WO2021039817A1 - カルボン酸フルオリドの製造方法 - Google Patents

カルボン酸フルオリドの製造方法 Download PDF

Info

Publication number
WO2021039817A1
WO2021039817A1 PCT/JP2020/032110 JP2020032110W WO2021039817A1 WO 2021039817 A1 WO2021039817 A1 WO 2021039817A1 JP 2020032110 W JP2020032110 W JP 2020032110W WO 2021039817 A1 WO2021039817 A1 WO 2021039817A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluoride
carboxylic acid
metal
metal fluoride
acid
Prior art date
Application number
PCT/JP2020/032110
Other languages
English (en)
French (fr)
Inventor
木村 涼
渉平 前原
中西 晶子
Original Assignee
関東電化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 関東電化工業株式会社 filed Critical 関東電化工業株式会社
Priority to CN202080055714.6A priority Critical patent/CN114206822B/zh
Priority to US17/637,618 priority patent/US20220274908A1/en
Priority to JP2021542950A priority patent/JPWO2021039817A1/ja
Priority to KR1020227008287A priority patent/KR20220050916A/ko
Publication of WO2021039817A1 publication Critical patent/WO2021039817A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/48Separation; Purification; Stabilisation; Use of additives by liquid-liquid treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/363Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by introduction of halogen; by substitution of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/58Preparation of carboxylic acid halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/38Acyl halides
    • C07C53/46Acyl halides containing halogen outside the carbonyl halide group

Definitions

  • the present invention relates to a method for producing a carboxylic acid fluoride, more specifically a method for producing a carboxylic acid fluoride using a metal fluoride, particularly a method for producing trifluoroacetic acid fluoride.
  • Patent Document 1 a method of reacting a acid compound with a hydrogen fluoride adduct of ammonium hydrofluorate or an organic nitrogen base hydrofluorate (Patent Document 2) are known.
  • Patent Documents 1 and 2 of the method in the reaction system without HCl by-because HCl to form CF 3 C (O) F and complex as the product of free state CF 3 C (O ) There is a problem that the yield of F decreases. Further, the method of Patent Document 1 also has an equipment problem that a photoreactor is required. Further, the method of Patent Document 2 has a problem of complicating the work process that it is necessary to prepare a specific hydrogen fluoride adduct.
  • an object of the present invention is to solve the above-mentioned problems in the conventional method for producing a carboxylic acid fluoride.
  • a method for producing a carboxylic acid fluoride which comprises a step of reacting a carboxylic acid chloride with a metal fluoride.
  • the carboxylic acid is a fluorine-substituted carboxylic acid.
  • the method according to [3], wherein the carboxylic acid is a perfluorocarboxylic acid.
  • the method according to [4], wherein the carboxylic acid is trifluoroacetic acid.
  • [6] The method according to any one of [1] to [5], wherein the metal fluoride is supported on at least one carrier selected from the group consisting of activated carbon, alumina, zeolite, and foamed metal.
  • the metal fluoride is at least one selected from the group consisting of alkali metal fluoride, alkaline earth metal fluoride and transition metal fluoride.
  • the alkali metal fluoride is at least one selected from the group consisting of lithium fluoride, sodium fluoride, cesium fluoride and potassium fluoride.
  • the alkaline earth metal fluoride is at least one selected from the group consisting of magnesium fluoride, calcium fluoride and barium fluoride.
  • the transition metal fluoride is at least one selected from the group consisting of chromium fluoride, molybdenum hexafluoride, manganese fluoride, iron fluoride, cobalt fluoride, copper fluoride, nickel fluoride, zinc fluoride, and silver fluoride.
  • the by-product is metal chloride, and HCl does not by-produce in the reaction system. Therefore, HCl does not form a complex with the product, carboxylic acid fluoride, and the yield of the product is improved.
  • a carboxylic acid fluoride comprising a step of reacting a carboxylic acid chloride with a metal fluoride (MF n ) (where M is a metal atom and n represents a valence of M).
  • M is a monovalent alkali metal
  • metal chloride (MCl) is by-produced, but HCl is not by-produced, as shown by the following reaction formula. This eliminates the problem of the product forming a complex with HCl.
  • M has an n-valent valence
  • the metal fluoride is represented by MF n
  • the metal chloride is represented by MCl n.
  • Examples of the acid chloride as the raw material of the present invention include an acid chloride of a carboxylic acid having 1 to 7 carbon atoms, and preferably an acid chloride of a carboxylic acid having 2 to 7 carbon atoms.
  • Examples of the carboxylic acid having 1 to 7 carbon atoms include formic acid, acetic acid, propanoic acid, n-butanoic acid, isobutanoic acid, n-pentanoic acid, isopentanoic acid, neopentanoic acid, n-hexane acid, isohexanoic acid and neohexanoic acid.
  • the hydrogen atom on this carboxylic acid may be fluorine-substituted, preferably a perfluorocarboxylic acid chloride in which all hydrogen atoms are substituted with fluorine atoms.
  • Specific examples of the carboxylic acid chloride include trifluoroacetic acid chloride (TFAC), perfluoron-butanoic acid chloride, perfluoron-heptane chloride and the like.
  • Metal fluoride The metal fluoride as a fluorination reactant is represented by the formula: MF n (in the formula, M is a metal atom and n is the valence of the metal).
  • the metal fluoride include alkali metal fluoride, alkaline earth metal fluoride, transition metal fluoride, and the like, and these may be a combination of two or more kinds.
  • the alkali metal fluoride include lithium fluoride, sodium fluoride, potassium fluoride and the like.
  • alkaline earth metal fluoride include magnesium fluoride, calcium fluoride, barium fluoride and the like.
  • transition metal fluoride examples include chromium fluoride, molybdenum fluoride, manganese fluoride, iron fluoride, cobalt fluoride, copper fluoride, nickel fluoride, zinc fluoride, silver fluoride and the like.
  • chromium fluoride any of chromium fluoride (III), chromium fluoride (VI) and a mixture thereof can be used.
  • molybdenum fluoride any of molybdenum fluoride (IV), molybdenum fluoride (V), molybdenum fluoride (VI) and a mixture thereof can be used.
  • manganese fluoride any of manganese fluoride (II), manganese fluoride (III), manganese fluoride (IV) and a mixture thereof can be used.
  • iron fluoride iron (II) fluoride, iron (III) fluoride, or a mixture thereof can be used.
  • cobalt fluoride cobalt (II) fluoride, cobalt (III) fluoride, or a mixture thereof can be used.
  • copper fluoride any of copper (I) fluoride, copper (II) fluoride and a mixture thereof can be used.
  • nickel fluoride and zinc fluoride divalent metal fluoride is stably present.
  • silver fluoride any of silver (I) fluoride, silver (II) fluoride, silver (III) fluoride and a mixture thereof can be used.
  • the metal fluoride can be supported on a carrier for use.
  • the carrier include porous substances such as activated carbon, alumina, zeolite, and foamed metal, and these may be a combination of two or more.
  • CrF 3 / C can be prepared by filling the reactor with CrCl 3 / C, flowing HF through the reactor, and performing halogen exchange with HF.
  • the moldability of the metal fluoride carrier is improved, and in addition to being used as a powder, it is pellet-shaped (cylindrical) (for example, particle size 0.5 to 30 mm) or honeycomb-shaped.
  • the carrier can be formed into a granular shape (spindle shape) (for example, a particle size of 0.5 to 30 mm), a spherical shape (for example, a particle size of 0.5 to 30 mm), or a lump shape excluding powder.
  • spindle shape for example, a particle size of 0.5 to 30 mm
  • spherical shape for example, a particle size of 0.5 to 30 mm
  • lump shape excluding powder a lump shape excluding powder.
  • reaction conditions The conditions for the fluorination reaction include, for example, the following.
  • Reaction temperature preferably 100 to 500 ° C, more preferably 200 to 500 ° C, more preferably 200 to 350 ° C, more preferably 200 to 320 ° C.
  • Use time of metal fluoride preferably 1 to 10 hours, more preferably 2 to 4 hours (the contact time between acid chloride and metal fluoride is short, but the time to replace the metal fluoride is a guide).
  • a cylindrical tube provided with a heater for adjusting the reaction temperature is filled with metal fluorides of various shapes so that the raw material gas can flow from one end to the other end of the tube.
  • the reaction device for example, a cylindrical tube provided with a heater for adjusting the reaction temperature is filled with metal fluorides of various shapes so that the raw material gas can flow from one end to the other end of the tube.
  • the direction of flow of the raw material gas when a cylindrical tube loaded with metal fluoride is extended in the vertical direction, the raw material gas can be flowed little by little from the top to the bottom by using gravity. It is preferable because it can flow.
  • a pellet-shaped metal fluoride with a large particle size is placed at the bottom of the cylindrical tube, and a powder with a small particle size is placed at the top of the cylindrical tube.
  • the metal fluoride of the above is desirable to arrange the metal fluoride of the above in terms of reaction efficiency.
  • the material of the reactor include corrosion-resistant metals such as stainless steel, Inconel, Monel, Hastelloy, and nickel. Among these, nickel is preferable from the viewpoint of corrosion resistance.
  • an inert gas is used for diluting the raw material gas, drying the reactor, and the like.
  • the inert gas include nitrogen (N 2 ), a rare gas (helium, argon, xenon, etc.) and the like.
  • Example 1 Manufacturing method using NaF
  • the reactor was extended vertically, NaF pellets were placed at the bottom, and NaF was placed on the NaF pellets in order to prevent NaF powder from falling and clogging due to accompanying. Filled with powder.
  • NaF pellets were further placed on the NaF powder.
  • the size of the NaF pellet was 1 mm in diameter and 3 mm in height, and the particle size of the NaF powder was determined by Experiment No.
  • the size of 1-1 to 1-4 is 5 to 15 ⁇ m, and the experimental No.
  • the size of 1-5 to 1-7 is 200 to 500 ⁇ m, and the experimental No. For 1-8, it was 60 ⁇ m.
  • the reactor was heated to> 250 ° C., N 2 was circulated from under the reactor, and drying was carried out. After drying, the reactor is heated to 300 ° C., the raw material gas (CF 3 C (O) Cl) (TFAC) is introduced from under the reactor, and CF 3 C (O) F (TFAF) by gas chromatography (GC) is introduced. Confirmation of generation and collection were carried out.
  • the flow velocity of the raw material gas was controlled by a mass flow controller (MFC). Table 1 shows the experimental conditions, and Table 2 shows the experimental results.
  • the effective reaction rate of NaF pellets is calculated as 20% from the actual results.
  • carboxylic acid chloride can be efficiently converted to carboxylic acid fluoride in a high yield of 80% or more simply by passing through a metal fluoride.
  • Example 2 Manufacturing method using CrF 3 / C
  • a SUS scrubbing brush was placed under the 2B vertical SUS reactor, and CrF 3 / C carrying 17 to 33% by mass was filled on the SUS scrubbing brush.
  • the reactor was heated to 200-350 ° C.
  • CF 3 C (O) Cl (TFAC) was circulated, and the formation of CF 3 C (O) F (TFAF) was confirmed by GC analysis of the outlet gas.
  • the 500 mL cylinder was cooled with liquid nitrogen, and the produced CF 3 C (O) F (TFAF) was collected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

反応系中にHClが副生しない反応系、即ち、HClが生成物であるカルボン酸フルオリドと錯体を形成することはなく、生成物の収率が向上したカルボン酸フルオリドの製造方法を提供すること。光反応装置や特定のフッ化水素付加体を使用する必要がなく、作業工程の複雑化の問題がないカルボン酸フルオリドの製造方法を提供すること。 カルボン酸クロリドと金属フッ化物とを反応させる工程を含むカルボン酸フルオリドの製造方法を提供する。この製造方法において、カルボン酸が炭素数1~7のカルボン酸であることが好ましく、カルボン酸がフッ素置換されたカルボン酸であることが好ましく、カルボン酸がトリフルオロ酢酸であることが好ましい。

Description

カルボン酸フルオリドの製造方法
 本発明はカルボン酸フルオリドの製造方法、より詳細には金属フッ化物を使用するカルボン酸フルオリドの製造方法、特にトリフルオロ酢酸フルオリドの製造方法に関する。
 カルボン酸フルオリドの製造方法として、従来、CFCHClFなどのハロゲン化エタンを光化学的に酸化することによりカルボン酸クロリドへと誘導し、トリフルオロ酢酸フルオリド(CFC(O)F)を製造する方法(特許文献1)、酸塩化物とアンモニウムフッ化水素酸塩又は有機窒素塩基のフッ化水素酸塩のフッ化水素付加体とを反応させる方法(特許文献2)などが知られている。
 しかし、特許文献1及び2の方法では、反応系中にHClが副生し、HClが生成物であるCFC(O)Fと錯体を形成するので、遊離した状態のCFC(O)Fの収率が低下するという問題がある。また特許文献1の方法では、光反応装置が必要であるという設備上の問題もある。また特許文献2の方法では、特定のフッ化水素付加体を調整する必要があるという作業工程の複雑化の問題もある。
特表2001-504845号公報 特表2002-531426号公報
 そこで、本発明の課題は、従来のカルボン酸フルオリドの製造方法における上記の問題を解決することにある。
 本発明は以下のものを提供する。
 [1]
 カルボン酸クロリドと金属フッ化物とを反応させる工程を含むカルボン酸フルオリドの製造方法。
 [2]
 カルボン酸が炭素数1~7のカルボン酸である、[1]に記載の方法。
 [3]
 カルボン酸がフッ素置換されたカルボン酸である、[1]又は[2]に記載の方法。
 [4]
 カルボン酸がパーフルオロカルボン酸である、[3]に記載の方法。
 [5]
 カルボン酸がトリフルオロ酢酸である、[4]に記載の方法。
 [6]
 金属フッ化物が活性炭、アルミナ、ゼオライト、及び発泡金属からなる群から選ばれる少なくとも1種の担体に担持されている、[1]~[5]のいずれかに記載の方法。
 [7]
 金属フッ化物が、アルカリ金属フッ化物、アルカリ土類金属フッ化物及び遷移金属フッ化物からなる群から選ばれる少なくとも1種である、[1]~[6]のいずれかに記載の方法。
 [8]
 アルカリ金属フッ化物が、フッ化リチウム、フッ化ナトリウム、フッ化セシウム及びフッ化カリウムからなる群から選ばれる少なくとも1種である、[7]に記載の方法。
 [9]
 アルカリ土類金属フッ化物が、フッ化マグネシウム、フッ化カルシウム及びフッ化バリウムからなる群から選ばれる少なくとも1種である、[7]に記載の方法。
 [10]
 遷移金属フッ化物が、フッ化クロム、フッ化モリブデン、フッ化マンガン、フッ化鉄、フッ化コバルト、フッ化銅、フッ化ニッケル、フッ化亜鉛、及びフッ化銀からなる群から選ばれる少なくとも1種である、[7]に記載の方法。
 [11]
 反応温度が100~500℃である、[1]~[10]のいずれかに記載の方法。
 本発明によれば、反応剤に金属フッ化物を用いるので、副生物は金属塩化物であり、反応系中にHClが副生しない。このため、HClが生成物であるカルボン酸フルオリドと錯体を形成することはなく、生成物の収率が向上する。本発明の方法では、光反応装置や特定のフッ化水素付加体を使用する必要がなく、作業工程の複雑化の問題もない。
[作用]
 本発明では、カルボン酸クロリドと金属フッ化物(MF)(ここで、Mは金属原子であり、nはMの原子価を表する。)とを、反応させる工程を含むカルボン酸フルオリドの製造方法が提供される。この反応は、Mが1価のアルカリ金属である場合、以下の反応式で示されるように、金属塩化物(MCl)を副生するが、HClを副生しない。このため、生成物とHClが錯体を形成する問題が解消される。Mがn価の原子価を有する場合、金属フッ化物はMFで表され、金属塩化物はMClで表される。
Figure JPOXMLDOC01-appb-C000001
[酸クロリド]
 本発明の原料である酸クロリドとしては、例えば、炭素数1~7のカルボン酸の酸クロリド、好ましくは炭素数2~7のカルボン酸の酸クロリドが挙げられる。炭素数1~7のカルボン酸としては、例えば、ギ酸、酢酸、プロパン酸、n-ブタン酸、イソブタン酸、n-ペンタン酸、イソペンタン酸、ネオペンタン酸、n-ヘキサン酸、イソヘキサン酸、ネオヘキサン酸、n-ヘプタン酸、イソヘプタン酸、ネオヘプタン酸、これらカルボン酸の組み合わせ、などが挙げられる。このカルボン酸上の水素原子はフッ素置換されていてもよく、好ましくは水素原子がすべてフッ素原子に置換されたパーフルオロカルボン酸クロリドである。カルボン酸クロリドの具体例としては、トリフルオロ酢酸クロリド(TFAC)、ペルフルオロn-ブタン酸クロリド、パーフルオロn-ヘプタン酸クロリドなどが挙げられる。
[金属フッ化物]
 フッ素化反応剤としての金属フッ化物は、式:MF(式中、Mは金属原子であり、nは金属の原子価である。)で表される。金属フッ化物としては、例えば、アルカリ金属フッ化物、アルカリ土類金属フッ化物、遷移金属フッ化物、などが挙げられ、これらは2種以上の組み合わせでもよい。アルカリ金属フッ化物としては、例えば、フッ化リチウム、フッ化ナトリウム、フッ化カリウムなどが挙げられる。アルカリ土類金属フッ化物としては、例えば、フッ化マグネシウム、フッ化カルシウム、フッ化バリウムなどが挙げられる。遷移金属フッ化物としては、例えば、フッ化クロム、フッ化モリブデン、フッ化マンガン、フッ化鉄、フッ化コバルト、フッ化銅、フッ化ニッケル、フッ化亜鉛、フッ化銀などが挙げられる。フッ化クロムとしては、フッ化クロム(III)、フッ化クロム(VI)及びこれらの混合物のいずれも使用できる。フッ化モリブデンとしては、フッ化モリブデン(IV)、フッ化モリブデン(V)、フッ化モリブデン(VI)及びこれらの混合物のいずれも使用できる。フッ化マンガンとしては、フッ化マンガン(II)、フッ化マンガン(III)、フッ化マンガン(IV)及びこれらの混合物のいずれも使用できる。フッ化鉄としては、フッ化鉄(II)、フッ化鉄(III)及びこれらの混合物のいずれも使用できる。フッ化コバルトとしては、フッ化コバルト(II)、フッ化コバルト(III)及びこれらの混合物のいずれも使用できる。フッ化銅としては、フッ化銅(I)、フッ化銅(II)及びこれらの混合物のいずれも使用できる。フッ化ニッケル及びフッ化亜鉛については、2価の金属フッ化物が安定に存在する。フッ化銀としては、フッ化銀(I)、フッ化銀(II)、フッ化銀(III)及びこれらの混合物のいずれも使用できる。
 本発明では、金属フッ化物は担体に担持させて使用することができる。担体としては、例えば、活性炭、アルミナ、ゼオライト、発泡金属などの多孔質の物質などが挙げられ、これらは2種以上の組み合わせであってもよい。例えば、CrF/Cは、反応器にCrCl/Cを充填し、反応器にHFを流し、HFによりハロゲン交換を行い、調製することができる。金属フッ化物を担体に担持させることにより、金属フッ化物担持体の成形性が向上し、粉末として使用する他に、ペレット状(円柱状)(例えば、粒径0.5~30mm)、ハニカム状、粒状(紡錘状)(例えば、粒径0.5~30mm)、球状(例えば、粒径0.5~30mm)、その他粉体を除く塊状などに当該担持体を成形することができる。金属フッ化物を担体に担持させることにより、金属フッ化物を粉末で使用するよりも取り扱い性が向上する。例えば、金属フッ化物同士の固化により原料ガスの流路が形成されてしまい反応効率が低下するという問題が起こりにくい、未反応の金属フッ化物と反応後副生する金属塩化物との焼結が起こりづらい、などの利点が得られる。
[反応条件]
 フッ素化反応のための条件としては、例えば、以下のものが挙げられる。
反応温度:好ましくは100~500℃、より好ましくは200~500℃、より好ましくは200~350℃、より好ましくは200~320℃
金属フッ化物の使用時間:好ましくは1~10時間、より好ましくは2~4時間(酸クロリドと金属フッ化物との接触時間は短いが、金属フッ化物の交換までの時間の目安)
[反応装置]
 反応装置としては、例えば、反応温度を調節するためのヒータを備えた円筒管に種々の形状の金属フッ化物を充填し、管の一端から他端へ向けて原料ガスを流せるように構成したものが挙げられる。原料ガスを流す方向は、金属フッ化物を装填した円筒管を垂直方向に延在させた場合、上から下に向けて少しずつ均一に流すようにすることが重力を利用して少しずつ原料ガスを流せるので、好ましい。円筒管を垂直方向に延在させ、原料ガスを下から上に流す場合、円筒管の下部に粒径の大きなペレット状の金属フッ化物を配置し、円筒管の上部に粒径の小さな粉末状の金属フッ化物を配置することが、反応効率の点で望ましい。反応装置の材質としては、例えば、ステンレス、インコネル、モネル、ハステロイ、ニッケルなどの耐腐食性金属などが挙げられる。これらの中でも、ニッケルが耐腐食性の観点から好ましい。
[不活性ガス]
 本発明を実施するにあたり、原料ガスの希釈、反応器の乾燥、などに不活性ガスが利用される。不活性ガスとしては、例えば、窒素(N)、希ガス(ヘリウム、アルゴン、キセノンなど)、などが挙げられる。
 本発明を以下の例により具体的に説明するが、本発明は以下の例に限定されるものではない。
[実施例1](NaFを使用した製造法)
 実験No.1-1~1-8の全てについて反応器にはNaF粉末落下防止および帯同による閉塞防止のため、反応器を垂直方向に延在させ、下部にNaFペレットを配置し、NaFペレットの上にNaF粉末を充填した。実験No.1-1~1-4についてはNaF粉末の上に更にNaFペレットを配置した。NaFペレットのサイズは直径1mm、高さ3mmであり、NaF粉末の粒径は、実験No.1-1~1-4については5~15μmであり、実験No.1-5~1-7については200~500μmであり、実験No.1-8については60μmであった。NaF充填後、反応器を>250℃に加熱し、反応器下からNを流通し、乾燥を実施した。乾燥後、反応器を300℃に加熱し、原料ガス(CFC(O)Cl)(TFAC)を反応器下から導入し、ガスクロマトグラフィ(GC)によるCFC(O)F(TFAF)生成の確認、捕集を実施した。原料ガスの流速はマスフローコントローラー(MFC)によって制御した。表1に実験条件を、表2に実験結果を示す。
Figure JPOXMLDOC01-appb-T000002
※1 NaFペレットの有効に反応する割合は実績より20%として計算。例えば、NaFペレットは、サイズが直径1mm、高さ3mmと大きいため比表面積20%分を掛けて算出しており、実験No.1-1の場合、3.6mol×0.2+9.5mol+3.6mol×0.2=11.0molと計算した。
Figure JPOXMLDOC01-appb-T000003
 表2の試験結果からわかるように、本発明によれば、金属フッ化物を通過させるだけでカルボン酸クロリドをカルボン酸フルオリドに80%以上の高収率で効率よく変換できる。
[実施例2](CrF/Cを使用した製造法)
 2B縦型SUS反応器の下部にSUSタワシを配置しSUSタワシの上に17~33質量%担持のCrF/Cを充填した。反応器を200~350℃に加熱した。CFC(O)Cl(TFAC)を流通させ、出口ガスのGC分析によりCFC(O)F(TFAF)の生成を確認した。500mLシリンダーを液体窒素で冷却し、生成したCFC(O)F(TFAF)を捕集した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表3及び4の結果から、本発明によれば、金属フッ化物が担持されている場合、原料ガスと金属フッ化物とが効率よく反応するので、カルボン酸クロリドのカルボン酸フルオリドへの変換率は90%以上であることがわかる。
 

Claims (11)

  1.  カルボン酸クロリドと金属フッ化物とを反応させる工程を含むカルボン酸フルオリドの製造方法。
  2.  カルボン酸が炭素数1~7のカルボン酸である、請求項1に記載の方法。
  3.  カルボン酸がフッ素置換されたカルボン酸である、請求項1又は2に記載の方法。
  4.  カルボン酸がパーフルオロカルボン酸である、請求項3に記載の方法。
  5.  カルボン酸がトリフルオロ酢酸である、請求項4に記載の方法。
  6.  金属フッ化物が活性炭、アルミナ、ゼオライト、及び発泡金属からなる群から選ばれる少なくとも1種の担体に担持されている、請求項1~5のいずれかに記載の方法。
  7.  金属フッ化物が、アルカリ金属フッ化物、アルカリ土類金属フッ化物及び遷移金属フッ化物からなる群から選ばれる少なくとも1種である、請求項1~6のいずれかに記載の方法。
  8.  アルカリ金属フッ化物が、フッ化リチウム、フッ化ナトリウム、フッ化セシウム及びフッ化カリウムからなる群から選ばれる少なくとも1種である、請求項7に記載の方法。
  9.  アルカリ土類金属フッ化物が、フッ化マグネシウム、フッ化カルシウム及びフッ化バリウムからなる群から選ばれる少なくとも1種である、請求項7に記載の方法。
  10.  遷移金属フッ化物が、フッ化クロム、フッ化モリブデン、フッ化マンガン、フッ化鉄、フッ化コバルト、フッ化銅、フッ化ニッケル、フッ化亜鉛、及びフッ化銀からなる群から選ばれる少なくとも1種である、請求項7に記載の方法。
  11.  反応温度が100~500℃である、請求項1~10のいずれかに記載の方法。
PCT/JP2020/032110 2019-08-27 2020-08-26 カルボン酸フルオリドの製造方法 WO2021039817A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080055714.6A CN114206822B (zh) 2019-08-27 2020-08-26 羧酰氟的制造方法
US17/637,618 US20220274908A1 (en) 2019-08-27 2020-08-26 Method of producing carboxylic acid fluoride
JP2021542950A JPWO2021039817A1 (ja) 2019-08-27 2020-08-26
KR1020227008287A KR20220050916A (ko) 2019-08-27 2020-08-26 카르복실산플루오라이드의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-154843 2019-08-27
JP2019154843 2019-08-27

Publications (1)

Publication Number Publication Date
WO2021039817A1 true WO2021039817A1 (ja) 2021-03-04

Family

ID=74685031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032110 WO2021039817A1 (ja) 2019-08-27 2020-08-26 カルボン酸フルオリドの製造方法

Country Status (5)

Country Link
US (1) US20220274908A1 (ja)
JP (1) JPWO2021039817A1 (ja)
KR (1) KR20220050916A (ja)
CN (1) CN114206822B (ja)
WO (1) WO2021039817A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2460821A1 (de) * 1974-12-21 1976-06-24 Bayer Ag Verfahren zur herstellung von carbonsaeurefluoriden

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19650212A1 (de) 1996-12-04 1998-06-18 Solvay Fluor & Derivate Herstellung von Carbonsäurefluoriden
DE19942374A1 (de) 1998-11-30 2000-05-31 Solvay Fluor & Derivate Verfahren zur Herstellung von Säurefluoriden aus Säurechloriden
CN102171138B (zh) * 2008-10-06 2013-04-17 昭和电工株式会社 碳酰氟的制造方法
CN101585787A (zh) * 2009-06-18 2009-11-25 李寿椿 苯磺酰氟类化合物及其制备方法和应用
CN106336355A (zh) * 2015-07-13 2017-01-18 中昊晨光化工研究院有限公司 一种全氟辛酰氟的制备方法
CN106748741A (zh) * 2016-12-30 2017-05-31 天津市长芦化工新材料有限公司 全氟乙酰氟及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2460821A1 (de) * 1974-12-21 1976-06-24 Bayer Ag Verfahren zur herstellung von carbonsaeurefluoriden

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BUXTON, M. W. ET AL.: "Perfluoroaralkyl ethers", JOURNAL OF FLUORINE CHEMISTRY, vol. 2, no. 3, 1973, pages 231 - 245, XP055796417 *

Also Published As

Publication number Publication date
KR20220050916A (ko) 2022-04-25
JPWO2021039817A1 (ja) 2021-03-04
US20220274908A1 (en) 2022-09-01
CN114206822B (zh) 2024-05-10
CN114206822A (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
JP5418603B2 (ja) 2,3,3,3−テトラフルオロプロペンの製造方法
JP6673413B2 (ja) フルオロオレフィンの製造方法
JP5477290B2 (ja) 含水素フルオロオレフィン化合物の製造方法
JP5348240B2 (ja) 2,3,3,3−テトラフルオロプロペンの製造方法
JP2014193874A (ja) 含フッ素アルケン化合物の製造方法
JP6392777B2 (ja) 1,3,3,3−テトラフルオロプロペンの製法
JP5693571B2 (ja) ペンタフルオロプロパンの製造方法
JP2011529853A (ja) 2,3,3,3−テトラフルオロプロペンと1,3,3,3−テトラフルオロプロペンの製造方法
JPWO2011162341A1 (ja) 2,3,3,3−テトラフルオロプロペンの製造方法
CN113474319A (zh) 卤化丁烯化合物的制造方法
JP5246327B2 (ja) 気相フッ素化による含フッ素プロペンの製造方法
KR102566765B1 (ko) 시클로부텐의 제조 방법
WO2021039817A1 (ja) カルボン酸フルオリドの製造方法
WO2018123911A1 (ja) 含塩素プロペンの製造方法
CN105289669A (zh) 一种液相氟化催化剂及用途
JP6874778B2 (ja) シクロブタンの製造方法
CN112794787B (zh) 气相连续制备3,3,3-三氟-2-(三氟甲基)-1-丙烯的方法
CN112209803A (zh) 乙烯基化合物的制造方法
CN113272268B (zh) 环丁烷的制造方法
US20220402850A1 (en) Method of purifying carboxylic acid fluoride
JP7208542B2 (ja) フルオロアルカン化合物の製造方法
JP2024054626A (ja) カルボニルフロライドの製造方法および製造装置
CN118206425A (zh) 一种1,1,1,2,3,4,4,4-八氟-2-丁烯的气相制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857570

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021542950

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227008287

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20857570

Country of ref document: EP

Kind code of ref document: A1