WO2021042344A1 - 一种体声波谐振装置及一种体声波滤波器 - Google Patents

一种体声波谐振装置及一种体声波滤波器 Download PDF

Info

Publication number
WO2021042344A1
WO2021042344A1 PCT/CN2019/104601 CN2019104601W WO2021042344A1 WO 2021042344 A1 WO2021042344 A1 WO 2021042344A1 CN 2019104601 W CN2019104601 W CN 2019104601W WO 2021042344 A1 WO2021042344 A1 WO 2021042344A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
layer
acoustic wave
electrode
bulk acoustic
Prior art date
Application number
PCT/CN2019/104601
Other languages
English (en)
French (fr)
Inventor
刘宇浩
Original Assignee
刘宇浩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘宇浩 filed Critical 刘宇浩
Priority to CN201980098511.2A priority Critical patent/CN114128139A/zh
Priority to PCT/CN2019/104601 priority patent/WO2021042344A1/zh
Priority to US17/640,352 priority patent/US20220416765A1/en
Priority to EP19944526.3A priority patent/EP4027514A4/en
Publication of WO2021042344A1 publication Critical patent/WO2021042344A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/173Air-gaps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H19/00Networks using time-varying elements, e.g. N-path filters
    • H03H19/002N-path filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02015Characteristics of piezoelectric layers, e.g. cutting angles
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02157Dimensional parameters, e.g. ratio between two dimension parameters, length, width or thickness
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02228Guided bulk acoustic wave devices or Lamb wave devices having interdigital transducers situated in parallel planes on either side of a piezoelectric layer
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • H03H9/132Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials characterized by a particular shape
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/294Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Definitions

  • the present invention relates to the field of semiconductor technology. Specifically, the present invention relates to a bulk acoustic wave resonator device and a bulk acoustic wave filter.
  • the radio frequency (RF) front-end chips of wireless communication equipment include power amplifiers, antenna switches, radio frequency filters, duplexers, multiplexers, and low noise amplifiers.
  • radio frequency filters include Surface Acoustic Wave (SAW) filters, Bulk Acoustic Wave (BAW) filters, Micro-Electro-Mechanical System (MEMS) filters, and IPD (Integrated Passive) filters. Devices) and so on.
  • SAW resonators and BAW resonators have high quality factor values (Q values). They are RF filters with low insertion loss and high out-of-band suppression made from SAW resonators and BAW resonators, namely SAW filters and BAW filters , Is the mainstream radio frequency filter used in wireless communication equipment such as mobile phones and base stations.
  • the Q value is the quality factor value of the resonator, defined as the center frequency divided by the 3dB bandwidth of the resonator.
  • the frequency of use of SAW filters is generally 0.4GHz to 2.7GHz, and the frequency of use of BAW filters is generally 0.7GHz to 7GHz.
  • the BAW resonator Compared with the SAW resonator, the BAW resonator has better performance, but due to the complicated process steps, the manufacturing cost of the BAW resonator is higher than that of the SAW resonator.
  • frequency band overlapping technologies such as carrier aggregation
  • mutual interference between wireless frequency bands becomes more and more serious.
  • High-performance BAW technology can solve the problem of mutual interference between frequency bands.
  • wireless mobile networks have introduced higher communication frequency bands.
  • BAW technology can solve the filtering problem of high frequency bands.
  • Figure 1a shows a BAW filter including a ladder circuit composed of multiple BAW resonators, where f1, f2, f3, and f4 represent 4 different frequencies, respectively.
  • the metal on both sides of the piezoelectric layer of the resonator generates alternating positive and negative voltages.
  • the piezoelectric layer generates sound waves through the alternating positive and negative voltages, and the sound waves in the resonator propagate vertically.
  • the acoustic wave needs to be totally reflected on the upper surface of the upper metal electrode and the lower surface of the lower metal electrode to form a standing acoustic wave.
  • the condition of acoustic wave reflection is that the acoustic impedance of the contact area between the upper surface of the upper metal electrode and the lower surface of the lower metal electrode is greatly different from that of the metal electrode.
  • FBAR Film Bulk Acoustic Wave Resonator
  • the resonator has air above the resonant region and a cavity below it because of the acoustic impedance of air.
  • the acoustic impedance of the metal electrode is very different, and the acoustic wave can be totally reflected on the upper surface of the upper metal electrode and the lower surface of the lower metal electrode to form a standing wave.
  • Fig. 1b shows a schematic structural diagram of a cross-section A of an FBAR 100.
  • the FBAR 100 includes: a substrate 101 on which a cavity 101a is included; and an active layer 103 on the substrate 101.
  • the active layer 103 includes a piezoelectric layer 105 and electrode layers 107 (ie, a lower electrode layer) and 109 (ie, an upper electrode layer) located on both sides of the piezoelectric layer 105, wherein the electrode The layer 107 contacts the substrate 101.
  • the resonant region 111 on the active layer 103 has an overlap with the substrate 101, so the resonant region 111 is not suspended relative to the cavity 101a.
  • the piezoelectric layer 105 is formed directly on the electrode layer 107, which will cause part of the crystals in the piezoelectric layer 105 (for example, the piezoelectric layer 105 in the horizontal direction). The crystals at the edges on both sides) appear to be obviously turned and not parallel to other crystals, thereby reducing the electromechanical coupling coefficient and Q value of FBAR.
  • the thickness of the electrode layer needs to be adjusted to control the frequency of the resonator.
  • the problem solved by the present invention is to provide a bulk acoustic wave resonator device and a bulk acoustic wave filter.
  • the resonant area of the bulk acoustic wave resonator device is suspended relative to the cavity on the intermediate layer or the substrate, which can improve the resonant area and the non-resonant area The difference in acoustic impedance improves the Q value of the resonant device.
  • the piezoelectric layer of the bulk acoustic wave resonator device does not include a significantly turned crystal, thereby helping to improve the electromechanical coupling coefficient of the resonator device and the Q value of the resonator device.
  • the electrode layer is formed, the width or the distance between a plurality of electrode strips can be adjusted to control the frequency of the resonance device.
  • an embodiment of the present invention provides a bulk acoustic wave resonance device, including: a first layer, the first layer including a cavity on the first side; a first electrode layer, on the first side, on the Within the cavity; a second layer located on the first electrode layer; and a second electrode layer located on the second layer, wherein the first electrode layer includes at least two first electrode strips or The second electrode layer includes at least two second electrode strips.
  • the positions of the first electrode layer and the second electrode layer there is no overlap between the resonance region and the first layer, and the resonance region is suspended relative to the first cavity.
  • the difference between the acoustic impedance of the resonant region and the non-resonant region can be improved, and the Q value of the resonant device can be improved.
  • the width or the distance between the at least two first electrode strips or the at least two second electrode strips can be adjusted to control the frequency of the resonance device.
  • the first electrode layer includes a first polarity
  • the second electrode layer includes a second polarity.
  • the at least two first electrode strips include the first polarity.
  • the at least two second electrode strips include the second polarity.
  • the first electrode layer includes a first polarity and a second polarity
  • the second electrode layer includes the first polarity and the second polarity.
  • the at least two first electrode strips include the first polarity and the second polarity
  • the at least two second electrode strips include the first polarity and the first polarity.
  • Two polarities, wherein the first electrode strips and the second electrode strips corresponding to both sides of the second layer include the first polarity and the second polarity.
  • the first polarity and the second polarity are alternately arranged.
  • the at least two first electrode strips include at least one duty factor, and the value range of the at least one duty factor includes but is not limited to 0.1 to 1. It should be noted that the duty factor is defined as the value obtained by dividing the width of the electrode strips by the distance between the two electrode strips. In some embodiments, the at least two second electrode strips include at least one duty factor, and the value range of the at least one duty factor includes but is not limited to 0.1 to 1.
  • the distance between the at least two first electrode strips is the same, including the first distance. In some embodiments, the distance between the at least two second electrode strips is the same, including the first distance.
  • the distance between the at least two first electrode strips is variable, and includes at least a first distance and a second distance. In some embodiments, the distance between the at least two second electrode strips is variable, and includes at least a first distance and a second distance.
  • the widths of the at least two first electrode strips are the same, including the first width. In some embodiments, the widths of the at least two second electrode strips are the same, including the first width.
  • the widths of the at least two first electrode strips are variable, and include at least a first width and a second width. In some embodiments, the widths of the at least two second electrode strips are variable, and include at least a first width and a second width.
  • the overlapping portion on the second electrode layer that overlaps with the first electrode layer is located above the cavity, and the overlapping portion is located in the cavity with a projection perpendicular to the first layer .
  • the material of the first electrode layer includes but is not limited to at least one of the following: molybdenum, ruthenium, tungsten, platinum, iridium, and aluminum; the material of the second electrode layer includes but is not limited to at least one of the following One: molybdenum, ruthenium, tungsten, platinum, iridium, aluminum.
  • the first layer further includes: an intermediate layer, and the intermediate layer includes the cavity.
  • the material of the intermediate layer includes but is not limited to at least one of the following: polymer, insulating dielectric.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene, photosensitive epoxy resin photoresist, and polyimide.
  • the insulating dielectric includes but is not limited to at least one of the following: aluminum nitride, silicon dioxide, silicon nitride, and titanium oxide.
  • the thickness of the intermediate layer includes, but is not limited to, 0.1 micrometers to 10 micrometers. In some embodiments, the thickness of the intermediate layer includes but is not limited to: 20 micrometers to 100 micrometers.
  • the first layer further includes: a first substrate, and the first substrate includes the cavity.
  • the material of the first substrate includes but is not limited to at least one of the following: silicon, silicon carbide, and glass.
  • the first layer further includes an etching shielding layer, covering at least the bottom or sidewalls of the cavity.
  • the material for the etching shielding layer includes but is not limited to at least one of the following: aluminum nitride, silicon carbide, diamond, silicon nitride, silicon dioxide, aluminum oxide, and titanium dioxide.
  • the thickness of the etching shielding layer includes, but is not limited to, 0.1 ⁇ m to 3 ⁇ m. In other embodiments, the thickness of the etching shielding layer includes but is not limited to: 2 ⁇ m to 6 ⁇ m. It should be noted that the etching shielding layer can protect the intermediate layer or the first substrate when the cavity is formed by etching. In addition, the etched barrier layer can protect the resonance device from corrosion by water and oxygen.
  • the second layer includes a piezoelectric layer, the piezoelectric layer includes a plurality of crystals, the plurality of crystals includes a first crystal and a second crystal, wherein the first crystal and the The second crystal is any two crystals of the plurality of crystals; the first coordinate axis along the first direction corresponds to the height of the first crystal, and the second coordinate axis along the second direction corresponds to the second crystal ⁇ , wherein the first direction and the second direction are the same or opposite.
  • first direction and the second direction are the same: the angle range between the vector along the first direction and the vector along the second direction includes 0 degrees to 5 degrees;
  • a direction opposite to the second direction refers to: the angle range between the vector along the first direction and the vector along the second direction includes 175 degrees to 180 degrees.
  • the first crystal corresponds to a first coordinate system, and the first coordinate system includes the first coordinate axis and a third coordinate axis along a third direction; the second crystal corresponds to a second coordinate
  • the second coordinate system includes the second coordinate axis and a fourth coordinate axis along a fourth direction.
  • the first coordinate system further includes a fifth coordinate axis along the fifth direction
  • the second coordinate system further includes a sixth coordinate axis along the sixth direction.
  • the first direction and the second direction are the same or opposite, and the third direction and the fourth direction are the same or opposite.
  • the third direction and the fourth direction are the same: the angle range between the vector along the third direction and the vector along the fourth direction includes 0 degrees to 5 degrees;
  • the three directions are opposite to the fourth direction: the angle between the vector along the third direction and the vector along the fourth direction includes an angle range of 175 degrees to 180 degrees.
  • the material of the piezoelectric layer includes but is not limited to at least one of the following: aluminum nitride, aluminum oxide aluminum, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, Lead magnesium niobate-lead titanate.
  • the second layer includes a piezoelectric layer
  • the piezoelectric layer includes a plurality of crystals
  • the half width of a rocking curve of the plurality of crystals is less than 2.5 degrees.
  • the rocking curve describes the angular divergence of a specific crystal plane (the crystal plane determined by the diffraction angle) in the sample, expressed by a plane coordinate system, where the abscissa is the difference between the crystal plane and the sample surface.
  • the included angle, the ordinate indicates the diffraction intensity of the crystal plane at a certain included angle
  • the rocking curve is used to indicate the quality of the crystal lattice.
  • the smaller the half-width angle the better the crystal lattice quality.
  • the Full Width at Half Maximum refers to the distance between the points where the value of the two functions before and after the peak is half of the peak in a peak of a function.
  • forming the piezoelectric layer on a flat surface can make the piezoelectric layer not include a crystal that is clearly turned, thereby helping to improve the electromechanical coupling coefficient of the resonant device and the Q value of the resonant device.
  • the resonance device further includes: a second substrate located on a second side of the first layer, and the second side is opposite to the first side.
  • the material of the second substrate includes but is not limited to at least one of the following: silicon, silicon carbide, and glass. It should be noted that the acoustic impedance of the first layer may be small, so as to block the leakage wave between the resonance region and the second substrate.
  • the resonance device further includes a thin film located between the first layer and the second substrate.
  • the thin film includes, but is not limited to, a polycrystalline thin film.
  • the material of the polycrystalline film includes but is not limited to at least one of the following: polycrystalline silicon, polycrystalline silicon nitride, and polycrystalline silicon carbide. It should be noted that the thin film helps prevent the formation of a free electron layer on the surface of the second substrate, thereby reducing the electrical loss of the second substrate.
  • An embodiment of the present invention also provides a bulk acoustic wave filter, which includes: at least one bulk acoustic wave resonator device provided in the foregoing embodiment.
  • Figure 1a is a schematic diagram of the structure of a bulk acoustic wave filter
  • Figure 1b is a schematic diagram of the cross-sectional A structure of an FBAR 100
  • FIG. 2a is a schematic structural diagram of a cross-section A of a bulk acoustic wave resonator device 200 according to an embodiment of the present invention
  • FIG. 2b is a schematic structural diagram of a cross-section B of a bulk acoustic wave resonator device 200 according to an embodiment of the present invention
  • FIG. 3a is a schematic structural diagram of a cross-section A of a bulk acoustic wave resonator device 300 according to an embodiment of the present invention
  • FIG. 3b is a schematic structural diagram of a cross-section B of a bulk acoustic wave resonator device 300 according to an embodiment of the present invention.
  • FIG. 4a is a schematic structural diagram of a cross-section A of a bulk acoustic wave resonator device 400 according to an embodiment of the present invention
  • 4b is a schematic structural diagram of a cross-section B of a bulk acoustic wave resonator device 400 according to an embodiment of the present invention
  • FIG. 5a is a schematic structural diagram of a cross-section A of a bulk acoustic wave resonator device 500 according to an embodiment of the present invention
  • FIG. 5b is a schematic structural diagram of cross-section B of a bulk acoustic wave resonator device 500 according to an embodiment of the present invention.
  • FIG. 6a is a schematic structural diagram of a cross-section A of a bulk acoustic wave resonator device 600 according to an embodiment of the present invention
  • FIG. 6b is a schematic structural diagram of a cross-section B of a bulk acoustic wave resonator device 600 according to an embodiment of the present invention.
  • FIG. 7a is a schematic structural diagram of a cross-section A of a bulk acoustic wave resonator device 700 according to an embodiment of the present invention.
  • FIG. 7b is a schematic structural diagram of a cross-section B of a bulk acoustic wave resonator device 700 according to an embodiment of the present invention.
  • FIG. 8a is a schematic structural diagram of a cross-section A of a bulk acoustic wave resonator device 800 according to an embodiment of the present invention.
  • FIG. 8b is a schematic structural diagram of a cross-section B of a bulk acoustic wave resonator device 800 according to an embodiment of the present invention.
  • FIG. 9a is a schematic structural diagram of a cross-section A of a bulk acoustic wave resonator device 900 according to an embodiment of the present invention.
  • FIG. 9b is a schematic structural diagram of cross-section B of a bulk acoustic wave resonator device 900 according to an embodiment of the present invention.
  • 10a is a schematic structural diagram of a cross-section A of a bulk acoustic wave resonator device 1000 according to an embodiment of the present invention
  • FIG. 10b is a schematic structural diagram of cross-section B of a bulk acoustic wave resonator device 1000 according to an embodiment of the present invention.
  • FIG. 11a is a schematic structural diagram of a cross-section A of a bulk acoustic wave resonator device 1100 according to an embodiment of the present invention
  • FIG. 11b is a schematic structural diagram of a cross-section B of a bulk acoustic wave resonator device 1100 according to an embodiment of the present invention.
  • FIG. 12a is a schematic structural diagram of a cross-section A of a bulk acoustic wave resonator device 1200 according to an embodiment of the present invention
  • FIG. 12b is a schematic structural diagram of a cross-section B of a bulk acoustic wave resonator device 1200 according to an embodiment of the present invention.
  • Figure 13 is a schematic diagram of the structure of a hexagonal crystal
  • Figure 14(i) is a schematic diagram of the structure of an orthorhombic crystal
  • Figure 14(ii) is a schematic diagram of the structure of a tetragonal crystal
  • Figure 14(iii) is a schematic diagram of the structure of a cubic crystal.
  • cross-section A and the cross-section B are two cross-sections orthogonal to each other.
  • the resonance region 111 is not suspended relative to the cavity 101a, and has an overlap with the substrate 101. If the acoustic impedance of the resonant region 111 is close to the acoustic impedance of the non-resonant region, the energy of the resonant region 111 will diffuse to the non-resonant region, thereby causing the Q value of the resonator to decrease.
  • the piezoelectric layer 105 is formed directly on the electrode layer 107, which will cause part of the crystals in the piezoelectric layer 105 (for example, the piezoelectric layer 105 in the horizontal direction).
  • the crystals at the edges on both sides appear to be obviously turned and are not parallel to other crystals, thereby reducing the electromechanical coupling coefficient of the resonant device and the Q value of the resonant device.
  • the thickness of the electrode layer needs to be adjusted to control the frequency of the resonator.
  • the inventors of the present invention found that by adjusting the positions of the two electrode layers, there is no overlap between the resonance region and the intermediate layer or the first substrate, and the resonance region is suspended relative to the cavity of the intermediate layer or the first substrate. Therefore, the difference in acoustic impedance between the resonant region and the non-resonant region can be improved, thereby increasing the Q value of the resonant device.
  • the inventors of the present invention have also found that forming a piezoelectric layer on a plane can make the piezoelectric layer not include a crystal that is significantly turned, thereby helping to improve the electromechanical coupling coefficient of the resonant device and the Q value of the resonant device.
  • the inventor of the present invention also found that when forming the two electrode layers, the width or the distance between a plurality of electrode strips can be adjusted to control the frequency of the resonance device.
  • the inventors of the present invention also found that the use of the intermediate layer with a lower acoustic impedance can block the leakage wave between the resonance region and the second substrate.
  • the inventor of the present invention also found that the provision of a thin film between the intermediate layer and the second substrate helps prevent the formation of a free electron layer on the surface of the second substrate, thereby reducing the electrical loss of the second substrate.
  • An embodiment of the present invention provides a bulk acoustic wave resonance device, including: a first layer, the first layer including a cavity on a first side; a first electrode layer, on the first side, and in the cavity A second layer, located on the first electrode layer; and a second electrode layer, located on the second layer, wherein the first electrode layer includes at least two first electrode strips or the second electrode The layer includes at least two second electrode strips.
  • the width or the distance between the at least two first electrode strips or the at least two second electrode strips can be adjusted to Control the frequency of the resonant device.
  • the first electrode layer includes a first polarity
  • the second electrode layer includes a second polarity.
  • the at least two first electrode strips include the first polarity.
  • the at least two second electrode strips include the second polarity.
  • the first electrode layer includes a first polarity and a second polarity
  • the second electrode layer includes the first polarity and the second polarity.
  • the at least two first electrode strips include the first polarity and the second polarity
  • the at least two second electrode strips include the first polarity and the first polarity.
  • Two polarities, wherein the first electrode strips and the second electrode strips corresponding to both sides of the second layer include the first polarity and the second polarity.
  • the first polarity and the second polarity are alternately arranged.
  • the at least two first electrode strips include at least one duty factor, and the value range of the at least one duty factor includes but is not limited to 0.1 to 1. It should be noted that the duty factor is defined as the value obtained by dividing the width of the electrode strips by the distance between the two electrode strips. In some embodiments, the at least two second electrode strips include at least one duty factor, and the value range of the at least one duty factor includes but is not limited to 0.1 to 1.
  • the distance between the at least two first electrode strips is the same, including the first distance. In some embodiments, the distance between the at least two second electrode strips is the same, including the first distance. In some embodiments, the distance between the at least two first electrode strips is variable, and includes at least a first distance and a second distance. In some embodiments, the distance between the at least two second electrode strips is variable, and includes at least a first distance and a second distance.
  • the widths of the at least two first electrode strips are the same, including the first width. In some embodiments, the widths of the at least two second electrode strips are the same, including the first width. In some embodiments, the widths of the at least two first electrode strips are variable, and include at least a first width and a second width. In some embodiments, the widths of the at least two second electrode strips are variable, and include at least a first width and a second width.
  • the overlapping portion on the second electrode layer that overlaps with the first electrode layer is located above the cavity, and the overlapping portion is located in the cavity with a projection perpendicular to the first layer .
  • the material of the first electrode layer includes but is not limited to at least one of the following: molybdenum, ruthenium, tungsten, platinum, iridium, and aluminum; the material of the second electrode layer includes but is not limited to at least one of the following One: molybdenum, ruthenium, tungsten, platinum, iridium, aluminum.
  • the first layer further includes: an intermediate layer, and the intermediate layer includes the cavity.
  • the material of the intermediate layer includes but is not limited to at least one of the following: polymer, insulating dielectric.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene, photosensitive epoxy resin photoresist, and polyimide.
  • the insulating dielectric includes but is not limited to at least one of the following: aluminum nitride, silicon dioxide, silicon nitride, and titanium oxide.
  • the thickness of the intermediate layer includes, but is not limited to, 0.1 micrometers to 10 micrometers. In some embodiments, the thickness of the intermediate layer includes but is not limited to: 20 micrometers to 100 micrometers.
  • the first layer further includes: a first substrate, and the first substrate includes the cavity.
  • the material of the first substrate includes but is not limited to at least one of the following: silicon, silicon carbide, and glass.
  • the first layer further includes an etching shielding layer, covering at least the bottom or sidewalls of the cavity.
  • the material for the etching shielding layer includes but is not limited to at least one of the following: aluminum nitride, silicon carbide, diamond, silicon nitride, silicon dioxide, aluminum oxide, and titanium dioxide.
  • the thickness of the etching shielding layer includes, but is not limited to, 0.1 ⁇ m to 3 ⁇ m. In some embodiments, the thickness of the etching shielding layer includes, but is not limited to: 2 ⁇ m to 6 ⁇ m.
  • the etching shielding layer can protect the intermediate layer or the first substrate when the cavity is formed by etching.
  • the etched barrier layer can protect the resonance device from corrosion by water and oxygen.
  • the second layer includes a piezoelectric layer, the piezoelectric layer includes a plurality of crystals, the plurality of crystals includes a first crystal and a second crystal, wherein the first crystal and the The second crystal is any two crystals of the plurality of crystals; the first coordinate axis along the first direction corresponds to the height of the first crystal, and the second coordinate axis along the second direction corresponds to the second crystal ⁇ , wherein the first direction and the second direction are the same or opposite.
  • first direction and the second direction are the same: the angle range between the vector along the first direction and the vector along the second direction includes 0 degrees to 5 degrees;
  • a direction opposite to the second direction refers to: the angle range between the vector along the first direction and the vector along the second direction includes 175 degrees to 180 degrees.
  • the first crystal corresponds to a first coordinate system, and the first coordinate system includes the first coordinate axis and a third coordinate axis along a third direction; the second crystal corresponds to a second coordinate
  • the second coordinate system includes the second coordinate axis and a fourth coordinate axis along a fourth direction.
  • the first coordinate system further includes a fifth coordinate axis along the fifth direction
  • the second coordinate system further includes a sixth coordinate axis along the sixth direction.
  • the first direction and the second direction are the same or opposite
  • the third direction and the fourth direction are the same or opposite.
  • the third direction and the fourth direction are the same: the angle range between the vector along the third direction and the vector along the fourth direction includes 0 degrees to 5 degrees;
  • the three directions are opposite to the fourth direction: the angle between the vector along the third direction and the vector along the fourth direction includes an angle range of 175 degrees to 180 degrees.
  • the material of the piezoelectric layer includes but is not limited to at least one of the following: aluminum nitride, aluminum oxide aluminum, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, Lead magnesium niobate-lead titanate.
  • the second layer includes a piezoelectric layer
  • the piezoelectric layer includes a plurality of crystals
  • the half width of a rocking curve of the plurality of crystals is less than 2.5 degrees.
  • the rocking curve describes the angular divergence of a specific crystal plane (the crystal plane determined by the diffraction angle) in the sample, expressed by a plane coordinate system, where the abscissa is the difference between the crystal plane and the sample surface.
  • the included angle, the ordinate indicates the diffraction intensity of the crystal plane at a certain included angle
  • the rocking curve is used to indicate the quality of the crystal lattice.
  • the smaller the half-width angle the better the crystal lattice quality.
  • the Full Width at Half Maximum refers to the distance between the points where the value of the two functions before and after the peak is half of the peak in a peak of a function.
  • forming the piezoelectric layer on a flat surface can make the piezoelectric layer not include a crystal that is clearly turned, thereby helping to improve the electromechanical coupling coefficient of the resonant device and the Q value of the resonant device.
  • the resonance device further includes: a second substrate located on a second side of the first layer, and the second side is opposite to the first side.
  • the material of the second substrate includes but is not limited to at least one of the following: silicon, silicon carbide, and glass. It should be noted that the acoustic impedance of the first layer may be small, so as to block the leakage wave between the resonance region and the second substrate.
  • the resonance device further includes a thin film located between the first layer and the second substrate.
  • the thin film includes, but is not limited to, a polycrystalline thin film.
  • the material of the polycrystalline film includes but is not limited to at least one of the following: polycrystalline silicon, polycrystalline silicon nitride, and polycrystalline silicon carbide.
  • the provision of the thin film between the intermediate layer and the second substrate helps prevent the formation of a free electron layer on the surface of the second substrate, thereby reducing the electrical loss of the second substrate.
  • An embodiment of the present invention also provides a bulk acoustic wave filter, which includes: at least one bulk acoustic wave resonator device provided in the foregoing embodiment.
  • FIG. 2a is a schematic structural diagram of a cross-section A of a bulk acoustic wave resonator device 200 according to an embodiment of the present invention.
  • an embodiment of the present invention provides a bulk acoustic wave resonator device 200 including: a substrate 201, the upper surface side of the substrate 201 includes a cavity 201a; an electrode layer 203, the first section A of the electrode layer 203 The end contacts the side wall of the cavity 201a, the second end of the cross section A of the electrode layer 203 is located in the cavity 201a; the piezoelectric layer 205 is located on the substrate 201 and the electrode layer 203; the electrode layer 207, located on the piezoelectric layer 205. It can be seen from FIG.
  • the resonance region 209 ie, the overlapping area of the electrode layer 203 and the electrode layer 207 is suspended relative to the cavity 201a, and has no overlapping portion with the substrate 201. Therefore, the vertical projection of the resonance region 209 perpendicular to the upper surface is located in the cavity 201a, which can increase the difference between the acoustic impedance of the resonance region 209 and the non-resonance region, thereby increasing the Q value of the resonance device.
  • the material of the substrate 201 includes but is not limited to at least one of the following: silicon, silicon carbide, and glass.
  • the material of the piezoelectric layer 205 includes but is not limited to at least one of the following: aluminum nitride, aluminum oxide aluminum, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, Lead magnesium niobate-lead titanate.
  • the piezoelectric layer 205 includes a plurality of crystals, and the plurality of crystals includes a first crystal and a second crystal, wherein the first crystal and the second crystal are among the plurality of crystals. Of any two crystals. Those skilled in the art know that the crystal orientation, crystal plane, etc. of a crystal can be expressed based on a coordinate system. As shown in FIG. 13, for crystals of the hexagonal system, such as aluminum nitride crystals, the ac three-dimensional coordinate system (including the a-axis and the c-axis) is used to represent.
  • the crystal is represented by the xyz three-dimensional coordinate system (including the x-axis, y-axis and z-axis).
  • crystals can also be represented based on coordinate systems known to those skilled in the art, so the present invention is not limited by the above two examples.
  • the first crystal may be represented based on a first three-dimensional coordinate system
  • the second crystal may be represented based on a second three-dimensional coordinate system
  • the first three-dimensional coordinate system at least includes a first three-dimensional coordinate system along a first direction.
  • the second three-dimensional coordinate system includes at least a second coordinate axis along the second direction and a fourth coordinate axis along the fourth direction, wherein the first coordinate axis Corresponding to the height of the first crystal, the second coordinate axis corresponds to the height of the second crystal.
  • first direction and the second direction are the same or opposite. It should be noted that the first direction and the second direction are the same: the angle range between the vector along the first direction and the vector along the second direction includes 0 degrees to 5 degrees; A direction opposite to the second direction refers to: the angle range between the vector along the first direction and the vector along the second direction includes 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an ac three-dimensional coordinate system, wherein the first coordinate axis is a first c-axis, the third coordinate axis is a first a-axis;
  • the three-dimensional coordinate system is an ac three-dimensional coordinate system, the second coordinate axis is a second c-axis, and the fourth coordinate axis is a second a-axis, wherein the directions of the first c-axis and the second c-axis are Same or opposite.
  • the first three-dimensional coordinate system further includes a fifth coordinate axis along the fifth direction
  • the second three-dimensional coordinate system further includes a sixth coordinate axis along the sixth direction.
  • the first direction and the second direction are the same or opposite
  • the third direction and the fourth direction are the same or opposite.
  • the third direction and the fourth direction are the same: the angle range between the vector along the third direction and the vector along the fourth direction includes 0 degrees to 5 degrees;
  • the three directions are opposite to the fourth direction: the angle between the vector along the third direction and the vector along the fourth direction includes an angle range of 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an xyz three-dimensional coordinate system, wherein the first coordinate axis is a first z-axis, the third coordinate axis is a first y-axis, and the fifth coordinate axis is a first y-axis.
  • the coordinate axis is the first x-axis;
  • the second three-dimensional coordinate system is the xyz three-dimensional coordinate system, the second coordinate axis is the second z-axis, the fourth coordinate axis is the second y-axis, and the sixth coordinate
  • the axis is the second x axis.
  • the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are the same. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are the same.
  • the piezoelectric layer 205 includes a plurality of crystals, and the half width of the rocking curve of the plurality of crystals is less than 2.5 degrees.
  • the rocking curve describes the angular divergence of a specific crystal plane (the crystal plane determined by the diffraction angle) in the sample, expressed by a plane coordinate system, where the abscissa is the difference between the crystal plane and the sample surface.
  • the included angle, the ordinate indicates the diffraction intensity of the crystal plane at a certain included angle
  • the rocking curve is used to indicate the quality of the crystal lattice.
  • the smaller the half-width angle the better the crystal lattice quality.
  • the Full Width at Half Maximum refers to the distance between the points where the value of the two functions before and after the peak is half of the peak in a peak of a function.
  • forming the piezoelectric layer 205 on a plane can make the piezoelectric layer 205 not include a crystal that is significantly turned, thereby helping to improve the electromechanical coupling coefficient of the resonant device and the Q value of the resonant device.
  • the portion of the electrode layer 203 that overlaps the electrode layer 207 is located in the cavity 201a; the portion of the electrode layer 207 that overlaps the electrode layer 203 is located above the cavity 201a .
  • the material of the electrode layer 203 includes but is not limited to at least one of the following: molybdenum, ruthenium, tungsten, platinum, iridium, and aluminum; the material of the electrode layer 207 includes but is not limited to at least one of the following: molybdenum , Ruthenium, tungsten, platinum, iridium, aluminum.
  • the electrode layer 203 includes a negative electrode, and the electrode layer 207 includes a positive electrode. In another embodiment, the electrode layer 203 includes a positive electrode, and the electrode layer 207 includes a negative electrode.
  • FIG. 2b is a schematic structural diagram of a cross-section B of a bulk acoustic wave resonator device 200 according to an embodiment of the present invention.
  • the resonance device 200 includes: the substrate 201, the upper surface side of the substrate 201 includes the cavity 201a; the electrode layer 203, the cross-section B of which is located in the cavity 201a; The piezoelectric layer 205 is located on the substrate 201 and the electrode layer 203; the electrode layer 207 is located on the piezoelectric layer 205. It can be seen from FIG. 2b that the resonance region 209 (ie, the overlapping area of the electrode layer 203 and the electrode layer 207) is suspended relative to the cavity 201a, and has no overlapping portion with the substrate 201.
  • the vertical projection of the resonance region 209 perpendicular to the upper surface is located in the cavity 201a, which can increase the difference between the acoustic impedance of the resonance region 209 and the non-resonance region, thereby increasing the Q value of the resonance device.
  • FIG. 3a is a schematic diagram of a cross-sectional structure A of a bulk acoustic wave resonator device 300 according to an embodiment of the present invention.
  • an embodiment of the present invention provides a bulk acoustic wave resonance device 300 that includes a substrate 301.
  • the upper surface side of the section A of the substrate 301 includes a cavity 301a and a cavity 301b, wherein the cavity 301b is located
  • One side of the cavity 301a is in communication with the cavity 301a, and the depth of the cavity 301b is less than the depth of the cavity 301a;
  • the electrode layer 303, the first end of the cross section A of the electrode layer 303 is located at the In the cavity 301b, the second end of the cross section A of the electrode layer 303 is located in the cavity 301a, wherein the depth of the cavity 301b is equal to the thickness of the electrode 303;
  • the piezoelectric layer 305 is located in the cavity 301a.
  • the electrode layer 307 is on the piezoelectric layer 305.
  • the resonance region 309 ie, the overlapping area of the electrode layer 303 and the electrode layer 307
  • the vertical projection of the resonance region 309 perpendicular to the upper surface is located in the cavity 301a, which can increase the difference between the acoustic impedance of the resonance region 309 and the non-resonance region, thereby increasing the Q value of the resonance device .
  • the material of the substrate 301 includes but is not limited to at least one of the following: silicon, silicon carbide, and glass.
  • the material of the piezoelectric layer 305 includes but is not limited to at least one of the following: aluminum nitride, aluminum oxide aluminum, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, Lead magnesium niobate-lead titanate.
  • the piezoelectric layer 305 includes a plurality of crystals, and the plurality of crystals includes a first crystal and a second crystal, wherein the first crystal and the second crystal are among the plurality of crystals. Of any two crystals. Those skilled in the art know that the crystal orientation, crystal plane, etc. of a crystal can be expressed based on a coordinate system. As shown in FIG. 13, for crystals of the hexagonal system, such as aluminum nitride crystals, the ac three-dimensional coordinate system (including the a-axis and the c-axis) is used to represent.
  • the crystal is represented by the xyz three-dimensional coordinate system (including the x-axis, y-axis and z-axis).
  • crystals can also be represented based on coordinate systems known to those skilled in the art, so the present invention is not limited by the above two examples.
  • the first crystal may be represented based on a first three-dimensional coordinate system
  • the second crystal may be represented based on a second three-dimensional coordinate system
  • the first three-dimensional coordinate system at least includes a first three-dimensional coordinate system along a first direction.
  • the second three-dimensional coordinate system includes at least a second coordinate axis along the second direction and a fourth coordinate axis along the fourth direction, wherein the first coordinate axis Corresponding to the height of the first crystal, the second coordinate axis corresponds to the height of the second crystal.
  • first direction and the second direction are the same or opposite. It should be noted that the first direction and the second direction are the same: the angle range between the vector along the first direction and the vector along the second direction includes 0 degrees to 5 degrees; A direction opposite to the second direction refers to: the angle range between the vector along the first direction and the vector along the second direction includes 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an ac three-dimensional coordinate system, wherein the first coordinate axis is a first c-axis, the third coordinate axis is a first a-axis;
  • the three-dimensional coordinate system is an ac three-dimensional coordinate system, the second coordinate axis is a second c-axis, and the fourth coordinate axis is a second a-axis, wherein the directions of the first c-axis and the second c-axis are Same or opposite.
  • the first three-dimensional coordinate system further includes a fifth coordinate axis along the fifth direction
  • the second three-dimensional coordinate system further includes a sixth coordinate axis along the sixth direction.
  • the first direction and the second direction are the same or opposite
  • the third direction and the fourth direction are the same or opposite.
  • the third direction and the fourth direction are the same: the angle range between the vector along the third direction and the vector along the fourth direction includes 0 degrees to 5 degrees;
  • the three directions are opposite to the fourth direction: the angle between the vector along the third direction and the vector along the fourth direction includes an angle range of 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an xyz three-dimensional coordinate system, wherein the first coordinate axis is a first z-axis, the third coordinate axis is a first y-axis, and the fifth coordinate axis is a first y-axis.
  • the coordinate axis is the first x-axis;
  • the second three-dimensional coordinate system is the xyz three-dimensional coordinate system, the second coordinate axis is the second z-axis, the fourth coordinate axis is the second y-axis, and the sixth coordinate
  • the axis is the second x axis.
  • the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are the same. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are the same.
  • the piezoelectric layer 305 includes a plurality of crystals, and the half width of the rocking curve of the plurality of crystals is less than 2.5 degrees.
  • the rocking curve describes the angular divergence of a specific crystal plane (the crystal plane determined by the diffraction angle) in the sample, expressed by a plane coordinate system, where the abscissa is the difference between the crystal plane and the sample surface.
  • the included angle, the ordinate indicates the diffraction intensity of the crystal plane at a certain included angle
  • the rocking curve is used to indicate the quality of the crystal lattice.
  • the smaller the half-width angle the better the crystal lattice quality.
  • the Full Width at Half Maximum refers to the distance between the points where the value of the two functions before and after the peak is half of the peak in a peak of a function.
  • forming the piezoelectric layer 305 on a plane can make the piezoelectric layer 305 not include a crystal that is significantly turned, thereby helping to improve the electromechanical coupling coefficient of the resonant device and the Q value of the resonant device.
  • the portion of the electrode layer 303 that overlaps the electrode layer 307 is located in the cavity 301a; the portion of the electrode layer 307 that overlaps the electrode layer 303 is located above the cavity 301a .
  • the material of the electrode layer 303 includes but is not limited to at least one of the following: molybdenum, ruthenium, tungsten, platinum, iridium, and aluminum; the material of the electrode layer 307 includes but is not limited to at least one of the following: molybdenum , Ruthenium, tungsten, platinum, iridium, aluminum.
  • the electrode layer 303 includes a negative electrode, and the electrode layer 307 includes a positive electrode. In another embodiment, the electrode layer 303 includes a positive electrode, and the electrode layer 307 includes a negative electrode.
  • FIG. 3b is a schematic structural diagram of a cross-section B of a bulk acoustic wave resonator device 300 according to an embodiment of the present invention.
  • the resonance device 300 includes: the substrate 301, the upper surface side of the cross section B of the substrate 301 includes the cavity 301a; the electrode layer 303 includes four electrode strips 303b, and the The cross section B of the electrode layer 303 is located in the cavity 301a; the piezoelectric layer 305 is located on the substrate 301 and the electrode layer 303; the electrode layer 307 is located on the piezoelectric layer 305.
  • the resonance region 309 ie, the overlapping area of the electrode layer 303 and the electrode layer 307 is suspended relative to the cavity 301a, and has no overlapping portion with the substrate 301.
  • the vertical projection of the resonance region 309 perpendicular to the upper surface is located in the cavity 301a, which can improve the difference between the acoustic impedance of the resonance region 309 and the non-resonance region, thereby increasing the Q value of the resonance device .
  • the four electrode strips 303b include negative electrodes, and the electrode layer 307 includes positive electrodes. In another embodiment, the four electrode strips 303b include positive electrodes, and the electrode layer 307 includes negative electrodes.
  • the distance between the electrode strips 303b includes a first distance and a second distance, wherein the first distance is smaller than the second distance.
  • the widths of the four electrode strips 303b are the same, including the first width.
  • the duty factor of the four electrode strips 303b includes a first duty factor, corresponding to the first distance and the first width, and a second duty factor, corresponding to the second distance and In the first width, the value range of the first duty factor and the second duty factor includes but is not limited to 0.1 to 1, and the first duty factor is greater than the second duty factor .
  • the first distance or the second distance or the first width can be adjusted to control the frequency of the resonance device.
  • the number of electrodes included in the electrode layer 303 may be other even numbers, for example, 2, 6, 8, 10, 12, 14, 16, 18, 20, etc. In other embodiments, the number of electrodes included in the electrode layer 303 may be an odd number, for example, 3, 5, 7, 9, 11, 13, 15, 17, 19, etc.
  • FIG. 4a is a schematic structural diagram of a cross-section A of a bulk acoustic wave resonator device 400 according to an embodiment of the present invention.
  • an embodiment of the present invention provides a bulk acoustic wave resonance device 400 including: a substrate 401, the upper surface of the substrate 401 includes a cavity 401a; an etching shielding layer 411 is located in the cavity 401a, Covering the bottom and sidewalls of the cavity 401a; an electrode layer 403, the first end of the section A of the electrode layer 403 contacts the etching shielding layer 411, and the second end of the section A of the electrode layer 403 is located at the In the cavity 401a; the piezoelectric layer 405 is located on the substrate 401 and the electrode layer 403; the electrode layer 407 is located on the piezoelectric layer 405. It can be seen from FIG.
  • the resonance region 409 ie, the overlapping area of the electrode layer 403 and the electrode layer 407 is suspended relative to the cavity 401a, and has no overlapping portion with the substrate 401. Therefore, the vertical projection of the resonance region 409 perpendicular to the upper surface is located in the cavity 401a, which can improve the difference between the acoustic impedance of the resonance region 409 and the non-resonance region, thereby increasing the Q value of the resonance device .
  • the material of the substrate 401 includes but is not limited to at least one of the following: silicon, silicon carbide, and glass.
  • the material of the etching shielding layer 411 includes but is not limited to at least one of the following: aluminum nitride, silicon carbide, diamond, silicon nitride, silicon dioxide, aluminum oxide, and titanium dioxide.
  • the etching shielding layer 411 can protect the substrate 401 when the cavity 401a is formed by etching.
  • the etched barrier layer 411 can protect the resonance device from corrosion by water and oxygen.
  • the thickness of the etching shielding layer 411 includes, but is not limited to, 0.1 ⁇ m to 3 ⁇ m. In another embodiment, the thickness of the etching shielding layer 411 includes but is not limited to: 2 ⁇ m to 6 ⁇ m.
  • the material of the piezoelectric layer 405 includes but is not limited to at least one of the following: aluminum nitride, aluminum oxide aluminum, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, Lead magnesium niobate-lead titanate.
  • the piezoelectric layer 405 includes a plurality of crystals, and the plurality of crystals includes a first crystal and a second crystal, wherein the first crystal and the second crystal are among the plurality of crystals. Of any two crystals. Those skilled in the art know that the crystal orientation, crystal plane, etc. of a crystal can be expressed based on a coordinate system. As shown in FIG. 13, for crystals of the hexagonal system, such as aluminum nitride crystals, the ac three-dimensional coordinate system (including the a-axis and the c-axis) is used to represent.
  • the crystal is represented by the xyz three-dimensional coordinate system (including the x-axis, y-axis and z-axis).
  • crystals can also be represented based on coordinate systems known to those skilled in the art, so the present invention is not limited by the above two examples.
  • the first crystal may be represented based on a first three-dimensional coordinate system
  • the second crystal may be represented based on a second three-dimensional coordinate system
  • the first three-dimensional coordinate system at least includes a first three-dimensional coordinate system along a first direction.
  • the second three-dimensional coordinate system includes at least a second coordinate axis along the second direction and a fourth coordinate axis along the fourth direction, wherein the first coordinate axis Corresponding to the height of the first crystal, the second coordinate axis corresponds to the height of the second crystal.
  • first direction and the second direction are the same or opposite. It should be noted that the first direction and the second direction are the same: the angle range between the vector along the first direction and the vector along the second direction includes 0 degrees to 5 degrees; A direction opposite to the second direction refers to: the angle range between the vector along the first direction and the vector along the second direction includes 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an ac three-dimensional coordinate system, wherein the first coordinate axis is a first c-axis, the third coordinate axis is a first a-axis;
  • the three-dimensional coordinate system is an ac three-dimensional coordinate system, the second coordinate axis is a second c-axis, and the fourth coordinate axis is a second a-axis, wherein the directions of the first c-axis and the second c-axis are Same or opposite.
  • the first three-dimensional coordinate system further includes a fifth coordinate axis along the fifth direction
  • the second three-dimensional coordinate system further includes a sixth coordinate axis along the sixth direction.
  • the first direction and the second direction are the same or opposite
  • the third direction and the fourth direction are the same or opposite.
  • the third direction and the fourth direction are the same: the angle range between the vector along the third direction and the vector along the fourth direction includes 0 degrees to 5 degrees;
  • the three directions are opposite to the fourth direction: the angle between the vector along the third direction and the vector along the fourth direction includes an angle range of 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an xyz three-dimensional coordinate system, wherein the first coordinate axis is a first z-axis, the third coordinate axis is a first y-axis, and the fifth coordinate axis is a first y-axis.
  • the coordinate axis is the first x-axis;
  • the second three-dimensional coordinate system is the xyz three-dimensional coordinate system, the second coordinate axis is the second z-axis, the fourth coordinate axis is the second y-axis, and the sixth coordinate
  • the axis is the second x axis.
  • the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are the same. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are the same.
  • the piezoelectric layer 405 includes a plurality of crystals, and the half width of the rocking curve of the plurality of crystals is less than 2.5 degrees.
  • the rocking curve describes the angular divergence of a specific crystal plane (the crystal plane determined by the diffraction angle) in the sample, expressed by a plane coordinate system, where the abscissa is the difference between the crystal plane and the sample surface.
  • the included angle, the ordinate indicates the diffraction intensity of the crystal plane at a certain included angle, and the rocking curve is used to indicate the quality of the crystal lattice.
  • the smaller the half-width angle the better the crystal lattice quality.
  • the Full Width at Half Maximum refers to the distance between the points where the value of the two functions before and after the peak is half of the peak in a peak of a function.
  • forming the piezoelectric layer 405 on a plane can make the piezoelectric layer 405 not include a crystal that is significantly turned, thereby helping to improve the electromechanical coupling coefficient of the resonant device and the Q value of the resonant device.
  • the portion of the electrode layer 403 that overlaps the electrode layer 407 is located in the cavity 401a; the portion of the electrode layer 407 that overlaps the electrode layer 403 is located above the cavity 401a .
  • the material of the electrode layer 403 includes but is not limited to at least one of the following: molybdenum, ruthenium, tungsten, platinum, iridium, and aluminum; the material of the electrode layer 407 includes but is not limited to at least one of the following: molybdenum , Ruthenium, tungsten, platinum, iridium, aluminum.
  • the electrode layer 403 includes a negative electrode, and the electrode layer 407 includes a positive electrode. In another embodiment, the electrode layer 403 includes a positive electrode, and the electrode layer 407 includes a negative electrode.
  • FIG. 4b is a schematic diagram of a cross-sectional structure B of a bulk acoustic wave resonator device 400 according to an embodiment of the present invention.
  • the resonance device 400 includes: the substrate 401, the upper surface side of the substrate 401 includes the cavity 401a; the etching shielding layer 411 is located in the cavity 401a and covers The bottom and side walls of the cavity 401a; the electrode layer 403 includes four electrode strips 403b, and the cross section B of the electrode layer 403 is located in the cavity 401a; the piezoelectric layer 405 is located on the substrate 401 and the electrode layer 403; the electrode layer 407 is located on the piezoelectric layer 405. It can be seen from FIG.
  • the resonance region 409 ie, the overlapping area of the electrode layer 403 and the electrode layer 407 is suspended relative to the cavity 401a, and has no overlapping portion with the substrate 401. Therefore, the vertical projection of the resonance region 409 perpendicular to the upper surface is located in the cavity 401a, which can improve the difference between the acoustic impedance of the resonance region 409 and the non-resonance region, thereby increasing the Q value of the resonance device .
  • the four electrode strips 403b include negative electrodes, and the electrode layer 407 includes positive electrodes. In another embodiment, the four electrode strips 403b include positive electrodes, and the electrode layer 407 includes negative electrodes.
  • the distance between the four electrode strips 403b is the same, including the first distance.
  • the widths of the four electrode strips 403b are the same, including the first width.
  • the duty factor of the four electrode strips 403b includes a first duty factor, which corresponds to the first distance and the first width, and its value range includes but is not limited to 0.1 to 1.
  • the first distance or the first width can be adjusted to control the frequency of the resonance device.
  • the number of electrodes included in the electrode layer 403 may be other even numbers, for example, 2, 6, 8, 10, 12, 14, 16, 18, 20, etc. In other embodiments of the present invention, the number of electrodes included in the electrode layer 403 may be an odd number, for example, 3, 5, 7, 9, 11, 13, 15, 17, 19, etc.
  • FIG. 5a is a schematic structural diagram of a cross-section A of a bulk acoustic wave resonator device 500 according to an embodiment of the present invention.
  • an embodiment of the present invention provides a bulk acoustic wave resonance device 500 including: a substrate 501; an intermediate layer 502 located on the substrate 501, the upper surface of the intermediate layer 502 includes a cavity 502a; and an electrode layer 503, the first end of the section A of the electrode layer 503 contacts the sidewall of the cavity 502a, the second end of the section A of the electrode layer 503 is located in the cavity 502a; the piezoelectric layer 505 is located in the cavity 502a On the intermediate layer 502 and the electrode layer 503; the electrode layer 507 is on the piezoelectric layer 505. It can be seen from FIG.
  • the resonance region (not shown, that is, the overlapping area of the electrode layer 503 and the electrode layer 507) is suspended relative to the cavity 502a and has no overlapping portion with the intermediate layer 502, so that The vertical projection of the resonance region (not shown) perpendicular to the upper surface is located in the cavity 502a.
  • the embodiment of the present invention can improve the difference between the acoustic impedance of the resonant region (not shown) and the non-resonant region, thereby increasing the Q value of the resonant device.
  • the acoustic impedance of the intermediate layer 502 may be small, so as to block the leakage wave between the resonance region (not shown) and the substrate 501.
  • the material of the substrate 501 includes but is not limited to at least one of the following: silicon, silicon carbide, and glass.
  • the material of the intermediate layer 502 includes but is not limited to at least one of the following: polymer and insulating dielectric.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the insulating dielectric includes but is not limited to at least one of the following: aluminum nitride, silicon dioxide, silicon nitride, and titanium oxide.
  • the thickness of the intermediate layer 502 includes, but is not limited to, 0.1 ⁇ m to 10 ⁇ m.
  • the material of the piezoelectric layer 505 includes but is not limited to at least one of the following: aluminum nitride, aluminum oxide, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, Lead magnesium niobate-lead titanate.
  • the piezoelectric layer 505 includes a plurality of crystals, and the plurality of crystals includes a first crystal and a second crystal, wherein the first crystal and the second crystal are among the plurality of crystals. Of any two crystals. Those skilled in the art know that the crystal orientation, crystal plane, etc. of a crystal can be expressed based on a coordinate system. As shown in FIG. 13, for crystals of the hexagonal system, such as aluminum nitride crystals, the ac three-dimensional coordinate system (including the a-axis and the c-axis) is used to represent.
  • the crystal is represented by the xyz three-dimensional coordinate system (including the x-axis, y-axis and z-axis).
  • crystals can also be represented based on coordinate systems known to those skilled in the art, so the present invention is not limited by the above two examples.
  • the first crystal may be represented based on a first three-dimensional coordinate system
  • the second crystal may be represented based on a second three-dimensional coordinate system
  • the first three-dimensional coordinate system at least includes a first three-dimensional coordinate system along a first direction.
  • the second three-dimensional coordinate system includes at least a second coordinate axis along the second direction and a fourth coordinate axis along the fourth direction, wherein the first coordinate axis Corresponding to the height of the first crystal, the second coordinate axis corresponds to the height of the second crystal.
  • first direction and the second direction are the same or opposite. It should be noted that the first direction and the second direction are the same: the angle range between the vector along the first direction and the vector along the second direction includes 0 degrees to 5 degrees; A direction opposite to the second direction refers to: the angle range between the vector along the first direction and the vector along the second direction includes 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an ac three-dimensional coordinate system, wherein the first coordinate axis is a first c-axis, the third coordinate axis is a first a-axis;
  • the three-dimensional coordinate system is an ac three-dimensional coordinate system, the second coordinate axis is a second c-axis, and the fourth coordinate axis is a second a-axis, wherein the directions of the first c-axis and the second c-axis are Same or opposite.
  • the first three-dimensional coordinate system further includes a fifth coordinate axis along the fifth direction
  • the second three-dimensional coordinate system further includes a sixth coordinate axis along the sixth direction.
  • the first direction and the second direction are the same or opposite
  • the third direction and the fourth direction are the same or opposite.
  • the third direction and the fourth direction are the same: the angle range between the vector along the third direction and the vector along the fourth direction includes 0 degrees to 5 degrees;
  • the three directions are opposite to the fourth direction: the angle between the vector along the third direction and the vector along the fourth direction includes an angle range of 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an xyz three-dimensional coordinate system, wherein the first coordinate axis is a first z-axis, the third coordinate axis is a first y-axis, and the fifth coordinate axis is a first y-axis.
  • the coordinate axis is the first x-axis;
  • the second three-dimensional coordinate system is the xyz three-dimensional coordinate system, the second coordinate axis is the second z-axis, the fourth coordinate axis is the second y-axis, and the sixth coordinate
  • the axis is the second x axis.
  • the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are the same. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are the same.
  • the piezoelectric layer 505 includes a plurality of crystals, and the half width of the rocking curve of the plurality of crystals is less than 2.5 degrees.
  • the rocking curve describes the angular divergence of a specific crystal plane (the crystal plane determined by the diffraction angle) in the sample, expressed by a plane coordinate system, where the abscissa is the difference between the crystal plane and the sample surface.
  • the included angle, the ordinate indicates the diffraction intensity of the crystal plane at a certain included angle
  • the rocking curve is used to indicate the quality of the crystal lattice.
  • the smaller the half-width angle the better the crystal lattice quality.
  • the Full Width at Half Maximum refers to the distance between the points where the value of the two functions before and after the peak is half of the peak in a peak of a function.
  • forming the piezoelectric layer 505 on a plane can make the piezoelectric layer 505 not include a crystal that is significantly turned, thereby helping to improve the electromechanical coupling coefficient of the resonant device and the Q value of the resonant device.
  • the portion of the electrode layer 503 that overlaps the electrode layer 507 is located in the cavity 502a; the portion of the electrode layer 507 that overlaps the electrode layer 503 is located above the cavity 502a .
  • the material of the electrode layer 503 includes but is not limited to at least one of the following: molybdenum, ruthenium, tungsten, platinum, iridium, and aluminum; the material of the electrode layer 507 includes but is not limited to at least one of the following: molybdenum , Ruthenium, tungsten, platinum, iridium, aluminum.
  • the electrode layer 503 includes a negative electrode, and the electrode layer 507 includes a positive electrode. In another embodiment of the present invention, the electrode layer 503 includes a positive electrode, and the electrode layer 507 includes a negative electrode.
  • FIG. 5b is a schematic structural diagram of a cross-section B of a bulk acoustic wave resonator device 500 according to an embodiment of the present invention.
  • the resonator device 500 includes: the substrate 501; the intermediate layer 502 is located on the substrate 501, and the upper surface side of the intermediate layer 502 includes a cavity 502a; and the electrode layer 503 , Its cross-section B is located in the cavity 502a; the piezoelectric layer 505 is located on the intermediate layer 502 and the electrode layer 503; the electrode layer 507 includes five electrode strips 507b, and the electrode layer 507 is located on the piezoelectric layer 505.
  • the resonance region (not shown, that is, the overlapping area of the electrode layer 503 and the electrode layer 507) is suspended relative to the cavity 502a, and there is no overlapping portion with the intermediate layer 502. Therefore, The vertical projection of the resonance region (not shown) perpendicular to the upper surface is located in the cavity 502a.
  • the embodiment of the present invention can improve the difference between the acoustic impedance of the resonant region (not shown) and the non-resonant region, thereby increasing the Q value of the resonant device.
  • the acoustic impedance of the intermediate layer 502 may be small, so as to block the leakage wave between the resonance region (not shown) and the substrate 501.
  • the electrode layer 503 includes a negative electrode, and the five electrode strips 507b include a positive electrode. In another embodiment, the electrode layer 503 includes a positive electrode, and the five electrode strips 507b include a negative electrode.
  • the distance between the five electrode strips 507b is the same, including the first distance.
  • the widths of the five electrode strips 507b are the same, including the first width.
  • the duty factor of the five electrode strips 507b includes a first duty factor, which corresponds to the first distance and the first width, and its value range includes but is not limited to 0.1 to 1.
  • the first distance or the first width can be adjusted to control the frequency of the resonance device.
  • the number of electrodes included in the electrode layer 507 may be other odd numbers, for example, 3, 7, 9, 11, 13, 15, 17, 19 and so on. In other embodiments, the number of electrodes included in the electrode layer 507 may be an even number, for example, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, etc.
  • FIG. 6a is a schematic structural diagram of a cross-section A of a bulk acoustic wave resonator device 600 according to an embodiment of the present invention.
  • an embodiment of the present invention provides a bulk acoustic wave resonance device 600 including: a substrate 601; an intermediate layer 602 located on the substrate 601, the upper surface side of the section A of the intermediate layer 602 includes a cavity 602a and The cavity 602b, wherein the cavity 602b is located on one side of the cavity 602a and communicates with the cavity 602a, the depth of the cavity 602b is less than the depth of the cavity 602a; the electrode layer 603, so The first end of the cross section A of the electrode layer 603 is located in the cavity 602b, and the second end of the cross section A of the electrode layer 603 is located in the cavity 602a.
  • the depth of the cavity 602b is equal to that of the electrode.
  • the thickness of 603; the piezoelectric layer 605 is located on the intermediate layer 602 and the electrode layer 603; the electrode layer 607 is located on the piezoelectric layer 605. It can be seen from FIG. 6a that the resonance region (not shown, that is, the overlapping area of the electrode layer 603 and the electrode layer 607) is suspended relative to the cavity 602a and has no overlapping portion with the intermediate layer 602, so that The vertical projection of the resonance region (not shown) perpendicular to the upper surface is located in the cavity 602a. .
  • the embodiment of the present invention can improve the difference between the acoustic impedance of the resonant region (not shown) and the non-resonant region, thereby increasing the Q value of the resonant device.
  • the acoustic impedance of the intermediate layer 602 can be small, so that the leakage wave between the resonance region (not shown) and the substrate 601 can be blocked.
  • the material of the substrate 601 includes but is not limited to at least one of the following: silicon, silicon carbide, and glass.
  • the material of the intermediate layer 602 includes but is not limited to at least one of the following: polymer and insulating dielectric.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the insulating dielectric includes but is not limited to at least one of the following: aluminum nitride, silicon dioxide, silicon nitride, and titanium oxide.
  • the thickness of the intermediate layer 602 includes, but is not limited to, 0.1 ⁇ m to 10 ⁇ m.
  • the material of the piezoelectric layer 605 includes but is not limited to at least one of the following: aluminum nitride, aluminum oxide, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, Lead magnesium niobate-lead titanate.
  • the piezoelectric layer 605 includes a plurality of crystals, and the plurality of crystals includes a first crystal and a second crystal, wherein the first crystal and the second crystal are among the plurality of crystals. Of any two crystals. Those skilled in the art know that the crystal orientation, crystal plane, etc. of a crystal can be expressed based on a coordinate system. As shown in FIG. 13, for crystals of the hexagonal system, such as aluminum nitride crystals, the ac three-dimensional coordinate system (including the a-axis and the c-axis) is used to represent.
  • the crystal is represented by the xyz three-dimensional coordinate system (including the x-axis, y-axis and z-axis).
  • crystals can also be represented based on coordinate systems known to those skilled in the art, so the present invention is not limited by the above two examples.
  • the first crystal may be represented based on a first three-dimensional coordinate system
  • the second crystal may be represented based on a second three-dimensional coordinate system
  • the first three-dimensional coordinate system at least includes a first three-dimensional coordinate system along a first direction.
  • the second three-dimensional coordinate system includes at least a second coordinate axis along the second direction and a fourth coordinate axis along the fourth direction, wherein the first coordinate axis Corresponding to the height of the first crystal, the second coordinate axis corresponds to the height of the second crystal.
  • first direction and the second direction are the same or opposite. It should be noted that the first direction and the second direction are the same: the angle range between the vector along the first direction and the vector along the second direction includes 0 degrees to 5 degrees; A direction opposite to the second direction refers to: the angle range between the vector along the first direction and the vector along the second direction includes 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an ac three-dimensional coordinate system, wherein the first coordinate axis is a first c-axis, the third coordinate axis is a first a-axis;
  • the three-dimensional coordinate system is an ac three-dimensional coordinate system, the second coordinate axis is a second c-axis, and the fourth coordinate axis is a second a-axis, wherein the directions of the first c-axis and the second c-axis are Same or opposite.
  • the first three-dimensional coordinate system further includes a fifth coordinate axis along the fifth direction
  • the second three-dimensional coordinate system further includes a sixth coordinate axis along the sixth direction.
  • the first direction and the second direction are the same or opposite
  • the third direction and the fourth direction are the same or opposite.
  • the third direction and the fourth direction are the same: the angle range between the vector along the third direction and the vector along the fourth direction includes 0 degrees to 5 degrees;
  • the three directions are opposite to the fourth direction: the angle between the vector along the third direction and the vector along the fourth direction includes an angle range of 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an xyz three-dimensional coordinate system, wherein the first coordinate axis is a first z-axis, the third coordinate axis is a first y-axis, and the fifth coordinate axis is a first y-axis.
  • the coordinate axis is the first x-axis;
  • the second three-dimensional coordinate system is the xyz three-dimensional coordinate system, the second coordinate axis is the second z-axis, the fourth coordinate axis is the second y-axis, and the sixth coordinate
  • the axis is the second x axis.
  • the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are the same. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are the same.
  • the piezoelectric layer 605 includes a plurality of crystals, and the half width of the rocking curve of the plurality of crystals is less than 2.5 degrees.
  • the rocking curve describes the angular divergence of a specific crystal plane (the crystal plane determined by the diffraction angle) in the sample, expressed by a plane coordinate system, where the abscissa is the difference between the crystal plane and the sample surface.
  • the included angle, the ordinate indicates the diffraction intensity of the crystal plane at a certain included angle
  • the rocking curve is used to indicate the quality of the crystal lattice.
  • the smaller the half-width angle the better the crystal lattice quality.
  • the Full Width at Half Maximum refers to the distance between the points where the value of the two functions before and after the peak is half of the peak in a peak of a function.
  • forming the piezoelectric layer 605 on a plane can make the piezoelectric layer 605 not include a crystal with a significant turn, thereby helping to improve the electromechanical coupling coefficient of the resonator device and the Q value of the resonator device.
  • the portion of the electrode layer 603 that overlaps the electrode layer 607 is located in the cavity 602a; the portion of the electrode layer 607 that overlaps the electrode layer 603 is located above the cavity 602a .
  • the material of the electrode layer 603 includes but is not limited to at least one of the following: molybdenum, ruthenium, tungsten, platinum, iridium, and aluminum; the material of the electrode layer 607 includes but is not limited to at least one of the following: molybdenum , Ruthenium, tungsten, platinum, iridium, aluminum.
  • the electrode layer 603 includes a negative electrode, and the electrode layer 607 includes a positive electrode. In another embodiment of the present invention, the electrode layer 603 includes a positive electrode, and the electrode layer 607 includes a negative electrode.
  • 6b is a schematic structural diagram of a cross-section B of a bulk acoustic wave resonator device 600 according to an embodiment of the present invention.
  • the resonance device 600 includes: the substrate 601; the intermediate layer 602 is located on the substrate 601, and the upper surface side of the section B of the intermediate layer 602 includes a cavity 602a; and the electrode The section B of the layer 603 is located in the cavity 602a; the piezoelectric layer 605 is located on the intermediate layer 602 and the electrode layer 603; the electrode layer 607 includes 5 electrode strips 607b, the The electrode layer 607 is located on the piezoelectric layer 605. It can be seen from FIG.
  • the resonance region (not shown, that is, the overlapping area of the electrode layer 603 and the electrode layer 607) is suspended relative to the cavity 602a and has no overlapping portion with the intermediate layer 602, so The vertical projection of the resonance region (not shown) perpendicular to the upper surface is located in the cavity 602a.
  • the embodiment of the present invention can improve the difference between the acoustic impedance of the resonant region (not shown) and the non-resonant region, thereby increasing the Q value of the resonant device.
  • the acoustic impedance of the intermediate layer 602 can be small, so that the leakage wave between the resonance region (not shown) and the substrate 601 can be blocked.
  • the electrode layer 603 includes a negative electrode, and the five electrode strips 607b include a positive electrode. In another embodiment, the electrode layer 603 includes a positive electrode, and the five electrode strips 607b include a negative electrode.
  • the distance between the electrode strips 607b is variable, including a first distance and a second distance, wherein the first distance is greater than the second distance.
  • the width of the electrode strip 607b is variable, including a first width, a second width, and a third width, wherein the first width is smaller than the second width, and the second width is smaller than the first width.
  • the third width is variable, including a first width, a second width, and a third width, wherein the first width is smaller than the second width, and the second width is smaller than the first width.
  • the duty factor of the electrode strip 607b includes: a first duty factor, corresponding to the first distance and the first width, and the second duty factor, corresponding to the first distance and the The second width and the third duty factor correspond to the second distance and the second width, and the fourth duty factor correspond to the second distance and the third width, wherein the first duty factor
  • the value ranges of the empty factor, the second duty factor, the third duty factor, and the fourth duty factor include, but are not limited to, 0.1 to 1.
  • the resonant device can be controlled by adjusting the first distance or the second distance or the first width or the second width or the third width. Frequency of.
  • the number of electrodes included in the electrode layer 607 may be other odd numbers, for example, 3, 7, 9, 11, 13, 15, 17, 19 and so on. In other embodiments of the present invention, the number of electrodes included in the electrode layer 607 may be an even number, for example, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, etc.
  • FIG. 7a is a schematic structural diagram of a cross-section A of a bulk acoustic wave resonator device 700 according to an embodiment of the present invention.
  • an embodiment of the present invention provides a bulk acoustic wave resonance device 700 including: a substrate 701; an intermediate layer 702 located on the substrate 701, and the upper surface side of the section A of the intermediate layer 702 includes a cavity 702a and The cavity 702b, wherein the cavity 702b is located on one side of the cavity 702a and communicates with the cavity 702a, and the depth of the cavity 702b is smaller than the depth of the cavity 702a; the etching shielding layer 711
  • the section A covers the bottom and sidewalls of the cavity 702a, the bottom and sidewalls of the cavity 702b, and the upper surface side of the intermediate layer 702; the electrode layer 703, the section A of the electrode layer 703
  • the first end is located in the cavity 702b, and the second end of the cross section A of the electrode layer 703 is located in the cavity 702a, wherein the depth of the cavity 702b is equal to the thickness of the etching shielding layer 711 and The sum of the
  • the resonance region (not shown, that is, the overlapping area of the electrode layer 703 and the electrode layer 707) is suspended relative to the cavity 702a and has no overlapping portion with the intermediate layer 702, so The vertical projection of the resonance region (not shown) perpendicular to the upper surface is located in the cavity 702a.
  • the embodiment of the present invention can improve the difference between the acoustic impedance of the resonant region (not shown) and the non-resonant region, thereby increasing the Q value of the resonant device.
  • the acoustic impedance of the intermediate layer 702 can be small, so that the leakage wave between the resonance region (not shown) and the substrate 701 can be blocked.
  • the material of the substrate 701 includes but is not limited to at least one of the following: silicon, silicon carbide, and glass.
  • the material of the intermediate layer 702 includes but is not limited to at least one of the following: polymer and insulating dielectric.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the insulating dielectric includes but is not limited to at least one of the following: aluminum nitride, silicon dioxide, silicon nitride, and titanium oxide.
  • the thickness of the intermediate layer 702 includes, but is not limited to, 0.1 ⁇ m to 10 ⁇ m.
  • the material of the etching shielding layer 711 includes but is not limited to at least one of the following: aluminum nitride, silicon carbide, diamond, silicon nitride, silicon dioxide, aluminum oxide, and titanium dioxide.
  • the etching shielding layer 711 can protect the intermediate layer 702 when the cavity 702a is formed by etching.
  • the etching barrier layer 711 can protect the resonance device from corrosion by water and oxygen.
  • the thickness of the etching shielding layer 711 includes, but is not limited to, 0.1 ⁇ m to 3 ⁇ m.
  • the material of the piezoelectric layer 705 includes but is not limited to at least one of the following: aluminum nitride, aluminum oxide aluminum, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, Lead magnesium niobate-lead titanate.
  • the piezoelectric layer 705 includes a plurality of crystals, and the plurality of crystals includes a first crystal and a second crystal, wherein the first crystal and the second crystal are among the plurality of crystals. Of any two crystals. Those skilled in the art know that the crystal orientation, crystal plane, etc. of a crystal can be expressed based on a coordinate system. As shown in FIG. 13, for crystals of the hexagonal system, such as aluminum nitride crystals, the ac three-dimensional coordinate system (including the a-axis and the c-axis) is used to represent.
  • the crystal is represented by the xyz three-dimensional coordinate system (including the x-axis, y-axis and z-axis).
  • crystals can also be represented based on coordinate systems known to those skilled in the art, so the present invention is not limited by the above two examples.
  • the first crystal may be represented based on a first three-dimensional coordinate system
  • the second crystal may be represented based on a second three-dimensional coordinate system
  • the first three-dimensional coordinate system at least includes a first three-dimensional coordinate system along a first direction.
  • the second three-dimensional coordinate system includes at least a second coordinate axis along the second direction and a fourth coordinate axis along the fourth direction, wherein the first coordinate axis Corresponding to the height of the first crystal, the second coordinate axis corresponds to the height of the second crystal.
  • first direction and the second direction are the same or opposite. It should be noted that the first direction and the second direction are the same: the angle range between the vector along the first direction and the vector along the second direction includes 0 degrees to 5 degrees; A direction opposite to the second direction refers to: the angle range between the vector along the first direction and the vector along the second direction includes 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an ac three-dimensional coordinate system, wherein the first coordinate axis is a first c-axis, the third coordinate axis is a first a-axis;
  • the three-dimensional coordinate system is an ac three-dimensional coordinate system, the second coordinate axis is a second c-axis, and the fourth coordinate axis is a second a-axis, wherein the directions of the first c-axis and the second c-axis are Same or opposite.
  • the first three-dimensional coordinate system further includes a fifth coordinate axis along the fifth direction
  • the second three-dimensional coordinate system further includes a sixth coordinate axis along the sixth direction.
  • the first direction and the second direction are the same or opposite
  • the third direction and the fourth direction are the same or opposite.
  • the third direction and the fourth direction are the same: the angle range between the vector along the third direction and the vector along the fourth direction includes 0 degrees to 5 degrees;
  • the three directions are opposite to the fourth direction: the angle between the vector along the third direction and the vector along the fourth direction includes an angle range of 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an xyz three-dimensional coordinate system, wherein the first coordinate axis is a first z-axis, the third coordinate axis is a first y-axis, and the fifth coordinate axis is a first y-axis.
  • the coordinate axis is the first x-axis;
  • the second three-dimensional coordinate system is the xyz three-dimensional coordinate system, the second coordinate axis is the second z-axis, the fourth coordinate axis is the second y-axis, and the sixth coordinate
  • the axis is the second x axis.
  • the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are the same. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are the same.
  • the piezoelectric layer 705 includes a plurality of crystals, and the half width of the rocking curve of the plurality of crystals is less than 2.5 degrees.
  • the rocking curve describes the angular divergence of a specific crystal plane (the crystal plane determined by the diffraction angle) in the sample, expressed by a plane coordinate system, where the abscissa is the difference between the crystal plane and the sample surface.
  • the included angle, the ordinate indicates the diffraction intensity of the crystal plane at a certain included angle
  • the rocking curve is used to indicate the quality of the crystal lattice.
  • the smaller the half-width angle the better the crystal lattice quality.
  • the Full Width at Half Maximum refers to the distance between the points where the value of the two functions before and after the peak is half of the peak in a peak of a function.
  • forming the piezoelectric layer 705 on a plane can make the piezoelectric layer 705 not include a crystal that is significantly turned, thereby helping to improve the electromechanical coupling coefficient of the resonant device and the Q value of the resonant device.
  • the portion of the electrode layer 703 that overlaps the electrode layer 707 is located in the cavity 702a; the portion of the electrode layer 707 that overlaps the electrode layer 703 is located above the cavity 702a .
  • the material of the electrode layer 703 includes but is not limited to at least one of the following: molybdenum, ruthenium, tungsten, platinum, iridium, and aluminum; the material of the electrode layer 707 includes but is not limited to at least one of the following: molybdenum , Ruthenium, tungsten, platinum, iridium, aluminum.
  • the electrode layer 703 includes a positive electrode and a negative electrode
  • the electrode layer 707 includes a positive electrode and a negative electrode.
  • FIG. 7b is a schematic structural diagram of a cross-section B of a bulk acoustic wave resonator device 700 according to an embodiment of the present invention.
  • the resonance device 700 includes: the substrate 701; the intermediate layer 702 is located on the substrate 701, and the upper surface side of the cross section B of the intermediate layer 702 includes the cavity 702a;
  • the etching shielding layer 711 has a cross-section B covering the bottom and sidewalls of the cavity 702a and the upper surface side of the intermediate layer 702;
  • the electrode layer 703 includes two electrode strips 703b and two electrode strips 703c
  • the cross section B of the electrode layer 703 is located in the cavity 702a;
  • the piezoelectric layer 705 is located on the etching shield layer 711 and the electrode layer 703;
  • the electrode layer 707 includes two electrode strips 707b and two electrode strips 707c, the electrode layer 707 is located on the piezoelectric layer 705.
  • the resonance region (not shown, that is, the overlapping area of the electrode layer 703 and the electrode layer 707) is suspended relative to the cavity 702a and has no overlapping portion with the intermediate layer 702, so that The vertical projection of the resonance region (not shown) perpendicular to the upper surface is located in the cavity 702a.
  • the embodiment of the present invention can improve the difference between the acoustic impedance of the resonant region (not shown) and the non-resonant region, thereby increasing the Q value of the resonant device.
  • the acoustic impedance of the intermediate layer 702 can be small, so that the leakage wave between the resonance region (not shown) and the substrate 701 can be blocked.
  • the two electrode strips 703b include negative electrodes
  • the two electrode strips 703c include positive electrodes
  • the two electrode strips 707b include negative electrodes
  • the two electrode strips 707c include positive electrodes.
  • the two electrode strips 703b include positive electrodes
  • the two electrode strips 703c include negative electrodes
  • the two electrode strips 707b include positive electrodes
  • the two electrode strips 707c include negative electrodes.
  • the distance between the electrode strip 703b and the electrode strip 703c is the same, and the distance between the electrode strip 707b and the electrode strip 707c is the same, including the first distance.
  • the widths of the electrode bars 703b, 703c, 707b, and 707c are the same, including the first width.
  • the duty factor of the electrode strips 703b, 703c, 707b, and 707c includes a first duty factor, which corresponds to the first distance and the first width, and its value range includes but is not limited to 0.1 to 1.
  • the first distance or the first width can be adjusted to control the frequency of the resonance device.
  • the number of electrodes included in each of the electrode layers 703 and 707 may be other even numbers, for example, 2, 6, 8, 10, 12, 14, 16, 18, 20, etc. In other embodiments, the number of electrodes included in each of the electrode layers 703 and 707 may be an odd number, for example, 3, 5, 7, 9, 11, 13, 15, 17, 19, etc.
  • the electrode layer 703 includes 6 electrode strips, and the electrode layer 707 also includes 6 electrode strips.
  • the polarities of the 6 electrode strips included in the electrode layer 703 are horizontally horizontal. The directions from left to right are negative, negative, positive, positive, negative, and negative, and the polarities of the six electrode strips included in the electrode layer 707 are positive, positive, negative, and positive from left to right in the horizontal direction. Negative, positive, and positive.
  • the polarities of the six electrode strips included in the electrode layer 703 are negative, negative, negative, positive, positive, and positive along the horizontal direction from left to right, and the electrode layer 707 includes The polarities of the 6 electrode strips are positive, positive, positive, negative, negative, and negative in order from left to right in the horizontal direction.
  • the electrode layer 703 includes 5 electrode strips, and the electrode layer 707 also includes 5 electrode strips, wherein the polarities of the 5 electrode strips included in the electrode layer 703 are horizontally The directions from left to right are negative, negative, positive, negative, and negative.
  • the polarities of the five electrode strips included in the electrode layer 707 are positive, positive, negative, positive, positive.
  • the polarities of the five electrode strips included in the electrode layer 703 are negative, negative, negative, positive, and positive in order from left to right in the horizontal direction, and all the electrode layers 707 include The polarities of the five electrode strips are positive, positive, positive, negative, and negative in order from left to right in the horizontal direction.
  • FIG. 8a is a schematic diagram of a cross-sectional structure A of a bulk acoustic wave resonance device 800 according to an embodiment of the present invention.
  • an embodiment of the present invention provides a bulk acoustic wave resonator device 800 including: an intermediate layer 802, the upper surface side of the intermediate layer 802 includes a cavity 802a; an electrode layer 803, the cross-section A of the electrode layer 803 The first end contacts the sidewall of the cavity 802a, the second end of the cross section A of the electrode layer 803 is located in the cavity 802a; the piezoelectric layer 805 is located on the intermediate layer 802 and the electrode layer 803 The electrode layer 807 is located on the piezoelectric layer 805. It can be seen from FIG.
  • the resonance region (not shown, that is, the overlapping area of the electrode layer 803 and the electrode layer 807) is suspended relative to the cavity 802a and has no overlapping portion with the intermediate layer 802, so that The vertical projection of the resonance region (not shown) perpendicular to the upper surface is located in the cavity 802a.
  • the embodiment of the present invention can improve the difference between the acoustic impedance of the resonant region (not shown) and the non-resonant region, thereby increasing the Q value of the resonant device.
  • the resonance device 800 provided by the embodiment of the present invention does not include a substrate, so that the electrical loss caused by the substrate can be eliminated.
  • the material of the intermediate layer 802 includes but is not limited to at least one of the following: polymer and insulating dielectric.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the insulating dielectric includes but is not limited to at least one of the following: aluminum nitride, silicon dioxide, silicon nitride, and titanium oxide.
  • the thickness of the intermediate layer 802 includes but is not limited to: 20 micrometers to 100 micrometers.
  • the material of the piezoelectric layer 805 includes but is not limited to at least one of the following: aluminum nitride, aluminum oxide aluminum, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, Lead magnesium niobate-lead titanate.
  • the piezoelectric layer 805 includes a plurality of crystals, and the plurality of crystals includes a first crystal and a second crystal, wherein the first crystal and the second crystal are among the plurality of crystals. Of any two crystals. Those skilled in the art know that the crystal orientation, crystal plane, etc. of a crystal can be expressed based on a coordinate system. As shown in FIG. 13, for crystals of the hexagonal system, such as aluminum nitride crystals, the ac three-dimensional coordinate system (including the a-axis and the c-axis) is used to represent.
  • the crystal is represented by the xyz three-dimensional coordinate system (including the x-axis, y-axis and z-axis).
  • crystals can also be represented based on coordinate systems known to those skilled in the art, so the present invention is not limited by the above two examples.
  • the first crystal may be represented based on a first three-dimensional coordinate system
  • the second crystal may be represented based on a second three-dimensional coordinate system
  • the first three-dimensional coordinate system at least includes a first three-dimensional coordinate system along a first direction.
  • the second three-dimensional coordinate system includes at least a second coordinate axis along the second direction and a fourth coordinate axis along the fourth direction, wherein the first coordinate axis Corresponding to the height of the first crystal, the second coordinate axis corresponds to the height of the second crystal.
  • first direction and the second direction are the same or opposite. It should be noted that the first direction and the second direction are the same: the angle range between the vector along the first direction and the vector along the second direction includes 0 degrees to 5 degrees; A direction opposite to the second direction refers to: the angle range between the vector along the first direction and the vector along the second direction includes 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an ac three-dimensional coordinate system, wherein the first coordinate axis is a first c-axis, the third coordinate axis is a first a-axis;
  • the three-dimensional coordinate system is an ac three-dimensional coordinate system, the second coordinate axis is a second c-axis, and the fourth coordinate axis is a second a-axis, wherein the directions of the first c-axis and the second c-axis are Same or opposite.
  • the first three-dimensional coordinate system further includes a fifth coordinate axis along the fifth direction
  • the second three-dimensional coordinate system further includes a sixth coordinate axis along the sixth direction.
  • the first direction and the second direction are the same or opposite
  • the third direction and the fourth direction are the same or opposite.
  • the third direction and the fourth direction are the same: the angle range between the vector along the third direction and the vector along the fourth direction includes 0 degrees to 5 degrees;
  • the three directions are opposite to the fourth direction: the angle between the vector along the third direction and the vector along the fourth direction includes an angle range of 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an xyz three-dimensional coordinate system, wherein the first coordinate axis is a first z-axis, the third coordinate axis is a first y-axis, and the fifth coordinate axis is a first y-axis.
  • the coordinate axis is the first x-axis;
  • the second three-dimensional coordinate system is the xyz three-dimensional coordinate system, the second coordinate axis is the second z-axis, the fourth coordinate axis is the second y-axis, and the sixth coordinate
  • the axis is the second x axis.
  • the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are the same. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are the same.
  • the piezoelectric layer 805 includes a plurality of crystals, and the half width of the rocking curve of the plurality of crystals is less than 2.5 degrees.
  • the rocking curve describes the angular divergence of a specific crystal plane (the crystal plane determined by the diffraction angle) in the sample, expressed by a plane coordinate system, where the abscissa is the difference between the crystal plane and the sample surface.
  • the included angle, the ordinate indicates the diffraction intensity of the crystal plane at a certain included angle
  • the rocking curve is used to indicate the quality of the crystal lattice.
  • the smaller the half-width angle the better the crystal lattice quality.
  • the Full Width at Half Maximum refers to the distance between the points where the value of the two functions before and after the peak is half of the peak in a peak of a function.
  • forming the piezoelectric layer 805 on a plane can make the piezoelectric layer 805 not include a crystal that is significantly turned, thereby helping to improve the electromechanical coupling coefficient of the resonant device and the Q value of the resonant device.
  • the portion of the electrode layer 803 that overlaps the electrode layer 807 is located in the cavity 802a; the portion of the electrode layer 807 that overlaps the electrode layer 803 is located above the cavity 802a .
  • the material of the electrode layer 803 includes but is not limited to at least one of the following: molybdenum, ruthenium, tungsten, platinum, iridium, and aluminum; the material of the electrode layer 807 includes but is not limited to at least one of the following: molybdenum , Ruthenium, tungsten, platinum, iridium, aluminum.
  • the electrode layer 803 includes a negative electrode, and the electrode layer 807 includes a positive electrode. In another embodiment of the present invention, the electrode layer 803 includes a positive electrode, and the electrode layer 807 includes a negative electrode.
  • FIG. 8b is a schematic structural diagram of a cross-section B of a bulk acoustic wave resonator device 800 according to an embodiment of the present invention.
  • the resonance device 800 includes: the intermediate layer 802, the upper surface side of the intermediate layer 802 includes the cavity 802a; the electrode layer 803 includes four electrode strips 803b, the The cross section B of the electrode layer 803 is located in the cavity 802a; the piezoelectric layer 805 is located on the intermediate layer 802 and the electrode layer 803; the electrode layer 807 includes four electrode strips 807b, and the electrode The layer 807 is located on the piezoelectric layer 805. It can be seen from FIG.
  • the resonance region (not shown, that is, the overlapping area of the electrode layer 803 and the electrode layer 807) is suspended relative to the cavity 802a and has no overlapping portion with the intermediate layer 802, so that The vertical projection of the resonance region (not shown) perpendicular to the upper surface is located in the cavity 802a.
  • the embodiment of the present invention can improve the difference between the acoustic impedance of the resonant region (not shown) and the non-resonant region, thereby increasing the Q value of the resonant device.
  • the resonance device 800 provided by the embodiment of the present invention does not include a substrate, so that the electrical loss caused by the substrate can be eliminated.
  • the four electrode strips 803b include negative electrodes, and the four electrode strips 807b include positive electrodes. In another embodiment, the four electrode strips 803b include positive electrodes, and the four electrode strips 807b include negative electrodes.
  • the distance between the electrode strips 803b is the same, and the distance between the electrode strips 807b is the same, including the first distance.
  • the widths of the electrode strips 803b and 807b are the same, including the first width.
  • the duty factor of the electrode strips 803b and 807b includes a first duty factor, which corresponds to the first distance and the first width, and its value range includes but is not limited to 0.1 to 1.
  • the first distance or the first width can be adjusted to control the frequency of the resonance device.
  • the number of electrodes included in each of the electrode layers 803 and 807 may be other even numbers, for example, 2, 6, 8, 10, 12, 14, 16, 18, 20, etc. In other embodiments of the present invention, the number of electrodes included in each of the electrode layers 803 and 807 may be an odd number, for example, 3, 5, 7, 9, 11, 13, 15, 17, 19 and so on.
  • FIG. 9a is a schematic diagram of a cross-sectional structure A of a bulk acoustic wave resonator device 900 according to an embodiment of the present invention.
  • an embodiment of the present invention provides a bulk acoustic wave resonance device 900 including: an intermediate layer 902.
  • the upper surface side of the section A of the intermediate layer 902 includes a cavity 902a and a cavity 902b, wherein the cavity 902b is located on one side of the cavity 902a and communicates with the cavity 902a, the depth of the cavity 902b is less than the depth of the cavity 902a; the electrode layer 903, the first end of the section A of the electrode layer 903 Located in the cavity 902b, the second end of the cross section A of the electrode layer 903 is located in the cavity 902a, wherein the depth of the cavity 902b is equal to the thickness of the electrode layer 903; the piezoelectric layer 905, It is located on the intermediate layer 902 and the electrode layer 903; the electrode layer 907 is located on the piezoelectric layer 905.
  • the resonance region (not shown, that is, the overlapping area of the electrode layer 903 and the electrode layer 907) is suspended relative to the cavity 902a, and there is no overlapping part with the intermediate layer 902, so The vertical projection of the resonance region (not shown) perpendicular to the upper surface is located in the cavity 902a.
  • the embodiment of the present invention can improve the difference between the acoustic impedance of the resonant region (not shown) and the non-resonant region, thereby increasing the Q value of the resonant device.
  • the resonant device 900 provided by the embodiment of the present invention does not include a substrate, so that the electrical loss caused by the substrate can be eliminated.
  • the material of the intermediate layer 902 includes but is not limited to at least one of the following: polymer and insulating dielectric.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the insulating dielectric includes but is not limited to at least one of the following: aluminum nitride, silicon dioxide, silicon nitride, and titanium oxide.
  • the thickness of the intermediate layer 902 includes but is not limited to: 20 micrometers to 100 micrometers.
  • the material of the piezoelectric layer 905 includes but is not limited to at least one of the following: aluminum nitride, aluminum oxide aluminum, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, Lead magnesium niobate-lead titanate.
  • the piezoelectric layer 905 includes a plurality of crystals, and the plurality of crystals includes a first crystal and a second crystal, wherein the first crystal and the second crystal are among the plurality of crystals. Of any two crystals. Those skilled in the art know that the crystal orientation, crystal plane, etc. of a crystal can be expressed based on a coordinate system. As shown in FIG. 13, for crystals of the hexagonal system, such as aluminum nitride crystals, the ac three-dimensional coordinate system (including the a-axis and the c-axis) is used to represent.
  • the crystal is represented by the xyz three-dimensional coordinate system (including the x-axis, y-axis and z-axis).
  • crystals can also be represented based on coordinate systems known to those skilled in the art, so the present invention is not limited by the above two examples.
  • the first crystal may be represented based on a first three-dimensional coordinate system
  • the second crystal may be represented based on a second three-dimensional coordinate system
  • the first three-dimensional coordinate system at least includes a first three-dimensional coordinate system along a first direction.
  • the second three-dimensional coordinate system includes at least a second coordinate axis along the second direction and a fourth coordinate axis along the fourth direction, wherein the first coordinate axis Corresponding to the height of the first crystal, the second coordinate axis corresponds to the height of the second crystal.
  • first direction and the second direction are the same or opposite. It should be noted that the first direction and the second direction are the same: the angle range between the vector along the first direction and the vector along the second direction includes 0 degrees to 5 degrees; A direction opposite to the second direction refers to: the angle range between the vector along the first direction and the vector along the second direction includes 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an ac three-dimensional coordinate system, wherein the first coordinate axis is a first c-axis, the third coordinate axis is a first a-axis;
  • the three-dimensional coordinate system is an ac three-dimensional coordinate system, the second coordinate axis is a second c-axis, and the fourth coordinate axis is a second a-axis, wherein the directions of the first c-axis and the second c-axis are Same or opposite.
  • the first three-dimensional coordinate system further includes a fifth coordinate axis along the fifth direction
  • the second three-dimensional coordinate system further includes a sixth coordinate axis along the sixth direction.
  • the first direction and the second direction are the same or opposite
  • the third direction and the fourth direction are the same or opposite.
  • the third direction and the fourth direction are the same: the angle range between the vector along the third direction and the vector along the fourth direction includes 0 degrees to 5 degrees;
  • the three directions are opposite to the fourth direction: the angle between the vector along the third direction and the vector along the fourth direction includes an angle range of 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an xyz three-dimensional coordinate system, wherein the first coordinate axis is a first z-axis, the third coordinate axis is a first y-axis, and the fifth coordinate axis is a first y-axis.
  • the coordinate axis is the first x-axis;
  • the second three-dimensional coordinate system is the xyz three-dimensional coordinate system, the second coordinate axis is the second z-axis, the fourth coordinate axis is the second y-axis, and the sixth coordinate
  • the axis is the second x axis.
  • the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are the same. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are the same.
  • the piezoelectric layer 905 includes a plurality of crystals, and the half width of the rocking curve of the plurality of crystals is less than 2.5 degrees.
  • the rocking curve describes the angular divergence of a specific crystal plane (the crystal plane determined by the diffraction angle) in the sample, expressed by a plane coordinate system, where the abscissa is the difference between the crystal plane and the sample surface.
  • the included angle, the ordinate indicates the diffraction intensity of the crystal plane at a certain included angle, and the rocking curve is used to indicate the quality of the crystal lattice.
  • the smaller the half-width angle the better the crystal lattice quality.
  • the Full Width at Half Maximum refers to the distance between the points where the value of the two functions before and after the peak is half of the peak in a peak of a function.
  • forming the piezoelectric layer 905 on a plane can make the piezoelectric layer 905 not include a crystal that is clearly turned, thereby helping to improve the electromechanical coupling coefficient of the resonant device and the Q value of the resonant device.
  • the portion of the electrode layer 903 that overlaps the electrode layer 907 is located in the cavity 902a; the portion of the electrode layer 907 that overlaps the electrode layer 903 is located above the cavity 902a .
  • the material of the electrode layer 903 includes but is not limited to at least one of the following: molybdenum, ruthenium, tungsten, platinum, iridium, and aluminum; the material of the electrode layer 907 includes but is not limited to at least one of the following: molybdenum , Ruthenium, tungsten, platinum, iridium, aluminum.
  • the electrode layer 903 includes a negative electrode, and the electrode layer 907 includes a positive electrode. In another embodiment, the electrode layer 903 includes a positive electrode, and the electrode layer 907 includes a negative electrode.
  • FIG. 9b is a schematic structural diagram of a cross-section B of a bulk acoustic wave resonator device 900 according to an embodiment of the present invention.
  • the resonance device 900 includes: the intermediate layer 902, the upper surface side of the cross section B of the intermediate layer 902 includes the cavity 902a; the electrode layer 903 includes four electrode strips 903b, The cross section B of the electrode layer 903 is located in the cavity 902a; the piezoelectric layer 905 is located on the intermediate layer 902 and the electrode layer 903; the electrode layer 907 includes four electrode strips 907b, so The electrode layer 907 is located on the piezoelectric layer 905. It can be seen from FIG.
  • the resonance region (not shown, that is, the overlapping area of the electrode layer 903 and the electrode layer 907) is suspended relative to the cavity 902a and has no overlapping portion with the intermediate layer 902, so that The vertical projection of the resonance region (not shown) perpendicular to the upper surface is located in the cavity 902a.
  • the embodiment of the present invention can improve the difference between the acoustic impedance of the resonant region (not shown) and the non-resonant region, thereby increasing the Q value of the resonant device.
  • the resonant device 900 provided by the embodiment of the present invention does not include a substrate, so that the electrical loss caused by the substrate can be eliminated.
  • the four electrode strips 903b include negative electrodes, and the four electrode strips 907b include positive electrodes. In another embodiment, the four electrode strips 903b include positive electrodes, and the four electrode strips 907b include negative electrodes.
  • the distance between the electrode strips 903b is variable, and the distance between the electrode strips 907b is variable, including: a first distance and a second distance, wherein the first distance is less than the first distance. The second distance.
  • the widths of the electrode strips 903b and 907b are variable, including: a first width and a second width, wherein the first width is greater than the second width.
  • the duty factor of the electrode strips 903b and 907b includes: a first duty factor, corresponding to the first width and the first distance, a second duty factor, corresponding to the second width and The first distance and the third duty factor correspond to the second width and the second distance, and the fourth duty factor corresponds to the first width and the second distance, wherein the first The value ranges of a duty factor, the second duty factor, the third duty factor, and the fourth duty factor include but are not limited to 0.1 to 1.
  • the frequency of the resonance device can be controlled by adjusting the first distance or the second distance or the first width or the second width.
  • the number of electrodes included in each of the electrode layers 903 and 907 may be other even numbers, for example, 2, 6, 8, 10, 12, 14, 16, 18, 20, etc. In other embodiments, the number of electrodes included in each of the electrode layers 903 and 907 may be an odd number, for example, 3, 5, 7, 9, 11, 13, 15, 17, 19, etc.
  • FIG. 10a is a schematic structural diagram of a cross-section A of a bulk acoustic wave resonator device 1000 according to an embodiment of the present invention.
  • an embodiment of the present invention provides a bulk acoustic wave resonance device 1000 including: an intermediate layer 1002.
  • the upper surface side of the section A of the intermediate layer 1002 includes a cavity 1002a and a cavity 1002b, wherein the cavity 1002b is located on one side of the cavity 1002a and communicates with the cavity 1002a, the depth of the cavity 1002b is less than the depth of the cavity 1002a; the etched shielding layer 1011, the cross-section A of the cavity 1002a The bottom and sidewalls of the cavity 1002b, the bottom and sidewalls of the cavity 1002b, and the upper surface side of the intermediate layer 1002; the electrode layer 1003, the first end of the section A of the electrode layer 1003 is located in the cavity 1002b The second end of the section A of the electrode layer 1003 is located in the cavity 1002a, wherein the depth of the cavity 1002b is equal to the sum of the thickness of the etching shield layer 1011 and the thickness of the electrode layer 1003;
  • the resonance region (not shown, that is, the overlapping area of the electrode layer 1003 and the electrode layer 1007) is suspended relative to the cavity 1002a, and has no overlapping portion with the intermediate layer 1002, so that The vertical projection of the resonance region (not shown) perpendicular to the upper surface is located in the cavity 1002a.
  • the embodiment of the present invention can improve the difference between the acoustic impedance of the resonant region (not shown) and the non-resonant region, thereby increasing the Q value of the resonant device.
  • the resonant device 1000 provided by the embodiment of the present invention does not include a substrate, so that the electrical loss caused by the substrate can be eliminated.
  • the material of the intermediate layer 1002 includes but is not limited to at least one of the following: polymer and insulating dielectric.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the insulating dielectric includes but is not limited to at least one of the following: aluminum nitride, silicon dioxide, silicon nitride, and titanium oxide.
  • the thickness of the intermediate layer 1002 includes but is not limited to: 20 micrometers to 100 micrometers.
  • the material of the etching shielding layer 1011 includes but is not limited to at least one of the following: aluminum nitride, silicon carbide, diamond, silicon nitride, silicon dioxide, aluminum oxide, and titanium dioxide.
  • the thickness of the etching shielding layer 1011 includes but is not limited to: 2 ⁇ m to 6 ⁇ m.
  • the etching shielding layer 1011 can protect the intermediate layer 1002 when the cavity 1002a is formed by etching.
  • the etched barrier layer 1011 can protect the resonance device from corrosion by water and oxygen.
  • the material of the piezoelectric layer 1005 includes but is not limited to at least one of the following: aluminum nitride, aluminum alloy oxide, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, Lead magnesium niobate-lead titanate.
  • the piezoelectric layer 1005 includes a plurality of crystals, and the plurality of crystals includes a first crystal and a second crystal, wherein the first crystal and the second crystal are among the plurality of crystals. Of any two crystals. Those skilled in the art know that the crystal orientation, crystal plane, etc. of a crystal can be expressed based on a coordinate system. As shown in FIG. 13, for crystals of the hexagonal system, such as aluminum nitride crystals, the ac three-dimensional coordinate system (including the a-axis and the c-axis) is used to represent.
  • the crystal is represented by the xyz three-dimensional coordinate system (including the x-axis, y-axis and z-axis).
  • crystals can also be represented based on coordinate systems known to those skilled in the art, so the present invention is not limited by the above two examples.
  • the first crystal may be represented based on a first three-dimensional coordinate system
  • the second crystal may be represented based on a second three-dimensional coordinate system
  • the first three-dimensional coordinate system at least includes a first three-dimensional coordinate system along a first direction.
  • the second three-dimensional coordinate system includes at least a second coordinate axis along the second direction and a fourth coordinate axis along the fourth direction, wherein the first coordinate axis Corresponding to the height of the first crystal, the second coordinate axis corresponds to the height of the second crystal.
  • first direction and the second direction are the same or opposite. It should be noted that the first direction and the second direction are the same: the angle range between the vector along the first direction and the vector along the second direction includes 0 degrees to 5 degrees; A direction opposite to the second direction refers to: the angle range between the vector along the first direction and the vector along the second direction includes 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an ac three-dimensional coordinate system, wherein the first coordinate axis is a first c-axis, the third coordinate axis is a first a-axis;
  • the three-dimensional coordinate system is an ac three-dimensional coordinate system, the second coordinate axis is a second c-axis, and the fourth coordinate axis is a second a-axis, wherein the directions of the first c-axis and the second c-axis are Same or opposite.
  • the first three-dimensional coordinate system further includes a fifth coordinate axis along the fifth direction
  • the second three-dimensional coordinate system further includes a sixth coordinate axis along the sixth direction.
  • the first direction and the second direction are the same or opposite
  • the third direction and the fourth direction are the same or opposite.
  • the third direction and the fourth direction are the same: the angle range between the vector along the third direction and the vector along the fourth direction includes 0 degrees to 5 degrees;
  • the three directions are opposite to the fourth direction: the angle between the vector along the third direction and the vector along the fourth direction includes an angle range of 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an xyz three-dimensional coordinate system, wherein the first coordinate axis is a first z-axis, the third coordinate axis is a first y-axis, and the fifth coordinate axis is a first y-axis.
  • the coordinate axis is the first x-axis;
  • the second three-dimensional coordinate system is the xyz three-dimensional coordinate system, the second coordinate axis is the second z-axis, the fourth coordinate axis is the second y-axis, and the sixth coordinate
  • the axis is the second x axis.
  • the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are the same. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are the same.
  • the piezoelectric layer 1005 includes a plurality of crystals, and the half width of the rocking curve of the plurality of crystals is less than 2.5 degrees.
  • the rocking curve describes the angular divergence of a specific crystal plane (the crystal plane determined by the diffraction angle) in the sample, expressed by a plane coordinate system, where the abscissa is the difference between the crystal plane and the sample surface.
  • the included angle, the ordinate indicates the diffraction intensity of the crystal plane at a certain included angle
  • the rocking curve is used to indicate the quality of the crystal lattice.
  • the smaller the half-width angle the better the crystal lattice quality.
  • the Full Width at Half Maximum refers to the distance between the points where the value of the two functions before and after the peak is half of the peak in a peak of a function.
  • forming the piezoelectric layer 1005 on a plane can make the piezoelectric layer 1005 not include a crystal that is significantly turned, thereby helping to improve the electromechanical coupling coefficient of the resonant device and the Q value of the resonant device.
  • the portion of the electrode layer 1003 that overlaps the electrode layer 1007 is located in the cavity 1002a; the portion of the electrode layer 1007 that overlaps the electrode layer 1003 is located above the cavity 1002a .
  • the material of the electrode layer 1003 includes but is not limited to at least one of the following: molybdenum, ruthenium, tungsten, platinum, iridium, and aluminum; the material of the electrode layer 1007 includes but is not limited to at least one of the following: molybdenum , Ruthenium, tungsten, platinum, iridium, aluminum.
  • the electrode layer 1003 includes a positive electrode and a negative electrode
  • the electrode layer 1007 includes a positive electrode and a negative electrode.
  • FIG. 10b is a schematic structural diagram of a cross-section B of a bulk acoustic wave resonator device 1000 according to an embodiment of the present invention.
  • the resonant device 1000 includes: the intermediate layer 1002, the upper surface side of the section B of the intermediate layer 1002 includes the cavity 1002a; the etching shielding layer 1011, the section B of which covers all The bottom and sidewalls of the cavity 1002a and the upper surface side of the intermediate layer 1002; the electrode layer 1003 includes two electrode strips 1003b and two electrode strips 1003c, and the cross section B of the electrode layer 1003 is located in the cavity.
  • the piezoelectric layer 1005 is located on the etching shield layer 1011 and the electrode layer 1003;
  • the electrode layer 1007 includes two electrode strips 1007b and two electrode strips 1007c, the electrode layer 1007 is located on the piezoelectric layer 1005.
  • the resonance region (not shown, that is, the overlapping area of the electrode layer 1003 and the electrode layer 1007) is suspended relative to the cavity 1002a, and has no overlapping portion with the intermediate layer 1002, so that The vertical projection of the resonance region (not shown) perpendicular to the upper surface is located in the cavity 1002a.
  • the embodiment of the present invention can improve the difference between the acoustic impedance of the resonant region (not shown) and the non-resonant region, thereby increasing the Q value of the resonant device.
  • the resonant device 1000 provided by the embodiment of the present invention does not include a substrate, so that the electrical loss caused by the substrate can be eliminated.
  • the two electrode strips 1003b include negative electrodes
  • the two electrode strips 1003c include positive electrodes
  • the two electrode strips 1007b include negative electrodes
  • the two electrode strips 1007c include positive electrodes.
  • the two electrode strips 1003b include positive electrodes
  • the two electrode strips 1003c include negative electrodes
  • the two electrode strips 1007b include positive electrodes
  • the two electrode strips 1007c include negative electrodes.
  • the distance between the electrode strip 1003b and the electrode strip 1003c is the same, and the distance between the electrode strip 1007b and the electrode strip 1007c is the same, including the first distance.
  • the widths of the electrode strips 1003b, 1003c, 1007b, and 1007c are the same, including the first width.
  • the duty factor of the electrode strips 1003b, 1003c, 1007b, 1007c includes a first duty factor, which corresponds to the first distance and the first width, and its value range includes but is not limited to 0.1 to 1.
  • the first distance or the first width can be adjusted to control the frequency of the resonance device.
  • the number of electrodes included in each of the electrode layers 1003 and 1007 may be other even numbers, for example, 2, 6, 8, 10, 12, 14, 16, 18, 20, etc. In other embodiments, the number of electrodes included in each of the electrode layers 1003 and 1007 may be an odd number, for example, 3, 5, 7, 9, 11, 13, 15, 17, 19 and so on.
  • FIG. 11a is a schematic structural diagram of a cross-section A of a bulk acoustic wave resonator device 1100 according to an embodiment of the present invention.
  • an embodiment of the present invention provides a bulk acoustic wave resonator device 1100 including: a substrate 1101; a thin film 1104 on the substrate 1101; an intermediate layer 1102 on the thin film 1104, and the intermediate layer 1102
  • the upper surface side includes a cavity 1102a; an electrode layer 1103, the first end of the section A of the electrode layer 1103 contacts the sidewall of the cavity 1102a, and the second end of the section A of the electrode layer 1103 is located in the cavity 1102a
  • the piezoelectric layer 1105 is located on the intermediate layer 1102 and the electrode layer 1103; the electrode layer 1107 is located on the piezoelectric layer 1105. It can be seen from FIG.
  • the resonance region (not shown, that is, the overlapping area of the electrode layer 1103 and the electrode layer 1107) is suspended relative to the cavity 1102a and has no overlapping portion with the intermediate layer 1102, so The vertical projection of the resonance region (not shown) perpendicular to the upper surface is located in the cavity 1102a.
  • the embodiment of the present invention can improve the difference between the acoustic impedance of the resonant region (not shown) and the non-resonant region, thereby increasing the Q value of the resonant device.
  • the acoustic impedance of the intermediate layer 1102 may be small, so as to block leakage waves between the resonance region (not shown) and the substrate 1101.
  • the thin film 1104 helps prevent the formation of a free electron layer on the surface of the substrate 1101 so as to reduce the loss of the substrate 1101.
  • the material of the substrate 1101 includes but is not limited to at least one of the following: silicon, silicon carbide, and glass.
  • the thin film 1104 includes, but is not limited to, a polycrystalline thin film.
  • the material of the polycrystalline film includes but is not limited to at least one of the following: polycrystalline silicon, polycrystalline silicon nitride, and polycrystalline silicon carbide.
  • the material of the intermediate layer 1102 includes but is not limited to at least one of the following: polymer and insulating dielectric.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the insulating dielectric includes but is not limited to at least one of the following: aluminum nitride, silicon dioxide, silicon nitride, and titanium oxide.
  • the thickness of the intermediate layer 1102 includes, but is not limited to, 0.1 ⁇ m to 10 ⁇ m.
  • the material of the piezoelectric layer 1105 includes but is not limited to at least one of the following: aluminum nitride, aluminum oxide aluminum, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, Lead magnesium niobate-lead titanate.
  • the piezoelectric layer 1105 includes a plurality of crystals, and the plurality of crystals includes a first crystal and a second crystal, wherein the first crystal and the second crystal are among the plurality of crystals. Of any two crystals. Those skilled in the art know that the crystal orientation, crystal plane, etc. of a crystal can be expressed based on a coordinate system. As shown in FIG. 13, for crystals of the hexagonal system, such as aluminum nitride crystals, the ac three-dimensional coordinate system (including the a-axis and the c-axis) is used to represent.
  • the crystal is represented by the xyz three-dimensional coordinate system (including the x-axis, y-axis and z-axis).
  • crystals can also be represented based on coordinate systems known to those skilled in the art, so the present invention is not limited by the above two examples.
  • the first crystal may be represented based on a first three-dimensional coordinate system
  • the second crystal may be represented based on a second three-dimensional coordinate system
  • the first three-dimensional coordinate system at least includes a first three-dimensional coordinate system along a first direction.
  • the second three-dimensional coordinate system includes at least a second coordinate axis along the second direction and a fourth coordinate axis along the fourth direction, wherein the first coordinate axis Corresponding to the height of the first crystal, the second coordinate axis corresponds to the height of the second crystal.
  • first direction and the second direction are the same or opposite. It should be noted that the first direction and the second direction are the same: the angle range between the vector along the first direction and the vector along the second direction includes 0 degrees to 5 degrees; A direction opposite to the second direction refers to: the angle range between the vector along the first direction and the vector along the second direction includes 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an ac three-dimensional coordinate system, wherein the first coordinate axis is a first c-axis, the third coordinate axis is a first a-axis;
  • the three-dimensional coordinate system is an ac three-dimensional coordinate system, the second coordinate axis is a second c-axis, and the fourth coordinate axis is a second a-axis, wherein the directions of the first c-axis and the second c-axis are Same or opposite.
  • the first three-dimensional coordinate system further includes a fifth coordinate axis along the fifth direction
  • the second three-dimensional coordinate system further includes a sixth coordinate axis along the sixth direction.
  • the first direction and the second direction are the same or opposite
  • the third direction and the fourth direction are the same or opposite.
  • the third direction and the fourth direction are the same: the angle range between the vector along the third direction and the vector along the fourth direction includes 0 degrees to 5 degrees;
  • the three directions are opposite to the fourth direction: the angle between the vector along the third direction and the vector along the fourth direction includes an angle range of 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an xyz three-dimensional coordinate system, wherein the first coordinate axis is a first z-axis, the third coordinate axis is a first y-axis, and the fifth coordinate axis is a first y-axis.
  • the coordinate axis is the first x-axis;
  • the second three-dimensional coordinate system is the xyz three-dimensional coordinate system, the second coordinate axis is the second z-axis, the fourth coordinate axis is the second y-axis, and the sixth coordinate
  • the axis is the second x axis.
  • the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are the same. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are the same.
  • the piezoelectric layer 1105 includes a plurality of crystals, and the half width of the rocking curve of the plurality of crystals is less than 2.5 degrees.
  • the rocking curve describes the angular divergence of a specific crystal plane (the crystal plane determined by the diffraction angle) in the sample, expressed by a plane coordinate system, where the abscissa is the difference between the crystal plane and the sample surface.
  • the included angle, the ordinate indicates the diffraction intensity of the crystal plane at a certain included angle
  • the rocking curve is used to indicate the quality of the crystal lattice.
  • the smaller the half-width angle the better the crystal lattice quality.
  • the Full Width at Half Maximum refers to the distance between the points where the value of the two functions before and after the peak is half of the peak in a peak of a function.
  • forming the piezoelectric layer 1105 on a plane can make the piezoelectric layer 1105 not include a crystal that is clearly turned, thereby helping to improve the electromechanical coupling coefficient of the resonant device and the Q value of the resonant device.
  • the portion of the electrode layer 1103 that overlaps the electrode layer 1107 is located in the cavity 1102a; the portion of the electrode layer 1107 that overlaps the electrode layer 1103 is located above the cavity 1102a .
  • the material of the electrode layer 1103 includes but is not limited to at least one of the following: molybdenum, ruthenium, tungsten, platinum, iridium, and aluminum; the material of the electrode layer 1107 includes but is not limited to at least one of the following: molybdenum , Ruthenium, tungsten, platinum, iridium, aluminum.
  • the electrode layer 1103 includes a positive electrode and a negative electrode
  • the electrode layer 1107 includes a positive electrode and a negative electrode.
  • FIG. 11b is a schematic structural diagram of a cross-section B of a bulk acoustic wave resonator device 1100 according to an embodiment of the present invention.
  • the resonance device 1100 includes: the substrate 1101; the thin film 1104 on the substrate 1101; the intermediate layer 1102 on the thin film 1104, and the intermediate layer 1102 on the The surface side includes the cavity 1102a; the electrode layer 1103 includes two electrode strips 1103b and two electrode strips 1103c, and the cross section B of the electrode layer 1103 is located in the cavity 1102a; the piezoelectric layer 1105, It is located on the intermediate layer 1102 and the electrode layer 1103; the electrode layer 1107 includes two electrode strips 1107b and two electrode strips 1107c, and the electrode layer 1107 is located on the piezoelectric layer 1105.
  • the resonance region (not shown, that is, the overlapping area of the electrode layer 1103 and the electrode layer 1107) is suspended relative to the cavity 1102a, and has no overlapping part with the intermediate layer 1102, so The vertical projection of the resonance region (not shown) perpendicular to the upper surface is located in the cavity 1102a.
  • the embodiment of the present invention can improve the difference between the acoustic impedance of the resonant region (not shown) and the non-resonant region, thereby increasing the Q value of the resonant device.
  • the acoustic impedance of the intermediate layer 1102 may be small, so as to block leakage waves between the resonance region (not shown) and the substrate 1101.
  • the thin film 1104 helps prevent the formation of a free electron layer on the surface of the substrate 1101 so as to reduce the loss of the substrate 1101.
  • the two electrode strips 1103b include negative electrodes
  • the two electrode strips 1103c include positive electrodes
  • the two electrode strips 1107b include negative electrodes
  • the two electrode strips 1107c include positive electrodes.
  • the two electrode strips 1103b include positive electrodes
  • the two electrode strips 1103c include negative electrodes
  • the two electrode strips 1107b include positive electrodes
  • the two electrode strips 1107c include negative electrodes.
  • the distance between the electrode strip 1103b and the electrode strip 1103c is the same, and the distance between the electrode strip 1107b and the electrode strip 1107c is the same, including the first distance.
  • the widths of the electrode strips 1103b, 1103c, 1107b, and 1107c are the same, including the first width.
  • the duty factor of the electrode strips 1103b, 1103c, 1107b, and 1107c includes a first duty factor, which corresponds to the first distance and the first width, and its value range includes but is not limited to 0.1 to 1.
  • the first distance or the first width can be adjusted to control the frequency of the resonance device.
  • the number of electrodes included in each of the electrode layers 1103 and 1107 may be other even numbers, for example, 2, 6, 8, 10, 12, 14, 16, 18, 20, etc. In other embodiments, the number of electrodes included in each of the electrode layers 1103 and 1107 may be an odd number, for example, 3, 5, 7, 9, 11, 13, 15, 17, 19, etc.
  • FIG. 12a is a schematic structural diagram of a cross-section A of a bulk acoustic wave resonator device 1200 according to an embodiment of the present invention.
  • an embodiment of the present invention provides a bulk acoustic wave resonance device 1200 including: a substrate 1201; a thin film 1204 located on the substrate 1201; an intermediate layer 1202 located on the thin film 1204, a cross-section of the intermediate layer 1202
  • the upper surface side of A includes a cavity 1202a and a cavity 1202b, wherein the cavity 1202b is located on one side of the cavity 1202a and communicates with the cavity 1202a, and the depth of the cavity 1202b is smaller than that of the cavity.
  • the resonance region (not shown, that is, the overlapping area of the electrode layer 1203 and the electrode layer 1207) is suspended relative to the cavity 1202a, and has no overlapping portion with the intermediate layer 1202, so that The vertical projection of the resonance region (not shown) perpendicular to the upper surface is located in the cavity 1202a.
  • the embodiment of the present invention can improve the difference between the acoustic impedance of the resonant region (not shown) and the non-resonant region, thereby increasing the Q value of the resonant device.
  • the acoustic impedance of the intermediate layer 1202 can be small, so that the leakage wave between the resonance region (not shown) and the substrate 1201 can be blocked.
  • the thin film 1204 helps prevent the formation of a free electron layer on the surface of the substrate 1201, so as to reduce the loss of the substrate 1201.
  • the material of the substrate 1201 includes but is not limited to at least one of the following: silicon, silicon carbide, and glass.
  • the thin film 1204 includes, but is not limited to, a polycrystalline thin film.
  • the material of the polycrystalline film includes but is not limited to at least one of the following: polycrystalline silicon, polycrystalline silicon nitride, and polycrystalline silicon carbide.
  • the material of the intermediate layer 1202 includes but is not limited to at least one of the following: polymer and insulating dielectric.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the insulating dielectric includes but is not limited to at least one of the following: aluminum nitride, silicon dioxide, silicon nitride, and titanium oxide.
  • the thickness of the intermediate layer 1202 includes, but is not limited to, 0.1 ⁇ m to 10 ⁇ m.
  • the material of the piezoelectric layer 1205 includes but is not limited to at least one of the following: aluminum nitride, aluminum oxide, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, Lead magnesium niobate-lead titanate.
  • the piezoelectric layer 1205 includes a plurality of crystals, and the plurality of crystals includes a first crystal and a second crystal, wherein the first crystal and the second crystal are among the plurality of crystals. Of any two crystals. Those skilled in the art know that the crystal orientation, crystal plane, etc. of a crystal can be expressed based on a coordinate system. As shown in FIG. 13, for crystals of the hexagonal system, such as aluminum nitride crystals, the ac three-dimensional coordinate system (including the a-axis and the c-axis) is used to represent.
  • the crystal is represented by the xyz three-dimensional coordinate system (including the x-axis, y-axis and z-axis).
  • crystals can also be represented based on coordinate systems known to those skilled in the art, so the present invention is not limited by the above two examples.
  • the first crystal may be represented based on a first three-dimensional coordinate system
  • the second crystal may be represented based on a second three-dimensional coordinate system
  • the first three-dimensional coordinate system at least includes a first three-dimensional coordinate system along a first direction.
  • the second three-dimensional coordinate system includes at least a second coordinate axis along the second direction and a fourth coordinate axis along the fourth direction, wherein the first coordinate axis Corresponding to the height of the first crystal, the second coordinate axis corresponds to the height of the second crystal.
  • first direction and the second direction are the same or opposite. It should be noted that the first direction and the second direction are the same: the angle range between the vector along the first direction and the vector along the second direction includes 0 degrees to 5 degrees; A direction opposite to the second direction refers to: the angle range between the vector along the first direction and the vector along the second direction includes 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an ac three-dimensional coordinate system, wherein the first coordinate axis is a first c-axis, the third coordinate axis is a first a-axis;
  • the three-dimensional coordinate system is an ac three-dimensional coordinate system, the second coordinate axis is a second c-axis, and the fourth coordinate axis is a second a-axis, wherein the directions of the first c-axis and the second c-axis are Same or opposite.
  • the first three-dimensional coordinate system further includes a fifth coordinate axis along the fifth direction
  • the second three-dimensional coordinate system further includes a sixth coordinate axis along the sixth direction.
  • the first direction and the second direction are the same or opposite
  • the third direction and the fourth direction are the same or opposite.
  • the third direction and the fourth direction are the same: the angle range between the vector along the third direction and the vector along the fourth direction includes 0 degrees to 5 degrees;
  • the three directions are opposite to the fourth direction: the angle between the vector along the third direction and the vector along the fourth direction includes an angle range of 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an xyz three-dimensional coordinate system, wherein the first coordinate axis is a first z-axis, the third coordinate axis is a first y-axis, and the fifth coordinate axis is a first y-axis.
  • the coordinate axis is the first x-axis;
  • the second three-dimensional coordinate system is the xyz three-dimensional coordinate system, the second coordinate axis is the second z-axis, the fourth coordinate axis is the second y-axis, and the sixth coordinate
  • the axis is the second x axis.
  • the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are the same. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are the same.
  • the piezoelectric layer 1205 includes a plurality of crystals, and the half width of the rocking curve of the plurality of crystals is less than 2.5 degrees.
  • the rocking curve describes the angular divergence of a specific crystal plane (the crystal plane determined by the diffraction angle) in the sample, expressed by a plane coordinate system, where the abscissa is the difference between the crystal plane and the sample surface.
  • the included angle, the ordinate indicates the diffraction intensity of the crystal plane at a certain included angle
  • the rocking curve is used to indicate the quality of the crystal lattice.
  • the smaller the half-width angle the better the crystal lattice quality.
  • the Full Width at Half Maximum refers to the distance between the points where the value of the two functions before and after the peak is half of the peak in a peak of a function.
  • forming the piezoelectric layer 1205 on a plane can make the piezoelectric layer 1205 not include a crystal that is clearly turned, thereby helping to improve the electromechanical coupling coefficient of the resonant device and the Q value of the resonant device.
  • the portion of the electrode layer 1203 that overlaps the electrode layer 1207 is located in the cavity 1202a; the portion of the electrode layer 1207 that overlaps the electrode layer 1203 is located above the cavity 1202a .
  • the material of the electrode layer 1203 includes but is not limited to at least one of the following: molybdenum, ruthenium, tungsten, platinum, iridium, and aluminum; the material of the electrode layer 1207 includes but is not limited to at least one of the following: molybdenum , Ruthenium, tungsten, platinum, iridium, aluminum.
  • the electrode layer 1203 includes a positive electrode and a negative electrode
  • the electrode layer 1207 includes a positive electrode and a negative electrode.
  • FIG. 12b is a schematic structural diagram of a cross-section B of a bulk acoustic wave resonator device 1200 according to an embodiment of the present invention.
  • the resonator device 1200 includes: the substrate 1201; the thin film 1204 on the substrate 1201; the intermediate layer 1202 on the thin film 1204, and the cross section B of the intermediate layer 1202
  • the upper surface side of the electrode layer 1203 includes the cavity 1202a; the electrode layer 1203 includes two electrode strips 1203b and two electrode strips 1203c, and the cross section B of the electrode layer 1203 is located in the cavity 1202a; the piezoelectric layer 1205 is located on the intermediate layer 1202 and the electrode layer 1203; the electrode layer 1207 includes two electrode strips 1207b and two electrode strips 1207c, and the electrode layer 1207 is located on the piezoelectric layer 1205. It can be seen from FIG.
  • the resonance region (not shown, that is, the overlapping area of the electrode layer 1203 and the electrode layer 1207) is suspended relative to the cavity 1202a, and has no overlapping portion with the intermediate layer 1202, so that The vertical projection of the resonance region (not shown) perpendicular to the upper surface is located in the cavity 1202a.
  • the embodiment of the present invention can improve the difference between the acoustic impedance of the resonant region (not shown) and the non-resonant region, thereby increasing the Q value of the resonant device.
  • the acoustic impedance of the intermediate layer 1202 can be small, so that the leakage wave between the resonance region (not shown) and the substrate 1201 can be blocked.
  • the thin film 1204 helps prevent the formation of a free electron layer on the surface of the substrate 1201, so as to reduce the loss of the substrate 1201.
  • the two electrode strips 1203b include negative electrodes
  • the two electrode strips 1203c include positive electrodes
  • the two electrode strips 1207b include negative electrodes
  • the two electrode strips 1207c include positive electrodes.
  • the two electrode strips 1203b include positive electrodes
  • the two electrode strips 1203c include negative electrodes
  • the two electrode strips 1207b include positive electrodes
  • the two electrode strips 1207c include negative electrodes.
  • the distance between the electrode strip 1203b and the electrode strip 1203c is variable, and the distance between the electrode strip 1207b and the electrode strip 1207c is variable, including the first distance and the second distance. Distance, wherein the first distance is smaller than the second distance.
  • the widths of the electrode strips 1203b, 1203c, 1207b, and 1207c are variable, including a first width and a second width, wherein the first width is greater than the second width.
  • the duty factors of the electrode strips 1203b, 1203c, 1207b, and 1207c include: a first duty factor, corresponding to the first distance, the first width, and the second duty factor, corresponding to the The first distance, the second width, and the third duty factor correspond to the second distance and the second width, wherein the first duty factor, the second duty factor, and all The value range of the third duty factor includes but is not limited to 0.1 to 1.
  • the frequency of the resonance device can be controlled by adjusting the first distance or the second distance or the first width or the second width.
  • the number of electrodes included in each of the electrode layers 1203 and 1207 may be other even numbers, for example, 2, 6, 8, 10, 12, 14, 16, 18, 20, etc. In other embodiments, the number of electrodes included in each of the electrode layers 1203 and 1207 may be an odd number, for example, 3, 5, 7, 9, 11, 13, 15, 17, 19 and so on.
  • the embodiment of the present invention also provides a bulk acoustic wave filter, including but not limited to: at least one bulk acoustic wave resonator device provided in the foregoing embodiment.
  • the present invention adjusts the positions of the two electrode layers so that the resonance region does not overlap with the intermediate layer or the first substrate, and the resonance region is suspended relative to the cavity of the intermediate layer or the first substrate. , Can improve the difference between the acoustic impedance of the resonant area and the non-resonant area, and improve the Q value of the resonant device.
  • forming a piezoelectric layer on a plane can make the piezoelectric layer not include a crystal that is significantly turned, thereby helping to improve the electromechanical coupling coefficient of the resonant device and the Q value of the resonant device.
  • the width or the distance between the plurality of electrode strips can be adjusted to control the frequency of the resonance device.
  • the use of the intermediate layer with a small acoustic impedance can block the leakage wave between the resonance region and the second substrate.
  • the provision of a thin film between the intermediate layer and the second substrate helps prevent a free electron layer from forming on the surface of the second substrate, thereby reducing electrical loss of the second substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

一种体声波谐振装置(100,200,300,400,500,600,700,800,900,1000,1100,1200),包括:第一层,第一层包括位于第一侧的空腔(101a,201a,301a,301b,401a,502a,602a,602b,702a,702b,802a, 902a,902b,1002a,1002b,1102a,1202a,1202b);第一电极层(107,203,303,403,503,603,703,803,903,1003,1103,1203),位于第一侧,位于空腔(101a,201a,301a,301b,401a,502a,602a,602b,702a,702b,802a, 902a,902b,1002a,1002b,1102a,1202a,1202b)内;第二层,位于第一电极层(107,203,303,403,503,603,703,803,903,1003,1103,1203)上;以及第二电极层(109,207,307,407,507,607,707,807,907,1007,1107,1207),位于第二层上,其中,第一电极层(107,203,303,403,503,603,703,803,903,1003,1103,1203)包括至少两个第一电极条(303b,403b,703b,703c,803b,903b,1003b,1003c,1103b,1103c,1203b,1203c)或第二电极层(109,207,307,407,507,607,707,807,907,1007,1107,1207)包括至少两个第二电极条(507b,607b,707b,707c,807b,907b,1007b,1007c,1107b,1107c,1207b,1207c)。通过调整第一电极层(107,203,303,403,503,603,703,803,903,1003,1103,1203)和第二电极层(109,207,307,407,507,607,707,807,907,1007,1107,1207)的位置,提升谐振区和非谐振区的声学阻抗的区别,从而提高谐振装置(100,200,300,400,500,600,700,800,900,1000,1100,1200)的Q值。此外,压电层(105,205,305,405,505,605,705,805,905,1005,1105,1205)可以不包括明显转向的晶体,从而有助于提高谐振装置(100,200,300,400,500,600,700,800,900,1000,1100,1200)的机电耦合系数以及Q值。此外,在形成电极层(107,203,303,403,503,603,703,803,903,1003,1103,1203,109,207,307,407,507,607,707,807,907,1007,1107,1207)时,可通过调整至少两个第一电极条(303b,403b,703b,703c,803b,903b,1003b,1003c,1103b,1103c,1203b,1203c)之间或至少两个第二电极条(507b,607b,707b,707c,807b,907b,1007b,1007c,1107b,1107c,1207b,1207c)的宽度或之间的距离,控制谐振装置(100,200,300,400,500,600,700,800,900,1000,1100,1200)的频率。

Description

一种体声波谐振装置及一种体声波滤波器 技术领域
本发明涉及半导体技术领域,具体而言,本发明涉及一种体声波谐振装置及一种体声波滤波器。
背景技术
无线通信设备的射频(Radio Frequency,RF)前端芯片包括功率放大器、天线开关、射频滤波器、双工器、多工器和低噪声放大器等。其中,射频滤波器包括声表面(Surface Acoustic Wave,SAW)滤波器、体声波(Bulk Acoustic Wave,BAW)滤波器、微机电***(Micro-Electro-Mechanical System,MEMS)滤波器、IPD(Integrated Passive Devices)等。SAW谐振器和BAW谐振器的品质因数值(Q值)较高,由SAW谐振器和BAW谐振器制作成的低***损耗、高带外抑制的射频滤波器,即SAW滤波器和BAW滤波器,是目前手机、基站等无线通信设备使用的主流射频滤波器。其中,Q值是谐振器的品质因数值,定义为中心频率除以谐振器3dB带宽。SAW滤波器的使用频率一般为0.4GHz至2.7GHz,BAW滤波器的使用频率一般为0.7GHz至7GHz。
与SAW谐振器相比,BAW谐振器的性能更好,但是由于工艺步骤复杂,BAW谐振器的制造成本比SAW谐振器高。然而,当无线通信技术逐步演进,所使用的频段越来越多,同时随着载波聚合等频段叠加使用技术的应用,无线频段之间的相互干扰变得愈发严重。高性能的BAW技术可以解决频段间的相互干扰问题。随着5G时代的到来,无线移动网络引入了更高的通信频段,当前只有BAW技术可以解决高频段的滤波问题。
图1a示出了一种BAW滤波器,包括由多个BAW谐振器组成的梯形电路,其中,f1、f2、f3、f4分别表示4种不同的频率。每个BAW谐振器内,谐振器压电层两侧的金属产生交替正负电压,压电层通过交替正负电压产生声波,该谐振器内的声波垂直传播。为了形成谐振,声波需要在上金属电极的上表面和下金属电极的下表面产生全反射,以形成驻声波。声波反射的条件是与上金属电极的上表面和下金属电极的下表面 接触区域的声阻抗与金属电极的声阻抗有巨大差别。
薄膜体声波谐振器(Film Bulk Acoustic Wave Resonator,FBAR)是一种可以把声波能量局限在器件内的BAW谐振器,该谐振器的谐振区上方是空气,下方存在一个空腔,因为空气声阻抗与金属电极声阻抗差别很大,声波可以在上金属电极的上表面和下金属电极的下表面全反射,形成驻波。
图1b示出了一种FBAR 100的剖面A结构示意图。所述FBAR 100包括:基底101,所述基底101上包括空腔101a;以及有源层103,位于所述基底101上。其中,所述有源层103包括压电层105以及分别位于所述压电层105两侧的电极层107(即,下电极层)和109(即,上电极层),其中,所述电极层107接触所述基底101。所述有源层103上的谐振区111与所述基底101有重合部,因此所述谐振区111并不相对于所述空腔101a悬空。如果所述谐振区111的声学阻抗和非谐振区的声学阻抗相近,所述谐振区111的能量会向非谐振区扩散,从而造成谐振器的Q值降低。此外,由于所述电极层107凸起,直接在所述电极层107上形成所述压电层105,会造成所述压电层105中部分晶体(例如,所述压电层105水平方向上两侧边缘处的晶体)出现明显转向,与其他晶体不平行,从而降低FBAR的机电耦合系数及Q值。此外,所述电极层109形成后,需要再通过调整电极层的厚度,以控制谐振器的频率。
发明内容
本发明解决的问题是提供一种体声波谐振装置及一种体声波滤波器,所述体声波谐振装置的谐振区相对于中间层或基底上的空腔悬空,可以提升谐振区和非谐振区声学阻抗的区别,从而提高谐振装置的Q值。此外,所述体声波谐振装置的压电层不包括明显转向的晶体,从而有助于提高谐振装置的机电耦合系数以及谐振装置的Q值。此外,在形成电极层时,可通过调整多个电极条的宽度或之间的距离,以控制谐振装置的频率。
为解决上述问题,本发明实施例提供一种体声波谐振装置,包括:第一层,所述第一层包括位于第一侧的空腔;第一电极层,位于所述第一侧,位于所述空腔内;第二层,位于所述第一电极层上;以及第二电极层,位于所述第二层上,其中,所述第一电极层包括至少两个第一电极条或所述第二电极层包括至少两个第二电极条。
需要说明的是,通过调整所述第一电极层和所述第二电极层的位置,使谐振区 与所述第一层没有重合部,所述谐振区相对于所述第一空腔悬空,可以提升所述谐振区和非谐振区的声学阻抗的区别,提高谐振装置的Q值。此外,在形成电极层时,可通过调整所述至少两个第一电极条或所述至少两个第二电极条的宽度或之间的距离,以控制谐振装置的频率。
在一些实施例中,所述第一电极层包括第一极性,所述第二电极层包括第二极性。在一些实施例中,所述至少两个第一电极条包括所述第一极性。在一些实施例中,所述至少两个第二电极条包括所述第二极性。
在一些实施例中,所述第一电极层包括第一极性和第二极性,所述第二电极层包括所述第一极性和所述第二极性。在一些实施例中,所述至少两个第一电极条包括所述第一极性和所述第二极性,所述至少两个第二电极条包括所述第一极性和所述第二极性,其中,所述第二层两侧相对应的第一电极条和第二电极条包括所述第一极性和所述第二极性。在一些实施例中,所述第一极性和所述第二极***替排列。
在一些实施例中,所述至少两个第一电极条包括至少一个占空因数(duty factor),所述至少一个占空因数的取值范围包括但不限于0.1至1。需要说明的是,占空因数的定义为电极条的宽度除以两个电极条之间的距离得到的值。在一些实施例中,所述至少两个第二电极条包括至少一个占空因数,所述至少一个占空因数的取值范围包括但不限于0.1至1。
在一些实施例中,所述至少两个第一电极条之间的距离是一致的,包括第一距离。在一些实施例中,所述至少两个第二电极条之间的距离是一致的,包括第一距离。
在一些实施例中,所述至少两个第一电极条之间的距离是变化的,至少包括第一距离和第二距离。在一些实施例中,所述至少两个第二电极条之间的距离是变化的,至少包括第一距离和第二距离。
在一些实施例中,所述至少两个第一电极条的宽度是一致的,包括第一宽度。在一些实施例中,所述至少两个第二电极条的宽度是一致的,包括第一宽度。
在一些实施例中,所述至少两个第一电极条的宽度是变化的,至少包括第一宽度和第二宽度。在一些实施例中,所述至少两个第二电极条的宽度是变化的,至少包括第一宽度和第二宽度。
在一些实施例中,所述第二电极层上与所述第一电极层重合的重合部分位于所述空腔上方,所述重合部分垂直于所述第一层的投影位于所述空腔内。
在一些实施例中,所述第一电极层的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝;所述第二电极层的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝。
在一些实施例中,所述第一层还包括:中间层,所述中间层包括所述空腔。在一些实施例中,所述中间层的材料包括但不限于以下至少之一:聚合物、绝缘电介质。在一些实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯、光感环氧树脂光刻胶、聚酰亚胺。在一些实施例中,所述绝缘电介质包括但不限于以下至少之一:氮化铝、二氧化硅、氮化硅、氧化钛。在一些实施例中,所述中间层的厚度包括但不限于:0.1微米至10微米。在一些实施例中,所述中间层的厚度包括但不限于:20微米至100微米。
在一些实施例中,所述第一层还包括:第一基底,所述第一基底包括所述空腔。在一些实施例中,所述第一基底的材料包括但不限于以下至少之一:硅、碳化硅、玻璃。
在一些实施例中,所述第一层还包括:刻蚀屏蔽层,至少覆盖所述空腔的底部或侧壁。在一些实施例中,所述刻蚀屏蔽层的材料包括但不限于以下至少之一:氮化铝、碳化硅、钻石、氮化硅、二氧化硅、氧化铝、二氧化钛。在一些实施例中,所述刻蚀屏蔽层的厚度包括但不限于:0.1微米至3微米。在另一些实施例中,所述刻蚀屏蔽层的厚度包括但不限于:2微米至6微米。需要说明的是,所述刻蚀屏蔽层,在刻蚀形成所述空腔时,可以起到保护所述中间层或所述第一基底的作用。此外,所述刻蚀隔屏蔽层可以起到保护谐振装置不受水和氧气腐蚀。
在一些实施例中,所述第二层包括:压电层,所述压电层包括多个晶体,所述多个晶体包括第一晶体和第二晶体,其中,所述第一晶体和所述第二晶体是所述多个晶体中的任意两个晶体;沿第一方向的第一坐标轴对应所述第一晶体的高,沿第二方向的第二坐标轴对应所述第二晶体的高,其中,所述第一方向和所述第二方向相同或相反。需要说明的是,所述第一方向和所述第二方向相同指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括0度至5度;所述第一方向和所述第二方向相反指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括175度至180度。
在一些实施例中,所述第一晶体对应第一坐标系,所述第一坐标系包括所述第一坐标轴和沿第三方向的第三坐标轴;所述第二晶体对应第二坐标系,所述第二坐标系包括所述第二坐标轴和沿第四方向的第四坐标轴。
在一些实施例中,所述第一坐标系还包括沿第五方向的第五坐标轴,所述第二 坐标系还包括沿第六方向的第六坐标轴。
在一些实施例中,所述第一方向和所述第二方向相同或相反,所述第三方向和所述第四方向相同或相反。需要说明的是,所述第三方向和所述第四方向相同指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括0度至5度;所述第三方向和所述第四方向相反指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括175度至180度。
在一些实施例中,所述压电层的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
在一些实施例中,所述第二层包括:压电层,所述压电层包括多个晶体,所述多个晶体的摇摆曲线半峰宽低于2.5度。需要说明的是,摇摆曲线(Rocking curve)描述某一特定晶面(衍射角确定的晶面)在样品中角发散大小,通过平面坐标系表示,其中,横坐标为该晶面与样品面的夹角,纵坐标则表示在某一夹角下,该晶面的衍射强度,摇摆曲线用于表示晶格质量,半峰宽角度越小说明晶格质量越好。此外,半峰宽(Full Width at Half Maximum,FWHM)指在函数的一个峰当中,前后两个函数值等于峰值一半的点之间的距离。
需要说明的是,在平面上形成所述压电层可以使所述压电层不包括明显转向的晶体,从而有助于提高谐振装置的机电耦合系数以及谐振装置的Q值。
在一些实施例中,所述谐振装置还包括:第二基底,位于所述第一层的第二侧,所述第二侧与所述第一侧相对。在一些实施例中,所述第二基底的材料包括但不限于以下至少之一:硅、碳化硅、玻璃。需要说明的是,所述第一层的声学阻抗可较小,从而阻隔谐振区与所述第二基底之间的漏波。
在一些实施例中,所述谐振装置还包括:薄膜,位于所述第一层和所述第二基底之间。在一些实施例中,所述薄膜包括但不限于:多晶薄膜。在一些实施例中,所述多晶薄膜的材料包括但不限于以下至少之一:多晶硅、多晶氮化硅、多晶碳化硅。需要说明的是,所述薄膜有助于防止所述第二基底表面形成自由电子层,从而减少所述第二基底的电学损耗。
本发明实施例还提供一种体声波滤波器,包括:至少一个上述实施例提供的体声波谐振装置。
附图说明
图1a是一种体声波滤波器的结构示意图;
图1b是一种FBAR 100的剖面A结构示意图;
图2a是本发明实施例的一种体声波谐振装置200的剖面A结构示意图;
图2b是本发明实施例的一种体声波谐振装置200的剖面B结构示意图;
图3a是本发明实施例的一种体声波谐振装置300的剖面A结构示意图;
图3b是本发明实施例的一种体声波谐振装置300的剖面B结构示意图;
图4a是本发明实施例的一种体声波谐振装置400的剖面A结构示意图;
图4b是本发明实施例的一种体声波谐振装置400的剖面B结构示意图;
图5a是本发明实施例的一种体声波谐振装置500的剖面A结构示意图;
图5b是本发明实施例的一种体声波谐振装置500的剖面B结构示意图;
图6a是本发明实施例的一种体声波谐振装置600的剖面A结构示意图;
图6b是本发明实施例的一种体声波谐振装置600的剖面B结构示意图;
图7a是本发明实施例的一种体声波谐振装置700的剖面A结构示意图;
图7b是本发明实施例的一种体声波谐振装置700的剖面B结构示意图;
图8a是本发明实施例的一种体声波谐振装置800的剖面A结构示意图;
图8b是本发明实施例的一种体声波谐振装置800的剖面B结构示意图;
图9a是本发明实施例的一种体声波谐振装置900的剖面A结构示意图;
图9b是本发明实施例的一种体声波谐振装置900的剖面B结构示意图;
图10a是本发明实施例的一种体声波谐振装置1000的剖面A结构示意图;
图10b是本发明实施例的一种体声波谐振装置1000的剖面B结构示意图;
图11a是本发明实施例的一种体声波谐振装置1100的剖面A结构示意图;
图11b是本发明实施例的一种体声波谐振装置1100的剖面B结构示意图;
图12a是本发明实施例的一种体声波谐振装置1200的剖面A结构示意图;
图12b是本发明实施例的一种体声波谐振装置1200的剖面B结构示意图;
图13是一种六方晶系晶体的结构示意图;
图14(i)是一种正交晶系晶体的结构示意图;
图14(ii)是一种四方晶系晶体的结构示意图;
图14(iii)是一种立方晶系晶体的结构示意图。
需要说明的是,所述剖面A和所述剖面B为互相正交的两个剖面。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,因此本发明不受下面公开的具体实施例的限制。
如背景技术部分所述,参见图1b,所述谐振区111并不相对于所述空腔101a悬空,并且与所述基底101有重合部。如果所述谐振区111的声学阻抗和非谐振区的声学阻抗相近,所述谐振区111的能量会向非谐振区扩散,从而造成谐振器的Q值降低。此外,由于所述电极层107凸起,直接在所述电极层107上形成所述压电层105,会造成所述压电层105中部分晶体(例如,所述压电层105水平方向上两侧边缘处的晶体)出现明显转向,与其他晶体不平行,从而降低谐振装置的机电耦合系数及谐振装置的Q值。此外,所述电极层109形成后,需要再通过调整电极层的厚度,以控制谐振器的频率。
本发明的发明人发现,通过调整两个电极层的位置,使谐振区与中间层或第一基底没有重合部,所述谐振区相对于所述中间层或所述第一基底的空腔悬空,可以提升所述谐振区和非谐振区的声学阻抗的区别,从而提高谐振装置的Q值。
本发明的发明人还发现在平面上形成压电层可以使所述压电层不包括明显转向的晶体,从而有助于提高谐振装置的机电耦合系数以及谐振装置的Q值。
本发明的发明人还发现,在形成所述两个电极层时,可通过调整多个电极条的宽度或之间的距离,以控制谐振装置的频率。
本发明的发明人还发现采用声学阻抗较小的所述中间层,可以阻隔谐振区与第 二基底之间的漏波。
本发明的发明人还发现所述中间层与所述第二基底之间设置薄膜有助于防止所述第二基底表面形成自由电子层,从而减少所述第二基底的电学损耗。
本发明实施例提供一种体声波谐振装置,包括:第一层,所述第一层包括位于第一侧的空腔;第一电极层,位于所述第一侧,位于所述空腔内;第二层,位于所述第一电极层上;以及第二电极层,位于所述第二层上,其中,所述第一电极层包括至少两个第一电极条或所述第二电极层包括至少两个第二电极条。
需要说明的是,通过调整所述第一电极层和所述第二电极层的位置,使谐振区与所述第一层没有重合部,所述谐振区相对于所述第一空腔悬空,可以提升所述谐振区和非谐振区的声学阻抗的区别,从而提高谐振装置的Q值。此外,在形成所述第一电极层或所述第二电极层时,可通过调整所述至少两个第一电极条或所述至少两个第二电极条的宽度或之间的距离,以控制谐振装置的频率。
在一些实施例中,所述第一电极层包括第一极性,所述第二电极层包括第二极性。在一些实施例中,所述至少两个第一电极条包括所述第一极性。在一些实施例中,所述至少两个第二电极条包括所述第二极性。
在一些实施例中,所述第一电极层包括第一极性和第二极性,所述第二电极层包括所述第一极性和所述第二极性。在一些实施例中,所述至少两个第一电极条包括所述第一极性和所述第二极性,所述至少两个第二电极条包括所述第一极性和所述第二极性,其中,所述第二层两侧相对应的第一电极条和第二电极条包括所述第一极性和所述第二极性。在一些实施例中,所述第一极性和所述第二极***替排列。
在一些实施例中,所述至少两个第一电极条包括至少一个占空因数(duty factor),所述至少一个占空因数的取值范围包括但不限于0.1至1。需要说明的是,占空因数的定义为电极条的宽度除以两个电极条之间的距离得到的值。在一些实施例中,所述至少两个第二电极条包括至少一个占空因数,所述至少一个占空因数的取值范围包括但不限于0.1至1。
在一些实施例中,所述至少两个第一电极条条之间的距离是一致的,包括第一距离。在一些实施例中,所述至少两个第二电极条之间的距离是一致的,包括第一距离。在一些实施例中,所述至少两个第一电极条之间的距离是变化的,至少包括第一距离和第二距离。在一些实施例中,所述至少两个第二电极条之间的距离是变化的,至少包括第一距离和第二距离。
在一些实施例中,所述至少两个第一电极条的宽度是一致的,包括第一宽度。在一些实施例中,所述至少两个第二电极条的宽度是一致的,包括第一宽度。在一些实施例中,所述至少两个第一电极条的宽度是变化的,至少包括第一宽度和第二宽度。在一些实施例中,所述至少两个第二电极条的宽度是变化的,至少包括第一宽度和第二宽度。
在一些实施例中,所述第二电极层上与所述第一电极层重合的重合部分位于所述空腔上方,所述重合部分垂直于所述第一层的投影位于所述空腔内。
在一些实施例中,所述第一电极层的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝;所述第二电极层的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝。
在一些实施例中,所述第一层还包括:中间层,所述中间层包括所述空腔。在一些实施例中,所述中间层的材料包括但不限于以下至少之一:聚合物、绝缘电介质。在一些实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯、光感环氧树脂光刻胶、聚酰亚胺。在一些实施例中,所述绝缘电介质包括但不限于以下至少之一:氮化铝、二氧化硅、氮化硅、氧化钛。在一些实施例中,所述中间层的厚度包括但不限于:0.1微米至10微米。在一些实施例中,所述中间层的厚度包括但不限于:20微米至100微米。
在一些实施例中,所述第一层还包括:第一基底,所述第一基底包括所述空腔。在一些实施例中,所述第一基底的材料包括但不限于以下至少之一:硅、碳化硅、玻璃。
在一些实施例中,所述第一层还包括:刻蚀屏蔽层,至少覆盖所述空腔的底部或侧壁。在一些实施例中,所述刻蚀屏蔽层的材料包括但不限于以下至少之一:氮化铝、碳化硅、钻石、氮化硅、二氧化硅、氧化铝、二氧化钛。在一些实施例中,所述刻蚀屏蔽层的厚度包括但不限于:0.1微米至3微米。在一些实施例中,所述刻蚀屏蔽层的厚度包括但不限于:2微米至6微米。
需要说明的是,所述刻蚀屏蔽层,在刻蚀形成所述空腔时,可以起到保护所述中间层或所述第一基底的作用。此外,所述刻蚀隔屏蔽层可以起到保护谐振装置不受水和氧气腐蚀。
在一些实施例中,所述第二层包括:压电层,所述压电层包括多个晶体,所述多个晶体包括第一晶体和第二晶体,其中,所述第一晶体和所述第二晶体是所述多个晶体中的任意两个晶体;沿第一方向的第一坐标轴对应所述第一晶体的高,沿第二方向的 第二坐标轴对应所述第二晶体的高,其中,所述第一方向和所述第二方向相同或相反。需要说明的是,所述第一方向和所述第二方向相同指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括0度至5度;所述第一方向和所述第二方向相反指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括175度至180度。
在一些实施例中,所述第一晶体对应第一坐标系,所述第一坐标系包括所述第一坐标轴和沿第三方向的第三坐标轴;所述第二晶体对应第二坐标系,所述第二坐标系包括所述第二坐标轴和沿第四方向的第四坐标轴。
在一些实施例中,所述第一坐标系还包括沿第五方向的第五坐标轴,所述第二坐标系还包括沿第六方向的第六坐标轴。在一些实施例中,所述第一方向和所述第二方向相同或相反,所述第三方向和所述第四方向相同或相反。需要说明的是,所述第三方向和所述第四方向相同指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括0度至5度;所述第三方向和所述第四方向相反指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括175度至180度。
在一些实施例中,所述压电层的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
在一些实施例中,所述第二层包括:压电层,所述压电层包括多个晶体,所述多个晶体的摇摆曲线半峰宽低于2.5度。需要说明的是,摇摆曲线(Rocking curve)描述某一特定晶面(衍射角确定的晶面)在样品中角发散大小,通过平面坐标系表示,其中,横坐标为该晶面与样品面的夹角,纵坐标则表示在某一夹角下,该晶面的衍射强度,摇摆曲线用于表示晶格质量,半峰宽角度越小说明晶格质量越好。此外,半峰宽(Full Width at Half Maximum,FWHM)指在函数的一个峰当中,前后两个函数值等于峰值一半的点之间的距离。
需要说明的是,在平面上形成所述压电层可以使所述压电层不包括明显转向的晶体,从而有助于提高谐振装置的机电耦合系数以及谐振装置的Q值。
在一些实施例中,所述谐振装置还包括:第二基底,位于所述第一层的第二侧,所述第二侧与所述第一侧相对。在一些实施例中,所述第二基底的材料包括但不限于以下至少之一:硅、碳化硅、玻璃。需要说明的是,所述第一层的声学阻抗可较小,从而阻隔谐振区与所述第二基底之间的漏波。
在一些实施例中,所述谐振装置还包括:薄膜,位于所述第一层和所述第二基底之间。在一些实施例中,所述薄膜包括但不限于:多晶薄膜。在一些实施例中,所述 多晶薄膜的材料包括但不限于以下至少之一:多晶硅、多晶氮化硅、多晶碳化硅。
需要说明的是,所述中间层与所述第二基底之间设置所述薄膜有助于防止所述第二基底表面形成自由电子层,从而减少所述第二基底的电学损耗。
本发明实施例还提供一种体声波滤波器,包括:至少一个上述实施例提供的体声波谐振装置。
图2a是本发明实施例的一种体声波谐振装置200的剖面A结构示意图。
如图2a所示,本发明实施例提供一种体声波谐振装置200包括:基底201,所述基底201的上表面侧包括空腔201a;电极层203,所述电极层203剖面A的第一端接触所述空腔201a的侧壁,所述电极层203剖面A的第二端位于所述空腔201a内;压电层205,位于所述基底201和所述电极层203上;电极层207,位于所述压电层205上。由图2a可见,谐振区209(即,所述电极层203和所述电极层207的重合区域)相对于所述空腔201a悬空,与所述基底201没有重合部。因此,所述谐振区209垂直于所述上表面的垂直投影位于所述空腔201a之内,可以提升所述谐振区209和非谐振区的声学阻抗的区别,从而提高谐振装置的Q值。
本实施例中,所述基底201的材料包括但不限于以下至少之一:硅、碳化硅、玻璃。
本实施例中,所述压电层205的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
本实施例中,所述压电层205包括多个晶体,所述多个晶体包括第一晶体和第二晶体,其中,所述第一晶体和所述第二晶体是所述多个晶体中的任意两个晶体。所属技术领域的技术人员知晓晶体的晶向、晶面等可以基于坐标系表示。如图13所示,对于六方晶系的晶体,例如氮化铝晶体,采用ac立体坐标系(包括a轴及c轴)表示。如图14所示,对于(i)正交晶系(a≠b≠c)、(ii)四方晶系(a=b≠c)、(iii)立方晶系(a=b=c)等的晶体,采用xyz立体坐标系(包括x轴、y轴及z轴)表示。除上述两个实例,晶体还可以基于其他所属技术领域的技术人员知晓的坐标系表示,因此本发明不受上述两个实例的限制。
本实施例中,所述第一晶体可以基于第一立体坐标系表示,所述第二晶体可以基于第二立体坐标系表示,其中,所述第一立体坐标系至少包括沿第一方向的第一坐标轴及沿第三方向第三坐标轴,所述第二立体坐标系至少包括沿第二方向的第二坐标轴及沿第四方向的第四坐标轴,其中,所述第一坐标轴对应所述第一晶体的高,所述第二坐 标轴对应所述第二晶体的高。
本实施例中,所述第一方向和所述第二方向相同或相反。需要说明的是,所述第一方向和所述第二方向相同指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括0度至5度;所述第一方向和所述第二方向相反指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为ac立体坐标系,其中,所述第一坐标轴为第一c轴,所述第三坐标轴为第一a轴;所述第二立体坐标系为ac立体坐标系,所述第二坐标轴为第二c轴,所述第四坐标轴为第二a轴,其中,所述第一c轴和所述第二c轴的指向相同或相反。
在另一个实施例中,所述第一立体坐标系还包括沿第五方向的第五坐标轴,所述第二立体坐标系还包括沿第六方向的第六坐标轴。在另一个实施例中,所述第一方向和所述第二方向相同或相反,所述第三方向和所述第四方向相同或相反。需要说明的是,所述第三方向和所述第四方向相同指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括0度至5度;所述第三方向和所述第四方向相反指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为xyz立体坐标系,其中,所述第一坐标轴为第一z轴,所述第三坐标轴为第一y轴,所述第五坐标轴为第一x轴;所述第二立体坐标系为xyz立体坐标系,所述第二坐标轴为第二z轴,所述第四坐标轴为第二y轴,所述第六坐标轴为第二x轴。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相同。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反,所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反,所述第一y轴和所述第二y轴的指向相同。
本实施例中,所述压电层205包括多个晶体,所述多个晶体的摇摆曲线半峰宽低于2.5度。需要说明的是,摇摆曲线(Rocking curve)描述某一特定晶面(衍射角确定的晶面)在样品中角发散大小,通过平面坐标系表示,其中,横坐标为该晶面与样品面的夹角,纵坐标则表示在某一夹角下,该晶面的衍射强度,摇摆曲线用于表示晶格质量,半峰宽角度越小说明晶格质量越好。此外,半峰宽(Full Width at Half Maximum,FWHM)指在函数的一个峰当中,前后两个函数值等于峰值一半的点之间的距离。
需要说明的是,在平面上形成所述压电层205可以使所述压电层205不包括明显转向的晶体,从而有助于提高谐振装置的机电耦合系数以及谐振装置的Q值。
本实施例中,所述电极层203上与所述电极层207重合的部分位于所述空腔201a内;所述电极层207上与所述电极层203重合的部分位于所述空腔201a上方。
本实施例中,所述电极层203的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝;所述电极层207的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝。
本实施例中,所述电极层203包括负电极,所述电极层207包括正电极。在另一个实施例中,所述电极层203包括正电极,所述电极层207包括负电极。
图2b是本发明实施例的一种体声波谐振装置200的剖面B结构示意图。
如图2b所示,所述谐振装置200包括:所述基底201,所述基底201的上表面侧包括所述空腔201a;所述电极层203,其剖面B位于所述空腔201a内;所述压电层205,位于所述基底201和所述电极层203上;所述电极层207,位于所述压电层205上。由图2b可见,谐振区209(即,所述电极层203和所述电极层207的重合区域)相对于所述空腔201a悬空,与所述基底201没有重合部。因此,所述谐振区209垂直于所述上表面的垂直投影位于所述空腔201a之内,可以提升所述谐振区209和非谐振区的声学阻抗的区别,从而提高谐振装置的Q值。
图3a是本发明实施例的一种体声波谐振装置300的剖面A结构示意图。
如图3a所示,本发明实施例提供一种体声波谐振装置300包括:基底301,所述基底301剖面A的上表面侧包括空腔301a和空腔301b,其中,所述空腔301b位于所述空腔301a的一侧并和所述空腔301a相通,所述空腔301b的深度小于所述空腔301a的深度;电极层303,所述电极层303剖面A的第一端位于所述空腔301b内,所述电极层303剖面A的第二端位于所述空腔301a内,其中,所述空腔301b的深度等于所述电极303的厚度;压电层305,位于所述基底301和所述电极层303上;电极层307,位于所述压电层305上。由图3a可见,谐振区309(即,所述电极层303和所述电极层307的重合区域)相对于所述空腔301a悬空,与所述基底301没有重合部。因此,所述谐振区309的垂直于所述上表面的垂直投影位于所述空腔301a之内,可以提升所述谐振区309和非谐振区的声学阻抗的区别,从而提高谐振装置的Q值。
本实施例中,所述基底301的材料包括但不限于以下至少之一:硅、碳化硅、玻璃。
本实施例中,所述压电层305的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
本实施例中,所述压电层305包括多个晶体,所述多个晶体包括第一晶体和第二晶体,其中,所述第一晶体和所述第二晶体是所述多个晶体中的任意两个晶体。所属技术领域的技术人员知晓晶体的晶向、晶面等可以基于坐标系表示。如图13所示,对于六方晶系的晶体,例如氮化铝晶体,采用ac立体坐标系(包括a轴及c轴)表示。如图14所示,对于(i)正交晶系(a≠b≠c)、(ii)四方晶系(a=b≠c)、(iii)立方晶系(a=b=c)等的晶体,采用xyz立体坐标系(包括x轴、y轴及z轴)表示。除上述两个实例,晶体还可以基于其他所属技术领域的技术人员知晓的坐标系表示,因此本发明不受上述两个实例的限制。
本实施例中,所述第一晶体可以基于第一立体坐标系表示,所述第二晶体可以基于第二立体坐标系表示,其中,所述第一立体坐标系至少包括沿第一方向的第一坐标轴及沿第三方向第三坐标轴,所述第二立体坐标系至少包括沿第二方向的第二坐标轴及沿第四方向的第四坐标轴,其中,所述第一坐标轴对应所述第一晶体的高,所述第二坐标轴对应所述第二晶体的高。
本实施例中,所述第一方向和所述第二方向相同或相反。需要说明的是,所述第一方向和所述第二方向相同指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括0度至5度;所述第一方向和所述第二方向相反指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为ac立体坐标系,其中,所述第一坐标轴为第一c轴,所述第三坐标轴为第一a轴;所述第二立体坐标系为ac立体坐标系,所述第二坐标轴为第二c轴,所述第四坐标轴为第二a轴,其中,所述第一c轴和所述第二c轴的指向相同或相反。
在另一个实施例中,所述第一立体坐标系还包括沿第五方向的第五坐标轴,所述第二立体坐标系还包括沿第六方向的第六坐标轴。在另一个实施例中,所述第一方向和所述第二方向相同或相反,所述第三方向和所述第四方向相同或相反。需要说明的是,所述第三方向和所述第四方向相同指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括0度至5度;所述第三方向和所述第四方向相反指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为xyz立体坐标系,其中,所述第一 坐标轴为第一z轴,所述第三坐标轴为第一y轴,所述第五坐标轴为第一x轴;所述第二立体坐标系为xyz立体坐标系,所述第二坐标轴为第二z轴,所述第四坐标轴为第二y轴,所述第六坐标轴为第二x轴。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相同。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反,所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反,所述第一y轴和所述第二y轴的指向相同。
本实施例中,所述压电层305包括多个晶体,所述多个晶体的摇摆曲线半峰宽低于2.5度。需要说明的是,摇摆曲线(Rocking curve)描述某一特定晶面(衍射角确定的晶面)在样品中角发散大小,通过平面坐标系表示,其中,横坐标为该晶面与样品面的夹角,纵坐标则表示在某一夹角下,该晶面的衍射强度,摇摆曲线用于表示晶格质量,半峰宽角度越小说明晶格质量越好。此外,半峰宽(Full Width at Half Maximum,FWHM)指在函数的一个峰当中,前后两个函数值等于峰值一半的点之间的距离。
需要说明的是,在平面上形成所述压电层305可以使所述压电层305不包括明显转向的晶体,从而有助于提高谐振装置的机电耦合系数以及谐振装置的Q值。
本实施例中,所述电极层303上与所述电极层307重合的部分位于所述空腔301a内;所述电极层307上与所述电极层303重合的部分位于所述空腔301a上方。
本实施例中,所述电极层303的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝;所述电极层307的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝。
本实施例中,所述电极层303包括负电极,所述电极层307包括正电极。在另一个实施例中,所述电极层303包括正电极,所述电极层307包括负电极。
图3b是本发明实施例的一种体声波谐振装置300的剖面B结构示意图。
如图3b所示,所述谐振装置300包括:所述基底301,所述基底301剖面B的上表面侧包括所述空腔301a;所述电极层303,包括4个电极条303b,所述电极层303剖面B位于所述空腔301a内;所述压电层305,位于所述基底301和所述电极层303上;电极层307,位于所述压电层305上。由图3b可见,谐振区309(即,所述电极层303和所述电极层307的重合区域)相对于所述空腔301a悬空,与所述基底301没有重合部。因此,所述谐振区309的垂直于所述上表面的垂直投影位于所述空腔301a之内, 可以提升所述谐振区309和非谐振区的声学阻抗的区别,从而提高谐振装置的Q值。
本实施例中,所述4个电极条303b包括负电极,所述电极层307包括正电极。在另一个实施例中,所述4个电极条303b包括正电极,所述电极层307包括负电极。
本实施例中,所述电极条303b之间的距离包括第一距离和第二距离,其中,所述第一距离小于所述第二距离。
本实施例中,所述4个电极条303b的宽度是一致的,包括第一宽度。
本实施例中,所述4个电极条303b的占空因数包括第一占空因数,对应所述第一距离和所述第一宽度、以及第二占空因数,对应所述第二距离和所述第一宽度,其中,所述第一占空因数和所述第二占空因数的取值范围包括但不限于0.1至1,所述第一占空因数大于所述第二占空因数。
需要说明的是,形成所述电极层303时,可通过调整所述第一距离或所述第二距离或所述第一宽度,以控制谐振装置的频率。
在另一些实施例中,所述电极层303包括的电极条数可以为其他偶数,例如,2、6、8、10、12、14、16、18、20等。在另一些实施例中,所述电极层303包括的电极条数可以为奇数,例如,3、5、7、9、11、13、15、17、19等。
图4a是本发明实施例的一种体声波谐振装置400的剖面A结构示意图。
如图4a所示,本发明实施例提供一种体声波谐振装置400包括:基底401,所述基底401的上表面侧包括空腔401a;刻蚀屏蔽层411,位于所述空腔401a内,覆盖所述空腔401a的底部及侧壁;电极层403,所述电极层403剖面A的第一端接触所述刻蚀屏蔽层411,所述电极层403剖面A的第二端位于所述空腔401a内;压电层405,位于所述基底401和所述电极层403上;电极层407,位于所述压电层405上。由图4a可见,谐振区409(即,所述电极层403和所述电极层407的重合区域)相对于所述空腔401a悬空,与所述基底401没有重合部。因此,所述谐振区409的垂直于所述上表面的垂直投影位于所述空腔401a之内,可以提升所述谐振区409和非谐振区的声学阻抗的区别,从而提高谐振装置的Q值。
本实施例中,所述基底401的材料包括但不限于以下至少之一:硅、碳化硅、玻璃。
本实施例中,所述刻蚀屏蔽层411的材料包括但不限于以下至少之一:氮化铝、碳化硅、钻石、氮化硅、二氧化硅、氧化铝、二氧化钛。
需要说明的是,所述刻蚀屏蔽层411,在刻蚀形成所述空腔401a时,可以起到保护所述基底401的作用。此外,所述刻蚀隔屏蔽层411可以起到保护谐振装置不受水和氧气腐蚀。
本实施例中,所述刻蚀屏蔽层411的厚度包括但不限于:0.1微米至3微米。在另一个实施例中,所述刻蚀屏蔽层411的厚度包括但不限于:2微米至6微米。
本实施例中,所述压电层405的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
本实施例中,所述压电层405包括多个晶体,所述多个晶体包括第一晶体和第二晶体,其中,所述第一晶体和所述第二晶体是所述多个晶体中的任意两个晶体。所属技术领域的技术人员知晓晶体的晶向、晶面等可以基于坐标系表示。如图13所示,对于六方晶系的晶体,例如氮化铝晶体,采用ac立体坐标系(包括a轴及c轴)表示。如图14所示,对于(i)正交晶系(a≠b≠c)、(ii)四方晶系(a=b≠c)、(iii)立方晶系(a=b=c)等的晶体,采用xyz立体坐标系(包括x轴、y轴及z轴)表示。除上述两个实例,晶体还可以基于其他所属技术领域的技术人员知晓的坐标系表示,因此本发明不受上述两个实例的限制。
本实施例中,所述第一晶体可以基于第一立体坐标系表示,所述第二晶体可以基于第二立体坐标系表示,其中,所述第一立体坐标系至少包括沿第一方向的第一坐标轴及沿第三方向第三坐标轴,所述第二立体坐标系至少包括沿第二方向的第二坐标轴及沿第四方向的第四坐标轴,其中,所述第一坐标轴对应所述第一晶体的高,所述第二坐标轴对应所述第二晶体的高。
本实施例中,所述第一方向和所述第二方向相同或相反。需要说明的是,所述第一方向和所述第二方向相同指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括0度至5度;所述第一方向和所述第二方向相反指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为ac立体坐标系,其中,所述第一坐标轴为第一c轴,所述第三坐标轴为第一a轴;所述第二立体坐标系为ac立体坐标系,所述第二坐标轴为第二c轴,所述第四坐标轴为第二a轴,其中,所述第一c轴和所述第二c轴的指向相同或相反。
在另一个实施例中,所述第一立体坐标系还包括沿第五方向的第五坐标轴,所述第二立体坐标系还包括沿第六方向的第六坐标轴。在另一个实施例中,所述第一方向 和所述第二方向相同或相反,所述第三方向和所述第四方向相同或相反。需要说明的是,所述第三方向和所述第四方向相同指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括0度至5度;所述第三方向和所述第四方向相反指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为xyz立体坐标系,其中,所述第一坐标轴为第一z轴,所述第三坐标轴为第一y轴,所述第五坐标轴为第一x轴;所述第二立体坐标系为xyz立体坐标系,所述第二坐标轴为第二z轴,所述第四坐标轴为第二y轴,所述第六坐标轴为第二x轴。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相同。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反,所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反,所述第一y轴和所述第二y轴的指向相同。
本实施例中,所述压电层405包括多个晶体,所述多个晶体的摇摆曲线半峰宽低于2.5度。需要说明的是,摇摆曲线(Rocking curve)描述某一特定晶面(衍射角确定的晶面)在样品中角发散大小,通过平面坐标系表示,其中,横坐标为该晶面与样品面的夹角,纵坐标则表示在某一夹角下,该晶面的衍射强度,摇摆曲线用于表示晶格质量,半峰宽角度越小说明晶格质量越好。此外,半峰宽(Full Width at Half Maximum,FWHM)指在函数的一个峰当中,前后两个函数值等于峰值一半的点之间的距离。
需要说明的是,在平面上形成所述压电层405可以使所述压电层405不包括明显转向的晶体,从而有助于提高谐振装置的机电耦合系数以及谐振装置的Q值。
本实施例中,所述电极层403上与所述电极层407重合的部分位于所述空腔401a内;所述电极层407上与所述电极层403重合的部分位于所述空腔401a上方。
本实施例中,所述电极层403的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝;所述电极层407的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝。
本实施例中,所述电极层403包括负电极,所述电极层407包括正电极。在另一个实施例中,所述电极层403包括正电极,所述电极层407包括负电极。
图4b是本发明实施例的一种体声波谐振装置400的剖面B结构示意图。
如图4b所示,所述谐振装置400包括:所述基底401,所述基底401的上表面 侧包括所述空腔401a;所述刻蚀屏蔽层411,位于所述空腔401a内,覆盖所述空腔401a的底部及侧壁;所述电极层403,包括4个电极条403b,所述电极层403剖面B位于所述空腔401a内;所述压电层405,位于所述基底401和所述电极层403上;电极层407,位于所述压电层405上。由图4b可见,谐振区409(即,所述电极层403和所述电极层407的重合区域)相对于所述空腔401a悬空,与所述基底401没有重合部。因此,所述谐振区409的垂直于所述上表面的垂直投影位于所述空腔401a之内,可以提升所述谐振区409和非谐振区的声学阻抗的区别,从而提高谐振装置的Q值。
本实施例中,所述4个电极条403b包括负电极,所述电极层407包括正电极。在另一个实施例中,所述4个电极条403b包括正电极,所述电极层407包括负电极。
本实施例中,所述4个电极条403b之间的距离是一致的,包括第一距离。
本实施例中,所述4个电极条403b的宽度是一致的,包括第一宽度。
本实施例中,所述4个电极条403b的占空因数包括第一占空因数,对应所述第一距离和所述第一宽度,其取值范围包括但不限于0.1至1。
需要说明的是,形成所述电极层403时,可通过调整所述第一距离或所述第一宽度,以控制谐振装置的频率。
在本发明的另一些实施例中,所述电极层403包括的电极条数可以为其他偶数,例如,2、6、8、10、12、14、16、18、20等。在本发明的另一些实施例中,所述电极层403包括的电极条数可以为奇数,例如,3、5、7、9、11、13、15、17、19等。
图5a是本发明实施例的一种体声波谐振装置500的剖面A结构示意图。
如图5a所示,本发明实施例提供一种体声波谐振装置500包括:基底501;中间层502,位于所述基底501上,所述中间层502的上表面侧包括空腔502a;电极层503,所述电极层503剖面A的第一端接触所述空腔502a的侧壁,所述电极层503剖面A的第二端位于所述空腔502a内;压电层505,位于所述中间层502和所述电极层503上;电极层507,位于所述压电层505上。由图5a可见,谐振区(未示出,即,所述电极层503和所述电极层507的重合区域)相对于所述空腔502a悬空,与所述中间层502没有重合部,从而所述谐振区(未示出)的垂直于所述上表面的垂直投影位于所述空腔502a之内。
因此,本发明实施例可以提升所述谐振区(未示出)和非谐振区的声学阻抗的区别,从而提高谐振装置的Q值。此外,所述中间层502的声学阻抗可较小,从而阻隔 所述谐振区(未示出)与所述基底501之间的漏波。
本实施例中,所述基底501的材料包括但不限于以下至少之一:硅、碳化硅、玻璃。
本实施例中,所述中间层502的材料包括但不限于以下至少之一:聚合物、绝缘电介质。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。本实施例中,所述绝缘电介质包括但不限于以下至少之一:氮化铝、二氧化硅、氮化硅、氧化钛。
本实施例中,所述中间层502的厚度包括但不限于:0.1微米至10微米。
本实施例中,所述压电层505的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
本实施例中,所述压电层505包括多个晶体,所述多个晶体包括第一晶体和第二晶体,其中,所述第一晶体和所述第二晶体是所述多个晶体中的任意两个晶体。所属技术领域的技术人员知晓晶体的晶向、晶面等可以基于坐标系表示。如图13所示,对于六方晶系的晶体,例如氮化铝晶体,采用ac立体坐标系(包括a轴及c轴)表示。如图14所示,对于(i)正交晶系(a≠b≠c)、(ii)四方晶系(a=b≠c)、(iii)立方晶系(a=b=c)等的晶体,采用xyz立体坐标系(包括x轴、y轴及z轴)表示。除上述两个实例,晶体还可以基于其他所属技术领域的技术人员知晓的坐标系表示,因此本发明不受上述两个实例的限制。
本实施例中,所述第一晶体可以基于第一立体坐标系表示,所述第二晶体可以基于第二立体坐标系表示,其中,所述第一立体坐标系至少包括沿第一方向的第一坐标轴及沿第三方向第三坐标轴,所述第二立体坐标系至少包括沿第二方向的第二坐标轴及沿第四方向的第四坐标轴,其中,所述第一坐标轴对应所述第一晶体的高,所述第二坐标轴对应所述第二晶体的高。
本实施例中,所述第一方向和所述第二方向相同或相反。需要说明的是,所述第一方向和所述第二方向相同指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括0度至5度;所述第一方向和所述第二方向相反指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为ac立体坐标系,其中,所述第一坐标轴为第一c轴,所述第三坐标轴为第一a轴;所述第二立体坐标系为ac立体坐标系,所述第二坐标轴为第二c轴,所述第四坐标轴为第二a轴,其中,所述第一c轴和所述 第二c轴的指向相同或相反。
在另一个实施例中,所述第一立体坐标系还包括沿第五方向的第五坐标轴,所述第二立体坐标系还包括沿第六方向的第六坐标轴。在另一个实施例中,所述第一方向和所述第二方向相同或相反,所述第三方向和所述第四方向相同或相反。需要说明的是,所述第三方向和所述第四方向相同指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括0度至5度;所述第三方向和所述第四方向相反指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为xyz立体坐标系,其中,所述第一坐标轴为第一z轴,所述第三坐标轴为第一y轴,所述第五坐标轴为第一x轴;所述第二立体坐标系为xyz立体坐标系,所述第二坐标轴为第二z轴,所述第四坐标轴为第二y轴,所述第六坐标轴为第二x轴。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相同。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反,所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反,所述第一y轴和所述第二y轴的指向相同。
本实施例中,所述压电层505包括多个晶体,所述多个晶体的摇摆曲线半峰宽低于2.5度。需要说明的是,摇摆曲线(Rocking curve)描述某一特定晶面(衍射角确定的晶面)在样品中角发散大小,通过平面坐标系表示,其中,横坐标为该晶面与样品面的夹角,纵坐标则表示在某一夹角下,该晶面的衍射强度,摇摆曲线用于表示晶格质量,半峰宽角度越小说明晶格质量越好。此外,半峰宽(Full Width at Half Maximum,FWHM)指在函数的一个峰当中,前后两个函数值等于峰值一半的点之间的距离。
需要说明的是,在平面上形成所述压电层505可以使所述压电层505不包括明显转向的晶体,从而有助于提高谐振装置的机电耦合系数以及谐振装置的Q值。
本实施例中,所述电极层503上与所述电极层507重合的部分位于所述空腔502a内;所述电极层507上与所述电极层503重合的部分位于所述空腔502a上方。
本实施例中,所述电极层503的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝;所述电极层507的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝。
本实施例中,所述电极层503包括负电极,所述电极层507包括正电极。本发 明的另一个实施例中,所述电极层503包括正电极,所述电极层507包括负电极。
图5b是本发明实施例的一种体声波谐振装置500的剖面B结构示意图。
如图5b所示,所述谐振装置500包括:所述基底501;所述中间层502,位于所述基底501上,所述中间层502的上表面侧包括空腔502a;所述电极层503,其剖面B位于所述空腔502a内;所述压电层505,位于所述中间层502和所述电极层503上;所述电极层507,包括5个电极条507b,所述电极层507位于所述压电层505上。由图5b可见,谐振区(未示出,即,所述电极层503和所述电极层507的重合区域)相对于所述空腔502a悬空,与所述中间层502没有重合部从而,所述谐振区(未示出)的垂直于所述上表面的垂直投影位于所述空腔502a之内。
因此,本发明实施例可以提升所述谐振区(未示出)和非谐振区的声学阻抗的区别,从而提高谐振装置的Q值。此外,所述中间层502的声学阻抗可较小,从而阻隔所述谐振区(未示出)与所述基底501之间的漏波。
本实施例中,所述电极层503包括负电极,所述5个电极条507b包括正电极。在另一个实施例中,所述电极层503包括正电极,所述5个电极条507b包括负电极。
本实施例中,所述5个电极条507b之间的距离是一致的,包括第一距离。
本实施例中,所述5个电极条507b的宽度是一致的,包括第一宽度。
本实施例中,所述5个电极条507b的占空因数包括第一占空因数,对应所述第一距离和所述第一宽度,其取值范围包括但不限于0.1至1。
需要说明的是,形成所述电极层507时,可通过调整所述第一距离或所述第一宽度,以控制谐振装置的频率。
在另一些实施例中,所述电极层507包括的电极条数可以为其他奇数,例如,3、7、9、11、13、15、17、19等。在另一些实施例中,所述电极层507包括的电极条数可以为偶数,例如,2、4、6、8、10、12、14、16、18、20等。
图6a是本发明实施例的一种体声波谐振装置600的剖面A结构示意图。
如图6a所示,本发明实施例提供一种体声波谐振装置600包括:基底601;中间层602,位于所述基底601上,所述中间层602剖面A的上表面侧包括空腔602a和空腔602b,其中,所述空腔602b位于所述空腔602a的一侧并和所述空腔602a相通,所述空腔602b的深度小于所述空腔602a的深度;电极层603,所述电极层603剖面A的第一端位于所述空腔602b内,所述电极层603剖面A的第二端位于所述空腔602a 内,其中,所述空腔602b的深度等于所述电极603的厚度;压电层605,位于所述中间层602和所述电极层603上;电极层607,位于所述压电层605上。由图6a可见,谐振区(未示出,即,所述电极层603和所述电极层607的重合区域)相对于所述空腔602a悬空,与所述中间层602没有重合部,从而所述谐振区(未示出)的垂直于所述上表面的垂直投影位于所述空腔602a之内。。
因此,本发明实施例可以提升所述谐振区(未示出)和非谐振区的声学阻抗的区别,从而提高谐振装置的Q值。此外,所述中间层602的声学阻抗可较小,从而可以阻隔所述谐振区(未示出)与所述基底601之间的漏波。
本实施例中,所述基底601的材料包括但不限于以下至少之一:硅、碳化硅、玻璃。
本实施例中,所述中间层602的材料包括但不限于以下至少之一:聚合物、绝缘电介质。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。本实施例中,所述绝缘电介质包括但不限于以下至少之一:氮化铝、二氧化硅、氮化硅、氧化钛。
本实施例中,所述中间层602的厚度包括但不限于:0.1微米至10微米。
本实施例中,所述压电层605的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
本实施例中,所述压电层605包括多个晶体,所述多个晶体包括第一晶体和第二晶体,其中,所述第一晶体和所述第二晶体是所述多个晶体中的任意两个晶体。所属技术领域的技术人员知晓晶体的晶向、晶面等可以基于坐标系表示。如图13所示,对于六方晶系的晶体,例如氮化铝晶体,采用ac立体坐标系(包括a轴及c轴)表示。如图14所示,对于(i)正交晶系(a≠b≠c)、(ii)四方晶系(a=b≠c)、(iii)立方晶系(a=b=c)等的晶体,采用xyz立体坐标系(包括x轴、y轴及z轴)表示。除上述两个实例,晶体还可以基于其他所属技术领域的技术人员知晓的坐标系表示,因此本发明不受上述两个实例的限制。
本实施例中,所述第一晶体可以基于第一立体坐标系表示,所述第二晶体可以基于第二立体坐标系表示,其中,所述第一立体坐标系至少包括沿第一方向的第一坐标轴及沿第三方向第三坐标轴,所述第二立体坐标系至少包括沿第二方向的第二坐标轴及沿第四方向的第四坐标轴,其中,所述第一坐标轴对应所述第一晶体的高,所述第二坐标轴对应所述第二晶体的高。
本实施例中,所述第一方向和所述第二方向相同或相反。需要说明的是,所述第一方向和所述第二方向相同指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括0度至5度;所述第一方向和所述第二方向相反指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为ac立体坐标系,其中,所述第一坐标轴为第一c轴,所述第三坐标轴为第一a轴;所述第二立体坐标系为ac立体坐标系,所述第二坐标轴为第二c轴,所述第四坐标轴为第二a轴,其中,所述第一c轴和所述第二c轴的指向相同或相反。
在另一个实施例中,所述第一立体坐标系还包括沿第五方向的第五坐标轴,所述第二立体坐标系还包括沿第六方向的第六坐标轴。在另一个实施例中,所述第一方向和所述第二方向相同或相反,所述第三方向和所述第四方向相同或相反。需要说明的是,所述第三方向和所述第四方向相同指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括0度至5度;所述第三方向和所述第四方向相反指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为xyz立体坐标系,其中,所述第一坐标轴为第一z轴,所述第三坐标轴为第一y轴,所述第五坐标轴为第一x轴;所述第二立体坐标系为xyz立体坐标系,所述第二坐标轴为第二z轴,所述第四坐标轴为第二y轴,所述第六坐标轴为第二x轴。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相同。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反,所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反,所述第一y轴和所述第二y轴的指向相同。
本实施例中,所述压电层605包括多个晶体,所述多个晶体的摇摆曲线半峰宽低于2.5度。需要说明的是,摇摆曲线(Rocking curve)描述某一特定晶面(衍射角确定的晶面)在样品中角发散大小,通过平面坐标系表示,其中,横坐标为该晶面与样品面的夹角,纵坐标则表示在某一夹角下,该晶面的衍射强度,摇摆曲线用于表示晶格质量,半峰宽角度越小说明晶格质量越好。此外,半峰宽(Full Width at Half Maximum,FWHM)指在函数的一个峰当中,前后两个函数值等于峰值一半的点之间的距离。
需要说明的是,在平面上形成所述压电层605可以使所述压电层605不包括明 显转向的晶体,从而有助于提高谐振装置的机电耦合系数以及谐振装置的Q值。
本实施例中,所述电极层603上与所述电极层607重合的部分位于所述空腔602a内;所述电极层607上与所述电极层603重合的部分位于所述空腔602a上方。
本实施例中,所述电极层603的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝;所述电极层607的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝。
本实施例中,所述电极层603包括负电极,所述电极层607包括正电极。本发明的另一个实施例中,所述电极层603包括正电极,所述电极层607包括负电极。
图6b是本发明实施例的一种体声波谐振装置600的剖面B结构示意图。
如图6b所示,所述谐振装置600包括:所述基底601;所述中间层602,位于所述基底601上,所述中间层602剖面B的上表面侧包括空腔602a;所述电极层603,其剖面B位于所述空腔602a内;所述压电层605,位于所述中间层602和所述电极层603上;所述电极层607,包括5个电极条607b,所述电极层607位于所述压电层605上。由图6b可见,谐振区(未示出,即,所述电极层603和所述电极层607的重合区域)相对于所述空腔602a悬空,与所述中间层602没有重合部,从而所述谐振区(未示出)的垂直于所述上表面的垂直投影位于所述空腔602a之内。
因此,本发明实施例可以提升所述谐振区(未示出)和非谐振区的声学阻抗的区别,从而提高谐振装置的Q值。此外,所述中间层602的声学阻抗可较小,从而可以阻隔所述谐振区(未示出)与所述基底601之间的漏波。
本实施例中,所述电极层603包括负电极,所述5个电极条607b包括正电极。在另一个实施例中,所述电极层603包括正电极,所述5个电极条607b包括负电极。
本实施例中,所述电极条607b之间的距离是变化的,包括第一距离和第二距离,其中,所述第一距离大于所述第二距离。
本实施例中,所述电极条607b的宽度是变化的,包括第一宽度、第二宽度及第三宽度,其中,所述第一宽度小于所述第二宽度,所述第二宽度小于所述第三宽度。
本实施例中,所述电极条607b的占空因数包括:第一占空因数,对应所述第一距离和所述第一宽度、第二占空因数,对应所述第一距离和所述第二宽度、第三占空因数,对应所述第二距离和所述第二宽度、以及第四占空因数,对应所述第二距离和所述第三宽度,其中,所述第一占空因数、所述第二占空因数、所述第三占空因数及所述第 四占空因数的取值范围包括但不限于0.1至1。
需要说明的是,形成所述电极层607时,可通过调整所述第一距离或所述第二距离或所述第一宽度或所述第二宽度或所述第三宽度,以控制谐振装置的频率。
在本发明的另一些实施例中,所述电极层607包括的电极条数可以为其他奇数,例如,3、7、9、11、13、15、17、19等。在本发明的另一些实施例中,所述电极层607包括的电极条数可以为偶数,例如,2、4、6、8、10、12、14、16、18、20等。
图7a是本发明实施例的一种体声波谐振装置700的剖面A结构示意图。
如图7a所示,本发明实施例提供一种体声波谐振装置700包括:基底701;中间层702,位于所述基底701上,所述中间层702剖面A的上表面侧包括空腔702a和空腔702b,其中,所述空腔702b位于所述空腔702a的一侧并和所述空腔702a相通,所述空腔702b的深度小于所述空腔702a的深度;刻蚀屏蔽层711,其剖面A覆盖所述空腔702a的底部及侧壁、所述空腔702b的底部及侧壁、以及所述中间层702的上表面侧;电极层703,所述电极层703剖面A的第一端位于所述空腔702b内,所述电极层703剖面A的第二端位于所述空腔702a内,其中,所述空腔702b的深度等于所述刻蚀屏蔽层711的厚度与所述电极层703的厚度之和;压电层705,位于所述刻蚀屏蔽层711和所述电极层703上;电极层707,位于所述压电层705上。由图7a可见,谐振区(未示出,即,所述电极层703和所述电极层707的重合区域)相对于所述空腔702a悬空,与所述中间层702没有重合部,从而所述谐振区(未示出)的垂直于所述上表面的垂直投影位于所述空腔702a之内。
因此,本发明实施例可以提升所述谐振区(未示出)和非谐振区的声学阻抗的区别,从而提高谐振装置的Q值。此外,所述中间层702的声学阻抗可较小,从而可以阻隔所述谐振区(未示出)与所述基底701之间的漏波。
本实施例中,所述基底701的材料包括但不限于以下至少之一:硅、碳化硅、玻璃。
本实施例中,所述中间层702的材料包括但不限于以下至少之一:聚合物、绝缘电介质。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。本实施例中,所述绝缘电介质包括但不限于以下至少之一:氮化铝、二氧化硅、氮化硅、氧化钛。
本实施例中,所述中间层702的厚度包括但不限于:0.1微米至10微米。
本实施例中,所述刻蚀屏蔽层711的材料包括但不限于以下至少之一:氮化铝、碳化硅、钻石、氮化硅、二氧化硅、氧化铝、二氧化钛。
需要说明的是,所述刻蚀屏蔽层711,在刻蚀形成所述空腔702a时,可以起到保护所述中间层702的作用。此外,所述刻蚀隔屏蔽层711可以起到保护谐振装置不受水和氧气腐蚀。
本实施例中,所述刻蚀屏蔽层711的厚度包括但不限于:0.1微米至3微米。
本实施例中,所述压电层705的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
本实施例中,所述压电层705包括多个晶体,所述多个晶体包括第一晶体和第二晶体,其中,所述第一晶体和所述第二晶体是所述多个晶体中的任意两个晶体。所属技术领域的技术人员知晓晶体的晶向、晶面等可以基于坐标系表示。如图13所示,对于六方晶系的晶体,例如氮化铝晶体,采用ac立体坐标系(包括a轴及c轴)表示。如图14所示,对于(i)正交晶系(a≠b≠c)、(ii)四方晶系(a=b≠c)、(iii)立方晶系(a=b=c)等的晶体,采用xyz立体坐标系(包括x轴、y轴及z轴)表示。除上述两个实例,晶体还可以基于其他所属技术领域的技术人员知晓的坐标系表示,因此本发明不受上述两个实例的限制。
本实施例中,所述第一晶体可以基于第一立体坐标系表示,所述第二晶体可以基于第二立体坐标系表示,其中,所述第一立体坐标系至少包括沿第一方向的第一坐标轴及沿第三方向第三坐标轴,所述第二立体坐标系至少包括沿第二方向的第二坐标轴及沿第四方向的第四坐标轴,其中,所述第一坐标轴对应所述第一晶体的高,所述第二坐标轴对应所述第二晶体的高。
本实施例中,所述第一方向和所述第二方向相同或相反。需要说明的是,所述第一方向和所述第二方向相同指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括0度至5度;所述第一方向和所述第二方向相反指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为ac立体坐标系,其中,所述第一坐标轴为第一c轴,所述第三坐标轴为第一a轴;所述第二立体坐标系为ac立体坐标系,所述第二坐标轴为第二c轴,所述第四坐标轴为第二a轴,其中,所述第一c轴和所述第二c轴的指向相同或相反。
在另一个实施例中,所述第一立体坐标系还包括沿第五方向的第五坐标轴,所 述第二立体坐标系还包括沿第六方向的第六坐标轴。在另一个实施例中,所述第一方向和所述第二方向相同或相反,所述第三方向和所述第四方向相同或相反。需要说明的是,所述第三方向和所述第四方向相同指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括0度至5度;所述第三方向和所述第四方向相反指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为xyz立体坐标系,其中,所述第一坐标轴为第一z轴,所述第三坐标轴为第一y轴,所述第五坐标轴为第一x轴;所述第二立体坐标系为xyz立体坐标系,所述第二坐标轴为第二z轴,所述第四坐标轴为第二y轴,所述第六坐标轴为第二x轴。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相同。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反,所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反,所述第一y轴和所述第二y轴的指向相同。
本实施例中,所述压电层705包括多个晶体,所述多个晶体的摇摆曲线半峰宽低于2.5度。需要说明的是,摇摆曲线(Rocking curve)描述某一特定晶面(衍射角确定的晶面)在样品中角发散大小,通过平面坐标系表示,其中,横坐标为该晶面与样品面的夹角,纵坐标则表示在某一夹角下,该晶面的衍射强度,摇摆曲线用于表示晶格质量,半峰宽角度越小说明晶格质量越好。此外,半峰宽(Full Width at Half Maximum,FWHM)指在函数的一个峰当中,前后两个函数值等于峰值一半的点之间的距离。
需要说明的是,在平面上形成所述压电层705可以使所述压电层705不包括明显转向的晶体,从而有助于提高谐振装置的机电耦合系数以及谐振装置的Q值。
本实施例中,所述电极层703上与所述电极层707重合的部分位于所述空腔702a内;所述电极层707上与所述电极层703重合的部分位于所述空腔702a上方。
本实施例中,所述电极层703的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝;所述电极层707的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝。
本实施例中,所述电极层703包括正电极和负电极,所述电极层707包括正电极和负电极。
图7b是本发明实施例的一种体声波谐振装置700的剖面B结构示意图。
如图7b所示,所述谐振装置700包括:所述基底701;所述中间层702,位于所述基底701上,所述中间层702剖面B的上表面侧包括所述空腔702a;所述刻蚀屏蔽层711,其剖面B覆盖所述空腔702a的底部及侧壁及所述中间层702的上表面侧;所述电极层703,包括2个电极条703b和2个电极条703c,所述电极层703剖面B位于所述空腔702a内;所述压电层705,位于所述刻蚀屏蔽层711以及所述电极层703上;所述电极层707,包括2个电极条707b和2个电极条707c,所述电极层707位于所述压电层705上。由图7b可见,谐振区(未示出,即,所述电极层703和所述电极层707的重合区域)相对于所述空腔702a悬空,与所述中间层702没有重合部,从而所述谐振区(未示出)的垂直于所述上表面的垂直投影位于所述空腔702a之内。
因此,本发明实施例可以提升所述谐振区(未示出)和非谐振区的声学阻抗的区别,从而提高谐振装置的Q值。此外,所述中间层702的声学阻抗可较小,从而可以阻隔所述谐振区(未示出)与所述基底701之间的漏波。
本实施例中,所述2个电极条703b包括负电极,所述2个电极条703c包括正电极,所述2个电极条707b包括负电极,所述2个电极条707c包括正电极。在另一个实施例中,所述2个电极条703b包括正电极,所述2个电极条703c包括负电极,所述2个电极条707b包括正电极,所述2个电极条707c包括负电极。
本实施例中,所述电极条703b以及所述电极条703c之间的距离是一致的,所述电极条707b以及所述电极条707c之间的距离是一致的,包括第一距离。
本实施例中,所述电极条703b、703c、707b、707c的宽度是一致的,包括第一宽度。
本实施例中,所述电极条703b、703c、707b、707c的占空因数包括第一占空因数,对应所述第一距离和所述第一宽度,其取值范围包括但不限于0.1至1。
需要说明的是,形成所述电极层703和707时,可通过调整所述第一距离或所述第一宽度,以控制谐振装置的频率。
在另一些实施例中,所述电极层703和707各包括的电极条数可以为其他偶数,例如,2、6、8、10、12、14、16、18、20等。在另一些实施例中,所述电极层703和707各包括的电极条数可以为奇数,例如,3、5、7、9、11、13、15、17、19等。
在另一个实施例中,所述电极层703包括6个电极条,所述电极层707也包括6个电极条,其中,所述电极层703包括的所述6个电极条的极性沿水平方向从左到右依次为负、负、正、正、负、负,所述电极层707包括的所述6个电极条的极性沿水平 方向从左到右依次为正、正、负、负、正、正。在另一个实施例中,所述电极层703包括的所述6个电极条的极性沿水平方向从左到右依次为负、负、负、正、正、正,所述电极层707包括的所述6个电极条的极性沿水平方向从左到右依次为正、正、正、负、负、负。
在另一个实施例中,所述电极层703包括5个电极条,所述电极层707也包括5个电极条,其中,所述电极层703包括的所述5个电极条的极性沿水平方向从左到右依次为负、负、正、负、负,所述电极层707包括的所述5个电极条的极性沿水平方向从左到右依次为正、正、负、正、正。在另一个实施例中,所述电极层703包括的所述5个电极条的极性沿水平方向从左到右依次为负、负、负、正、正,所述电极层707包括的所述5个电极条的极性沿水平方向从左到右依次为正、正、正、负、负。
图8a是本发明实施例的一种体声波谐振装置800的剖面A结构示意图。
如图8a所示,本发明实施例提供一种体声波谐振装置800包括:中间层802,所述中间层802的上表面侧包括空腔802a;电极层803,所述电极层803剖面A的第一端接触所述空腔802a的侧壁,所述电极层803剖面A的第二端位于所述空腔802a内;压电层805,位于所述中间层802和所述电极层803上;电极层807,位于所述压电层805上。由图8a可见,谐振区(未示出,即,所述电极层803和所述电极层807的重合区域)相对于所述空腔802a悬空,与所述中间层802没有重合部,从而所述谐振区(未示出)的垂直于所述上表面的垂直投影位于所述空腔802a之内。
因此,本发明实施例可以提升所述谐振区(未示出)和非谐振区的声学阻抗的区别,从而提高谐振装置的Q值。此外,本发明实施例提供的谐振装置800不包括基底,从而可以消除基底造成的电学损耗。
本实施例中,所述中间层802的材料包括但不限于以下至少之一:聚合物、绝缘电介质。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。本实施例中,所述绝缘电介质包括但不限于以下至少之一:氮化铝、二氧化硅、氮化硅、氧化钛。
本实施例中,所述中间层802的厚度包括但不限于:20微米至100微米。
本实施例中,所述压电层805的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
本实施例中,所述压电层805包括多个晶体,所述多个晶体包括第一晶体和第二晶体,其中,所述第一晶体和所述第二晶体是所述多个晶体中的任意两个晶体。所属 技术领域的技术人员知晓晶体的晶向、晶面等可以基于坐标系表示。如图13所示,对于六方晶系的晶体,例如氮化铝晶体,采用ac立体坐标系(包括a轴及c轴)表示。如图14所示,对于(i)正交晶系(a≠b≠c)、(ii)四方晶系(a=b≠c)、(iii)立方晶系(a=b=c)等的晶体,采用xyz立体坐标系(包括x轴、y轴及z轴)表示。除上述两个实例,晶体还可以基于其他所属技术领域的技术人员知晓的坐标系表示,因此本发明不受上述两个实例的限制。
本实施例中,所述第一晶体可以基于第一立体坐标系表示,所述第二晶体可以基于第二立体坐标系表示,其中,所述第一立体坐标系至少包括沿第一方向的第一坐标轴及沿第三方向第三坐标轴,所述第二立体坐标系至少包括沿第二方向的第二坐标轴及沿第四方向的第四坐标轴,其中,所述第一坐标轴对应所述第一晶体的高,所述第二坐标轴对应所述第二晶体的高。
本实施例中,所述第一方向和所述第二方向相同或相反。需要说明的是,所述第一方向和所述第二方向相同指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括0度至5度;所述第一方向和所述第二方向相反指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为ac立体坐标系,其中,所述第一坐标轴为第一c轴,所述第三坐标轴为第一a轴;所述第二立体坐标系为ac立体坐标系,所述第二坐标轴为第二c轴,所述第四坐标轴为第二a轴,其中,所述第一c轴和所述第二c轴的指向相同或相反。
在另一个实施例中,所述第一立体坐标系还包括沿第五方向的第五坐标轴,所述第二立体坐标系还包括沿第六方向的第六坐标轴。在另一个实施例中,所述第一方向和所述第二方向相同或相反,所述第三方向和所述第四方向相同或相反。需要说明的是,所述第三方向和所述第四方向相同指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括0度至5度;所述第三方向和所述第四方向相反指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为xyz立体坐标系,其中,所述第一坐标轴为第一z轴,所述第三坐标轴为第一y轴,所述第五坐标轴为第一x轴;所述第二立体坐标系为xyz立体坐标系,所述第二坐标轴为第二z轴,所述第四坐标轴为第二y轴,所述第六坐标轴为第二x轴。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相同。在另一个实施例中,所述第一 z轴和所述第二z轴的指向相反,所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反,所述第一y轴和所述第二y轴的指向相同。
本实施例中,所述压电层805包括多个晶体,所述多个晶体的摇摆曲线半峰宽低于2.5度。需要说明的是,摇摆曲线(Rocking curve)描述某一特定晶面(衍射角确定的晶面)在样品中角发散大小,通过平面坐标系表示,其中,横坐标为该晶面与样品面的夹角,纵坐标则表示在某一夹角下,该晶面的衍射强度,摇摆曲线用于表示晶格质量,半峰宽角度越小说明晶格质量越好。此外,半峰宽(Full Width at Half Maximum,FWHM)指在函数的一个峰当中,前后两个函数值等于峰值一半的点之间的距离。
需要说明的是,在平面上形成所述压电层805可以使所述压电层805不包括明显转向的晶体,从而有助于提高谐振装置的机电耦合系数以及谐振装置的Q值。
本实施例中,所述电极层803上与所述电极层807重合的部分位于所述空腔802a内;所述电极层807上与所述电极层803重合的部分位于所述空腔802a上方。
本实施例中,所述电极层803的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝;所述电极层807的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝。
本实施例中,所述电极层803包括负电极,所述电极层807包括正电极。本发明的另一个实施例中,所述电极层803包括正电极,所述电极层807包括负电极。
图8b是本发明实施例的一种体声波谐振装置800的剖面B结构示意图。
如图8b所示,所述谐振装置800包括:所述中间层802,所述中间层802的上表面侧包括所述空腔802a;所述电极层803,包括4个电极条803b,所述电极层803剖面B位于所述空腔802a内;所述压电层805,位于所述中间层802和所述电极层803上;所述电极层807,包括4个电极条807b,所述电极层807位于所述压电层805上。由图8b可见,谐振区(未示出,即,所述电极层803和所述电极层807的重合区域)相对于所述空腔802a悬空,与所述中间层802没有重合部,从而所述谐振区(未示出)的垂直于所述上表面的垂直投影位于所述空腔802a之内。
因此,本发明实施例可以提升所述谐振区(未示出)和非谐振区的声学阻抗的区别,从而提高谐振装置的Q值。此外,本发明实施例提供的谐振装置800不包括基底,从而可以消除基底造成的电学损耗。
本实施例中,所述4个电极条803b包括负电极,所述4个电极条807b包括正电极。在另一个实施例中,所述4个电极条803b包括正电极,所述4个电极条807b包括负电极。
本实施例中,所述电极条803b之间的距离是一致的,所述电极条807b之间的距离是一致的,包括第一距离。
本实施例中,所述电极条803b、807b的宽度是一致的,包括第一宽度。
本实施例中,所述电极条803b、807b的占空因数包括第一占空因数,对应所述第一距离和所述第一宽度,其取值范围包括但不限于0.1至1。
需要说明的是,形成所述电极层803和807时,可通过调整所述第一距离或所述第一宽度,以控制谐振装置的频率。
在本发明的另一些实施例中,所述电极层803和807各包括的电极条数可以为其他偶数,例如,2、6、8、10、12、14、16、18、20等。在本发明的另一些实施例中,所述电极层803和807各包括的电极条数可以为奇数,例如,3、5、7、9、11、13、15、17、19等。
图9a是本发明实施例的一种体声波谐振装置900的剖面A结构示意图。
如图9a所示,本发明实施例提供一种体声波谐振装置900包括:中间层902,所述中间层902剖面A的上表面侧包括空腔902a和空腔902b,其中,所述空腔902b位于所述空腔902a的一侧并和所述空腔902a相通,所述空腔902b的深度小于所述空腔902a的深度;电极层903,所述电极层903剖面A的第一端位于所述空腔902b内,所述电极层903剖面A的第二端位于所述空腔902a内,其中,所述空腔902b的深度等于所述电极层903的厚度;压电层905,位于所述中间层902和所述电极层903上;电极层907,位于所述压电层905上。由图9a可见,谐振区(未示出,即,所述电极层903和所述电极层907的重合区域)相对于所述空腔902a悬空,与所述中间层902没有重合部,从而所述谐振区(未示出)的垂直于所述上表面的垂直投影位于所述空腔902a之内。
因此,本发明实施例可以提升所述谐振区(未示出)和非谐振区的声学阻抗的区别,从而提高谐振装置的Q值。此外,本发明实施例提供的谐振装置900不包括基底,从而可以消除基底造成的电学损耗。
本实施例中,所述中间层902的材料包括但不限于以下至少之一:聚合物、绝 缘电介质。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。本实施例中,所述绝缘电介质包括但不限于以下至少之一:氮化铝、二氧化硅、氮化硅、氧化钛。
本实施例中,所述中间层902的厚度包括但不限于:20微米至100微米。
本实施例中,所述压电层905的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
本实施例中,所述压电层905包括多个晶体,所述多个晶体包括第一晶体和第二晶体,其中,所述第一晶体和所述第二晶体是所述多个晶体中的任意两个晶体。所属技术领域的技术人员知晓晶体的晶向、晶面等可以基于坐标系表示。如图13所示,对于六方晶系的晶体,例如氮化铝晶体,采用ac立体坐标系(包括a轴及c轴)表示。如图14所示,对于(i)正交晶系(a≠b≠c)、(ii)四方晶系(a=b≠c)、(iii)立方晶系(a=b=c)等的晶体,采用xyz立体坐标系(包括x轴、y轴及z轴)表示。除上述两个实例,晶体还可以基于其他所属技术领域的技术人员知晓的坐标系表示,因此本发明不受上述两个实例的限制。
本实施例中,所述第一晶体可以基于第一立体坐标系表示,所述第二晶体可以基于第二立体坐标系表示,其中,所述第一立体坐标系至少包括沿第一方向的第一坐标轴及沿第三方向第三坐标轴,所述第二立体坐标系至少包括沿第二方向的第二坐标轴及沿第四方向的第四坐标轴,其中,所述第一坐标轴对应所述第一晶体的高,所述第二坐标轴对应所述第二晶体的高。
本实施例中,所述第一方向和所述第二方向相同或相反。需要说明的是,所述第一方向和所述第二方向相同指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括0度至5度;所述第一方向和所述第二方向相反指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为ac立体坐标系,其中,所述第一坐标轴为第一c轴,所述第三坐标轴为第一a轴;所述第二立体坐标系为ac立体坐标系,所述第二坐标轴为第二c轴,所述第四坐标轴为第二a轴,其中,所述第一c轴和所述第二c轴的指向相同或相反。
在另一个实施例中,所述第一立体坐标系还包括沿第五方向的第五坐标轴,所述第二立体坐标系还包括沿第六方向的第六坐标轴。在另一个实施例中,所述第一方向和所述第二方向相同或相反,所述第三方向和所述第四方向相同或相反。需要说明的是, 所述第三方向和所述第四方向相同指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括0度至5度;所述第三方向和所述第四方向相反指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为xyz立体坐标系,其中,所述第一坐标轴为第一z轴,所述第三坐标轴为第一y轴,所述第五坐标轴为第一x轴;所述第二立体坐标系为xyz立体坐标系,所述第二坐标轴为第二z轴,所述第四坐标轴为第二y轴,所述第六坐标轴为第二x轴。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相同。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反,所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反,所述第一y轴和所述第二y轴的指向相同。
本实施例中,所述压电层905包括多个晶体,所述多个晶体的摇摆曲线半峰宽低于2.5度。需要说明的是,摇摆曲线(Rocking curve)描述某一特定晶面(衍射角确定的晶面)在样品中角发散大小,通过平面坐标系表示,其中,横坐标为该晶面与样品面的夹角,纵坐标则表示在某一夹角下,该晶面的衍射强度,摇摆曲线用于表示晶格质量,半峰宽角度越小说明晶格质量越好。此外,半峰宽(Full Width at Half Maximum,FWHM)指在函数的一个峰当中,前后两个函数值等于峰值一半的点之间的距离。
需要说明的是,在平面上形成所述压电层905可以使所述压电层905不包括明显转向的晶体,从而有助于提高谐振装置的机电耦合系数以及谐振装置的Q值。
本实施例中,所述电极层903上与所述电极层907重合的部分位于所述空腔902a内;所述电极层907上与所述电极层903重合的部分位于所述空腔902a上方。
本实施例中,所述电极层903的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝;所述电极层907的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝。
本实施例中,所述电极层903包括负电极,所述电极层907包括正电极。在另一个实施例中,所述电极层903包括正电极,所述电极层907包括负电极。
图9b是本发明实施例的一种体声波谐振装置900的剖面B结构示意图。
如图9b所示,所述谐振装置900包括:所述中间层902,所述中间层902剖面B的上表面侧包括所述空腔902a;所述电极层903,包括4个电极条903b,所述电极层 903剖面B位于所述空腔902a内;所述压电层905,位于所述中间层902和所述电极层903上;所述电极层907,包括4个电极条907b,所述电极层907位于所述压电层905上。由图9b可见,谐振区(未示出,即,所述电极层903和所述电极层907的重合区域)相对于所述空腔902a悬空,与所述中间层902没有重合部,从而所述谐振区(未示出)的垂直于所述上表面的垂直投影位于所述空腔902a之内。
因此,本发明实施例可以提升所述谐振区(未示出)和非谐振区的声学阻抗的区别,从而提高谐振装置的Q值。此外,本发明实施例提供的谐振装置900不包括基底,从而可以消除基底造成的电学损耗。
本实施例中,所述4个电极条903b包括负电极,所述4个电极条907b包括正电极。在另一个实施例中,所述4个电极条903b包括正电极,所述4个电极条907b包括负电极。
本实施例中,所述电极条903b之间的距离是变化的,所述电极条907b之间的距离是变化的,包括:第一距离和第二距离,其中,所述第一距离小于所述第二距离。
本实施例中,所述电极条903b、907b的宽度是变化的,包括:第一宽度及第二宽度,其中,所述第一宽度大于所述第二宽度。
本实施例中,所述电极条903b、907b的占空因数包括:第一占空因数,对应所述第一宽度和所述第一距离、第二占空因数,对应所述第二宽度和所述第一距离、第三占空因数,对应所述第二宽度和所述第二距离、及第四占空因数,对应所述第一宽度和所述第二距离,其中,所述第一占空因数、所述第二占空因数、所述第三占空因数及所述第四占空因数的取值范围包括但不限于0.1至1。
需要说明的是,形成所述电极层903和907时,可通过调整所述第一距离或所述第二距离或所述第一宽度或所述第二宽度,以控制谐振装置的频率。
在另一些实施例中,所述电极层903和907各包括的电极条数可以为其他偶数,例如,2、6、8、10、12、14、16、18、20等。在另一些实施例中,所述电极层903和907各包括的电极条数可以为奇数,例如,3、5、7、9、11、13、15、17、19等。
图10a是本发明实施例的一种体声波谐振装置1000的剖面A结构示意图。
如图10a所示,本发明实施例提供一种体声波谐振装置1000包括:中间层1002,所述中间层1002剖面A的上表面侧包括空腔1002a和空腔1002b,其中,所述空腔1002b位于所述空腔1002a的一侧并和所述空腔1002a相通,所述空腔1002b的深度小于所述 空腔1002a的深度;刻蚀屏蔽层1011,其剖面A覆盖所述空腔1002a的底部及侧壁、所述空腔1002b的底部及侧壁、以及所述中间层1002的上表面侧;电极层1003,所述电极层1003剖面A的第一端位于所述空腔1002b内,所述电极层1003剖面A的第二端位于所述空腔1002a内,其中,所述空腔1002b的深度等于所述刻蚀屏蔽层1011的厚度与所述电极层1003的厚度之和;压电层1005,位于所述刻蚀屏蔽层1011和所述电极层1003上;电极层1007,位于所述压电层1005上。由图10a可见,谐振区(未示出,即,所述电极层1003和所述电极层1007的重合区域)相对于所述空腔1002a悬空,与所述中间层1002没有重合部,从而所述谐振区(未示出)的垂直于所述上表面的垂直投影位于所述空腔1002a之内。
因此,本发明实施例可以提升所述谐振区(未示出)和非谐振区的声学阻抗的区别,从而提高谐振装置的Q值。此外,本发明实施例提供的谐振装置1000不包括基底,从而可以消除基底造成的电学损耗。
本实施例中,所述中间层1002的材料包括但不限于以下至少之一:聚合物、绝缘电介质。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。本实施例中,所述绝缘电介质包括但不限于以下至少之一:氮化铝、二氧化硅、氮化硅、氧化钛。
本实施例中,所述中间层1002的厚度包括但不限于:20微米至100微米。
本实施例中,所述刻蚀屏蔽层1011的材料包括但不限于以下至少之一:氮化铝、碳化硅、钻石、氮化硅、二氧化硅、氧化铝、二氧化钛。
本实施例中,所述刻蚀屏蔽层1011的厚度包括但不限于:2微米至6微米。
需要说明的是,所述刻蚀屏蔽层1011,在刻蚀形成所述空腔1002a时,可以起到保护所述中间层1002的作用。此外,所述刻蚀隔屏蔽层1011可以起到保护谐振装置不受水和氧气腐蚀。
本实施例中,所述压电层1005的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
本实施例中,所述压电层1005包括多个晶体,所述多个晶体包括第一晶体和第二晶体,其中,所述第一晶体和所述第二晶体是所述多个晶体中的任意两个晶体。所属技术领域的技术人员知晓晶体的晶向、晶面等可以基于坐标系表示。如图13所示,对于六方晶系的晶体,例如氮化铝晶体,采用ac立体坐标系(包括a轴及c轴)表示。如图14所示,对于(i)正交晶系(a≠b≠c)、(ii)四方晶系(a=b≠c)、(iii)立方晶系(a=b=c) 等的晶体,采用xyz立体坐标系(包括x轴、y轴及z轴)表示。除上述两个实例,晶体还可以基于其他所属技术领域的技术人员知晓的坐标系表示,因此本发明不受上述两个实例的限制。
本实施例中,所述第一晶体可以基于第一立体坐标系表示,所述第二晶体可以基于第二立体坐标系表示,其中,所述第一立体坐标系至少包括沿第一方向的第一坐标轴及沿第三方向第三坐标轴,所述第二立体坐标系至少包括沿第二方向的第二坐标轴及沿第四方向的第四坐标轴,其中,所述第一坐标轴对应所述第一晶体的高,所述第二坐标轴对应所述第二晶体的高。
本实施例中,所述第一方向和所述第二方向相同或相反。需要说明的是,所述第一方向和所述第二方向相同指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括0度至5度;所述第一方向和所述第二方向相反指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为ac立体坐标系,其中,所述第一坐标轴为第一c轴,所述第三坐标轴为第一a轴;所述第二立体坐标系为ac立体坐标系,所述第二坐标轴为第二c轴,所述第四坐标轴为第二a轴,其中,所述第一c轴和所述第二c轴的指向相同或相反。
在另一个实施例中,所述第一立体坐标系还包括沿第五方向的第五坐标轴,所述第二立体坐标系还包括沿第六方向的第六坐标轴。在另一个实施例中,所述第一方向和所述第二方向相同或相反,所述第三方向和所述第四方向相同或相反。需要说明的是,所述第三方向和所述第四方向相同指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括0度至5度;所述第三方向和所述第四方向相反指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为xyz立体坐标系,其中,所述第一坐标轴为第一z轴,所述第三坐标轴为第一y轴,所述第五坐标轴为第一x轴;所述第二立体坐标系为xyz立体坐标系,所述第二坐标轴为第二z轴,所述第四坐标轴为第二y轴,所述第六坐标轴为第二x轴。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相同。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反,所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反,所述第一y 轴和所述第二y轴的指向相同。
本实施例中,所述压电层1005包括多个晶体,所述多个晶体的摇摆曲线半峰宽低于2.5度。需要说明的是,摇摆曲线(Rocking curve)描述某一特定晶面(衍射角确定的晶面)在样品中角发散大小,通过平面坐标系表示,其中,横坐标为该晶面与样品面的夹角,纵坐标则表示在某一夹角下,该晶面的衍射强度,摇摆曲线用于表示晶格质量,半峰宽角度越小说明晶格质量越好。此外,半峰宽(Full Width at Half Maximum,FWHM)指在函数的一个峰当中,前后两个函数值等于峰值一半的点之间的距离。
需要说明的是,在平面上形成所述压电层1005可以使所述压电层1005不包括明显转向的晶体,从而有助于提高谐振装置的机电耦合系数以及谐振装置的Q值。
本实施例中,所述电极层1003上与所述电极层1007重合的部分位于所述空腔1002a内;所述电极层1007上与所述电极层1003重合的部分位于所述空腔1002a上方。
本实施例中,所述电极层1003的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝;所述电极层1007的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝。
本实施例中,所述电极层1003包括正电极和负电极,所述电极层1007包括正电极和负电极。
图10b是本发明实施例的一种体声波谐振装置1000的剖面B结构示意图。
如图10b所示,所述谐振装置1000包括:所述中间层1002,所述中间层1002剖面B的上表面侧包括所述空腔1002a;所述刻蚀屏蔽层1011,其剖面B覆盖所述空腔1002a的底部及侧壁及所述中间层1002的上表面侧;所述电极层1003,包括2个电极条1003b和2个电极条1003c,所述电极层1003剖面B位于所述空腔1002a内;所述压电层1005,位于所述刻蚀屏蔽层1011和所述电极层1003上;所述电极层1007,包括2个电极条1007b和2个电极条1007c,所述电极层1007位于所述压电层1005上。由图10b可见,谐振区(未示出,即,所述电极层1003和所述电极层1007的重合区域)相对于所述空腔1002a悬空,与所述中间层1002没有重合部,从而所述谐振区(未示出)的垂直于所述上表面的垂直投影位于所述空腔1002a之内。
因此,本发明实施例可以提升所述谐振区(未示出)和非谐振区的声学阻抗的区别,从而提高谐振装置的Q值。此外,本发明实施例提供的谐振装置1000不包括基底,从而可以消除基底造成的电学损耗。
本实施例中,所述2个电极条1003b包括负电极,所述2个电极条1003c包括正电极,所述2个电极条1007b包括负电极,所述2个电极条1007c包括正电极。在另一个实施例中,所述2个电极条1003b包括正电极,所述2个电极条1003c包括负电极,所述2个电极条1007b包括正电极,所述2个电极条1007c包括负电极。
本实施例中,所述电极条1003b以及所述电极条1003c之间的距离是一致的,所述电极条1007b以及所述电极条1007c之间的距离是一致的,包括第一距离。
本实施例中,所述电极条1003b、1003c、1007b、1007c的宽度是一致的,包括第一宽度。
本实施例中,所述电极条1003b、1003c、1007b、1007c的占空因数包括第一占空因数,对应所述第一距离和所述第一宽度,其取值范围包括但不限于0.1至1。
需要说明的是,形成所述电极层1003和1007时,可通过调整所述第一距离或所述第一宽度,以控制谐振装置的频率。
在另一些实施例中,所述电极层1003和1007各包括的电极条数可以为其他偶数,例如,2、6、8、10、12、14、16、18、20等。在另一些实施例中,所述电极层1003和1007各包括的电极条数可以为奇数,例如,3、5、7、9、11、13、15、17、19等。
图11a是本发明实施例的一种体声波谐振装置1100的剖面A结构示意图。
如图11a所示,本发明实施例提供一种体声波谐振装置1100包括:基底1101;薄膜1104,位于所述基底1101上;中间层1102,位于所述薄膜1104上,所述中间层1102的上表面侧包括空腔1102a;电极层1103,所述电极层1103剖面A的第一端接触所述空腔1102a的侧壁,所述电极层1103剖面A的第二端位于所述空腔1102a内;压电层1105,位于所述中间层1102和所述电极层1103上;电极层1107,位于所述压电层1105上。由图11a可见,谐振区(未示出,即,所述电极层1103和所述电极层1107的重合区域)相对于所述空腔1102a悬空,与所述中间层1102没有重合部,从而所述谐振区(未示出)的垂直于所述上表面的垂直投影位于所述空腔1102a之内。
因此,本发明实施例可以提升所述谐振区(未示出)和非谐振区的声学阻抗的区别,从而提高谐振装置的Q值。此外,所述中间层1102的声学阻抗可较小,从而阻隔所述谐振区(未示出)与所述基底1101之间的漏波。此外,所述薄膜1104有助于防止所述基底1101表面形成自由电子层,以减少所述基底1101的损耗。
本实施例中,所述基底1101的材料包括但不限于以下至少之一:硅、碳化硅、 玻璃。
本实施例中,所述薄膜1104包括但不限于多晶薄膜。本实施例中,所述多晶薄膜的材料包括但不限于以下至少之一:多晶硅、多晶氮化硅、多晶碳化硅。
本实施例中,所述中间层1102的材料包括但不限于以下至少之一:聚合物、绝缘电介质。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。本实施例中,所述绝缘电介质包括但不限于以下至少之一:氮化铝、二氧化硅、氮化硅、氧化钛。
本实施例中,所述中间层1102的厚度包括但不限于:0.1微米至10微米。
本实施例中,所述压电层1105的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
本实施例中,所述压电层1105包括多个晶体,所述多个晶体包括第一晶体和第二晶体,其中,所述第一晶体和所述第二晶体是所述多个晶体中的任意两个晶体。所属技术领域的技术人员知晓晶体的晶向、晶面等可以基于坐标系表示。如图13所示,对于六方晶系的晶体,例如氮化铝晶体,采用ac立体坐标系(包括a轴及c轴)表示。如图14所示,对于(i)正交晶系(a≠b≠c)、(ii)四方晶系(a=b≠c)、(iii)立方晶系(a=b=c)等的晶体,采用xyz立体坐标系(包括x轴、y轴及z轴)表示。除上述两个实例,晶体还可以基于其他所属技术领域的技术人员知晓的坐标系表示,因此本发明不受上述两个实例的限制。
本实施例中,所述第一晶体可以基于第一立体坐标系表示,所述第二晶体可以基于第二立体坐标系表示,其中,所述第一立体坐标系至少包括沿第一方向的第一坐标轴及沿第三方向第三坐标轴,所述第二立体坐标系至少包括沿第二方向的第二坐标轴及沿第四方向的第四坐标轴,其中,所述第一坐标轴对应所述第一晶体的高,所述第二坐标轴对应所述第二晶体的高。
本实施例中,所述第一方向和所述第二方向相同或相反。需要说明的是,所述第一方向和所述第二方向相同指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括0度至5度;所述第一方向和所述第二方向相反指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为ac立体坐标系,其中,所述第一坐标轴为第一c轴,所述第三坐标轴为第一a轴;所述第二立体坐标系为ac立体坐标系,所述第二坐标轴为第二c轴,所述第四坐标轴为第二a轴,其中,所述第一c轴和所述 第二c轴的指向相同或相反。
在另一个实施例中,所述第一立体坐标系还包括沿第五方向的第五坐标轴,所述第二立体坐标系还包括沿第六方向的第六坐标轴。在另一个实施例中,所述第一方向和所述第二方向相同或相反,所述第三方向和所述第四方向相同或相反。需要说明的是,所述第三方向和所述第四方向相同指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括0度至5度;所述第三方向和所述第四方向相反指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为xyz立体坐标系,其中,所述第一坐标轴为第一z轴,所述第三坐标轴为第一y轴,所述第五坐标轴为第一x轴;所述第二立体坐标系为xyz立体坐标系,所述第二坐标轴为第二z轴,所述第四坐标轴为第二y轴,所述第六坐标轴为第二x轴。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相同。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反,所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反,所述第一y轴和所述第二y轴的指向相同。
本实施例中,所述压电层1105包括多个晶体,所述多个晶体的摇摆曲线半峰宽低于2.5度。需要说明的是,摇摆曲线(Rocking curve)描述某一特定晶面(衍射角确定的晶面)在样品中角发散大小,通过平面坐标系表示,其中,横坐标为该晶面与样品面的夹角,纵坐标则表示在某一夹角下,该晶面的衍射强度,摇摆曲线用于表示晶格质量,半峰宽角度越小说明晶格质量越好。此外,半峰宽(Full Width at Half Maximum,FWHM)指在函数的一个峰当中,前后两个函数值等于峰值一半的点之间的距离。
需要说明的是,在平面上形成所述压电层1105可以使所述压电层1105不包括明显转向的晶体,从而有助于提高谐振装置的机电耦合系数以及谐振装置的Q值。
本实施例中,所述电极层1103上与所述电极层1107重合的部分位于所述空腔1102a内;所述电极层1107上与所述电极层1103重合的部分位于所述空腔1102a上方。
本实施例中,所述电极层1103的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝;所述电极层1107的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝。
本实施例中,所述电极层1103包括正电极和负电极,所述电极层1107包括正 电极和负电极。
图11b是本发明实施例的一种体声波谐振装置1100的剖面B结构示意图。
如图11b所示,所述谐振装置1100包括:所述基底1101;所述薄膜1104,位于所述基底1101上;所述中间层1102,位于所述薄膜1104上,所述中间层1102的上表面侧包括所述空腔1102a;所述电极层1103,包括2个电极条1103b和2个电极条1103c,所述电极层1103剖面B位于所述空腔1102a内;所述压电层1105,位于所述中间层1102和所述电极层1103上;所述电极层1107,包括2个电极条1107b和2个电极条1107c,所述电极层1107位于所述压电层1105上。由图11b可见,谐振区(未示出,即,所述电极层1103和所述电极层1107的重合区域)相对于所述空腔1102a悬空,与所述中间层1102没有重合部,从而所述谐振区(未示出)的垂直于所述上表面的垂直投影位于所述空腔1102a之内。
因此,本发明实施例可以提升所述谐振区(未示出)和非谐振区的声学阻抗的区别,从而提高谐振装置的Q值。此外,所述中间层1102的声学阻抗可较小,从而阻隔所述谐振区(未示出)与所述基底1101之间的漏波。此外,所述薄膜1104有助于防止所述基底1101表面形成自由电子层,以减少所述基底1101的损耗。
本实施例中,所述2个电极条1103b包括负电极,所述2个电极条1103c包括正电极,所述2个电极条1107b包括负电极,所述2个电极条1107c包括正电极。在另一个实施例中,所述2个电极条1103b包括正电极,所述2个电极条1103c包括负电极,所述2个电极条1107b包括正电极,所述2个电极条1107c包括负电极。
本实施例中,所述电极条1103b以及所述电极条1103c之间的距离是一致的,所述电极条1107b以及所述电极条1107c之间的距离是一致的,包括第一距离。
本实施例中,所述电极条1103b、1103c、1107b、1107c的宽度是一致的,包括第一宽度。
本实施例中,所述电极条1103b、1103c、1107b、1107c的占空因数包括第一占空因数,对应所述第一距离和所述第一宽度,其取值范围包括但不限于0.1至1。
需要说明的是,形成所述电极层1103和1107时,可通过调整所述第一距离或所述第一宽度,以控制谐振装置的频率。
在另一些实施例中,所述电极层1103和1107各包括的电极条数可以为其他偶数,例如,2、6、8、10、12、14、16、18、20等。在另一些实施例中,所述电极层1103 和1107各包括的电极条数可以为奇数,例如,3、5、7、9、11、13、15、17、19等。
图12a是本发明实施例的一种体声波谐振装置1200的剖面A结构示意图。
如图12a所示,本发明实施例提供一种体声波谐振装置1200包括:基底1201;薄膜1204,位于所述基底1201上;中间层1202,位于所述薄膜1204上,所述中间层1202剖面A的上表面侧包括空腔1202a和空腔1202b,其中,所述空腔1202b位于所述空腔1202a的一侧并和所述空腔1202a相通,所述空腔1202b的深度小于所述空腔1202a的深度;电极层1203,所述电极层1203剖面A的第一端位于所述空腔1202b内,所述电极层1203剖面A的第二端位于所述空腔1202a内,其中,所述空腔1202b的深度等于所述电极层1203的厚度;压电层1205,位于所述中间层1202和所述电极层1203上;电极层1207,位于所述压电层1205上。由图12a可见,谐振区(未示出,即,所述电极层1203和所述电极层1207的重合区域)相对于所述空腔1202a悬空,与所述中间层1202没有重合部,从而所述谐振区(未示出)的垂直于所述上表面的垂直投影位于所述空腔1202a之内。。
因此,本发明实施例可以提升所述谐振区(未示出)和非谐振区的声学阻抗的区别,从而提高谐振装置的Q值。此外,所述中间层1202的声学阻抗可较小,从而可以阻隔所述谐振区(未示出)与所述基底1201之间的漏波。此外,所述薄膜1204有助于防止所述基底1201表面形成自由电子层,以减少所述基底1201的损耗。
本实施例中,所述基底1201的材料包括但不限于以下至少之一:硅、碳化硅、玻璃。
本实施例中,所述薄膜1204包括但不限于多晶薄膜。本实施例中,所述多晶薄膜的材料包括但不限于以下至少之一:多晶硅、多晶氮化硅、多晶碳化硅。
本实施例中,所述中间层1202的材料包括但不限于以下至少之一:聚合物、绝缘电介质。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。本实施例中,所述绝缘电介质包括但不限于以下至少之一:氮化铝、二氧化硅、氮化硅、氧化钛。
本实施例中,所述中间层1202的厚度包括但不限于:0.1微米至10微米。
本实施例中,所述压电层1205的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
本实施例中,所述压电层1205包括多个晶体,所述多个晶体包括第一晶体和第 二晶体,其中,所述第一晶体和所述第二晶体是所述多个晶体中的任意两个晶体。所属技术领域的技术人员知晓晶体的晶向、晶面等可以基于坐标系表示。如图13所示,对于六方晶系的晶体,例如氮化铝晶体,采用ac立体坐标系(包括a轴及c轴)表示。如图14所示,对于(i)正交晶系(a≠b≠c)、(ii)四方晶系(a=b≠c)、(iii)立方晶系(a=b=c)等的晶体,采用xyz立体坐标系(包括x轴、y轴及z轴)表示。除上述两个实例,晶体还可以基于其他所属技术领域的技术人员知晓的坐标系表示,因此本发明不受上述两个实例的限制。
本实施例中,所述第一晶体可以基于第一立体坐标系表示,所述第二晶体可以基于第二立体坐标系表示,其中,所述第一立体坐标系至少包括沿第一方向的第一坐标轴及沿第三方向第三坐标轴,所述第二立体坐标系至少包括沿第二方向的第二坐标轴及沿第四方向的第四坐标轴,其中,所述第一坐标轴对应所述第一晶体的高,所述第二坐标轴对应所述第二晶体的高。
本实施例中,所述第一方向和所述第二方向相同或相反。需要说明的是,所述第一方向和所述第二方向相同指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括0度至5度;所述第一方向和所述第二方向相反指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为ac立体坐标系,其中,所述第一坐标轴为第一c轴,所述第三坐标轴为第一a轴;所述第二立体坐标系为ac立体坐标系,所述第二坐标轴为第二c轴,所述第四坐标轴为第二a轴,其中,所述第一c轴和所述第二c轴的指向相同或相反。
在另一个实施例中,所述第一立体坐标系还包括沿第五方向的第五坐标轴,所述第二立体坐标系还包括沿第六方向的第六坐标轴。在另一个实施例中,所述第一方向和所述第二方向相同或相反,所述第三方向和所述第四方向相同或相反。需要说明的是,所述第三方向和所述第四方向相同指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括0度至5度;所述第三方向和所述第四方向相反指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为xyz立体坐标系,其中,所述第一坐标轴为第一z轴,所述第三坐标轴为第一y轴,所述第五坐标轴为第一x轴;所述第二立体坐标系为xyz立体坐标系,所述第二坐标轴为第二z轴,所述第四坐标轴为第二y轴,所述第六坐标轴为第二x轴。在另一个实施例中,所述第一z轴和所述第二z轴 的指向相同,所述第一y轴和所述第二y轴的指向相同。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反,所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反,所述第一y轴和所述第二y轴的指向相同。
本实施例中,所述压电层1205包括多个晶体,所述多个晶体的摇摆曲线半峰宽低于2.5度。需要说明的是,摇摆曲线(Rocking curve)描述某一特定晶面(衍射角确定的晶面)在样品中角发散大小,通过平面坐标系表示,其中,横坐标为该晶面与样品面的夹角,纵坐标则表示在某一夹角下,该晶面的衍射强度,摇摆曲线用于表示晶格质量,半峰宽角度越小说明晶格质量越好。此外,半峰宽(Full Width at Half Maximum,FWHM)指在函数的一个峰当中,前后两个函数值等于峰值一半的点之间的距离。
需要说明的是,在平面上形成所述压电层1205可以使所述压电层1205不包括明显转向的晶体,从而有助于提高谐振装置的机电耦合系数以及谐振装置的Q值。
本实施例中,所述电极层1203上与所述电极层1207重合的部分位于所述空腔1202a内;所述电极层1207上与所述电极层1203重合的部分位于所述空腔1202a上方。
本实施例中,所述电极层1203的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝;所述电极层1207的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝。
本实施例中,所述电极层1203包括正电极和负电极,所述电极层1207包括正电极和负电极。
图12b是本发明实施例的一种体声波谐振装置1200的剖面B结构示意图。
如图12b所示,所述谐振装置1200包括:所述基底1201;所述薄膜1204,位于所述基底1201上;所述中间层1202,位于所述薄膜1204上,所述中间层1202剖面B的上表面侧包括所述空腔1202a;所述电极层1203,包括2个电极条1203b和2个电极条1203c,所述电极层1203剖面B位于所述空腔1202a内;所述压电层1205,位于所述中间层1202和所述电极层1203上;所述电极层1207,包括2个电极条1207b和2个电极条1207c,所述电极层1207位于所述压电层1205上。由图12b可见,谐振区(未示出,即,所述电极层1203和所述电极层1207的重合区域)相对于所述空腔1202a悬空,与所述中间层1202没有重合部,从而所述谐振区(未示出)的垂直于所述上表面的垂直投影位于所述空腔1202a之内。。
因此,本发明实施例可以提升所述谐振区(未示出)和非谐振区的声学阻抗的区别,从而提高谐振装置的Q值。此外,所述中间层1202的声学阻抗可较小,从而可以阻隔所述谐振区(未示出)与所述基底1201之间的漏波。此外,所述薄膜1204有助于防止所述基底1201表面形成自由电子层,以减少所述基底1201的损耗。
本实施例中,所述2个电极条1203b包括负电极,所述2个电极条1203c包括正电极,所述2个电极条1207b包括负电极,所述2个电极条1207c包括正电极。在另一个实施例中,所述2个电极条1203b包括正电极,所述2个电极条1203c包括负电极,所述2个电极条1207b包括正电极,所述2个电极条1207c包括负电极。
本实施例中,所述电极条1203b以及所述电极条1203c之间的距离是变化的,所述电极条1207b以及所述电极条1207c之间的距离是变化的,包括第一距离和第二距离,其中,所述第一距离小于所述第二距离。
本实施例中,所述电极条1203b、1203c、1207b、1207c的宽度是变化的,包括第一宽度和第二宽度,其中,所述第一宽度大于第二宽度。
本实施例中,所述电极条1203b、1203c、1207b、1207c的占空因数包括:第一占空因数,对应所述第一距离和所述第一宽度、第二占空因数,对应所述第一距离和所述第二宽度、及第三占空因数,对应所述第二距离和所述第二宽度,其中,所述第一占空因数、所述第二占空因数、及所述第三占空因数的取值范围包括但不限于0.1至1。
需要说明的是,形成所述电极层1203和1207时,可通过调整所述第一距离或所述第二距离或所述第一宽度或所述第二宽度,以控制谐振装置的频率。
在另一些实施例中,所述电极层1203和1207各包括的电极条数可以为其他偶数,例如,2、6、8、10、12、14、16、18、20等。在另一些实施例中,所述电极层1203和1207各包括的电极条数可以为奇数,例如,3、5、7、9、11、13、15、17、19等。
本发明实施例还提供一种体声波滤波器,包括但不限于:至少一个上述实施例提供的体声波谐振装置。
综上所述,本发明通过调整两个电极层的位置,使谐振区与中间层或第一基底没有重合部,所述谐振区相对于所述中间层或所述第一基底的空腔悬空,可以提升谐振区和非谐振区的声学阻抗的区别,提高谐振装置的Q值。此外,在平面上形成压电层可以使所述压电层不包括明显转向的晶体,从而有助于提高谐振装置的机电耦合系数以及谐振装置的Q值。此外,在形成所述两个电极层时,可通过调整多个电极条的宽度或之间的距离,以控制谐振装置的频率。此外,采用声学阻抗较小的所述中间层,可以阻隔 所述谐振区与第二基底之间的漏波。此外,所述中间层与所述第二基底之间设置薄膜有助于防止所述第二基底表面形成自由电子层,从而减少所述第二基底的电学损耗。
应该理解,此处的例子和实施例仅是示例性的,本领域技术人员可以在不背离本申请和所附权利要求所限定的本发明的精神和范围的情况下,做出各种修改和更正。

Claims (43)

  1. 一种体声波谐振装置,其特征在于,包括:
    第一层,所述第一层包括位于第一侧的空腔;
    第一电极层,位于所述第一侧,位于所述空腔内;
    第二层,位于所述第一电极层上;以及
    第二电极层,位于所述第二层上,
    其中,所述第一电极层包括至少两个第一电极条或所述第二电极层包括至少两个第二电极条。
  2. 如权利要求1所述的体声波谐振装置,其特征在于,所述第一电极层包括第一极性,所述第二电极层包括第二极性。
  3. 如权利要求2所述的体声波谐振装置,其特征在于,所述至少两个第一电极条包括所述第一极性。
  4. 如权利要求2所述的体声波谐振装置,其特征在于,所述至少两个第二电极条包括所述第二极性。
  5. 如权利要求1所述的体声波谐振装置,其特征在于,所述第一电极层包括第一极性和第二极性,所述第二电极层包括所述第一极性和所述第二极性。
  6. 如权利要求5所述的体声波谐振装置,其特征在于,所述至少两个第一电极条包括所述第一极性和所述第二极性,所述至少两个第二电极条包括所述第一极性和所述第二极性,其中,所述第二层两侧相对应的第一电极条和第二电极条包括所述第一极性和所述第二极性。
  7. 如权利要求5所述的体声波谐振装置,其特征在于,所述第一极性和所述第二极***替排列。
  8. 如权利要求1所述的体声波谐振装置,其特征在于,所述至少两个第一电极条包括至少一个占空因数,所述至少一个占空因数的取值范围包括0.1至1。
  9. 如权利要求1所述的体声波谐振装置,其特征在于,所述至少两个第二电极条包括至少一个占空因数,所述至少一个占空因数的取值范围包括0.1至1。
  10. 如权利要求1所述的体声波谐振装置,其特征在于,所述至少两个第一电极条 之间的距离是一致的,包括第一距离。
  11. 如权利要求1所述的体声波谐振装置,其特征在于,所述至少两个第二电极条之间的距离是一致的,包括第一距离。
  12. 如权利要求1所述的体声波谐振装置,其特征在于,所述至少两个第一电极条之间的距离是变化的,至少包括第一距离和第二距离。
  13. 如权利要求1所述的体声波谐振装置,其特征在于,所述至少两个第二电极条之间的距离是变化的,至少包括第一距离和第二距离。
  14. 如权利要求1所述的体声波谐振装置,其特征在于,所述至少两个第一电极条的宽度是一致的,包括第一宽度。
  15. 如权利要求1所述的体声波谐振装置,其特征在于,所述至少两个第二电极条的宽度是一致的,包括第一宽度。
  16. 如权利要求1所述的体声波谐振装置,其特征在于,所述至少两个第一电极条的宽度是变化的,至少包括第一宽度和第二宽度。
  17. 如权利要求1所述的体声波谐振装置,其特征在于,所述至少两个第二电极条的宽度是变化的,至少包括第一宽度和第二宽度。
  18. 如权利要求1所述的体声波谐振装置,其特征在于,所述第二电极层上与所述第一电极层重合的重合部分位于所述空腔上方,所述重合部分垂直于所述第一层的投影位于所述空腔内。
  19. 如权利要求1所述的体声波谐振装置,其特征在于,所述第一电极层的材料包括以下至少之一:钼、钌、钨、铂、铱、铝;所述第二电极层的材料包括以下至少之一:钼、钌、钨、铂、铱、铝。
  20. 如权利要求1所述的体声波谐振装置,其特征在于,所述第一层还包括:中间层,所述中间层包括所述空腔。
  21. 如权利要求20所述的体声波谐振装置,其特征在于,所述中间层的材料包括以下至少之一:聚合物、绝缘电介质。
  22. 如权利要求21所述的体声波谐振装置,其特征在于,所述聚合物包括以下至少之一:苯并环丁烯、光感环氧树脂光刻胶、聚酰亚胺。
  23. 如权利要求21所述的体声波谐振装置,其特征在于,所述绝缘电介质包括以下 至少之一:氮化铝、二氧化硅、氮化硅、氧化钛。
  24. 如权利要求20所述的体声波谐振装置,其特征在于,所述中间层的厚度包括:0.1微米至10微米。
  25. 如权利要求20所述的体声波谐振装置,其特征在于,所述中间层的厚度包括:20微米至100微米。
  26. 如权利要求1所述的体声波谐振装置,其特征在于,所述第一层还包括:第一基底,所述第一基底包括所述空腔。
  27. 如权利要求26所述的体声波谐振装置,其特征在于,所述第一基底的材料包括以下至少之一:硅、碳化硅、玻璃。
  28. 如权利要求1所述的体声波谐振装置,其特征在于,所述第一层还包括:刻蚀屏蔽层,至少覆盖所述空腔的底部或侧壁。
  29. 如权利要求28所述的体声波谐振装置,其特征在于,所述刻蚀屏蔽层的材料包括以下至少之一:氮化铝、碳化硅、钻石、氮化硅、二氧化硅、氧化铝、二氧化钛。
  30. 如权利要求28所述的体声波谐振装置,其特征在于,所述刻蚀屏蔽层的厚度包括:0.1微米至3微米。
  31. 如权利要求28所述的体声波谐振装置,其特征在于,所述刻蚀屏蔽层的厚度包括:2微米至6微米。
  32. 如权利要求1所述的体声波谐振装置,其特征在于,所述第二层包括:压电层,所述压电层包括多个晶体,所述多个晶体包括第一晶体和第二晶体,其中,所述第一晶体和所述第二晶体是所述多个晶体中的任意两个晶体;沿第一方向的第一坐标轴对应所述第一晶体的高,沿第二方向的第二坐标轴对应所述第二晶体的高,其中,所述第一方向和所述第二方向相同或相反。
  33. 如权利要求32所述的体声波谐振装置,其特征在于,所述第一晶体对应第一坐标系,所述第一坐标系包括所述第一坐标轴和沿第三方向的第三坐标轴;所述第二晶体对应第二坐标系,所述第二坐标系包括所述第二坐标轴和沿第四方向的第四坐标轴。
  34. 如权利要求33所述的体声波谐振装置,其特征在于,所述第一坐标系还包括沿第五方向的第五坐标轴,所述第二坐标系还包括沿第六方向的第六坐标轴。
  35. 如权利要求34所述的体声波谐振装置,其特征在于,所述第三方向和所述第四 方向相同或相反。
  36. 如权利要求32所述的体声波谐振装置,其特征在于,所述压电层的材料包括以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
  37. 如权利要求1所述的体声波谐振装置,其特征在于,所述第二层包括:压电层,所述压电层包括多个晶体,所述多个晶体的摇摆曲线半峰宽低于2.5度。
  38. 如权利要求1所述的体声波谐振装置,其特征在于,还包括:第二基底,位于所述第一层的第二侧,所述第二侧与所述第一侧相对。
  39. 如权利要求38所述的体声波谐振装置,其特征在于,所述第二基底的材料包括以下至少之一:硅、碳化硅、玻璃。
  40. 如权利要求38所述的体声波谐振装置,其特征在于,还包括:薄膜,所述薄膜位于所述第一层和所述第二基底之间。
  41. 如权利要求40所述的体声波谐振装置,其特征在于,所述薄膜包括:多晶薄膜。
  42. 如权利要求41所述的体声波谐振装置,其特征在于,所述多晶薄膜的材料包括以下至少之一:多晶硅、多晶氮化硅、多晶碳化硅。
  43. 一种体声波滤波器,包括:至少一个如权利要求1至42其中之一所述的体声波谐振装置。
PCT/CN2019/104601 2019-09-05 2019-09-05 一种体声波谐振装置及一种体声波滤波器 WO2021042344A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980098511.2A CN114128139A (zh) 2019-09-05 2019-09-05 一种体声波谐振装置及一种体声波滤波器
PCT/CN2019/104601 WO2021042344A1 (zh) 2019-09-05 2019-09-05 一种体声波谐振装置及一种体声波滤波器
US17/640,352 US20220416765A1 (en) 2019-09-05 2019-09-05 Bulk acoustic wave resonance device and bulk acoustic wave filter
EP19944526.3A EP4027514A4 (en) 2019-09-05 2019-09-05 DEVICE FOR ACOUSTIC VOLUME WAVE RESONANCE AND ACOUSTIC VOLUME WAVE FILTER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/104601 WO2021042344A1 (zh) 2019-09-05 2019-09-05 一种体声波谐振装置及一种体声波滤波器

Publications (1)

Publication Number Publication Date
WO2021042344A1 true WO2021042344A1 (zh) 2021-03-11

Family

ID=74852917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104601 WO2021042344A1 (zh) 2019-09-05 2019-09-05 一种体声波谐振装置及一种体声波滤波器

Country Status (4)

Country Link
US (1) US20220416765A1 (zh)
EP (1) EP4027514A4 (zh)
CN (1) CN114128139A (zh)
WO (1) WO2021042344A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114894229B (zh) * 2022-04-26 2024-05-03 武汉敏声新技术有限公司 一种薄膜体声波传感器及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1170990A (zh) * 1996-05-27 1998-01-21 日本碍子株式会社 压电薄膜元件
US20160204760A1 (en) * 2013-06-28 2016-07-14 River Eletec Corporation Elastic wave device
CN107528561A (zh) * 2017-09-12 2017-12-29 电子科技大学 一种空腔型薄膜体声波谐振器及其制备方法
CN207339805U (zh) * 2017-09-27 2018-05-08 佛山市艾佛光通科技有限公司 一种空腔型薄膜体声波谐振器
CN109309483A (zh) * 2018-10-10 2019-02-05 华南理工大学 一种支撑型薄膜体声波谐振器的制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101185241B (zh) * 2005-05-27 2010-10-06 Nxp股份有限公司 体声波共振器器件、包含该器件的滤波器以及电子设备
JP4428354B2 (ja) * 2006-03-29 2010-03-10 セイコーエプソン株式会社 圧電薄膜共振子
US8925163B2 (en) * 2006-09-18 2015-01-06 Teknologian Tutkimuskeskus Vtt Method of manufacturing laterally coupled BAW thin films
US7728485B2 (en) * 2008-05-30 2010-06-01 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Bulk acoustic wave device and a method of its manufacturing
JP5433367B2 (ja) * 2008-11-19 2014-03-05 日本碍子株式会社 ラム波装置
FR2953647B1 (fr) * 2009-12-04 2011-11-25 Commissariat Energie Atomique Procede de realisation d'un resonateur acoustique a ondes de volumes de type fbar
JP6460111B2 (ja) * 2014-08-05 2019-01-30 株式会社村田製作所 圧電共振器の製造方法および圧電共振器
CN105897211B (zh) * 2016-05-18 2020-01-14 华南理工大学 多谐振模式的薄膜体声波谐振器及其制备方法和滤波器
US20180183405A1 (en) * 2016-12-23 2018-06-28 Avago Technologies General Ip (Singapore) Pte. Ltd Bulk baw resonator having electrically insulating substrate
KR102369434B1 (ko) * 2017-04-19 2022-03-03 삼성전기주식회사 체적 음향 공진기 및 이의 제조방법
US10615772B2 (en) * 2017-06-30 2020-04-07 Texas Instruments Incorporated Acoustic wave resonators having Fresnel surfaces
CN107733395A (zh) * 2017-11-14 2018-02-23 安徽云塔电子科技有限公司 一种压电谐振器和压电谐振器的制备方法
JP2021503229A (ja) * 2017-11-14 2021-02-04 安徽▲雲▼塔▲電▼子科技有限公司 圧電共振器および圧電共振器の製造方法
CN108092639B (zh) * 2017-12-21 2020-12-22 华南理工大学 一种微纳米柱柔性阵列薄膜体声波谐振子滤波器及其制备
CN110166012A (zh) * 2019-05-15 2019-08-23 上海科技大学 二维耦合的射频压电谐振器及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1170990A (zh) * 1996-05-27 1998-01-21 日本碍子株式会社 压电薄膜元件
US20160204760A1 (en) * 2013-06-28 2016-07-14 River Eletec Corporation Elastic wave device
CN107528561A (zh) * 2017-09-12 2017-12-29 电子科技大学 一种空腔型薄膜体声波谐振器及其制备方法
CN207339805U (zh) * 2017-09-27 2018-05-08 佛山市艾佛光通科技有限公司 一种空腔型薄膜体声波谐振器
CN109309483A (zh) * 2018-10-10 2019-02-05 华南理工大学 一种支撑型薄膜体声波谐振器的制备方法

Also Published As

Publication number Publication date
EP4027514A1 (en) 2022-07-13
US20220416765A1 (en) 2022-12-29
CN114128139A (zh) 2022-03-01
EP4027514A4 (en) 2023-10-25

Similar Documents

Publication Publication Date Title
US20230223913A1 (en) Baw resonance device, filter device and rf front-end device
WO2021258442A1 (zh) 一种体声波谐振装置、一种滤波装置及一种射频前端装置
JPWO2004001964A1 (ja) 薄膜圧電共振器、薄膜圧電デバイスおよびその製造方法
CN113992180B (zh) 体声波谐振装置及其形成方法、滤波装置及射频前端装置
JPWO2007119643A1 (ja) 圧電薄膜共振子、圧電薄膜デバイスおよびその製造方法
WO2023036027A1 (zh) 体声波谐振装置、滤波装置及射频前端装置
EP4372987A1 (en) Bulk acoustic wave resonator device and method for forming same, filtering device, and radio frequency front end device
CN114499451B (zh) 体声波谐振装置及其形成方法、滤波装置及射频前端装置
WO2023036028A1 (zh) 体声波谐振装置、滤波装置及射频前端装置
CN114337581A (zh) 体声波谐振装置的形成方法
US11528006B2 (en) BAW resonance device, filter device and RF front-end device
WO2021217749A1 (zh) 一种滤波装置、一种射频前端装置及一种无线通信装置
CN214045584U (zh) 一种体声波谐振装置、一种滤波装置及一种射频前端装置
WO2021042344A1 (zh) 一种体声波谐振装置及一种体声波滤波器
WO2024061071A1 (zh) 体声波谐振装置及其形成方法
US20220321079A1 (en) Method for forming bulk acoustic wave resonance device
WO2021042342A1 (zh) 一种体声波谐振装置及一种体声波滤波器
EP4401309A1 (en) Bulk acoustic wave resonance device, filter device, and radio frequency front-end device
CN112953447B (zh) 谐振器及电子设备
EP4027515A1 (en) Method for forming bulk acoustic wave resonance device
US20230091905A1 (en) Acoustic device and method for manufacturing the same
CN114598286A (zh) 体声波谐振装置的形成方法
JP2019201305A (ja) 音響共振器
CN115580255A (zh) 体声波谐振装置及其形成方法、滤波装置及射频前端装置
CN115189670A (zh) 体声波谐振装置及其形成方法、滤波装置及射频前端装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019944526

Country of ref document: EP

Effective date: 20220405