WO2021038859A1 - Rotary machining tool and rotary machining system - Google Patents

Rotary machining tool and rotary machining system Download PDF

Info

Publication number
WO2021038859A1
WO2021038859A1 PCT/JP2019/034242 JP2019034242W WO2021038859A1 WO 2021038859 A1 WO2021038859 A1 WO 2021038859A1 JP 2019034242 W JP2019034242 W JP 2019034242W WO 2021038859 A1 WO2021038859 A1 WO 2021038859A1
Authority
WO
WIPO (PCT)
Prior art keywords
acceleration
acceleration sensor
measurement direction
machining tool
rotary machining
Prior art date
Application number
PCT/JP2019/034242
Other languages
French (fr)
Japanese (ja)
Inventor
小池雄介
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to PCT/JP2019/034242 priority Critical patent/WO2021038859A1/en
Priority to JP2021541943A priority patent/JP7264255B2/en
Publication of WO2021038859A1 publication Critical patent/WO2021038859A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools

Definitions

  • This disclosure relates to rotary machining tools and rotary machining systems.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2003-627173 discloses the following rotary machining tools. That is, a cylindrical straight shank having a constant diameter and a processed portion are coaxially integrally provided, and the straight shank is inserted into the insertion portion of the holder from the axial direction and held detachably.
  • a straight shank rotary machining tool that performs a predetermined machining by the machining portion by being rotationally driven around the axis in a state, the straight shank is provided with the straight shank in the axial direction when inserted into the insertion portion of the holder. It is characterized in that a stopper that is engaged with the holder and defines the protruding dimension of the processed portion from the holder is provided.
  • the rotary machining tool of the present disclosure includes a shaft portion, a blade mounting portion or a blade portion provided at an end portion of the shaft portion, and a first acceleration sensor attached to the shaft portion, and the first acceleration sensor.
  • the rotary processing tool of the present disclosure includes a shaft portion, a blade mounting portion or a blade portion provided at an end portion of the shaft portion, and a support portion that supports the first acceleration sensor in the shaft portion, and the support portion includes the support portion.
  • the first acceleration sensor is supported so that the first measurement direction of the first acceleration sensor is inclined with respect to each of the plane having the rotation axis of the shaft portion as a normal line and the rotation axis.
  • the rotary machining system of the present disclosure includes a rotary machining tool and a management device, and the rotary machining tool is provided on a shaft portion, a blade mounting portion or a blade portion provided at an end portion of the shaft portion, and the shaft portion.
  • a first measurement including a first accelerometer to be attached, wherein the first accelerometer is tilted with respect to a plane having a rotation axis of the shaft portion as a normal line and is tilted with respect to the rotation axis.
  • the rotary processing tool further includes a wireless communication device having a direction and transmitting sensor information indicating a measurement result of the first acceleration sensor, and the management device is the sensor transmitted from the wireless communication device. The information is received and the received sensor information is processed.
  • the rotary machining system of the present disclosure includes a rotary machining tool and a management device, and the rotary machining tool includes a shaft portion, a blade mounting portion or a blade portion provided at an end portion of the shaft portion, and the shaft portion.
  • the support portion includes a support portion that supports the first acceleration sensor, and the support portion includes a plane in which the first measurement direction of the first acceleration sensor is normal to the rotation axis of the shaft portion, and each of the rotation axes.
  • the management device includes a wireless communication device that supports the first acceleration sensor so as to be inclined with respect to the first acceleration sensor, and further transmits sensor information indicating a measurement result of the first acceleration sensor. Receives the sensor information transmitted from the wireless communication device and processes the received sensor information.
  • FIG. 1 is a side view showing a configuration of a rotary machining tool according to the first embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view schematically showing the correspondence relationship between the centrifugal acceleration generated in the rotary machining tool and the measurement direction of the acceleration sensor according to the first embodiment of the present disclosure.
  • FIG. 3 is a diagram showing a correspondence relationship between the centrifugal acceleration generated in the rotary machining tool and the measurement direction of the acceleration sensor according to the first embodiment of the present disclosure.
  • FIG. 4 is a diagram showing an example of the correspondence relationship between the centrifugal acceleration generated in the rotary machining tool and the rotation speed of the rotary machining tool according to the first embodiment of the present disclosure.
  • FIG. 1 is a side view showing a configuration of a rotary machining tool according to the first embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view schematically showing the correspondence relationship between the centrifugal acceleration generated in the rotary machining tool and the measurement direction of the acceleration
  • FIG. 5 is an arrow view showing the configuration of the rotary machining tool according to the first embodiment of the present disclosure.
  • FIG. 6 is a cross-sectional view schematically showing the configuration of a support portion in the rotary machining tool according to the first embodiment of the present disclosure.
  • FIG. 7 is a diagram showing a configuration of a rotary machining tool according to the first embodiment of the present disclosure.
  • FIG. 8 is a diagram showing a configuration of a rotary processing system according to the first embodiment of the present disclosure.
  • FIG. 9 is a side view showing another example of the configuration of the rotary machining tool according to the first embodiment of the present disclosure.
  • FIG. 10 is a side view showing another example of the configuration of the rotary machining tool according to the first embodiment of the present disclosure.
  • FIG. 10 is a side view showing another example of the configuration of the rotary machining tool according to the first embodiment of the present disclosure.
  • FIG. 11 is a side view showing the configuration of the rotary machining tool according to the second embodiment of the present disclosure.
  • FIG. 12 is a plan view showing a configuration of a support portion in the rotary machining tool according to the second embodiment of the present disclosure.
  • FIG. 13 is a partial cross-sectional view showing a modification 1 of the rotary machining tool according to the second embodiment of the present disclosure.
  • FIG. 14 is a block diagram showing a configuration of a control unit in the first modification of the rotary machining tool according to the second embodiment of the present disclosure.
  • FIG. 15 is a flowchart defining the processing procedure of the control unit in the first modification of the second embodiment of the present disclosure.
  • FIG. 16 is a side view showing the configuration of the rotary machining tool according to the third embodiment of the present disclosure.
  • FIG. 17 is a cross-sectional view schematically showing the configuration of the rotary machining tool according to the third embodiment of the present disclosure.
  • FIG. 18 is a diagram showing a configuration of a rotary machining tool according to a third embodiment of the present disclosure.
  • FIG. 19 is a diagram showing a configuration of a rotary processing system according to a third embodiment of the present disclosure.
  • FIG. 20 is a partial cross-sectional view showing a modification 1 of the rotary machining tool according to the third embodiment of the present disclosure.
  • FIG. 21 is a cross-sectional view schematically showing a modified example 1 of the rotary machining tool according to the third embodiment of the present disclosure.
  • FIG. 22 is a diagram showing a configuration of a rotary machining tool according to a first modification of the third embodiment of the present disclosure.
  • FIG. 23 is a diagram showing a configuration of a rotary processing system according to a third embodiment of the present disclosure.
  • FIG. 24 is a side view showing the configuration of the rotary machining tool according to the fourth embodiment of the present disclosure.
  • FIG. 25 is a perspective view showing the configuration of an acceleration sensor in the rotary machining tool according to the fourth embodiment of the present disclosure.
  • FIG. 26 is a cross-sectional view schematically showing the configuration of the rotary machining tool according to the fourth embodiment of the present disclosure.
  • FIG. 27 is a cross-sectional view of the rotary machining tool according to the fourth embodiment of the present disclosure, which is cut in a plane passing through the rotary axis and viewed from the B direction.
  • FIG. 28 is a partial cross-sectional view showing a modification 1 of the rotary machining tool according to the fourth embodiment of the present disclosure.
  • FIG. 29 is a side view showing the configuration of the rotary machining tool according to the fifth embodiment of the present disclosure.
  • FIG. 30 is a cross-sectional view schematically showing the configuration of the rotary machining tool according to the fifth embodiment of the present disclosure.
  • FIG. 31 is a side view showing the configuration of the rotary machining tool according to the sixth embodiment of the present disclosure.
  • FIG. 32 is a cross-sectional view schematically showing the configuration of the rotary machining tool according to the sixth embodiment of the present disclosure.
  • FIG. 33 is a cross-sectional view of the rotary machining tool according to the sixth embodiment of the present disclosure, which is cut in a plane passing through the rotary axis and viewed from the B direction.
  • FIG. 34 is a diagram showing an example of the correspondence relationship between the centrifugal acceleration generated in the rotary machining tool and the rotation speed of the rotary machining tool according to the sixth embodiment of the present disclosure.
  • FIG. 35 is a partial cross-sectional view showing a modification 1 of the rotary machining tool according to the sixth embodiment of the present disclosure.
  • the present disclosure has been made to solve the above-mentioned problems, and an object thereof is a rotary machining tool and a rotary machine capable of measuring centrifugal acceleration generated in a rotary machining tool beyond the limit of the measurement range of an acceleration sensor. It is to provide a processing system.
  • the rotary machining tool includes a shaft portion, a blade mounting portion or a blade portion provided at an end portion of the shaft portion, and a first acceleration sensor attached to the shaft portion.
  • the first acceleration sensor measures acceleration in a first measurement direction that is inclined with respect to each of a plane having a rotation axis of the shaft portion as a normal line and each of the rotation axes.
  • the sensitivity of the first acceleration sensor in the measurement direction to the centrifugal acceleration can be lowered by the configuration in which the measurement direction of the first acceleration sensor is deviated from the direction of the centrifugal acceleration generated by the rotation of the shaft portion. Therefore, it is possible to measure the centrifugal acceleration generated in the rotary machining tool beyond the limit of the measurement range of the acceleration sensor.
  • the rotary machining tool further includes an angle changing portion for changing the inclination angle in the first measurement direction.
  • the measurement range of the centrifugal acceleration can be changed according to the rotation speed of the shaft portion desired by the user, so that the centrifugal acceleration can be measured more reliably in the measurement range according to the user's request. Can be done.
  • the first acceleration sensor further measures the acceleration in the second measurement direction and the acceleration in the third measurement direction, and the first measurement direction, the second measurement direction, and the said.
  • the third measurement direction is three-dimensionally orthogonal to each other, the second measurement direction is inclined with respect to each of the plane and the rotation axis, and the third measurement direction is along the plane.
  • the direction is along a direction orthogonal to the straight line connecting the first acceleration sensor and the rotation axis.
  • one acceleration sensor that measures acceleration in three measurement directions can be used to measure centrifugal acceleration and acceleration such as vibration associated with cutting, so that more diverse accelerations can be obtained. Can be measured. Further, for example, a wide range of centrifugal accelerations can be measured by one acceleration sensor, and the number of acceleration sensors attached to the shaft portion can be reduced.
  • the rotary machining tool further includes an angle changing portion for changing the inclination angle in the first measurement direction and the inclination angle in the second measurement direction.
  • the measurement range of the centrifugal acceleration can be changed according to the rotation speed of the shaft portion desired by the user, so that the centrifugal acceleration can be measured more reliably in the measurement range according to the user's request. Can be done.
  • the first acceleration sensor is a sensor that measures acceleration in one direction
  • the rotary machining tool further includes a second acceleration sensor that is a sensor that measures acceleration in one direction.
  • the second acceleration sensor measures the acceleration in the fourth measurement direction
  • the fourth measurement direction is a direction along the plane, and the second acceleration sensor and the rotation axis are connected to each other. Along the direction orthogonal to the connecting straight line.
  • the first acceleration sensor can measure the centrifugal acceleration
  • the second acceleration sensor can measure the acceleration such as vibration caused by cutting, so that more various accelerations can be measured. ..
  • the rotary machining tool further includes a third acceleration sensor which is a sensor for measuring acceleration in one direction, and the third acceleration sensor measures acceleration in the fifth measurement direction.
  • the fifth measurement direction is along the plane and is perpendicular to the straight line connecting the first acceleration sensor and the rotation axis.
  • the centrifugal acceleration can be measured by the first acceleration sensor, and the acceleration such as vibration accompanying cutting can be measured by the third acceleration sensor, and more various accelerations can be measured. ..
  • the first acceleration sensor is a sensor that measures acceleration in three directions
  • the first acceleration sensor includes acceleration in the first measurement direction, acceleration in the second measurement direction, and The acceleration in the third measurement direction is measured, and the first measurement direction, the second measurement direction, and the third measurement direction are three-dimensionally orthogonal to each other, and the second measurement direction and the second measurement direction are measured.
  • the measurement direction of 3 is inclined with respect to each of the plane and the rotation axis, and each of the first measurement direction, the second measurement direction, and the third measurement direction is the first in the plane. At least two of the angles formed with respect to the straight line connecting the acceleration sensor and the rotation axis are different from each other.
  • one acceleration sensor can be used to measure centrifugal acceleration in at least two different measurement ranges.
  • a wide range of centrifugal acceleration can be measured by one acceleration sensor, and the number of accelerometers attached to the shaft portion can be reduced.
  • the rotary machining tool further includes an angle changing portion for changing the inclination angle in the first measurement direction, the inclination angle in the second measurement direction, and the inclination angle in the third measurement direction. Be prepared.
  • the measurement range of the centrifugal acceleration can be changed according to the rotation speed of the shaft portion desired by the user, so that the centrifugal acceleration can be measured more reliably in the measurement range according to the user's request. Can be done.
  • the angle changing portion includes the range of acceleration that can be measured by the first acceleration sensor, the distance between the first acceleration sensor and the rotation axis of the shaft portion, and the rotation of the shaft portion. The tilt angle is changed based on the number.
  • the acceleration generated in the acceleration sensor in the measurement direction can be reliably changed by the inclination angle so as not to exceed the measurable range of the acceleration sensor.
  • the angle ⁇ formed by the first measurement direction and the plane is greater than 0 ° and less than 90 °, and is not 45 °.
  • centrifugal acceleration in two different measurement ranges by using, for example, one acceleration sensor that measures acceleration in three measurement directions. This allows a wider range of centrifugal accelerations to be measured, for example with one accelerometer.
  • the angle ⁇ is 70 ° or more and less than 90 °.
  • the accelerometer can measure the centrifugal acceleration corresponding to a larger rotation speed than when the angle ⁇ is 0 °.
  • the angle ⁇ is 80 ° or more and less than 90 °.
  • the accelerometer can measure the centrifugal acceleration corresponding to a larger rotation speed than when the angle ⁇ is 70 ° or more and less than 90 °.
  • the angle changing portion is removable from the shaft portion.
  • the angle changing part can be attached and detached as needed, and the convenience of the user can be improved.
  • the rotary machining tool includes a shaft portion, a blade mounting portion or a blade portion provided at an end portion of the shaft portion, and a support for supporting the first acceleration sensor in the shaft portion.
  • the support portion is provided with a portion so that the first measurement direction of the first acceleration sensor is inclined with respect to each of the plane having the rotation axis of the shaft portion as a normal line and the rotation axis. Supports one accelerometer.
  • the sensitivity of the first acceleration sensor to the centrifugal acceleration in the measurement direction can be lowered by the configuration in which the measurement direction of the first acceleration sensor is deviated from the direction of the centrifugal acceleration generated in the rotation of the shaft portion. Therefore, it is possible to measure the centrifugal acceleration generated in the rotary machining tool beyond the limit of the measurement range of the acceleration sensor.
  • the rotary processing system further includes a wireless communication device that transmits sensor information indicating the measurement result of the first acceleration sensor.
  • the rotary processing tool according to one, and a management device that receives the sensor information transmitted from the wireless communication device and processes the received sensor information.
  • the sensitivity of the first acceleration sensor in the measurement direction to the centrifugal acceleration can be lowered by the configuration in which the measurement direction of the first acceleration sensor is deviated from the direction of the centrifugal acceleration generated by the rotation of the shaft portion. Therefore, it is possible to measure the centrifugal acceleration generated in the rotary machining tool beyond the limit of the measurement range of the acceleration sensor. Further, with the configuration for processing the measurement result of the first acceleration sensor, for example, it is possible to calculate the angular velocity and the rotation speed of the shaft portion, and to determine whether or not there is an abnormality in the blade mounting portion or the blade portion. .. That is, the user can grasp whether or not the rotary machining tool is in an appropriate state.
  • FIG. 1 is a side view showing a configuration of a rotary machining tool according to the first embodiment of the present disclosure.
  • the rotary machining tool 101 is, for example, an end mill used in a milling machine or the like, and is used for cutting an object to be cut made of metal or the like.
  • the rotary machining tool 101 includes a shank portion 11 which is an example of a shaft portion, a blade mounting portion 12, a blade portion (not shown), an acceleration sensor 14, and a support portion 16.
  • the support portion 16 is shown by a two-dot chain line which is an imaginary line.
  • the rotary machining tool 101 may be configured not to have a blade portion. Further, the blade portion may be integrally fixed to the blade mounting portion 12, or may be detachably attached to the blade mounting portion 12.
  • the base material of the shank portion 11 is made of, for example, cemented carbide for cutting tools or steel for dies.
  • the rotary machining tool according to the embodiment of the present disclosure solves such a problem by the following configuration.
  • FIG. 2 is a cross-sectional view schematically showing the correspondence relationship between the centrifugal acceleration generated in the rotary machining tool and the measurement direction of the acceleration sensor according to the first embodiment of the present disclosure. More specifically, FIG. 2 is a schematic cross-sectional view of the rotary machining tool 101 shown in FIG. 1 when cut in a plane passing through the rotary shaft 17 and the acceleration sensor 14 and viewed from the B direction.
  • the acceleration sensor 14 measures the acceleration in the first measurement direction 141 that is inclined with respect to each of the plane 18 having the rotation axis 17 of the shank portion 11 as the normal line and the rotation axis 17. That is, the acceleration sensor 14 has sensitivity in the first measurement direction 141.
  • the plane 18 and the support portion 16 are shown by an alternate long and short dash line which is an imaginary line.
  • the acceleration sensor 14 is a so-called uniaxial acceleration sensor that measures acceleration in one direction.
  • the acceleration sensor 14 includes, for example, a sensor element 27, a pedestal portion 28 that supports the sensor element 27, and a housing 29 that houses the sensor element 27 and the pedestal portion 28.
  • the acceleration sensor 14 is arranged so that the one direction is along the first measurement direction 141.
  • the one direction is, for example, a direction perpendicular to the surface on which the sensor element 27 is supported by the pedestal portion 28.
  • a centrifugal acceleration a is generated in the acceleration sensor 14.
  • the direction in which the centrifugal acceleration a is generated is along the plane 18.
  • the direction in which the centrifugal acceleration a is generated is parallel to the plane 18.
  • Centrifugal acceleration a [mm / s ⁇ 2] is expressed by the following equation (1).
  • d is the distance [mm] from the peripheral surface of the shank portion 11 to the sensor element in the acceleration sensor 14 in the radial direction of the shank portion 11. That is, (r + d) is the distance [mm] between the rotating shaft 17 of the shank portion 11 and the sensor element of the acceleration sensor 14.
  • the operator " ⁇ " represents a power.
  • FIG. 3 is a diagram showing a correspondence relationship between the centrifugal acceleration generated in the rotary machining tool and the measurement direction of the acceleration sensor according to the first embodiment of the present disclosure.
  • the first measurement direction 141 is inclined with respect to the plane 18 at an angle ⁇ (hereinafter, also referred to as an inclination angle ⁇ ). Specifically, the first measurement direction 141 is tilted at a tilt angle ⁇ with respect to the plane 18 on the plane 15 including the acceleration sensor 14 and the rotation axis 17.
  • is a value larger than 0 ° and smaller than 90 °.
  • a centrifugal acceleration a1 having a size corresponding to the cosine of the centrifugal acceleration a is generated. That is, the centrifugal acceleration a1 [mm / s ⁇ 2] generated in the first measurement direction 141 is represented by the following equation (2).
  • the centrifugal acceleration a1 changes according to the inclination angle ⁇ formed by the first measurement direction 141 and the plane 18. Further, in the range where ⁇ is larger than 0 ° and smaller than 90 °, the centrifugal acceleration a1 is smaller than the centrifugal acceleration a. That is, as the inclination angle ⁇ increases, the centrifugal acceleration a1 decreases.
  • the sensitivity of the acceleration sensor 14 to the centrifugal acceleration a in the first measurement direction 141 can be changed. Specifically, by increasing the inclination angle ⁇ in a range larger than 0 ° and smaller than 90 °, the sensitivity of the acceleration sensor 14 to the centrifugal acceleration a in the first measurement direction 141 can be lowered.
  • FIG. 4 is a diagram showing an example of the correspondence relationship between the centrifugal acceleration generated in the rotary machining tool and the rotation speed of the rotary machining tool according to the first embodiment of the present disclosure.
  • the horizontal axis represents the rotation speed of the shank portion 11
  • the vertical axis represents the centrifugal acceleration generated in the shank portion 11.
  • the graphs g1, g2, and g3 show the correspondence between the centrifugal acceleration and the rotation speed when the inclination angles ⁇ are 0 °, 45 °, and 60 °, respectively.
  • the graphs g5, g6, and g7 show the correspondence between the centrifugal acceleration and the rotation speed when the inclination angles ⁇ are 70 °, 80 °, and 89 °, respectively.
  • the acceleration sensor 14 can accurately measure the centrifugal acceleration when the centrifugal acceleration is a value of 0 G to 200 G. Further, when the centrifugal acceleration exceeds 200 G, it becomes difficult for the acceleration sensor 14 to accurately measure the centrifugal acceleration.
  • the inclination of the graph decreases. That is, as the inclination angle ⁇ increases, the apparent sensitivity of the acceleration sensor 14 to the centrifugal acceleration a in the first measurement direction 141 decreases, and the acceleration sensor 14 can measure the centrifugal acceleration at a higher rotation speed. ..
  • the acceleration sensor 14 can measure the centrifugal acceleration up to nearly twice the rotation speed as compared with the case where the tilt angle ⁇ is 0 °. it can. Further, when the inclination angle ⁇ is 80 °, the acceleration sensor 14 can measure the centrifugal acceleration up to nearly three times the rotation speed as compared with the case where the inclination angle ⁇ is 0 °.
  • the centrifugal acceleration can be measured up to nearly four times the rotation speed as compared with the case where the inclination angle ⁇ is 0 °. Further, when the inclination angle ⁇ is 89 °, the centrifugal acceleration can be measured up to 8 times or more the rotation speed as compared with the case where the inclination angle ⁇ is 0 °.
  • the inclination angle ⁇ is preferably 70 ° or more and less than 90 °, and more preferably 80 ° or more and less than 90 °.
  • the acceleration sensor 14 can measure the centrifugal acceleration at a rotation speed of nearly twice or more as compared with the case where the tilt angle ⁇ is 0 °. .. Further, when the inclination angle ⁇ is 80 ° or more and less than 90 °, the acceleration sensor 14 can measure the centrifugal acceleration at a rotation speed of nearly three times or more as compared with the case where the inclination angle ⁇ is 0 °. ..
  • FIG. 5 is an arrow view showing the configuration of the rotary machining tool according to the first embodiment of the present disclosure.
  • FIG. 5 is an arrow view seen from the direction A in FIG.
  • the support portion 16 is shown by a two-dot chain line which is an imaginary line.
  • one acceleration sensor 14 is provided on or near the peripheral surface of the shank portion 11.
  • the acceleration sensor 14 may be provided at a position in contact with the peripheral surface of the shank portion 11, or may be provided at a position away from the peripheral surface of the shank portion 11.
  • the support portion 16 is a tubular body that supports the acceleration sensor 14.
  • the support portion 16 is a tubular body made of synthetic resin.
  • the support portion 16 is formed in a cylindrical shape, for example.
  • the acceleration sensor 14 is supported in a state of being embedded in the support portion 16.
  • the support portion 16 is configured to be divisible into two parts. Specifically, the support portion 16 includes a main body 161 and a connecting mechanism (not shown).
  • the main body 161 is formed in a tubular shape. Further, the main body 161 can be attached to the peripheral surface of the shank portion 11 so that the shank portion 11 can be inserted therethrough, and has an outer diameter larger than the diameter of the shank portion 11.
  • the acceleration sensor 14 is embedded in the main body 161.
  • the main body 161 is configured to be divisible into a plurality of parts on the plane 18.
  • the main body 161 is configured to be divisible into two portions, that is, two arc-shaped portions 161a and 161b forming a substantially semicircular shape when viewed from the A direction.
  • the arc-shaped portion 161a and the arc-shaped portion 161b are connected to each other by a connecting mechanism (not shown). Specifically, for example, the arcuate portion 161a and the arcuate portion 161b are connected by bolts and nuts.
  • the arc-shaped portion 161a and the arc-shaped portion 161b have dimensions such that they are closely fixed to the peripheral surface of the shank portion 11 in a state of being connected to each other.
  • the support portion 16 and the acceleration sensor 14 can be attached to the shank portion 11. Further, the support portion 16 and the acceleration sensor 14 can be removed from the shank portion 11 by disconnecting the arc-shaped portion 161a and the arc-shaped portion 161b by the connecting mechanism.
  • FIG. 6 is a cross-sectional view schematically showing the configuration of a support portion in the rotary machining tool according to the first embodiment of the present disclosure. Specifically, FIG. 6 is a partial cross-sectional view in the B direction in FIG.
  • the support portion 16 supports the acceleration sensor 14 at the shank portion 11. Specifically, the support portion 16 supports the acceleration sensor 14 so that the first measurement direction 141 of the acceleration sensor 14 is tilted with respect to the plane 18 and the rotation axis 17.
  • the acceleration sensor 14 is supported by the support portion 16 so that the first measurement direction 141 is tilted with respect to the plane 18 at an inclination angle ⁇ .
  • the support portion 16 is made of synthetic resin.
  • a liquid synthetic resin is injected into the mold, the injected synthetic resin is cured, and the mold is removed. It is composed of.
  • the acceleration sensor 14 By arranging the acceleration sensor 14 in the mold, the first measurement direction 141 is tilted with respect to the plane 18 at an inclination angle ⁇ .
  • FIG. 7 is a diagram showing a configuration of a rotary machining tool according to the first embodiment of the present disclosure.
  • FIG. 7 is a diagram showing a state in which the rotary machining tool is further equipped with a battery, a wireless communication device, and a housing in addition to the components shown in FIG.
  • the battery, the wireless communication device, and the housing are shown by an alternate long and short dash line, which is an imaginary line.
  • the rotary machining tool 101 further includes a battery 22, a wireless communication device 23, and a housing 24, in addition to the configuration shown in FIG.
  • the battery 22 is connected to the acceleration sensor 14 and the wireless communication device 23 via a power line (not shown).
  • the battery 22 supplies electric power to the acceleration sensor 14 and the wireless communication device 23 via the power line.
  • the power line is provided with a switch for switching the power supply on and off.
  • the wireless communication device 23 is connected to the acceleration sensor 14 via a signal line (not shown).
  • the acceleration sensor 14 outputs a measurement signal indicating the centrifugal acceleration generated in the acceleration sensor 14 to the wireless communication device 23 via a signal line.
  • the wireless communication device 23 When the wireless communication device 23 receives the measurement signal from the acceleration sensor 14, the wireless communication device 23 includes the measurement result indicated by the received measurement signal in the wireless signal and transmits it to an external management device such as a personal computer.
  • the management device for example, accumulates the received measurement results and analyzes the accumulated measurement results.
  • the management device is not limited to the analysis of the measurement result, and may perform other types of processing.
  • the housing 24 includes a bottom plate portion 25 and a side wall portion 26.
  • the housing 24 is fixed to, for example, the lower surface of the support portion 16.
  • the housing 24 accommodates the support portion 16, the battery 22, the wireless communication device 23, the power line and the signal line, specifically, the support portion 16 and the battery 22 and the like are covered from below and from the sides thereof. Holds the battery 22 and the wireless communication device 23.
  • the bottom plate portion 25 is formed in a disk shape, for example.
  • the bottom plate portion 25 is formed with a plurality of screw holes (not shown) at positions corresponding to the support portions 16. Further, a plurality of screw holes are also formed on the lower surface of the support portion 16.
  • the bottom plate portion 25 With the screw holes of the bottom plate portion 25 and the screw holes of the support portion 16 aligned, the bottom plate portion 25 is fixed to the support portion 16 by screwing screws into the screw holes of the bottom plate portion 25 and the support portion 16. can do.
  • the side wall portion 26 is formed in a cylindrical shape, for example. At the lower end of the side wall 26, a plurality of screw holes (not shown) are formed at positions corresponding to the peripheral edges of the bottom plate 25. Further, a plurality of screw holes are also formed on the peripheral edge of the bottom plate portion 25.
  • the side wall portion 26 is fixed to the bottom plate portion 25 by screwing screws into the screw holes of the bottom plate portion 25 and the side wall portion 26. can do.
  • FIG. 8 is a diagram showing a configuration of a rotary processing system according to the first embodiment of the present disclosure.
  • the rotary processing system 201 includes a rotary processing device 202 such as a milling machine and a management device 301.
  • the rotary processing device 202 includes a rotary processing tool 101, a drive unit, and a control unit that controls the drive unit.
  • the drive unit is a motor or the like that drives the rotary machining tool 101.
  • the control unit controls the rotation speed of the drive unit and the like.
  • the rotary machining tool 101 transmits a wireless signal including sensor information indicating the measurement result of the acceleration sensor 14.
  • the management device 301 receives a wireless signal including sensor information from the rotary processing tool 101, and processes the measurement result indicated by the received sensor information.
  • the management device 301 includes a wireless communication unit 31, a control unit 32, a storage unit 35, an operation input unit 36, and a display unit 33.
  • the wireless communication unit 31 wirelessly communicates with the wireless communication device 23 of the rotary processing tool 101. Specifically, the wireless communication unit 31 receives a wireless signal including sensor information from the wireless communication device 23 of the rotary processing tool 101, and stores the measurement result indicated by the sensor information included in the wireless signal in the storage unit 35. save.
  • the operation input unit 36 includes a user interface such as a keyboard and a mouse.
  • the operation input unit 36 receives instructions and data input from the user.
  • the storage unit 35 includes, for example, a storage device such as an HDD (Hard Disk Drive). Further, for example, the storage unit 35 may be a CD-ROM (Compact Disc Read Only Memory), a DVD-ROM (Digital York Disc Read Only Memory), or a BD-ROM (Blu-ray (registered trademark) Disc Read Memory). Includes auxiliary storage. Further, for example, the storage unit 35 includes a semiconductor memory such as a RAM (Random Access Memory) and a ROM (Read Only Memory).
  • the storage unit 35 stores programs and data for operating the control unit 32, measurement results received by the wireless communication unit 31 from the rotary machining tool 101, calculation results of the control unit 32, and the like.
  • the control unit 32 includes, for example, a CPU (Central Processing Unit).
  • the control unit 32 analyzes the measurement result of the acceleration sensor 14 stored in the storage unit 35, and stores the analysis result in the storage unit 35. Further, the control unit 32 controls each unit in the management device 301.
  • a CPU Central Processing Unit
  • the display unit 33 is, for example, a display.
  • the display unit 33 displays the calculation result of the control unit 32 stored in the storage unit 35.
  • the display unit 33 may be provided outside the management device 301.
  • the rotary processing system 201 when it is difficult to directly transmit and receive a wireless signal between the rotary processing device 202 and the management device 301 due to a long distance or the like, the rotary processing system 201 is located between the two.
  • a relay device may be provided.
  • the rotation processing device 202 transmits the wireless signal to the management device 301 via the relay device.
  • the shank portion 11 of the rotary processing tool 101 is fixed to, for example, the holding portion of the rotary processing device 202 that holds the shank portion 11.
  • the acceleration sensor 14 outputs a measurement signal indicating the centrifugal acceleration generated in the shank portion 11 to the wireless communication device 23.
  • the wireless communication device 23 includes the sensor information indicating the measurement signal received from the acceleration sensor 14 in the wireless signal and transmits it to the external management device 301.
  • the wireless communication unit 31 stores in the storage unit 35 the measurement result indicated by the sensor information included in the wireless signal received from the wireless communication device 23.
  • the storage unit 35 stores the measurement result received from the rotary machining tool 101 by the wireless communication unit 31.
  • the control unit 32 analyzes the measurement result stored in the storage unit 35 in response to an instruction input from the user via the operation input unit 36.
  • the control unit 32 receives the measurement result of the acceleration sensor 14 received from the wireless communication device 23 via the wireless communication unit 31, the inclination angle ⁇ in the first measurement direction 141, and the sensor element in the acceleration sensor 14. And the angular velocity ⁇ and the number of rotations n of the shank portion 11 are calculated based on the distance (r + d) between the rotation axes 17.
  • the control unit 32 may be configured to calculate either the angular velocity ⁇ or the rotation speed n. Further, the control unit 32 is not limited to the analysis of the measurement result, and may perform other types of processing.
  • the display unit 33 displays the calculation result of the control unit 32.
  • the angular velocity ⁇ and the rotation speed n displayed by the display unit 33 are utilized, for example, for the user to grasp whether or not the rotary machining tool 101 is in an appropriate state.
  • 9 and 10 are side views showing other examples of the configuration of the rotary machining tool according to the first embodiment of the present disclosure, respectively.
  • the example shown in FIG. 1 has a configuration in which the acceleration sensor 14 is attached to an end mill which is a kind of rolling tool, but the present invention is not limited to this.
  • the acceleration sensor 14 may be attached to a body portion 118, which is an example of a shaft portion in a drill 102, which is a type of rolling tool.
  • the acceleration sensor 14 may be attached to a boss portion 119 which is an example of a shaft portion in a milling cutter 103 which is a kind of rolling tool.
  • the shank portion 113 is connected to the end portion of the boss portion 119 opposite to the blade mounting portion 12.
  • the milling cutter 103 may not be provided with the shank portion 113.
  • the rotary machining tool 101 is attached to the shank portion 11, the blade mounting portion 12 or the blade portion provided at the end of the shank portion 11, and the shank portion 11.
  • the acceleration sensor 14 is provided.
  • the acceleration sensor 14 measures the acceleration in the first measurement direction 141 that is inclined with respect to each of the plane 18 having the rotation axis 17 of the shank portion 11 as the normal line and the rotation axis 17.
  • the configuration in which the first measurement direction 141 of the acceleration sensor 14 is deviated from the direction of the centrifugal acceleration generated in the rotation of the shank portion 11 reduces the sensitivity of the acceleration sensor 14 to the centrifugal acceleration in the first measurement direction 141. be able to.
  • the centrifugal acceleration generated in the rotary machining tool 101 can be measured beyond the limitation of the measurement range of the acceleration sensor 14.
  • the rotary processing tool 101 has a shank portion 11, a blade mounting portion 12 or a blade portion provided at an end portion of the shank portion 11, and an acceleration sensor 14 at the shank portion 11. It is provided with a support portion 16 for supporting.
  • the support portion 16 supports the acceleration sensor 14 so that the first measurement direction 141 of the acceleration sensor 14 is inclined with respect to each of the plane 18 and the rotation shaft 17 having the rotation shaft 17 of the shank portion 11 as a normal line. ..
  • the first measurement direction 141 of the acceleration sensor 14 is displaced from the direction of the centrifugal acceleration generated in the rotation of the shank portion 11 to centrifuge. It is possible to reduce the sensitivity of the acceleration sensor 14 to acceleration in the first measurement direction 141.
  • the centrifugal acceleration generated in the rotary machining tool 101 can be measured beyond the limitation of the measurement range of the acceleration sensor 14.
  • the rotary machining system 201 is a rotary machining tool 101 further including a wireless communication device 23 for transmitting sensor information indicating a measurement result of the acceleration sensor 14, and a wireless communication device 23. It is provided with a management device 301 that receives the transmitted sensor information and processes the received sensor information.
  • the configuration in which the first measurement direction 141 of the acceleration sensor 14 is deviated from the direction of the centrifugal acceleration generated in the rotation of the shank portion 11 reduces the sensitivity of the acceleration sensor 14 to the centrifugal acceleration in the first measurement direction 141. be able to.
  • the centrifugal acceleration generated in the rotary machining tool 101 can be measured beyond the limitation of the measurement range of the acceleration sensor 14.
  • the angular velocity ⁇ and the rotation speed n of the shank portion 11 can be calculated, for example, by the configuration for processing the measurement result of the acceleration sensor 14.
  • the user can grasp whether or not the rotary machining tool 101 is in an appropriate state.
  • the present embodiment relates to a rotary machining tool having a support portion different from that of the rotary machining tool 101 according to the first embodiment. Except for the contents described below, the same is true for the rotary machining tool 101 according to the first embodiment.
  • FIG. 11 is a side view showing the configuration of the rotary machining tool according to the second embodiment of the present disclosure.
  • the rotary machining tool 104 includes a support portion 162 instead of the support portion 16 as compared with the rotary machining tool 101 shown in FIG.
  • the support portion 162 has a function of changing the inclination angle of the acceleration sensor 14 in the measurement direction in addition to the function of supporting the acceleration sensor 14. That is, the support portion 162 also functions as an angle changing portion.
  • the acceleration sensor 14 is a so-called uniaxial acceleration sensor that measures acceleration in one direction.
  • the acceleration sensor 14 includes, for example, the sensor element 27 shown in FIG. 2, a pedestal portion 28 that supports the sensor element 27, and a housing 29 that houses the sensor element 27 and the pedestal portion 28.
  • the one direction is, for example, a direction perpendicular to the surface on which the sensor element 27 is supported by the pedestal portion 28.
  • the acceleration sensor 14 is supported by the support portion 162 so that the one direction is along the first measurement direction 141.
  • FIG. 12 is a plan view showing a configuration of a support portion in the rotary machining tool according to the second embodiment of the present disclosure.
  • FIG. 12 is an arrow view of the support portion in FIG. 11 as viewed from the A direction.
  • the support portion 162 is a tubular body that supports the acceleration sensor 14.
  • the support portion 162 is a tubular body made of synthetic resin or metal.
  • the support portion 162 is formed, for example, in the shape of a deformed octagonal cylinder.
  • the support portion 162 is formed with a through hole 163 through which the shank portion 11 is inserted.
  • the support portion 162 has eight side surfaces 1621-1628. Each side is flat.
  • the side surface 1621 and the side surface 1625 are located on opposite sides of each other through the through hole 163.
  • the side surface 1622 and the side surface 1626 are located on opposite sides of each other through the through hole 163.
  • the side surface 1623 and the side surface 1627 are located on opposite sides of each other through the through hole 163.
  • the side surface 1624 and the side surface 1628 are located opposite to each other through the through hole 163.
  • the side surface 1621 and the side surface 1625 have the same angle with respect to the plane 18.
  • the angle is, for example, 90 °.
  • the side surface 1622 and the side surface 1626 have the same angle with respect to the plane 18.
  • the angle is, for example, 85 °.
  • the side surface 1623 and the side surface 1627 have the same angle with respect to the plane 18.
  • the angle is, for example, 80 °.
  • the side surface 1624 and the side surface 1628 have the same angle with respect to the plane 18.
  • the angle is, for example, 70 °.
  • the support portion 162 is configured to be divisible into two parts. Specifically, the support portion 162 includes a main body 164 and a connecting mechanism (not shown).
  • the main body 164 is formed in a tubular shape. Specifically, a through hole 163 is formed in the main body 164. Further, the main body 164 can be attached to the peripheral surface of the shank portion 11 so that the shank portion 11 inserts the through hole 163, and has an outer diameter larger than the diameter of the shank portion 11.
  • the main body 164 is configured to be divisible into a plurality of parts on the plane 18.
  • the main body 164 is divisible into two portions, that is, two arc-shaped portions 164a and 164b which form a substantially semicircular shape when viewed from the A direction.
  • the arc-shaped portion 164a and the arc-shaped portion 164b are connected to each other by a connecting mechanism (not shown).
  • the through hole 163 is formed by connecting the arc-shaped portion 164a and the arc-shaped portion 164b.
  • the arcuate portion 164a and the arcuate portion 164b are connected by bolts and nuts.
  • the arc-shaped portion 164a and the arc-shaped portion 164b have dimensions such that they are closely fixed to the peripheral surface of the shank portion 11 in a state of being connected to each other.
  • the support portion 162 and the acceleration sensor 14 can be attached to the shank portion 11. Further, the support portion 162 and the acceleration sensor 14 can be removed from the shank portion 11 by disconnecting the arc-shaped portion 164a and the arc-shaped portion 164b by the connecting mechanism.
  • the user can select the side surface to be attached from the eight side surfaces 1621-1628.
  • the user selects a side surface such that the first measurement direction 141 of the acceleration sensor 14 is inclined with respect to the plane 18 at a target inclination angle ⁇ , and attaches the acceleration sensor 14 to the selected side surface.
  • the inclination angle ⁇ formed by the first measurement direction 141 of the acceleration sensor 14 with respect to the plane 18 can be changed.
  • the support portion 162 having the angle changing function can be attached to and detached from the shank portion 11.
  • the support portion 162 can be attached and detached as needed, and the convenience of the user can be enhanced.
  • the support portion 162 may have a configuration that cannot be removed from the shank portion 11.
  • FIG. 13 is a partial cross-sectional view showing a modification 1 of the rotary machining tool according to the second embodiment of the present disclosure.
  • the rotary machining tool 105 includes a support portion 165 instead of the support portion 16.
  • the support portion 165 has a function of changing the inclination angle ⁇ of the first measurement direction 141 of the acceleration sensor 14 in addition to the function of supporting the acceleration sensor 14. That is, the support portion 165 also functions as an angle changing portion.
  • the acceleration sensor 14 is a so-called uniaxial acceleration sensor that measures acceleration in one direction.
  • the acceleration sensor 14 includes, for example, the sensor element 27 shown in FIG. 2, a pedestal portion 28 that supports the sensor element 27, and a housing 29 that houses the sensor element 27 and the pedestal portion 28.
  • the one direction is, for example, a direction perpendicular to the installation surface, which is the surface on which the sensor element 27 is supported by the pedestal portion 28.
  • the acceleration sensor 14 is supported by the support portion 165 so that the one direction is along the first measurement direction 141.
  • the acceleration sensor 14 is supported by the support portion 165 so that the one direction is inclined with respect to the plane 18 at an inclination angle ⁇ . Specifically, for example, by tilting the installation surface of the acceleration sensor 14 with respect to the rotation axis 17 of the shank portion 11 at an angle ⁇ , the one direction is tilted with respect to the plane 18 at an inclination angle ⁇ .
  • the support portion 165 includes a pedestal portion 166 and an angle changing portion 167.
  • the pedestal portion 166 supports the acceleration sensor 14.
  • the acceleration sensor 14 is attached to the pedestal portion 166 by, for example, a fixing member such as a bolt and a nut.
  • FIG. 14 is a block diagram showing a configuration of a control unit in the first modification of the rotary machining tool according to the second embodiment of the present disclosure.
  • the angle changing portion 167 changes the posture of the pedestal portion 166.
  • the angle changing unit 167 includes, for example, a control unit 168, an actuator such as a motor, and a power conversion mechanism (not shown).
  • the power conversion mechanism converts the movement of the actuator into an operation of changing the inclination angle ⁇ a of the pedestal portion 166 with respect to the shank portion 11 shown in FIG.
  • the actuator may be a type of actuator other than the motor, such as a piezoelectric element.
  • the control unit 168 includes, for example, a receiving device, a transmitting device, a CPU, and a storage device such as an HDD. Further, the control unit 168 includes, for example, an auxiliary storage device such as a CD-ROM, and a semiconductor memory such as a RAM and a ROM.
  • the control unit 168 changes the inclination angle ⁇ a based on, for example, the range of centrifugal acceleration that can be measured by the acceleration sensor 14, the distance between the acceleration sensor 14 and the rotation axis 17 of the shank unit 11, and the rotation speed of the shank unit 11. , This changes the tilt angle ⁇ .
  • the control unit 168 has an inclination angle ⁇ a based on parameters other than the range of centrifugal acceleration that can be measured by the acceleration sensor 14, the distance between the acceleration sensor 14 and the rotation axis 17 of the shank unit 11, and the rotation speed of the shank unit 11. , And the inclination angle ⁇ may be changed accordingly.
  • the control unit 168 includes an acquisition unit 169, a processing unit 170, a storage unit 171 and a communication unit 172.
  • the acquisition unit 169 includes, for example, a receiving device.
  • the acquisition unit 169 acquires the information input by the user via the operation input unit, specifically, the rotation speed of the shank unit 11 desired by the user, and stores it in the storage unit 171.
  • the storage unit 171 includes, for example, a storage device such as an HDD. Further, for example, the storage unit 171 includes an auxiliary storage device such as a CD-ROM. Further, for example, the storage unit 171 includes a semiconductor memory such as a RAM and a ROM.
  • the storage unit 171 stores programs and data for operating the processing unit 170, information acquired by the acquisition unit 169 from the operation input unit, calculation results of the processing unit 170, and the like.
  • the range of centrifugal acceleration that can be measured by the acceleration sensor 14 and the distance between the acceleration sensor 14 and the rotation shaft 17 of the shank unit 11 are stored.
  • the distance is, for example, the distance between the sensor element in the acceleration sensor 14 and the rotating shaft 17.
  • the storage unit 171 stores the distance (r + d) between the sensor element in the acceleration sensor 14 and the rotation shaft 17 of the shank unit 11.
  • the storage unit 171 stores 200 G, which is the upper limit value of the centrifugal acceleration that can be measured by the acceleration sensor 14, and the centrifugal acceleration and the shank unit 11 generated in the acceleration sensor 14. The correspondence between the number of rotations and the tilt angle ⁇ is preserved.
  • the processing unit 170 includes, for example, a CPU.
  • the processing unit 170 obtains the inclination angle ⁇ based on the information acquired from the storage unit 171. Specifically, the processing unit 170 obtains the inclination angle ⁇ based on the upper limit value of the centrifugal acceleration that can be measured by the acceleration sensor 14 and the above-mentioned correspondence relationship, and stores it in the storage unit 171.
  • the communication unit 172 includes, for example, a transmission device.
  • the communication unit 172 transmits the angle information indicating the inclination angle ⁇ obtained by the processing unit 170 and stored in the storage unit 171 to the actuator.
  • the rotary machining tool 105 includes a computer including a part or all of the storage unit 171.
  • the arithmetic processing unit such as a CPU in the computer stores a program including a part or all of each step of the following sequence diagram or flowchart. Read from the memory of unit 171 and execute.
  • the program for this device can be installed externally.
  • the program of this device is distributed in a state of being stored in a recording medium.
  • FIG. 15 is a flowchart defining the processing procedure of the control unit in the first modification of the second embodiment of the present disclosure.
  • the processing unit 170 acquires a desired rotation speed of the shank unit 11 from the storage unit 171. Further, the processing unit 170 acquires the upper limit values of the distance (r + d) and the centrifugal acceleration from the storage unit 171 (step S101).
  • the processing unit 170 obtains the inclination angle ⁇ based on the information acquired from the storage unit 171. Specifically, referring to FIG. 4 again, for example, when the rotation speed of the shank portion 11 desired by the user is 10000 rpm and the inclination angle ⁇ is 85 ° (graph g7), the centrifugal acceleration is 200 G. Since it does not exceed, 85 ° is obtained as the inclination angle ⁇ (step S103).
  • the processing unit 170 calculates the tilt angle ⁇ a based on the correlation between the tilt angle ⁇ and the tilt angle ⁇ a and the tilt angle ⁇ being 85 °. Then, the processing unit 170 calculates the parameters of the actuator, for example, the rotation angle of the motor based on the calculated tilt angle ⁇ a (step S105).
  • the processing unit 170 outputs a control signal including the calculated rotation angle to the communication unit 172 (step S107).
  • the communication unit 172 transmits the control signal received from the processing unit 170 to the actuator (step S109).
  • the actuator operates based on the control signal received from the communication unit 172, and changes the posture of the pedestal unit 166.
  • the angle changing unit 167 may be configured to change the posture of the pedestal unit 166 by operating a button by the user, for example.
  • the rotary machining tool 101 may be provided with a button for designating the posture of the pedestal portion 166, that is, the inclination angle ⁇ a, or the inclination angle ⁇ .
  • the user specifies the tilt angle ⁇ a or the tilt angle ⁇ by operating a button, and changes ⁇ a or ⁇ to the specified tilt angle.
  • the rotary machining tool 105 includes an angle changing portion 167 that changes the inclination angle ⁇ in the first measurement direction 141.
  • the measurement range of the centrifugal acceleration can be changed according to the rotation speed of the shank portion 11 desired by the user, so that the centrifugal acceleration can be measured more reliably in the measurement range according to the user's request. be able to.
  • the angle changing portion 167 is the range of acceleration that can be measured by the acceleration sensor 14, the rotation shaft 17 of the acceleration sensor 14 and the shank portion 11.
  • the inclination angle ⁇ is changed based on the distance between them (r + d) and the rotation speed n of the shank portion 11.
  • the acceleration generated in the acceleration sensor 14 in the first measurement direction 141 can be reliably changed by the inclination angle ⁇ so as not to exceed the measurable range of the acceleration sensor 14.
  • the embodiment of the present disclosure relates to a rotary machining tool to which an acceleration sensor is added as compared with the rotary machining tool 101 according to the first embodiment. Except for the contents described below, the same is true for the rotary machining tool 101 according to the first embodiment.
  • FIG. 16 is a side view showing the configuration of the rotary machining tool according to the third embodiment of the present disclosure.
  • the rotary machining tool 106 further includes an acceleration sensor 142 as compared with the rotary machining tool 101 shown in FIG.
  • FIG. 17 is a cross-sectional view schematically showing the configuration of the rotary machining tool according to the third embodiment of the present disclosure. Specifically, FIG. 17 is a cross-sectional view of the rotary machining tool 106 in FIG. 16 cut in a plane 18 and viewed from the C direction.
  • the rotary machining tool 106 further includes an acceleration sensor 142 as compared with the rotary machining tool 101.
  • the acceleration sensor 142 measures the acceleration in the fourth measurement direction 143.
  • the fourth measurement direction 143 is a direction along the plane 18 and along a direction orthogonal to the straight line 144 connecting the acceleration sensor 142 and the rotation axis 17.
  • the acceleration sensor 142 is a so-called uniaxial acceleration sensor that measures acceleration in one direction.
  • the acceleration sensor 142 has, for example, a structure similar to that of the acceleration sensor 14 shown in FIG. That is, the acceleration sensor 142 includes, for example, the sensor element 27 shown in FIG. 2, the pedestal portion 28 that supports the sensor element 27, and the housing 29 that houses the sensor element 27 and the pedestal portion 28.
  • the one direction is, for example, a direction perpendicular to the installation surface, which is the surface on which the sensor element 27 is supported by the pedestal portion 28.
  • the acceleration sensor 142 is supported by the support portion 16 shown in FIG. 16, specifically, for example, the support portion 16 shown in FIG. 6 so that the one direction is along the fourth measurement direction 143.
  • the acceleration sensor 142 may be supported by the support portion 162 shown in FIG. 11 or the support portion 165 shown in FIG.
  • the fourth measurement direction 143 is the direction in which vibration is generated due to cutting by the rotary machining tool 106. Further, the fourth measurement direction 143 is a direction in which centrifugal acceleration does not occur. Therefore, the acceleration sensor 142 can measure the acceleration of vibration accompanying cutting, not the centrifugal acceleration, by measuring the acceleration in the fourth measurement direction 143.
  • the fourth measurement direction 143 is a direction in which vibration due to the damage is generated when the blade mounting portion 12 or the blade portion is damaged.
  • the acceleration sensor 142 measures the acceleration in the fourth measurement direction 143 to obtain not the centrifugal acceleration but the acceleration of vibration accompanying cutting and the blade mounting. It is possible to measure the combined amount with the acceleration due to the vibration caused by the damage caused to the portion 12 or the blade portion.
  • FIG. 18 is a diagram showing a configuration of a rotary machining tool according to a third embodiment of the present disclosure.
  • FIG. 18 is a diagram showing a state in which a rotary machining tool is further equipped with a battery, a wireless communication device, and a housing in addition to the components shown in FIG.
  • the battery, the wireless communication device, and the housing are shown by an alternate long and short dash line, which is an imaginary line.
  • the rotary machining tool 106 further includes a battery 22, a wireless communication device 23, and a housing 24, in addition to the configuration shown in FIG.
  • the wireless communication device 23 is connected to the acceleration sensor 14 and the acceleration sensor 142 via a signal line (not shown).
  • the acceleration sensor 14 outputs a measurement signal indicating the centrifugal acceleration generated in the acceleration sensor 14 to the wireless communication device 23 via a signal line.
  • the acceleration sensor 142 outputs a measurement signal indicating the acceleration generated by the acceleration sensor 142 to the wireless communication device 23 via the signal line.
  • the wireless communication device 23 When the wireless communication device 23 receives the measurement signals from the acceleration sensor 14 and the acceleration sensor 142, the wireless communication device 23 includes the measurement results indicated by the received measurement signals in the wireless signals and transmits the measurement results to an external management device such as a personal computer.
  • the management device for example, accumulates each received measurement result and processes each accumulated measurement result.
  • FIG. 19 is a diagram showing a configuration of a rotary processing system according to a third embodiment of the present disclosure.
  • the rotary processing system 203 includes a rotary processing device 204 such as a milling machine and a management device 302.
  • the rotary processing device 204 includes a rotary processing tool 106, a drive unit, and a control unit that controls the drive unit.
  • the drive unit is a motor or the like that drives the rotary machining tool 106.
  • the control unit controls the number of rotations of the drive unit and the like.
  • the management device 302 further includes a determination unit 34 as compared with the management device 301 in the rotary machining tool 101 according to the first embodiment.
  • the wireless communication unit 31 wirelessly communicates with the wireless communication device 23 of the rotary processing tool 106.
  • the storage unit 35 contains a program and data for operating the control unit 32 and the determination unit 34, a measurement result received by the wireless communication unit 31 from the rotary machining tool 106, a calculation result of the control unit 32, and a determination of the determination unit 34. Results etc. are saved.
  • the determination unit 34 determines whether or not there is an abnormality in the blade mounting portion 12 or the blade portion based on the measurement result of the acceleration sensor 142.
  • the determination unit 34 includes, for example, a CPU.
  • the determination unit 34 determines that the blade mounting portion 12 or the blade portion has an abnormality. Further, when the measurement result of the acceleration sensor 142 is less than the threshold value, the determination unit 34 determines that the blade mounting portion 12 or the blade portion is normal, and stores the determination result in the storage unit 35.
  • the display unit 33 displays the determination result of the determination unit 34 accumulated in the storage unit 35.
  • the acceleration sensor 14 is a sensor that measures acceleration in one direction.
  • the rotary machining tool 106 further includes an acceleration sensor 142 which is a sensor for measuring acceleration in one direction.
  • the acceleration sensor 142 measures the acceleration in the fourth measurement direction 143.
  • the fourth measurement direction 143 is a direction along the plane 18 and along a direction orthogonal to the straight line 144 connecting the acceleration sensor 142 and the rotation axis 17.
  • the acceleration sensor 14 can measure the centrifugal acceleration, and the acceleration sensor 142 can measure the acceleration such as vibration caused by cutting, so that more various accelerations can be measured.
  • the rotary machining system 203 is a rotary machining tool 106 further including a wireless communication device 23 for transmitting sensor information indicating a measurement result of the acceleration sensor 14, and a wireless communication device 23. It includes a management device 302 that receives the transmitted sensor information and processes the received sensor information.
  • the configuration in which the first measurement direction 141 of the acceleration sensor 14 is deviated from the direction of the centrifugal acceleration generated in the rotation of the shank portion 11 reduces the sensitivity of the acceleration sensor 14 to the centrifugal acceleration in the first measurement direction 141. be able to.
  • the centrifugal acceleration generated in the rotary machining tool 106 can be measured beyond the limitation of the measurement range of the acceleration sensor 14.
  • the user can grasp whether or not the rotary machining tool 106 is in an appropriate state.
  • FIG. 20 is a partial cross-sectional view showing a modification 1 of the rotary machining tool according to the third embodiment of the present disclosure.
  • the rotary machining tool 107 according to the first modification further includes an acceleration sensor 145.
  • the acceleration sensor 145 is a so-called uniaxial acceleration sensor that measures acceleration in one direction.
  • the acceleration sensor 145 has, for example, a structure similar to that of the acceleration sensor 14 shown in FIG. That is, the acceleration sensor 145 includes, for example, the sensor element 27 shown in FIG. 2, the pedestal portion 28 that supports the sensor element 27, and the housing 29 that houses the sensor element 27 and the pedestal portion 28.
  • the one direction is, for example, a direction perpendicular to the surface on which the sensor element 27 is supported by the pedestal portion 28.
  • FIG. 21 is a cross-sectional view schematically showing a modified example 1 of the rotary machining tool according to the third embodiment of the present disclosure. More specifically, FIG. 21 is a cross-sectional view of the rotary machining tool 107 in FIG. 20 cut in a plane 18 and viewed from the C direction.
  • the acceleration sensor 145 measures the acceleration in the fifth measurement direction 146.
  • the fifth measurement direction 146 is a direction along the plane 18 and along a direction orthogonal to the straight line 147 connecting the acceleration sensor 145 and the rotation axis 17.
  • the acceleration sensor 145 is supported by the support portion 16 shown in FIG. 20, specifically, for example, the support portion 16 shown in FIG. 6 so that the one direction is along the fifth measurement direction 146.
  • the acceleration sensor 145 may be supported by the support portion 162 shown in FIG. 11 or the support portion 165 shown in FIG.
  • the fifth measurement direction 146 is the direction in which vibration is generated due to cutting by the rotary machining tool 107. Further, the fifth measurement direction 146 is a direction in which centrifugal acceleration does not occur. Therefore, the acceleration sensor 145 can measure the acceleration of vibration accompanying cutting, not the centrifugal acceleration, by measuring the acceleration in the fifth measurement direction 146.
  • the fifth measurement direction 146 is a direction in which vibration due to the damage is generated when the blade mounting portion 12 or the blade portion is damaged.
  • the acceleration sensor 145 measures the acceleration in the fifth measurement direction 146 to measure the acceleration of vibration accompanying cutting and the blade mounting, instead of the centrifugal acceleration. It is possible to measure the combined amount with the acceleration due to the vibration caused by the damage caused to the portion 12 or the blade portion.
  • the abnormality of the blade mounting portion 12 or the blade portion can be further improved as compared with the rotary machining tool 106 according to the third embodiment. It can be detected accurately.
  • the position of the blade mounting portion 12 or the blade portion where the abnormality has occurred can be detected more accurately.
  • the torsional stress generated in the shank portion 11 can be calculated based on each measurement result.
  • FIG. 22 is a diagram showing the configuration of the rotary machining tool according to the first modification of the third embodiment of the present disclosure.
  • FIG. 22 is a diagram showing a state in which the rotary machining tool is further equipped with a battery, a wireless communication device, and a housing in addition to the components shown in FIG.
  • the battery, the wireless communication device, and the housing are shown by an alternate long and short dash line, which is an imaginary line.
  • the rotary machining tool 106 further includes a battery 22, a wireless communication device 23, and a housing 24, in addition to the configuration shown in FIG.
  • the wireless communication device 23 is connected to the acceleration sensor 14, the acceleration sensor 142, and the acceleration sensor 145 via a signal line (not shown).
  • the acceleration sensor 14 outputs a measurement signal indicating the acceleration generated by the acceleration sensor 14 to the wireless communication device 23 via a signal line.
  • the acceleration sensor 142 outputs a measurement signal indicating the acceleration generated by the acceleration sensor 142 to the wireless communication device 23 via a signal line.
  • the acceleration sensor 145 outputs a measurement signal indicating the acceleration generated by the acceleration sensor 145 to the wireless communication device 23 via a signal line.
  • the wireless communication device 23 When the wireless communication device 23 receives the measurement signals from the acceleration sensor 14, the acceleration sensor 142, and the acceleration sensor 145, the wireless communication device 23 includes the measurement result indicated by the received measurement signals in the wireless signal and transmits the measurement result to an external management device such as a personal computer.
  • the management device for example, accumulates the received measurement results and processes the accumulated measurement results.
  • FIG. 23 is a diagram showing a configuration of a rotary processing system according to a third embodiment of the present disclosure.
  • the rotary processing system 205 includes a rotary processing device 206 such as a milling machine and a management device 303.
  • the rotary processing device 206 includes a rotary processing tool 107, a drive unit, and a control unit that controls the drive unit.
  • the drive unit is a motor or the like that drives the rotary machining tool 107.
  • the control unit controls the rotation speed of the drive unit and the like.
  • the management device 303 further includes a determination unit 341 as compared with the management device 301 in the rotary machining tool according to the first embodiment.
  • the wireless communication unit 31 wirelessly communicates with the wireless communication device 23 of the rotary processing tool 107.
  • the storage unit 35 contains a program and data for operating the control unit 32 and the determination unit 341, a measurement result received by the wireless communication unit 31 from the rotary machining tool 107, a calculation result of the control unit 32, and a determination of the determination unit 341. Results etc. are saved.
  • the determination unit 341 determines whether or not there is an abnormality in the blade mounting portion 12 or the blade portion based on the measurement results of the acceleration sensor 142 and the acceleration sensor 145.
  • the determination unit 341 includes, for example, a CPU.
  • the determination unit 341 determines that the blade mounting portion 12 or the blade portion has an abnormality. Further, when the measurement results of the acceleration sensor 142 and the acceleration sensor 145 are less than the threshold value, the determination unit 341 determines that the blade mounting portion 12 or the blade portion is normal, and stores the determination result in the storage unit 35.
  • the display unit 33 displays the determination result of the determination unit 341 stored in the storage unit 35.
  • the rotary machining tool 107 is a sensor that measures acceleration in one direction in addition to the configuration of the rotary machining tool 106 shown in FIG.
  • the acceleration sensor 145 is provided.
  • the acceleration sensor 145 measures the acceleration in the fifth measurement direction 146.
  • the fifth measurement direction 146 is a direction along the plane 18 and along a direction orthogonal to the straight line 147 connecting the acceleration sensor 145 and the rotation axis 17.
  • the accelerometer 14 can measure the centrifugal acceleration, and the accelerometer 142 and the acceleration sensor 145 can measure the acceleration such as vibration accompanying cutting, and more various accelerations can be measured. ..
  • the present embodiment relates to a rotary machining tool having a different number of measurement directions from the acceleration sensor as compared with the rotary machining tool 101 according to the first embodiment. Except for the contents described below, the same is true for the rotary machining tool 101 according to the first embodiment.
  • FIG. 24 is a side view showing the configuration of the rotary machining tool according to the fourth embodiment of the present disclosure.
  • the rotary machining tool 108 includes an acceleration sensor 148 instead of the acceleration sensor 14 as compared with the rotary machining tool 101 shown in FIG.
  • FIG. 25 is a perspective view showing the configuration of an acceleration sensor in the rotary machining tool according to the fourth embodiment of the present disclosure.
  • the housing 291 is shown by a two-dot chain line which is an imaginary line.
  • FIG. 26 is a cross-sectional view schematically showing the configuration of the rotary machining tool according to the fourth embodiment of the present disclosure. Specifically, FIG. 26 is a cross-sectional view of a rotary machining tool cut in a plane having a rotation axis as a normal and viewed from the D direction shown in FIG. 24.
  • FIG. 27 is a cross-sectional view of the rotary machining tool according to the fourth embodiment of the present disclosure, cut in a plane passing through the rotary axis and viewed from the B direction shown in FIG. 24.
  • the acceleration sensor 148 is a so-called three-axis acceleration sensor that measures acceleration in three directions.
  • the acceleration sensor 148 includes, for example, a sensor element 271, a pedestal portion 281 that supports the sensor element 271, and a housing 291 that houses the sensor element 271 and the pedestal portion 281.
  • the three directions, specifically, the first direction X1, the second direction Y1 and the third direction Z1 shown in FIG. 25 are three-dimensionally orthogonal to each other, that is, form a three-dimensional orthogonal axis.
  • the first direction X1 is a direction perpendicular to the installation surface, which is the surface on which the sensor element 271 is supported by the pedestal portion 281.
  • the second direction Y1 and the third direction Z1 are on a plane parallel to the installation surface.
  • the acceleration sensor 148 is supported by the support portion 16 shown in FIG. 26, specifically, for example, the support portion 16 shown in FIG.
  • the acceleration sensor 148 may be supported by the support portion 162 shown in FIG. 11 or the support portion 165 shown in FIG.
  • the acceleration sensor 148 measures acceleration in three directions while the predetermined posture is maintained by the support portion 16 shown in FIG. 26.
  • the three directions that is, the first direction X1, the second direction Y1 and the third direction Z1 are the first measurement directions 1410 shown in FIGS. 26 and 27, respectively.
  • the acceleration in the first measurement direction 1410, the acceleration in the second measurement direction 149, and the acceleration in the third direction are measured. measure.
  • the first measurement direction 1410, the second measurement direction 149, and the third measurement direction 150 are three-dimensionally orthogonal to each other, that is, form a three-dimensional orthogonal axis.
  • the first measurement direction 1410 is inclined with respect to each of the plane 18 and the rotation axis 17.
  • the second measurement direction 149 is inclined with respect to each of the plane 18 and the rotation axis 17.
  • the third measurement direction 150 is a direction along the plane 18 and is along a direction orthogonal to the straight line 151 connecting the acceleration sensor 148 and the rotation axis 17.
  • the first measurement direction 1410 is a direction that goes diagonally upward to the right of the paper surface along the paper surface of FIG. 26.
  • the second measurement direction 149 is a direction diagonally downward to the right of the paper surface along the paper surface of FIG. 26.
  • the third measurement direction 150 is a direction perpendicular to the paper surface of FIG. 26 and a direction from the front side to the back side of the paper surface.
  • the first measurement direction 1410 is inclined with respect to the plane 18 at an inclination angle ⁇ . Specifically, the first measurement direction 1410 passes through the acceleration sensor 14 and is tilted at a tilt angle ⁇ with respect to the plane 18 on the plane 15 including the rotation axis 17.
  • the inclination angle ⁇ is a value larger than 0 ° and smaller than 90 °. Further, the inclination angle ⁇ may be 45 ° or not 45 °.
  • the second measurement direction 149 is inclined with respect to the plane 18 toward the side opposite to the first measurement direction 1410 at an inclination angle (90 ° - ⁇ ). Specifically, the second measurement direction 149 is inclined with respect to the plane 18 toward the side opposite to the first measurement direction 1410 at an inclination angle (90 ° ⁇ ).
  • the inclination angle ⁇ is a value larger than 0 ° and smaller than 90 °.
  • the sensitivity of the acceleration sensor 14 to the centrifugal acceleration a in the first measurement direction 1410 can be changed, and the sensitivity of the acceleration sensor 148 to the centrifugal acceleration a in the second measurement direction 149.
  • the sensitivity can be changed.
  • the tilt angle (90 ° ⁇ ) is 85 ° (graph g7)
  • the angle (90 ° ⁇ ) is 5 °
  • the inclination angle ⁇ is 80 ° (graph g6).
  • the tilt angle (90 ° - ⁇ ) is 10 ° and the tilt angle ⁇ is 70 ° (graph g5)
  • the tilt angle (90 ° - ⁇ ) is 20 ° and the tilt angle ⁇ is 60 °.
  • the tilt angle (90 ° ⁇ ) is 30 °.
  • the accelerometer 148 can measure the centrifugal acceleration in the range of 0G to 200G. That is, for example, when the inclination angle ⁇ is 85 ° (graph g7), the acceleration sensor 148 can measure from 0 rpm to about 4000 rpm in the first measurement direction 1410, and the second measurement direction 149. It is possible to measure from 0 rpm to about 14000 rpm.
  • the acceleration sensor 148 can exhibit high resolution in the range of 0 rpm to about 4000 rpm.
  • the measurement of the centrifugal acceleration in the low speed rotation range of 0 rpm to about 4000 rpm is carried out in the first measurement direction 1410, and the measurement of the centrifugal acceleration in the high speed rotation range of about 4000 rpm to about 14000 rpm is performed in the second measurement direction.
  • Centrifugal acceleration can be measured in a wide range of rotation speeds in two measurement directions, mainly in the measurement direction 149 of. Further, in the low speed rotation range, measurement can be performed with high resolution.
  • the acceleration sensor 148 measures the acceleration in the first measurement direction 1410, the acceleration in the second measurement direction 149, and the acceleration in the third measurement direction 150.
  • the first measurement direction 1410, the second measurement direction 149, and the third measurement direction 150 are three-dimensionally orthogonal to each other, that is, form a three-dimensional orthogonal axis.
  • the second measurement direction 149 is inclined with respect to each of the plane 18 and the rotation axis 17.
  • the third measurement direction 150 is a direction along the plane 18 and is along a direction orthogonal to the straight line 151 connecting the acceleration sensor 148 and the rotation axis 17.
  • one acceleration sensor 148 that measures acceleration in three measurement directions can be used to measure centrifugal acceleration and acceleration such as vibration associated with cutting, so that more diverse accelerations can be measured. Can be measured.
  • the number of acceleration sensors attached to the shank portion 11 can be reduced.
  • the inclination angle ⁇ formed by the first measurement direction 1410 and the plane 18 is larger than 0 ° and less than 90 °, and 45 °. Not.
  • the inclination angle ⁇ is 70 ° or more and less than 90 °.
  • the acceleration sensor 148 can measure the centrifugal acceleration corresponding to a larger rotation speed than when the inclination angle ⁇ is 0 °.
  • the inclination angle ⁇ is 80 ° or more and less than 90 °.
  • the accelerometer 148 can measure the centrifugal acceleration corresponding to a larger rotation speed than when the inclination angle ⁇ is 70 ° or more and less than 90 °.
  • FIG. 28 is a partial cross-sectional view showing a modification 1 of the rotary machining tool according to the fourth embodiment of the present disclosure.
  • the rotary machining tool 109 includes a support portion 165 having an angle changing function as shown in FIG. 13 instead of the support portion 16.
  • the rotary machining tool 109 can change the inclination angle ⁇ a and change the inclination angle ⁇ by the angle change function of the support portion 165.
  • the rotary machining tool 109 in addition to the configuration of the rotary machining tool 108, the rotary machining tool 109 further has an inclination angle ⁇ in the first measurement direction 1410 and a second.
  • a support portion 165 for changing the inclination angle (90 ° - ⁇ ) of the measurement direction 149 of 2 is provided.
  • the measurement range of the centrifugal acceleration can be changed according to the rotation speed of the shank portion 11 desired by the user, so that the centrifugal acceleration can be measured more reliably in the measurement range according to the user's request. be able to.
  • the present embodiment relates to a rotary machining tool to which an acceleration sensor is added as compared with the rotary machining tool 108 according to the fourth embodiment. Except for the contents described below, the same is true for the rotary machining tool 108 according to the fourth embodiment.
  • FIG. 29 is a side view showing the configuration of the rotary machining tool according to the fifth embodiment of the present disclosure.
  • the rotary machining tool 110 further includes an acceleration sensor 142 as compared with the rotary machining tool 108 shown in FIG.
  • FIG. 30 is a cross-sectional view schematically showing the configuration of the rotary machining tool according to the fifth embodiment of the present disclosure. Specifically, FIG. 30 is a cross-sectional view of the rotary machining tool 110 in FIG. 29 cut in a plane 18 and viewed from the C direction.
  • the acceleration sensor 142 measures the acceleration in the fourth measurement direction 143.
  • the fourth measurement direction 143 is a direction along the plane 18 and along a direction orthogonal to the straight line 144 connecting the acceleration sensor 142 and the rotation axis 17.
  • the acceleration sensor 142 is a so-called uniaxial acceleration sensor that measures acceleration in one direction.
  • the acceleration sensor 142 has, for example, a structure similar to that of the acceleration sensor 14 shown in FIG. That is, the acceleration sensor 142 includes, for example, the sensor element 27 shown in FIG. 2, the pedestal portion 28 that supports the sensor element 27, and the housing 29 that houses the sensor element 27 and the pedestal portion 28.
  • the one direction is, for example, a direction perpendicular to the installation surface, which is the surface on which the sensor element 27 is supported by the pedestal portion 28.
  • the acceleration sensor 142 is supported by the support portion 16 shown in FIG. 16, specifically, for example, the support portion 16 shown in FIG. 6 so that the one direction is along the fourth measurement direction 143.
  • the acceleration sensor 142 may be supported by the support portion 162 shown in FIG. 11 or the support portion 165 shown in FIG.
  • the fourth measurement direction 143 is the direction in which vibration is generated due to cutting by the rotary machining tool 110. Further, the fourth measurement direction 143 is a direction in which centrifugal acceleration does not occur. Therefore, the acceleration sensor 142 can measure the acceleration of vibration accompanying cutting, not the centrifugal acceleration, by measuring the acceleration in the fourth measurement direction 143.
  • the fourth measurement direction 143 is a direction in which vibration due to the damage is generated when the blade mounting portion 12 or the blade portion is damaged.
  • the acceleration sensor 142 measures the acceleration in the fourth measurement direction 143 to obtain not the centrifugal acceleration but the acceleration of vibration accompanying cutting and the blade mounting. It is possible to measure the combined amount with the acceleration due to the vibration caused by the damage caused to the portion 12 or the blade portion.
  • the present embodiment relates to a rotary machining tool having a third measurement direction different from that of the rotary machining tool 108 according to the fourth embodiment. Except for the contents described below, the same is true for the rotary machining tool 108 according to the fourth embodiment.
  • FIG. 31 is a side view showing the configuration of the rotary machining tool according to the sixth embodiment of the present disclosure.
  • the rotary machining tool 111 includes an acceleration sensor 152 instead of the acceleration sensor 148 in the rotary machining tool 108 according to the fourth embodiment.
  • FIG. 32 is a cross-sectional view schematically showing the configuration of the rotary machining tool according to the sixth embodiment of the present disclosure.
  • FIG. 32 is a cross-sectional view of a rotary machining tool cut in a plane having a rotation axis as a normal and viewed from the D direction.
  • FIG. 33 is a cross-sectional view of the rotary machining tool according to the sixth embodiment of the present disclosure, which is cut in a plane passing through the rotary axis and viewed from the B direction.
  • the acceleration sensor 152 is a so-called three-axis acceleration sensor that measures acceleration in three directions.
  • the acceleration sensor 152 has, for example, the same structure as the acceleration sensor 148 shown in FIG. 25.
  • the acceleration sensor 152 is supported by the support portion 16 shown in FIG. 32, specifically, for example, the support portion 16 shown in FIG.
  • the acceleration sensor 152 may be supported by the support portion 162 shown in FIG. 11 or the support portion 165 shown in FIG.
  • the acceleration sensor 152 measures acceleration in three directions while the support portion 16 maintains a predetermined posture.
  • the acceleration sensor 152 has a state in which the postures of the acceleration sensor 152 are adjusted so that the three directions are along the first measurement direction 1411, the second measurement direction 1490, and the third measurement direction 1500, respectively.
  • the acceleration of the first measurement direction 1411, the acceleration of the second measurement direction 1490, and the acceleration of the third measurement direction 1500 are measured.
  • the first measurement direction 1411, the second measurement direction 1490, and the third measurement direction 1500 are three-dimensionally orthogonal to each other, that is, form a three-dimensional orthogonal axis.
  • the first measurement direction 1411, the second measurement direction 1490, and the third measurement direction 1500 are inclined with respect to each of the plane 18 and the rotation axis 17.
  • the first measurement direction 1411, the second measurement direction 1490, and the third measurement direction 1500 are directions that intersect the paper surface of FIG. 32 and intersect the paper surface of FIG. 33. Further, the first measurement direction 1411 is a direction diagonally upward to the right of the paper surface of FIG. 32. The second measurement direction 1490 and the third measurement direction 1500 are directions diagonally downward to the right of the paper surface of FIG. 32.
  • the angles ⁇ 3 are different from each other.
  • any two of the inclination angle ⁇ 1, the inclination angle ⁇ 2, and the inclination angle ⁇ 3 may be the same as each other.
  • FIG. 34 is a diagram showing an example of the correspondence relationship between the centrifugal acceleration generated in the rotary machining tool and the rotation speed of the rotary machining tool according to the sixth embodiment of the present disclosure.
  • the horizontal axis represents the rotation speed of the shank portion 11
  • the vertical axis represents the centrifugal acceleration generated in the shank portion 11.
  • the graphs g9, g10, and g11 show the correspondence between the centrifugal acceleration and the rotation speed when the inclination angles ⁇ are ⁇ 1, ⁇ 2, and ⁇ 3, respectively.
  • the relationship between ⁇ 1, ⁇ 2, and ⁇ 3 is “ ⁇ 1 ⁇ 2 ⁇ 3”.
  • the acceleration sensor 152 can accurately measure the centrifugal acceleration when the centrifugal acceleration is a value of 0 G to 200 G, and when the centrifugal acceleration exceeds 200 G, it becomes difficult to accurately measure the centrifugal acceleration. It shall be.
  • the acceleration sensor 152 can measure the centrifugal acceleration up to twice or more the rotation speed as compared with the case where the tilt angle ⁇ is ⁇ 1. Further, the acceleration sensor 152 can measure the centrifugal acceleration up to a rotation speed nearly three times higher when the tilt angle ⁇ is ⁇ 3 than when the tilt angle ⁇ is ⁇ 1.
  • the tilt angle ⁇ 1, the tilt angle ⁇ 2, and the tilt angle ⁇ 3 may be the same as each other.
  • FIG. 35 is a partial cross-sectional view showing a modification 1 of the rotary machining tool according to the sixth embodiment of the present disclosure.
  • the rotary machining tool 112 includes a support portion 165 having an angle changing function as shown in FIG. 13 instead of the support portion 16.
  • the rotary machining tool 112 can change the inclination angle ⁇ a and change the inclination angles ⁇ 1 to ⁇ 3 by the angle changing function of the support portion 165.
  • the rotary machining tool 112 is the configuration of the rotary machining tool 111 according to the sixth embodiment of the present disclosure, and further. It is provided with an angle changing unit 167 that changes the inclination angle ⁇ 1 of the measurement direction 1411 of 1, the inclination angle ⁇ 2 of the second measurement direction 1490, and the inclination angle ⁇ 3 of the third measurement direction 1500.
  • the measurement range of the centrifugal acceleration can be changed according to the rotation speed of the shank portion 11 desired by the user, so that the centrifugal acceleration can be measured more reliably in the measurement range according to the user's request. be able to.
  • Appendix 1 It is a rotary processing device Rotating tools and Equipped with a management device The rotary machining tool Shaft part and With the blade mounting portion or the blade portion provided at the end of the shaft portion, Including a first acceleration sensor attached to the shaft portion The first acceleration sensor measures the acceleration in the first measurement direction that is inclined with respect to each of the plane having the rotation axis of the shaft portion as a normal and the rotation axis.
  • the management device is At least one of the angular velocity and the rotation speed of the shaft portion is calculated based on the measurement result of the acceleration sensor, the inclination angle in the first measurement direction, and the distance between the first acceleration sensor and the rotation axis.
  • Control unit and A rotary processing apparatus including a display unit that displays a calculation result of the control unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

This rotary machining tool is provided with: a shaft portion; a blade attachment portion or a blade portion provided at an end part of the shaft portion; and a first acceleration sensor attached to the shaft portion, the first acceleration sensor measuring an acceleration rate in a first measurement direction which is inclined with respect to each of: a plane with a normal line corresponding to a rotational axis of the shaft portion; and the rotational axis.

Description

回転加工工具および回転加工システムRotating tools and rotating systems
 本開示は、回転加工工具および回転加工システムに関する。 This disclosure relates to rotary machining tools and rotary machining systems.
 特許文献1(特開2003-62713号公報)には、以下のような回転加工工具が開示されている。すなわち、径寸法が一定の円柱形状のストレートシャンクと加工部とを同軸上に一体的に有し、該ストレートシャンクがホルダの挿入部に軸方向から挿入されて着脱可能に保持されるとともに、その状態で軸心まわりに回転駆動されることにより、前記加工部によって所定の加工を行うストレートシャンク回転加工工具において、前記ストレートシャンクには、前記ホルダの挿入部に挿入される際に軸方向において該ホルダと係合させられ、該ホルダからの前記加工部の突出寸法を規定するストッパが設けられていることを特徴とするものである。 Patent Document 1 (Japanese Unexamined Patent Publication No. 2003-62713) discloses the following rotary machining tools. That is, a cylindrical straight shank having a constant diameter and a processed portion are coaxially integrally provided, and the straight shank is inserted into the insertion portion of the holder from the axial direction and held detachably. In a straight shank rotary machining tool that performs a predetermined machining by the machining portion by being rotationally driven around the axis in a state, the straight shank is provided with the straight shank in the axial direction when inserted into the insertion portion of the holder. It is characterized in that a stopper that is engaged with the holder and defines the protruding dimension of the processed portion from the holder is provided.
特開2003-62713号公報Japanese Unexamined Patent Publication No. 2003-62713
 本開示の回転加工工具は、シャフト部と、前記シャフト部の端部に設けられる刃取付部または刃部と、前記シャフト部に取り付けられる第1の加速度センサとを備え、前記第1の加速度センサは、前記シャフト部の回転軸を法線とする平面に対して傾斜し、かつ前記回転軸に対して傾斜する第1の計測方向を有する。 The rotary machining tool of the present disclosure includes a shaft portion, a blade mounting portion or a blade portion provided at an end portion of the shaft portion, and a first acceleration sensor attached to the shaft portion, and the first acceleration sensor. Has a first measurement direction that is inclined with respect to a plane having the rotation axis of the shaft portion as a normal and is inclined with respect to the rotation axis.
 本開示の回転加工工具は、シャフト部と、前記シャフト部の端部に設けられる刃取付部または刃部と、前記シャフト部において第1の加速度センサを支持する支持部と備え、前記支持部は、前記第1の加速度センサの第1の計測方向が、前記シャフト部の回転軸を法線とする平面および前記回転軸の各々に対して傾斜するように前記第1の加速度センサを支持する。 The rotary processing tool of the present disclosure includes a shaft portion, a blade mounting portion or a blade portion provided at an end portion of the shaft portion, and a support portion that supports the first acceleration sensor in the shaft portion, and the support portion includes the support portion. The first acceleration sensor is supported so that the first measurement direction of the first acceleration sensor is inclined with respect to each of the plane having the rotation axis of the shaft portion as a normal line and the rotation axis.
 本開示の回転加工システムは、回転加工工具と、管理装置とを備え、前記回転加工工具は、シャフト部と、前記シャフト部の端部に設けられる刃取付部または刃部と、前記シャフト部に取り付けられる第1の加速度センサとを含み、前記第1の加速度センサは、前記シャフト部の回転軸を法線とする平面に対して傾斜し、かつ前記回転軸に対して傾斜する第1の計測方向を有し、前記回転加工工具は、さらに、前記第1の加速度センサの計測結果を示すセンサ情報を送信する無線通信装置を含み、前記管理装置は、前記無線通信装置から送信される前記センサ情報を受信し、受信した前記センサ情報を処理する。 The rotary machining system of the present disclosure includes a rotary machining tool and a management device, and the rotary machining tool is provided on a shaft portion, a blade mounting portion or a blade portion provided at an end portion of the shaft portion, and the shaft portion. A first measurement including a first accelerometer to be attached, wherein the first accelerometer is tilted with respect to a plane having a rotation axis of the shaft portion as a normal line and is tilted with respect to the rotation axis. The rotary processing tool further includes a wireless communication device having a direction and transmitting sensor information indicating a measurement result of the first acceleration sensor, and the management device is the sensor transmitted from the wireless communication device. The information is received and the received sensor information is processed.
 本開示の回転加工システムは、回転加工工具と、管理装置とを備え、前記回転加工工具は、シャフト部と、前記シャフト部の端部に設けられる刃取付部または刃部と、前記シャフト部において第1の加速度センサを支持する支持部と含み、前記支持部は、前記第1の加速度センサの第1の計測方向が、前記シャフト部の回転軸を法線とする平面および前記回転軸の各々に対して傾斜するように前記第1の加速度センサを支持し、前記回転加工工具は、さらに、前記第1の加速度センサの計測結果を示すセンサ情報を送信する無線通信装置を含み、前記管理装置は、前記無線通信装置から送信される前記センサ情報を受信し、受信した前記センサ情報を処理する。 The rotary machining system of the present disclosure includes a rotary machining tool and a management device, and the rotary machining tool includes a shaft portion, a blade mounting portion or a blade portion provided at an end portion of the shaft portion, and the shaft portion. The support portion includes a support portion that supports the first acceleration sensor, and the support portion includes a plane in which the first measurement direction of the first acceleration sensor is normal to the rotation axis of the shaft portion, and each of the rotation axes. The management device includes a wireless communication device that supports the first acceleration sensor so as to be inclined with respect to the first acceleration sensor, and further transmits sensor information indicating a measurement result of the first acceleration sensor. Receives the sensor information transmitted from the wireless communication device and processes the received sensor information.
図1は、本開示の第1の実施の形態に係る回転加工工具の構成を示す側面図である。FIG. 1 is a side view showing a configuration of a rotary machining tool according to the first embodiment of the present disclosure. 図2は、本開示の第1の実施の形態に係る、回転加工工具に発生する遠心加速度と加速度センサの計測方向との対応関係を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing the correspondence relationship between the centrifugal acceleration generated in the rotary machining tool and the measurement direction of the acceleration sensor according to the first embodiment of the present disclosure. 図3は、本開示の第1の実施の形態に係る、回転加工工具に発生する遠心加速度と加速度センサの計測方向との対応関係を示す図である。FIG. 3 is a diagram showing a correspondence relationship between the centrifugal acceleration generated in the rotary machining tool and the measurement direction of the acceleration sensor according to the first embodiment of the present disclosure. 図4は、本開示の第1の実施の形態に係る、回転加工工具に発生する遠心加速度と回転加工工具の回転数との対応関係の一例を示す図である。FIG. 4 is a diagram showing an example of the correspondence relationship between the centrifugal acceleration generated in the rotary machining tool and the rotation speed of the rotary machining tool according to the first embodiment of the present disclosure. 図5は、本開示の第1の実施の形態に係る回転加工工具の構成を示す矢視図である。FIG. 5 is an arrow view showing the configuration of the rotary machining tool according to the first embodiment of the present disclosure. 図6は、本開示の第1の実施の形態に係る回転加工工具における支持部の構成を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing the configuration of a support portion in the rotary machining tool according to the first embodiment of the present disclosure. 図7は、本開示の第1の実施の形態に係る回転加工工具の構成を示す図である。FIG. 7 is a diagram showing a configuration of a rotary machining tool according to the first embodiment of the present disclosure. 図8は、本開示の第1の実施の形態に係る回転加工システムの構成を示す図である。FIG. 8 is a diagram showing a configuration of a rotary processing system according to the first embodiment of the present disclosure. 図9は、本開示の第1の実施の形態に係る回転加工工具の構成の他の例を示す側面図である。FIG. 9 is a side view showing another example of the configuration of the rotary machining tool according to the first embodiment of the present disclosure. 図10は、本開示の第1の実施の形態に係る回転加工工具の構成の他の例を示す側面図である。FIG. 10 is a side view showing another example of the configuration of the rotary machining tool according to the first embodiment of the present disclosure. 図11は、本開示の第2の実施の形態に係る回転加工工具の構成を示す側面図である。FIG. 11 is a side view showing the configuration of the rotary machining tool according to the second embodiment of the present disclosure. 図12は、本開示の第2の実施の形態に係る回転加工工具における支持部の構成を示す平面図である。FIG. 12 is a plan view showing a configuration of a support portion in the rotary machining tool according to the second embodiment of the present disclosure. 図13は、本開示の第2の実施の形態に係る回転加工工具の変形例1を示す部分断面図である。FIG. 13 is a partial cross-sectional view showing a modification 1 of the rotary machining tool according to the second embodiment of the present disclosure. 図14は、本開示の第2の実施の形態に係る回転加工工具の変形例1における制御部の構成を示すブロック図である。FIG. 14 is a block diagram showing a configuration of a control unit in the first modification of the rotary machining tool according to the second embodiment of the present disclosure. 図15は、本開示の第2の実施の形態の変形例1における制御部の処理の手順を定めたフローチャートである。FIG. 15 is a flowchart defining the processing procedure of the control unit in the first modification of the second embodiment of the present disclosure. 図16は、本開示の第3の実施の形態に係る回転加工工具の構成を示す側面図である。FIG. 16 is a side view showing the configuration of the rotary machining tool according to the third embodiment of the present disclosure. 図17は、本開示の第3の実施の形態に係る回転加工工具の構成を模式的に示す断面図である。FIG. 17 is a cross-sectional view schematically showing the configuration of the rotary machining tool according to the third embodiment of the present disclosure. 図18は、本開示の第3の実施の形態に係る回転加工工具の構成を示す図である。FIG. 18 is a diagram showing a configuration of a rotary machining tool according to a third embodiment of the present disclosure. 図19は、本開示の第3の実施の形態に係る回転加工システムの構成を示す図である。FIG. 19 is a diagram showing a configuration of a rotary processing system according to a third embodiment of the present disclosure. 図20は、本開示の第3の実施の形態に係る回転加工工具の変形例1を示す部分断面図である。FIG. 20 is a partial cross-sectional view showing a modification 1 of the rotary machining tool according to the third embodiment of the present disclosure. 図21は、本開示の第3の実施の形態に係る回転加工工具の変形例1を模式的に示す断面図である。FIG. 21 is a cross-sectional view schematically showing a modified example 1 of the rotary machining tool according to the third embodiment of the present disclosure. 図22は、本開示の第3の実施の形態の変形例1に係る回転加工工具の構成を示す図である。FIG. 22 is a diagram showing a configuration of a rotary machining tool according to a first modification of the third embodiment of the present disclosure. 図23は、本開示の第3の実施の形態に係る回転加工システムの構成を示す図である。FIG. 23 is a diagram showing a configuration of a rotary processing system according to a third embodiment of the present disclosure. 図24は、本開示の第4の実施の形態に係る回転加工工具の構成を示す側面図である。FIG. 24 is a side view showing the configuration of the rotary machining tool according to the fourth embodiment of the present disclosure. 図25は、本開示の第4の実施の形態に係る回転加工工具における加速度センサの構成を示す斜視図である。FIG. 25 is a perspective view showing the configuration of an acceleration sensor in the rotary machining tool according to the fourth embodiment of the present disclosure. 図26は、本開示の第4の実施の形態に係る回転加工工具の構成を模式的に示す断面図である。FIG. 26 is a cross-sectional view schematically showing the configuration of the rotary machining tool according to the fourth embodiment of the present disclosure. 図27は、本開示の第4の実施の形態に係る回転加工工具を、回転軸を通る平面において切断してB方向から見た断面図である。FIG. 27 is a cross-sectional view of the rotary machining tool according to the fourth embodiment of the present disclosure, which is cut in a plane passing through the rotary axis and viewed from the B direction. 図28は、本開示の第4の実施の形態に係る回転加工工具の変形例1を示す部分断面図である。FIG. 28 is a partial cross-sectional view showing a modification 1 of the rotary machining tool according to the fourth embodiment of the present disclosure. 図29は、本開示の第5の実施の形態に係る回転加工工具の構成を示す側面図である。FIG. 29 is a side view showing the configuration of the rotary machining tool according to the fifth embodiment of the present disclosure. 図30は、本開示の第5の実施の形態に係る回転加工工具の構成を模式的に示す断面図である。FIG. 30 is a cross-sectional view schematically showing the configuration of the rotary machining tool according to the fifth embodiment of the present disclosure. 図31は、本開示の第6の実施の形態に係る回転加工工具の構成を示す側面図である。FIG. 31 is a side view showing the configuration of the rotary machining tool according to the sixth embodiment of the present disclosure. 図32は、本開示の第6の実施の形態に係る回転加工工具の構成を模式的に示す断面図である。FIG. 32 is a cross-sectional view schematically showing the configuration of the rotary machining tool according to the sixth embodiment of the present disclosure. 図33は、本開示の第6の実施の形態に係る回転加工工具を、回転軸を通る平面において切断してB方向から見た断面図である。FIG. 33 is a cross-sectional view of the rotary machining tool according to the sixth embodiment of the present disclosure, which is cut in a plane passing through the rotary axis and viewed from the B direction. 図34は、本開示の第6の実施の形態に係る、回転加工工具に発生する遠心加速度と回転加工工具の回転数との対応関係の一例を示す図である。FIG. 34 is a diagram showing an example of the correspondence relationship between the centrifugal acceleration generated in the rotary machining tool and the rotation speed of the rotary machining tool according to the sixth embodiment of the present disclosure. 図35は、本開示の第6の実施の形態に係る回転加工工具の変形例1を示す部分断面図である。FIG. 35 is a partial cross-sectional view showing a modification 1 of the rotary machining tool according to the sixth embodiment of the present disclosure.
 従来、たとえばフライスカッターおよびドリルのような回転加工工具が開発されている。 Conventionally, rotary machining tools such as milling cutters and drills have been developed.
 [本開示が解決しようとする課題]
 回転加工工具に加速度センサを取り付けることにより、回転によって生じる遠心加速度を計測することができる。このような遠心加速度を計測可能な優れた技術が望まれる。
[Issues to be solved by this disclosure]
By attaching an acceleration sensor to the rotary machining tool, the centrifugal acceleration generated by rotation can be measured. An excellent technique capable of measuring such centrifugal acceleration is desired.
 本開示は、上述の課題を解決するためになされたもので、その目的は、加速度センサの計測範囲の制限を超えて、回転加工工具において生じる遠心加速度を計測することができる回転加工工具および回転加工システムを提供することである。 The present disclosure has been made to solve the above-mentioned problems, and an object thereof is a rotary machining tool and a rotary machine capable of measuring centrifugal acceleration generated in a rotary machining tool beyond the limit of the measurement range of an acceleration sensor. It is to provide a processing system.
 [本開示の効果]
 本開示によれば、加速度センサの計測範囲の制限を超えて、回転加工工具において生じる遠心加速度を計測することができる。
[Effect of the present disclosure]
According to the present disclosure, it is possible to measure the centrifugal acceleration generated in a rotary machining tool beyond the limit of the measurement range of the acceleration sensor.
 [本願発明の実施形態の説明]
 最初に、本開示の実施形態の内容を列記して説明する。
[Explanation of Embodiments of the Invention]
First, the contents of the embodiments of the present disclosure will be listed and described.
 (1)本開示の実施の形態に係る回転加工工具は、シャフト部と、前記シャフト部の端部に設けられる刃取付部または刃部と、前記シャフト部に取り付けられる第1の加速度センサとを備え、前記第1の加速度センサは、前記シャフト部の回転軸を法線とする平面および前記回転軸の各々に対して傾斜する第1の計測方向の加速度を計測する。 (1) The rotary machining tool according to the embodiment of the present disclosure includes a shaft portion, a blade mounting portion or a blade portion provided at an end portion of the shaft portion, and a first acceleration sensor attached to the shaft portion. The first acceleration sensor measures acceleration in a first measurement direction that is inclined with respect to each of a plane having a rotation axis of the shaft portion as a normal line and each of the rotation axes.
 このように、第1の加速度センサの計測方向を、シャフト部の回転によって生じる遠心加速度の方向からずらす構成により、遠心加速度に対する第1の加速度センサの計測方向における感度を低下させることができる。したがって、加速度センサの計測範囲の制限を超えて、回転加工工具において生じる遠心加速度を計測することができる。 As described above, the sensitivity of the first acceleration sensor in the measurement direction to the centrifugal acceleration can be lowered by the configuration in which the measurement direction of the first acceleration sensor is deviated from the direction of the centrifugal acceleration generated by the rotation of the shaft portion. Therefore, it is possible to measure the centrifugal acceleration generated in the rotary machining tool beyond the limit of the measurement range of the acceleration sensor.
 (2)好ましくは、前記回転加工工具は、さらに、前記第1の計測方向の傾斜角度を変更する角度変更部を備える。 (2) Preferably, the rotary machining tool further includes an angle changing portion for changing the inclination angle in the first measurement direction.
 このような構成により、たとえばユーザが所望するシャフト部の回転数に応じて遠心加速度の計測範囲を変更することができるため、ユーザの要望に応じた計測範囲において遠心加速度をより確実に計測することができる。 With such a configuration, for example, the measurement range of the centrifugal acceleration can be changed according to the rotation speed of the shaft portion desired by the user, so that the centrifugal acceleration can be measured more reliably in the measurement range according to the user's request. Can be done.
 (3)好ましくは、前記第1の加速度センサは、さらに、第2の計測方向の加速度および第3の計測方向の加速度を計測し、前記第1の計測方向、前記第2の計測方向および前記第3の計測方向は、3次元的に互いに直交し、前記第2の計測方向は、前記平面および前記回転軸の各々に対して傾斜し、前記第3の計測方向は、前記平面に沿った方向であって、前記第1の加速度センサと前記回転軸とを結ぶ直線に対して直交する方向に沿う。 (3) Preferably, the first acceleration sensor further measures the acceleration in the second measurement direction and the acceleration in the third measurement direction, and the first measurement direction, the second measurement direction, and the said. The third measurement direction is three-dimensionally orthogonal to each other, the second measurement direction is inclined with respect to each of the plane and the rotation axis, and the third measurement direction is along the plane. The direction is along a direction orthogonal to the straight line connecting the first acceleration sensor and the rotation axis.
 このような構成により、3つの計測方向において加速度を計測する加速度センサをたとえば1つ用いて、遠心加速度を計測するとともに、切削に伴う振動等の加速度を計測することができ、より多様な加速度を計測することができる。また、たとえば1つの加速度センサによって広範な遠心加速度を計測することができ、加速度センサのシャフト部への取り付け数をより少なくすることができる。 With such a configuration, for example, one acceleration sensor that measures acceleration in three measurement directions can be used to measure centrifugal acceleration and acceleration such as vibration associated with cutting, so that more diverse accelerations can be obtained. Can be measured. Further, for example, a wide range of centrifugal accelerations can be measured by one acceleration sensor, and the number of acceleration sensors attached to the shaft portion can be reduced.
 (4)好ましくは、前記回転加工工具は、さらに、前記第1の計測方向の傾斜角度および前記第2の計測方向の傾斜角度を変更する角度変更部を備える。 (4) Preferably, the rotary machining tool further includes an angle changing portion for changing the inclination angle in the first measurement direction and the inclination angle in the second measurement direction.
 このような構成により、たとえばユーザが所望するシャフト部の回転数に応じて遠心加速度の計測範囲を変更することができるため、ユーザの要望に応じた計測範囲において遠心加速度をより確実に計測することができる。 With such a configuration, for example, the measurement range of the centrifugal acceleration can be changed according to the rotation speed of the shaft portion desired by the user, so that the centrifugal acceleration can be measured more reliably in the measurement range according to the user's request. Can be done.
 (5)好ましくは、前記第1の加速度センサは、一方向の加速度を計測するセンサであり、前記回転加工工具は、さらに、一方向の加速度を計測するセンサである第2の加速度センサを備え、前記第2の加速度センサは、第4の計測方向の加速度を計測し、前記第4の計測方向は、前記平面に沿った方向であって、前記第2の加速度センサと前記回転軸とを結ぶ直線に対して直交する方向に沿う。 (5) Preferably, the first acceleration sensor is a sensor that measures acceleration in one direction, and the rotary machining tool further includes a second acceleration sensor that is a sensor that measures acceleration in one direction. The second acceleration sensor measures the acceleration in the fourth measurement direction, and the fourth measurement direction is a direction along the plane, and the second acceleration sensor and the rotation axis are connected to each other. Along the direction orthogonal to the connecting straight line.
 このような構成により、第1の加速度センサにより遠心加速度を計測するとともに、第2の加速度センサにより、切削に伴う振動等の加速度を計測することができ、より多様な加速度を計測することができる。 With such a configuration, the first acceleration sensor can measure the centrifugal acceleration, and the second acceleration sensor can measure the acceleration such as vibration caused by cutting, so that more various accelerations can be measured. ..
 (6)より好ましくは、前記回転加工工具は、さらに、一方向の加速度を計測するセンサである第3の加速度センサを備え、前記第3の加速度センサは、第5の計測方向の加速度を計測し、前記第5の計測方向は、前記平面に沿った方向であって、前記第1の加速度センサと前記回転軸とを結ぶ直線に対して直交する方向に沿う。 (6) More preferably, the rotary machining tool further includes a third acceleration sensor which is a sensor for measuring acceleration in one direction, and the third acceleration sensor measures acceleration in the fifth measurement direction. The fifth measurement direction is along the plane and is perpendicular to the straight line connecting the first acceleration sensor and the rotation axis.
 このような構成により、第1の加速度センサにより遠心加速度を計測するとともに、第3の加速度センサにより、切削に伴う振動等の加速度を計測することができ、より多様な加速度を計測することができる。 With such a configuration, the centrifugal acceleration can be measured by the first acceleration sensor, and the acceleration such as vibration accompanying cutting can be measured by the third acceleration sensor, and more various accelerations can be measured. ..
 (7)好ましくは、前記第1の加速度センサは、三方向の加速度を計測するセンサであり、前記第1の加速度センサは、前記第1の計測方向の加速度、第2の計測方向の加速度および第3の計測方向の加速度を計測し、前記第1の計測方向、前記第2の計測方向および前記第3の計測方向は、3次元的に互いに直交し、前記第2の計測方向および前記第3の計測方向は、前記平面および前記回転軸の各々に対して傾斜し、前記第1の計測方向、前記第2の計測方向および前記第3の計測方向の各々が、前記平面において前記第1の加速度センサと前記回転軸とを結ぶ直線に対してなす角度のうち、少なくともいずれか2つが互いに異なる。 (7) Preferably, the first acceleration sensor is a sensor that measures acceleration in three directions, and the first acceleration sensor includes acceleration in the first measurement direction, acceleration in the second measurement direction, and The acceleration in the third measurement direction is measured, and the first measurement direction, the second measurement direction, and the third measurement direction are three-dimensionally orthogonal to each other, and the second measurement direction and the second measurement direction are measured. The measurement direction of 3 is inclined with respect to each of the plane and the rotation axis, and each of the first measurement direction, the second measurement direction, and the third measurement direction is the first in the plane. At least two of the angles formed with respect to the straight line connecting the acceleration sensor and the rotation axis are different from each other.
 このような構成により、1つの加速度センサを用いて、少なくとも2つの異なる計測範囲において遠心加速度を計測することができる。これにより、たとえば1つの加速度センサによって広範な遠心加速度を計測することができ、加速度センサのシャフト部への取り付け数をより少なくすることができる。 With such a configuration, one acceleration sensor can be used to measure centrifugal acceleration in at least two different measurement ranges. Thereby, for example, a wide range of centrifugal acceleration can be measured by one acceleration sensor, and the number of accelerometers attached to the shaft portion can be reduced.
 (8)好ましくは、前記回転加工工具は、さらに、前記第1の計測方向の傾斜角度、前記第2の計測方向の傾斜角度および前記第3の計測方向の傾斜角度を変更する角度変更部を備える。 (8) Preferably, the rotary machining tool further includes an angle changing portion for changing the inclination angle in the first measurement direction, the inclination angle in the second measurement direction, and the inclination angle in the third measurement direction. Be prepared.
 このような構成により、たとえばユーザが所望するシャフト部の回転数に応じて遠心加速度の計測範囲を変更することができるため、ユーザの要望に応じた計測範囲において遠心加速度をより確実に計測することができる。 With such a configuration, for example, the measurement range of the centrifugal acceleration can be changed according to the rotation speed of the shaft portion desired by the user, so that the centrifugal acceleration can be measured more reliably in the measurement range according to the user's request. Can be done.
 (9)より好ましくは、前記角度変更部は、前記第1の加速度センサが計測可能な加速度の範囲、前記第1の加速度センサおよび前記シャフト部の回転軸間の距離、ならびに前記シャフト部の回転数に基づいて、前記傾斜角度を変更する。 (9) More preferably, the angle changing portion includes the range of acceleration that can be measured by the first acceleration sensor, the distance between the first acceleration sensor and the rotation axis of the shaft portion, and the rotation of the shaft portion. The tilt angle is changed based on the number.
 このような構成により、加速度センサにおいて生じる、計測方向における加速度が、当該加速度センサの計測可能な範囲を超えないような傾斜角度により確実に変更することができる。 With such a configuration, the acceleration generated in the acceleration sensor in the measurement direction can be reliably changed by the inclination angle so as not to exceed the measurable range of the acceleration sensor.
 (10)より好ましくは、前記第1の計測方向と前記平面とがなす角度θは、0°より大きくかつ90°未満であり、かつ45°でない。 More preferably than (10), the angle θ formed by the first measurement direction and the plane is greater than 0 ° and less than 90 °, and is not 45 °.
 このような構成により、3つの計測方向において加速度を計測する加速度センサをたとえば1つ用いて、2つの異なる計測範囲において遠心加速度を計測することができる。これにより、たとえば1つの加速度センサによってより広範な遠心加速度を計測することができる。 With such a configuration, it is possible to measure centrifugal acceleration in two different measurement ranges by using, for example, one acceleration sensor that measures acceleration in three measurement directions. This allows a wider range of centrifugal accelerations to be measured, for example with one accelerometer.
 (11)より好ましくは、前記角度θは、70°以上かつ90°未満である。 More preferably than (11), the angle θ is 70 ° or more and less than 90 °.
 このような構成により、角度θが0°である場合と比べて、加速度センサは、より大きな回転数に対応する遠心加速度を計測することができる。 With such a configuration, the accelerometer can measure the centrifugal acceleration corresponding to a larger rotation speed than when the angle θ is 0 °.
 (12)より好ましくは、前記角度θは、80°以上かつ90°未満である。 More preferably than (12), the angle θ is 80 ° or more and less than 90 °.
 このような構成により、角度θが70°以上かつ90°未満である場合と比べて、加速度センサは、より大きな回転数に対応する遠心加速度を計測することができる。 With such a configuration, the accelerometer can measure the centrifugal acceleration corresponding to a larger rotation speed than when the angle θ is 70 ° or more and less than 90 °.
 (13)前記角度変更部は、前記シャフト部に対して着脱可能である。 (13) The angle changing portion is removable from the shaft portion.
 このような構成により、必要に応じて角度変更部を着脱することができ、ユーザの利便性を高めることができる。 With such a configuration, the angle changing part can be attached and detached as needed, and the convenience of the user can be improved.
 (14)本開示の実施の形態に係る回転加工工具は、シャフト部と、前記シャフト部の端部に設けられる刃取付部または刃部と、前記シャフト部において第1の加速度センサを支持する支持部と備え、前記支持部は、前記第1の加速度センサの第1の計測方向が、前記シャフト部の回転軸を法線とする平面および前記回転軸の各々に対して傾斜するように前記第1の加速度センサを支持する。 (14) The rotary machining tool according to the embodiment of the present disclosure includes a shaft portion, a blade mounting portion or a blade portion provided at an end portion of the shaft portion, and a support for supporting the first acceleration sensor in the shaft portion. The support portion is provided with a portion so that the first measurement direction of the first acceleration sensor is inclined with respect to each of the plane having the rotation axis of the shaft portion as a normal line and the rotation axis. Supports one accelerometer.
 このように、第1の加速度センサの計測方向を、シャフト部の回転において生じる遠心加速度の方向からずらす構成により、遠心加速度に対する第1の加速度センサの計測方向における感度を低下させることができる。したがって、加速度センサの計測範囲の制限を超えて、回転加工工具において生じる遠心加速度を計測することができる。 As described above, the sensitivity of the first acceleration sensor to the centrifugal acceleration in the measurement direction can be lowered by the configuration in which the measurement direction of the first acceleration sensor is deviated from the direction of the centrifugal acceleration generated in the rotation of the shaft portion. Therefore, it is possible to measure the centrifugal acceleration generated in the rotary machining tool beyond the limit of the measurement range of the acceleration sensor.
 (15)本開示の実施の形態に係る回転加工システムは、前記第1の加速度センサの計測結果を示すセンサ情報を送信する無線通信装置をさらに備える上記(1)から上記(14)のいずれか1つに記載の回転加工工具と、前記無線通信装置から送信される前記センサ情報を受信し、受信した前記センサ情報を処理する管理装置とを備える。 (15) Any of the above (1) to (14), the rotary processing system according to the embodiment of the present disclosure further includes a wireless communication device that transmits sensor information indicating the measurement result of the first acceleration sensor. The rotary processing tool according to one, and a management device that receives the sensor information transmitted from the wireless communication device and processes the received sensor information.
 このように、第1の加速度センサの計測方向を、シャフト部の回転によって生じる遠心加速度の方向からずらす構成により、遠心加速度に対する第1の加速度センサの計測方向における感度を低下させることができる。したがって、加速度センサの計測範囲の制限を超えて、回転加工工具において生じる遠心加速度を計測することができる。また、第1の加速度センサの計測結果を処理する構成により、たとえば、シャフト部の角速度および回転数を算出したり、刃取付部または刃部に異常があるかどうかを判断したりすることができる。すなわち、ユーザは、回転加工工具が適正な状態にあるかどうかを把握することができる。 As described above, the sensitivity of the first acceleration sensor in the measurement direction to the centrifugal acceleration can be lowered by the configuration in which the measurement direction of the first acceleration sensor is deviated from the direction of the centrifugal acceleration generated by the rotation of the shaft portion. Therefore, it is possible to measure the centrifugal acceleration generated in the rotary machining tool beyond the limit of the measurement range of the acceleration sensor. Further, with the configuration for processing the measurement result of the first acceleration sensor, for example, it is possible to calculate the angular velocity and the rotation speed of the shaft portion, and to determine whether or not there is an abnormality in the blade mounting portion or the blade portion. .. That is, the user can grasp whether or not the rotary machining tool is in an appropriate state.
 以下、本発明の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。また、以下に記載する実施の形態の少なくとも一部を任意に組み合わせてもよい。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same or corresponding parts in the drawings are designated by the same reference numerals, and the description thereof will not be repeated. In addition, at least a part of the embodiments described below may be arbitrarily combined.
<第1の実施の形態>
 図1は、本開示の第1の実施の形態に係る回転加工工具の構成を示す側面図である。
<First Embodiment>
FIG. 1 is a side view showing a configuration of a rotary machining tool according to the first embodiment of the present disclosure.
 回転加工工具101は、たとえば、フライス盤等において使用されるエンドミルであり、金属等からなる切削対象物を切削するために使用される。 The rotary machining tool 101 is, for example, an end mill used in a milling machine or the like, and is used for cutting an object to be cut made of metal or the like.
 図1を参照して、回転加工工具101は、シャフト部の一例であるシャンク部11と、刃取付部12と、図示しない刃部と、加速度センサ14と、支持部16とを備える。図1では、支持部16を想像線である二点鎖線により示している。 With reference to FIG. 1, the rotary machining tool 101 includes a shank portion 11 which is an example of a shaft portion, a blade mounting portion 12, a blade portion (not shown), an acceleration sensor 14, and a support portion 16. In FIG. 1, the support portion 16 is shown by a two-dot chain line which is an imaginary line.
 なお、回転加工工具101は、刃部を備えない構成であってもよい。また、刃部は、刃取付部12に一体に固定されてもよいし、刃取付部12に着脱可能に取り付けられてもよい。 The rotary machining tool 101 may be configured not to have a blade portion. Further, the blade portion may be integrally fixed to the blade mounting portion 12, or may be detachably attached to the blade mounting portion 12.
 シャンク部11の基材は、たとえば、切削工具用の超硬合金または金型用鋼により構成されている。 The base material of the shank portion 11 is made of, for example, cemented carbide for cutting tools or steel for dies.
 [課題]
 回転加工工具に加速度センサを取り付けることにより、回転加工工具の回転によって生じる遠心加速度を計測することができる。このような遠心加速度を計測可能な優れた技術が望まれる。しかしながら、シャンク部等の回転体に加速度センサを取り付けると、当該回転体の回転によって生じる遠心加速度が、加速度センサの計測可能範囲を超えてしまい、遠心加速度を計測できないことがある。
[Task]
By attaching an acceleration sensor to the rotary machining tool, it is possible to measure the centrifugal acceleration generated by the rotation of the rotary machining tool. An excellent technique capable of measuring such centrifugal acceleration is desired. However, if the acceleration sensor is attached to a rotating body such as a shank, the centrifugal acceleration generated by the rotation of the rotating body may exceed the measurable range of the acceleration sensor, and the centrifugal acceleration may not be measured.
 そこで、本開示の実施の形態に係る回転加工工具では、以下のような構成により、このような課題を解決する。 Therefore, the rotary machining tool according to the embodiment of the present disclosure solves such a problem by the following configuration.
 図2は、本開示の第1の実施の形態に係る、回転加工工具に発生する遠心加速度と加速度センサの計測方向との対応関係を模式的に示す断面図である。詳細には、図2は、図1に示す回転加工工具101を、回転軸17および加速度センサ14を通る平面において切断し、B方向から見たときの模式的断面図である。 FIG. 2 is a cross-sectional view schematically showing the correspondence relationship between the centrifugal acceleration generated in the rotary machining tool and the measurement direction of the acceleration sensor according to the first embodiment of the present disclosure. More specifically, FIG. 2 is a schematic cross-sectional view of the rotary machining tool 101 shown in FIG. 1 when cut in a plane passing through the rotary shaft 17 and the acceleration sensor 14 and viewed from the B direction.
 図2を参照して、加速度センサ14は、シャンク部11の回転軸17を法線とする平面18および回転軸17の各々に対して傾斜する第1の計測方向141の加速度を計測する。すなわち、加速度センサ14は、第1の計測方向141に感度を有している。図2では、平面18および支持部16を想像線である二点鎖線により示している。 With reference to FIG. 2, the acceleration sensor 14 measures the acceleration in the first measurement direction 141 that is inclined with respect to each of the plane 18 having the rotation axis 17 of the shank portion 11 as the normal line and the rotation axis 17. That is, the acceleration sensor 14 has sensitivity in the first measurement direction 141. In FIG. 2, the plane 18 and the support portion 16 are shown by an alternate long and short dash line which is an imaginary line.
 加速度センサ14は、一方向の加速度を計測する、いわゆる一軸の加速度センサである。加速度センサ14は、たとえば、センサ素子27と、センサ素子27を支持する台座部28と、センサ素子27および台座部28を収容するハウジング29とを含む。加速度センサ14は、上記一方向が第1の計測方向141に沿うように配置される。上記一方向は、たとえば、センサ素子27が台座部28によって支持される面に対して垂直な方向である。 The acceleration sensor 14 is a so-called uniaxial acceleration sensor that measures acceleration in one direction. The acceleration sensor 14 includes, for example, a sensor element 27, a pedestal portion 28 that supports the sensor element 27, and a housing 29 that houses the sensor element 27 and the pedestal portion 28. The acceleration sensor 14 is arranged so that the one direction is along the first measurement direction 141. The one direction is, for example, a direction perpendicular to the surface on which the sensor element 27 is supported by the pedestal portion 28.
 図2に示す例では、半径rのシャンク部11が角速度ω[rad/s]で回転しているときに、加速度センサ14に遠心加速度aが生じている。遠心加速度aが生じる方向は、平面18に沿っている。たとえば、遠心加速度aが生じる方向は、平面18に対して平行である。 In the example shown in FIG. 2, when the shank portion 11 having a radius r is rotating at an angular velocity ω [rad / s], a centrifugal acceleration a is generated in the acceleration sensor 14. The direction in which the centrifugal acceleration a is generated is along the plane 18. For example, the direction in which the centrifugal acceleration a is generated is parallel to the plane 18.
 遠心加速度a[mm/s^2]は、以下の式(1)で表される。 Centrifugal acceleration a [mm / s ^ 2] is expressed by the following equation (1).
 a=(r+d)ω^2  ・・・(1) A = (r + d) ω ^ 2 ... (1)
 ここで、dは、シャンク部11の径方向における、シャンク部11の周面から加速度センサ14におけるセンサ素子までの距離[mm]である。つまり、(r+d)は、シャンク部11の回転軸17および加速度センサ14のセンサ素子間の距離[mm]である。また、演算子「^」は、べき乗を表す。 Here, d is the distance [mm] from the peripheral surface of the shank portion 11 to the sensor element in the acceleration sensor 14 in the radial direction of the shank portion 11. That is, (r + d) is the distance [mm] between the rotating shaft 17 of the shank portion 11 and the sensor element of the acceleration sensor 14. The operator "^" represents a power.
 図3は、本開示の第1の実施の形態に係る、回転加工工具に発生する遠心加速度と加速度センサの計測方向との対応関係を示す図である。 FIG. 3 is a diagram showing a correspondence relationship between the centrifugal acceleration generated in the rotary machining tool and the measurement direction of the acceleration sensor according to the first embodiment of the present disclosure.
 図3を参照して、第1の計測方向141は、平面18に対して角度θ(以下、傾斜角度θとも称する)で傾斜する。詳細には、第1の計測方向141は、加速度センサ14および回転軸17を含む平面15において、平面18に対して傾斜角度θで傾斜する。ここで、θは、0°より大きく、かつ90°より小さい値である。 With reference to FIG. 3, the first measurement direction 141 is inclined with respect to the plane 18 at an angle θ (hereinafter, also referred to as an inclination angle θ). Specifically, the first measurement direction 141 is tilted at a tilt angle θ with respect to the plane 18 on the plane 15 including the acceleration sensor 14 and the rotation axis 17. Here, θ is a value larger than 0 ° and smaller than 90 °.
 第1の計測方向141には、遠心加速度aの余弦に相当する大きさの遠心加速度a1が生じる。すなわち、第1の計測方向141において生じる遠心加速度a1[mm/s^2]は、以下の式(2)で表される。 In the first measurement direction 141, a centrifugal acceleration a1 having a size corresponding to the cosine of the centrifugal acceleration a is generated. That is, the centrifugal acceleration a1 [mm / s ^ 2] generated in the first measurement direction 141 is represented by the following equation (2).
 a1=(r+d)ω^2×cosθ  ・・・(2) A1 = (r + d) ω ^ 2 x cosθ ... (2)
 すなわち、遠心加速度a1は、第1の計測方向141と平面18とがなす傾斜角度θに応じて変化する。また、θが0°より大きくかつ90°より小さい範囲において、遠心加速度a1は、遠心加速度aよりも小さい。つまり、傾斜角度θが大きくなるにつれて、遠心加速度a1は小さくなる。 That is, the centrifugal acceleration a1 changes according to the inclination angle θ formed by the first measurement direction 141 and the plane 18. Further, in the range where θ is larger than 0 ° and smaller than 90 °, the centrifugal acceleration a1 is smaller than the centrifugal acceleration a. That is, as the inclination angle θ increases, the centrifugal acceleration a1 decreases.
 したがって、傾斜角度θを変化させることにより、遠心加速度aに対する加速度センサ14の第1の計測方向141における感度を変化させることができる。具体的には、傾斜角度θを0°より大きくかつ90°より小さい範囲において増加させることにより、遠心加速度aに対する加速度センサ14の第1の計測方向141における感度を低下させることができる。 Therefore, by changing the inclination angle θ, the sensitivity of the acceleration sensor 14 to the centrifugal acceleration a in the first measurement direction 141 can be changed. Specifically, by increasing the inclination angle θ in a range larger than 0 ° and smaller than 90 °, the sensitivity of the acceleration sensor 14 to the centrifugal acceleration a in the first measurement direction 141 can be lowered.
 図4は、本開示の第1の実施の形態に係る、回転加工工具に発生する遠心加速度と回転加工工具の回転数との対応関係の一例を示す図である。 FIG. 4 is a diagram showing an example of the correspondence relationship between the centrifugal acceleration generated in the rotary machining tool and the rotation speed of the rotary machining tool according to the first embodiment of the present disclosure.
 図4において、横軸はシャンク部11の回転数、縦軸はシャンク部11において生じる遠心加速度を示す。また、グラフg1,g2,g3は、それぞれ、傾斜角度θが0°,45°,60°である場合の遠心加速度と回転数との対応関係を示す。また、グラフg5,g6,g7は、それぞれ、傾斜角度θが70°,80°,89°である場合の遠心加速度と回転数との対応関係を示す。 In FIG. 4, the horizontal axis represents the rotation speed of the shank portion 11, and the vertical axis represents the centrifugal acceleration generated in the shank portion 11. The graphs g1, g2, and g3 show the correspondence between the centrifugal acceleration and the rotation speed when the inclination angles θ are 0 °, 45 °, and 60 °, respectively. Further, the graphs g5, g6, and g7 show the correspondence between the centrifugal acceleration and the rotation speed when the inclination angles θ are 70 °, 80 °, and 89 °, respectively.
 図4に示す例では、加速度センサ14は、遠心加速度が0G~200Gの値である場合に遠心加速度を正確に計測することができる。また、加速度センサ14は、遠心加速度が200Gを超えると、遠心加速度を正確に計測することが困難となる。 In the example shown in FIG. 4, the acceleration sensor 14 can accurately measure the centrifugal acceleration when the centrifugal acceleration is a value of 0 G to 200 G. Further, when the centrifugal acceleration exceeds 200 G, it becomes difficult for the acceleration sensor 14 to accurately measure the centrifugal acceleration.
 図4を参照して、傾斜角度θが0°である場合、回転数が約3000rpmまで増加した時点で遠心加速度が200Gに達する(グラフg1)。また、角度θが30°である場合、回転数が約3200rpmまで増加した時点で遠心加速度が200Gに達する(グラフg2)。 With reference to FIG. 4, when the inclination angle θ is 0 °, the centrifugal acceleration reaches 200 G when the rotation speed increases to about 3000 rpm (graph g1). Further, when the angle θ is 30 °, the centrifugal acceleration reaches 200 G when the rotation speed increases to about 3200 rpm (graph g2).
 また、傾斜角度θが45°である場合、回転数が約3500rpmまで増加した時点で遠心加速度が200Gに達する(グラフg3)。傾斜角度θが60°である場合、回転数が約4000rpmまで増加した時点で遠心加速度が200Gに達する(グラフg4)。 Further, when the inclination angle θ is 45 °, the centrifugal acceleration reaches 200 G when the rotation speed increases to about 3500 rpm (graph g3). When the inclination angle θ is 60 °, the centrifugal acceleration reaches 200 G when the rotation speed increases to about 4000 rpm (graph g4).
 また、傾斜角度θが70°である場合、回転数が約5000rpmまで増加した時点で遠心加速度が200Gに達する(グラフg5)。傾斜角度θが80°である場合、回転数が約7000rpmまで増加した時点で遠心加速度が200Gに達する(グラフg6)。 Further, when the inclination angle θ is 70 °, the centrifugal acceleration reaches 200 G when the rotation speed increases to about 5000 rpm (graph g5). When the inclination angle θ is 80 °, the centrifugal acceleration reaches 200 G when the rotation speed increases to about 7000 rpm (graph g6).
 また、傾斜角度θが85°である場合、回転数が約10000rpmまで増加した時点で遠心加速度が200Gに達する(グラフg7)。傾斜角度θが89°である場合、回転数が約20000rpmより大きい回転数まで増加した時点で遠心加速度が200Gに達する(グラフg8)。 Further, when the inclination angle θ is 85 °, the centrifugal acceleration reaches 200 G when the rotation speed increases to about 10,000 rpm (graph g7). When the inclination angle θ is 89 °, the centrifugal acceleration reaches 200 G when the rotation speed increases to a rotation speed greater than about 20000 rpm (graph g8).
 このように、傾斜角度θが大きくなるにつれて、グラフの傾きが小さくなる。つまり、傾斜角度θが大きくなるにつれて、遠心加速度aに対する加速度センサ14の第1の計測方向141におけるみかけの感度が低下し、加速度センサ14は、より大きな回転数において遠心加速度を計測することができる。 In this way, as the inclination angle θ increases, the inclination of the graph decreases. That is, as the inclination angle θ increases, the apparent sensitivity of the acceleration sensor 14 to the centrifugal acceleration a in the first measurement direction 141 decreases, and the acceleration sensor 14 can measure the centrifugal acceleration at a higher rotation speed. ..
 たとえば、図4に示す例では、傾斜角度θが70°である場合、傾斜角度θが0°である場合と比べて、加速度センサ14は、2倍近い回転数まで遠心加速度を計測することができる。また、傾斜角度θが80°である場合、傾斜角度θが0°である場合と比べて、加速度センサ14は、3倍近い回転数まで遠心加速度を計測することができる。 For example, in the example shown in FIG. 4, when the tilt angle θ is 70 °, the acceleration sensor 14 can measure the centrifugal acceleration up to nearly twice the rotation speed as compared with the case where the tilt angle θ is 0 °. it can. Further, when the inclination angle θ is 80 °, the acceleration sensor 14 can measure the centrifugal acceleration up to nearly three times the rotation speed as compared with the case where the inclination angle θ is 0 °.
 また、傾斜角度θが85°である場合、傾斜角度θが0°である場合と比べて、4倍近い回転数まで遠心加速度を計測することができる。また、傾斜角度θが89°である場合、傾斜角度θが0°である場合と比べて、8倍以上の回転数まで遠心加速度を計測することができる。 Further, when the inclination angle θ is 85 °, the centrifugal acceleration can be measured up to nearly four times the rotation speed as compared with the case where the inclination angle θ is 0 °. Further, when the inclination angle θ is 89 °, the centrifugal acceleration can be measured up to 8 times or more the rotation speed as compared with the case where the inclination angle θ is 0 °.
 遠心加速度、回転数および傾斜角度θ間のこのような関係から、傾斜角度θは、好ましくは70°以上かつ90°未満であり、さらに好ましくは80°以上かつ90°未満である。 From such a relationship between the centrifugal acceleration, the rotation speed, and the inclination angle θ, the inclination angle θ is preferably 70 ° or more and less than 90 °, and more preferably 80 ° or more and less than 90 °.
 すなわち、傾斜角度θが70°以上かつ90°未満である場合、傾斜角度θが0°である場合と比べて、加速度センサ14は、2倍近い回転数以上の遠心加速度を計測することができる。また、傾斜角度θが80°以上かつ90°未満である場合、傾斜角度θが0°である場合と比べて、加速度センサ14は、3倍近い回転数以上の遠心加速度を計測することができる。 That is, when the tilt angle θ is 70 ° or more and less than 90 °, the acceleration sensor 14 can measure the centrifugal acceleration at a rotation speed of nearly twice or more as compared with the case where the tilt angle θ is 0 °. .. Further, when the inclination angle θ is 80 ° or more and less than 90 °, the acceleration sensor 14 can measure the centrifugal acceleration at a rotation speed of nearly three times or more as compared with the case where the inclination angle θ is 0 °. ..
 図5は、本開示の第1の実施の形態に係る回転加工工具の構成を示す矢視図である。詳細には、図5は、図1におけるA方向から見た矢視図である。図5では、支持部16を想像線である二点鎖線により示している。 FIG. 5 is an arrow view showing the configuration of the rotary machining tool according to the first embodiment of the present disclosure. In detail, FIG. 5 is an arrow view seen from the direction A in FIG. In FIG. 5, the support portion 16 is shown by a two-dot chain line which is an imaginary line.
 図5を参照して、加速度センサ14は、シャンク部11の周面または周面付近に1つ設けられている。加速度センサ14は、シャンク部11の周面と接する位置に設けられてもよいし、シャンク部11の周面から離間した位置に設けられてもよい。 With reference to FIG. 5, one acceleration sensor 14 is provided on or near the peripheral surface of the shank portion 11. The acceleration sensor 14 may be provided at a position in contact with the peripheral surface of the shank portion 11, or may be provided at a position away from the peripheral surface of the shank portion 11.
 図5に示す例では、支持部16は、加速度センサ14を支持する筒状体である。詳細には、支持部16は、合成樹脂製の筒状体である。支持部16は、たとえば円筒状に形成されている。加速度センサ14は、支持部16に埋め込まれた状態で支持される。 In the example shown in FIG. 5, the support portion 16 is a tubular body that supports the acceleration sensor 14. Specifically, the support portion 16 is a tubular body made of synthetic resin. The support portion 16 is formed in a cylindrical shape, for example. The acceleration sensor 14 is supported in a state of being embedded in the support portion 16.
 また、支持部16は、2つに分割可能に構成されている。具体的には、支持部16は、本体161と、図示しない連結機構とを含む。 Further, the support portion 16 is configured to be divisible into two parts. Specifically, the support portion 16 includes a main body 161 and a connecting mechanism (not shown).
 本体161は、筒状に形成されている。また、本体161は、シャンク部11が挿通するようにシャンク部11の周面に取り付け可能であり、かつシャンク部11の直径よりも大きい外径を有する。加速度センサ14は、本体161に埋め込まれている。 The main body 161 is formed in a tubular shape. Further, the main body 161 can be attached to the peripheral surface of the shank portion 11 so that the shank portion 11 can be inserted therethrough, and has an outer diameter larger than the diameter of the shank portion 11. The acceleration sensor 14 is embedded in the main body 161.
 本体161は、平面18において複数の部分に分割可能に構成されている。図5に示す例では、本体161は、2つの部分、すなわちA方向から見て略半円状をなす2つの弧状部161a,161bに分割可能に構成されている。 The main body 161 is configured to be divisible into a plurality of parts on the plane 18. In the example shown in FIG. 5, the main body 161 is configured to be divisible into two portions, that is, two arc-shaped portions 161a and 161b forming a substantially semicircular shape when viewed from the A direction.
 弧状部161aおよび弧状部161bは、図示しない連結機構により互いに連結される。具体的には、たとえば、弧状部161aおよび弧状部161bは、ボルトおよびナットにより連結される。弧状部161aおよび弧状部161bは、互いに連結された状態においてシャンク部11の周面に密着して固定されるような寸法を有する。 The arc-shaped portion 161a and the arc-shaped portion 161b are connected to each other by a connecting mechanism (not shown). Specifically, for example, the arcuate portion 161a and the arcuate portion 161b are connected by bolts and nuts. The arc-shaped portion 161a and the arc-shaped portion 161b have dimensions such that they are closely fixed to the peripheral surface of the shank portion 11 in a state of being connected to each other.
 連結機構により弧状部161aおよび弧状部161bを連結することにより、支持部16および加速度センサ14をシャンク部11に取り付けることができる。また、連結機構による弧状部161aおよび弧状部161bの連結を解除することにより、支持部16および加速度センサ14をシャンク部11から取り外すことができる。 By connecting the arc-shaped portion 161a and the arc-shaped portion 161b by the connecting mechanism, the support portion 16 and the acceleration sensor 14 can be attached to the shank portion 11. Further, the support portion 16 and the acceleration sensor 14 can be removed from the shank portion 11 by disconnecting the arc-shaped portion 161a and the arc-shaped portion 161b by the connecting mechanism.
 図6は、本開示の第1の実施の形態に係る回転加工工具における支持部の構成を模式的に示す断面図である。詳細には、図6は、図1におけるB方向の部分断面図である。 FIG. 6 is a cross-sectional view schematically showing the configuration of a support portion in the rotary machining tool according to the first embodiment of the present disclosure. Specifically, FIG. 6 is a partial cross-sectional view in the B direction in FIG.
 図6を参照して、支持部16は、シャンク部11において加速度センサ14を支持する。具体的には、支持部16は、加速度センサ14の第1の計測方向141が、平面18および回転軸17に対して傾斜するように加速度センサ14を支持する。 With reference to FIG. 6, the support portion 16 supports the acceleration sensor 14 at the shank portion 11. Specifically, the support portion 16 supports the acceleration sensor 14 so that the first measurement direction 141 of the acceleration sensor 14 is tilted with respect to the plane 18 and the rotation axis 17.
 具体的には、加速度センサ14は、第1の計測方向141が平面18に対して傾斜角度θで傾斜するように、支持部16に支持される。 Specifically, the acceleration sensor 14 is supported by the support portion 16 so that the first measurement direction 141 is tilted with respect to the plane 18 at an inclination angle θ.
 また、図6に示す例では、支持部16は、合成樹脂により構成される。支持部16は、たとえば、図示しない金型内に加速度センサ14が配置された状態で、当該金型内に液状の合成樹脂が射出され、射出された合成樹脂が硬化し、当該金型が取り外されることにより構成される。加速度センサ14が上記金型内に配置されることにより、第1の計測方向141が平面18に対して傾斜角度θで傾斜する。 Further, in the example shown in FIG. 6, the support portion 16 is made of synthetic resin. In the support portion 16, for example, in a state where the acceleration sensor 14 is arranged in a mold (not shown), a liquid synthetic resin is injected into the mold, the injected synthetic resin is cured, and the mold is removed. It is composed of. By arranging the acceleration sensor 14 in the mold, the first measurement direction 141 is tilted with respect to the plane 18 at an inclination angle θ.
 図7は、本開示の第1の実施の形態に係る回転加工工具の構成を示す図である。詳細には、図7は、回転加工工具が、図1に示す構成要素に加えて、さらに、電池、無線通信装置およびハウジングを備えた状態を示す図である。なお、図7においては、電池、無線通信装置およびハウジングを想像線である二点鎖線により示している。 FIG. 7 is a diagram showing a configuration of a rotary machining tool according to the first embodiment of the present disclosure. In detail, FIG. 7 is a diagram showing a state in which the rotary machining tool is further equipped with a battery, a wireless communication device, and a housing in addition to the components shown in FIG. In FIG. 7, the battery, the wireless communication device, and the housing are shown by an alternate long and short dash line, which is an imaginary line.
 図7を参照して、回転加工工具101は、図1に示す構成に加えて、さらに、電池22と、無線通信装置23と、ハウジング24とを備える。 With reference to FIG. 7, the rotary machining tool 101 further includes a battery 22, a wireless communication device 23, and a housing 24, in addition to the configuration shown in FIG.
 電池22は、図示しない電力線を介して、加速度センサ14および無線通信装置23と接続されている。電池22は、電力線を介して、加速度センサ14および無線通信装置23へ電力を供給する。電力線には、電力供給のオンおよびオフを切り替えるスイッチが設けられている。 The battery 22 is connected to the acceleration sensor 14 and the wireless communication device 23 via a power line (not shown). The battery 22 supplies electric power to the acceleration sensor 14 and the wireless communication device 23 via the power line. The power line is provided with a switch for switching the power supply on and off.
 無線通信装置23は、図示しない信号線を介して、加速度センサ14と接続されている。加速度センサ14は、加速度センサ14において生じる遠心加速度を示す計測信号を信号線経由で無線通信装置23へ出力する。 The wireless communication device 23 is connected to the acceleration sensor 14 via a signal line (not shown). The acceleration sensor 14 outputs a measurement signal indicating the centrifugal acceleration generated in the acceleration sensor 14 to the wireless communication device 23 via a signal line.
 無線通信装置23は、加速度センサ14から計測信号を受けると、受けた計測信号の示す計測結果を無線信号に含めて外部のパーソナルコンピュータ等の管理装置へ送信する。管理装置は、たとえば、受信した計測結果を蓄積し、蓄積した計測結果を解析する。なお、管理装置は、計測結果の解析に限らず、他の種類の処理を行ってもよい。 When the wireless communication device 23 receives the measurement signal from the acceleration sensor 14, the wireless communication device 23 includes the measurement result indicated by the received measurement signal in the wireless signal and transmits it to an external management device such as a personal computer. The management device, for example, accumulates the received measurement results and analyzes the accumulated measurement results. The management device is not limited to the analysis of the measurement result, and may perform other types of processing.
 ハウジング24は、底板部25と、側壁部26とを含む。ハウジング24は、たとえば、支持部16の下面に固定される。ハウジング24は、支持部16、電池22、無線通信装置23、電力線および信号線を収容した状態、具体的には、支持部16および電池22等をこれらの下方および側方から覆った状態において、電池22および無線通信装置23を保持する。 The housing 24 includes a bottom plate portion 25 and a side wall portion 26. The housing 24 is fixed to, for example, the lower surface of the support portion 16. The housing 24 accommodates the support portion 16, the battery 22, the wireless communication device 23, the power line and the signal line, specifically, the support portion 16 and the battery 22 and the like are covered from below and from the sides thereof. Holds the battery 22 and the wireless communication device 23.
 底板部25は、たとえば、円板状に形成されている。底板部25には、支持部16に対応する位置に、図示しない複数のネジ穴が形成されている。また、支持部16の下面にも複数のネジ穴が形成されている。 The bottom plate portion 25 is formed in a disk shape, for example. The bottom plate portion 25 is formed with a plurality of screw holes (not shown) at positions corresponding to the support portions 16. Further, a plurality of screw holes are also formed on the lower surface of the support portion 16.
 底板部25のネジ穴と支持部16のネジ穴とを位置合わせした状態で、底板部25および支持部16の各ネジ穴にネジを螺合することにより、底板部25を支持部16に固定することができる。 With the screw holes of the bottom plate portion 25 and the screw holes of the support portion 16 aligned, the bottom plate portion 25 is fixed to the support portion 16 by screwing screws into the screw holes of the bottom plate portion 25 and the support portion 16. can do.
 側壁部26は、たとえば、円筒状に形成されている。側壁部26の下端部には、底板部25の周縁部に対応する位置に、図示しない複数のネジ穴が形成されている。また、底板部25の周縁部にも複数のネジ穴が形成されている。 The side wall portion 26 is formed in a cylindrical shape, for example. At the lower end of the side wall 26, a plurality of screw holes (not shown) are formed at positions corresponding to the peripheral edges of the bottom plate 25. Further, a plurality of screw holes are also formed on the peripheral edge of the bottom plate portion 25.
 底板部25のネジ穴と側壁部26のネジ穴とを位置合わせした状態で、底板部25および側壁部26の各ネジ穴にネジを螺合することにより、側壁部26を底板部25に固定することができる。 With the screw holes of the bottom plate portion 25 and the screw holes of the side wall portion 26 aligned, the side wall portion 26 is fixed to the bottom plate portion 25 by screwing screws into the screw holes of the bottom plate portion 25 and the side wall portion 26. can do.
 図8は、本開示の第1の実施の形態に係る回転加工システムの構成を示す図である。 FIG. 8 is a diagram showing a configuration of a rotary processing system according to the first embodiment of the present disclosure.
 図8を参照して、回転加工システム201は、フライス盤等の回転加工装置202と、管理装置301とを備える。 With reference to FIG. 8, the rotary processing system 201 includes a rotary processing device 202 such as a milling machine and a management device 301.
 回転加工装置202は、回転加工工具101と、駆動部と、駆動部を制御する制御部とを備える。駆動部は、回転加工工具101を駆動するモータ等である。制御部は、駆動部の回転数等を制御する。 The rotary processing device 202 includes a rotary processing tool 101, a drive unit, and a control unit that controls the drive unit. The drive unit is a motor or the like that drives the rotary machining tool 101. The control unit controls the rotation speed of the drive unit and the like.
 回転加工工具101は、加速度センサ14の計測結果を示すセンサ情報を含む無線信号を送信する。 The rotary machining tool 101 transmits a wireless signal including sensor information indicating the measurement result of the acceleration sensor 14.
 管理装置301は、回転加工工具101からセンサ情報を含む無線信号を受信し、受信したセンサ情報が示す計測結果を処理する。 The management device 301 receives a wireless signal including sensor information from the rotary processing tool 101, and processes the measurement result indicated by the received sensor information.
 具体的には、管理装置301は、無線通信部31と、制御部32と、記憶部35と、操作入力部36と、表示部33とを含む。 Specifically, the management device 301 includes a wireless communication unit 31, a control unit 32, a storage unit 35, an operation input unit 36, and a display unit 33.
 無線通信部31は、回転加工工具101の無線通信装置23と無線による通信を行う。具体的には、無線通信部31は、回転加工工具101の無線通信装置23から、センサ情報を含む無線信号を受信して、当該無線信号に含まれるセンサ情報の示す計測結果を記憶部35に保存する。 The wireless communication unit 31 wirelessly communicates with the wireless communication device 23 of the rotary processing tool 101. Specifically, the wireless communication unit 31 receives a wireless signal including sensor information from the wireless communication device 23 of the rotary processing tool 101, and stores the measurement result indicated by the sensor information included in the wireless signal in the storage unit 35. save.
 操作入力部36は、キーボードおよびマウス等のユーザインタフェースを含む。操作入力部36は、ユーザからの指示およびデータ入力を受け付ける。 The operation input unit 36 includes a user interface such as a keyboard and a mouse. The operation input unit 36 receives instructions and data input from the user.
 記憶部35は、たとえば、HDD(Hard Disk Drive)等の記憶装置を含む。また、たとえば、記憶部35は、CD-ROM(Compact Disc Read Only Memory)、DVD-ROM(Digital Versatile Disk Read Only Memory)またはBD-ROM(Blu-ray(登録商標) Disc Read Only Memory)等の補助記憶装置を含む。また、たとえば、記憶部35は、RAM(Random Access Memory)およびROM(Read Only Memory)等の半導体メモリを含む。 The storage unit 35 includes, for example, a storage device such as an HDD (Hard Disk Drive). Further, for example, the storage unit 35 may be a CD-ROM (Compact Disc Read Only Memory), a DVD-ROM (Digital Versailles Disc Read Only Memory), or a BD-ROM (Blu-ray (registered trademark) Disc Read Memory). Includes auxiliary storage. Further, for example, the storage unit 35 includes a semiconductor memory such as a RAM (Random Access Memory) and a ROM (Read Only Memory).
 記憶部35には、制御部32を動作させるためのプログラムおよびデータ、無線通信部31が回転加工工具101から受信した計測結果、ならびに制御部32の算出結果等が保存される。 The storage unit 35 stores programs and data for operating the control unit 32, measurement results received by the wireless communication unit 31 from the rotary machining tool 101, calculation results of the control unit 32, and the like.
 制御部32は、たとえば、CPU(Central Processing Unit)を含む。制御部32は、記憶部35に蓄積された加速度センサ14の計測結果を解析し、解析結果を記憶部35に保存する。また、制御部32は、管理装置301における各ユニットの制御を行う。 The control unit 32 includes, for example, a CPU (Central Processing Unit). The control unit 32 analyzes the measurement result of the acceleration sensor 14 stored in the storage unit 35, and stores the analysis result in the storage unit 35. Further, the control unit 32 controls each unit in the management device 301.
 表示部33は、たとえば、ディスプレイである。表示部33は、記憶部35に蓄積された制御部32の算出結果を表示する。なお、表示部33は、管理装置301の外部に設けられてもよい。 The display unit 33 is, for example, a display. The display unit 33 displays the calculation result of the control unit 32 stored in the storage unit 35. The display unit 33 may be provided outside the management device 301.
 また、回転加工システム201は、回転加工装置202および管理装置301間の距離が長い等の理由により、両者の間において無線信号の送受信を直接行うことが困難である場合には、両者の間に中継装置を備えてもよい。この場合、回転加工装置202は、無線信号を中継装置経由で管理装置301へ送信する。 Further, in the rotary processing system 201, when it is difficult to directly transmit and receive a wireless signal between the rotary processing device 202 and the management device 301 due to a long distance or the like, the rotary processing system 201 is located between the two. A relay device may be provided. In this case, the rotation processing device 202 transmits the wireless signal to the management device 301 via the relay device.
 [使用方法]
 図8を参照して、回転加工工具101の使用方法について説明する。
[how to use]
A method of using the rotary machining tool 101 will be described with reference to FIG.
 まず、回転加工工具101のシャンク部11を、たとえば、回転加工装置202における、シャンク部11を保持する保持部に固定する。 First, the shank portion 11 of the rotary processing tool 101 is fixed to, for example, the holding portion of the rotary processing device 202 that holds the shank portion 11.
 次に、電力線に設けられたスイッチをオフからオンへ切り替えることにより、電池22から加速度センサ14および無線通信装置23へ電力を供給する。 Next, power is supplied from the battery 22 to the acceleration sensor 14 and the wireless communication device 23 by switching the switch provided on the power line from off to on.
 次に、回転加工工具101を回転駆動することにより、シャンク部11に遠心加速度が生じる。 Next, by rotationally driving the rotary machining tool 101, centrifugal acceleration is generated in the shank portion 11.
 加速度センサ14は、シャンク部11に生じた遠心加速度を示す計測信号を無線通信装置23へ出力する。 The acceleration sensor 14 outputs a measurement signal indicating the centrifugal acceleration generated in the shank portion 11 to the wireless communication device 23.
 次に、無線通信装置23は、加速度センサ14から受けた計測信号を示すセンサ情報を無線信号に含めて外部の管理装置301へ送信する。 Next, the wireless communication device 23 includes the sensor information indicating the measurement signal received from the acceleration sensor 14 in the wireless signal and transmits it to the external management device 301.
 管理装置301において、無線通信部31は、無線通信装置23から受信した無線信号に含まれるセンサ情報の示す計測結果を記憶部35に保存する。記憶部35は、無線通信部31が回転加工工具101から受信した計測結果を蓄積する。制御部32は、ユーザから操作入力部36を介して入力された指示に応じて、記憶部35に蓄積された計測結果を解析する。 In the management device 301, the wireless communication unit 31 stores in the storage unit 35 the measurement result indicated by the sensor information included in the wireless signal received from the wireless communication device 23. The storage unit 35 stores the measurement result received from the rotary machining tool 101 by the wireless communication unit 31. The control unit 32 analyzes the measurement result stored in the storage unit 35 in response to an instruction input from the user via the operation input unit 36.
 具体的には、たとえば、制御部32は、無線通信部31経由で無線通信装置23から受信した加速度センサ14の計測結果、第1の計測方向141の傾斜角度θ、ならびに加速度センサ14におけるセンサ素子および回転軸17間の距離(r+d)に基づいて、シャンク部11の角速度ωおよび回転数nを算出する。なお、制御部32は、角速度ωおよび回転数nのいずれか一方を算出する構成であってもよい。また、制御部32は、計測結果の解析に限らず、他の種類の処理を行ってもよい。 Specifically, for example, the control unit 32 receives the measurement result of the acceleration sensor 14 received from the wireless communication device 23 via the wireless communication unit 31, the inclination angle θ in the first measurement direction 141, and the sensor element in the acceleration sensor 14. And the angular velocity ω and the number of rotations n of the shank portion 11 are calculated based on the distance (r + d) between the rotation axes 17. The control unit 32 may be configured to calculate either the angular velocity ω or the rotation speed n. Further, the control unit 32 is not limited to the analysis of the measurement result, and may perform other types of processing.
 表示部33は、制御部32の算出結果を表示する。表示部33により表示された角速度ωおよび回転数nは、たとえば、回転加工工具101が適正な状態にあるかどうかをユーザが把握するために活用される。 The display unit 33 displays the calculation result of the control unit 32. The angular velocity ω and the rotation speed n displayed by the display unit 33 are utilized, for example, for the user to grasp whether or not the rotary machining tool 101 is in an appropriate state.
 図9および図10は、それぞれ、本開示の第1の実施の形態に係る回転加工工具の構成の他の例を示す側面図である。 9 and 10 are side views showing other examples of the configuration of the rotary machining tool according to the first embodiment of the present disclosure, respectively.
 図1に示す例は、加速度センサ14が転削工具の一種であるエンドミルに取り付けられる構成であるが、これに限定されるものではない。たとえば、図9を参照して、加速度センサ14は、転削工具の一種であるドリル102におけるシャフト部の一例であるボディ部118に取り付けられてもよい。 The example shown in FIG. 1 has a configuration in which the acceleration sensor 14 is attached to an end mill which is a kind of rolling tool, but the present invention is not limited to this. For example, with reference to FIG. 9, the acceleration sensor 14 may be attached to a body portion 118, which is an example of a shaft portion in a drill 102, which is a type of rolling tool.
 また、図10を参照して、加速度センサ14は、転削工具の一種であるフライスカッター103におけるシャフト部の一例であるボス部119に取り付けられてもよい。 Further, referring to FIG. 10, the acceleration sensor 14 may be attached to a boss portion 119 which is an example of a shaft portion in a milling cutter 103 which is a kind of rolling tool.
 図10に示す例では、ボス部119における刃取付部12とは反対側の端部に、シャンク部113が連結されている。なお、フライスカッター103において、シャンク部113が設けられなくてもよい。 In the example shown in FIG. 10, the shank portion 113 is connected to the end portion of the boss portion 119 opposite to the blade mounting portion 12. The milling cutter 103 may not be provided with the shank portion 113.
 ところで、回転加工工具に加速度センサを取り付けることにより、回転によって生じる遠心加速度を計測することができる。このような遠心加速度を計測可能な優れた技術が望まれる。 By the way, by attaching an acceleration sensor to a rotary machining tool, it is possible to measure the centrifugal acceleration generated by rotation. An excellent technique capable of measuring such centrifugal acceleration is desired.
 これに対して、本開示の第1の実施の形態に係る回転加工工具101は、シャンク部11と、シャンク部11の端部に設けられる刃取付部12または刃部と、シャンク部11に取り付けられる加速度センサ14とを備える。加速度センサ14は、シャンク部11の回転軸17を法線とする平面18および回転軸17の各々に対して傾斜する第1の計測方向141の加速度を計測する。 On the other hand, the rotary machining tool 101 according to the first embodiment of the present disclosure is attached to the shank portion 11, the blade mounting portion 12 or the blade portion provided at the end of the shank portion 11, and the shank portion 11. The acceleration sensor 14 is provided. The acceleration sensor 14 measures the acceleration in the first measurement direction 141 that is inclined with respect to each of the plane 18 having the rotation axis 17 of the shank portion 11 as the normal line and the rotation axis 17.
 このように、加速度センサ14の第1の計測方向141を、シャンク部11の回転において生じる遠心加速度の方向からずらす構成により、遠心加速度に対する加速度センサ14の第1の計測方向141における感度を低下させることができる。 As described above, the configuration in which the first measurement direction 141 of the acceleration sensor 14 is deviated from the direction of the centrifugal acceleration generated in the rotation of the shank portion 11 reduces the sensitivity of the acceleration sensor 14 to the centrifugal acceleration in the first measurement direction 141. be able to.
 したがって、本開示の第1の実施の形態に係る回転加工工具101では、加速度センサ14の計測範囲の制限を超えて、回転加工工具101において生じる遠心加速度を計測することができる。 Therefore, in the rotary machining tool 101 according to the first embodiment of the present disclosure, the centrifugal acceleration generated in the rotary machining tool 101 can be measured beyond the limitation of the measurement range of the acceleration sensor 14.
 また、本開示の第1の実施の形態に係る回転加工工具101は、シャンク部11と、シャンク部11の端部に設けられる刃取付部12または刃部と、シャンク部11において加速度センサ14を支持する支持部16と備える。支持部16は、加速度センサ14の第1の計測方向141が、シャンク部11の回転軸17を法線とする平面18および回転軸17の各々に対して傾斜するように加速度センサ14を支持する。 Further, the rotary processing tool 101 according to the first embodiment of the present disclosure has a shank portion 11, a blade mounting portion 12 or a blade portion provided at an end portion of the shank portion 11, and an acceleration sensor 14 at the shank portion 11. It is provided with a support portion 16 for supporting. The support portion 16 supports the acceleration sensor 14 so that the first measurement direction 141 of the acceleration sensor 14 is inclined with respect to each of the plane 18 and the rotation shaft 17 having the rotation shaft 17 of the shank portion 11 as a normal line. ..
 このように、本開示の第1の実施の形態に係る回転加工工具101では、加速度センサ14の第1の計測方向141を、シャンク部11の回転において生じる遠心加速度の方向からずらす構成により、遠心加速度に対する加速度センサ14の第1の計測方向141における感度を低下させることができる。 As described above, in the rotary processing tool 101 according to the first embodiment of the present disclosure, the first measurement direction 141 of the acceleration sensor 14 is displaced from the direction of the centrifugal acceleration generated in the rotation of the shank portion 11 to centrifuge. It is possible to reduce the sensitivity of the acceleration sensor 14 to acceleration in the first measurement direction 141.
 したがって、本開示の第1の実施の形態に係る回転加工工具101では、加速度センサ14の計測範囲の制限を超えて、回転加工工具101において生じる遠心加速度を計測することができる。 Therefore, in the rotary machining tool 101 according to the first embodiment of the present disclosure, the centrifugal acceleration generated in the rotary machining tool 101 can be measured beyond the limitation of the measurement range of the acceleration sensor 14.
 また、本開示の第1の実施の形態に係る回転加工システム201は、加速度センサ14の計測結果を示すセンサ情報を送信する無線通信装置23をさらに備える回転加工工具101と、無線通信装置23から送信されるセンサ情報を受信し、受信したセンサ情報を処理する管理装置301とを備える。 Further, the rotary machining system 201 according to the first embodiment of the present disclosure is a rotary machining tool 101 further including a wireless communication device 23 for transmitting sensor information indicating a measurement result of the acceleration sensor 14, and a wireless communication device 23. It is provided with a management device 301 that receives the transmitted sensor information and processes the received sensor information.
 このように、加速度センサ14の第1の計測方向141を、シャンク部11の回転において生じる遠心加速度の方向からずらす構成により、遠心加速度に対する加速度センサ14の第1の計測方向141における感度を低下させることができる。 As described above, the configuration in which the first measurement direction 141 of the acceleration sensor 14 is deviated from the direction of the centrifugal acceleration generated in the rotation of the shank portion 11 reduces the sensitivity of the acceleration sensor 14 to the centrifugal acceleration in the first measurement direction 141. be able to.
 したがって、本開示の第1の実施の形態に係る回転加工システム201では、加速度センサ14の計測範囲の制限を超えて、回転加工工具101において生じる遠心加速度を計測することができる。 Therefore, in the rotary machining system 201 according to the first embodiment of the present disclosure, the centrifugal acceleration generated in the rotary machining tool 101 can be measured beyond the limitation of the measurement range of the acceleration sensor 14.
 また、加速度センサ14の計測結果を処理する構成により、たとえば、シャンク部11の角速度ωおよび回転数nを算出することができる。 Further, the angular velocity ω and the rotation speed n of the shank portion 11 can be calculated, for example, by the configuration for processing the measurement result of the acceleration sensor 14.
 すなわち、本開示の第1の実施の形態に係る回転加工システム201では、ユーザは、回転加工工具101が適正な状態にあるかどうかを把握することができる。 That is, in the rotary machining system 201 according to the first embodiment of the present disclosure, the user can grasp whether or not the rotary machining tool 101 is in an appropriate state.
 その他の構成は、上述した回転加工工具101と同様であるため、ここでは詳細な説明を繰り返さない。 Since the other configurations are the same as those of the rotary machining tool 101 described above, the detailed description will not be repeated here.
 次に、本発明の他の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。 Next, other embodiments of the present invention will be described with reference to the drawings. The same or corresponding parts in the drawings are designated by the same reference numerals, and the description thereof will not be repeated.
<第2の実施の形態>
 本実施の形態は、第1の実施の形態に係る回転加工工具101と比べて、支持部の形態が異なる回転加工工具に関する。以下で説明する内容以外は第1の実施の形態に係る回転加工工具101と同様である。
<Second Embodiment>
The present embodiment relates to a rotary machining tool having a support portion different from that of the rotary machining tool 101 according to the first embodiment. Except for the contents described below, the same is true for the rotary machining tool 101 according to the first embodiment.
 図11は、本開示の第2の実施の形態に係る回転加工工具の構成を示す側面図である。 FIG. 11 is a side view showing the configuration of the rotary machining tool according to the second embodiment of the present disclosure.
 図11を参照して、回転加工工具104は、図1に示す回転加工工具101と比べて、支持部16の代わりに支持部162を備える。 With reference to FIG. 11, the rotary machining tool 104 includes a support portion 162 instead of the support portion 16 as compared with the rotary machining tool 101 shown in FIG.
 支持部162は、加速度センサ14を支持する機能に加えて、加速度センサ14の計測方向の傾斜角度を変更する機能を有する。すなわち、支持部162は、角度変更部としても機能する。 The support portion 162 has a function of changing the inclination angle of the acceleration sensor 14 in the measurement direction in addition to the function of supporting the acceleration sensor 14. That is, the support portion 162 also functions as an angle changing portion.
 加速度センサ14は、一方向の加速度を計測する、いわゆる一軸の加速度センサである。加速度センサ14は、たとえば、図2に示すセンサ素子27と、センサ素子27を支持する台座部28と、センサ素子27および台座部28を収容するハウジング29とを含む。上記一方向は、たとえば、センサ素子27が台座部28によって支持される面に対して垂直な方向である。加速度センサ14は、上記一方向が第1の計測方向141に沿うように、支持部162に支持される。 The acceleration sensor 14 is a so-called uniaxial acceleration sensor that measures acceleration in one direction. The acceleration sensor 14 includes, for example, the sensor element 27 shown in FIG. 2, a pedestal portion 28 that supports the sensor element 27, and a housing 29 that houses the sensor element 27 and the pedestal portion 28. The one direction is, for example, a direction perpendicular to the surface on which the sensor element 27 is supported by the pedestal portion 28. The acceleration sensor 14 is supported by the support portion 162 so that the one direction is along the first measurement direction 141.
 図12は、本開示の第2の実施の形態に係る回転加工工具における支持部の構成を示す平面図である。詳細には、図12は、図11における支持部をA方向から見た矢視図である。 FIG. 12 is a plan view showing a configuration of a support portion in the rotary machining tool according to the second embodiment of the present disclosure. In detail, FIG. 12 is an arrow view of the support portion in FIG. 11 as viewed from the A direction.
 図12を参照して、支持部162は、加速度センサ14を支持する筒状体である。具体的には、支持部162は、合成樹脂製または金属製の筒状体である。支持部162は、たとえば、異形の八角筒状に形成される。支持部162には、シャンク部11が挿通する貫通孔163が形成されている。 With reference to FIG. 12, the support portion 162 is a tubular body that supports the acceleration sensor 14. Specifically, the support portion 162 is a tubular body made of synthetic resin or metal. The support portion 162 is formed, for example, in the shape of a deformed octagonal cylinder. The support portion 162 is formed with a through hole 163 through which the shank portion 11 is inserted.
 具体的には、支持部162は、8つの側面1621~1628を有する。各側面は平面である。側面1621および側面1625は、貫通孔163を介して互いに反対側に位置する。側面1622および側面1626は、貫通孔163を介して互いに反対側に位置する。側面1623および側面1627は、貫通孔163を介して互いに反対側に位置する。側面1624および側面1628は、貫通孔163を介して互いに反対側に位置する。 Specifically, the support portion 162 has eight side surfaces 1621-1628. Each side is flat. The side surface 1621 and the side surface 1625 are located on opposite sides of each other through the through hole 163. The side surface 1622 and the side surface 1626 are located on opposite sides of each other through the through hole 163. The side surface 1623 and the side surface 1627 are located on opposite sides of each other through the through hole 163. The side surface 1624 and the side surface 1628 are located opposite to each other through the through hole 163.
 側面1621および側面1625は、平面18に対してなす角度が同じである。当該角度は、たとえば90°である。側面1622および側面1626は、平面18に対してなす角度が同じである。当該角度は、たとえば85°である。側面1623および側面1627は、平面18に対してなす角度が同じである。当該角度は、たとえば80°である。側面1624および側面1628は、平面18に対してなす角度が同じである。当該角度は、たとえば70°である。 The side surface 1621 and the side surface 1625 have the same angle with respect to the plane 18. The angle is, for example, 90 °. The side surface 1622 and the side surface 1626 have the same angle with respect to the plane 18. The angle is, for example, 85 °. The side surface 1623 and the side surface 1627 have the same angle with respect to the plane 18. The angle is, for example, 80 °. The side surface 1624 and the side surface 1628 have the same angle with respect to the plane 18. The angle is, for example, 70 °.
 支持部162は、2つに分割可能に構成されている。具体的には、支持部162は、本体164と、図示しない連結機構とを含む。 The support portion 162 is configured to be divisible into two parts. Specifically, the support portion 162 includes a main body 164 and a connecting mechanism (not shown).
 本体164は、筒状に形成されている。具体的には、本体164には、貫通孔163が形成されている。また、本体164は、シャンク部11が貫通孔163を挿通するようにシャンク部11の周面に取り付け可能であり、かつシャンク部11の直径よりも大きい外径を有する。 The main body 164 is formed in a tubular shape. Specifically, a through hole 163 is formed in the main body 164. Further, the main body 164 can be attached to the peripheral surface of the shank portion 11 so that the shank portion 11 inserts the through hole 163, and has an outer diameter larger than the diameter of the shank portion 11.
 本体164は、平面18において複数の部分に分割可能に構成されている。図12に示す例では、本体164は、2つの部分、すなわちA方向から見て略半円状をなす2つの弧状部164a,164bに分割可能に構成されている。 The main body 164 is configured to be divisible into a plurality of parts on the plane 18. In the example shown in FIG. 12, the main body 164 is divisible into two portions, that is, two arc-shaped portions 164a and 164b which form a substantially semicircular shape when viewed from the A direction.
 弧状部164aおよび弧状部164bは、図示しない連結機構により互いに連結される。弧状部164aおよび弧状部164bが連結されることにより、貫通孔163が形成される。具体的には、たとえば、弧状部164aおよび弧状部164bは、ボルトおよびナットにより連結される。弧状部164aおよび弧状部164bは、互いに連結された状態においてシャンク部11の周面に密着して固定されるような寸法を有する。 The arc-shaped portion 164a and the arc-shaped portion 164b are connected to each other by a connecting mechanism (not shown). The through hole 163 is formed by connecting the arc-shaped portion 164a and the arc-shaped portion 164b. Specifically, for example, the arcuate portion 164a and the arcuate portion 164b are connected by bolts and nuts. The arc-shaped portion 164a and the arc-shaped portion 164b have dimensions such that they are closely fixed to the peripheral surface of the shank portion 11 in a state of being connected to each other.
 連結機構により弧状部164aおよび弧状部164bを連結することにより、支持部162および加速度センサ14をシャンク部11に取り付けることができる。また、連結機構による弧状部164aおよび弧状部164bの連結を解除することにより、支持部162および加速度センサ14をシャンク部11から取り外すことができる。 By connecting the arcuate portion 164a and the arcuate portion 164b by the connecting mechanism, the support portion 162 and the acceleration sensor 14 can be attached to the shank portion 11. Further, the support portion 162 and the acceleration sensor 14 can be removed from the shank portion 11 by disconnecting the arc-shaped portion 164a and the arc-shaped portion 164b by the connecting mechanism.
 また、ユーザは、加速度センサ14を支持部162に取り付ける場合、取り付ける対象となる側面を8つの側面1621~1628から選択することができる。 Further, when the acceleration sensor 14 is attached to the support portion 162, the user can select the side surface to be attached from the eight side surfaces 1621-1628.
 具体的には、ユーザは、加速度センサ14の第1の計測方向141が平面18に対して目標となる傾斜角度θで傾斜するような側面を選択し、選択した側面に加速度センサ14を取り付ける。これにより、加速度センサ14の第1の計測方向141が平面18に対してなす傾斜角度θを変更することができる。 Specifically, the user selects a side surface such that the first measurement direction 141 of the acceleration sensor 14 is inclined with respect to the plane 18 at a target inclination angle θ, and attaches the acceleration sensor 14 to the selected side surface. Thereby, the inclination angle θ formed by the first measurement direction 141 of the acceleration sensor 14 with respect to the plane 18 can be changed.
 また、本開示の第2の実施の形態に係る回転加工工具104では、角度変更機能を有する支持部162は、シャンク部11に対して着脱可能である。 Further, in the rotary machining tool 104 according to the second embodiment of the present disclosure, the support portion 162 having the angle changing function can be attached to and detached from the shank portion 11.
 このような構成により、本開示の第2の実施の形態に係る回転加工工具104では、必要に応じて支持部162を着脱することができ、ユーザの利便性を高めることができる。 With such a configuration, in the rotary machining tool 104 according to the second embodiment of the present disclosure, the support portion 162 can be attached and detached as needed, and the convenience of the user can be enhanced.
 なお、支持部162は、シャンク部11から取り外すことができない構成であってもよい。 The support portion 162 may have a configuration that cannot be removed from the shank portion 11.
 [変形例1]
 図13は、本開示の第2の実施の形態に係る回転加工工具の変形例1を示す部分断面図である。
[Modification 1]
FIG. 13 is a partial cross-sectional view showing a modification 1 of the rotary machining tool according to the second embodiment of the present disclosure.
 図13を参照して、変形例1に係る回転加工工具105は、支持部16の代わりに、支持部165を備える。 With reference to FIG. 13, the rotary machining tool 105 according to the first modification includes a support portion 165 instead of the support portion 16.
 支持部165は、加速度センサ14を支持する機能に加えて、加速度センサ14の第1の計測方向141の傾斜角度θを変更する機能を有する。すなわち、支持部165は、角度変更部としても機能する。 The support portion 165 has a function of changing the inclination angle θ of the first measurement direction 141 of the acceleration sensor 14 in addition to the function of supporting the acceleration sensor 14. That is, the support portion 165 also functions as an angle changing portion.
 加速度センサ14は、一方向の加速度を計測する、いわゆる一軸の加速度センサである。加速度センサ14は、たとえば、図2に示すセンサ素子27と、センサ素子27を支持する台座部28と、センサ素子27および台座部28を収容するハウジング29とを含む。上記一方向は、たとえば、センサ素子27が台座部28によって支持される面である設置面に対して垂直な方向である。加速度センサ14は、上記一方向が第1の計測方向141に沿うように、支持部165に支持される。 The acceleration sensor 14 is a so-called uniaxial acceleration sensor that measures acceleration in one direction. The acceleration sensor 14 includes, for example, the sensor element 27 shown in FIG. 2, a pedestal portion 28 that supports the sensor element 27, and a housing 29 that houses the sensor element 27 and the pedestal portion 28. The one direction is, for example, a direction perpendicular to the installation surface, which is the surface on which the sensor element 27 is supported by the pedestal portion 28. The acceleration sensor 14 is supported by the support portion 165 so that the one direction is along the first measurement direction 141.
 図13に示す例では、加速度センサ14は、上記一方向が平面18に対して傾斜角度θで傾斜するように、支持部165に支持される。詳細には、たとえば、加速度センサ14の上記設置面をシャンク部11の回転軸17に対して角度θで傾けることにより、上記一方向は、平面18に対して傾斜角度θで傾斜する。 In the example shown in FIG. 13, the acceleration sensor 14 is supported by the support portion 165 so that the one direction is inclined with respect to the plane 18 at an inclination angle θ. Specifically, for example, by tilting the installation surface of the acceleration sensor 14 with respect to the rotation axis 17 of the shank portion 11 at an angle θ, the one direction is tilted with respect to the plane 18 at an inclination angle θ.
 支持部165は、台座部166と、角度変更部167とを含む。台座部166は、加速度センサ14を支持する。加速度センサ14は、たとえば、ボルトおよびナット等の固定部材により、台座部166に取り付けられる。 The support portion 165 includes a pedestal portion 166 and an angle changing portion 167. The pedestal portion 166 supports the acceleration sensor 14. The acceleration sensor 14 is attached to the pedestal portion 166 by, for example, a fixing member such as a bolt and a nut.
 図14は、本開示の第2の実施の形態に係る回転加工工具の変形例1における制御部の構成を示すブロック図である。 FIG. 14 is a block diagram showing a configuration of a control unit in the first modification of the rotary machining tool according to the second embodiment of the present disclosure.
 図13および図14を参照して、角度変更部167は、台座部166の姿勢を変更する。詳細には、角度変更部167は、たとえば、制御部168と、モータ等のアクチュエータと、図示しない動力変換機構とを含む。動力変換機構は、アクチュエータの運動を、図13に示すシャンク部11に対する台座部166の傾斜角度θaの変更動作に変換する。アクチュエータは、圧電素子等、モータ以外の種類のアクチュエータであってもよい。 With reference to FIGS. 13 and 14, the angle changing portion 167 changes the posture of the pedestal portion 166. Specifically, the angle changing unit 167 includes, for example, a control unit 168, an actuator such as a motor, and a power conversion mechanism (not shown). The power conversion mechanism converts the movement of the actuator into an operation of changing the inclination angle θa of the pedestal portion 166 with respect to the shank portion 11 shown in FIG. The actuator may be a type of actuator other than the motor, such as a piezoelectric element.
 制御部168は、たとえば、受信装置、送信装置、CPU、およびHDD等の記憶装置を含む。また、制御部168は、たとえば、CD-ROM等の補助記憶装置、ならびにRAMおよびROM等の半導体メモリを含む。 The control unit 168 includes, for example, a receiving device, a transmitting device, a CPU, and a storage device such as an HDD. Further, the control unit 168 includes, for example, an auxiliary storage device such as a CD-ROM, and a semiconductor memory such as a RAM and a ROM.
 制御部168は、たとえば、加速度センサ14が計測可能な遠心加速度の範囲、加速度センサ14およびシャンク部11の回転軸17間の距離、ならびにシャンク部11の回転数に基づいて傾斜角度θaを変更し、これにより傾斜角度θを変更する。 The control unit 168 changes the inclination angle θa based on, for example, the range of centrifugal acceleration that can be measured by the acceleration sensor 14, the distance between the acceleration sensor 14 and the rotation axis 17 of the shank unit 11, and the rotation speed of the shank unit 11. , This changes the tilt angle θ.
 なお、制御部168は、加速度センサ14が計測可能な遠心加速度の範囲、加速度センサ14およびシャンク部11の回転軸17間の距離、ならびにシャンク部11の回転数以外のパラメータに基づいて傾斜角度θaを変更し、これにより傾斜角度θを変更する構成であってもよい。 The control unit 168 has an inclination angle θa based on parameters other than the range of centrifugal acceleration that can be measured by the acceleration sensor 14, the distance between the acceleration sensor 14 and the rotation axis 17 of the shank unit 11, and the rotation speed of the shank unit 11. , And the inclination angle θ may be changed accordingly.
 制御部168は、取得部169と、処理部170と、記憶部171と、通信部172とを含む。 The control unit 168 includes an acquisition unit 169, a processing unit 170, a storage unit 171 and a communication unit 172.
 取得部169は、たとえば、受信装置を含む。取得部169は、操作入力部を介してユーザにより入力された情報、具体的には、ユーザが所望するシャンク部11の回転数を取得して記憶部171に保存する。 The acquisition unit 169 includes, for example, a receiving device. The acquisition unit 169 acquires the information input by the user via the operation input unit, specifically, the rotation speed of the shank unit 11 desired by the user, and stores it in the storage unit 171.
 記憶部171は、たとえば、HDD等の記憶装置を含む。また、たとえば、記憶部171は、CD-ROM等の補助記憶装置を含む。また、たとえば、記憶部171は、RAMおよびROM等の半導体メモリを含む。 The storage unit 171 includes, for example, a storage device such as an HDD. Further, for example, the storage unit 171 includes an auxiliary storage device such as a CD-ROM. Further, for example, the storage unit 171 includes a semiconductor memory such as a RAM and a ROM.
 記憶部171には、処理部170を動作させるためのプログラムおよびデータ、取得部169が操作入力部から取得した情報および処理部170の算出結果等が保存される。 The storage unit 171 stores programs and data for operating the processing unit 170, information acquired by the acquisition unit 169 from the operation input unit, calculation results of the processing unit 170, and the like.
 記憶部171には、たとえば、加速度センサ14が計測可能な遠心加速度の範囲と、加速度センサ14およびシャンク部11の回転軸17間の距離とが保存される。当該距離は、たとえば加速度センサ14におけるセンサ素子および回転軸17間の距離である。 In the storage unit 171 for example, the range of centrifugal acceleration that can be measured by the acceleration sensor 14 and the distance between the acceleration sensor 14 and the rotation shaft 17 of the shank unit 11 are stored. The distance is, for example, the distance between the sensor element in the acceleration sensor 14 and the rotating shaft 17.
 たとえば、再び図2を参照して、記憶部171には、加速度センサ14におけるセンサ素子およびシャンク部11の回転軸17間の距離(r+d)が保存されている。 For example, referring to FIG. 2 again, the storage unit 171 stores the distance (r + d) between the sensor element in the acceleration sensor 14 and the rotation shaft 17 of the shank unit 11.
 また、再び図4を参照して、記憶部171には、加速度センサ14が計測可能な遠心加速度の上限値である200Gが保存されているとともに、加速度センサ14に発生する遠心加速度、シャンク部11の回転数および傾斜角度θの対応関係が保存されている。 Further, referring to FIG. 4 again, the storage unit 171 stores 200 G, which is the upper limit value of the centrifugal acceleration that can be measured by the acceleration sensor 14, and the centrifugal acceleration and the shank unit 11 generated in the acceleration sensor 14. The correspondence between the number of rotations and the tilt angle θ is preserved.
 再び図14を参照して、処理部170は、たとえば、CPUを含む。処理部170は、記憶部171から取得した情報に基づいて、傾斜角度θを求める。具体的には、処理部170は、加速度センサ14が計測可能な遠心加速度の上限値と上記対応関係とに基づいて、傾斜角度θを求めて記憶部171に保存する。 With reference to FIG. 14 again, the processing unit 170 includes, for example, a CPU. The processing unit 170 obtains the inclination angle θ based on the information acquired from the storage unit 171. Specifically, the processing unit 170 obtains the inclination angle θ based on the upper limit value of the centrifugal acceleration that can be measured by the acceleration sensor 14 and the above-mentioned correspondence relationship, and stores it in the storage unit 171.
 通信部172は、たとえば、送信装置を含む。通信部172は、処理部170が求めて記憶部171に保存した傾斜角度θを示す角度情報をアクチュエータへ送信する。 The communication unit 172 includes, for example, a transmission device. The communication unit 172 transmits the angle information indicating the inclination angle θ obtained by the processing unit 170 and stored in the storage unit 171 to the actuator.
 [動作の流れ]
 回転加工工具105は、記憶部171の一部または全部を含むコンピュータを備え、当該コンピュータにおけるCPU等の演算処理部は、以下のシーケンス図またはフローチャートの各ステップの一部または全部を含むプログラムを記憶部171等のメモリから読み出して実行する。この装置のプログラムは、外部からインストールすることができる。この装置のプログラムは、記録媒体に格納された状態で流通する。
[Operation flow]
The rotary machining tool 105 includes a computer including a part or all of the storage unit 171. The arithmetic processing unit such as a CPU in the computer stores a program including a part or all of each step of the following sequence diagram or flowchart. Read from the memory of unit 171 and execute. The program for this device can be installed externally. The program of this device is distributed in a state of being stored in a recording medium.
 図15は、本開示の第2の実施の形態の変形例1における制御部の処理の手順を定めたフローチャートである。 FIG. 15 is a flowchart defining the processing procedure of the control unit in the first modification of the second embodiment of the present disclosure.
 図15を参照して、まず、処理部170は、記憶部171からシャンク部11の所望の回転数を取得する。また、処理部170は、記憶部171から距離(r+d)および遠心加速度の上限値を取得する(ステップS101)。 With reference to FIG. 15, first, the processing unit 170 acquires a desired rotation speed of the shank unit 11 from the storage unit 171. Further, the processing unit 170 acquires the upper limit values of the distance (r + d) and the centrifugal acceleration from the storage unit 171 (step S101).
 次に、処理部170は、記憶部171から取得した情報に基づいて、傾斜角度θを求める。具体的には、再び図4を参照して、たとえば、ユーザが所望するシャンク部11の回転数が10000rpmである場合、傾斜角度θが85°(グラフg7)であれば、遠心加速度が200Gを超えないことから、傾斜角度θとして85°を求める(ステップS103)。 Next, the processing unit 170 obtains the inclination angle θ based on the information acquired from the storage unit 171. Specifically, referring to FIG. 4 again, for example, when the rotation speed of the shank portion 11 desired by the user is 10000 rpm and the inclination angle θ is 85 ° (graph g7), the centrifugal acceleration is 200 G. Since it does not exceed, 85 ° is obtained as the inclination angle θ (step S103).
 再び図15を参照して、次に、処理部170は、傾斜角度θおよび傾斜角度θaの相関関係、ならびに傾斜角度θが85°であることに基づいて、傾斜角度θaを算出する。そして、処理部170は、アクチュエータのパラメータ、たとえばモータの回転角度を、算出した傾斜角度θaに基づいて算出する(ステップS105)。 With reference to FIG. 15 again, the processing unit 170 then calculates the tilt angle θa based on the correlation between the tilt angle θ and the tilt angle θa and the tilt angle θ being 85 °. Then, the processing unit 170 calculates the parameters of the actuator, for example, the rotation angle of the motor based on the calculated tilt angle θa (step S105).
 次に、処理部170は、算出した回転角度を含む制御信号を通信部172へ出力する(ステップS107)。 Next, the processing unit 170 outputs a control signal including the calculated rotation angle to the communication unit 172 (step S107).
 次に、通信部172は、処理部170から受けた制御信号をアクチュエータへ送信する(ステップS109)。 Next, the communication unit 172 transmits the control signal received from the processing unit 170 to the actuator (step S109).
 アクチュエータは、通信部172から受信した制御信号に基づいて動作し、台座部166の姿勢を変更する。 The actuator operates based on the control signal received from the communication unit 172, and changes the posture of the pedestal unit 166.
 なお、角度変更部167は、たとえば、ユーザによるボタン操作により台座部166の姿勢を変更する構成であってもよい。具体的には、たとえば、台座部166の姿勢すなわち傾斜角度θa、または傾斜角度θを指定するボタンを回転加工工具101に設ける構成であってもよい。この場合、ユーザは、ボタン操作により傾斜角度θaまたは傾斜角度θを指定して、指定した傾斜角度にθaまたはθを変更する。 The angle changing unit 167 may be configured to change the posture of the pedestal unit 166 by operating a button by the user, for example. Specifically, for example, the rotary machining tool 101 may be provided with a button for designating the posture of the pedestal portion 166, that is, the inclination angle θa, or the inclination angle θ. In this case, the user specifies the tilt angle θa or the tilt angle θ by operating a button, and changes θa or θ to the specified tilt angle.
 その他の構成は、上述した回転加工工具101と同様であるため、ここでは詳細な説明を繰り返さない。 Since the other configurations are the same as those of the rotary machining tool 101 described above, the detailed description will not be repeated here.
 本開示の第2の実施の形態に係る回転加工工具の変形例1では、回転加工工具105は、第1の計測方向141の傾斜角度θを変更する角度変更部167を備える。 In the modification 1 of the rotary machining tool according to the second embodiment of the present disclosure, the rotary machining tool 105 includes an angle changing portion 167 that changes the inclination angle θ in the first measurement direction 141.
 このような構成により、たとえばユーザが所望するシャンク部11の回転数に応じて遠心加速度の計測範囲を変更することができるため、ユーザの要望に応じた計測範囲において遠心加速度をより確実に計測することができる。 With such a configuration, for example, the measurement range of the centrifugal acceleration can be changed according to the rotation speed of the shank portion 11 desired by the user, so that the centrifugal acceleration can be measured more reliably in the measurement range according to the user's request. be able to.
 また、本開示の第2の実施の形態に係る回転加工工具の変形例1では、角度変更部167は、加速度センサ14が計測可能な加速度の範囲、加速度センサ14およびシャンク部11の回転軸17間の距離(r+d)、ならびにシャンク部11の回転数nに基づいて、傾斜角度θを変更する。 Further, in the modification 1 of the rotary machining tool according to the second embodiment of the present disclosure, the angle changing portion 167 is the range of acceleration that can be measured by the acceleration sensor 14, the rotation shaft 17 of the acceleration sensor 14 and the shank portion 11. The inclination angle θ is changed based on the distance between them (r + d) and the rotation speed n of the shank portion 11.
 このような構成により、加速度センサ14において生じる、第1の計測方向141における加速度が、加速度センサ14の計測可能な範囲を超えないような傾斜角度θにより確実に変更することができる。 With such a configuration, the acceleration generated in the acceleration sensor 14 in the first measurement direction 141 can be reliably changed by the inclination angle θ so as not to exceed the measurable range of the acceleration sensor 14.
 次に、本発明の他の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。 Next, other embodiments of the present invention will be described with reference to the drawings. The same or corresponding parts in the drawings are designated by the same reference numerals, and the description thereof will not be repeated.
<第3の実施の形態>
 本開示の実施の形態は、第1の実施の形態に係る回転加工工具101と比べて、加速度センサが追加された回転加工工具に関する。以下で説明する内容以外は第1の実施の形態に係る回転加工工具101と同様である。
<Third embodiment>
The embodiment of the present disclosure relates to a rotary machining tool to which an acceleration sensor is added as compared with the rotary machining tool 101 according to the first embodiment. Except for the contents described below, the same is true for the rotary machining tool 101 according to the first embodiment.
 図16は、本開示の第3の実施の形態に係る回転加工工具の構成を示す側面図である。 FIG. 16 is a side view showing the configuration of the rotary machining tool according to the third embodiment of the present disclosure.
 図16を参照して、回転加工工具106は、図1に示す回転加工工具101と比べて、さらに、加速度センサ142を備える。 With reference to FIG. 16, the rotary machining tool 106 further includes an acceleration sensor 142 as compared with the rotary machining tool 101 shown in FIG.
 図17は、本開示の第3の実施の形態に係る回転加工工具の構成を模式的に示す断面図である。詳細には、図17は、図16における回転加工工具106を平面18において切断してC方向から見た断面図である。 FIG. 17 is a cross-sectional view schematically showing the configuration of the rotary machining tool according to the third embodiment of the present disclosure. Specifically, FIG. 17 is a cross-sectional view of the rotary machining tool 106 in FIG. 16 cut in a plane 18 and viewed from the C direction.
 図17を参照して、回転加工工具106は、回転加工工具101と比べて、さらに、加速度センサ142を備える。加速度センサ142は、第4の計測方向143の加速度を計測する。第4の計測方向143は、平面18に沿った方向であって、加速度センサ142と回転軸17とを結ぶ直線144に対して直交する方向に沿う。 With reference to FIG. 17, the rotary machining tool 106 further includes an acceleration sensor 142 as compared with the rotary machining tool 101. The acceleration sensor 142 measures the acceleration in the fourth measurement direction 143. The fourth measurement direction 143 is a direction along the plane 18 and along a direction orthogonal to the straight line 144 connecting the acceleration sensor 142 and the rotation axis 17.
 加速度センサ142は、一方向の加速度を計測する、いわゆる一軸の加速度センサである。加速度センサ142は、たとえば、図2に示す加速度センサ14と同様の構造を有する。すなわち、加速度センサ142は、たとえば、図2に示すセンサ素子27と、センサ素子27を支持する台座部28と、センサ素子27および台座部28を収容するハウジング29とを含む。上記一方向は、たとえば、センサ素子27が台座部28によって支持される面である設置面に対して垂直な方向である。 The acceleration sensor 142 is a so-called uniaxial acceleration sensor that measures acceleration in one direction. The acceleration sensor 142 has, for example, a structure similar to that of the acceleration sensor 14 shown in FIG. That is, the acceleration sensor 142 includes, for example, the sensor element 27 shown in FIG. 2, the pedestal portion 28 that supports the sensor element 27, and the housing 29 that houses the sensor element 27 and the pedestal portion 28. The one direction is, for example, a direction perpendicular to the installation surface, which is the surface on which the sensor element 27 is supported by the pedestal portion 28.
 加速度センサ142は、上記一方向が第4の計測方向143に沿うように、図16に示す支持部16、具体的には、たとえば、図6に示す支持部16により支持される。なお、加速度センサ142は、図11に示す支持部162、または図13に示す支持部165に支持されてもよい。 The acceleration sensor 142 is supported by the support portion 16 shown in FIG. 16, specifically, for example, the support portion 16 shown in FIG. 6 so that the one direction is along the fourth measurement direction 143. The acceleration sensor 142 may be supported by the support portion 162 shown in FIG. 11 or the support portion 165 shown in FIG.
 第4の計測方向143は、回転加工工具106による切削に伴う振動が発生する方向である。また、第4の計測方向143は、遠心加速度が生じない方向である。したがって、加速度センサ142は、第4の計測方向143の加速度を計測することにより、遠心加速度ではなく、切削に伴う振動の加速度を計測することができる。 The fourth measurement direction 143 is the direction in which vibration is generated due to cutting by the rotary machining tool 106. Further, the fourth measurement direction 143 is a direction in which centrifugal acceleration does not occur. Therefore, the acceleration sensor 142 can measure the acceleration of vibration accompanying cutting, not the centrifugal acceleration, by measuring the acceleration in the fourth measurement direction 143.
 また、第4の計測方向143は、刃取付部12または刃部に損傷がある場合に、当該損傷に起因する振動が発生する方向である。 Further, the fourth measurement direction 143 is a direction in which vibration due to the damage is generated when the blade mounting portion 12 or the blade portion is damaged.
 したがって、加速度センサ142は、刃取付部12または刃部に損傷がある場合に、第4の計測方向143の加速度を計測することにより、遠心加速度ではなく、切削に伴う振動の加速度と、刃取付部12または刃部に生じた損傷に起因する振動による加速度との合成分を計測することができる。 Therefore, when the blade mounting portion 12 or the blade portion is damaged, the acceleration sensor 142 measures the acceleration in the fourth measurement direction 143 to obtain not the centrifugal acceleration but the acceleration of vibration accompanying cutting and the blade mounting. It is possible to measure the combined amount with the acceleration due to the vibration caused by the damage caused to the portion 12 or the blade portion.
 図18は、本開示の第3の実施の形態に係る回転加工工具の構成を示す図である。詳細には、図18は、回転加工工具が、図16に示す構成要素に加えて、さらに、電池、無線通信装置およびハウジングを備えた状態を示す図である。なお、図18においては、電池、無線通信装置およびハウジングを想像線である二点鎖線により示している。 FIG. 18 is a diagram showing a configuration of a rotary machining tool according to a third embodiment of the present disclosure. In detail, FIG. 18 is a diagram showing a state in which a rotary machining tool is further equipped with a battery, a wireless communication device, and a housing in addition to the components shown in FIG. In FIG. 18, the battery, the wireless communication device, and the housing are shown by an alternate long and short dash line, which is an imaginary line.
 図18を参照して、回転加工工具106は、図16に示す構成に加えて、さらに、電池22と、無線通信装置23と、ハウジング24とを備える。 With reference to FIG. 18, the rotary machining tool 106 further includes a battery 22, a wireless communication device 23, and a housing 24, in addition to the configuration shown in FIG.
 無線通信装置23は、図示しない信号線を介して、加速度センサ14および加速度センサ142と接続されている。加速度センサ14は、加速度センサ14において生じる遠心加速度を示す計測信号を信号線経由で無線通信装置23へ出力する。また、加速度センサ142は、加速度センサ142において生じる加速度を示す計測信号を信号線経由で無線通信装置23へ出力する。 The wireless communication device 23 is connected to the acceleration sensor 14 and the acceleration sensor 142 via a signal line (not shown). The acceleration sensor 14 outputs a measurement signal indicating the centrifugal acceleration generated in the acceleration sensor 14 to the wireless communication device 23 via a signal line. Further, the acceleration sensor 142 outputs a measurement signal indicating the acceleration generated by the acceleration sensor 142 to the wireless communication device 23 via the signal line.
 無線通信装置23は、加速度センサ14および加速度センサ142から計測信号を受けると、受けた各計測信号の示す計測結果を無線信号に含めて外部のパーソナルコンピュータ等の管理装置へ送信する。管理装置は、たとえば、受信した各計測結果を蓄積し、蓄積した各計測結果を処理する。 When the wireless communication device 23 receives the measurement signals from the acceleration sensor 14 and the acceleration sensor 142, the wireless communication device 23 includes the measurement results indicated by the received measurement signals in the wireless signals and transmits the measurement results to an external management device such as a personal computer. The management device, for example, accumulates each received measurement result and processes each accumulated measurement result.
 図19は、本開示の第3の実施の形態に係る回転加工システムの構成を示す図である。 FIG. 19 is a diagram showing a configuration of a rotary processing system according to a third embodiment of the present disclosure.
 図19を参照して、回転加工システム203は、フライス盤等の回転加工装置204と、管理装置302とを備える。 With reference to FIG. 19, the rotary processing system 203 includes a rotary processing device 204 such as a milling machine and a management device 302.
 回転加工装置204は、回転加工工具106と、駆動部と、駆動部を制御する制御部とを備える。駆動部は、回転加工工具106を駆動するモータ等である。制御部は、駆動部の回転数等を制御する。 The rotary processing device 204 includes a rotary processing tool 106, a drive unit, and a control unit that controls the drive unit. The drive unit is a motor or the like that drives the rotary machining tool 106. The control unit controls the number of rotations of the drive unit and the like.
 管理装置302は、第1の実施の形態に係る回転加工工具101における管理装置301と比べて、さらに、判断部34を含む。 The management device 302 further includes a determination unit 34 as compared with the management device 301 in the rotary machining tool 101 according to the first embodiment.
 無線通信部31は、回転加工工具106の無線通信装置23と無線による通信を行う。 The wireless communication unit 31 wirelessly communicates with the wireless communication device 23 of the rotary processing tool 106.
 記憶部35には、制御部32および判断部34を動作させるためのプログラムおよびデータ、無線通信部31が回転加工工具106から受信した計測結果、制御部32の算出結果、ならびに判断部34の判断結果等が保存される。 The storage unit 35 contains a program and data for operating the control unit 32 and the determination unit 34, a measurement result received by the wireless communication unit 31 from the rotary machining tool 106, a calculation result of the control unit 32, and a determination of the determination unit 34. Results etc. are saved.
 判断部34は、加速度センサ142の計測結果に基づいて、刃取付部12または刃部に異常があるか否かを判断する。 The determination unit 34 determines whether or not there is an abnormality in the blade mounting portion 12 or the blade portion based on the measurement result of the acceleration sensor 142.
 具体的には、判断部34は、たとえば、CPUを含む。判断部34は、加速度センサ142の計測結果が所定の閾値以上である場合、刃取付部12または刃部に異常があると判断する。また、判断部34は、加速度センサ142の計測結果が当該閾値未満である場合、刃取付部12または刃部は正常であると判断し、判断結果を記憶部35に保存する。表示部33は、記憶部35に蓄積された判断部34の判断結果を表示する。 Specifically, the determination unit 34 includes, for example, a CPU. When the measurement result of the acceleration sensor 142 is equal to or higher than a predetermined threshold value, the determination unit 34 determines that the blade mounting portion 12 or the blade portion has an abnormality. Further, when the measurement result of the acceleration sensor 142 is less than the threshold value, the determination unit 34 determines that the blade mounting portion 12 or the blade portion is normal, and stores the determination result in the storage unit 35. The display unit 33 displays the determination result of the determination unit 34 accumulated in the storage unit 35.
 本開示の第3の実施の形態に係る回転加工工具106では、加速度センサ14は、一方向の加速度を計測するセンサである。回転加工工具106は、回転加工工具101の構成に加えて、さらに、一方向の加速度を計測するセンサである加速度センサ142を備える。加速度センサ142は、第4の計測方向143の加速度を計測する。第4の計測方向143は、平面18に沿った方向であって、加速度センサ142と回転軸17とを結ぶ直線144に対して直交する方向に沿う。 In the rotary machining tool 106 according to the third embodiment of the present disclosure, the acceleration sensor 14 is a sensor that measures acceleration in one direction. In addition to the configuration of the rotary machining tool 101, the rotary machining tool 106 further includes an acceleration sensor 142 which is a sensor for measuring acceleration in one direction. The acceleration sensor 142 measures the acceleration in the fourth measurement direction 143. The fourth measurement direction 143 is a direction along the plane 18 and along a direction orthogonal to the straight line 144 connecting the acceleration sensor 142 and the rotation axis 17.
 このような構成により、加速度センサ14により遠心加速度を計測するとともに、加速度センサ142により、切削に伴う振動等の加速度を計測することができ、より多様な加速度を計測することができる。 With such a configuration, the acceleration sensor 14 can measure the centrifugal acceleration, and the acceleration sensor 142 can measure the acceleration such as vibration caused by cutting, so that more various accelerations can be measured.
 また、本開示の第3の実施の形態に係る回転加工システム203は、加速度センサ14の計測結果を示すセンサ情報を送信する無線通信装置23をさらに備える回転加工工具106と、無線通信装置23から送信されるセンサ情報を受信し、受信したセンサ情報を処理する管理装置302とを備える。 Further, the rotary machining system 203 according to the third embodiment of the present disclosure is a rotary machining tool 106 further including a wireless communication device 23 for transmitting sensor information indicating a measurement result of the acceleration sensor 14, and a wireless communication device 23. It includes a management device 302 that receives the transmitted sensor information and processes the received sensor information.
 このように、加速度センサ14の第1の計測方向141を、シャンク部11の回転において生じる遠心加速度の方向からずらす構成により、遠心加速度に対する加速度センサ14の第1の計測方向141における感度を低下させることができる。 As described above, the configuration in which the first measurement direction 141 of the acceleration sensor 14 is deviated from the direction of the centrifugal acceleration generated in the rotation of the shank portion 11 reduces the sensitivity of the acceleration sensor 14 to the centrifugal acceleration in the first measurement direction 141. be able to.
 したがって、本開示の第3の実施の形態に係る回転加工システム203では、加速度センサ14の計測範囲の制限を超えて、回転加工工具106において生じる遠心加速度を計測することができる。 Therefore, in the rotary machining system 203 according to the third embodiment of the present disclosure, the centrifugal acceleration generated in the rotary machining tool 106 can be measured beyond the limitation of the measurement range of the acceleration sensor 14.
 また、加速度センサ14の計測結果を処理する構成により、たとえば、刃取付部12または刃部に異常があるか否かを判断することができる。 Further, it is possible to determine whether or not there is an abnormality in the blade mounting portion 12 or the blade portion, for example, by the configuration for processing the measurement result of the acceleration sensor 14.
 すなわち、ユーザは、回転加工工具106が適正な状態にあるかどうかを把握することができる。 That is, the user can grasp whether or not the rotary machining tool 106 is in an appropriate state.
 [変形例1]
 図20は、本開示の第3の実施の形態に係る回転加工工具の変形例1を示す部分断面図である。
[Modification 1]
FIG. 20 is a partial cross-sectional view showing a modification 1 of the rotary machining tool according to the third embodiment of the present disclosure.
 図20を参照して、変形例1に係る回転加工工具107は、さらに、加速度センサ145を備える。 With reference to FIG. 20, the rotary machining tool 107 according to the first modification further includes an acceleration sensor 145.
 加速度センサ145は、一方向の加速度を計測する、いわゆる一軸の加速度センサである。加速度センサ145は、たとえば、図2に示す加速度センサ14と同様の構造を有する。すなわち、加速度センサ145は、たとえば、図2に示すセンサ素子27と、センサ素子27を支持する台座部28と、センサ素子27および台座部28を収容するハウジング29とを含む。上記一方向は、たとえば、センサ素子27が台座部28によって支持される面に対して垂直な方向である。 The acceleration sensor 145 is a so-called uniaxial acceleration sensor that measures acceleration in one direction. The acceleration sensor 145 has, for example, a structure similar to that of the acceleration sensor 14 shown in FIG. That is, the acceleration sensor 145 includes, for example, the sensor element 27 shown in FIG. 2, the pedestal portion 28 that supports the sensor element 27, and the housing 29 that houses the sensor element 27 and the pedestal portion 28. The one direction is, for example, a direction perpendicular to the surface on which the sensor element 27 is supported by the pedestal portion 28.
 図21は、本開示の第3の実施の形態に係る回転加工工具の変形例1を模式的に示す断面図である。詳細には、図21は、図20における回転加工工具107を平面18において切断してC方向から見た断面図である。 FIG. 21 is a cross-sectional view schematically showing a modified example 1 of the rotary machining tool according to the third embodiment of the present disclosure. More specifically, FIG. 21 is a cross-sectional view of the rotary machining tool 107 in FIG. 20 cut in a plane 18 and viewed from the C direction.
 図21を参照して、加速度センサ145は、第5の計測方向146の加速度を計測する。第5の計測方向146は、平面18に沿った方向であって、加速度センサ145と回転軸17とを結ぶ直線147に対して直交する方向に沿う。 With reference to FIG. 21, the acceleration sensor 145 measures the acceleration in the fifth measurement direction 146. The fifth measurement direction 146 is a direction along the plane 18 and along a direction orthogonal to the straight line 147 connecting the acceleration sensor 145 and the rotation axis 17.
 加速度センサ145は、上記一方向が第5の計測方向146に沿うように、図20に示す支持部16、具体的には、たとえば、図6に示す支持部16により支持される。なお、加速度センサ145は、図11に示す支持部162、または図13に示す支持部165に支持されてもよい。 The acceleration sensor 145 is supported by the support portion 16 shown in FIG. 20, specifically, for example, the support portion 16 shown in FIG. 6 so that the one direction is along the fifth measurement direction 146. The acceleration sensor 145 may be supported by the support portion 162 shown in FIG. 11 or the support portion 165 shown in FIG.
 第5の計測方向146は、回転加工工具107による切削に伴う振動が発生する方向である。また、第5の計測方向146は、遠心加速度が生じない方向である。したがって、加速度センサ145は、第5の計測方向146の加速度を計測することにより、遠心加速度ではなく、切削に伴う振動の加速度を計測することができる。 The fifth measurement direction 146 is the direction in which vibration is generated due to cutting by the rotary machining tool 107. Further, the fifth measurement direction 146 is a direction in which centrifugal acceleration does not occur. Therefore, the acceleration sensor 145 can measure the acceleration of vibration accompanying cutting, not the centrifugal acceleration, by measuring the acceleration in the fifth measurement direction 146.
 また、第5の計測方向146は、刃取付部12または刃部に損傷がある場合に、当該損傷に起因する振動が発生する方向である。 Further, the fifth measurement direction 146 is a direction in which vibration due to the damage is generated when the blade mounting portion 12 or the blade portion is damaged.
 したがって、加速度センサ145は、刃取付部12または刃部に損傷がある場合に、第5の計測方向146の加速度を計測することにより、遠心加速度ではなく、切削に伴う振動の加速度と、刃取付部12または刃部に生じた損傷に起因する振動による加速度との合成分を計測することができる。 Therefore, when the blade mounting portion 12 or the blade portion is damaged, the acceleration sensor 145 measures the acceleration in the fifth measurement direction 146 to measure the acceleration of vibration accompanying cutting and the blade mounting, instead of the centrifugal acceleration. It is possible to measure the combined amount with the acceleration due to the vibration caused by the damage caused to the portion 12 or the blade portion.
 また、加速度センサ142および加速度センサ145により、互いに異なる方向において生じる加速度を計測することで、第3の実施の形態に係る回転加工工具106と比べて、刃取付部12または刃部の異常をより正確に検出することができる。 Further, by measuring the accelerations generated in different directions by the acceleration sensor 142 and the acceleration sensor 145, the abnormality of the blade mounting portion 12 or the blade portion can be further improved as compared with the rotary machining tool 106 according to the third embodiment. It can be detected accurately.
 具体的には、互いに異なる方向において生じる加速度を計測することで、異常が生じている刃取付部12または刃部の位置をより正確に検出することができる。 Specifically, by measuring the accelerations that occur in different directions, the position of the blade mounting portion 12 or the blade portion where the abnormality has occurred can be detected more accurately.
 また、互いに異なる方向において生じる加速度を計測することで、各計測結果に基づいて、シャンク部11において生じるねじり応力を算出することができる。 Further, by measuring the accelerations generated in different directions, the torsional stress generated in the shank portion 11 can be calculated based on each measurement result.
 図22は、本開示の第3の実施の形態の変形例1に係る回転加工工具の構成を示す図である。詳細には、図22は、回転加工工具が、図20に示す構成要素に加えて、さらに、電池、無線通信装置およびハウジングを備えた状態を示す図である。なお、図22においては、電池、無線通信装置およびハウジングを想像線である二点鎖線により示している。 FIG. 22 is a diagram showing the configuration of the rotary machining tool according to the first modification of the third embodiment of the present disclosure. In detail, FIG. 22 is a diagram showing a state in which the rotary machining tool is further equipped with a battery, a wireless communication device, and a housing in addition to the components shown in FIG. In FIG. 22, the battery, the wireless communication device, and the housing are shown by an alternate long and short dash line, which is an imaginary line.
 図22を参照して、回転加工工具106は、図20に示す構成に加えて、さらに、電池22と、無線通信装置23と、ハウジング24とを備える。 With reference to FIG. 22, the rotary machining tool 106 further includes a battery 22, a wireless communication device 23, and a housing 24, in addition to the configuration shown in FIG.
 無線通信装置23は、図示しない信号線を介して、加速度センサ14、加速度センサ142および加速度センサ145と接続されている。加速度センサ14は、加速度センサ14において生じる加速度を示す計測信号を信号線経由で無線通信装置23へ出力する。加速度センサ142は、加速度センサ142において生じる加速度を示す計測信号を信号線経由で無線通信装置23へ出力する。加速度センサ145は、加速度センサ145において生じる加速度を示す計測信号を信号線経由で無線通信装置23へ出力する。 The wireless communication device 23 is connected to the acceleration sensor 14, the acceleration sensor 142, and the acceleration sensor 145 via a signal line (not shown). The acceleration sensor 14 outputs a measurement signal indicating the acceleration generated by the acceleration sensor 14 to the wireless communication device 23 via a signal line. The acceleration sensor 142 outputs a measurement signal indicating the acceleration generated by the acceleration sensor 142 to the wireless communication device 23 via a signal line. The acceleration sensor 145 outputs a measurement signal indicating the acceleration generated by the acceleration sensor 145 to the wireless communication device 23 via a signal line.
 無線通信装置23は、加速度センサ14、加速度センサ142および加速度センサ145から計測信号を受けると、受けた計測信号の示す計測結果を無線信号に含めて外部のパーソナルコンピュータ等の管理装置へ送信する。管理装置は、たとえば、受信した計測結果を蓄積し、蓄積した計測結果を処理する。 When the wireless communication device 23 receives the measurement signals from the acceleration sensor 14, the acceleration sensor 142, and the acceleration sensor 145, the wireless communication device 23 includes the measurement result indicated by the received measurement signals in the wireless signal and transmits the measurement result to an external management device such as a personal computer. The management device, for example, accumulates the received measurement results and processes the accumulated measurement results.
 図23は、本開示の第3の実施の形態に係る回転加工システムの構成を示す図である。 FIG. 23 is a diagram showing a configuration of a rotary processing system according to a third embodiment of the present disclosure.
 図23を参照して、回転加工システム205は、フライス盤等の回転加工装置206と、管理装置303とを備える。 With reference to FIG. 23, the rotary processing system 205 includes a rotary processing device 206 such as a milling machine and a management device 303.
 回転加工装置206は、回転加工工具107と、駆動部と、駆動部を制御する制御部とを備える。駆動部は、回転加工工具107を駆動するモータ等である。制御部は、駆動部の回転数等を制御する。 The rotary processing device 206 includes a rotary processing tool 107, a drive unit, and a control unit that controls the drive unit. The drive unit is a motor or the like that drives the rotary machining tool 107. The control unit controls the rotation speed of the drive unit and the like.
 管理装置303は、第1の実施の形態に係る回転加工工具における管理装置301と比べて、さらに、判断部341を含む。 The management device 303 further includes a determination unit 341 as compared with the management device 301 in the rotary machining tool according to the first embodiment.
 無線通信部31は、回転加工工具107の無線通信装置23と無線による通信を行う。 The wireless communication unit 31 wirelessly communicates with the wireless communication device 23 of the rotary processing tool 107.
 記憶部35には、制御部32および判断部341を動作させるためのプログラムおよびデータ、無線通信部31が回転加工工具107から受信した計測結果、制御部32の算出結果、ならびに判断部341の判断結果等が保存される。 The storage unit 35 contains a program and data for operating the control unit 32 and the determination unit 341, a measurement result received by the wireless communication unit 31 from the rotary machining tool 107, a calculation result of the control unit 32, and a determination of the determination unit 341. Results etc. are saved.
 判断部341は、加速度センサ142および加速度センサ145の計測結果に基づいて、刃取付部12または刃部に異常があるか否かを判断する。 The determination unit 341 determines whether or not there is an abnormality in the blade mounting portion 12 or the blade portion based on the measurement results of the acceleration sensor 142 and the acceleration sensor 145.
 具体的には、判断部341は、たとえば、CPUを含む。判断部341は、加速度センサ142および加速度センサ145の少なくともいずれか一方の計測結果が所定の閾値以上である場合、刃取付部12または刃部に異常があると判断する。また、判断部341は、加速度センサ142および加速度センサ145の計測結果が当該閾値未満である場合、刃取付部12または刃部は正常であると判断し、判断結果を記憶部35に保存する。表示部33は、記憶部35に蓄積された判断部341の判断結果を表示する。 Specifically, the determination unit 341 includes, for example, a CPU. When the measurement result of at least one of the acceleration sensor 142 and the acceleration sensor 145 is equal to or higher than a predetermined threshold value, the determination unit 341 determines that the blade mounting portion 12 or the blade portion has an abnormality. Further, when the measurement results of the acceleration sensor 142 and the acceleration sensor 145 are less than the threshold value, the determination unit 341 determines that the blade mounting portion 12 or the blade portion is normal, and stores the determination result in the storage unit 35. The display unit 33 displays the determination result of the determination unit 341 stored in the storage unit 35.
 本開示の第3の実施の形態に係る回転加工工具の変形例1では、回転加工工具107は、図16に示す回転加工工具106の構成に加えて、さらに、一方向の加速度を計測するセンサである加速度センサ145を備える。加速度センサ145は、第5の計測方向146の加速度を計測する。第5の計測方向146は、平面18に沿った方向であって、加速度センサ145と回転軸17とを結ぶ直線147に対して直交する方向に沿う。 In the first modification of the rotary machining tool according to the third embodiment of the present disclosure, the rotary machining tool 107 is a sensor that measures acceleration in one direction in addition to the configuration of the rotary machining tool 106 shown in FIG. The acceleration sensor 145 is provided. The acceleration sensor 145 measures the acceleration in the fifth measurement direction 146. The fifth measurement direction 146 is a direction along the plane 18 and along a direction orthogonal to the straight line 147 connecting the acceleration sensor 145 and the rotation axis 17.
 このような構成により、加速度センサ14により遠心加速度を計測するとともに、加速度センサ142および加速度センサ145により、切削に伴う振動等の加速度を計測することができ、より多様な加速度を計測することができる。 With such a configuration, the accelerometer 14 can measure the centrifugal acceleration, and the accelerometer 142 and the acceleration sensor 145 can measure the acceleration such as vibration accompanying cutting, and more various accelerations can be measured. ..
 次に、本発明の他の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。 Next, other embodiments of the present invention will be described with reference to the drawings. The same or corresponding parts in the drawings are designated by the same reference numerals, and the description thereof will not be repeated.
<第4の実施の形態>
 本実施の形態は、第1の実施の形態に係る回転加工工具101と比べて、加速度センサが有する計測方向の数が異なる回転加工工具に関する。以下で説明する内容以外は第1の実施の形態に係る回転加工工具101と同様である。
<Fourth Embodiment>
The present embodiment relates to a rotary machining tool having a different number of measurement directions from the acceleration sensor as compared with the rotary machining tool 101 according to the first embodiment. Except for the contents described below, the same is true for the rotary machining tool 101 according to the first embodiment.
 図24は、本開示の第4の実施の形態に係る回転加工工具の構成を示す側面図である。 FIG. 24 is a side view showing the configuration of the rotary machining tool according to the fourth embodiment of the present disclosure.
 図24を参照して、回転加工工具108は、図1に示す回転加工工具101と比べて、加速度センサ14の代わりに加速度センサ148を備える。 With reference to FIG. 24, the rotary machining tool 108 includes an acceleration sensor 148 instead of the acceleration sensor 14 as compared with the rotary machining tool 101 shown in FIG.
 図25は、本開示の第4の実施の形態に係る回転加工工具における加速度センサの構成を示す斜視図である。なお、図25では、ハウジング291を想像線である二点鎖線により示している。図26は、本開示の第4の実施の形態に係る回転加工工具の構成を模式的に示す断面図である。具体的には、図26は、回転加工工具を、回転軸を法線とする平面において切断して図24に示すD方向から見た断面図である。図27は、本開示の第4の実施の形態に係る回転加工工具を、回転軸を通る平面において切断して図24に示すB方向から見た断面図である。 FIG. 25 is a perspective view showing the configuration of an acceleration sensor in the rotary machining tool according to the fourth embodiment of the present disclosure. In FIG. 25, the housing 291 is shown by a two-dot chain line which is an imaginary line. FIG. 26 is a cross-sectional view schematically showing the configuration of the rotary machining tool according to the fourth embodiment of the present disclosure. Specifically, FIG. 26 is a cross-sectional view of a rotary machining tool cut in a plane having a rotation axis as a normal and viewed from the D direction shown in FIG. 24. FIG. 27 is a cross-sectional view of the rotary machining tool according to the fourth embodiment of the present disclosure, cut in a plane passing through the rotary axis and viewed from the B direction shown in FIG. 24.
 図25を参照して、加速度センサ148は、三方向の加速度を計測する、いわゆる三軸の加速度センサである。 With reference to FIG. 25, the acceleration sensor 148 is a so-called three-axis acceleration sensor that measures acceleration in three directions.
 加速度センサ148は、たとえば、センサ素子271と、センサ素子271を支持する台座部281と、センサ素子271および台座部281を収容するハウジング291とを含む。上記三方向、具体的には、図25に示す第1の方向X1、第2の方向Y1および第3の方向Z1は、3次元的に互いに直交する、すなわち3次元の直交軸を構成する。 The acceleration sensor 148 includes, for example, a sensor element 271, a pedestal portion 281 that supports the sensor element 271, and a housing 291 that houses the sensor element 271 and the pedestal portion 281. The three directions, specifically, the first direction X1, the second direction Y1 and the third direction Z1 shown in FIG. 25 are three-dimensionally orthogonal to each other, that is, form a three-dimensional orthogonal axis.
 第1の方向X1は、センサ素子271が台座部281によって支持される面である設置面に対して垂直な方向である。第2の方向Y1および第3の方向Z1は、上記設置面に対して平行な平面上にある。 The first direction X1 is a direction perpendicular to the installation surface, which is the surface on which the sensor element 271 is supported by the pedestal portion 281. The second direction Y1 and the third direction Z1 are on a plane parallel to the installation surface.
 加速度センサ148は、図26に示す支持部16、具体的には、たとえば、図6に示す支持部16により支持される。なお、加速度センサ148は、図11に示す支持部162、または図13に示す支持部165に支持されてもよい。 The acceleration sensor 148 is supported by the support portion 16 shown in FIG. 26, specifically, for example, the support portion 16 shown in FIG. The acceleration sensor 148 may be supported by the support portion 162 shown in FIG. 11 or the support portion 165 shown in FIG.
 加速度センサ148は、図26に示す支持部16により所定の姿勢が保たれた状態において、三方向の加速度を計測する。 The acceleration sensor 148 measures acceleration in three directions while the predetermined posture is maintained by the support portion 16 shown in FIG. 26.
 具体的には、加速度センサ148は、上記三方向、すなわち第1の方向X1、第2の方向Y1および第3の方向Z1が、それぞれ、図26および図27に示す第1の計測方向1410、第2の計測方向149および第3の計測方向150に沿うように姿勢が調整された状態において、第1の計測方向1410の加速度、第2の計測方向149の加速度および第3の方向の加速度を計測する。第1の計測方向1410、第2の計測方向149および第3の計測方向150は、3次元的に互いに直交する、すなわち3次元の直交軸を構成する。 Specifically, in the acceleration sensor 148, the three directions, that is, the first direction X1, the second direction Y1 and the third direction Z1, are the first measurement directions 1410 shown in FIGS. 26 and 27, respectively. With the posture adjusted along the second measurement direction 149 and the third measurement direction 150, the acceleration in the first measurement direction 1410, the acceleration in the second measurement direction 149, and the acceleration in the third direction are measured. measure. The first measurement direction 1410, the second measurement direction 149, and the third measurement direction 150 are three-dimensionally orthogonal to each other, that is, form a three-dimensional orthogonal axis.
 第1の計測方向1410は、平面18および回転軸17の各々に対して傾斜する。第2の計測方向149は、平面18および回転軸17の各々に対して傾斜する。第3の計測方向150は、平面18に沿った方向であって、加速度センサ148と回転軸17とを結ぶ直線151に対して直交する方向に沿う。 The first measurement direction 1410 is inclined with respect to each of the plane 18 and the rotation axis 17. The second measurement direction 149 is inclined with respect to each of the plane 18 and the rotation axis 17. The third measurement direction 150 is a direction along the plane 18 and is along a direction orthogonal to the straight line 151 connecting the acceleration sensor 148 and the rotation axis 17.
 すなわち、たとえば、第1の計測方向1410は、図26の紙面に沿って紙面の右斜め上へ向かう方向である。第2の計測方向149は、図26の紙面に沿って紙面の右斜め下へ向かう方向である。第3の計測方向150は、図26の紙面に対して垂直な方向で、かつ紙面の表側から裏側へ向かう方向である。 That is, for example, the first measurement direction 1410 is a direction that goes diagonally upward to the right of the paper surface along the paper surface of FIG. 26. The second measurement direction 149 is a direction diagonally downward to the right of the paper surface along the paper surface of FIG. 26. The third measurement direction 150 is a direction perpendicular to the paper surface of FIG. 26 and a direction from the front side to the back side of the paper surface.
 第1の計測方向1410は、平面18に対して傾斜角度θで傾斜する。具体的には、第1の計測方向1410は、加速度センサ14を通り、かつ回転軸17を含む平面15において、平面18に対して傾斜角度θで傾斜する。ここで、傾斜角度θは、0°より大きく、かつ90°より小さい値である。また、傾斜角度θは、45°であってもよいし、45°でなくてもよい。 The first measurement direction 1410 is inclined with respect to the plane 18 at an inclination angle θ. Specifically, the first measurement direction 1410 passes through the acceleration sensor 14 and is tilted at a tilt angle θ with respect to the plane 18 on the plane 15 including the rotation axis 17. Here, the inclination angle θ is a value larger than 0 ° and smaller than 90 °. Further, the inclination angle θ may be 45 ° or not 45 °.
 第2の計測方向149は、平面18に対して第1の計測方向1410とは反対側へ傾斜角度(90°-θ)で傾斜する。具体的には、第2の計測方向149は、平面15において、平面18に対して第1の計測方向1410とは反対側へ傾斜角度(90°-θ)で傾斜する。ここで、傾斜角度θは、0°より大きく、かつ90°より小さい値である。 The second measurement direction 149 is inclined with respect to the plane 18 toward the side opposite to the first measurement direction 1410 at an inclination angle (90 ° -θ). Specifically, the second measurement direction 149 is inclined with respect to the plane 18 toward the side opposite to the first measurement direction 1410 at an inclination angle (90 ° −θ). Here, the inclination angle θ is a value larger than 0 ° and smaller than 90 °.
 したがって、傾斜角度θを変化させることにより、遠心加速度aに対する加速度センサ14の第1の計測方向1410における感度を変化させることができるとともに、遠心加速度aに対する加速度センサ148の第2の計測方向149における感度を変化させることができる。 Therefore, by changing the inclination angle θ, the sensitivity of the acceleration sensor 14 to the centrifugal acceleration a in the first measurement direction 1410 can be changed, and the sensitivity of the acceleration sensor 148 to the centrifugal acceleration a in the second measurement direction 149. The sensitivity can be changed.
 たとえば、図4に示す例では、傾斜角度θが85°である場合(グラフg7)、角度(90°-θ)は5°であり、傾斜角度θが80°である場合(グラフg6)、傾斜角度(90°-θ)は10°であり、傾斜角度θが70°である場合(グラフg5)、傾斜角度(90°-θ)は20°であり、傾斜角度θが60°である場合(グラフg4)、傾斜角度(90°-θ)は30°である。 For example, in the example shown in FIG. 4, when the inclination angle θ is 85 ° (graph g7), the angle (90 ° −θ) is 5 °, and the inclination angle θ is 80 ° (graph g6). When the tilt angle (90 ° -θ) is 10 ° and the tilt angle θ is 70 ° (graph g5), the tilt angle (90 ° -θ) is 20 ° and the tilt angle θ is 60 °. In the case (graph g4), the tilt angle (90 ° −θ) is 30 °.
 図4に示す例では、加速度センサ148は、0G~200Gの範囲において、遠心加速度を計測することが可能である。つまり、加速度センサ148は、たとえば、傾斜角度θが85°である場合(グラフg7)、第1の計測方向1410において0rpm~約4000rpmの計測を行うことが可能であり、第2の計測方向149において0rpm~約14000rpmの計測を行うことが可能である。そして、0rpm~約4000rpmの範囲において、加速度センサ148は高い分解能を発揮することができる。 In the example shown in FIG. 4, the accelerometer 148 can measure the centrifugal acceleration in the range of 0G to 200G. That is, for example, when the inclination angle θ is 85 ° (graph g7), the acceleration sensor 148 can measure from 0 rpm to about 4000 rpm in the first measurement direction 1410, and the second measurement direction 149. It is possible to measure from 0 rpm to about 14000 rpm. The acceleration sensor 148 can exhibit high resolution in the range of 0 rpm to about 4000 rpm.
 したがって、加速度センサ148において、たとえば、0rpm~約4000rpmの低速回転域における遠心加速度の計測を第1の計測方向1410に担わせ、約4000rpm~約14000rpmの高速回転域における遠心加速度の計測を第2の計測方向149に主に担わせて、2つの計測方向により広範な回転数において遠心加速度を計測することができる。また、低速回転域では、高い分解能で計測を行うことができる。 Therefore, in the acceleration sensor 148, for example, the measurement of the centrifugal acceleration in the low speed rotation range of 0 rpm to about 4000 rpm is carried out in the first measurement direction 1410, and the measurement of the centrifugal acceleration in the high speed rotation range of about 4000 rpm to about 14000 rpm is performed in the second measurement direction. Centrifugal acceleration can be measured in a wide range of rotation speeds in two measurement directions, mainly in the measurement direction 149 of. Further, in the low speed rotation range, measurement can be performed with high resolution.
 本開示の第4の実施の形態に係る回転加工工具108では、加速度センサ148は、第1の計測方向1410の加速度、第2の計測方向149の加速度および第3の計測方向150の加速度を計測する。第1の計測方向1410、第2の計測方向149および第3の計測方向150は、3次元的に互いに直交する、すなわち3次元の直交軸を構成する。第2の計測方向149は、平面18および回転軸17の各々に対して傾斜する。第3の計測方向150は、平面18に沿った方向であって、加速度センサ148と回転軸17とを結ぶ直線151に対して直交する方向に沿う。 In the rotary machining tool 108 according to the fourth embodiment of the present disclosure, the acceleration sensor 148 measures the acceleration in the first measurement direction 1410, the acceleration in the second measurement direction 149, and the acceleration in the third measurement direction 150. To do. The first measurement direction 1410, the second measurement direction 149, and the third measurement direction 150 are three-dimensionally orthogonal to each other, that is, form a three-dimensional orthogonal axis. The second measurement direction 149 is inclined with respect to each of the plane 18 and the rotation axis 17. The third measurement direction 150 is a direction along the plane 18 and is along a direction orthogonal to the straight line 151 connecting the acceleration sensor 148 and the rotation axis 17.
 このような構成により、3つの計測方向において加速度を計測する加速度センサ148をたとえば1つ用いて、遠心加速度を計測するとともに、切削に伴う振動等の加速度を計測することができ、より多様な加速度を計測することができる。また、加速度センサのシャンク部11への取り付け数をより少なくすることができる。 With such a configuration, for example, one acceleration sensor 148 that measures acceleration in three measurement directions can be used to measure centrifugal acceleration and acceleration such as vibration associated with cutting, so that more diverse accelerations can be measured. Can be measured. In addition, the number of acceleration sensors attached to the shank portion 11 can be reduced.
 また、本開示の第4の実施の形態に係る回転加工工具108では、第1の計測方向1410と平面18とがなす傾斜角度θは、0°より大きくかつ90°未満であり、かつ45°でない。 Further, in the rotary machining tool 108 according to the fourth embodiment of the present disclosure, the inclination angle θ formed by the first measurement direction 1410 and the plane 18 is larger than 0 ° and less than 90 °, and 45 °. Not.
 このような構成により、3つの計測方向において加速度を計測する加速度センサ148をたとえば1つ用いて、2つの異なる計測範囲において遠心加速度を計測することができる。これにより、たとえば1つの加速度センサ148によってより広範な遠心加速度を計測することができる。 With such a configuration, it is possible to measure centrifugal acceleration in two different measurement ranges by using, for example, one acceleration sensor 148 that measures acceleration in three measurement directions. This allows, for example, one accelerometer 148 to measure a wider range of centrifugal accelerations.
 また、本開示の第4の実施の形態に係る回転加工工具108では、傾斜角度θは、70°以上かつ90°未満である。 Further, in the rotary machining tool 108 according to the fourth embodiment of the present disclosure, the inclination angle θ is 70 ° or more and less than 90 °.
 このような構成により、傾斜角度θが0°である場合と比べて、加速度センサ148は、より大きな回転数に対応する遠心加速度を計測することができる。 With such a configuration, the acceleration sensor 148 can measure the centrifugal acceleration corresponding to a larger rotation speed than when the inclination angle θ is 0 °.
 また、本開示の第4の実施の形態に係る回転加工工具108では、傾斜角度θは、80°以上かつ90°未満である。 Further, in the rotary machining tool 108 according to the fourth embodiment of the present disclosure, the inclination angle θ is 80 ° or more and less than 90 °.
 このような構成により、傾斜角度θが70°以上かつ90°未満である場合と比べて、加速度センサ148は、より大きな回転数に対応する遠心加速度を計測することができる。 With such a configuration, the accelerometer 148 can measure the centrifugal acceleration corresponding to a larger rotation speed than when the inclination angle θ is 70 ° or more and less than 90 °.
 [変形例1]
 図28は、本開示の第4の実施の形態に係る回転加工工具の変形例1を示す部分断面図である。
[Modification 1]
FIG. 28 is a partial cross-sectional view showing a modification 1 of the rotary machining tool according to the fourth embodiment of the present disclosure.
 図28を参照して、変形例1に係る回転加工工具109は、支持部16の代わりに、図13に示すような角度変更機能を有する支持部165を備える。回転加工工具109は、支持部165の角度変更機能により、傾斜角度θaを変更し、傾斜角度θを変更することができる。 With reference to FIG. 28, the rotary machining tool 109 according to the first modification includes a support portion 165 having an angle changing function as shown in FIG. 13 instead of the support portion 16. The rotary machining tool 109 can change the inclination angle θa and change the inclination angle θ by the angle change function of the support portion 165.
 本開示の第4の実施の形態に係る回転加工工具の変形例1では、回転加工工具109は、回転加工工具108の構成に加えて、さらに、第1の計測方向1410の傾斜角度θおよび第2の計測方向149の傾斜角度(90°-θ)を変更する支持部165を備える。 In the modification 1 of the rotary machining tool according to the fourth embodiment of the present disclosure, in addition to the configuration of the rotary machining tool 108, the rotary machining tool 109 further has an inclination angle θ in the first measurement direction 1410 and a second. A support portion 165 for changing the inclination angle (90 ° -θ) of the measurement direction 149 of 2 is provided.
 このような構成により、たとえばユーザが所望するシャンク部11の回転数に応じて遠心加速度の計測範囲を変更することができるため、ユーザの要望に応じた計測範囲において遠心加速度をより確実に計測することができる。 With such a configuration, for example, the measurement range of the centrifugal acceleration can be changed according to the rotation speed of the shank portion 11 desired by the user, so that the centrifugal acceleration can be measured more reliably in the measurement range according to the user's request. be able to.
 次に、本発明の他の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。 Next, other embodiments of the present invention will be described with reference to the drawings. The same or corresponding parts in the drawings are designated by the same reference numerals, and the description thereof will not be repeated.
<第5の実施の形態>
 本実施の形態は、第4の実施の形態に係る回転加工工具108と比べて、加速度センサが追加された回転加工工具に関する。以下で説明する内容以外は第4の実施の形態に係る回転加工工具108と同様である。
<Fifth Embodiment>
The present embodiment relates to a rotary machining tool to which an acceleration sensor is added as compared with the rotary machining tool 108 according to the fourth embodiment. Except for the contents described below, the same is true for the rotary machining tool 108 according to the fourth embodiment.
 図29は、本開示の第5の実施の形態に係る回転加工工具の構成を示す側面図である。 FIG. 29 is a side view showing the configuration of the rotary machining tool according to the fifth embodiment of the present disclosure.
 図29を参照して、回転加工工具110は、図24に示す回転加工工具108と比べて、さらに、加速度センサ142を備える。 With reference to FIG. 29, the rotary machining tool 110 further includes an acceleration sensor 142 as compared with the rotary machining tool 108 shown in FIG.
 図30は、本開示の第5の実施の形態に係る回転加工工具の構成を模式的に示す断面図である。具体的には、図30は、図29における回転加工工具110を平面18において切断してC方向から見た断面図である。 FIG. 30 is a cross-sectional view schematically showing the configuration of the rotary machining tool according to the fifth embodiment of the present disclosure. Specifically, FIG. 30 is a cross-sectional view of the rotary machining tool 110 in FIG. 29 cut in a plane 18 and viewed from the C direction.
 図30を参照して、加速度センサ142は、第4の計測方向143の加速度を計測する。第4の計測方向143は、平面18に沿った方向であって、加速度センサ142と回転軸17とを結ぶ直線144に対して直交する方向に沿う。 With reference to FIG. 30, the acceleration sensor 142 measures the acceleration in the fourth measurement direction 143. The fourth measurement direction 143 is a direction along the plane 18 and along a direction orthogonal to the straight line 144 connecting the acceleration sensor 142 and the rotation axis 17.
 加速度センサ142は、一方向の加速度を計測する、いわゆる一軸の加速度センサである。加速度センサ142は、たとえば、図2に示す加速度センサ14と同様の構造を有する。すなわち、加速度センサ142は、たとえば、図2に示すセンサ素子27と、センサ素子27を支持する台座部28と、センサ素子27および台座部28を収容するハウジング29とを含む。上記一方向は、たとえば、センサ素子27が台座部28によって支持される面である設置面に対して垂直な方向である。 The acceleration sensor 142 is a so-called uniaxial acceleration sensor that measures acceleration in one direction. The acceleration sensor 142 has, for example, a structure similar to that of the acceleration sensor 14 shown in FIG. That is, the acceleration sensor 142 includes, for example, the sensor element 27 shown in FIG. 2, the pedestal portion 28 that supports the sensor element 27, and the housing 29 that houses the sensor element 27 and the pedestal portion 28. The one direction is, for example, a direction perpendicular to the installation surface, which is the surface on which the sensor element 27 is supported by the pedestal portion 28.
 加速度センサ142は、上記一方向が第4の計測方向143に沿うように、図16に示す支持部16、具体的には、たとえば、図6に示す支持部16により支持される。なお、加速度センサ142は、図11に示す支持部162、または図13に示す支持部165に支持されてもよい。 The acceleration sensor 142 is supported by the support portion 16 shown in FIG. 16, specifically, for example, the support portion 16 shown in FIG. 6 so that the one direction is along the fourth measurement direction 143. The acceleration sensor 142 may be supported by the support portion 162 shown in FIG. 11 or the support portion 165 shown in FIG.
 第4の計測方向143は、回転加工工具110による切削に伴う振動が発生する方向である。また、第4の計測方向143は、遠心加速度が生じない方向である。したがって、加速度センサ142は、第4の計測方向143の加速度を計測することにより、遠心加速度ではなく、切削に伴う振動の加速度を計測することができる。 The fourth measurement direction 143 is the direction in which vibration is generated due to cutting by the rotary machining tool 110. Further, the fourth measurement direction 143 is a direction in which centrifugal acceleration does not occur. Therefore, the acceleration sensor 142 can measure the acceleration of vibration accompanying cutting, not the centrifugal acceleration, by measuring the acceleration in the fourth measurement direction 143.
 また、第4の計測方向143は、刃取付部12または刃部に損傷がある場合に、当該損傷に起因する振動が発生する方向である。 Further, the fourth measurement direction 143 is a direction in which vibration due to the damage is generated when the blade mounting portion 12 or the blade portion is damaged.
 したがって、加速度センサ142は、刃取付部12または刃部に損傷がある場合に、第4の計測方向143の加速度を計測することにより、遠心加速度ではなく、切削に伴う振動の加速度と、刃取付部12または刃部に生じた損傷に起因する振動による加速度との合成分を計測することができる。 Therefore, when the blade mounting portion 12 or the blade portion is damaged, the acceleration sensor 142 measures the acceleration in the fourth measurement direction 143 to obtain not the centrifugal acceleration but the acceleration of vibration accompanying cutting and the blade mounting. It is possible to measure the combined amount with the acceleration due to the vibration caused by the damage caused to the portion 12 or the blade portion.
 次に、本発明の他の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。 Next, other embodiments of the present invention will be described with reference to the drawings. The same or corresponding parts in the drawings are designated by the same reference numerals, and the description thereof will not be repeated.
<第6の実施の形態>
 本実施の形態は、第4の実施の形態に係る回転加工工具108と比べて、第3の計測方向が異なる回転加工工具に関する。以下で説明する内容以外は第4の実施の形態に係る回転加工工具108と同様である。
<Sixth Embodiment>
The present embodiment relates to a rotary machining tool having a third measurement direction different from that of the rotary machining tool 108 according to the fourth embodiment. Except for the contents described below, the same is true for the rotary machining tool 108 according to the fourth embodiment.
 図31は、本開示の第6の実施の形態に係る回転加工工具の構成を示す側面図である。 FIG. 31 is a side view showing the configuration of the rotary machining tool according to the sixth embodiment of the present disclosure.
 図31を参照して、回転加工工具111は、第4の実施の形態に係る回転加工工具108における加速度センサ148の代わりに、加速度センサ152を備える。 With reference to FIG. 31, the rotary machining tool 111 includes an acceleration sensor 152 instead of the acceleration sensor 148 in the rotary machining tool 108 according to the fourth embodiment.
 図32は、本開示の第6の実施の形態に係る回転加工工具の構成を模式的に示す断面図である。具体的には、図32は、回転加工工具を、回転軸を法線とする平面において切断してD方向から見た断面図である。図33は、本開示の第6の実施の形態に係る回転加工工具を、回転軸を通る平面において切断してB方向から見た断面図である。 FIG. 32 is a cross-sectional view schematically showing the configuration of the rotary machining tool according to the sixth embodiment of the present disclosure. Specifically, FIG. 32 is a cross-sectional view of a rotary machining tool cut in a plane having a rotation axis as a normal and viewed from the D direction. FIG. 33 is a cross-sectional view of the rotary machining tool according to the sixth embodiment of the present disclosure, which is cut in a plane passing through the rotary axis and viewed from the B direction.
 図32および図33を参照して、加速度センサ152は、三方向の加速度を計測する、いわゆる三軸の加速度センサである。加速度センサ152は、たとえば、図25に示す加速度センサ148と同じ構造を有する。 With reference to FIGS. 32 and 33, the acceleration sensor 152 is a so-called three-axis acceleration sensor that measures acceleration in three directions. The acceleration sensor 152 has, for example, the same structure as the acceleration sensor 148 shown in FIG. 25.
 加速度センサ152は、図32に示す支持部16、具体的には、たとえば、図6に示す支持部16により支持される。なお、加速度センサ152は、図11に示す支持部162、または図13に示す支持部165に支持されてもよい。 The acceleration sensor 152 is supported by the support portion 16 shown in FIG. 32, specifically, for example, the support portion 16 shown in FIG. The acceleration sensor 152 may be supported by the support portion 162 shown in FIG. 11 or the support portion 165 shown in FIG.
 加速度センサ152は、支持部16により所定の姿勢が保たれた状態において、三方向の加速度を計測する。 The acceleration sensor 152 measures acceleration in three directions while the support portion 16 maintains a predetermined posture.
 具体的には、加速度センサ152は、上記三方向が、それぞれ、第1の計測方向1411、第2の計測方向1490および第3の計測方向1500に沿うように姿勢が調整された状態において、第1の計測方向1411の加速度、第2の計測方向1490の加速度および第3の計測方向1500の加速度を計測する。第1の計測方向1411、第2の計測方向1490および第3の計測方向1500は、3次元的に互いに直交する、すなわち3次元の直交軸を構成する。 Specifically, the acceleration sensor 152 has a state in which the postures of the acceleration sensor 152 are adjusted so that the three directions are along the first measurement direction 1411, the second measurement direction 1490, and the third measurement direction 1500, respectively. The acceleration of the first measurement direction 1411, the acceleration of the second measurement direction 1490, and the acceleration of the third measurement direction 1500 are measured. The first measurement direction 1411, the second measurement direction 1490, and the third measurement direction 1500 are three-dimensionally orthogonal to each other, that is, form a three-dimensional orthogonal axis.
 第1の計測方向1411、第2の計測方向1490および第3の計測方向1500は、平面18および回転軸17の各々に対して傾斜する。 The first measurement direction 1411, the second measurement direction 1490, and the third measurement direction 1500 are inclined with respect to each of the plane 18 and the rotation axis 17.
 すなわち、たとえば、第1の計測方向1411、第2の計測方向1490および第3の計測方向1500は、図32の紙面に対して交差し、かつ図33の紙面に対して交差する方向である。また、第1の計測方向1411は、図32の紙面の右斜め上へ向かう方向である。第2の計測方向1490および第3の計測方向1500は、図32の紙面の右斜め下へ向かう方向である。 That is, for example, the first measurement direction 1411, the second measurement direction 1490, and the third measurement direction 1500 are directions that intersect the paper surface of FIG. 32 and intersect the paper surface of FIG. 33. Further, the first measurement direction 1411 is a direction diagonally upward to the right of the paper surface of FIG. 32. The second measurement direction 1490 and the third measurement direction 1500 are directions diagonally downward to the right of the paper surface of FIG. 32.
 第1の計測方向1411、第2の計測方向1490および第3の計測方向1500の各々が、平面18において加速度センサ152と回転軸17とを結ぶ直線153に対してなす傾斜角度θのうち、少なくともいずれか2つが互いに異なる。 At least of the inclination angles θ formed by each of the first measurement direction 1411, the second measurement direction 1490, and the third measurement direction 1500 with respect to the straight line 153 connecting the acceleration sensor 152 and the rotation axis 17 on the plane 18. Either two are different from each other.
 具体的には、たとえば、第1の計測方向1411および直線153がなす傾斜角度θ1、第2の計測方向1490および直線153がなす傾斜角度θ2、ならびに第3の計測方向1500および直線153がなす傾斜角度θ3は、互いに異なる。 Specifically, for example, the inclination angle θ1 formed by the first measurement direction 1411 and the straight line 153, the inclination angle θ2 formed by the second measurement direction 1490 and the straight line 153, and the inclination formed by the third measurement direction 1500 and the straight line 153. The angles θ3 are different from each other.
 なお、傾斜角度θ1、傾斜角度θ2および傾斜角度θ3は、いずれか2つが互いに同じであってもよい。 It should be noted that any two of the inclination angle θ1, the inclination angle θ2, and the inclination angle θ3 may be the same as each other.
 図34は、本開示の第6の実施の形態に係る、回転加工工具に発生する遠心加速度と回転加工工具の回転数との対応関係の一例を示す図である。 FIG. 34 is a diagram showing an example of the correspondence relationship between the centrifugal acceleration generated in the rotary machining tool and the rotation speed of the rotary machining tool according to the sixth embodiment of the present disclosure.
 図34において、横軸はシャンク部11の回転数、縦軸はシャンク部11において生じる遠心加速度を示す。また、グラフg9,g10,g11は、それぞれ、傾斜角度θが、θ1、θ2、θ3である場合の遠心加速度と回転数との対応関係を示す。図34に示す例では、θ1、θ2およびθ3の関係は、「θ1<θ2<θ3」である。 In FIG. 34, the horizontal axis represents the rotation speed of the shank portion 11, and the vertical axis represents the centrifugal acceleration generated in the shank portion 11. Further, the graphs g9, g10, and g11 show the correspondence between the centrifugal acceleration and the rotation speed when the inclination angles θ are θ1, θ2, and θ3, respectively. In the example shown in FIG. 34, the relationship between θ1, θ2, and θ3 is “θ1 <θ2 <θ3”.
 ここでは、加速度センサ152は、遠心加速度が0G~200Gの値である場合に遠心加速度を正確に計測することができ、遠心加速度が200Gを超えると、遠心加速度を正確に計測することが困難になるものとする。 Here, the acceleration sensor 152 can accurately measure the centrifugal acceleration when the centrifugal acceleration is a value of 0 G to 200 G, and when the centrifugal acceleration exceeds 200 G, it becomes difficult to accurately measure the centrifugal acceleration. It shall be.
 図34を参照して、傾斜角度θがθ1である場合、回転数が約3000rpmまで増加した時点で遠心加速度が200Gに達する(グラフg9)。また、傾斜角度θがθ2である場合、回転数が約10500rpmまで増加した時点で遠心加速度が200Gに達する(グラフg10)。また、傾斜角度θがθ3である場合、回転数が約17000rpmまで増加した時点で遠心加速度が200Gに達する(グラフg11)。 With reference to FIG. 34, when the inclination angle θ is θ1, the centrifugal acceleration reaches 200 G when the rotation speed increases to about 3000 rpm (graph g9). Further, when the inclination angle θ is θ2, the centrifugal acceleration reaches 200 G when the rotation speed increases to about 10500 rpm (graph g10). Further, when the inclination angle θ is θ3, the centrifugal acceleration reaches 200 G when the rotation speed increases to about 17,000 rpm (graph g11).
 このように、傾斜角度θが大きくなるにつれて、グラフの傾きが小さくなる。つまり、傾斜角度θが大きくなるにつれて、遠心加速度aに対する加速度センサ152の第1の計測方向1411、第2の計測方向1490および第3の計測方向1500におけるみかけの感度が低下し、加速度センサ152は、より大きな回転数において遠心加速度を計測することができる。 In this way, as the inclination angle θ increases, the inclination of the graph decreases. That is, as the inclination angle θ increases, the apparent sensitivity of the acceleration sensor 152 to the centrifugal acceleration a in the first measurement direction 1411, the second measurement direction 1490, and the third measurement direction 1500 decreases, and the acceleration sensor 152 decreases. , Centrifugal acceleration can be measured at higher speeds.
 たとえば、図34に示す例では、加速度センサ152は、傾斜角度θがθ2である場合、傾斜角度θがθ1である場合と比べて2倍以上の回転数まで遠心加速度を計測することができる。また、加速度センサ152は、傾斜角度θがθ3である場合、傾斜角度θがθ1である場合と比べて3倍近い回転数まで遠心加速度を計測することができる。 For example, in the example shown in FIG. 34, when the tilt angle θ is θ2, the acceleration sensor 152 can measure the centrifugal acceleration up to twice or more the rotation speed as compared with the case where the tilt angle θ is θ1. Further, the acceleration sensor 152 can measure the centrifugal acceleration up to a rotation speed nearly three times higher when the tilt angle θ is θ3 than when the tilt angle θ is θ1.
 遠心加速度、回転数および傾斜角度θ間のこのような関係に着目して、三方向の加速度を計測する加速度センサ152の3つの計測方向をすべて遠心加速度の計測に用い、かつ傾斜角度θ1、傾斜角度θ2および傾斜角度θ3をすべて異なる値とすることにより、本来は同じ性能である3つの軸を、それぞれ、異なる計測範囲R1~R3および異なる分解能の加速度センサとして用いることができる。 Focusing on such a relationship between centrifugal acceleration, rotation speed, and tilt angle θ, all three measurement directions of the acceleration sensor 152 that measures acceleration in three directions are used for measuring centrifugal acceleration, and tilt angle θ1 and tilt. By setting the angle θ2 and the inclination angle θ3 to different values, the three axes having originally the same performance can be used as acceleration sensors having different measurement ranges R1 to R3 and different resolutions, respectively.
 なお、傾斜角度θ1、傾斜角度θ2および傾斜角度θ3は、互いに同じであってもよい。 The tilt angle θ1, the tilt angle θ2, and the tilt angle θ3 may be the same as each other.
 [変形例1]
 図35は、本開示の第6の実施の形態に係る回転加工工具の変形例1を示す部分断面図である。
[Modification 1]
FIG. 35 is a partial cross-sectional view showing a modification 1 of the rotary machining tool according to the sixth embodiment of the present disclosure.
 図35を参照して、変形例1に係る回転加工工具112は、支持部16の代わりに、図13に示すような角度変更機能を有する支持部165を備える。回転加工工具112は、支持部165の角度変更機能により、傾斜角度θaを変更し、傾斜角度θ1~θ3を変更することができる。 With reference to FIG. 35, the rotary machining tool 112 according to the first modification includes a support portion 165 having an angle changing function as shown in FIG. 13 instead of the support portion 16. The rotary machining tool 112 can change the inclination angle θa and change the inclination angles θ1 to θ3 by the angle changing function of the support portion 165.
 本開示の第6の実施の形態に係る回転加工工具の変形例1では、回転加工工具112は、本開示の第6の実施の形態に係る回転加工工具111の構成に加えて、さらに、第1の計測方向1411の傾斜角度θ1、第2の計測方向1490の傾斜角度θ2および第3の計測方向1500の傾斜角度θ3を変更する角度変更部167を備える。 In the first modification of the rotary machining tool according to the sixth embodiment of the present disclosure, the rotary machining tool 112 is the configuration of the rotary machining tool 111 according to the sixth embodiment of the present disclosure, and further. It is provided with an angle changing unit 167 that changes the inclination angle θ1 of the measurement direction 1411 of 1, the inclination angle θ2 of the second measurement direction 1490, and the inclination angle θ3 of the third measurement direction 1500.
 このような構成により、たとえばユーザが所望するシャンク部11の回転数に応じて遠心加速度の計測範囲を変更することができるため、ユーザの要望に応じた計測範囲において遠心加速度をより確実に計測することができる。 With such a configuration, for example, the measurement range of the centrifugal acceleration can be changed according to the rotation speed of the shank portion 11 desired by the user, so that the centrifugal acceleration can be measured more reliably in the measurement range according to the user's request. be able to.
 上記実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the above embodiment is exemplary in all respects and is not restrictive. The scope of the present invention is shown by the claims rather than the above description, and it is intended to include all modifications within the meaning and scope equivalent to the claims.
 以上の説明は、以下に付記する特徴を含む。
 [付記1]
 回転加工装置であって、
 回転加工工具と、
 管理装置とを備え、
 前記回転加工工具は、
 シャフト部と、
 前記シャフト部の端部に設けられる刃取付部または刃部と、
 前記シャフト部に取り付けられる第1の加速度センサとを含み、
 前記第1の加速度センサは、前記シャフト部の回転軸を法線とする平面および前記回転軸の各々に対して傾斜する第1の計測方向の加速度を計測し、
 前記管理装置は、
 前記加速度センサの計測結果、前記第1の計測方向の傾斜角度、ならびに前記第1の加速度センサおよび前記回転軸間の距離に基づいて、前記シャフト部の角速度および回転数の少なくともいずれか一方を算出する制御部と、
 前記制御部の算出結果を表示する表示部とを含む、回転加工装置。
The above description includes the features described below.
[Appendix 1]
It is a rotary processing device
Rotating tools and
Equipped with a management device
The rotary machining tool
Shaft part and
With the blade mounting portion or the blade portion provided at the end of the shaft portion,
Including a first acceleration sensor attached to the shaft portion
The first acceleration sensor measures the acceleration in the first measurement direction that is inclined with respect to each of the plane having the rotation axis of the shaft portion as a normal and the rotation axis.
The management device is
At least one of the angular velocity and the rotation speed of the shaft portion is calculated based on the measurement result of the acceleration sensor, the inclination angle in the first measurement direction, and the distance between the first acceleration sensor and the rotation axis. Control unit and
A rotary processing apparatus including a display unit that displays a calculation result of the control unit.
 11  シャンク部
 12  刃取付部
 13  遠心加速度
 14,142,145,148,152  加速度センサ
 15  平面
 16,162,165  支持部
 17  回転軸
 18  平面
 22  電池
 23  無線通信装置
 24  ハウジング
 25  底板部
 26  側壁部
 27,271  センサ素子
 28,281  台座部
 29,291  ハウジング
 31  無線通信部
 32  制御部
 33  表示部
 34,341  判断部
 101~112  回転加工工具
 118  ボディ部
 119  ボス部
 141,1410,1411  第1の計測方向
 143  第4の計測方向
 146  第5の計測方向
 149,1490  第2の計測方向
 150,1500  第3の計測方向
 166  台座部
 167  角度変更部
 168  制御部
 201,203,205  回転加工システム
 202,204,206  回転加工工具
 301~302  管理装置
 X1  第1の方向
 Y1  第2の方向
 Z1  第3の方向
11 Shank part 12 Blade mounting part 13 Centrifugal acceleration 14,142,145,148,152 Acceleration sensor 15 Flat surface 16,162,165 Support part 17 Rotating shaft 18 Flat surface 22 Battery 23 Wireless communication device 24 Housing 25 Bottom plate part 26 Side wall part 27 , 271 Sensor element 28,281 Pedestal part 29,291 Housing 31 Wireless communication part 32 Control part 33 Display part 34,341 Judgment part 101-112 Rotational processing tool 118 Body part 119 Boss part 141, 1410, 1411 First measurement direction 143 4th measurement direction 146 5th measurement direction 149,1490 2nd measurement direction 150,1500 3rd measurement direction 166 Pedestal part 167 Angle change part 168 Control part 201,203,205 Rotational processing system 202,204, 206 Rotating tool 301-302 Management device X1 1st direction Y1 2nd direction Z1 3rd direction

Claims (15)

  1.  シャフト部と、
     前記シャフト部の端部に設けられる刃取付部または刃部と、
     前記シャフト部に取り付けられる第1の加速度センサとを備え、
     前記第1の加速度センサは、前記シャフト部の回転軸を法線とする平面および前記回転軸の各々に対して傾斜する第1の計測方向の加速度を計測する、回転加工工具。
    Shaft part and
    With the blade mounting portion or the blade portion provided at the end of the shaft portion,
    It is equipped with a first acceleration sensor attached to the shaft portion.
    The first acceleration sensor is a rotary machining tool that measures acceleration in a first measurement direction that is inclined with respect to each of a plane having a rotation axis of the shaft portion as a normal and each of the rotation axes.
  2.  前記回転加工工具は、さらに、
     前記第1の計測方向の傾斜角度を変更する角度変更部を備える、請求項1に記載の回転加工工具。
    The rotary machining tool further
    The rotary machining tool according to claim 1, further comprising an angle changing portion for changing the inclination angle in the first measurement direction.
  3.  前記第1の加速度センサは、さらに、第2の計測方向の加速度および第3の計測方向の加速度を計測し、
     前記第1の計測方向、前記第2の計測方向および前記第3の計測方向は、3次元的に互いに直交し、
     前記第2の計測方向は、前記平面および前記回転軸の各々に対して傾斜し、
     前記第3の計測方向は、前記平面に沿った方向であって、前記第1の加速度センサと前記回転軸とを結ぶ直線に対して直交する方向に沿う、請求項1に記載の回転加工工具。
    The first acceleration sensor further measures the acceleration in the second measurement direction and the acceleration in the third measurement direction.
    The first measurement direction, the second measurement direction, and the third measurement direction are three-dimensionally orthogonal to each other.
    The second measurement direction is inclined with respect to each of the plane and the rotation axis.
    The rotary machining tool according to claim 1, wherein the third measurement direction is a direction along the plane and along a direction orthogonal to a straight line connecting the first acceleration sensor and the rotation axis. ..
  4.  前記回転加工工具は、さらに、
     前記第1の計測方向の傾斜角度および前記第2の計測方向の傾斜角度を変更する角度変更部を備える、請求項3に記載の回転加工工具。
    The rotary machining tool further
    The rotary machining tool according to claim 3, further comprising an angle changing portion for changing the inclination angle in the first measurement direction and the inclination angle in the second measurement direction.
  5.  前記第1の加速度センサは、一方向の加速度を計測するセンサであり、
     前記回転加工工具は、さらに、一方向の加速度を計測するセンサである第2の加速度センサを備え、
     前記第2の加速度センサは、第4の計測方向の加速度を計測し、
     前記第4の計測方向は、前記平面に沿った方向であって、前記第2の加速度センサと前記回転軸とを結ぶ直線に対して直交する方向に沿う、請求項1または請求項2に記載の回転加工工具。
    The first acceleration sensor is a sensor that measures acceleration in one direction.
    The rotary machining tool further includes a second acceleration sensor, which is a sensor that measures acceleration in one direction.
    The second acceleration sensor measures the acceleration in the fourth measurement direction and
    The fourth measurement direction according to claim 1 or 2, wherein the fourth measurement direction is a direction along the plane and along a direction orthogonal to a straight line connecting the second acceleration sensor and the rotation axis. Rotating tool.
  6.  前記回転加工工具は、さらに、一方向の加速度を計測するセンサである第3の加速度センサを備え、
     前記第3の加速度センサは、第5の計測方向の加速度を計測し、
     前記第5の計測方向は、前記平面に沿った方向であって、前記第1の加速度センサと前記回転軸とを結ぶ直線に対して直交する方向に沿う、請求項3または請求項5に記載の回転加工工具。
    The rotary machining tool further includes a third acceleration sensor, which is a sensor that measures acceleration in one direction.
    The third acceleration sensor measures the acceleration in the fifth measurement direction and
    The fifth or fifth aspect, wherein the fifth measurement direction is a direction along the plane and along a direction orthogonal to a straight line connecting the first acceleration sensor and the rotation axis. Rotating tool.
  7.  前記第1の加速度センサは、三方向の加速度を計測するセンサであり、
     前記第1の加速度センサは、前記第1の計測方向の加速度、第2の計測方向の加速度および第3の計測方向の加速度を計測し、
     前記第1の計測方向、前記第2の計測方向および前記第3の計測方向は、3次元的に互いに直交し、
     前記第2の計測方向および前記第3の計測方向は、前記平面および前記回転軸の各々に対して傾斜し、
     前記第1の計測方向、前記第2の計測方向および前記第3の計測方向の各々が、前記平面において前記第1の加速度センサと前記回転軸とを結ぶ直線に対してなす角度のうち、少なくともいずれか2つが互いに異なる、請求項1に記載の回転加工工具。
    The first acceleration sensor is a sensor that measures acceleration in three directions.
    The first acceleration sensor measures the acceleration in the first measurement direction, the acceleration in the second measurement direction, and the acceleration in the third measurement direction.
    The first measurement direction, the second measurement direction, and the third measurement direction are three-dimensionally orthogonal to each other.
    The second measurement direction and the third measurement direction are inclined with respect to each of the plane and the rotation axis.
    At least one of the angles formed by each of the first measurement direction, the second measurement direction, and the third measurement direction with respect to the straight line connecting the first acceleration sensor and the rotation axis on the plane. The rotary machining tool according to claim 1, wherein any two of them are different from each other.
  8.  前記回転加工工具は、さらに、
     前記第1の計測方向の傾斜角度、前記第2の計測方向の傾斜角度および前記第3の計測方向の傾斜角度を変更する角度変更部を備える、請求項7に記載の回転加工工具。
    The rotary machining tool further
    The rotary machining tool according to claim 7, further comprising an angle changing unit for changing an inclination angle in the first measurement direction, an inclination angle in the second measurement direction, and an inclination angle in the third measurement direction.
  9.  前記角度変更部は、前記第1の加速度センサが計測可能な加速度の範囲、前記第1の加速度センサおよび前記シャフト部の回転軸間の距離、ならびに前記シャフト部の回転数に基づいて、前記傾斜角度を変更する、請求項2、請求項4および請求項8のいずれか1項に記載の回転加工工具。 The angle changing portion tilts based on the range of acceleration that can be measured by the first acceleration sensor, the distance between the first acceleration sensor and the rotation axis of the shaft portion, and the rotation speed of the shaft portion. The rotary machining tool according to any one of claims 2, 4, and 8, which changes the angle.
  10.  前記第1の計測方向と前記平面とがなす角度θは、0°より大きくかつ90°未満であり、かつ45°でない、請求項3に記載の回転加工工具。 The rotary machining tool according to claim 3, wherein the angle θ formed by the first measurement direction and the plane is greater than 0 °, less than 90 °, and not 45 °.
  11.  前記角度θは、70°以上かつ90°未満である、請求項10に記載の回転加工工具。 The rotary machining tool according to claim 10, wherein the angle θ is 70 ° or more and less than 90 °.
  12.  前記角度θは、80°以上かつ90°未満である、請求項11に記載の回転加工工具。 The rotary machining tool according to claim 11, wherein the angle θ is 80 ° or more and less than 90 °.
  13.  前記角度変更部は、前記シャフト部に対して着脱可能である、請求項2、請求項4および請求項8のいずれか1項に記載の回転加工工具。 The rotary machining tool according to any one of claims 2, 4, and 8, wherein the angle changing portion is removable from the shaft portion.
  14.  シャフト部と、
     前記シャフト部の端部に設けられる刃取付部または刃部と、
     前記シャフト部において第1の加速度センサを支持する支持部と備え、
     前記支持部は、前記第1の加速度センサの第1の計測方向が、前記シャフト部の回転軸を法線とする平面および前記回転軸の各々に対して傾斜するように前記第1の加速度センサを支持する、回転加工工具。
    Shaft part and
    With the blade mounting portion or the blade portion provided at the end of the shaft portion,
    The shaft portion is provided with a support portion that supports the first acceleration sensor.
    The support portion is such that the first measurement direction of the first acceleration sensor is inclined with respect to each of the plane having the rotation axis of the shaft portion as the normal and the rotation axis. A rotary machining tool that supports.
  15.  前記第1の加速度センサの計測結果を示すセンサ情報を送信する無線通信装置をさらに備える請求項1から請求項14のいずれか1項に記載の回転加工工具と、
     前記無線通信装置から送信される前記センサ情報を受信し、受信した前記センサ情報を処理する管理装置とを備える、回転加工システム。
    The rotary machining tool according to any one of claims 1 to 14, further comprising a wireless communication device for transmitting sensor information indicating a measurement result of the first acceleration sensor.
    A rotary processing system including a management device that receives the sensor information transmitted from the wireless communication device and processes the received sensor information.
PCT/JP2019/034242 2019-08-30 2019-08-30 Rotary machining tool and rotary machining system WO2021038859A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/034242 WO2021038859A1 (en) 2019-08-30 2019-08-30 Rotary machining tool and rotary machining system
JP2021541943A JP7264255B2 (en) 2019-08-30 2019-08-30 Rotary tools and rotary machining systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/034242 WO2021038859A1 (en) 2019-08-30 2019-08-30 Rotary machining tool and rotary machining system

Publications (1)

Publication Number Publication Date
WO2021038859A1 true WO2021038859A1 (en) 2021-03-04

Family

ID=74684019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034242 WO2021038859A1 (en) 2019-08-30 2019-08-30 Rotary machining tool and rotary machining system

Country Status (2)

Country Link
JP (1) JP7264255B2 (en)
WO (1) WO2021038859A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63245358A (en) * 1987-03-30 1988-10-12 Toyoda Mach Works Ltd Tool holder
JP2008524006A (en) * 2004-12-20 2008-07-10 レニショウ パブリック リミテッド カンパニー Machine and control system
JP2009002735A (en) * 2007-06-20 2009-01-08 Epson Toyocom Corp Angular velocity detector
JP2010268732A (en) * 2009-05-21 2010-12-02 Yamabiko Corp Mower with safety device
JP2011518048A (en) * 2008-03-17 2011-06-23 エイ. サプロック,クリストファー Smart machining system and smart tool holder used therefor
JP2014172107A (en) * 2013-03-07 2014-09-22 Mitsubishi Heavy Ind Ltd Abnormality diagnosis system and abnormality diagnosis method of machine tool
JP2016043443A (en) * 2014-08-21 2016-04-04 オークマ株式会社 Rotational speed display method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110103076B (en) * 2019-05-08 2021-02-02 北京理工大学 Intelligent boring bar system for monitoring deep hole boring machining state in real time

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63245358A (en) * 1987-03-30 1988-10-12 Toyoda Mach Works Ltd Tool holder
JP2008524006A (en) * 2004-12-20 2008-07-10 レニショウ パブリック リミテッド カンパニー Machine and control system
JP2009002735A (en) * 2007-06-20 2009-01-08 Epson Toyocom Corp Angular velocity detector
JP2011518048A (en) * 2008-03-17 2011-06-23 エイ. サプロック,クリストファー Smart machining system and smart tool holder used therefor
JP2010268732A (en) * 2009-05-21 2010-12-02 Yamabiko Corp Mower with safety device
JP2014172107A (en) * 2013-03-07 2014-09-22 Mitsubishi Heavy Ind Ltd Abnormality diagnosis system and abnormality diagnosis method of machine tool
JP2016043443A (en) * 2014-08-21 2016-04-04 オークマ株式会社 Rotational speed display method

Also Published As

Publication number Publication date
JP7264255B2 (en) 2023-04-25
JPWO2021038859A1 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
US11285543B2 (en) Estimation of deflection of a cutting edge
US8950507B2 (en) Device for preventing vibrations in a tool spindle
JP6901051B1 (en) Rolling tools, modules and cutting systems
JP5056796B2 (en) Dynamic stiffness measuring device and dynamic stiffness measuring method of spindle in machine tool
CN102019460B (en) Electric cutting tool
JP2006082220A (en) Power tool
EP1370363B1 (en) Automatic balance adjusting centrifugal apparatus
CN109689258B (en) Estimation of orientation of cutting tool
JP7053526B2 (en) Spindle vibration measurement system, spindle vibration measurement method, and program
JP6950856B2 (en) Cutting tools, cutting systems, processing methods and processing programs
JP2018054611A (en) Vibration measuring device
JP2017007030A (en) Machine tool and swing correction method of tool
JP2007229888A (en) Hand drill device
WO2021038859A1 (en) Rotary machining tool and rotary machining system
RU2756228C2 (en) Robot with an articulated arm and method for processing a workpiece by cutting by means of robot with an articulated arm
WO2021049337A1 (en) Cutting tool, cutting system, processing method, and processing program
JP2015090049A (en) Insertion orientation measurement device
JPWO2021044989A1 (en) Cutting tools, modules, cutting tool units and cutting systems
WO2020203844A1 (en) Industrial machine, eccentricity specifying device, eccentricity specifying method, and program
JP2020082232A (en) Holding device and system
WO2022123740A1 (en) Cutting tool
JP2016017751A (en) Balance measuring method, and balance correction processing method, for work, and machine tool using the same
JP2023177263A (en) System formed of multiple imus
JPH0321465Y2 (en)
JPWO2021038859A5 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942670

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021541943

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19942670

Country of ref document: EP

Kind code of ref document: A1