。20min后反应基本完成。反应液倒入水中,析出固体,抽滤,滤饼烘干得白色固体。产率60.4%。 1H NMR(300MHz,DMSO-d 6):δ10.67(s,1H),8.02(d,J=9.75Hz,1H),7.35(d,J=9.75Hz,1H),6.82(s,1H),4.19(d,2H),3.50(s,1H),2.99(t,J=13.95Hz,2H),2.78(s,1H),2.62(t,J=13.95Hz,2H),2.44-2.42(m,2H),1.81-1.78(m,2H),1.39(s,11H)ppm.HRMS(ESI):m/z,calcd for C 19H 27N 5O 3[M+H] +,374.2187;found:374.2165.
N-(6-(4-氨基哌啶)哒嗪)戊-4-炔酰胺(33)的制备
将中间体32(0.2g,0.54mmol)、三氟乙酸(0.2mL,2.6mmol)和二氯甲烷,搅拌,室温反应1h。停止反应,减压除二氯甲烷。用饱和碳酸氢钠调pH=7,有白色固体析出,抽滤。用薄层色谱法分析,产率100%。 1H NMR(300MHz,DMSO-d 6):δ10.69(s,1H),8.05(d,J=9.81Hz,1H),7.39(d,J=9.81Hz,1H),4.30(d,2H),3.51(s,1H),3.00(t,J=5.19Hz,2H),2.92(s,1H),2.77(t,J=5.19Hz,2H),2.47-2.44(m,2H),1.97-1.93(m,2H),1.56(m,2H)ppm.HRMS(ESI):m/z,calcd for C 14H 19N 5O[M+H] +,274.1662;found:274.1655.
N-(6-(4-(N-(5-氨基)-1,3,4-噻二唑)氨基-哌啶)-哒嗪)戊-4-炔酰胺(34)的制备
将中间体33(200mg,7.4mmol)、2-氨基-5-溴-1,3,4-噻二唑(1320mg,7.4mmol)、NaHCO 3(1184mg,17.6mmol)溶于0.5mL乙醇中,80℃回流,反应液为棕色浑浊。反应三小时后,反应完全。旋干乙醇,得白色固体,加水打浆,有固体析出,抽滤。滤饼为产物,为黄褐色固体。产率69.7%。HRMS(ESI):m/z,calcd for C 16H 20N 8O 2S[M+H] +,373.1554;found:373.1546.
N-(6-(4-(N-(5-(2-吡啶)乙酰胺基基)-1,3,4-噻二唑)氨基-哌啶)-哒嗪)戊-4-炔酰胺(35)的制备
将中间体34(5mg,0.013mmol)、2-吡啶乙酸盐酸盐(2.6mg,0.015mmol)、HATU(7.6mg,0.02mmol)溶于1mL DMF中,搅拌10-15min,溶液呈淡黄色澄清液体。加入DIPEA(5.2mg,0.04mmol),继续反应20分钟,反应完全。将反应液倒入水中,析出固体,抽滤,滤饼为白色固体,产率75.8%。 1H NMR(300MHz,DMSO-d 6):δ12.14(s,1H),10.68(s,1H),8.50(d,J=4.11Hz,1H),8.04-7.79(m,1H),7.78-7.73(m,1H),7.38-7.26(m,4H),4.17(d,J=13.62Hz,2H),3.92(s,2H),3.79(s,1H),3.08(t,J=7.05Hz,2H),2.78(s,1H),2.63(t,J=13.86Hz,2H),2.47-2.44(m,2H),1.97-1.93(m,2H),1.56(m,2H)ppm.HRMS(ESI):m/z,calcd for C 23H 25N 9O 2S[M+H] +,492.1925;found:492.1919.
化合物CPU-603的制备
将碘化亚铜(0.38mg,0.002mmol)溶于水加入中间体35(5mg,0.01mmol)、4-硝基苄基叠氮(11c)(3.99mg,0.03mmol)的DMF混合液中。微波,120℃,300W,反应5min。反应液为蓝色浑浊,倒入水中析出灰色固体。柱层析纯化得蓝色固体。产率33.7%。m.p.243~247℃;HRMS(ESI):m/z,calcd for C 30H 31N 13O 4S[M+H] +,670.2421;found:670.2433.
化合物CPU-604的制备
如制备CPU-603所述,使用4-氟苄基叠氮(11d)代替11c制备化合物CPU-604,得蓝色固体。产率32.7%。m.p.232~235℃; 1H NMR(300MHz,DMSO-d 6):δ12.21(s,1H),10.71(s,1H),8.49(s,1H),8.09(s,1H),8.02-7.90(m,1H),7.78-7.75(m,1H),7.39-7.37(m,1H),7.35-7.27(m,5H),7.19-7.14(m,2H),5.54(s,2H),4.17(d,2H),3.93(s,2H),3.79(s1H),3.09(t,J=8.19Hz,2H),2.92(t,J=5.25Hz,2H),2.74(t,J=5.25Hz,2H),2.07(d,J=7.98Hz,2H),1.49(d,J=7.98Hz,2H)ppm.HRMS(ESI):m/z,calcd for C 30H 31FN 12O 2S[M+H] +,643.2470;found:643.2466.
化合物CPU-605的制备
如制备CPU-603所述,使用4-氯苄基叠氮(11e)代替11c制备化合物CPU-605,蓝色固体。产率33.8%。m.p.240~241℃; 1H NMR(300MHz,DMSO-d 6):δ12.21(s,1H),10.69(s,1H),8.50(s,1H),8.01(s,1H),7.91(s,1H),7.79(t,J=11.25Hz,1H),7.40-7.38(m,5H),7.28-7.26(m,3H),5.55(s,2H),4.17(d,2H),3.93(s,2H),3.80(s1H),3.10(t,J=8.61Hz,2H),2.74(s,2H),2.59(s,2H),2.07(d,J=7.68Hz,2H),1.49(d,J=7.68Hz,2H)ppm.HRMS(ESI):m/z,calcd for C 30H 31ClN 12O 2S[M+H] +,659.2175;found:659.2221.
化合物CPU-606的制备
如制备CPU-603所述,使用4-溴苄基叠氮(11f)代替11c制备化合物CPU-606,蓝色固体。产率34.8%。m.p.240~245℃;HRMS(ESI):m/z,calcd for C 30H 31BrN 12O 2S[M+H] +,703.1670;found:703.1669.
化合物CPU-607的制备
如制备CPU-603所述,使用4-甲氧基苄基叠氮(11h)代替11c制备化合物CPU-607,得蓝色固体。 产率31.6%。m.p.148~152℃; 1H NMR(300MHz,DMSO-d 6):δ12.23(s,1H),10.70(s,1H),8.54(d,J=8.43Hz,1H),8.03(m,1H),7.85-7.78(m,2H),7.40-7.22(m,6H),6.89(d,J=5.25Hz,2H),5.45(s,2H),4.16(d,J=6.96Hz,2H),3.93(s,2H),3.79-3.72(singlet overlapping with m,4H),3.10(t,2H),2.91(s,1H),2.73(t,2H),2.07(d,2H),1.47(m,2H)ppm.HRMS(ESI):m/z,calcd for C 31H 34N 12O 3S[M+H] +,655.2670;found:655.2672.
化合物CPU-608的制备
如制备CPU-603所述,使用3,4-二甲氧基苄基叠氮(11i)代替11c制备化合物CPU-608,得蓝色固体。产率33.9%。m.p.108~111℃; 1H NMR(300MHz,DMSO-d 6):δ12.25(s,1H),10.73(s,1H),8.53(s,1H),8.10-8.03(m,1H),7.88(s,1H),7.82(s,1H),7.42(m,3H),7.32(s,1H),6.99(s,1H),6.91(d,J=8.16Hz,1H),6.83(d,J=8.16Hz,1H),5.46(s,2H),4.20(d,J=6.96Hz,2H),3.95(s,2H),3.74(singlet overlapping with m,7H),3.15(t,J=12.03Hz,2H),2.94(s,2H),2.76(t,2H),2.11(d,2H),1.49(m,2H)ppm.HRMS(ESI):m/z,calcd for C 32H 36N 12O 4S[M+H] +,685.2776;found:685.2775.
化合物CPU-609的制备
如制备CPU-603所述,使用4-甲基苄基叠氮(11g)代替11c制备化合物CPU-609,得蓝色固体。产率38.5%。m.p.219~222℃; 1H NMR(300MHz,DMSO-d 6):δ12.21(s,1H),10.69(s,1H),8.50(s,1H),8.01(m,1H),7.85-7.75(m,2H),7.38-7.37(m,4H),7.14(s,4H),5.48(s,2H),4.15(d,J=9.27Hz,2H),3.93(s,2H),3.82(s1H),3.13(s,2H),2.92(s,2H),2.73(s,2H),2.26(s,3H),2.06(d,2H),1.46(m,2H)ppm.HRMS(ESI):m/z,calcd for C 31H 34N 12O 2S[M+H] +,639.2721;found:639.2716.
化合物CPU-610的制备
如制备CPU-603所述,使用2,6-二甲基苄基叠氮(11k)代替11c制备化合物CPU-610,得蓝色固体。产率39.1%。m.p.161~165℃; 1H NMR(300MHz,DMSO-d 6):δ12.18(s,1H),10.63(s,1H),8.50(s,1H),7.98(s,1H),7.77(s,1H),7.59(s,1H),7.37-7.30(m,3H),7.14-7.06(m,4H),5.53(s,2H),4.17(d,J=8.70Hz,2H),3.93(s,2H),3.81(s1H),3.17(s,2H),2.89(s,2H),2.71(s,2H),2.30(s,6H),2.09(d,2H),1.48(m,2H)ppm.HRMS(ESI):m/z,calcd for C 32H 36N 12O 2S[M+H] +,653.2878;found:653.2807.
化合物CPU-611的制备
如制备CPU-603所述,使用4-三氟甲基苄基叠氮(11l)代替11c制备化合物CPU-611,得蓝色固体。产率35.4%。m.p.230~233℃;HRMS(ESI):m/z,calcd for C 31H 31F 3N 12O 2S[M+H] +,693.2439;found:693.2434.
化合物CPU-612的制备
如制备CPU-603所述,使用4-三氟甲氧基苄基叠氮(11m)代替11c制备化合物CPU-612,得蓝色固体。产率36.9%。m.p.245~250℃; 1H NMR(300MHz,DMSO-d 6):δ12.21(s,1H),10.69(s,1H),8.50(s,1H),8.01(m,2H),7.77-7.75(m,J=5.25Hz,1H),7.37-7.35(m,8H),5.60(s,2H),4.17(d,2H),3.92(s,2H),3.79(s1H),3.12-3.06(m,2H),2.93(s,2H),2.74(s,2H),2.07(d,J=7.56Hz,2H),1.47(d,J=7.56Hz,2H)ppm.HRMS(ESI):m/z,calcd for C 31H 31F 3N 12O 3S[M+H] +,709.2388;found:709.2410.
实施例6
通式化合物VIII(CPU801-CPU812)的制备。
Figure PCTCN2020084163-appb-000022
N-((3-氨基-哒嗪)吡咯烷)氨基甲酸叔丁酯(38)的制备
将化合物38(0.1g,0.36mmol)与戊炔酸(0.038g,0.39mmol),HATU(0.2g,0.54mmol)溶于DMF中,搅拌。再加入DIPEA(0.14g,1.08mmol)搅拌。TLC检测。将反应液倒入水中,析出固体,抽滤得白色固体,烘干。收率83.4%。HRMS(ESI):m/z,calcd for C 18H 26N 5O 3[M+H] +,360.2036;found:360.2034.
N-(6-(3-氨基)-吡咯烷)哒嗪-戊-4-炔酰胺(40)的制备
向化合物39(0.5g,1.39mmol)溶于5mL二氯甲烷,加入5mL CF 3COOH,室温下反应4h,TLC检测反应进程。减压旋干DCM,饱和NaHCO 3调PH至7-8,有灰白色固体析出,抽滤,得灰白色固体,产率为75%。HRMS(ESI):m/z,calcd for C 13H 18N 5O[M+H] +,260.1511;found:260.1513.
N-(6-(3-(N-(5-氨基)1,3,4噻二唑)氨基)-吡咯烷)哒嗪-戊-4-炔酰胺(41)的制备
化合物40(10mg,0.039mmol),噻二唑(6.95mg,0.039mmol)与NaHCO 3(6.24mg,0.156mmol)溶于2mL乙醇,升温80℃回流4h,TLC检测反应进程。反应完成后,减压旋干溶剂,得黄褐色固体,5mL水打浆,抽滤得淡黄色固体,烘干,产率为92%。HRMS(ESI):m/z,calcd for C 15H 18N 8OS[M+H] +,359.1403;found:359.1413.
N-(6-(3-(N-(5-(2-哌啶)乙酰胺基)1,3,4噻二唑)氨基)-吡咯烷)哒嗪-戊-4-炔酰胺(42)的制备
化合物41(0.1g,0.28mmol)与HATU(0.16g,0.42mmol),2-吡啶乙酸盐酸盐(0.054g,0.31mmol)溶于2mL DMF中,搅拌2min,加入DIPEA(0.11g,0.85mmol)反应10min,TLC检测。反应液倒入水中,有固体析出,抽滤得淡黄色固体,产率为54.5%。HRMS(ESI):m/z,calcd for C 22H 23N 9O 2S[M+H] +,478.1774;found:478.1768.
化合物CPU-804的制备
向化合物42(0.1g,0.21mmol)的DMF溶液中加入CuI(7.78mg,0.041mmol)水溶液和4-氟苄基叠氮(11f)(55.85mg,0.42mmol)。将反应混合物在微波300W,120℃下搅拌2min,TLC检测。反应液倒入水中,析出固体。抽滤得粗品,柱色谱(DCM/MeOH=20:1)层析,得蓝色固体。产率为35.5%。m.p.210~212℃;HRMS(ESI):m/z,calcd for C 29H 29FN 12O 2S[M+H] +,629.2319;found:629.2317.
化合物CPU-805的制备
如制备CPU-804所述,使用4-氯苄基叠氮(11e)代替11f制备化合物CPU-805,得蓝色固体。产率为31.1%。m.p.233~235℃;HRMS(ESI):m/z,calcd for C 29H 29ClN 12O 2S[M+H] +,645.2024;found:645.1999.
化合物CPU-807的制备
如制备CPU-804所述,使用4-甲基苄基叠氮(11g)代替11f制备化合物CPU-807,得蓝色固体。产率34.7%。m.p.242~247℃;HRMS(ESI):m/z,calcd for C 30H 32N 12O 2S[M+H] +,625.2570;found:625.2562.
化合物CPU-808的制备
如制备CPU-804所述,使用4-甲氧基苄基叠氮(11h)代替11f制备化合物CPU-808,得蓝色固体。产率为32.5%。m.p.221~222℃;HRMS(ESI):m/z,calcd for C 30H 32N 12O 3S[M+H] +,641.2519;found:641.2512.
化合物CPU-809的制备
如制备CPU-804所述,使用3,4-二甲氧基苄基叠氮(11i)代替11f制备化合物CPU-809,得蓝色固体。产率为30.8%。m.p.219~220℃;HRMS(ESI):m/z,calcd for C 31H 34N 12O 4S[M+H] +,671.2625;found:671.2612.
化合物CPU-810的制备
如制备CPU-804所述,使用4-三氟甲氧基苄基叠氮(11m)代替11f制备化合物CPU-810,得蓝色固体。产率为36.7%。m.p.243~247℃;HRMS(ESI):m/z,calcd for C 30H 29F 3N 12O 3S[M+H] +,695.2237;found:695.2239.
化合物CPU-811的制备
如制备CPU-804所述,使用2,6-二甲基苄基叠氮(11k)代替11f制备化合物CPU-811,得蓝色固体。产率为37.2%。m.p.256~258℃;HRMS(ESI):m/z,calcd for C 31H 34N 12O 2S[M+H] +,639.2727;found:639.2724.
化合物CPU-812的制备
如制备CPU-804所述,使用4-三氟甲基苄基叠氮(11l)代替11f制备化合物CPU-812,得蓝色固体。产率为33.3%。m.p.219~221℃;HRMS(ESI):m/z,calcd for C 30H 29F 3N 12O 2S[M+H] +,679.2287;found:679.2276.
实施例7
通式化合物X(CPU1001-CPU1012)的制备
Figure PCTCN2020084163-appb-000023
N-((3-氨基-哒嗪)吡咯烷)氨基甲酸叔丁酯(45)的制备
29(0.1g,0.45mmol)和44(0.17g,0.9mmol)溶于正丁醇中,加入0.2mL三乙胺。将反应混合物在微波400W,180℃,搅拌1.5h。旋干溶剂,加入二氯甲烷溶解,水洗三次,饱和氯化铵洗三次,无水硫酸钠干燥,油状粗品,柱层析得白色固体,收率37%。HRMS(ESI):m/z,calcd for C 13H 22N 5O 2[M+H] +,280.1773;found:280.1777.
N-((3-(戊-4-炔酰胺基)-哒嗪)吡咯烷)氨基甲酸叔丁酯(46)的制备
将化合物45(0.1g,0.36mmol)与戊炔酸(0.038g,0.39mmol),HATU(0.2g,0.54mmol)溶于DMF中,搅拌。20min后加入DIPEA(0.14g,1.08mmol)室温反应1h。TLC检测。将反应液倒入水中,析出固体,抽滤得白色固体,烘干。收率83.4%。HRMS(ESI):m/z,calcd for C 18H 26N 5O 3[M+H] +,360.2036;found:360.2034.
N-(6-(3-氨基)-吡咯烷)哒嗪-戊-4-炔酰胺(47)的制备
向化合物46(0.5g,1.39mmol)溶于5mL二氯甲烷,加入5mL CF 3COOH,室温下反应4h,TLC 检测反应进程。减压旋干DCM,饱和NaHCO 3调PH至7-8,有灰白色固体析出,抽滤,得灰白色固体,产率为75%。HRMS(ESI):m/z,calcd for C 13H 18N 5O[M+H] +,260.1511;found:260.1513.
N-(6-(3-(N-(5-氨基)1,3,4噻二唑)氨基)-吡咯烷)哒嗪-戊-4-炔酰胺(48)的制备
化合物47(10mg,0.039mmol),噻二唑(6.95mg,0.039mmol)与NaHCO 3(6.24mg,0.156mmol)溶于2mL乙醇,升温80℃回流4h,TLC检测反应进程。反应完成后,减压旋干溶剂,得黄褐色固体,5mL水打浆,抽滤得淡黄色固体,烘干,产率为92%。HRMS(ESI):m/z,calcd for C 15H 18N 8OS[M+H] +,359.1403;found:359.1413.
N-(6-(3-(N-(5-(2-哌啶)乙酰胺基)1,3,4噻二唑)氨基)-吡咯烷)哒嗪-戊-4-炔酰胺(49)的制备
化合物48(0.1g,0.28mmol)与HATU(0.16g,0.42mmol),2-吡啶乙酸盐酸盐(0.054g,0.31mmol)溶于2mL DMF中,搅拌20min,加入DIPEA(0.11g,0.85mmol)反应10min,TLC检测。反应液倒入水中,有固体析出,抽滤得淡黄色固体,产率为54.5%。HRMS(ESI):m/z,calcd for C 22H 23N 9O 2S[M+H] +,478.1774;found:478.1768.
化合物CPU-1001的制备
向化合物49(0.1g,0.21mmol)的DMF溶液中加入CuI(7.78mg,0.041mmol)水溶液和4-甲基苄基叠氮(11g)(55.85mg,0.42mmol)。将反应混合物在微波300W,120℃下搅拌2min,TLC检测。反应液倒入水中,析出固体。抽滤得粗品,柱色谱(DCM/MeOH=20:1)层析,得蓝色固体。产率为33.5%。m.p.208~212℃;HRMS(ESI):m/z,calcd for C 30H 32N 12O 2S[M+H] +,625.2570;found:625.2562.
化合物CPU-1002的制备
如制备CPU-1001所述,使用4-甲氧基苄基叠氮(11h)代替11g制备化合物CPU-1002,得白色固体。产率41.3%。m.p.219~222℃;HRMS(ESI):m/z,calcd for C 30H 32N 12O 3S[M+H] +,641.2519;found:641.2512.
化合物CPU-1003的制备
如制备CPU-1001所述,使用4-三氟甲基苄基叠氮(11l)代替11g制备化合物CPU-1003,得白色固体。产率37.6%。m.p.194~198℃;HRMS(ESI):m/z,calcd for C 30H 29F 3N 12O 2S[M+H] +,679.2287;found:679.2276.
化合物CPU-1004的制备
如制备CPU-1001所述,使用4-三氟甲氧基苄基叠氮(11m)代替11g制备化合物CPU-1004,得白色固体。产率39.0%。m.p.199~204℃;HRMS(ESI):m/z,calcd for C 30H 29F 3N 12O 3S[M+H] +,695.2237;found:695.2239.
实施例8
通式化合物Ⅻ(CPU1201-CPU1212)的制备。
Figure PCTCN2020084163-appb-000024
化合物CPU-1204的制备
向化合物34(0.1g,0.26mmol)的DMF溶液中加入CuI(7.78mg,0.041mmol)水溶液和4-氟苄基叠氮(11d)(55.85mg,0.42mmol)。将反应混合物在微波300W,120℃下搅拌5min,TLC检测。反应液倒入水中,析出固体。抽滤得粗品,柱色谱(DCM/MeOH=20:1)层析,得白色固体。产率为35.5%。m.p.178~180℃;HRMS(ESI):m/z,calcd for C 23H 26FN 11OS[M+H] +,524.2105;found:524.2098.
化合物CPU-1205的制备
如制备CPU-1204所述,使用4-氯苄基叠氮(11e)代替11d制备化合物CPU-1205,得白色固体。产率37.3%。m.p.200~203℃;HRMS(ESI):m/z,calcd for C 23H 26ClN 11OS[M+H] +,540.1809;found:540.1830.
化合物CPU-1206的制备
如制备CPU-1204所述,使用4-溴苄基叠氮(11f)代替11d制备化合物CPU-1206,得白色固体。产率32.1%。m.p.175~177℃;HRMS(ESI):m/z,calcd for C 23H 26BrN 11OS[M+H] +,584.1304;found:584.1297.
化合物CPU-1207的制备
如制备CPU-1204所述,使用4-甲基苄基叠氮(11g)代替11d制备化合物CPU-1207,得白色固体。产率37.2%。m.p.200~205℃;HRMS(ESI):m/z,calcd for C 24H 29N 11OS[M+H] +,520.2356;found:520.2376.
化合物CPU-1208的制备
如制备CPU-1204所述,使用4-甲氧基苄基叠氮(11h)代替11d制备化合物CPU-1208,得白色固体。产率34.6%。m.p.210~212℃;HRMS(ESI):m/z,calcd for C 24H 29N 11O 2S[M+H] +,536.2305;found:536.2299.
化合物CPU-1209的制备
如制备CPU-1204所述,使用3,4-二甲氧基苄基叠氮(11i)代替11d制备化合物CPU-1209,得白色固体。产率39.5%。m.p.200~202℃;HRMS(ESI):m/z,calcd for C 25H 31N 11O 3S[M+H] +,566.2410;found:566.2403.
化合物CPU-1210的制备
如制备CPU-1204所述,使用4-三氟甲氧基苄基叠氮(11m)代替11d制备化合物CPU-1210,得白色固体。产率34.4%。m.p.210~213℃;HRMS(ESI):m/z,calcd for C 24H 27F 3N 11O 2S[M+H] +,590.2022;found:590.2010.
化合物CPU-1212的制备
如制备CPU-1204所述,使用4-三氟甲基苄基叠氮(11l)代替11g制备化合物CPU-1212,得白色固体。产率37.1%。m.p.175~180℃;HRMS(ESI):m/z,calcd for C 24H 27F 3N 11OS[M+H] +,574.2073;found:574.2079.:
实施例9:是本发明部分化合物的药理学试验及结果:
(1)化合物在体外对肿瘤细胞增殖抑制试验
试验目的:观察供试化合物对肿瘤细胞的增殖抑制作用。机制研究表明:三阴性乳腺癌MDA-MB-436细胞和结肠癌HCT116细胞对于谷氨酰胺高度敏感,过分依赖谷氨酰胺维持细胞的生长和生殖,呈现出“谷氨酰胺成瘾性”。同时,肿瘤基因图谱表明:MDA-MB-436和HCT116细胞的谷氨酰胺酶GLS1基因水平和蛋白水平高度表达,而且GLS1表现出很强的酶活性。因此,化合物对这两株细胞的增殖抑制作用可以体现所设计的化合物是通过抑制GLS1从而达到抗肿瘤细胞增殖的作用。
试验原理:MTT分析法以活细胞代谢物还原剂MTT(全称为3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴盐,商品名:噻唑蓝)为基础。MTT为黄色化合物,是一种接受氢离子的染料,可作用于活细胞线粒体中的呼吸链,在琥珀酸脱氢酶和细胞色素C的作用下tetrazolium环开裂,生成蓝色的formazan结晶,formazan结晶的生成量仅与活细胞数目成正比(细胞死亡则琥珀酸脱氢酶消失,不能将MTT还原)。还原生成的formazan结晶可在DMSO中溶解,利用酶标仪测定492nm处的光密度OD值,以反映出活细胞数目。
试验方法:1)接种细胞:在含10%FBS的培养液中待细胞长至对数生长期,用胰酶消化并配成单个细胞悬液,分别以每孔6000个HCT116或4000个MDA-MB-436细胞接种到96孔板;2)给药:37℃,5%CO 2培养24h后,以DMSO溶解待检化合物并以培养液分别将溶解后的化合物稀释至0.1M/L,分别以浓度梯度10nM、100nM、1μM、10μM、100μM给药,并设空白组及溶剂对照组;3)37℃,5%CO 2继续培养72h;4)呈色:每孔加MTT溶液(5mg/ml)20μl,继续孵育4小时,小心吸弃孔内培养上清液。每孔加入150μl DMSO,振荡10分钟,使结晶物充分融解;5)比色:选择492nm波长,在酶联免疫监测仪上测定各孔光吸收值,记录结果,计算生长抑制率,绘制生长抑制曲线。
表1.本发明部分化合物对肿瘤细胞(MDA-MB-436、HCT116)增殖抑制试验结果
化合物编号 IC 50/μM(MDA-MB-436) IC 50/μM(HCT116)
CPU-101 2.26 4.45
CPU-102 16.4 13.6
CPU-103 29.3 19.4
CPU-104 1.06 5.70
CPU-105 9.44 N.A.
CPU-106 1.70 17.7
CPU-107 3.46 3.51
CPU-201 1.16 4.78
CPU-202 2.95 5.14
CPU-203 10.67 1.05
CPU-204 0.35 1.09
CPU-205 1.1 3.41
CPU-206 4.06 1.85
CPU-207 1.79 1.57
CPU-301 0.18 0.15
CPU-307 0.63 0.23
CPU-308 0.40 0.38
CPU-309 0.20 0.72
CPU-310 0.34 0.27
CPU-403 2.0 0.81
CPU-404 6.5 1.32
CPU-405 8.6 2.40
CPU-406 4.2 1.94
CPU-407 2.2 1.02
CPU-408 1.57 0.83
CPU-409 1.58 0.96
CPU-410 24.4 14.1
CPU-411 0.21 0.92
CPU-412 1.07 1.3
CPU-603 2.83 7.25
CPU-604 3.08 1.15
CPU-605 1.42 1.02
CPU-606 1.19 0.56
CPU-607 2.04 1.45
CPU-608 2.26 2.75
CPU-609 0.47 0.57
CPU-610 1.03 1.24
CPU-611 1.02 1.24
CPU-612 0.84 1.06
CPU-807 1.14 0.68
CPU-808 1.54 0.49
CPU-812 1.73 0.79
CPU-1001 0.89 0.46
CPU-1002 0.38 0.65
CPU-1003 0.32 0.60
CPU-1004 2.50 1.39
CPU-1005 0.91 0.30
CPU-1006 0.42 0.51
CPU-1007 1.03 0.24
(2)化合物在体外对谷氨酰胺水解酶GLS1的抑制作用试验
试验目的:确证待测化合物是否是通过作用于GLS1,从而阻断谷氨酰胺代谢来影响肿瘤细胞生长生殖。
试验步骤:人源GLS1蛋白(0.1mMhKGA)与一定浓度的化合物在50mMTris-Acetate pH=8.6,0.2mM EDTA一起25℃孵育10min。然后,加入200mM谷氨酰胺,开始第一步反应,37℃反应60分钟。加入0.6M HCl淬灭反应。再加入3.7units GDH,160mM Tris-Acetate pH=9.4,400mM hydrazine,5mM ADP,2mM NAD +,25℃孵育30min。最后,检测样品在340nm下的吸光度值。
表2 本发明部分化合物对谷氨酰胺水解酶GLS1的抑制作用试验结果
化合物编号 IC 50/μM(GLS1)
CPU-104 2.46
CPU-105 27.04
CPU-107 1.57
CPU-108 4.57
CPU-109 0.81
CPU-112 1.76
CPU-117 6.01
CPU-201 0.71
CPU-202 0.67
CPU-203 1.97
CPU-204 0.88
CPU-205 0.99
CPU-206 0.63
CPU-207 0.33
CPU-301 0.054
CPU-307 0.32
CPU-308 0.66
CPU-309 0.22
CPU-310 0.65
CPU-403 0.040
CPU-404 0.016
CPU-405 0.032
CPU-406 0.016
CPU-407 0.012
CPU-408 0.0081
CPU-409 0.010
CPU-410 0.016
CPU-411 0.0083
CPU-412 0.014
CPU-603 0.039
CPU-604 0.012
CPU-605 0.009
CPU-606 0.00077
CPU-607 0.023
CPU-608 0.057
CPU-609 0.019
CPU-610 0.012
CPU-611 0.017
CPU612 0.016
CPU-801 0.038
CPU-802 0.049
CPU-803 0.026
CPU-804 0.041
CPU-805 0.043
CPU-806 0.045
CPU-807 0.0083
CPU-808 0.011
CPU-809 0.024
CPU-810 0.013
CPU-811 0.011
CPU-812 0.0099
CPU-1204 11.57
CPU-1205 5.54
CPU-1206 7.81
CPU-1207 3.58
CPU-1208 5.96
CPU-1209 12.36
CPU-1210 3.33
CPU-1211 17.79
CPU-1212 4.40
(3)蛋白热稳定性迁移实验
实验目的:考察小分子化合物和谷氨酰胺酶GLS1蛋白之间的相互作用。确证抑制剂是否是直接作用于GLS1蛋白。
实验流程:以SYPRO Orange(Invitrogen)作为荧光染料监测体系荧光值的变化,激发光和发射光波长分别设定为492nm(FAM)和610nm(ROX)。在20μL反应缓冲溶液中(25mM HEPES pH 8.0,150mM NaCl)中加入2μM GLS1蛋白,5X荧光染料和不同浓度化合物。在7500Fast RT-PCR  System(ABI)仪器上,以1%升温速率,将体系温度从25℃逐渐升温至95℃,同时以20秒为间隔记录荧光强度随温度的变化情况。进一步,在Protein Thermal Shift Software Version 1.1(ABI)程序中,利用Boltzmann拟合方法,计算不同化合物浓度条件下EED的溶解温度(Tm)。实验结果如图1所示:
(4)表明等离子共振实验
表面等离子共振测试采用BIACORE T200仪器(GE Healthcare)完成。将新鲜纯化的EED蛋白(浓度10mg/ml)用10mM CH 3COONa(pH 4.2)稀释至0.1mg/ml,通过标准氨基偶联方法将GLS1蛋白偶联至CM5芯片。采用HBS-EP缓冲溶液(10mM HEPES(pH 7.4),150mM NaCl,3mM EDTA,0.005%(v/v)surfactant P20)将GLS1抑制剂逐级稀释后,以20μl/s的流速连续进样60s,解离120s,记录该过程中响应信号随时间的变化。以BIA Evaluation Software(GE Healthcare)程序中动力学分析模块,计算GLS1抑制剂与GLS1蛋白的结合速率常数(K on),解离速率常数(K off)及解离常数(K d)。实验结果如图2所示:
(5)细胞水平谷氨酸含量测定实验
机制研究表明:GLS1抑制剂通过抑制GLS1的活性,从而阻断谷氨酰胺的水解,会造成细胞内谷氨酰胺的水解产物谷氨酸的减少。因此,可以通过检测细胞内谷氨酸的含量,来间接反映化合物对GLS1的抑制作用。我们对CPU-301和CB839处理的HCT116细胞内的谷氨酸含量进行测定,结果如图3所示。实验结果表明:化合物CPU-301和CB839可以明显地呈浓度依赖性减低细胞内谷氨酸含量,间接证明了化合物CPU-301是通过抑制GLS1而发挥作用。
(6)细胞中ROS含量测定实验
ROS是癌细胞生长的关键调节因子。氧化应激的诱导可导致癌细胞的优先杀伤。对ROS有直接或间接作用的各种药物已被用于有效的癌症治疗。机制研究表明:GLS1抑制剂通过阻断谷氨酰胺代谢,可以促进肿瘤细胞中ROS水平的升高,从而起到一定的杀伤性肿瘤的作用。我们对CPU-301和CB839处理的HCT116细胞内的活性氧含量进行测定,结果如图4所示。实验结果表明:化合物CPU-301和CB839可以明显地呈浓度依赖地方式诱导细胞内ROS水平升高,对肿瘤细胞造成一定的杀伤作用。

Claims (8)

  1. 具有通式(I)的含有三氮唑结构的谷氨酰胺酶GLS1抑制剂或其可药用的盐,
    Figure PCTCN2020084163-appb-100001
    其中,n为1-4的整数;
    L为:CH 2SCH 2、CH 2CH 2、CH 2CH 2CH 2、CH 2、CH 2S、SCH 2、CH 2NHCH 2、CH=CH或者
    Figure PCTCN2020084163-appb-100002
    其中CH或者CH 2中的任何一个氢都可以被烷基或者烷氧基取代;-NH基团中的氢可以被烷基取代;-CH 2CH 2、CH 2CH 2CH 2基团中的单个CH 2可以被羟基取代;R 1和R 2两个基团与它们所连接的原子可以任选地一起形成环烷烃;
    X 1、X 2分别为:S、O及CH=CH,其中CH中的任何一个氢都可以被烷基取代;
    Y为:H或者CH 2O(CO)R 5,R 5为:H、取代的或者不取代的烷基、烷氧基、氨基、杂环烷基、芳香环烷基或者杂环烷氧基;
    R 1、R 2分别为:H、烷基、烷氧基或羟基;
    R 3为:烷烃、取代的烷烃、芳香烃、芳香烷烃、氰基、环烷烃、环芳香烷烃、氢、卤素、卤素取代的烷烃、杂原子芳香烃、杂原子芳香烷烃、杂原子环烷烃、C(R 6)(R 7)(R 8)、N(R 9)(R 10)、OR 11,上述取代基团中的羟基可乙酰化为C(O)R 7
    R 4为:烷烃、取代的烷烃、环烷烃、芳香烃、芳香烷烃、取代的芳香烃或取代的芳香烷烃;
    R 6、R 7、R 8分别为:氢、取代或者不取代的烷基、羟基、羟基烷基、氨基、乙酰氨基、烯烃、炔烃、烷氧基、芳香基、芳香烷基、环烷烃、杂环或杂原子芳香烃;
    R 9、R 10分别为:氢、取代或者不取代的烷基、羟基、羟基烷基、氨基、乙酰氨基、烯烃、炔烃、烷氧基、芳香基、芳香烷基、环烷烃、杂环、杂原子芳香烃,上述取代基团中的羟基可乙酰化为C(O)R 7
    R 11为:氢、取代或者不取代的烷基、羟基、羟基烷基、氨基、乙酰氨基、烯烃、炔烃、烷氧基、芳香基、芳香烷基、环烷烃、杂环、杂原子芳香烃,上述取代基团中的羟基可乙酰化为C(O)R 7
  2. 根据权利要求1所述的具有通式(I)的含有三氮唑结构的谷氨酰胺酶GLS1抑制剂或其可药用的盐,其特征在于:所述L为CH 2CH 2
  3. 根据权利要求1所述的具有通式(I)的含有三氮唑结构的谷氨酰胺酶GLS1抑制剂或其可药用的盐,为以下任一种:
    Figure PCTCN2020084163-appb-100003
    其中,R为-CH 2CH 2OH、-C(CH 3) 2OH、-C(CH 3)(OH)(C 2H 5)、-CH 2CH 2COOH、-COOC 2H 5、
    Figure PCTCN2020084163-appb-100004
    -Ph、4’-CH 3-Ph、4’-CF 3-Ph、4’-F-Ph、4’-Cl-Ph、4’-Br-Ph、4’-OCH 3-Ph、3’-OCH 3-Ph、3’-OH-Ph、3’-NH 2-Ph、4’-NH 2-Ph、2’-Pyridine;
    Figure PCTCN2020084163-appb-100005
    其中,R为-Ph、4’-CN-Ph、4’-NO 2-Ph、4’-F-Ph、4’-Cl-Ph、4’-Br-Ph、4’-CH 3-Ph、4’-OCH 3-Ph、3’-OCH 3-4’-OCH 3-Ph、2’-CH 3-4’-CH 3-Ph、2’-CH 3-6’-CH 3-Ph;
    Figure PCTCN2020084163-appb-100006
    其中,R为4’-CH 3-Ph、4’-CN-Ph、4’-NO 2-Ph、4’-F-Ph、4’-Cl-Ph、4’-Br-Ph、4’-OCH 3-Ph、3’-OCH 3-4’-OCH 3-Ph、2’-CH 3-4’-CH 3-Ph、2’-CH 3-6’-CH 3-Ph、4’-CF 3-Ph、4’-OCF 3-Ph;
    Figure PCTCN2020084163-appb-100007
    其中,R为-Ph、4’-CN-Ph、4’-NO 2-Ph、4’-F-Ph、4’-Cl-Ph、4’-Br-Ph、4’-CH 3-Ph、4’-OCH 3-Ph、3’-OCH 3-4’-OCH 3-Ph、4’-OCF 3-Ph、2’-CH 3-6’-CH 3-Ph、4’-CF 3-Ph;
    Figure PCTCN2020084163-appb-100008
    其中,R为-Ph、4’-CN-Ph、4’-NO 2-Ph、4’-F-Ph、4’-Cl-Ph、4’-Br-Ph、4’-CH 3-Ph、4’-OCH 3-Ph、3’-OCH 3-4’-OCH 3-Ph、4’-OCF 3-Ph、2’-CH 3-6’-CH 3-Ph、4’-CF 3-Ph;
    Figure PCTCN2020084163-appb-100009
    其中,R为-Ph、4’-CN-Ph、4’-NO 2-Ph、4’-F-Ph、4’-Cl-Ph、4’-Br-Ph、4’-OCH 3-Ph、3’-OCH 3-4’-OCH 3-Ph、4’-CH 3-Ph、2’-CH 3-6’-CH 3-Ph、4’-CF 3-Ph、4’-OCF 3-Ph;
    Figure PCTCN2020084163-appb-100010
    其中,R为-Ph、4’-CN-Ph、4’-NO 2-Ph、4’-F-Ph、4’-Cl-Ph、4’-Br-Ph、4’-CH 3-Ph、4’-OCH 3-Ph、3’-OCH 3-4’-OCH 3-Ph、4’-OCF 3-Ph、2’-CH 3-6’-CH 3-Ph、4’-CF 3-Ph;
    Figure PCTCN2020084163-appb-100011
    其中,R为-Ph、4’-CN-Ph、4’-NO 2-Ph、4’-F-Ph、4’-Cl-Ph、4’-Br-Ph、4’-CH 3-Ph、4’-OCH 3-Ph、3’-OCH 3-4’-OCH 3-Ph、4’-OCF 3-Ph、2’-CH 3-6’-CH 3-Ph、4’-CF 3-Ph;
    Figure PCTCN2020084163-appb-100012
    其中,R为-Ph、4’-CN-Ph、4’-NO 2-Ph、4’-F-Ph、4’-Cl-Ph、4’-Br-Ph、4’-CH 3-Ph、4’-OCH 3-Ph、3’-OCH 3-4’-OCH 3-Ph、4’-OCF 3-Ph、2’-CH 3-6’-CH 3-Ph、4’-CF 3-Ph;
    Figure PCTCN2020084163-appb-100013
    其中,R为-Ph、4’-CN-Ph、4’-NO 2-Ph、4’-F-Ph、4’-Cl-Ph、4’-Br-Ph、4’-CH 3-Ph、4’-OCH 3-Ph、3’-OCH 3-4’-OCH 3-Ph、4’-OCF 3-Ph、2’-CH 3-6’-CH 3-Ph、4’-CF 3-Ph;
    Figure PCTCN2020084163-appb-100014
    其中,R为-Ph、4’-CN-Ph、4’-NO 2-Ph、4’-F-Ph、4’-Cl-Ph、4’-Br-Ph、4’-CH 3-Ph、4’-OCH 3-Ph、3’-OCH 3-4’-OCH 3-Ph、4’-OCF 3-Ph、2’-CH 3-6’-CH 3-Ph、4’-CF 3-Ph;
    Figure PCTCN2020084163-appb-100015
    其中,R为-Ph、4’-CN-Ph、4’-NO 2-Ph、4’-F-Ph、4’-Cl-Ph、4’-Br-Ph、4’-CH 3-Ph、4’-OCH 3-Ph、3’-OCH 3-4’-OCH 3-Ph、4’-OCF 3-Ph、2’-CH 3-6’-CH 3-Ph、4’-CF 3-Ph。
  4. 一种药物组合物,其含有治疗有效量的一种或多种如权利要求1-3中任一项所述的具有通式(I)的含有三氮唑结构的谷氨酰胺酶GLS1抑制剂或其可药用的盐,及药学上可接受的载体。
  5. 一种药物组合物,其含有治疗有效量的一种或多种如权利要求1-3中任一项所述的具有通式(I)的含有三氮唑结构的谷氨酰胺酶GLS1抑制剂或其可药用的盐,及药学上可接受的辅料。
  6. 根据权利要求1所述的具有通式(I)的含有三氮唑结构的谷氨酰胺酶GLS1抑制剂或其可药用的盐的制备方法,包括如下步骤:
    Figure PCTCN2020084163-appb-100016
    化合物II分别和不同的炔或者叠氮反应,得到对应的化合物III-1或者III-2,化合物III-1、III-2在CuI的催化下,分别和不同的叠氮化合物或者炔发生Click反应得到具有通式(I)的含有三氮唑结构的谷氨酰胺酶GLS1抑制剂终产物。
  7. 权利要求1-3任一项所述的具有通式(I)的含有三氮唑结构的谷氨酰胺酶GLS1抑制剂或其可药用的盐在制备治疗GLS1介导的疾病的药物中的用途。
  8. 如权利要求7所述的用途,所述疾病为结肠癌、三阴性乳腺癌或肺癌。
PCT/CN2020/084163 2019-09-05 2020-04-10 含有三氮唑结构的谷氨酰胺酶gls1抑制剂或其可药用的盐、其制备方法及用途 WO2021042723A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910839919.2 2019-09-05
CN201910839919.2A CN110746416A (zh) 2019-09-05 2019-09-05 含有三氮唑结构的谷氨酰胺酶gls1抑制剂或其可药用的盐、其制备方法及用途

Publications (1)

Publication Number Publication Date
WO2021042723A1 true WO2021042723A1 (zh) 2021-03-11

Family

ID=69276188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084163 WO2021042723A1 (zh) 2019-09-05 2020-04-10 含有三氮唑结构的谷氨酰胺酶gls1抑制剂或其可药用的盐、其制备方法及用途

Country Status (2)

Country Link
CN (1) CN110746416A (zh)
WO (1) WO2021042723A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110746416A (zh) * 2019-09-05 2020-02-04 中国药科大学 含有三氮唑结构的谷氨酰胺酶gls1抑制剂或其可药用的盐、其制备方法及用途
CN111440199B (zh) * 2020-03-11 2023-02-24 中国药科大学 大环类谷氨酰胺酶gls1抑制剂或其可药用的盐、其制备方法及用途
CN114560855B (zh) * 2021-03-26 2023-05-23 成都苑东生物制药股份有限公司 环烷基甲酰胺类衍生物、其制备方法及用途
CN114805346A (zh) * 2021-07-08 2022-07-29 成都硕德药业有限公司 杂环类衍生物、其制备方法及用途
CN115594683B (zh) * 2021-11-02 2023-06-16 杭州禹胜医药科技有限公司 谷氨酰胺酶gls1抑制剂及其制备方法与应用
CN115286625A (zh) * 2022-06-23 2022-11-04 浙江工业大学 谷氨酰胺酶别构位点共价抑制剂及其制备方法与应用
CN117003745A (zh) * 2023-07-20 2023-11-07 南京市第一医院 Gls1/hdac双靶点抑制剂及其合成方法和应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104220070A (zh) * 2011-11-21 2014-12-17 卡利泰拉生物科技公司 谷氨酰胺酶的杂环抑制剂
WO2015138902A1 (en) * 2014-03-14 2015-09-17 Calithera Biosciences, Inc. Combination therapy with glutaminase inhibitors
CN104936954A (zh) * 2012-11-22 2015-09-23 安吉奥斯医药品有限公司 化合物及其使用方法
CN105051041A (zh) * 2012-11-16 2015-11-11 卡利泰拉生物科技公司 杂环谷氨酰胺酶抑制剂
WO2016004418A1 (en) * 2014-07-03 2016-01-07 Board Of Regents, University Of Texas System Glutaminase inhibitor therapy
CN105283182A (zh) * 2012-12-03 2016-01-27 卡利泰拉生物科技公司 用谷氨酰胺酶的杂环抑制剂治疗癌症
WO2016054388A1 (en) * 2014-10-03 2016-04-07 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Glutaminase inhibitors
CN106029659A (zh) * 2014-01-06 2016-10-12 理森制药股份公司 谷氨酰胺酶抑制剂
CN106231900A (zh) * 2014-03-21 2016-12-14 阿吉奥斯制药公司 化合物及其使用方法
CN106232598A (zh) * 2014-04-30 2016-12-14 辉瑞公司 环烷基‑连接的二杂环衍生物
CN106890184A (zh) * 2015-12-18 2017-06-27 侯以琳 抗肿瘤的谷氨酰胺酶抑制剂和肿瘤血管生成抑制剂药物组合物及其应用
CN110746416A (zh) * 2019-09-05 2020-02-04 中国药科大学 含有三氮唑结构的谷氨酰胺酶gls1抑制剂或其可药用的盐、其制备方法及用途

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104220070A (zh) * 2011-11-21 2014-12-17 卡利泰拉生物科技公司 谷氨酰胺酶的杂环抑制剂
CN105051041A (zh) * 2012-11-16 2015-11-11 卡利泰拉生物科技公司 杂环谷氨酰胺酶抑制剂
CN104936954A (zh) * 2012-11-22 2015-09-23 安吉奥斯医药品有限公司 化合物及其使用方法
CN105283182A (zh) * 2012-12-03 2016-01-27 卡利泰拉生物科技公司 用谷氨酰胺酶的杂环抑制剂治疗癌症
CN106029659A (zh) * 2014-01-06 2016-10-12 理森制药股份公司 谷氨酰胺酶抑制剂
WO2015138902A1 (en) * 2014-03-14 2015-09-17 Calithera Biosciences, Inc. Combination therapy with glutaminase inhibitors
CN106231900A (zh) * 2014-03-21 2016-12-14 阿吉奥斯制药公司 化合物及其使用方法
CN106232598A (zh) * 2014-04-30 2016-12-14 辉瑞公司 环烷基‑连接的二杂环衍生物
WO2016004418A1 (en) * 2014-07-03 2016-01-07 Board Of Regents, University Of Texas System Glutaminase inhibitor therapy
WO2016054388A1 (en) * 2014-10-03 2016-04-07 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Glutaminase inhibitors
CN106890184A (zh) * 2015-12-18 2017-06-27 侯以琳 抗肿瘤的谷氨酰胺酶抑制剂和肿瘤血管生成抑制剂药物组合物及其应用
CN110746416A (zh) * 2019-09-05 2020-02-04 中国药科大学 含有三氮唑结构的谷氨酰胺酶gls1抑制剂或其可药用的盐、其制备方法及用途

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FINLAY M. RAYMOND V., ANDERTON MARK, BAILEY ANDREW, BOYD SCOTT, BROOKFIELD JOANNA, CAIRNDUFF CERI, CHARLES MARK, CHEASTY ANNE, CRI: "Discovery of a Thiadiazole–Pyridazine-Based Allosteric Glutaminase 1 Inhibitor Series That Demonstrates Oral Bioavailability and Activity in Tumor Xenograft Models", JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY, vol. 62, no. 14, 25 July 2019 (2019-07-25), pages 6540 - 6560, XP055788289, ISSN: 0022-2623, DOI: 10.1021/acs.jmedchem.9b00260 *
KUMBHARE RAVINDRA M., DADMAL TULSHIRAM L., PAMANJI R., KOSURKAR UMESH B., VELATOORU L. R., APPALANAIDU K., KHAGESWARA RAO Y., VENK: "Synthesis of novel fluoro 1,2,3-triazole tagged amino bis(benzothiazole) derivatives, their antimicrobial and anticancer activity", MEDICINAL CHEMISTRY RESEARCH, BIRKHAEUSER, BOSTON., US, vol. 23, no. 10, 1 October 2014 (2014-10-01), US, pages 4404 - 4413, XP055788283, ISSN: 1054-2523, DOI: 10.1007/s00044-014-1006-0 *
RUDDARRAJU RADHAKRISHNAM RAJU, MURUGULLA ADHARVANA CHARI, KOTLA RAVINDAR, TIRUMALASETTY MUNI CHANDRA BABU, WUDAYAGIRI RAJENDRA, DO: "Design, synthesis, anticancer activity and docking studies of theophylline containing 1,2,3-triazoles with variant amide derivatives", MEDCHEMCOMM, ROYAL SOCIETY OF CHEMISTRY, UNITED KINGDOM, vol. 8, no. 1, 1 January 2017 (2017-01-01), United Kingdom, pages 176 - 183, XP055788287, ISSN: 2040-2503, DOI: 10.1039/C6MD00479B *

Also Published As

Publication number Publication date
CN110746416A (zh) 2020-02-04

Similar Documents

Publication Publication Date Title
WO2021042723A1 (zh) 含有三氮唑结构的谷氨酰胺酶gls1抑制剂或其可药用的盐、其制备方法及用途
Asemanipoor et al. Synthesis and biological evaluation of new benzimidazole-1, 2, 3-triazole hybrids as potential α-glucosidase inhibitors
Abouzid et al. Pyridazinone derivatives: Design, synthesis, and in vitro vasorelaxant activity
CN103998434B (zh) 作为dhodh抑制剂的噻唑衍生物及其应用
CN105646454B (zh) 含异羟肟酸片段的2-芳胺基嘧啶类衍生物及制备和应用
CN108239083A (zh) 芳香烃受体调节剂
CN107759564B (zh) 三氮唑吡啶甲酰甘氨酸类化合物、其法及医药用途
Ali et al. Design and synthesis of quinazoline-3, 4-(4H)-diamine endowed with thiazoline moiety as new class for DPP-4 and DPPH inhibitor
CN107383004B (zh) 2-氨基咪唑并吡啶类衍生物及制备和应用
WO2016101553A1 (zh) 一种新型的pi3k激酶抑制剂
JP4363530B2 (ja) タンパク質キナーゼ阻害剤
TW202220964A (zh) 喹唑啉酮hsd17b13抑制劑及其用途
Moghimi et al. Design and synthesis of novel pyridazine N-aryl acetamides: In-vitro evaluation of α-glucosidase inhibition, docking, and kinetic studies
CN113773305B (zh) 一种氨基嘧啶衍生物及其作为egfr酪氨酸激酶抑制剂的应用
WO2020172932A1 (zh) 苯胺类wdr5蛋白-蛋白相互作用抑制剂及其制法和用途
TW200902515A (en) Chemical compounds
JP2023542845A (ja) Rnaヘリカーゼdhx33を阻害する多環式化合物及びその応用
CN111533721B (zh) 苯并吡喃酮或喹啉酮类化合物及其应用
WO2023178928A1 (zh) 2-氨基-4-吲哚基嘧啶类化合物及其制备方法与应用
WO2020073749A1 (zh) 吡咯并三嗪类化合物及其应用
CN108358850A (zh) PARP-1和Tankyrase1/2多靶点抑制剂、其制法及用途
CN107176947B (zh) 苯基吡啶类化合物及其应用
RU2675854C2 (ru) Кристаллическая форма азолбензольного производного
CN113248481A (zh) Ezh2共价不可逆抑制剂、制备方法及其用途
CN110950807B (zh) 联芳基类化合物、其制备方法、药物组合物及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20859989

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20859989

Country of ref document: EP

Kind code of ref document: A1