WO2021049337A1 - Cutting tool, cutting system, processing method, and processing program - Google Patents

Cutting tool, cutting system, processing method, and processing program Download PDF

Info

Publication number
WO2021049337A1
WO2021049337A1 PCT/JP2020/032805 JP2020032805W WO2021049337A1 WO 2021049337 A1 WO2021049337 A1 WO 2021049337A1 JP 2020032805 W JP2020032805 W JP 2020032805W WO 2021049337 A1 WO2021049337 A1 WO 2021049337A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
cutting tool
cutting
shaft portion
acceleration
Prior art date
Application number
PCT/JP2020/032805
Other languages
French (fr)
Japanese (ja)
Inventor
小池雄介
青木友弥
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2021510146A priority Critical patent/JP6885529B1/en
Publication of WO2021049337A1 publication Critical patent/WO2021049337A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/12Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine for securing to a spindle in general

Definitions

  • the present disclosure relates to cutting tools, cutting systems, processing methods and processing programs.
  • This application claims priority on the basis of Japanese Application Japanese Patent Application No. 2019-163698 filed on 9 September 2019 and incorporates all of its disclosures herein.
  • Patent Document 1 Japanese Patent Publication No. 2009-542446 discloses the following system. That is, it is a system having a container (1) and accommodating parts in a tool holder (20), wherein the tool holder (20) has a first end portion (21) and a second end portion (22). ), The first end (21) of the tool holder (20) is fixed to the machine tool, and the second end (22) is adapted to attach the cutting edge.
  • the tool holder (20) comprises an internal cavity (23) surrounded by a cavity wall, the cavity (23) containing the container (1), and the container at least in the central portion (2) and at the ends.
  • a portion (3, 4) is provided, the terminal portion (3, 4) is connected to the central portion (2), and at least one of the terminal portions forms a lid and can be released.
  • At least one contact area (5) connected to the central portion so that the central portion (2) is in contact with the cavity wall in the tool holder (20), and a cooling medium. It comprises an outer surface having at least one gap region (6) made in contact with the cavity (23) so that one end of the cavity (23) is connected to a supply for the cooling medium. The other end is connected to an outlet for the cooling medium, the cavity (23) has an opening (25) for mounting the container (1), and at least one for feeding the cooling medium.
  • a gap is formed between the container (1) and the cavity wall so that the container (1) accommodates the parts.
  • the cutting tool of the present disclosure includes a shaft portion to which a sensor can be attached and a position changing portion capable of changing the attachment position of the sensor on the shaft portion.
  • the cutting system of the present disclosure includes a cutting tool and a management device, and the cutting tool includes a shaft portion, a sensor attached to the shaft portion, a position changing portion capable of changing the attachment position of the sensor, and a position changing portion.
  • the wireless communication device includes a wireless communication device attached to the shaft portion, the wireless communication device transmits sensor information indicating a measurement result of the sensor, and the management device receives the sensor information from the cutting tool.
  • the processing method of the present disclosure is a processing method using a cutting tool, and the cutting tool includes a shaft portion to which a sensor can be attached and a position changing portion capable of changing the attachment position of the sensor on the shaft portion.
  • the processing method includes a step of cutting an object to be cut by the cutting tool attached to a machine tool and accumulating the measurement results of the sensor, and a step of changing the attachment position of the sensor by the position changing portion.
  • the step includes cutting an object to be cut by the cutting tool whose mounting position of the sensor has been changed, accumulating the measurement results of the sensor, and processing the accumulated measurement results.
  • the processing program of the present disclosure is a processing program used in a management device that manages a cutting tool, and the cutting tool can change a shaft portion to which a sensor can be attached and a mounting position of the sensor on the shaft portion.
  • a pre-cutting tool attached to a machine tool is used to cut an object to be cut by providing a position changing portion, the mounting position of the sensor is changed by the position changing portion, and the mounting position of the sensor is changed.
  • a storage processing unit that writes the measurement result of the sensor to the storage unit each time the cutting is performed, and each of the storage processing units written by the storage processing unit.
  • This is a program for functioning as a control unit that processes measurement results.
  • FIG. 1 is a side view showing a configuration of a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 2 is an arrow view showing the configuration of the cutting tool according to the first embodiment of the present disclosure.
  • FIG. 3 is an arrow view showing the configuration of the cutting tool according to the first embodiment of the present disclosure.
  • FIG. 4 is a side view showing the configuration of the cutting tool according to the first embodiment of the present disclosure.
  • FIG. 5 is an arrow view showing the configuration of the cutting tool according to the first embodiment of the present disclosure.
  • FIG. 6 is an arrow view showing the configuration of the cutting tool according to the first embodiment of the present disclosure.
  • FIG. 7 is a side view schematically showing a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 8 is a graph showing the result of simulating the cutting tool according to the first embodiment of the present disclosure.
  • FIG. 9 is a diagram showing a configuration of a cutting system according to the first embodiment of the present disclosure.
  • FIG. 10 is a diagram showing a configuration of a management device in the cutting system according to the first embodiment of the present disclosure.
  • FIG. 11 is a diagram showing an example of analysis results in the management device in the cutting system according to the first embodiment of the present disclosure.
  • FIG. 12 is a diagram showing an example of analysis results in the management device in the cutting system according to the first embodiment of the present disclosure.
  • FIG. 13 is a diagram showing an example of analysis results in the management device in the cutting system according to the first embodiment of the present disclosure.
  • FIG. 10 is a diagram showing a configuration of a management device in the cutting system according to the first embodiment of the present disclosure.
  • FIG. 11 is a diagram showing an example of analysis results in the management device in the cutting system according to the first embodiment of the present disclosure.
  • FIG. 14 is a diagram showing an example of analysis results in the management device in the cutting system according to the first embodiment of the present disclosure.
  • FIG. 15 is a diagram showing another example of the configuration of the cutting tool according to the first embodiment of the present disclosure.
  • FIG. 16 is a cross-sectional view schematically showing another example of a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 17 is a cross-sectional view schematically showing another example of the cutting tool according to the first embodiment of the present disclosure.
  • FIG. 18 is a cross-sectional view schematically showing another example of a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 19 is a cross-sectional view schematically showing another example of a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 19 is a cross-sectional view schematically showing another example of a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 20 is a cross-sectional view schematically showing another example of a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 21 is a diagram showing a modified example 1 of the cutting system according to the first embodiment of the present disclosure.
  • FIG. 22 is a side view schematically showing a cutting tool according to a modification 1 of the first embodiment of the present disclosure.
  • FIG. 23 is a graph showing the result of simulating the cutting tool in the first modification of the first embodiment of the present disclosure.
  • FIG. 24 is a diagram showing a cutting system according to a second modification of the first embodiment of the present disclosure.
  • FIG. 25 is a flowchart defining the procedure of the processing method according to the second embodiment of the present disclosure.
  • FIG. 21 is a diagram showing a modified example 1 of the cutting system according to the first embodiment of the present disclosure.
  • FIG. 22 is a side view schematically showing a cutting tool according to a modification 1 of the first embodiment of the present disclosure.
  • FIG. 23 is a graph showing the
  • FIG. 26 is a side view schematically showing the cutting tool, the tool holder, and the spindle according to the second embodiment of the present disclosure.
  • FIG. 27 is a graph showing three components of the acceleration measurement result calculated by the processing method according to the second embodiment of the present disclosure.
  • FIG. 28 is a flowchart defining the operation procedure of the management device in the cutting system according to the second embodiment of the present disclosure.
  • the present disclosure has been made to solve the above-mentioned problems, and an object thereof is a cutting tool, a cutting system, a processing method, and a cutting tool capable of measuring a state of machining by a cutting tool under a wider variety of machining conditions. It is to provide a processing program.
  • the cutting tool according to the embodiment of the present disclosure includes a shaft portion to which a sensor can be attached and a position changing portion capable of changing the attachment position of the sensor on the shaft portion.
  • the size of the measurement result such as acceleration can be changed by changing the position of the sensor due to the configuration in which the mounting position of the sensor on the shaft portion can be changed.
  • the sensitivity of the sensor can be easily changed according to the processing conditions. Therefore, it is possible to measure the state of machining with a cutting tool under a wider variety of machining conditions.
  • the shaft portion has a rod shape and includes a diameter-expanded portion, and the diameter-expanded portion has a larger diameter than other portions of the shaft portion, and the sensor can be attached to the shaft portion.
  • the position changing portion can change the mounting position of the sensor in the enlarged diameter portion.
  • the enlarged diameter part increases the rigidity of the shaft part. Therefore, for example, even when the sensor is attached by removing a part of the shaft portion, the sensor can be attached to the shaft portion while ensuring the rigidity of the shaft portion.
  • the position changing portion can change the position of the sensor along the axial direction of the shaft portion.
  • the position changing portion can change the position of the sensor along the radial direction of the shaft portion.
  • the position of the sensor capable of measuring the centrifugal acceleration generated when the cutting tool rotates regardless of whether or not the object to be cut is being cut is changed, and the sensitivity of the measurement result of the sensor is changed. can do.
  • the position of the sensor in the direction along the radial direction of the shaft portion is involved in the torsional component of the displacement generated in the cutting tool due to cutting, the value related to the torsional component is calculated by the above configuration. can do.
  • the position changing portion can change the position of the sensor along the axial direction of the shaft portion, and the position of the sensor is changed along the radial direction of the shaft portion. It is possible to do.
  • the position of the sensor capable of measuring the acceleration generated in the cutting tool when cutting the object to be cut it is possible to change the position of the sensor capable of measuring the acceleration generated in the cutting tool when cutting the object to be cut, and change the sensitivity of the measurement result of the sensor.
  • the sensitivity of the measurement result of the sensor can be changed by changing the position of the sensor capable of measuring the centrifugal acceleration generated when the cutting tool rotates regardless of whether or not the object to be cut is being cut. .. This makes it possible to measure the centrifugal acceleration and the like generated in the cutting tool when the cutting tool rotates.
  • the value related to the bending component is calculated by the above configuration. can do. Further, since the position of the sensor in the direction along the radial direction of the shaft portion is involved in the torsional component of the displacement generated in the cutting tool due to cutting, the value related to the torsional component is calculated by the above configuration. can do.
  • the cutting tool further includes a sensor attached to the shaft portion.
  • the senor is an acceleration sensor
  • the measurement direction of the acceleration sensor is a direction along a plane having a rotation axis of the shaft portion as a normal line, and the acceleration sensor and the rotation thereof. Along the direction orthogonal to the straight line connecting the axes.
  • the cutting tool includes at least one of a strain sensor, a temperature sensor, and a sound sensor as the sensor.
  • At least one of an abnormal increase in strain generated in the shaft portion, frictional heat and abnormal noise when an abnormal vibration is generated in the shaft portion can be detected. ..
  • the cutting tool further includes a wireless communication device, and the wireless communication device transmits sensor information indicating a measurement result of the sensor.
  • the shaft portion has a cylindrical shape
  • the cutting tool is a rolling tool
  • the sensitivity of the sensor can be changed according to processing conditions such as the rotation speed of the shaft portion.
  • the cutting system according to the embodiment of the present disclosure includes the cutting tool according to (9) above and a management device, and the management device provides sensor information indicating a measurement result of the sensor from the cutting tool. To receive.
  • the size of the measurement result such as acceleration can be changed by changing the position of the sensor due to the configuration in which the mounting position of the sensor on the shaft portion can be changed.
  • the sensitivity of the sensor can be easily changed according to the processing conditions. Therefore, it is possible to measure the state of machining with a cutting tool under a wider variety of machining conditions. Further, for example, in the management device, it is possible to perform processing such as abnormality detection using the measurement results of each sensor.
  • the processing method according to the embodiment of the present disclosure is a processing method using a cutting tool, in which the cutting tool changes a shaft portion to which a sensor can be attached and a mounting position of the sensor on the shaft portion.
  • the processing method includes a step of cutting an object to be cut by the cutting tool attached to the machine tool and accumulating the measurement result of the sensor, and the sensor by the position changing portion.
  • the size of the measurement result such as acceleration can be changed by changing the position of the sensor due to the configuration in which the mounting position of the sensor on the shaft portion can be changed.
  • the sensitivity of the sensor can be easily changed according to the processing conditions. Therefore, it is possible to measure the state of machining with a cutting tool under a wider variety of machining conditions.
  • the value relating to the component due to bending of the cutting tool the value relating to the component due to twisting of the cutting tool, and cutting.
  • a value related to the displacement component of the support member that supports the tool can be calculated. That is, it is possible to grasp the state of machining by the cutting tool and the state of the support member that supports the cutting tool.
  • the component corresponding to the machine tool is calculated from the measurement result.
  • the senor is an acceleration sensor.
  • the twist of the cutting tool based on the measurement results of the acceleration sensors at the plurality of positions, for example, the value related to the component of the acceleration due to the bending of the cutting tool among the accelerations generated at each of the plurality of positions, the twist of the cutting tool. It is possible to calculate the value related to the acceleration component of the cutting tool and the value related to the acceleration component of the support member that supports the cutting tool.
  • the processing program according to the embodiment of the present disclosure is a processing program used in a management device that manages a cutting tool, and the cutting tool includes a shaft portion to which a sensor can be attached and the shaft portion on the shaft portion. It is equipped with a position changing part that can change the mounting position of the sensor, and the computer is cut by a pre-cutting tool mounted on the machine tool, and the mounting position of the sensor is changed by the position changing part.
  • the storage processing unit that writes the measurement result of the sensor to the storage unit each time the cutting is performed, and the storage unit.
  • This is a program for functioning as a control unit that processes each measurement result written by the processing unit.
  • the size of the measurement result such as acceleration can be changed by changing the position of the sensor due to the configuration in which the mounting position of the sensor on the shaft portion can be changed.
  • the sensitivity of the sensor can be easily changed according to the processing conditions. Therefore, it is possible to measure the state of machining with a cutting tool under a wider variety of machining conditions.
  • the value relating to the component due to bending of the cutting tool the value relating to the component due to twisting of the cutting tool, and cutting.
  • a value related to the displacement component of the support member that supports the tool can be calculated. That is, it is possible to grasp the state of machining by the cutting tool and the state of the support member that supports the cutting tool.
  • FIG. 1 is a side view showing a configuration of a cutting tool according to the first embodiment of the present disclosure.
  • the cutting tool 101 is, for example, a cutting tool used in a milling machine or the like, and specifically, for example, an end mill.
  • the cutting tool 101 is used for cutting an object to be cut made of metal or the like.
  • the cutting tool 101 is used in a state of being held by a tool holder 210 such as an arbor.
  • the tool holder 210 is attached to a columnar spindle 220 that gives a rotational force to the tool holder 210.
  • the tool holder 210 is a columnar member arranged on an extension line of the spindle 220. Specifically, the upper end of the tool holder 210 is held by the spindle 220. Further, the lower end portion of the tool holder 210 holds the cutting tool 101.
  • the cutting tool 101 includes a shaft portion 11, a blade mounting portion 12, a blade portion (not shown), an acceleration sensor 14, and a position changing portion 50.
  • the upper portion of the shaft portion 11 constitutes a shank 111 and is held by the tool holder 210.
  • the cutting tool 101 may be configured not to have a blade portion. Further, the blade portion may be integrally fixed to the blade mounting portion 12, or may be detachably attached to the blade mounting portion 12.
  • the boundary between the shaft portion 11 and the blade mounting portion 12 is indicated by the alternate long and short dash line 41.
  • the shaft portion 11 has a rod shape having a circular or polygonal peripheral surface in a cross section perpendicular to the central axis 17 of the shaft portion 11, except for the enlarged diameter portion 15 described later.
  • the base material of the shaft portion 11 is made of, for example, cemented carbide for cutting tools or steel for dies.
  • FIG. 2 is an arrow view showing the configuration of the cutting tool according to the first embodiment of the present disclosure.
  • FIG. 2 is an arrow view seen from the direction A in FIG.
  • FIG. 3 is a diagram showing a configuration of a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 3 is an arrow view seen from the B direction in FIG.
  • the acceleration sensor 14 is, for example, a so-called uniaxial acceleration sensor that measures acceleration in one direction.
  • the measurement direction of the acceleration sensor 14 is, for example, the direction in which vibration is generated due to cutting by the cutting tool 101. That is, the acceleration sensor 14 can measure the acceleration of vibration accompanying cutting by the cutting tool 101.
  • the measurement direction 141 of the acceleration sensor 14 is a direction along a plane 18 whose normal line is the central axis 17 which is the rotation axis of the shaft portion 11, and connects the acceleration sensor 14 and the central axis 17. Along the direction orthogonal to the straight line 143.
  • the acceleration sensor 14 may measure the centrifugal acceleration.
  • the measurement direction of the acceleration sensor 14 is, for example, along the direction connecting the central axis 17 of the shaft portion 11 and the acceleration sensor 14.
  • the acceleration sensor 14 may be, for example, a so-called three-axis acceleration sensor that measures acceleration in three directions.
  • another type of sensor may be attached to the shaft portion 11.
  • the shaft portion 11 has a larger diameter than the other portions of the shaft portion 11, and includes an enlarged diameter portion 15 to which the acceleration sensor 14 can be attached.
  • the shaft portion 11 is a shaft in a radial direction Y, which is a direction orthogonal to the direction X, in a part of a region along the axial direction of the cutting tool 101, specifically, the longitudinal direction X.
  • a diameter-expanded portion 15 that enlarges the diameter of the portion 11.
  • the diameter of the enlarged diameter portion 15 is larger than the diameter of the portion of the shaft portion 11 other than the enlarged diameter portion 15.
  • the diameter-expanded portion 15 is thicker than the portion of the shaft portion 11 other than the diameter-expanded portion 15.
  • the direction X of the cutting tool 101 is along the central axis 17 of the shaft portion 11.
  • the direction X of the cutting tool 101 and the central axis 17 of the shaft portion 11 are parallel to each other.
  • the enlarged diameter portion 15 is formed in a columnar shape.
  • the enlarged diameter portion 15 has a shape in which a part of the cylinder is removed.
  • a cylinder not only a cylinder but also a shape in which a part of the cylinder is removed is referred to as a cylinder.
  • the enlarged diameter portion 15 has a surface 55 parallel to and flat with respect to the central axis 17 of the shaft portion 11 in the cylinder.
  • the enlarged diameter portion 15 has a shape in which the portion opposite to the central axis 17 with respect to the surface 55 is removed from the cylinder.
  • the diameter of the enlarged diameter portion 15 is the largest of the line segments that pass through the central axis 17 and have both ends on the peripheral surface of the enlarged diameter portion 15 in the direction of the central axis 17.
  • the diameter of the enlarged diameter portion 15 corresponds to the diameter of the cylinder before a part of the cylinder is removed.
  • the diameter-expanded portion 15 has a recess 16 that is open at a part of the surface 55 and is recessed on the central axis 17 side.
  • the recess 16 is open in a rectangular shape.
  • the bottom surface 161 of the recess 16 is a flat surface parallel to the surface 55.
  • the bottom surface 161 is formed in a rectangular shape so as to extend along the central axis 17.
  • a plurality of screw holes 57 are formed on the surface 55.
  • the enlarged diameter portion 15 has one surface 55, but the diameter is not limited to this.
  • the diameter-expanded portion 15 may have two surfaces 55 located on opposite sides of the central axis 17. With such a configuration, the balance of the enlarged diameter portion 15 is improved, so that it is possible to prevent abnormal vibration from being generated when the cutting tool 101 is rotated.
  • the position changing unit 50 changes the position of the acceleration sensor 14 in a state where the acceleration sensor 14 is attached to the shaft unit 11.
  • the position changing portion 50 can change the position of the acceleration sensor 14 in the axial direction of the shaft portion 11, that is, in the direction along the central axis 17.
  • the first sensor position A1, the second sensor position A2, the third sensor position A3, and the fourth sensor position A4 arranged along the direction X refer to the acceleration sensor 14. There are four positions that can be attached.
  • the first sensor position A1, the second sensor position A2, the third sensor position A3, and the fourth sensor position A4 are arranged in this order from the side closer to the blade mounting portion 12 to the side farther from it.
  • the position changing unit 50 is configured so that the position of the acceleration sensor 14 can be changed in the range from the first sensor position A1 to the fourth sensor position A4.
  • the position changing portion 50 includes a pedestal portion 51 that supports the acceleration sensor 14, a plurality of screw holes 53 formed on the bottom surface 161 of the recess 16, and a plurality of male screw members 54 that are screwed into the screw holes 53. And include.
  • the number of screw holes 53 is, for example, 10, and the number of male screw members 54 is 4.
  • the pedestal portion 51 is a plate-shaped member.
  • the pedestal portion 51 is formed with a plurality of through holes (not shown) through which the legs of the male screw member 54 can be inserted. For example, four through holes are formed in the pedestal portion 51.
  • first screw hole 53 and the second screw hole 53 from the side closer to the blade mounting portion 12 are used to mount the acceleration sensor 14 at the first sensor position A1.
  • the second screw hole 53 and the third screw hole 53 from the side closer to the blade mounting portion 12 are used to mount the acceleration sensor 14 at the second sensor position A2.
  • the third screw hole 53 and the fourth screw hole 53 from the side closer to the blade mounting portion 12 are used to mount the acceleration sensor 14 at the third sensor position A3.
  • the fourth screw hole 53 and the fifth screw hole 53 from the side closer to the blade mounting portion 12 are used to mount the acceleration sensor 14 at the fourth sensor position A4.
  • the acceleration sensor 14 when the acceleration sensor 14 is mounted at the first sensor position A1, the first screw hole 53 and the second screw hole 53 from the side closer to the blade mounting portion 12 in each row along the direction X The acceleration sensor 14 is attached to the first sensor position A1 by screwing the four male screw members 54 and the four screw holes 53 in a state where the four through holes of the pedestal portion 51 are aligned.
  • the four male screw members 54 and the four screw holes 53 in each row along the direction X After releasing the screwing with, 4 in a state where the four through holes of the pedestal portion 51 are aligned with the second screw hole 53 and the third screw hole 53 from the side closer to the blade mounting portion 12.
  • the accelerometer 14 is attached to the second sensor position A2 by screwing the one male screw member 54 and the four screw holes 53.
  • the position changing unit 50 can change the position of the acceleration sensor 14 in the radial direction of the shaft unit 11, for example.
  • FIG. 4 is a side view showing the configuration of the cutting tool according to the first embodiment of the present disclosure. More specifically, FIG. 4 is a diagram showing that the position changing portion 50 can change the position of the acceleration sensor 14 in the radial direction of the shaft portion 11.
  • FIG. 5 is an arrow view showing the configuration of the cutting tool according to the first embodiment of the present disclosure.
  • FIG. 5 is an arrow view seen from the direction A in FIG.
  • FIG. 6 is an arrow view showing the configuration of the cutting tool according to the first embodiment of the present disclosure.
  • FIG. 6 is an arrow view seen from the B direction in FIG.
  • the position changing portion 50 further includes a position changing plate 56 and a male screw member 58.
  • the position change plate 56 is fixed to the surface 55 of the diameter-expanded portion 15 shown in FIG. By fixing the position change plate 56 to the surface 55, the recess 16 of the enlarged diameter portion 15 is closed.
  • the position changing plate 56 shown in FIGS. 4 to 6 is, for example, a plate-shaped member formed in a rectangular shape.
  • the position changing plate 56 has a size matching the size of the surface 55 of the enlarged diameter portion 15 shown in FIG. 1 and has a predetermined thickness.
  • the fifth sensor position A5, the sixth sensor position A6, the seventh sensor position A7, and the eighth sensor position A8 arranged along the direction X are the position change plates 56.
  • the fifth sensor position A5, the sixth sensor position A6, the seventh sensor position A7, and the eighth sensor position A8 are arranged in this order from the side closer to the blade mounting portion 12 to the side farther from it.
  • the position change plate 56 is formed with a plurality of through holes (not shown) formed at positions corresponding to the plurality of screw holes 57 formed on the surface 55 shown in FIG. In the example shown in FIG. 4, the number of the through holes is four.
  • the through hole is formed so that the leg portion of the male screw member 58 can be inserted.
  • the male screw member 58 is screwed with the screw hole 57.
  • the number of male screw members 58 is four.
  • a plurality of screw holes 60 are formed in the position change plate 56.
  • the male screw member 54 is screwed into the screw hole 60.
  • the number of screw holes 60 is, for example, 10.
  • the screw holes 60 are arranged in two rows along the direction X. Five screw holes 60 are formed in each row. In each row, the first screw hole 60 and the second screw hole 60 from the side closer to the blade mounting portion 12 are used to mount the acceleration sensor 14 at the fifth sensor position A5.
  • the second screw hole 60 and the third screw hole 60 from the side closer to the blade mounting portion 12 are used to mount the acceleration sensor 14 at the sixth sensor position A6.
  • the third screw hole 60 and the fourth screw hole 60 from the side closer to the blade mounting portion 12 are used to mount the acceleration sensor 14 at the seventh sensor position A7.
  • the fourth screw hole 60 and the fifth screw hole 60 from the side closer to the blade mounting portion 12 are used to mount the acceleration sensor 14 at the eighth sensor position A8.
  • the position change plate 56 is arranged on the surface 55 of the enlarged diameter portion 15. Next, in a state where the four screw holes 57 formed on the surface 55 and the through holes (not shown) of the position changing plate 56 are aligned, each screw hole 57 and the male screw member 58 are screwed to form a surface. The position change plate 56 is fixed to 55.
  • the pedestal portion 51 is placed on the position change plate 56.
  • the four male screw members 54 and 4 are inserted into the first screw hole 60 and the second screw hole 60 from the side closer to the blade mounting portion 12.
  • the acceleration sensor 14 is attached to the fifth sensor position A6.
  • the acceleration sensor 14 is attached to the sixth sensor position A6.
  • FIG. 7 is a side view schematically showing a cutting tool according to the first embodiment of the present disclosure. Specifically, FIG. 7 is a schematic side view of the cutting tool when the cutting tool 101 shown in FIG. 1 is regarded as a cantilever.
  • a load that is, a cutting resistance F is applied to the blade mounting portion 12 or the blade portion located at the end of the cutting tool 101.
  • FIG. 8 is a graph showing the result of simulating the cutting tool according to the first embodiment of the present disclosure. Specifically, FIG. 8 is a graph showing the results of simulating the cutting tool shown in FIG. 7.
  • the horizontal axis and the vertical axis in FIG. 8 indicate the distance from the cutting tool 101, that is, the fulcrum of the cantilever, and the amount of displacement, respectively.
  • FIG. 8 shows the degree of deformation of the cutting tool 101 when the cutting resistance F is applied to the blade mounting portion 12 or the blade portion of the cutting tool 101 shown in FIG. 7.
  • the acceleration sensor 14 when measuring the acceleration under a machining condition with a large load, the acceleration sensor 14 is attached to the fulcrum, that is, the root of the cutting tool 101, while the acceleration is measured under a machining condition with a small load. Attaches the accelerometer 14 at a position near the end of the cutting tool 101.
  • the load is large, the sensitivity of the acceleration sensor 14 can be intentionally lowered, and when the load is small, the sensitivity of the acceleration sensor 14 can be intentionally increased.
  • the acceleration can be measured under various machining conditions.
  • FIG. 9 is a diagram showing a configuration of a cutting system according to the first embodiment of the present disclosure. More specifically, FIG. 9 is a diagram showing a state in which the cutting tool is further equipped with a battery and a wireless communication device in addition to the components shown in FIG. In FIG. 9, the battery and the wireless communication device are shown by an alternate long and short dash line, which is an imaginary line.
  • the cutting tool 101 further includes a battery 22, a wireless communication device 23, and a housing 24, in addition to the configuration shown in FIG.
  • the battery 22 is connected to the acceleration sensor 14 and the wireless communication device 23 via a power line (not shown).
  • the battery 22 supplies electric power to the acceleration sensor 14 and the wireless communication device 23 via the power line.
  • the power line is provided with a switch for switching the power supply on and off.
  • the wireless communication device 23 is connected to the acceleration sensor 14 via a signal line (not shown).
  • the acceleration sensor 14 outputs a measurement signal indicating the acceleration generated in the shaft portion 11 to the wireless communication device 23 via a signal line.
  • the wireless communication device 23 When the wireless communication device 23 receives the measurement signal from the acceleration sensor 14, the wireless communication device 23 includes the measurement result indicated by the received measurement signal in the wireless signal and transmits the measurement result to an external management device 301 such as a personal computer.
  • the management device 301 for example, accumulates the received measurement results and processes the accumulated measurement results. Specifically, for example, the management device 301 analyzes the measurement result indicated by the received sensor information.
  • the wireless communication device 23 does not show the positional relationship between the acceleration sensor 14 and the blade mounting portion 12 or the blade portion, that is, the first position information indicating the positional relationship between the measurement position and the cutting position in the cutting tool 101. It is acquired from the storage unit and transmitted to the management device 301.
  • the cutting tool 101 further includes an operation input unit (not shown).
  • the operation input unit is configured so that the user can input the mounting position of the acceleration sensor 14.
  • the operation input unit is an operation button that allows the user to select the sensor position to which the acceleration sensor 14 is attached from the sensor positions A1 to A8.
  • the first position information corresponds to the mounting position of the acceleration sensor 14 input in the operation input unit.
  • the management device 301 for example, accumulates the received first position information and analyzes the accumulated first position information.
  • the positional relationship indicated by the first position information is, for example, the distance between the measurement position and the cutting position.
  • the first position information is not limited to this, and includes the distance between the measurement position and the cutting position, the direction of the cutting position with respect to the measurement position, or the direction of the measurement position with respect to the cutting position. May be shown.
  • the wireless communication device 23 provides the second position information indicating the positional relationship between the acceleration sensor 14 and the central axis 17 of the shaft portion 11, that is, the positional relationship between the measurement position on the cutting tool 101 and the central axis 17. It is acquired from the storage unit and transmitted to the management device 301.
  • the second position information corresponds to the mounting position of the acceleration sensor 14 input in the operation input unit.
  • the management device 301 accumulates the received second position information, and analyzes the accumulated second position information, for example.
  • the positional relationship indicated by the second position information is, for example, the distance between the measurement position and the central axis 17.
  • the second position information is not limited to this, and includes the distance between the measurement position and the central axis 17, and the direction of the cutting position with respect to the central axis 17 or the direction of the central axis 17 with respect to the cutting position. May be shown.
  • the housing 24 accommodates the accelerometer 14, the battery 22, the wireless communication device 23, the power line and the signal line, specifically, the accelerometer 14 and the like are covered from below and from the sides of the accelerometer 22 and the housing 24. Holds the wireless communication device 23.
  • FIG. 10 is a diagram showing a configuration of a management device in the cutting system according to the first embodiment of the present disclosure.
  • the cutting system 201 includes a machine tool 202 such as a milling machine and a management device 301.
  • the machine tool 202 controls a cutting tool 101, a tool holder 210 for holding the cutting tool 101, a spindle 220 for holding the tool holder 210, a drive unit (not shown) for applying a rotational force to the spindle 220, and the drive unit. It includes a control unit (not shown).
  • the drive unit is a motor or the like that drives the cutting tool 101 via the spindle 220 and the tool holder 210.
  • the control unit controls the rotation speed of the drive unit and the like.
  • the cutting tool 101 transmits a wireless signal including sensor information indicating the measurement result of the acceleration sensor 14.
  • the management device 301 receives a wireless signal including sensor information from the cutting tool 101, and processes the measurement result indicated by the received sensor information.
  • the management device 301 includes a wireless communication unit 31, a control unit 32, a display unit 33, a storage unit 35, and an operation input unit 36.
  • the wireless communication unit 31 wirelessly communicates with the wireless communication device 23 of the cutting tool 101. Specifically, the wireless communication unit 31 receives a wireless signal including sensor information from the wireless communication device 23 of the cutting tool 101, and stores the measurement result indicated by the sensor information included in the wireless signal in the storage unit 35. To do.
  • the operation input unit 36 includes a user interface such as a keyboard and a mouse.
  • the operation input unit 36 receives instructions and data input from the user.
  • the storage unit 35 includes, for example, a storage device such as an HDD (Hard Disk Drive). Further, for example, the storage unit 35 may be a CD-ROM (Compact Disc Read Only Memory), a DVD-ROM (Digital York Disc Read Only Memory), or a BD-ROM (Blu-ray (registered trademark) Disc Read Memory). Includes auxiliary storage. Further, for example, the storage unit 35 includes a semiconductor memory such as a RAM (Random Access Memory) and a ROM (Read Only Memory).
  • the storage unit 35 stores programs and data for operating the control unit 32, measurement results received by the wireless communication unit 31 from the cutting tool 101, analysis results of the control unit 32, and the like.
  • the storage unit 35 may be provided outside the management device 301.
  • the control unit 32 includes, for example, a CPU (Central Processing Unit).
  • the control unit 32 analyzes the measurement result of the acceleration sensor 14 written (accumulated) in the storage unit 35, and stores the analysis result in the storage unit 35. Further, the control unit 32 controls each unit such as the wireless communication unit 31 and the display unit 33 in the management device 301.
  • the display unit 33 is, for example, a display.
  • the display unit 33 displays the analysis result of the control unit 32 written in the storage unit 35.
  • the display unit 33 may be provided outside the management device 301.
  • the cutting system 201 is a relay device between the two. May be provided.
  • the machine tool 202 transmits a wireless signal to the management device 301 via the relay device.
  • the user fixes the shaft portion 11 of the cutting tool 101 to, for example, the tool holder in the machine tool 202.
  • the cutting tool 101 is rotationally driven to cut the object to be cut, so that the shaft portion 11 is accelerated by the cutting.
  • the acceleration sensor 14 outputs a measurement signal indicating the acceleration generated in the shaft portion 11 to the wireless communication device 23.
  • the wireless communication device 23 includes the measurement result indicated by the measurement signal received from the acceleration sensor 14 and the position information of the acceleration sensor 14 in the wireless signal and transmits the measurement result to the external management device 301.
  • the wireless communication unit 31 receives a wireless signal including sensor information indicating the measurement result of the acceleration sensor 14 from the wireless communication device 23, and stores the received sensor information in the storage unit 35.
  • the control unit 32 analyzes the measurement result stored in the storage unit 35 in response to an instruction input from the user via the operation input unit 36.
  • FIGS. 11 to 14 are diagrams showing an example of analysis results in the management device in the cutting system according to the first embodiment of the present disclosure. Specifically, FIGS. 11 to 14 are graphs showing an example of the acceleration generated in the cutting tool 101 due to the cutting of the object to be cut by the cutting tool 101.
  • 11 to 14 show the acceleration generated when cutting is performed by the cutting tool 101 in a state where the acceleration sensor 14 is attached to the sensor positions A4, A3, A2, and A1 shown in FIG. 9, respectively.
  • FIG. 11 shows the acceleration generated when the acceleration sensor 14 is attached to the sensor position A4
  • FIG. 12 shows the acceleration generated when the acceleration sensor 14 is attached to the sensor position A3
  • FIG. 13 shows the acceleration sensor 14 as a sensor.
  • the acceleration generated when the acceleration sensor 14 is attached to the position A2 is shown
  • FIG. 14 shows the acceleration generated when the acceleration sensor 14 is attached to the sensor position A1.
  • the machining conditions are the same, and for example, the cutting resistance F is the same.
  • the circumferential direction of the shaft portion 11 means a direction along the peripheral surface of the projected shaft portion 11 when the shaft portion 11 is projected on a plane having the central axis 17 of the shaft portion 11 as a normal.
  • the horizontal axis is the acceleration generated in the direction Y1 orthogonal to the central axis 17 of the shaft portion 11, and the vertical axis is the direction along the plane orthogonal to the shaft portion 11.
  • the acceleration generated in the direction Y2 orthogonal to Y1 is shown.
  • FIGS. 11 to 14 show the acceleration generated by each blade cutting the object to be cut. As can be seen from FIGS. 11 to 14, in FIGS. 11 to 14, the measured accelerations increase in this order.
  • the acceleration sensor 14 when the centrifugal acceleration is measured by the acceleration sensor 14, the acceleration sensor 14 has a diameter-expanded portion 15 so that the measurement direction is along the direction connecting the central axis 17 of the shaft portion 11 and the acceleration sensor 14. It is attached.
  • Centrifugal acceleration a [mm / s ⁇ 2] is expressed by the following equation (1).
  • r is the distance [mm] between the central axis 17 of the shaft portion 11 and the acceleration sensor 14, and ⁇ is the angular velocity [rad / s] of the shaft portion 11.
  • the operator " ⁇ " represents a power.
  • the centrifugal acceleration a increases as the distance r increases. Therefore, the farther the mounting position of the acceleration sensor 14 is from the central axis 17 of the shaft portion 11, the higher the sensitivity of the acceleration sensor 14.
  • the acceleration sensor 14 when measuring centrifugal acceleration under machining conditions where the rotation speed of the shaft portion 11 is high, the acceleration sensor 14 is attached at a position close to the central axis 17 of the shaft portion 11, while the rotation of the shaft portion 11 When measuring centrifugal acceleration under low-speed machining conditions, the acceleration sensor 14 is attached at a position far from the central axis 17 of the shaft portion 11.
  • the sensitivity of the acceleration sensor 14 can be intentionally lowered, and in the latter case, the sensitivity of the acceleration sensor 14 can be intentionally increased.
  • the acceleration sensor 14 when measuring centrifugal acceleration under processing conditions where the rotation speed of the shaft portion 11 is high, the acceleration sensor 14 is attached to the bottom surface 161 of the recess 16 in the diameter-expanded portion 15.
  • the acceleration sensor 14 is mounted at any of the sensor mounting positions (hereinafter, also referred to as sensor positions) A1 to A4.
  • the acceleration sensor 14 when measuring the centrifugal acceleration under the machining condition where the rotation speed of the shaft portion 11 is small, the acceleration sensor 14 is attached to the position changing plate 56 in a state where the position changing plate 56 is attached to the diameter expanding portion 15. Be done.
  • the acceleration sensor 14 is attached to any of the sensor positions A5 to A8.
  • the centrifugal acceleration can be measured under various machining conditions.
  • the cutting tool 101 may have a configuration in which the enlarged diameter portion 15 is not formed on the shaft portion 11. In this case, a recess 16 is formed in the shaft portion 11 whose diameter has not been expanded, and the acceleration sensor 14 is attached to the recess 16.
  • the acceleration sensor 14 may be attached to the shaft portion 11 by a fixing member other than the screw member.
  • the cutting tool 101 may not be provided with a sensor such as an acceleration sensor 14, and the shaft portion 11 may have a structure in which the sensor can be attached and detached.
  • the cutting tool 101 does not have to be a turning tool such as an end mill, and may be, for example, a turning tool such as a tool bit.
  • the position changing portion 50 may have a configuration in which the position of the acceleration sensor 14 can be changed in either the axial direction or the radial direction of the shaft portion 11.
  • the position changing portion 50 may have a configuration having a slide mechanism (not shown) capable of sliding the pedestal portion 51 in the direction X.
  • a slide mechanism capable of sliding the pedestal portion 51 in the direction X.
  • a rail or a groove portion capable of sliding the pedestal portion 51 along the X direction is formed on the bottom surface 161 of the recess 16 and the position changing plate 56 in the shaft portion 11.
  • the pedestal portion 51 can slide and move along the rail or the groove portion.
  • the slid-moved pedestal portion 51 is fixed to the shaft portion 11 by, for example, a fixing member such as a screw member.
  • the cutting tool 101 may be configured not to include the wireless communication device 23.
  • the cutting tool 101 stores sensor information and the like in a storage unit (not shown). Then, for example, the user performs an operation of storing the sensor information or the like stored in the storage unit in the storage unit 35 of the management device 301.
  • the position changing unit 50 may be configured to change the position of the acceleration sensor 14 by, for example, a drive mechanism (not shown) such as a ball screw.
  • a drive mechanism such as a ball screw.
  • the screw shaft of the ball screw is arranged along the X direction of the shaft portion 11, and the acceleration sensor 14 is attached to the nut portion of the ball screw.
  • a control unit (not shown) that controls a motor that rotationally drives the screw shaft of the ball screw may be configured to control the movement of the acceleration sensor 14. Further, the instruction signal to the motor may be given from the outside of the cutting tool 101.
  • FIG. 15 is a diagram showing another example of the configuration of the cutting tool according to the first embodiment of the present disclosure.
  • the number of the position changing plates 56 attached to the surface 55 of the enlarged diameter portion 15 is not limited to one, and may be a plurality. In this case, the plurality of position changing plates 56 are attached to the surface 55 of the enlarged diameter portion 15 in a state where the position changing plates 56 are laminated.
  • the acceleration sensor 14 is attached to the position changing plate 56 located at the position farthest from the central axis 17 of the shaft portion 11.
  • each position changing plate 56 has a predetermined thickness, the distance between the acceleration sensor 14 and the central axis 17 of the shaft portion 11 can be changed by changing the number of stacked sheets.
  • FIGS. 16 to 20 are cross-sectional views schematically showing another example of the cutting tool according to the first embodiment of the present disclosure. Specifically, FIGS. 16 to 20 are cross-sectional views schematically showing another example of the position of the sensor in the cutting tool.
  • FIGS. 16 to 20 three positions of one sensor are shown for easy understanding. Specifically, in FIGS. 16 to 20, the sensor before the position change is shown by a solid line, and the sensor after the position change is shown by a two-dot chain line. Further, in FIGS. 16 to 20, hatching showing a cross section is not shown for simplification of illustration.
  • FIG. 16 shows the sensor position B1, the sensor position B2, and the sensor position B3 on the shaft portion 11.
  • the position changing unit 50 changes the position of the acceleration sensor 14 between the sensor positions B1 to B3.
  • the sensor position B2 is deviated from the sensor position B1 in the X direction and is deviated in the radial direction Y of the shaft portion 11.
  • the sensor position B3 is deviated from the sensor position B1 in the X direction and is not deviated in the radial direction Y.
  • the sensor position B3 is deviated from the sensor position B2 in the X direction and is deviated in the radial direction Y.
  • FIG. 17 shows the sensor position B1, the sensor position B3, and the sensor position B4 on the shaft portion 11.
  • the position changing unit 50 changes the position of the acceleration sensor 14 between the sensor positions B1, B3 and B4.
  • the sensor position B4 is not deviated from the sensor position B1 in the X direction and is deviated in the radial direction Y.
  • the sensor position B4 is deviated from the sensor position B3 in the X direction and is deviated in the radial direction Y.
  • FIG. 18 shows the sensor position B1, the sensor position B5, and the sensor position B6 on the shaft portion 11.
  • the position changing unit 50 changes the position of the acceleration sensor 14 between the sensor positions B1, B5 and B6.
  • the sensor position B5 is deviated from the sensor position B1 in the X direction and is deviated in the radial direction.
  • the sensor position B6 is deviated from the sensor position B1 in the X direction and is deviated in the radial direction.
  • the sensor position B6 is deviated from the sensor position B5 in the X direction and is deviated in the radial direction.
  • FIG. 19 shows the sensor position B1, the sensor position B7, and the sensor position B8 on the shaft portion 11.
  • the position changing unit 50 changes the position of the acceleration sensor 14 between the sensor positions B1, B7, and B8.
  • the sensor position B7 is not deviated from the sensor position B1 in the X direction and is deviated in the radial direction.
  • the sensor position B8 is not deviated from the sensor position B1 in the X direction and is deviated in the radial direction.
  • the sensor position B8 is not deviated from the sensor position B7 in the X direction and is deviated in the radial direction.
  • FIG. 20 shows the sensor position B1, the sensor position B3, and the sensor position B9 on the shaft portion 11.
  • the position changing unit 50 changes the position of the acceleration sensor 14 between the sensor positions B1, B3 and B9.
  • the sensor position B9 is deviated from the sensor position B1 in the X direction and is not deviated in the radial direction.
  • the sensor position B9 is deviated from the sensor position B3 in the X direction and is not deviated in the radial direction Y.
  • the position changing unit 50 can change the position of the acceleration sensor 14 along the X direction, and changes the position of the acceleration sensor 14 along the radial direction Y. It may be possible to change the position of the acceleration sensor 14 in either the X direction or the radial direction Y, as shown in FIGS. 19 and 20.
  • FIG. 21 is a diagram showing a modified example 1 of the cutting system according to the first embodiment of the present disclosure.
  • the cutting system 203 includes a machine tool 204 instead of the machine tool 202 shown in FIG.
  • the machine tool 204 includes a cutting tool 102 instead of the cutting tool 101 shown in FIG.
  • the cutting tool 102 has a strain sensor 19 instead of the acceleration sensor 14 shown in FIG.
  • the position changing portion 50 can change the mounting position of the strain sensor 19 on the shaft portion 11.
  • the position changing portion 50 can change the position of the strain sensor 19 in the axial direction of the shaft portion 11, that is, in the direction along the central axis 17.
  • the position changing portion 50 can change the position of the strain sensor 19 in a direction along the radial direction of the shaft portion 11, for example.
  • the method of changing the position of the strain sensor 19 by the position changing unit 50 is the same as the method of changing the position of the acceleration sensor 14 in the cutting system 201 shown in FIG.
  • the cutting tool 102 transmits a radio signal including sensor information indicating the measurement result of the strain sensor 19.
  • the management device 301 receives a wireless signal including sensor information from the cutting tool 101, and processes the measurement result indicated by the received sensor information. Specifically, for example, the management device 301 analyzes the measurement result indicated by the received sensor information.
  • FIG. 22 is a side view schematically showing a cutting tool according to a modification 1 of the first embodiment of the present disclosure. Specifically, FIG. 22 is a schematic side view of the cutting tool when the cutting tool 102 shown in FIG. 21 is regarded as a cantilever.
  • a load that is, a cutting resistance F is applied to the blade mounting portion 12 or the blade portion located at the end of the cutting tool 102.
  • FIG. 23 is a graph showing the result of simulating the cutting tool in the first modification of the first embodiment of the present disclosure. Specifically, FIG. 23 is a graph showing the results of simulating the cutting tool shown in FIG. 21.
  • the horizontal axis and the vertical axis in FIG. 23 show the distance from the fulcrum of the cantilever and the strain when the cutting tool 102 is regarded as the cantilever, respectively.
  • the strain sensor 19 when measuring the strain under a machining condition with a large load, the strain sensor 19 is attached at a position close to the end of the cutting tool 102, while the strain is measured under a machining condition with a small load.
  • the strain sensor 19 is attached to the fulcrum of the cutting tool 102, that is, at a position close to the root portion.
  • the strain can be measured under various machining conditions.
  • FIG. 24 is a diagram showing a cutting system according to a second modification of the first embodiment of the present disclosure.
  • the cutting system 205 includes a machine tool 206 instead of the machine tool 202 shown in FIG.
  • the machine tool 206 includes a cutting tool 103 instead of the cutting tool 101 shown in FIG.
  • the cutting tool 103 further includes a temperature sensor 26 and a sound sensor 27 in addition to the acceleration sensor 14 shown in FIG.
  • the temperature sensor 26 and the sound sensor 27 are supported by a pedestal portion 51 provided separately from the pedestal portion 51 that supports the acceleration sensor 14.
  • the pedestal portion 51 that supports the temperature sensor 26 and the sound sensor 27 is attached at a position different from that of the pedestal portion 51 that supports the acceleration sensor 14.
  • the pedestal portion 51 that supports the temperature sensor 26 and the sound sensor 27 is attached to the third sensor position A3 by the male screw member 54.
  • the position changing unit 50 can change the mounting positions of the acceleration sensor 14, the temperature sensor 26, and the sound sensor 27 on the shaft unit 11.
  • the position changing unit 50 can change the positions of the acceleration sensor 14, the temperature sensor 26, and the sound sensor 27 in the axial direction of the shaft unit 11, that is, in the direction along the central axis 17. is there.
  • the position changing unit 50 can change the positions of the acceleration sensor 14, the temperature sensor 26, and the sound sensor 27 in the direction along the radial direction of the shaft unit 11, for example.
  • the cutting tool 103 transmits a radio signal including sensor information indicating the measurement results of the acceleration sensor 14, the temperature sensor 26, and the sound sensor 27.
  • the management device 301 receives a wireless signal including sensor information from the cutting tool 101, and processes each measurement result indicated by the received sensor information. Specifically, for example, the management device 301 analyzes each measurement result indicated by the received sensor information.
  • the cutting tool 103 may be configured not to include either the temperature sensor 26 or the sound sensor 27.
  • the cutting tool according to the first embodiment of the present disclosure includes a shaft portion 11 to which a sensor can be attached and a position changing portion 50 to which the attachment position of the sensor on the shaft portion 11 can be changed.
  • the size of the acceleration measurement result can be changed by changing the position of the sensor due to the configuration in which the mounting position of the sensor on the shaft portion 11 can be changed.
  • the sensitivity of the sensor can be easily changed according to the processing conditions.
  • the cutting tool according to the first embodiment of the present disclosure can measure the state of the cutting tool 101 under a wider variety of machining conditions.
  • the shaft portion 11 has a cylindrical shape
  • the cutting tool 101 is a rolling tool.
  • the sensitivity of the acceleration sensor 14 can be changed according to processing conditions such as the rotation speed of the shaft portion 11.
  • the position changing portion 50 can change the position of the sensor along the axial direction of the shaft portion 11.
  • the position of the sensor capable of measuring the acceleration generated in the cutting tool 101 when cutting the object to be cut can be changed, and the sensitivity of the measurement result of the sensor can be changed. Therefore, it is possible to measure the acceleration and the like generated in the cutting tool 101 while cutting the object to be cut. Further, since the position of the sensor in the direction along the axial direction of the shaft portion 11 is involved in the bending component of the displacement generated in the cutting tool 101 due to cutting, the bending component is formed by such a configuration. You can calculate the value for.
  • the position changing portion 50 can change the position of the sensor along the radial direction of the shaft portion 11.
  • the position of the sensor capable of measuring the centrifugal acceleration generated when the cutting tool 101 rotates regardless of whether or not the object to be cut is being cut is changed, and the sensitivity of the measurement result of the sensor is changed. can do. Therefore, the centrifugal acceleration generated in the cutting tool 101 when the cutting tool 101 is rotated can be measured. Further, since the position of the sensor in the radial direction of the shaft portion 11 is involved in the torsional component of the displacement generated in the cutting tool 101 due to cutting, the torsional component is formed by such a configuration. You can calculate the value for.
  • the position changing portion 50 can change the position of the sensor along the axial direction of the shaft portion 11, and the diameter of the shaft portion 11 It is possible to change the position of the sensor along the direction.
  • the position of the sensor capable of measuring the acceleration generated in the cutting tool 101 when cutting the object to be cut it is possible to change the position of the sensor capable of measuring the acceleration generated in the cutting tool 101 when cutting the object to be cut, and change the sensitivity of the measurement result of the sensor.
  • This makes it possible to measure the acceleration and the like generated in the cutting tool 101 while cutting the object to be cut.
  • the sensitivity of the measurement result of the sensor can be changed by changing the position of the sensor capable of measuring the centrifugal acceleration generated when the cutting tool 101 rotates regardless of whether or not the object to be cut is being cut. it can. As a result, it is possible to measure the centrifugal acceleration and the like generated in the cutting tool 101 when the cutting tool 101 is rotated.
  • the value related to the bending component is calculated. Can be done. Further, since the position of the sensor in the radial direction of the shaft portion 11 is involved in the torsional component of the displacement generated in the cutting tool 101 due to cutting, the value relating to the torsional component is obtained by the above configuration. Can be calculated.
  • the cutting tool 101 further includes a sensor attached to the shaft portion 11.
  • the sensor is an acceleration sensor 14, and the measurement direction 141 of the acceleration sensor 14 is a plane 18 whose normal line is the central axis 17 of the shaft portion 11. Along the direction perpendicular to the straight line connecting the acceleration sensor 14 and the central axis 17.
  • the cutting tool 101 includes at least one of a strain sensor 19, a temperature sensor 26, and a sound sensor 27 as the sensor.
  • At least one of an abnormal increase in strain generated in the shaft portion 11 and frictional heat and abnormal noise when an abnormal vibration is generated in the shaft portion 11 can be detected. Can be done.
  • the cutting tool 101 further includes a wireless communication device 23.
  • the wireless communication device 23 transmits sensor information indicating the measurement result of the sensor.
  • the cutting system includes a cutting tool 101 and a management device 301.
  • the management device 301 receives sensor information from the cutting tool 101.
  • the size of the measurement result such as acceleration can be changed by changing the position of the sensor due to the configuration in which the mounting position of the sensor on the shaft portion 11 can be changed.
  • the sensitivity of the sensor can be easily changed according to the processing conditions.
  • the state of the cutting tool 101 can be measured under a wider variety of machining conditions. Further, for example, in the management device 301, processing such as abnormality detection using the measurement results of each sensor can be performed.
  • the shaft portion 11 has a rod shape and includes the enlarged diameter portion 15.
  • the diameter-expanded portion 15 has a larger diameter than the other portions of the shaft portion 11, and a sensor can be attached to the enlarged diameter portion 15.
  • the position changing portion 50 can change the mounting position of the sensor in the enlarged diameter portion 15.
  • the rigidity of the shaft portion 11 is ensured by the enlarged diameter portion 15, so that the rigidity of the shaft portion 11 is ensured even when a part of the shaft portion 11 is removed and the sensor is attached, for example. While doing so, the sensor can be attached to the shaft portion 11.
  • the enlarged diameter portion 15 has a flat surface 55 parallel to the central axis 17 of the shaft portion 11.
  • the enlarged diameter portion 15 has a shape in which a portion opposite to the central axis 17 with respect to the surface 55 is removed.
  • the position of the sensor can be easily changed in the radial direction Y of the shaft portion 11. be able to.
  • the enlarged diameter portion 15 has a recess 16 which is open at a part of the surface 55 and is recessed toward the central axis 17.
  • the bottom surface 161 of the recess 16 is a plane parallel to the surface 55.
  • the second embodiment of the present disclosure relates to a processing method using a cutting system such as the cutting system 201 according to the first embodiment. Except for the contents described below, the cutting system 201 is the same as that of the first embodiment.
  • a processing method when the cutting system 201 is used will be described.
  • the object to be cut is cut by the cutting tool 101 attached to the machine tool 202, and the position changing unit 50 cuts the object to be cut.
  • the storage processing unit stores the measurement result of the sensor each time the cutting is performed. Write in 35.
  • the control unit 32 processes each measurement result written by the wireless communication unit 31.
  • FIG. 25 is a flowchart defining the procedure of the processing method according to the second embodiment of the present disclosure.
  • the processing method M according to the second embodiment of the present disclosure is a processing method using a cutting tool 101.
  • the machine tool 202 cuts the object to be cut by the cutting tool 101 (step S201).
  • the management device 301 accumulates the measurement results of the sensor (step S203).
  • the user changes the position of the sensor by the position changing portion 50 of the cutting tool 101 (step S205).
  • the machine tool 202 cuts the object to be cut by the cutting tool 101 whose sensor position has been changed (step S207).
  • the management device 301 accumulates the measurement results of the sensor (step S209).
  • the management device 301 processes each accumulated measurement result (step S211).
  • a plurality of sensors may be used, one sensor may be used, and for example, one acceleration sensor 14 or one strain sensor 19 may be used. Further, in the processing method M, one or a plurality of sensors different from the acceleration sensor 14 and the strain sensor 19 may be used.
  • the processing method M is used, for example, when there is a problem in cutting of a machine tool and the cause is verified.
  • the cause of the defect is a portion other than the cutting tool, for example, a tool holder 210 for holding the cutting tool 101 and a spindle 220 for holding the tool holder 210. It is a method of determining whether or not.
  • the user first attaches the cutting tool 101 to the tool holder of the machine tool 202, cuts the object to be cut by the cutting tool 101 (step S201), and measures the acceleration sensor 14. Is stored in the management device 301 (step S203).
  • step S205 the user changes the position of the acceleration sensor 14 on the cutting tool 101.
  • the user attaches the cutting tool 101 whose position of the acceleration sensor 14 has been changed to the tool holder 210 of the machine tool 202, cuts the object to be cut by the cutting tool 101 (step S207), and the acceleration sensor 14
  • the measurement result of is stored in the management device 301 (step S209).
  • the management device 301 is not limited to the analysis of the measurement result, and may be configured to perform other types of processing (step S211).
  • the measurement result of the acceleration sensor 14 can be used more significantly as compared with the first embodiment.
  • a detailed description will be given.
  • FIG. 26 is a side view schematically showing the cutting tool, the tool holder, and the spindle according to the second embodiment of the present disclosure.
  • the tool holder 210 and the spindle 220 are integrated and shown as one member for easy understanding.
  • the integrated member is also referred to as a support member 230.
  • d is the distance [mm] from the end of the cutting tool 101 to the measurement position of the acceleration
  • L is the distance [mm] from the end of the cutting tool 101 to the support member 230
  • I Is the cross-sectional secondary moment [mm ⁇ 4] of the cutting tool 101
  • E is the Young ratio [MPa] of the cutting tool 101.
  • the displacement X2 [mm] due to the twist generated in the cutting tool 101 can be formulated by the following formula (3).
  • d is the distance [mm] from the end of the cutting tool 101 to the measurement position of the acceleration
  • L is the distance [mm] from the end of the cutting tool 101 to the support member 230
  • rforce Is the point of action of the cutting resistance F and the distance [mm] between the central shaft 17 of the cutting tool 101, that is, the distance between the blade and the central shaft 17, and the riser is the mounting position of the acceleration sensor 14 and the distance between the central shaft 17.
  • G is the transverse elastic coefficient [MPa] of the cutting tool 101
  • J is the cross-sectional secondary pole moment [mm ⁇ 4] of the cutting tool 101.
  • the displacement X3 [mm] generated in the support member 230 can be formulated by the following equation (4).
  • K3 is a predetermined coefficient [mm / N].
  • Equations (2) to (4) are based on the premise that the displacement of the sensor position when a load is applied to the cantilever is proportional to the acceleration generated at that position.
  • Equations (2) to (4) can be summarized as equations (5) and (6).
  • the first term from the left is defined as C1 ⁇ P1
  • the second term is defined as C2 ⁇ P2
  • the third term is defined as C3 ⁇ P3.
  • C1 ⁇ P1, C2 ⁇ P2, and C3 ⁇ P3 correspond to the displacement amount due to bending of the cutting tool 101, the displacement amount due to twisting of the cutting tool 101, and the displacement amount of the support member 230, respectively.
  • C1 is determined by Young's modulus E and the moment of inertia of area I
  • C2 is determined by the modulus of lateral elasticity G and the moment of inertia of area J
  • C3 is determined by the predetermined coefficient K3.
  • Young's modulus E, moment of inertia of area I, transverse elastic modulus G and moment of inertia of area J are determined by the cutting tool 101 and can be grasped by conducting a survey in advance, but it is very troublesome to grasp. It takes.
  • the predetermined coefficient K3 is determined by the support member 230, it is difficult to measure.
  • each of the numerical values is the installation position of the sensor. If you can understand, the calculation is easy.
  • P11, P21, and P31 are the value of P1 at the sensor position A1 in FIG. 1, the value of P2 at the sensor position A1, and the value of P3 at the sensor position A1, respectively.
  • P12, P22, and P32 are the value of P1 at the sensor position A2 in FIG. 1, the value of P2 at the sensor position A2, and the value of P3 at the sensor position A2, respectively.
  • acc1 is the measurement result when the acceleration sensor 14 is attached to the sensor position A1 in FIG. 1
  • acc2 is the measurement result when the acceleration sensor 14 is attached to the sensor position A2 in FIG. The result.
  • the amount of displacement due to bending of the cutting tool 101, the amount of displacement due to twisting of the cutting tool 101, and the amount of displacement of the support member 230 can be calculated.
  • the ratio of each component of the acceleration due to bending of the cutting tool 101, the acceleration due to twisting of the cutting tool 101, and the acceleration of the support member 230 in the acceleration measurement result is calculated. Can be done.
  • FIG. 27 is a graph showing three components of the acceleration measurement result calculated by the processing method according to the second embodiment of the present disclosure.
  • the horizontal axis and the vertical axis in FIG. 27 indicate the accelerations generated at the sensor positions A1 to A8 and the sensor positions shown in FIG. 1, respectively.
  • FIG. 27 shows the ratio of the acceleration component Xa due to bending of the cutting tool 101, the ratio of the acceleration component Xb due to twisting of the cutting tool 101, and the acceleration of the support member 230 for each measurement result of the acceleration at the sensor positions A1 to A8.
  • the ratio of the component Xc is shown.
  • the rigidity of the support member 230 is too low, for example. That is, for example, when there is a defect in the machine tool 202, it can be determined that the cause of the defect is the tool holder 210 and the spindle 220.
  • the comparison between the size of the component Xab and the size of the component Xc is, for example, a comparison between the average value of the component Xab at the sensor positions A1 to A8 and the size of the component Xc, or the maximum value of the component Xab at the sensor positions A1 to A8. It is a comparison with the size of the component Xc.
  • the management device 301 includes a computer including a part or all of the storage unit 35, and an arithmetic processing unit such as a CPU in the computer stores a program including a part or all of each step of the following flowchart and sequence. Read from the memory such as, and execute. The program for this device can be installed externally. The program of this device is distributed in a state of being stored in a recording medium.
  • FIG. 28 is a flowchart defining the operation procedure of the management device in the cutting system according to the second embodiment of the present disclosure.
  • the wireless communication unit 31 receives a wireless signal including sensor information and position information from the wireless communication device 23 of the cutting tool 101 attached to the machine tool 202, and converts the wireless signal into the wireless signal.
  • the measurement result and the position information of the acceleration sensor 14 indicated by the included sensor information are stored in the storage unit 35.
  • the acceleration sensor 14 is attached to the sensor position A1 of the cutting tool 101.
  • the position information is the position information corresponding to the sensor position A1 (step S101).
  • the wireless communication unit 31 receives the wireless signal including the sensor information from the wireless communication device 23 of the cutting tool 101 attached to the machine tool 202 after the position of the acceleration sensor 14 is changed to the sensor position A2 by the user.
  • the measurement result and the position information of the acceleration sensor 14 indicated by the sensor information included in the radio signal are stored in the storage unit 35.
  • the position information is the position information corresponding to the sensor position A2 (step S103).
  • the wireless communication unit 31 sequentially performs the same processing as described above for the sensor positions A3 to A8 (steps S105 to S115).
  • control unit 32 processes each measurement result and each position information stored in the storage unit 35. Specifically, for example, based on each measurement result, each position information, and equations (2) to (8), for each of the sensor positions A1 to A8, the acceleration due to bending of the cutting tool 101 in the acceleration measurement result, The ratio of each component of the acceleration due to the twist of the cutting tool 101 and the acceleration of the support member 230 is calculated (step S117).
  • the display unit 33 displays the ratio of the acceleration component Xa due to bending of the cutting tool 101, the ratio of the acceleration component Xb due to twisting of the cutting tool 101, and the support member for each measurement result of the acceleration at the sensor positions A1 to A8.
  • the ratio of the acceleration component Xc of 230 is displayed as a graph as shown in FIG. 27, for example (step S119).
  • the user first cuts the object to be cut by the cutting tool 101 attached to the machine tool 202.
  • the management device 301 accumulates the measurement results of the sensor.
  • the user changes the mounting position of the sensor by the position changing unit 50.
  • the user cuts the object to be cut by the cutting tool 101 whose mounting position of the sensor is changed.
  • the management device 301 accumulates the measurement results of the sensor.
  • the management device 301 processes each accumulated measurement result.
  • the size of the measurement result such as acceleration can be changed by changing the position of the sensor due to the configuration in which the mounting position of the sensor on the shaft portion 11 can be changed.
  • the sensitivity of the sensor can be easily changed according to the processing conditions.
  • the state of the cutting tool 101 can be measured under a wider variety of machining conditions.
  • the component due to the bending of the cutting tool, the component due to the twisting of the cutting tool, and the cutting tool are supported.
  • the value related to the displacement component of the support member can be calculated. That is, the state of the cutting tool 101 and the state of the support member 230 that supports the cutting tool 101 can be grasped.
  • the management device 301 calculates the component corresponding to the machine tool 202 from the measurement result.
  • the state of the support member 230 that supports the cutting tool 101 in the machine tool 202 can be grasped.
  • the sensor is an acceleration sensor 14.
  • the cutting tool based on the measurement results of the acceleration sensor 14 at the plurality of positions, for example, the value related to the component of the acceleration due to the bending of the cutting tool 101 among the accelerations generated at each of the plurality of positions, the cutting tool. It is possible to calculate the value related to the acceleration component due to the twist of 101 and the value related to the acceleration component of the support member 230 that supports the cutting tool 101. Therefore, the state of the cutting tool 101 and the state of the support member 230 that supports the cutting tool 101 can be grasped.
  • the cutting tool 101 attached to the machine tool 202 cuts the object to be cut, and the position changing unit 50 attaches the sensor.
  • the measurement result of the sensor is written in the storage unit 35 each time each cutting is performed.
  • the control unit 32 processes each measurement result written by the wireless communication unit 31.
  • the size of the measurement result such as acceleration can be changed by changing the position of the sensor due to the configuration in which the mounting position of the sensor on the shaft portion 11 can be changed.
  • the sensitivity of the sensor can be easily changed according to the processing conditions.
  • the management device can measure the state of the cutting tool 101 under a wider variety of machining conditions.
  • the value relating to the component due to bending of the cutting tool 101, the value relating to the component due to twisting of the cutting tool 101, And the value regarding the displacement component of the support member supporting the cutting tool 101 can be calculated. That is, the state of the cutting tool 101 and the state of the support member 230 that supports the cutting tool 101 can be grasped.
  • the shaft part to which the sensor can be attached and A position changing portion capable of changing the mounting position of the sensor on the shaft portion is provided.
  • the shaft portion has a larger diameter than the other portion of the shaft portion and includes an enlarged diameter portion to which the sensor can be attached.
  • the position changing portion can change the mounting position of the sensor in the enlarged diameter portion.
  • the enlarged diameter portion has a flat surface parallel to the central axis of the shaft portion.
  • the enlarged diameter portion has a shape in which a portion opposite to the central axis with respect to the surface is removed.
  • the enlarged diameter portion has a recess that is open at a part of the surface and is recessed on the central axis side.
  • a cutting tool in which the bottom surface of the recess is a flat surface parallel to the surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Jigs For Machine Tools (AREA)
  • Milling Processes (AREA)

Abstract

This cutting tool comprises: a shaft part to which sensors can be attached; and a position changing unit that can change the positions at which the sensors are attached to the shaft part.

Description

切削工具、切削システム、処理方法および処理プログラムCutting tools, cutting systems, processing methods and processing programs
 本開示は、切削工具、切削システム、処理方法および処理プログラムに関する。
 この出願は、2019年9月9日に出願された日本出願特願2019-163698号を基礎とする優先権を主張し、その開示のすべてをここに取り込む。
The present disclosure relates to cutting tools, cutting systems, processing methods and processing programs.
This application claims priority on the basis of Japanese Application Japanese Patent Application No. 2019-163698 filed on 9 September 2019 and incorporates all of its disclosures herein.
 特許文献1(特表2009-542446号公報)には、以下のようなシステムが開示されている。すなわち、容器(1)を有し、ツール・ホルダ(20)に部品を収容するシステムであって、前記ツール・ホルダ(20)は第1の端部(21)及び第2の端部(22)を有し、前記ツール・ホルダ(20)の前記第1の端部(21)が工作機械に固定されるようになされ、前記第2の端部(22)が刃先を取り付けるようになされ、前記ツール・ホルダ(20)が空洞壁によって囲まれる内部の空洞(23)を備え、前記空洞(23)が前記容器(1)を収容し、前記容器が少なくとも中央の部分(2)及び末端の部分(3、4)を備え、前記末端の部分(3、4)が前記中央の部分(2)に連結されるとともに、前記末端の部分の少なくともいずれか一方が蓋を形成して解放可能に前記中央の部分に連結され、前記中央の部分(2)が、前記ツール・ホルダ(20)の中の前記空洞壁と接触するようになされた少なくとも1つの接触領域(5)、及び、冷却媒体と接触するようになされた少なくとも1つの間隙領域(6)を有する外面を備え、前記空洞(23)の一方の端部が冷却媒体用の供給部に連結するようになされ、前記空洞(23)のもう一方の端部が冷却媒体用の出口に連結され、前記空洞(23)が前記容器(1)を装着するための開口(25)を有し、前記冷却媒体を送るための少なくとも1つの間隙が前記容器(1)と前記空洞壁の間に形成され、前記容器(1)が前記部品を収容するようになっていることを特徴とするものである。 Patent Document 1 (Japanese Patent Publication No. 2009-542446) discloses the following system. That is, it is a system having a container (1) and accommodating parts in a tool holder (20), wherein the tool holder (20) has a first end portion (21) and a second end portion (22). ), The first end (21) of the tool holder (20) is fixed to the machine tool, and the second end (22) is adapted to attach the cutting edge. The tool holder (20) comprises an internal cavity (23) surrounded by a cavity wall, the cavity (23) containing the container (1), and the container at least in the central portion (2) and at the ends. A portion (3, 4) is provided, the terminal portion (3, 4) is connected to the central portion (2), and at least one of the terminal portions forms a lid and can be released. At least one contact area (5) connected to the central portion so that the central portion (2) is in contact with the cavity wall in the tool holder (20), and a cooling medium. It comprises an outer surface having at least one gap region (6) made in contact with the cavity (23) so that one end of the cavity (23) is connected to a supply for the cooling medium. The other end is connected to an outlet for the cooling medium, the cavity (23) has an opening (25) for mounting the container (1), and at least one for feeding the cooling medium. A gap is formed between the container (1) and the cavity wall so that the container (1) accommodates the parts.
特表2009-542446号公報Special Table 2009-542446
 本開示の切削工具は、センサを取り付け可能なシャフト部と、前記シャフト部における前記センサの取り付け位置を変更可能な位置変更部とを備える。 The cutting tool of the present disclosure includes a shaft portion to which a sensor can be attached and a position changing portion capable of changing the attachment position of the sensor on the shaft portion.
 本開示の切削システムは、切削工具と、管理装置とを備え、前記切削工具は、シャフト部と、前記シャフト部に取り付けられたセンサと、前記センサの取り付け位置を変更可能な位置変更部と、前記シャフト部に取り付けられた無線通信装置とを含み、前記無線通信装置は、前記センサの計測結果を示すセンサ情報を送信し、前記管理装置は、前記切削工具から前記センサ情報を受信する。 The cutting system of the present disclosure includes a cutting tool and a management device, and the cutting tool includes a shaft portion, a sensor attached to the shaft portion, a position changing portion capable of changing the attachment position of the sensor, and a position changing portion. The wireless communication device includes a wireless communication device attached to the shaft portion, the wireless communication device transmits sensor information indicating a measurement result of the sensor, and the management device receives the sensor information from the cutting tool.
 本開示の処理方法は、切削工具を用いる処理方法であって、前記切削工具は、センサを取り付け可能なシャフト部と、前記シャフト部における前記センサの取り付け位置を変更可能な位置変更部とを備え、前記処理方法は、工作機械に取り付けられた前記切削工具により切削対象物の切削を行い、前記センサの計測結果を蓄積するステップと、前記位置変更部により前記センサの取り付け位置を変更するステップと、前記センサの取り付け位置が変更された前記切削工具により切削対象物の切削を行い、前記センサの計測結果を蓄積するステップと、蓄積した前記各計測結果を処理するステップとを含む。 The processing method of the present disclosure is a processing method using a cutting tool, and the cutting tool includes a shaft portion to which a sensor can be attached and a position changing portion capable of changing the attachment position of the sensor on the shaft portion. The processing method includes a step of cutting an object to be cut by the cutting tool attached to a machine tool and accumulating the measurement results of the sensor, and a step of changing the attachment position of the sensor by the position changing portion. The step includes cutting an object to be cut by the cutting tool whose mounting position of the sensor has been changed, accumulating the measurement results of the sensor, and processing the accumulated measurement results.
 本開示の処理プログラムは、切削工具を管理する管理装置において用いられる処理プログラムであって、前記切削工具は、センサを取り付け可能なシャフト部と、前記シャフト部における前記センサの取り付け位置を変更可能な位置変更部とを備え、コンピュータを、工作機械に取り付けられた前切削工具により切削対象物の切削が行われ、前記位置変更部により前記センサの取り付け位置が変更され、前記センサの取り付け位置が変更された前記切削工具により切削対象物の切削が行われる際に、前記各切削が行われるごとに前記センサの計測結果を記憶部に書き込む保存処理部と、前記保存処理部によって書き込まれた前記各計測結果を処理する制御部、として機能させるためのプログラムである。 The processing program of the present disclosure is a processing program used in a management device that manages a cutting tool, and the cutting tool can change a shaft portion to which a sensor can be attached and a mounting position of the sensor on the shaft portion. A pre-cutting tool attached to a machine tool is used to cut an object to be cut by providing a position changing portion, the mounting position of the sensor is changed by the position changing portion, and the mounting position of the sensor is changed. When the cutting object is cut by the cutting tool, a storage processing unit that writes the measurement result of the sensor to the storage unit each time the cutting is performed, and each of the storage processing units written by the storage processing unit. This is a program for functioning as a control unit that processes measurement results.
図1は、本開示の第1の実施の形態に係る切削工具の構成を示す側面図である。FIG. 1 is a side view showing a configuration of a cutting tool according to the first embodiment of the present disclosure. 図2は、本開示の第1の実施の形態に係る切削工具の構成を示す矢視図である。FIG. 2 is an arrow view showing the configuration of the cutting tool according to the first embodiment of the present disclosure. 図3は、本開示の第1の実施の形態に係る切削工具の構成を示す矢視図である。FIG. 3 is an arrow view showing the configuration of the cutting tool according to the first embodiment of the present disclosure. 図4は、本開示の第1の実施の形態に係る切削工具の構成を示す側面図である。FIG. 4 is a side view showing the configuration of the cutting tool according to the first embodiment of the present disclosure. 図5は、本開示の第1の実施の形態に係る切削工具の構成を示す矢視図である。FIG. 5 is an arrow view showing the configuration of the cutting tool according to the first embodiment of the present disclosure. 図6は、本開示の第1の実施の形態に係る切削工具の構成を示す矢視図である。FIG. 6 is an arrow view showing the configuration of the cutting tool according to the first embodiment of the present disclosure. 図7は、本開示の第1の実施の形態に係る切削工具を模式的に示す側面図である。FIG. 7 is a side view schematically showing a cutting tool according to the first embodiment of the present disclosure. 図8は、本開示の第1の実施の形態に係る切削工具についてシミュレーションを行った結果を示すグラフである。FIG. 8 is a graph showing the result of simulating the cutting tool according to the first embodiment of the present disclosure. 図9は、本開示の第1の実施の形態に係る切削システムの構成を示す図である。FIG. 9 is a diagram showing a configuration of a cutting system according to the first embodiment of the present disclosure. 図10は、本開示の第1の実施の形態に係る切削システムにおける管理装置の構成を示す図である。FIG. 10 is a diagram showing a configuration of a management device in the cutting system according to the first embodiment of the present disclosure. 図11は、本開示の第1の実施の形態に係る切削システムにおける管理装置における解析結果の一例を示す図である。FIG. 11 is a diagram showing an example of analysis results in the management device in the cutting system according to the first embodiment of the present disclosure. 図12は、本開示の第1の実施の形態に係る切削システムにおける管理装置における解析結果の一例を示す図である。FIG. 12 is a diagram showing an example of analysis results in the management device in the cutting system according to the first embodiment of the present disclosure. 図13は、本開示の第1の実施の形態に係る切削システムにおける管理装置における解析結果の一例を示す図である。FIG. 13 is a diagram showing an example of analysis results in the management device in the cutting system according to the first embodiment of the present disclosure. 図14は、本開示の第1の実施の形態に係る切削システムにおける管理装置における解析結果の一例を示す図である。FIG. 14 is a diagram showing an example of analysis results in the management device in the cutting system according to the first embodiment of the present disclosure. 図15は、本開示の第1の実施の形態に係る切削工具の構成の他の例を示す図である。FIG. 15 is a diagram showing another example of the configuration of the cutting tool according to the first embodiment of the present disclosure. 図16は、本開示の第1の実施の形態における切削工具の他の例を模式的に示す断面図である。FIG. 16 is a cross-sectional view schematically showing another example of a cutting tool according to the first embodiment of the present disclosure. 図17は、本開示の第1の実施の形態における切削工具の他の例を模式的に示す断面図である。FIG. 17 is a cross-sectional view schematically showing another example of the cutting tool according to the first embodiment of the present disclosure. 図18は、本開示の第1の実施の形態における切削工具の他の例を模式的に示す断面図である。FIG. 18 is a cross-sectional view schematically showing another example of a cutting tool according to the first embodiment of the present disclosure. 図19は、本開示の第1の実施の形態における切削工具の他の例を模式的に示す断面図である。FIG. 19 is a cross-sectional view schematically showing another example of a cutting tool according to the first embodiment of the present disclosure. 図20は、本開示の第1の実施の形態における切削工具の他の例を模式的に示す断面図である。FIG. 20 is a cross-sectional view schematically showing another example of a cutting tool according to the first embodiment of the present disclosure. 図21は、本開示の第1の実施の形態に係る切削システムの変形例1を示す図である。FIG. 21 is a diagram showing a modified example 1 of the cutting system according to the first embodiment of the present disclosure. 図22は、本開示の第1の実施の形態の変形例1に係る切削工具を模式的に示す側面図である。FIG. 22 is a side view schematically showing a cutting tool according to a modification 1 of the first embodiment of the present disclosure. 図23は、本開示の第1の実施の形態の変形例1における切削工具についてシミュレーションを行った結果を示すグラフである。FIG. 23 is a graph showing the result of simulating the cutting tool in the first modification of the first embodiment of the present disclosure. 図24は、本開示の第1の実施の形態の変形例2に係る切削システムを示す図である。FIG. 24 is a diagram showing a cutting system according to a second modification of the first embodiment of the present disclosure. 図25は、本開示の第2の実施の形態に係る処理方法の手順を定めたフローチャートである。FIG. 25 is a flowchart defining the procedure of the processing method according to the second embodiment of the present disclosure. 図26は、本開示の第2の実施の形態における係る切削工具、工具ホルダおよび主軸を模式的に示す側面図である。FIG. 26 is a side view schematically showing the cutting tool, the tool holder, and the spindle according to the second embodiment of the present disclosure. 図27は、本開示の第2の実施の形態に係る処理方法により算出された、加速度の計測結果の3つの成分を示すグラフである。FIG. 27 is a graph showing three components of the acceleration measurement result calculated by the processing method according to the second embodiment of the present disclosure. 図28は、本開示の第2の実施の形態に係る切削システムにおける管理装置の動作手順を定めたフローチャートである。FIG. 28 is a flowchart defining the operation procedure of the management device in the cutting system according to the second embodiment of the present disclosure.
 従来、たとえばフライスカッターおよびドリルのような切削工具が開発されている。 Conventionally, cutting tools such as milling cutters and drills have been developed.
 [本開示が解決しようとする課題]
 切削工具にセンサを取り付けることにより、切削工具による加工の状態を示す物理量を計測することができる。このような計測を用いた優れた技術が望まれる。
[Issues to be solved by this disclosure]
By attaching a sensor to the cutting tool, it is possible to measure a physical quantity indicating the state of machining by the cutting tool. An excellent technique using such measurement is desired.
 本開示は、上述の課題を解決するためになされたもので、その目的は、より多様な加工条件下において切削工具による加工の状態を計測することが可能な切削工具、切削システム、処理方法および処理プログラムを提供することである。 The present disclosure has been made to solve the above-mentioned problems, and an object thereof is a cutting tool, a cutting system, a processing method, and a cutting tool capable of measuring a state of machining by a cutting tool under a wider variety of machining conditions. It is to provide a processing program.
 [本開示の効果]
 本開示によれば、より多様な加工条件下において切削工具による加工の状態を計測することができる。
[Effect of the present disclosure]
According to the present disclosure, it is possible to measure the state of machining with a cutting tool under a wider variety of machining conditions.
 [本開示の実施形態の説明]
 最初に、本開示の実施形態の内容を列記して説明する。
[Explanation of Embodiments of the present disclosure]
First, the contents of the embodiments of the present disclosure will be listed and described.
 (1)本開示の実施の形態に係る切削工具は、センサを取り付け可能なシャフト部と、前記シャフト部における前記センサの取り付け位置を変更可能な位置変更部とを備える。 (1) The cutting tool according to the embodiment of the present disclosure includes a shaft portion to which a sensor can be attached and a position changing portion capable of changing the attachment position of the sensor on the shaft portion.
 このように、シャフト部におけるセンサの取り付け位置を変更可能な構成により、加速度等の計測結果の大きさをセンサの位置変更によって変えることができる。これにより、加工条件に応じてセンサの感度を容易に変更することができる。したがって、より多様な加工条件下において切削工具による加工の状態を計測することができる。 In this way, the size of the measurement result such as acceleration can be changed by changing the position of the sensor due to the configuration in which the mounting position of the sensor on the shaft portion can be changed. Thereby, the sensitivity of the sensor can be easily changed according to the processing conditions. Therefore, it is possible to measure the state of machining with a cutting tool under a wider variety of machining conditions.
 (2)好ましくは、前記シャフト部は、棒形状であり、拡径部を含み、前記拡径部は、前記シャフト部のうちの他の部分よりも径が太く、前記センサを取り付け可能であり、前記位置変更部は、前記拡径部における前記センサの取り付け位置を変更可能である。 (2) Preferably, the shaft portion has a rod shape and includes a diameter-expanded portion, and the diameter-expanded portion has a larger diameter than other portions of the shaft portion, and the sensor can be attached to the shaft portion. The position changing portion can change the mounting position of the sensor in the enlarged diameter portion.
 このような構成により、拡径部がシャフト部の剛性を高める。そのため、たとえば、シャフト部の一部を除去してセンサを取り付ける場合であっても、シャフト部の剛性を確保しつつ、シャフト部にセンサを取り付けることができる。 With such a configuration, the enlarged diameter part increases the rigidity of the shaft part. Therefore, for example, even when the sensor is attached by removing a part of the shaft portion, the sensor can be attached to the shaft portion while ensuring the rigidity of the shaft portion.
 (3)好ましくは、前記位置変更部は、前記シャフト部の軸方向に沿って前記センサの位置を変更することが可能である。 (3) Preferably, the position changing portion can change the position of the sensor along the axial direction of the shaft portion.
 このような構成により、切削対象物を切削している際に切削工具に発生する加速度等を計測可能なセンサの位置を変更して、当該センサの計測結果の感度を変更することができる。これにより、切削対象物を切削している際に切削工具に発生する加速度等を計測することができる。また、シャフト部の軸方向に沿った方向のセンサの位置は、切削に伴い切削工具に発生する変位のうちの曲げの成分に関与する。上記構成により、当該曲げの成分に関する値を算出することができる。 With such a configuration, it is possible to change the position of the sensor capable of measuring the acceleration generated in the cutting tool when cutting the object to be cut, and change the sensitivity of the measurement result of the sensor. This makes it possible to measure the acceleration and the like generated in the cutting tool while cutting the object to be cut. Further, the position of the sensor in the direction along the axial direction of the shaft portion is involved in the bending component of the displacement generated in the cutting tool due to cutting. With the above configuration, the value related to the bending component can be calculated.
 (4)好ましくは、前記位置変更部は、前記シャフト部の径方向に沿って前記センサの位置を変更することが可能である。 (4) Preferably, the position changing portion can change the position of the sensor along the radial direction of the shaft portion.
 このような構成により、切削対象物を切削しているか否かに拘わらず切削工具の回転時に発生する遠心加速度等を計測可能なセンサの位置を変更して、当該センサの計測結果の感度を変更することができる。これにより、切削工具の回転時に切削工具に発生する遠心加速度等を計測することができる。また、シャフト部の径方向に沿った方向のセンサの位置は、切削に伴い切削工具に発生する変位のうちのねじりの成分に関与することから、上記構成により、当該ねじりの成分に関する値を算出することができる。 With such a configuration, the position of the sensor capable of measuring the centrifugal acceleration generated when the cutting tool rotates regardless of whether or not the object to be cut is being cut is changed, and the sensitivity of the measurement result of the sensor is changed. can do. This makes it possible to measure the centrifugal acceleration and the like generated in the cutting tool when the cutting tool rotates. Further, since the position of the sensor in the direction along the radial direction of the shaft portion is involved in the torsional component of the displacement generated in the cutting tool due to cutting, the value related to the torsional component is calculated by the above configuration. can do.
 (5)好ましくは、前記位置変更部は、前記シャフト部の軸方向に沿って前記センサの位置を変更することが可能であり、かつ前記シャフト部の径方向に沿って前記センサの位置を変更することが可能である。 (5) Preferably, the position changing portion can change the position of the sensor along the axial direction of the shaft portion, and the position of the sensor is changed along the radial direction of the shaft portion. It is possible to do.
 このような構成により、切削対象物を切削している際に切削工具に発生する加速度等を計測可能なセンサの位置を変更して、当該センサの計測結果の感度を変更することができる。これにより、切削対象物を切削している際に切削工具に発生する加速度等を計測することができる。また、切削対象物を切削しているか否かに拘わらず切削工具の回転時に発生する遠心加速度等を計測可能なセンサの位置を変更して、当該センサの計測結果の感度を変更することができる。これにより、切削工具の回転時に切削工具に発生する遠心加速度等を計測することができる。また、シャフト部の軸方向に沿った方向のセンサの位置は、切削に伴い切削工具に発生する変位のうちの曲げの成分に関与することから、上記構成により、当該曲げの成分に関する値を算出することができる。また、シャフト部の径方向に沿った方向のセンサの位置は、切削に伴い切削工具に発生する変位のうちのねじりの成分に関与することから、上記構成により、当該ねじりの成分に関する値を算出することができる。 With such a configuration, it is possible to change the position of the sensor capable of measuring the acceleration generated in the cutting tool when cutting the object to be cut, and change the sensitivity of the measurement result of the sensor. This makes it possible to measure the acceleration and the like generated in the cutting tool while cutting the object to be cut. Further, the sensitivity of the measurement result of the sensor can be changed by changing the position of the sensor capable of measuring the centrifugal acceleration generated when the cutting tool rotates regardless of whether or not the object to be cut is being cut. .. This makes it possible to measure the centrifugal acceleration and the like generated in the cutting tool when the cutting tool rotates. Further, since the position of the sensor in the direction along the axial direction of the shaft portion is involved in the bending component of the displacement generated in the cutting tool due to cutting, the value related to the bending component is calculated by the above configuration. can do. Further, since the position of the sensor in the direction along the radial direction of the shaft portion is involved in the torsional component of the displacement generated in the cutting tool due to cutting, the value related to the torsional component is calculated by the above configuration. can do.
 (6)好ましくは、前記切削工具は、さらに、前記シャフト部に取り付けられたセンサを備える。 (6) Preferably, the cutting tool further includes a sensor attached to the shaft portion.
 このような構成により、より多様な加工条件下において切削工具による加工の状態を計測することが可能なセンサ付きの切削工具を提供することができる。 With such a configuration, it is possible to provide a cutting tool with a sensor capable of measuring the state of machining by the cutting tool under a wider variety of machining conditions.
 (7)より好ましくは、前記センサは、加速度センサであり、前記加速度センサの計測方向は、前記シャフト部の回転軸を法線とする平面に沿った方向であって、前記加速度センサと前記回転軸とを結ぶ直線に対して直交する方向に沿う。 (7) More preferably, the sensor is an acceleration sensor, and the measurement direction of the acceleration sensor is a direction along a plane having a rotation axis of the shaft portion as a normal line, and the acceleration sensor and the rotation thereof. Along the direction orthogonal to the straight line connecting the axes.
 このような構成により、切削対象物との接触に伴う振動等の加速度を計測することができる。 With such a configuration, it is possible to measure acceleration such as vibration caused by contact with an object to be cut.
 (8)より好ましくは、前記切削工具は、歪センサ、温度センサおよび音センサのうちの少なくともいずれか1つを前記センサとして備える。 More preferably, the cutting tool includes at least one of a strain sensor, a temperature sensor, and a sound sensor as the sensor.
 このような構成により、たとえば、シャフト部に発生する歪の異常な増大、シャフト部に異常な振動が発生した場合の摩擦熱および異音、のうちの少なくともいずれか1つを検出することができる。 With such a configuration, for example, at least one of an abnormal increase in strain generated in the shaft portion, frictional heat and abnormal noise when an abnormal vibration is generated in the shaft portion can be detected. ..
 (9)より好ましくは、前記切削工具は、さらに、無線通信装置を備え、前記無線通信装置は、前記センサの計測結果を示すセンサ情報を送信する。 More preferably, the cutting tool further includes a wireless communication device, and the wireless communication device transmits sensor information indicating a measurement result of the sensor.
 このような構成により、たとえば、受信側の装置において、各センサの計測結果を用いた異常検知等の処理を行うことができる。 With such a configuration, for example, in the device on the receiving side, it is possible to perform processing such as abnormality detection using the measurement results of each sensor.
 (10)好ましくは、前記シャフト部は、円柱形状であり、前記切削工具は、転削工具である。 (10) Preferably, the shaft portion has a cylindrical shape, and the cutting tool is a rolling tool.
 このような構成により、たとえば、シャフト部の回転速度等の加工条件に応じてセンサの感度を変更することができる。 With such a configuration, the sensitivity of the sensor can be changed according to processing conditions such as the rotation speed of the shaft portion.
 (11)本開示の実施の形態に係る切削システムは、上記(9)に記載の切削工具と、管理装置とを備え、前記管理装置は、前記切削工具から前記センサの計測結果を示すセンサ情報を受信する。 (11) The cutting system according to the embodiment of the present disclosure includes the cutting tool according to (9) above and a management device, and the management device provides sensor information indicating a measurement result of the sensor from the cutting tool. To receive.
 このように、シャフト部におけるセンサの取り付け位置を変更可能な構成により、加速度等の計測結果の大きさをセンサの位置変更によって変えることができる。これにより、加工条件に応じてセンサの感度を容易に変更することができる。したがって、より多様な加工条件下において切削工具による加工の状態を計測することができる。また、たとえば、管理装置において、各センサの計測結果を用いた異常検知等の処理を行うことができる。 In this way, the size of the measurement result such as acceleration can be changed by changing the position of the sensor due to the configuration in which the mounting position of the sensor on the shaft portion can be changed. Thereby, the sensitivity of the sensor can be easily changed according to the processing conditions. Therefore, it is possible to measure the state of machining with a cutting tool under a wider variety of machining conditions. Further, for example, in the management device, it is possible to perform processing such as abnormality detection using the measurement results of each sensor.
 (12)本開示の実施の形態に係る処理方法は、切削工具を用いる処理方法であって、前記切削工具は、センサを取り付け可能なシャフト部と、前記シャフト部における前記センサの取り付け位置を変更可能な位置変更部とを備え、前記処理方法は、工作機械に取り付けられた前記切削工具により切削対象物の切削を行い、前記センサの計測結果を蓄積するステップと、前記位置変更部により前記センサの取り付け位置を変更するステップと、前記センサの取り付け位置が変更された前記切削工具により切削対象物の切削を行い、前記センサの計測結果を蓄積するステップと、蓄積した前記各計測結果を処理するステップとを含む。 (12) The processing method according to the embodiment of the present disclosure is a processing method using a cutting tool, in which the cutting tool changes a shaft portion to which a sensor can be attached and a mounting position of the sensor on the shaft portion. The processing method includes a step of cutting an object to be cut by the cutting tool attached to the machine tool and accumulating the measurement result of the sensor, and the sensor by the position changing portion. The step of changing the mounting position of the sensor, the step of cutting the object to be cut by the cutting tool whose mounting position of the sensor has been changed, and the step of accumulating the measurement results of the sensor, and processing each of the accumulated measurement results. Including steps.
 このように、シャフト部におけるセンサの取り付け位置を変更可能な構成により、加速度等の計測結果の大きさをセンサの位置変更によって変えることができる。これにより、加工条件に応じてセンサの感度を容易に変更することができる。したがって、より多様な加工条件下において切削工具による加工の状態を計測することができる。また、複数の位置におけるセンサの計測結果に基づいて、たとえば、当該複数の位置の各々において発生する変位のうちの、切削工具の曲げによる成分に関する値、切削工具のねじりによる成分に関する値、および切削工具を支持する支持部材の変位の成分に関する値を算出することができる。すなわち、切削工具による加工の状態および当該切削工具を支持する支持部材の状態を把握することができる。 In this way, the size of the measurement result such as acceleration can be changed by changing the position of the sensor due to the configuration in which the mounting position of the sensor on the shaft portion can be changed. Thereby, the sensitivity of the sensor can be easily changed according to the processing conditions. Therefore, it is possible to measure the state of machining with a cutting tool under a wider variety of machining conditions. Further, based on the measurement results of the sensors at a plurality of positions, for example, among the displacements generated at each of the plurality of positions, the value relating to the component due to bending of the cutting tool, the value relating to the component due to twisting of the cutting tool, and cutting. A value related to the displacement component of the support member that supports the tool can be calculated. That is, it is possible to grasp the state of machining by the cutting tool and the state of the support member that supports the cutting tool.
 (13)好ましくは、前記各計測結果を処理するステップにおいては、前記計測結果から前記工作機械に対応する成分を算出する。 (13) Preferably, in the step of processing each measurement result, the component corresponding to the machine tool is calculated from the measurement result.
 このような構成により、たとえば、工作機械における、切削工具を支持する支持部材の状態を把握することができる。 With such a configuration, for example, it is possible to grasp the state of the support member that supports the cutting tool in the machine tool.
 (14)より好ましくは、前記センサは加速度センサである。 More preferably, the sensor is an acceleration sensor.
 このような構成により、複数の位置における加速度センサの計測結果に基づいて、たとえば、当該複数の位置の各々において発生する加速度のうちの、切削工具の曲げによる加速度の成分に関する値、切削工具のねじりによる加速度の成分に関する値、および切削工具を支持する支持部材の加速度の成分に関する値を算出することができる。 With such a configuration, based on the measurement results of the acceleration sensors at the plurality of positions, for example, the value related to the component of the acceleration due to the bending of the cutting tool among the accelerations generated at each of the plurality of positions, the twist of the cutting tool. It is possible to calculate the value related to the acceleration component of the cutting tool and the value related to the acceleration component of the support member that supports the cutting tool.
 (15)本開示の実施の形態に係る処理プログラムは、切削工具を管理する管理装置において用いられる処理プログラムであって、前記切削工具は、センサを取り付け可能なシャフト部と、前記シャフト部における前記センサの取り付け位置を変更可能な位置変更部とを備え、コンピュータを、工作機械に取り付けられた前切削工具により切削対象物の切削が行われ、前記位置変更部により前記センサの取り付け位置が変更され、前記センサの取り付け位置が変更された前記切削工具により切削対象物の切削が行われる際に、前記各切削が行われるごとに前記センサの計測結果を記憶部に書き込む保存処理部と、前記保存処理部によって書き込まれた前記各計測結果を処理する制御部、として機能させるためのプログラムである。 (15) The processing program according to the embodiment of the present disclosure is a processing program used in a management device that manages a cutting tool, and the cutting tool includes a shaft portion to which a sensor can be attached and the shaft portion on the shaft portion. It is equipped with a position changing part that can change the mounting position of the sensor, and the computer is cut by a pre-cutting tool mounted on the machine tool, and the mounting position of the sensor is changed by the position changing part. When the cutting tool whose mounting position of the sensor has been changed cuts the object to be cut, the storage processing unit that writes the measurement result of the sensor to the storage unit each time the cutting is performed, and the storage unit. This is a program for functioning as a control unit that processes each measurement result written by the processing unit.
 このように、シャフト部におけるセンサの取り付け位置を変更可能な構成により、加速度等の計測結果の大きさをセンサの位置変更によって変えることができる。これにより、加工条件に応じてセンサの感度を容易に変更することができる。したがって、より多様な加工条件下において切削工具による加工の状態を計測することができる。また、複数の位置におけるセンサの計測結果に基づいて、たとえば、当該複数の位置の各々において発生する変位のうちの、切削工具の曲げによる成分に関する値、切削工具のねじりによる成分に関する値、および切削工具を支持する支持部材の変位の成分に関する値を算出することができる。すなわち、切削工具による加工の状態および当該切削工具を支持する支持部材の状態を把握することができる。 In this way, the size of the measurement result such as acceleration can be changed by changing the position of the sensor due to the configuration in which the mounting position of the sensor on the shaft portion can be changed. Thereby, the sensitivity of the sensor can be easily changed according to the processing conditions. Therefore, it is possible to measure the state of machining with a cutting tool under a wider variety of machining conditions. Further, based on the measurement results of the sensors at a plurality of positions, for example, among the displacements generated at each of the plurality of positions, the value relating to the component due to bending of the cutting tool, the value relating to the component due to twisting of the cutting tool, and cutting. A value related to the displacement component of the support member that supports the tool can be calculated. That is, it is possible to grasp the state of machining by the cutting tool and the state of the support member that supports the cutting tool.
 以下、本開示の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。また、以下に記載する実施の形態の少なくとも一部を任意に組み合わせてもよい。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. The same or corresponding parts in the drawings are designated by the same reference numerals, and the description thereof will not be repeated. In addition, at least a part of the embodiments described below may be arbitrarily combined.
<第1の実施の形態>
 図1は、本開示の第1の実施の形態に係る切削工具の構成を示す側面図である。
<First Embodiment>
FIG. 1 is a side view showing a configuration of a cutting tool according to the first embodiment of the present disclosure.
 切削工具101は、たとえば、フライス盤等において使用される切削工具であり、具体的には、たとえば、エンドミルである。切削工具101は、金属等からなる切削対象物を切削するために使用される。切削工具101は、アーバ等の工具ホルダ210に保持された状態で使用される。 The cutting tool 101 is, for example, a cutting tool used in a milling machine or the like, and specifically, for example, an end mill. The cutting tool 101 is used for cutting an object to be cut made of metal or the like. The cutting tool 101 is used in a state of being held by a tool holder 210 such as an arbor.
 工具ホルダ210は、工具ホルダ210に回転力を与える柱状の主軸220に取り付けられる。工具ホルダ210は、主軸220の延長線上に配置される柱状の部材である。具体的には、工具ホルダ210の上端部が、主軸220に保持される。また、工具ホルダ210の下端部が、切削工具101を保持する。 The tool holder 210 is attached to a columnar spindle 220 that gives a rotational force to the tool holder 210. The tool holder 210 is a columnar member arranged on an extension line of the spindle 220. Specifically, the upper end of the tool holder 210 is held by the spindle 220. Further, the lower end portion of the tool holder 210 holds the cutting tool 101.
 図1を参照して、切削工具101は、シャフト部11と、刃取付部12と、図示しない刃部と、加速度センサ14と、位置変更部50とを備える。シャフト部11の上部は、シャンク111を構成し、工具ホルダ210に保持される。なお、切削工具101は、刃部を備えない構成であってもよい。また、刃部は、刃取付部12に一体に固定されたものであってもよいし、刃取付部12に着脱可能に取り付けられるものであってもよい。 With reference to FIG. 1, the cutting tool 101 includes a shaft portion 11, a blade mounting portion 12, a blade portion (not shown), an acceleration sensor 14, and a position changing portion 50. The upper portion of the shaft portion 11 constitutes a shank 111 and is held by the tool holder 210. The cutting tool 101 may be configured not to have a blade portion. Further, the blade portion may be integrally fixed to the blade mounting portion 12, or may be detachably attached to the blade mounting portion 12.
 図1に示す例では、シャフト部11と刃取付部12との境界を二点鎖線41により示している。 In the example shown in FIG. 1, the boundary between the shaft portion 11 and the blade mounting portion 12 is indicated by the alternate long and short dash line 41.
 シャフト部11は、後述する拡径部15を除き、シャフト部11の中心軸17に垂直な断面において、円形または多角形の周面を持つ棒形状である。シャフト部11の基材は、たとえば、切削工具用の超硬合金または金型用鋼により構成されている。 The shaft portion 11 has a rod shape having a circular or polygonal peripheral surface in a cross section perpendicular to the central axis 17 of the shaft portion 11, except for the enlarged diameter portion 15 described later. The base material of the shaft portion 11 is made of, for example, cemented carbide for cutting tools or steel for dies.
 図2は、本開示の第1の実施の形態に係る切削工具の構成を示す矢視図である。詳細には、図2は、図1におけるA方向から見た矢視図である。図3は、本開示の第1の実施の形態に係る切削工具の構成を示す図である。詳細には、図3は、図1におけるB方向から見た矢視図である。 FIG. 2 is an arrow view showing the configuration of the cutting tool according to the first embodiment of the present disclosure. In detail, FIG. 2 is an arrow view seen from the direction A in FIG. FIG. 3 is a diagram showing a configuration of a cutting tool according to the first embodiment of the present disclosure. In detail, FIG. 3 is an arrow view seen from the B direction in FIG.
 図2を参照して、加速度センサ14は、たとえば、一方向の加速度を計測する、いわゆる一軸の加速度センサである。加速度センサ14の計測方向は、たとえば、切削工具101による切削に伴う振動が発生する方向である。すなわち、加速度センサ14は、切削工具101による切削に伴う振動の加速度を計測することができる。具体的には、加速度センサ14の計測方向141は、シャフト部11の回転軸である中心軸17を法線とする平面18に沿った方向であって、加速度センサ14と中心軸17とを結ぶ直線143に対して直交する方向に沿う。 With reference to FIG. 2, the acceleration sensor 14 is, for example, a so-called uniaxial acceleration sensor that measures acceleration in one direction. The measurement direction of the acceleration sensor 14 is, for example, the direction in which vibration is generated due to cutting by the cutting tool 101. That is, the acceleration sensor 14 can measure the acceleration of vibration accompanying cutting by the cutting tool 101. Specifically, the measurement direction 141 of the acceleration sensor 14 is a direction along a plane 18 whose normal line is the central axis 17 which is the rotation axis of the shaft portion 11, and connects the acceleration sensor 14 and the central axis 17. Along the direction orthogonal to the straight line 143.
 なお、加速度センサ14は、遠心加速度を計測してもよい。この場合、加速度センサ14の計測方向は、たとえば、シャフト部11の中心軸17と加速度センサ14とを結ぶ方向に沿う。また、加速度センサ14は、たとえば、三方向の加速度を計測する、いわゆる三軸の加速度センサであってもよい。また、加速度センサ14の代わりに、他の種類のセンサがシャフト部11に取り付けられてもよい。 The acceleration sensor 14 may measure the centrifugal acceleration. In this case, the measurement direction of the acceleration sensor 14 is, for example, along the direction connecting the central axis 17 of the shaft portion 11 and the acceleration sensor 14. Further, the acceleration sensor 14 may be, for example, a so-called three-axis acceleration sensor that measures acceleration in three directions. Further, instead of the acceleration sensor 14, another type of sensor may be attached to the shaft portion 11.
 図1~図3を参照して、シャフト部11は、シャフト部11のうちの他の部分よりも径が太く、加速度センサ14を取り付け可能な拡径部15を含む。 With reference to FIGS. 1 to 3, the shaft portion 11 has a larger diameter than the other portions of the shaft portion 11, and includes an enlarged diameter portion 15 to which the acceleration sensor 14 can be attached.
 詳細には、シャフト部11は、切削工具101の軸方向、具体的には長手方向である方向Xに沿った一部の領域に、方向Xに対して直交する方向である径方向Yにおいてシャフト部11の径を拡大する拡径部15を含む。 Specifically, the shaft portion 11 is a shaft in a radial direction Y, which is a direction orthogonal to the direction X, in a part of a region along the axial direction of the cutting tool 101, specifically, the longitudinal direction X. Includes a diameter-expanded portion 15 that enlarges the diameter of the portion 11.
 具体的には、拡径部15の径は、シャフト部11における拡径部15以外の部分の径よりも大きい。換言すれば、拡径部15は、シャフト部11における拡径部15以外の部分よりも太い。なお、シャフト部11における拡径部15以外の部分が多角形の周面を有する場合、シャフト部11における拡径部15以外の部分の径は、中心軸17方向視で、中心軸17を通り、シャフト部11における拡径部15以外の部分の周面上に両端がある線分のうち最大のものを言う。 Specifically, the diameter of the enlarged diameter portion 15 is larger than the diameter of the portion of the shaft portion 11 other than the enlarged diameter portion 15. In other words, the diameter-expanded portion 15 is thicker than the portion of the shaft portion 11 other than the diameter-expanded portion 15. When the portion of the shaft portion 11 other than the enlarged diameter portion 15 has a polygonal peripheral surface, the diameter of the portion of the shaft portion 11 other than the enlarged diameter portion 15 passes through the central axis 17 in the direction of the central axis 17. , The largest line segment having both ends on the peripheral surface of the portion of the shaft portion 11 other than the enlarged diameter portion 15.
 切削工具101の方向Xは、シャフト部11の中心軸17に沿っている。たとえば、切削工具101の方向Xおよびシャフト部11の中心軸17は、互いに平行である。 The direction X of the cutting tool 101 is along the central axis 17 of the shaft portion 11. For example, the direction X of the cutting tool 101 and the central axis 17 of the shaft portion 11 are parallel to each other.
 拡径部15は、円柱状に形成されている。図1~図3に示す例では、拡径部15は、円柱の一部が除去された形状である。本明細書においては、円柱だけでなく、円柱の一部が除去された形状についても円柱状と称する。具体的には、拡径部15は、円柱内におけるシャフト部11の中心軸17に対して平行でかつ平坦な表面55を有する。拡径部15は、表面55に対して中心軸17の反対側の部分が円柱から除去された形状である。なお、拡径部15の径は、中心軸17方向視で、中心軸17を通り、拡径部15の周面上に両端がある線分のうち最大のものを言う。図1~図3に示す例では、拡径部15の径は、円柱の一部が除去される前の当該円柱の直径に相当する。 The enlarged diameter portion 15 is formed in a columnar shape. In the examples shown in FIGS. 1 to 3, the enlarged diameter portion 15 has a shape in which a part of the cylinder is removed. In the present specification, not only a cylinder but also a shape in which a part of the cylinder is removed is referred to as a cylinder. Specifically, the enlarged diameter portion 15 has a surface 55 parallel to and flat with respect to the central axis 17 of the shaft portion 11 in the cylinder. The enlarged diameter portion 15 has a shape in which the portion opposite to the central axis 17 with respect to the surface 55 is removed from the cylinder. The diameter of the enlarged diameter portion 15 is the largest of the line segments that pass through the central axis 17 and have both ends on the peripheral surface of the enlarged diameter portion 15 in the direction of the central axis 17. In the examples shown in FIGS. 1 to 3, the diameter of the enlarged diameter portion 15 corresponds to the diameter of the cylinder before a part of the cylinder is removed.
 また、拡径部15は、表面55の一部において開口し、かつ中心軸17側に凹む凹部16を有する。凹部16は、長方形状に開口している。凹部16の底面161は、表面55と平行な平面である。底面161は、中心軸17に沿って延びるように長方形状に形成されている。表面55には、複数のねじ穴57が形成されている。 Further, the diameter-expanded portion 15 has a recess 16 that is open at a part of the surface 55 and is recessed on the central axis 17 side. The recess 16 is open in a rectangular shape. The bottom surface 161 of the recess 16 is a flat surface parallel to the surface 55. The bottom surface 161 is formed in a rectangular shape so as to extend along the central axis 17. A plurality of screw holes 57 are formed on the surface 55.
 なお、図1~図3に示す例では、拡径部15は1つの表面55を有しているが、これに限定されるものではない。たとえば、拡径部15は、中心軸17に対して互いに反対側に位置する2つの表面55を有する構成であってもよい。このような構成により、拡径部15のバランスがよくなるため、切削工具101の回転時に異常な振動が発生することを防止することができる。 In the examples shown in FIGS. 1 to 3, the enlarged diameter portion 15 has one surface 55, but the diameter is not limited to this. For example, the diameter-expanded portion 15 may have two surfaces 55 located on opposite sides of the central axis 17. With such a configuration, the balance of the enlarged diameter portion 15 is improved, so that it is possible to prevent abnormal vibration from being generated when the cutting tool 101 is rotated.
 位置変更部50は、シャフト部11に加速度センサ14が取り付けられた状態において加速度センサ14の位置を変更する。 The position changing unit 50 changes the position of the acceleration sensor 14 in a state where the acceleration sensor 14 is attached to the shaft unit 11.
 具体的には、たとえば、位置変更部50は、シャフト部11の軸方向、すなわち、中心軸17に沿った方向に加速度センサ14の位置を変更することが可能である。 Specifically, for example, the position changing portion 50 can change the position of the acceleration sensor 14 in the axial direction of the shaft portion 11, that is, in the direction along the central axis 17.
 図1~図3に示す例では、方向Xに沿って並ぶ第1のセンサ位置A1、第2のセンサ位置A2、第3のセンサ位置A3、および第4のセンサ位置A4が、加速度センサ14を取り付けることが可能な4つの位置となっている。第1のセンサ位置A1、第2のセンサ位置A2、第3のセンサ位置A3、および第4のセンサ位置A4は、刃取付部12に近い側から遠い側へこの順に並んでいる。 In the examples shown in FIGS. 1 to 3, the first sensor position A1, the second sensor position A2, the third sensor position A3, and the fourth sensor position A4 arranged along the direction X refer to the acceleration sensor 14. There are four positions that can be attached. The first sensor position A1, the second sensor position A2, the third sensor position A3, and the fourth sensor position A4 are arranged in this order from the side closer to the blade mounting portion 12 to the side farther from it.
 位置変更部50は、第1のセンサ位置A1から第4のセンサ位置A4の範囲において、加速度センサ14の位置を変更できるように構成されている。 The position changing unit 50 is configured so that the position of the acceleration sensor 14 can be changed in the range from the first sensor position A1 to the fourth sensor position A4.
 具体的には、位置変更部50は、加速度センサ14を支持する台座部51と、凹部16の底面161に形成された複数のねじ穴53と、ねじ穴53と螺合する複数の雄ねじ部材54とを含む。ねじ穴53の数は、たとえば10個であり、雄ねじ部材54の数は4つである。 Specifically, the position changing portion 50 includes a pedestal portion 51 that supports the acceleration sensor 14, a plurality of screw holes 53 formed on the bottom surface 161 of the recess 16, and a plurality of male screw members 54 that are screwed into the screw holes 53. And include. The number of screw holes 53 is, for example, 10, and the number of male screw members 54 is 4.
 台座部51は、板状の部材である。台座部51には、雄ねじ部材54の脚部を挿通可能な、図示しない複数の貫通孔が形成される。台座部51には、たとえば4つの貫通孔が形成される。 The pedestal portion 51 is a plate-shaped member. The pedestal portion 51 is formed with a plurality of through holes (not shown) through which the legs of the male screw member 54 can be inserted. For example, four through holes are formed in the pedestal portion 51.
 ねじ穴53は、方向Xに沿った2つの列において、それぞれ、4つずつ形成されている。各列において、刃取付部12に近い側から1つ目のねじ穴53と2つ目のねじ穴53とが、第1のセンサ位置A1に加速度センサ14を取り付けるために用いられる。 Four screw holes 53 are formed in each of the two rows along the direction X. In each row, the first screw hole 53 and the second screw hole 53 from the side closer to the blade mounting portion 12 are used to mount the acceleration sensor 14 at the first sensor position A1.
 また、各列において、刃取付部12に近い側から2つ目のねじ穴53と3つ目のねじ穴53とが、第2のセンサ位置A2に加速度センサ14を取り付けるために用いられる。 Further, in each row, the second screw hole 53 and the third screw hole 53 from the side closer to the blade mounting portion 12 are used to mount the acceleration sensor 14 at the second sensor position A2.
 また、各列において、刃取付部12に近い側から3つ目のねじ穴53と4つ目のねじ穴53とが、第3のセンサ位置A3に加速度センサ14を取り付けるために用いられる。 Further, in each row, the third screw hole 53 and the fourth screw hole 53 from the side closer to the blade mounting portion 12 are used to mount the acceleration sensor 14 at the third sensor position A3.
 また、各列において、刃取付部12に近い側から4つ目のねじ穴53と5つ目のねじ穴53とが、第4のセンサ位置A4に加速度センサ14を取り付けるために用いられる。 Further, in each row, the fourth screw hole 53 and the fifth screw hole 53 from the side closer to the blade mounting portion 12 are used to mount the acceleration sensor 14 at the fourth sensor position A4.
 たとえば、第1のセンサ位置A1に加速度センサ14を取り付ける場合には、方向Xに沿った各列における、刃取付部12に近い側から1つ目のねじ穴53および2つ目のねじ穴53に、台座部51の4つの貫通孔を位置合わせした状態において、4つの雄ねじ部材54と4つのねじ穴53とを螺合することにより、第1のセンサ位置A1に加速度センサ14が取り付けられる。 For example, when the acceleration sensor 14 is mounted at the first sensor position A1, the first screw hole 53 and the second screw hole 53 from the side closer to the blade mounting portion 12 in each row along the direction X The acceleration sensor 14 is attached to the first sensor position A1 by screwing the four male screw members 54 and the four screw holes 53 in a state where the four through holes of the pedestal portion 51 are aligned.
 そして、加速度センサ14の取付位置を、第1のセンサ位置A1から第2のセンサ位置A2へ移動させる場合には、方向Xに沿った各列における、4つの雄ねじ部材54と4つのねじ穴53との螺合を解除した後、刃取付部12に近い側から2つ目のねじ穴53および3つ目のねじ穴53に、台座部51の4つの貫通孔を位置合わせした状態において、4つの雄ねじ部材54と4つのねじ穴53とを螺合することにより、第2のセンサ位置A2に加速度センサ14が取り付けられる。 Then, when the mounting position of the acceleration sensor 14 is moved from the first sensor position A1 to the second sensor position A2, the four male screw members 54 and the four screw holes 53 in each row along the direction X After releasing the screwing with, 4 in a state where the four through holes of the pedestal portion 51 are aligned with the second screw hole 53 and the third screw hole 53 from the side closer to the blade mounting portion 12. The accelerometer 14 is attached to the second sensor position A2 by screwing the one male screw member 54 and the four screw holes 53.
 位置変更部50は、たとえば、シャフト部11の径方向に加速度センサ14の位置を変更することが可能である。 The position changing unit 50 can change the position of the acceleration sensor 14 in the radial direction of the shaft unit 11, for example.
 図4は、本開示の第1の実施の形態に係る切削工具の構成を示す側面図である。詳細には、図4は、位置変更部50がシャフト部11の径方向等に加速度センサ14の位置を変更することが可能であることを示す図である。 FIG. 4 is a side view showing the configuration of the cutting tool according to the first embodiment of the present disclosure. More specifically, FIG. 4 is a diagram showing that the position changing portion 50 can change the position of the acceleration sensor 14 in the radial direction of the shaft portion 11.
 図5は、本開示の第1の実施の形態に係る切削工具の構成を示す矢視図である。詳細には、図5は、図4におけるA方向から見た矢視図である。図6は、本開示の第1の実施の形態に係る切削工具の構成を示す矢視図である。詳細には、図6は、図4におけるB方向から見た矢視図である。 FIG. 5 is an arrow view showing the configuration of the cutting tool according to the first embodiment of the present disclosure. In detail, FIG. 5 is an arrow view seen from the direction A in FIG. FIG. 6 is an arrow view showing the configuration of the cutting tool according to the first embodiment of the present disclosure. In detail, FIG. 6 is an arrow view seen from the B direction in FIG.
 図4~図6を参照して、位置変更部50は、さらに、位置変更板56と、雄ねじ部材58とを含む。位置変更板56は、図1に示す拡径部15の表面55に固定される。位置変更板56が表面55に固定されることにより、拡径部15の凹部16が塞がれる。 With reference to FIGS. 4 to 6, the position changing portion 50 further includes a position changing plate 56 and a male screw member 58. The position change plate 56 is fixed to the surface 55 of the diameter-expanded portion 15 shown in FIG. By fixing the position change plate 56 to the surface 55, the recess 16 of the enlarged diameter portion 15 is closed.
 図4~図6に示す位置変更板56は、たとえば、長方形状に形成された板状部材である。位置変更板56は、図1に示す拡径部15の表面55のサイズに一致したサイズを有し、かつ所定の厚みを有する。 The position changing plate 56 shown in FIGS. 4 to 6 is, for example, a plate-shaped member formed in a rectangular shape. The position changing plate 56 has a size matching the size of the surface 55 of the enlarged diameter portion 15 shown in FIG. 1 and has a predetermined thickness.
 図4~図6に示す例では、方向Xに沿って並ぶ第5のセンサ位置A5、第6のセンサ位置A6、第7のセンサ位置A7、および第8のセンサ位置A8は、位置変更板56に対して拡径部15の反対側の領域における、加速度センサ14の新たな4つの取付位置となっている。第5のセンサ位置A5、第6のセンサ位置A6、第7のセンサ位置A7、および第8のセンサ位置A8は、刃取付部12に近い側から遠い側へこの順に並んでいる。 In the examples shown in FIGS. 4 to 6, the fifth sensor position A5, the sixth sensor position A6, the seventh sensor position A7, and the eighth sensor position A8 arranged along the direction X are the position change plates 56. There are four new mounting positions of the acceleration sensor 14 in the region opposite to the enlarged diameter portion 15. The fifth sensor position A5, the sixth sensor position A6, the seventh sensor position A7, and the eighth sensor position A8 are arranged in this order from the side closer to the blade mounting portion 12 to the side farther from it.
 位置変更板56には、図1に示す表面55に形成された複数のねじ穴57に対応する位置に形成された、図示しない複数の貫通孔が形成されている。図4に示す例では、当該貫通孔の数は4つである。当該貫通孔は、雄ねじ部材58の脚部を挿通可能に形成されている。 The position change plate 56 is formed with a plurality of through holes (not shown) formed at positions corresponding to the plurality of screw holes 57 formed on the surface 55 shown in FIG. In the example shown in FIG. 4, the number of the through holes is four. The through hole is formed so that the leg portion of the male screw member 58 can be inserted.
 雄ねじ部材58は、ねじ穴57と螺合する。図4に示す例では、雄ねじ部材58の数は4つである。 The male screw member 58 is screwed with the screw hole 57. In the example shown in FIG. 4, the number of male screw members 58 is four.
 また、位置変更板56には、複数のねじ穴60が形成されている。雄ねじ部材54は、ねじ穴60と螺合する。ねじ穴60の数は、たとえば10個である。 Further, a plurality of screw holes 60 are formed in the position change plate 56. The male screw member 54 is screwed into the screw hole 60. The number of screw holes 60 is, for example, 10.
 各ねじ穴60は、方向Xに沿った2つの列をなすように並んでいる。ねじ穴60は、各列において、それぞれ、5つずつ形成されている。当該各列において、刃取付部12に近い側から1つ目のねじ穴60と2つ目のねじ穴60とが、第5のセンサ位置A5に加速度センサ14を取り付けるために用いられる。 The screw holes 60 are arranged in two rows along the direction X. Five screw holes 60 are formed in each row. In each row, the first screw hole 60 and the second screw hole 60 from the side closer to the blade mounting portion 12 are used to mount the acceleration sensor 14 at the fifth sensor position A5.
 また、当該各列において、刃取付部12に近い側から2つ目のねじ穴60と3つ目のねじ穴60とが、第6のセンサ位置A6に加速度センサ14を取り付けるために用いられる。 Further, in each row, the second screw hole 60 and the third screw hole 60 from the side closer to the blade mounting portion 12 are used to mount the acceleration sensor 14 at the sixth sensor position A6.
 また、当該各列において、刃取付部12に近い側から3つ目のねじ穴60と4つ目のねじ穴60とが、第7のセンサ位置A7に加速度センサ14を取り付けるために用いられる。 Further, in each row, the third screw hole 60 and the fourth screw hole 60 from the side closer to the blade mounting portion 12 are used to mount the acceleration sensor 14 at the seventh sensor position A7.
 また、当該各列において、刃取付部12に近い側から4つ目のねじ穴60と5つ目のねじ穴60とが、第8のセンサ位置A8に加速度センサ14を取り付けるために用いられる。 Further, in each row, the fourth screw hole 60 and the fifth screw hole 60 from the side closer to the blade mounting portion 12 are used to mount the acceleration sensor 14 at the eighth sensor position A8.
 たとえば、加速度センサ14の設置位置を、第1のセンサ位置A1から第5のセンサ位置A5へ移動させる場合には、まず、方向Xに沿った各列における、4つの雄ねじ部材54と4つのねじ穴53との螺合を解除する。 For example, when moving the installation position of the acceleration sensor 14 from the first sensor position A1 to the fifth sensor position A5, first, four male screw members 54 and four screws in each row along the direction X Unscrew with the hole 53.
 次に、拡径部15の表面55上に位置変更板56を配置する。次に、表面55に形成された4つのねじ穴57と、位置変更板56の図示しない貫通孔とを位置合わせした状態において、各ねじ穴57と雄ねじ部材58とを螺合することにより、表面55に位置変更板56を固定する。 Next, the position change plate 56 is arranged on the surface 55 of the enlarged diameter portion 15. Next, in a state where the four screw holes 57 formed on the surface 55 and the through holes (not shown) of the position changing plate 56 are aligned, each screw hole 57 and the male screw member 58 are screwed to form a surface. The position change plate 56 is fixed to 55.
 次に、位置変更板56上に台座部51を配置する。次に、台座部51の4つの貫通孔を位置合わせした状態において、刃取付部12に近い側から1つ目のねじ穴60および2つ目のねじ穴60に、4つの雄ねじ部材54と4つのねじ穴60とを螺合することにより、第5のセンサ位置A6に加速度センサ14が取り付けられる。 Next, the pedestal portion 51 is placed on the position change plate 56. Next, in a state where the four through holes of the pedestal portion 51 are aligned, the four male screw members 54 and 4 are inserted into the first screw hole 60 and the second screw hole 60 from the side closer to the blade mounting portion 12. By screwing the two screw holes 60, the acceleration sensor 14 is attached to the fifth sensor position A6.
 また、加速度センサ14の設置位置を、第5のセンサ位置A5から第6のセンサ位置A6へ移動させる場合には、方向Xに沿った各列における、4つの雄ねじ部材54と4つのねじ穴60との螺合を解除する。 Further, when the installation position of the acceleration sensor 14 is moved from the fifth sensor position A5 to the sixth sensor position A6, the four male screw members 54 and the four screw holes 60 in each row along the direction X Unscrew with.
 次に、刃取付部12に近い側から2つ目のねじ穴60および3つ目のねじ穴60に、台座部51の4つの貫通孔を位置合わせした状態において、4つの雄ねじ部材54と4つのねじ穴60とを螺合することにより、第6のセンサ位置A6に加速度センサ14が取り付けられる。 Next, in a state where the four through holes of the pedestal portion 51 are aligned with the second screw hole 60 and the third screw hole 60 from the side closer to the blade mounting portion 12, the four male screw members 54 and 4 By screwing the two screw holes 60, the acceleration sensor 14 is attached to the sixth sensor position A6.
 図7は、本開示の第1の実施の形態に係る切削工具を模式的に示す側面図である。具体的には、図7は、図1に示す切削工具101を片持ち梁とみなした場合の切削工具の模式的側面図である。 FIG. 7 is a side view schematically showing a cutting tool according to the first embodiment of the present disclosure. Specifically, FIG. 7 is a schematic side view of the cutting tool when the cutting tool 101 shown in FIG. 1 is regarded as a cantilever.
 図7を参照して、切削工具101の端部に位置する刃取付部12または刃部に、荷重すなわち切削抵抗Fが加えられる場合を想定する。 With reference to FIG. 7, it is assumed that a load, that is, a cutting resistance F is applied to the blade mounting portion 12 or the blade portion located at the end of the cutting tool 101.
 図8は、本開示の第1の実施の形態に係る切削工具についてシミュレーションを行った結果を示すグラフである。具体的には、図8は、図7に示す切削工具についてシミュレーションを行った結果を示すグラフである。 FIG. 8 is a graph showing the result of simulating the cutting tool according to the first embodiment of the present disclosure. Specifically, FIG. 8 is a graph showing the results of simulating the cutting tool shown in FIG. 7.
 図8における横軸および縦軸は、それぞれ、切削工具101すなわち片持ち梁の支点からの距離、および変位量を示している。 The horizontal axis and the vertical axis in FIG. 8 indicate the distance from the cutting tool 101, that is, the fulcrum of the cantilever, and the amount of displacement, respectively.
 すなわち、図8は、図7に示す切削工具101の刃取付部12または刃部に切削抵抗Fが加えられた場合における、切削工具101の変形の度合いを示している。 That is, FIG. 8 shows the degree of deformation of the cutting tool 101 when the cutting resistance F is applied to the blade mounting portion 12 or the blade portion of the cutting tool 101 shown in FIG. 7.
 図8に示すシミュレーション結果から、切削工具101の刃取付部12または刃部に近いほど、切削工具101の変位量が大きくなることが分かる。このため、切削工具101に加速度センサ14を取り付ける場合には、加速度センサ14の取付位置が、刃取付部12または刃部に近いほど、加速度センサ14の感度が高くなる。 From the simulation results shown in FIG. 8, it can be seen that the closer to the blade mounting portion 12 or the blade portion of the cutting tool 101, the larger the displacement amount of the cutting tool 101. Therefore, when the acceleration sensor 14 is attached to the cutting tool 101, the closer the attachment position of the acceleration sensor 14 is to the blade attachment portion 12 or the blade portion, the higher the sensitivity of the acceleration sensor 14.
 以上のことから、負荷の大きい加工条件下において加速度を計測する場合には、切削工具101の支点すなわち根本部に加速度センサ14を取り付ける一方で、負荷の小さい加工条件下において加速度を計測する場合には、切削工具101の端部に近い位置に加速度センサ14を取り付ける。これにより、負荷が大きい場合には意図的に加速度センサ14の感度を低下させ、負荷が小さい場合には意図的に加速度センサ14の感度を高めることができる。 From the above, when measuring the acceleration under a machining condition with a large load, the acceleration sensor 14 is attached to the fulcrum, that is, the root of the cutting tool 101, while the acceleration is measured under a machining condition with a small load. Attaches the accelerometer 14 at a position near the end of the cutting tool 101. As a result, when the load is large, the sensitivity of the acceleration sensor 14 can be intentionally lowered, and when the load is small, the sensitivity of the acceleration sensor 14 can be intentionally increased.
 したがって、切削工具101に加えられる負荷の程度に応じて加速度センサ14の位置を変更することにより、多様な加工条件下において加速度を計測することができる。 Therefore, by changing the position of the acceleration sensor 14 according to the degree of the load applied to the cutting tool 101, the acceleration can be measured under various machining conditions.
 図9は、本開示の第1の実施の形態に係る切削システムの構成を示す図である。詳細には、図9は、切削工具が、図1に示す構成要素に加えて、さらに、電池および無線通信装置を備えた状態を示す図である。なお、図9においては、電池および無線通信装置を想像線である二点鎖線により示している。 FIG. 9 is a diagram showing a configuration of a cutting system according to the first embodiment of the present disclosure. More specifically, FIG. 9 is a diagram showing a state in which the cutting tool is further equipped with a battery and a wireless communication device in addition to the components shown in FIG. In FIG. 9, the battery and the wireless communication device are shown by an alternate long and short dash line, which is an imaginary line.
 図9を参照して、切削工具101は、図1に示す構成に加えて、さらに、電池22、無線通信装置23およびハウジング24を備える。 With reference to FIG. 9, the cutting tool 101 further includes a battery 22, a wireless communication device 23, and a housing 24, in addition to the configuration shown in FIG.
 電池22は、図示しない電力線を介して、加速度センサ14および無線通信装置23と接続されている。電池22は、電力線を介して、加速度センサ14および無線通信装置23へ電力を供給する。電力線には、電力供給のオンおよびオフを切り替えるスイッチが設けられている。 The battery 22 is connected to the acceleration sensor 14 and the wireless communication device 23 via a power line (not shown). The battery 22 supplies electric power to the acceleration sensor 14 and the wireless communication device 23 via the power line. The power line is provided with a switch for switching the power supply on and off.
 無線通信装置23は、図示しない信号線を介して、加速度センサ14と接続されている。加速度センサ14は、シャフト部11において生じる加速度を示す計測信号を信号線経由で無線通信装置23へ出力する。 The wireless communication device 23 is connected to the acceleration sensor 14 via a signal line (not shown). The acceleration sensor 14 outputs a measurement signal indicating the acceleration generated in the shaft portion 11 to the wireless communication device 23 via a signal line.
 無線通信装置23は、加速度センサ14から計測信号を受けると、受けた計測信号の示す計測結果を無線信号に含めて外部のパーソナルコンピュータ等の管理装置301へ送信する。管理装置301は、たとえば、受信した計測結果を蓄積し、蓄積した計測結果を処理する。具体的には、たとえば、管理装置301は、受信したセンサ情報が示す計測結果を解析する。 When the wireless communication device 23 receives the measurement signal from the acceleration sensor 14, the wireless communication device 23 includes the measurement result indicated by the received measurement signal in the wireless signal and transmits the measurement result to an external management device 301 such as a personal computer. The management device 301, for example, accumulates the received measurement results and processes the accumulated measurement results. Specifically, for example, the management device 301 analyzes the measurement result indicated by the received sensor information.
 また、無線通信装置23は、加速度センサ14と刃取付部12または刃部との位置関係、すなわち、切削工具101における計測位置と切削位置との位置関係を示す第1の位置情報を、図示しない記憶部から取得して管理装置301へ送信する。 Further, the wireless communication device 23 does not show the positional relationship between the acceleration sensor 14 and the blade mounting portion 12 or the blade portion, that is, the first position information indicating the positional relationship between the measurement position and the cutting position in the cutting tool 101. It is acquired from the storage unit and transmitted to the management device 301.
 切削工具101は、さらに、図示しない操作入力部を備える。当該操作入力部は、ユーザにおいて加速度センサ14の取付位置を入力可能に構成されている。具体的には、たとえば、当該操作入力部は、ユーザが、センサ位置A1~A8のうち、加速度センサ14が取り付けられたセンサ位置を選択することができる操作ボタンである。 The cutting tool 101 further includes an operation input unit (not shown). The operation input unit is configured so that the user can input the mounting position of the acceleration sensor 14. Specifically, for example, the operation input unit is an operation button that allows the user to select the sensor position to which the acceleration sensor 14 is attached from the sensor positions A1 to A8.
 第1の位置情報は、上記操作入力部において入力された加速度センサ14の取付位置に対応する。 The first position information corresponds to the mounting position of the acceleration sensor 14 input in the operation input unit.
 管理装置301は、たとえば、受信した第1の位置情報を蓄積し、蓄積した第1の位置情報を解析する。 The management device 301, for example, accumulates the received first position information and analyzes the accumulated first position information.
 第1の位置情報の示す位置関係は、たとえば、計測位置と切削位置との距離である。なお、第1の位置情報は、これに限定されるものではなく、当該計測位置と当該切削位置との距離、および当該計測位置に対する当該切削位置の方向または当該切削位置に対する当該計測位置の方向を示してもよい。 The positional relationship indicated by the first position information is, for example, the distance between the measurement position and the cutting position. The first position information is not limited to this, and includes the distance between the measurement position and the cutting position, the direction of the cutting position with respect to the measurement position, or the direction of the measurement position with respect to the cutting position. May be shown.
 また、無線通信装置23は、加速度センサ14とシャフト部11の中心軸17との位置関係、すなわち、切削工具101における計測位置と中心軸17との位置関係を示す第2の位置情報を、上記記憶部から取得して管理装置301へ送信する。第2の位置情報は、上記操作入力部において入力された加速度センサ14の取付位置に対応する。 Further, the wireless communication device 23 provides the second position information indicating the positional relationship between the acceleration sensor 14 and the central axis 17 of the shaft portion 11, that is, the positional relationship between the measurement position on the cutting tool 101 and the central axis 17. It is acquired from the storage unit and transmitted to the management device 301. The second position information corresponds to the mounting position of the acceleration sensor 14 input in the operation input unit.
 管理装置301は、たとえば、受信した第2の位置情報を蓄積し、蓄積した第2の位置情報を解析する。 The management device 301 accumulates the received second position information, and analyzes the accumulated second position information, for example.
 第2の位置情報の示す位置関係は、たとえば、計測位置と中心軸17との距離である。なお、第2の位置情報は、これに限定されるものではなく、当該計測位置と中心軸17との距離、および中心軸17に対する当該切削位置の方向または当該切削位置に対する中心軸17の方向を示してもよい。 The positional relationship indicated by the second position information is, for example, the distance between the measurement position and the central axis 17. The second position information is not limited to this, and includes the distance between the measurement position and the central axis 17, and the direction of the cutting position with respect to the central axis 17 or the direction of the central axis 17 with respect to the cutting position. May be shown.
 ハウジング24は、加速度センサ14、電池22、無線通信装置23、電力線および信号線を収容した状態、具体的には、加速度センサ14等をこれらの下方および側方から覆った状態において、電池22および無線通信装置23を保持する。 The housing 24 accommodates the accelerometer 14, the battery 22, the wireless communication device 23, the power line and the signal line, specifically, the accelerometer 14 and the like are covered from below and from the sides of the accelerometer 22 and the housing 24. Holds the wireless communication device 23.
 図10は、本開示の第1の実施の形態に係る切削システムにおける管理装置の構成を示す図である。 FIG. 10 is a diagram showing a configuration of a management device in the cutting system according to the first embodiment of the present disclosure.
 図9および図10を参照して、切削システム201は、フライス盤等の工作機械202と、管理装置301とを備える。 With reference to FIGS. 9 and 10, the cutting system 201 includes a machine tool 202 such as a milling machine and a management device 301.
 工作機械202は、切削工具101と、切削工具101を保持する工具ホルダ210と、工具ホルダ210を保持する主軸220と、主軸220に回転力を与える図示しない駆動部と、当該駆動部を制御する図示しない制御部とを備える。駆動部は、主軸220および工具ホルダ210を介して切削工具101を駆動するモータ等である。制御部は、駆動部の回転数等を制御する。 The machine tool 202 controls a cutting tool 101, a tool holder 210 for holding the cutting tool 101, a spindle 220 for holding the tool holder 210, a drive unit (not shown) for applying a rotational force to the spindle 220, and the drive unit. It includes a control unit (not shown). The drive unit is a motor or the like that drives the cutting tool 101 via the spindle 220 and the tool holder 210. The control unit controls the rotation speed of the drive unit and the like.
 切削工具101は、加速度センサ14の計測結果を示すセンサ情報を含む無線信号を送信する。 The cutting tool 101 transmits a wireless signal including sensor information indicating the measurement result of the acceleration sensor 14.
 管理装置301は、切削工具101からセンサ情報を含む無線信号を受信し、受信したセンサ情報が示す計測結果を処理する。 The management device 301 receives a wireless signal including sensor information from the cutting tool 101, and processes the measurement result indicated by the received sensor information.
 具体的には、管理装置301は、無線通信部31と、制御部32と、表示部33と、記憶部35と、操作入力部36とを含む。 Specifically, the management device 301 includes a wireless communication unit 31, a control unit 32, a display unit 33, a storage unit 35, and an operation input unit 36.
 無線通信部31は、切削工具101の無線通信装置23と無線による通信を行う。具体的には、無線通信部31は、切削工具101の無線通信装置23から、センサ情報を含む無線信号を受信して、当該無線信号に含まれるセンサ情報の示す計測結果を記憶部35に保存する。 The wireless communication unit 31 wirelessly communicates with the wireless communication device 23 of the cutting tool 101. Specifically, the wireless communication unit 31 receives a wireless signal including sensor information from the wireless communication device 23 of the cutting tool 101, and stores the measurement result indicated by the sensor information included in the wireless signal in the storage unit 35. To do.
 操作入力部36は、キーボードおよびマウス等のユーザインタフェースを含む。操作入力部36は、ユーザからの指示およびデータ入力を受け付ける。 The operation input unit 36 includes a user interface such as a keyboard and a mouse. The operation input unit 36 receives instructions and data input from the user.
 記憶部35は、たとえば、HDD(Hard Disk Drive)等の記憶装置を含む。また、たとえば、記憶部35は、CD-ROM(Compact Disc Read Only Memory)、DVD-ROM(Digital Versatile Disk Read Only Memory)またはBD-ROM(Blu-ray(登録商標) Disc Read Only Memory)等の補助記憶装置を含む。また、たとえば、記憶部35は、RAM(Random Access Memory)およびROM(Read Only Memory)等の半導体メモリを含む。 The storage unit 35 includes, for example, a storage device such as an HDD (Hard Disk Drive). Further, for example, the storage unit 35 may be a CD-ROM (Compact Disc Read Only Memory), a DVD-ROM (Digital Versailles Disc Read Only Memory), or a BD-ROM (Blu-ray (registered trademark) Disc Read Memory). Includes auxiliary storage. Further, for example, the storage unit 35 includes a semiconductor memory such as a RAM (Random Access Memory) and a ROM (Read Only Memory).
 記憶部35には、制御部32を動作させるためのプログラムおよびデータ、無線通信部31が切削工具101から受信した計測結果、ならびに制御部32の解析結果等が保存される。なお、記憶部35は、管理装置301の外部に設けられてもよい。 The storage unit 35 stores programs and data for operating the control unit 32, measurement results received by the wireless communication unit 31 from the cutting tool 101, analysis results of the control unit 32, and the like. The storage unit 35 may be provided outside the management device 301.
 制御部32は、たとえば、CPU(Central Processing Unit)を含む。制御部32は、記憶部35に書き込まれた(蓄積された)加速度センサ14の計測結果を解析し、解析結果を記憶部35に保存する。また、制御部32は、管理装置301における無線通信部31および表示部33等の各ユニットの制御を行う。 The control unit 32 includes, for example, a CPU (Central Processing Unit). The control unit 32 analyzes the measurement result of the acceleration sensor 14 written (accumulated) in the storage unit 35, and stores the analysis result in the storage unit 35. Further, the control unit 32 controls each unit such as the wireless communication unit 31 and the display unit 33 in the management device 301.
 表示部33は、たとえば、ディスプレイである。表示部33は、記憶部35に書き込まれた制御部32の解析結果を表示する。なお、表示部33は、管理装置301の外部に設けられてもよい。 The display unit 33 is, for example, a display. The display unit 33 displays the analysis result of the control unit 32 written in the storage unit 35. The display unit 33 may be provided outside the management device 301.
 また、切削システム201は、工作機械202および管理装置301間の距離が長い等の理由により、両者の間において無線信号の送受信を直接行うことが困難である場合には、両者の間に中継装置を備えてもよい。この場合、工作機械202は、無線信号を中継装置経由で管理装置301へ送信する。 Further, when it is difficult for the cutting system 201 to directly transmit and receive a wireless signal between the machine tool 202 and the management device 301 due to a long distance or the like, the cutting system 201 is a relay device between the two. May be provided. In this case, the machine tool 202 transmits a wireless signal to the management device 301 via the relay device.
 [使用方法]
 図9および図10を参照して、切削工具101の使用方法について説明する。
[how to use]
A method of using the cutting tool 101 will be described with reference to FIGS. 9 and 10.
 まず、ユーザは、切削工具101のシャフト部11を、たとえば、工作機械202における工具ホルダに固定する。 First, the user fixes the shaft portion 11 of the cutting tool 101 to, for example, the tool holder in the machine tool 202.
 次に、電力線に設けられたスイッチをオフからオンへ切り替えることにより、電池22から加速度センサ14および無線通信装置23へ電力を供給する。 Next, power is supplied from the battery 22 to the acceleration sensor 14 and the wireless communication device 23 by switching the switch provided on the power line from off to on.
 次に、切削工具101を回転駆動し、切削対象物を切削することにより、シャフト部11に切削に伴う加速度が生じる。 Next, the cutting tool 101 is rotationally driven to cut the object to be cut, so that the shaft portion 11 is accelerated by the cutting.
 加速度センサ14は、シャフト部11に生じた加速度を示す計測信号を無線通信装置23へ出力する。 The acceleration sensor 14 outputs a measurement signal indicating the acceleration generated in the shaft portion 11 to the wireless communication device 23.
 次に、無線通信装置23は、加速度センサ14から受けた計測信号の示す計測結果および加速度センサ14の位置情報を無線信号に含めて外部の管理装置301へ送信する。 Next, the wireless communication device 23 includes the measurement result indicated by the measurement signal received from the acceleration sensor 14 and the position information of the acceleration sensor 14 in the wireless signal and transmits the measurement result to the external management device 301.
 管理装置301において、無線通信部31は、無線通信装置23から加速度センサ14の計測結果を示すセンサ情報を含む無線信号を受信し、受信したセンサ情報を記憶部35に保存する。 In the management device 301, the wireless communication unit 31 receives a wireless signal including sensor information indicating the measurement result of the acceleration sensor 14 from the wireless communication device 23, and stores the received sensor information in the storage unit 35.
 制御部32は、ユーザから操作入力部36を介して入力された指示に応じて、記憶部35に蓄積された計測結果を解析する。 The control unit 32 analyzes the measurement result stored in the storage unit 35 in response to an instruction input from the user via the operation input unit 36.
 図11~図14は、本開示の第1の実施の形態に係る切削システムにおける管理装置における解析結果の一例を示す図である。具体的には、図11~図14は、切削工具101による切削対象物の切削に伴って切削工具101に生じる加速度の一例を示すグラフである。 11 to 14 are diagrams showing an example of analysis results in the management device in the cutting system according to the first embodiment of the present disclosure. Specifically, FIGS. 11 to 14 are graphs showing an example of the acceleration generated in the cutting tool 101 due to the cutting of the object to be cut by the cutting tool 101.
 図11~図14は、それぞれ、加速度センサ14を図9に示すセンサ位置A4,A3,A2,A1に取り付けた状態において、切削工具101による切削を行った場合に生じる加速度を示している。 11 to 14 show the acceleration generated when cutting is performed by the cutting tool 101 in a state where the acceleration sensor 14 is attached to the sensor positions A4, A3, A2, and A1 shown in FIG. 9, respectively.
 すなわち、図11は加速度センサ14をセンサ位置A4に取り付けた場合に生じる加速度を示し、図12は加速度センサ14をセンサ位置A3に取り付けた場合に生じる加速度を示し、図13は加速度センサ14をセンサ位置A2に取り付けた場合に生じる加速度を示し、図14は加速度センサ14をセンサ位置A1に取り付けた場合に生じる加速度を示している。図11~図14において、加工条件は同じであり、たとえば、切削抵抗Fは同じであるものとする。 That is, FIG. 11 shows the acceleration generated when the acceleration sensor 14 is attached to the sensor position A4, FIG. 12 shows the acceleration generated when the acceleration sensor 14 is attached to the sensor position A3, and FIG. 13 shows the acceleration sensor 14 as a sensor. The acceleration generated when the acceleration sensor 14 is attached to the position A2 is shown, and FIG. 14 shows the acceleration generated when the acceleration sensor 14 is attached to the sensor position A1. In FIGS. 11 to 14, the machining conditions are the same, and for example, the cutting resistance F is the same.
 シャフト部11の端部には、シャフト部11の周方向に沿って、図示しない4つの刃部が互いに90°の間隔をあけて設けられているものとする。なお、シャフト部11の周方向は、シャフト部11の中心軸17を法線とする平面上にシャフト部11を投影した場合に、投影されたシャフト部11の周面に沿う方向を意味する。 It is assumed that four blades (not shown) are provided at the end of the shaft portion 11 along the circumferential direction of the shaft portion 11 at a distance of 90 ° from each other. The circumferential direction of the shaft portion 11 means a direction along the peripheral surface of the projected shaft portion 11 when the shaft portion 11 is projected on a plane having the central axis 17 of the shaft portion 11 as a normal.
 図11~図14において、横軸はシャフト部11の中心軸17に対して直交する方向Y1に発生する加速度、縦軸はシャフト部11に対して直交する平面に沿った方向であって、方向Y1に対して直交する方向Y2に発生する加速度を示す。 In FIGS. 11 to 14, the horizontal axis is the acceleration generated in the direction Y1 orthogonal to the central axis 17 of the shaft portion 11, and the vertical axis is the direction along the plane orthogonal to the shaft portion 11. The acceleration generated in the direction Y2 orthogonal to Y1 is shown.
 図11~図14は、各刃部が切削対象物を切削することによって発生する加速度を示している。図11~図14から分かるように、図11~図14では、この順に、計測される加速度が大きくなっている。 11 to 14 show the acceleration generated by each blade cutting the object to be cut. As can be seen from FIGS. 11 to 14, in FIGS. 11 to 14, the measured accelerations increase in this order.
 すなわち、加速度センサ14の位置が切削工具101の刃取付部12または刃部に近いほど、切削工具101において計測される加速度が大きくなることが分かる。このため、切削工具101における加速度センサ14の取付位置が刃取付部12または刃部に近いほど、加速度センサの感度が高くなることが確認された。 That is, it can be seen that the closer the position of the acceleration sensor 14 is to the blade mounting portion 12 or the blade portion of the cutting tool 101, the greater the acceleration measured by the cutting tool 101. Therefore, it was confirmed that the closer the mounting position of the acceleration sensor 14 in the cutting tool 101 is to the blade mounting portion 12 or the blade portion, the higher the sensitivity of the acceleration sensor.
 また、加速度センサ14によって遠心加速度を計測する場合、加速度センサ14は、計測方向がシャフト部11の中心軸17と加速度センサ14とを結ぶ方向に沿った方向となるように、拡径部15に取り付けられる。 Further, when the centrifugal acceleration is measured by the acceleration sensor 14, the acceleration sensor 14 has a diameter-expanded portion 15 so that the measurement direction is along the direction connecting the central axis 17 of the shaft portion 11 and the acceleration sensor 14. It is attached.
 遠心加速度a[mm/s^2]は、以下の式(1)で表される。 Centrifugal acceleration a [mm / s ^ 2] is expressed by the following equation (1).
 a=r×ω^2  ・・・(1) A = r x ω ^ 2 ... (1)
 式(1)において、rはシャフト部11の中心軸17および加速度センサ14間の距離[mm]であり、ωはシャフト部11の角速度[rad/s]である。また、演算子「^」は、べき乗を表す。 In equation (1), r is the distance [mm] between the central axis 17 of the shaft portion 11 and the acceleration sensor 14, and ω is the angular velocity [rad / s] of the shaft portion 11. The operator "^" represents a power.
 すなわち、遠心加速度aは、距離rが大きいほど、大きくなる。このため、加速度センサ14の取付位置がシャフト部11の中心軸17から遠いほど、加速度センサ14の感度が高くなる。 That is, the centrifugal acceleration a increases as the distance r increases. Therefore, the farther the mounting position of the acceleration sensor 14 is from the central axis 17 of the shaft portion 11, the higher the sensitivity of the acceleration sensor 14.
 以上のことから、シャフト部11の回転速度が大きい加工条件下において遠心加速度を計測する場合には、シャフト部11の中心軸17から近い位置に加速度センサ14を取り付ける一方で、シャフト部11の回転速度が小さい加工条件下において遠心加速度を計測する場合には、シャフト部11の中心軸17から遠い位置に加速度センサ14を取り付ける。これにより、前者の場合には意図的に加速度センサ14の感度を低下させ、後者の場合には意図的に加速度センサ14の感度を高めることができる。 From the above, when measuring centrifugal acceleration under machining conditions where the rotation speed of the shaft portion 11 is high, the acceleration sensor 14 is attached at a position close to the central axis 17 of the shaft portion 11, while the rotation of the shaft portion 11 When measuring centrifugal acceleration under low-speed machining conditions, the acceleration sensor 14 is attached at a position far from the central axis 17 of the shaft portion 11. Thereby, in the former case, the sensitivity of the acceleration sensor 14 can be intentionally lowered, and in the latter case, the sensitivity of the acceleration sensor 14 can be intentionally increased.
 具体的には、シャフト部11の回転速度の大きい加工条件下において遠心加速度を計測する場合、加速度センサ14は、拡径部15における凹部16の底面161に取り付けられる。たとえば、加速度センサ14は、センサ取付位置(以下、センサ位置とも称する)A1~A4のうちのいずれかの位置に取り付けられる。 Specifically, when measuring centrifugal acceleration under processing conditions where the rotation speed of the shaft portion 11 is high, the acceleration sensor 14 is attached to the bottom surface 161 of the recess 16 in the diameter-expanded portion 15. For example, the acceleration sensor 14 is mounted at any of the sensor mounting positions (hereinafter, also referred to as sensor positions) A1 to A4.
 一方、シャフト部11の回転速度の小さい加工条件下において遠心加速度を計測する場合には、加速度センサ14は、拡径部15に位置変更板56が取り付けられた状態において、位置変更板56に取り付けられる。たとえば、加速度センサ14は、センサ位置A5~A8のうちのいずれかの位置に取り付けられる。 On the other hand, when measuring the centrifugal acceleration under the machining condition where the rotation speed of the shaft portion 11 is small, the acceleration sensor 14 is attached to the position changing plate 56 in a state where the position changing plate 56 is attached to the diameter expanding portion 15. Be done. For example, the acceleration sensor 14 is attached to any of the sensor positions A5 to A8.
 したがって、切削工具101の回転速度に応じて加速度センサ14の位置を変更することにより、多様な加工条件下において遠心加速度を計測することができる。 Therefore, by changing the position of the acceleration sensor 14 according to the rotation speed of the cutting tool 101, the centrifugal acceleration can be measured under various machining conditions.
 なお、切削工具101は、シャフト部11に拡径部15が形成されない構成であってもよい。この場合、拡径していないシャフト部11に凹部16が形成され、加速度センサ14は当該凹部16に取り付けられる。 The cutting tool 101 may have a configuration in which the enlarged diameter portion 15 is not formed on the shaft portion 11. In this case, a recess 16 is formed in the shaft portion 11 whose diameter has not been expanded, and the acceleration sensor 14 is attached to the recess 16.
 また、加速度センサ14は、ねじ部材以外の他の固定部材によりシャフト部11に取り付けられてもよい。 Further, the acceleration sensor 14 may be attached to the shaft portion 11 by a fixing member other than the screw member.
 また、切削工具101は、加速度センサ14等のセンサを備えず、シャフト部11が当該センサを着脱可能な構成であってもよい。 Further, the cutting tool 101 may not be provided with a sensor such as an acceleration sensor 14, and the shaft portion 11 may have a structure in which the sensor can be attached and detached.
 また、切削工具101は、エンドミル等の転削工具でなくてもよく、たとえば、バイト等の旋削工具であってもよい。 Further, the cutting tool 101 does not have to be a turning tool such as an end mill, and may be, for example, a turning tool such as a tool bit.
 また、位置変更部50は、シャフト部11の軸方向および径方向のいずれか一方の方向に加速度センサ14の位置を変更可能な構成であってもよい。 Further, the position changing portion 50 may have a configuration in which the position of the acceleration sensor 14 can be changed in either the axial direction or the radial direction of the shaft portion 11.
 また、位置変更部50は、台座部51を方向Xにスライドさせることが可能な図示しないスライド機構を有する構成であってもよい。具体的には、たとえば、シャフト部11における凹部16の底面161および位置変更板56に、台座部51をX方向に沿ってスライド移動させることが可能な、図示しないレールまたは溝部が形成される。 Further, the position changing portion 50 may have a configuration having a slide mechanism (not shown) capable of sliding the pedestal portion 51 in the direction X. Specifically, for example, a rail or a groove portion (not shown) capable of sliding the pedestal portion 51 along the X direction is formed on the bottom surface 161 of the recess 16 and the position changing plate 56 in the shaft portion 11.
 この場合、台座部51は、レールまたは溝部に沿ってスライド移動することができる。スライド移動した台座部51は、たとえば、ねじ部材等の固定部材によりシャフト部11に固定される。 In this case, the pedestal portion 51 can slide and move along the rail or the groove portion. The slid-moved pedestal portion 51 is fixed to the shaft portion 11 by, for example, a fixing member such as a screw member.
 また、切削工具101は、無線通信装置23を備えない構成であってもよい。この場合、たとえば、切削工具101は、図示しない記憶部においてセンサ情報等を保存する。そして、たとえば、ユーザは、当該記憶部に保存されたセンサ情報等を、管理装置301の記憶部35に保存する操作を行う。 Further, the cutting tool 101 may be configured not to include the wireless communication device 23. In this case, for example, the cutting tool 101 stores sensor information and the like in a storage unit (not shown). Then, for example, the user performs an operation of storing the sensor information or the like stored in the storage unit in the storage unit 35 of the management device 301.
 また、位置変更部50は、たとえば、ボールねじ等の図示しない駆動機構により加速度センサ14の位置を変更する構成であってもよい。この場合、たとえば、ボールねじのねじ軸がシャフト部11のX方向に沿って配置され、ボールねじのナット部に加速度センサ14が取り付けられる。 Further, the position changing unit 50 may be configured to change the position of the acceleration sensor 14 by, for example, a drive mechanism (not shown) such as a ball screw. In this case, for example, the screw shaft of the ball screw is arranged along the X direction of the shaft portion 11, and the acceleration sensor 14 is attached to the nut portion of the ball screw.
 また、この場合、たとえば、ボールねじのねじ軸を回転駆動するモータを制御する図示しない制御部が、加速度センサ14の移動を制御する構成であってもよい。また、上記モータに対する指示信号を切削工具101の外部から与える構成であってもよい。 Further, in this case, for example, a control unit (not shown) that controls a motor that rotationally drives the screw shaft of the ball screw may be configured to control the movement of the acceleration sensor 14. Further, the instruction signal to the motor may be given from the outside of the cutting tool 101.
 図15は、本開示の第1の実施の形態に係る切削工具の構成の他の例を示す図である。 FIG. 15 is a diagram showing another example of the configuration of the cutting tool according to the first embodiment of the present disclosure.
 拡径部15の表面55に取り付けられる位置変更板56の数は、1つに限定されるものではなく、複数であってもよい。この場合、複数の位置変更板56は、各位置変更板56が積層された状態において、拡径部15の表面55に取り付けられる。加速度センサ14は、シャフト部11の中心軸17から最も遠い位置にある位置変更板56に取り付けられる。 The number of the position changing plates 56 attached to the surface 55 of the enlarged diameter portion 15 is not limited to one, and may be a plurality. In this case, the plurality of position changing plates 56 are attached to the surface 55 of the enlarged diameter portion 15 in a state where the position changing plates 56 are laminated. The acceleration sensor 14 is attached to the position changing plate 56 located at the position farthest from the central axis 17 of the shaft portion 11.
 各位置変更板56は所定の厚みを有しているため、積層する枚数を変更することにより、加速度センサ14とシャフト部11の中心軸17との距離を変更することができる。 Since each position changing plate 56 has a predetermined thickness, the distance between the acceleration sensor 14 and the central axis 17 of the shaft portion 11 can be changed by changing the number of stacked sheets.
 図16~図20は、本開示の第1の実施の形態における切削工具の他の例を模式的に示す断面図である。具体的には、図16~図20は、切削工具におけるセンサの位置の他の例を模式的に示す断面図である。 16 to 20 are cross-sectional views schematically showing another example of the cutting tool according to the first embodiment of the present disclosure. Specifically, FIGS. 16 to 20 are cross-sectional views schematically showing another example of the position of the sensor in the cutting tool.
 図16~図20では、理解を容易にするために、1つのセンサの位置を3つ示している。詳細には、図16~図20では、位置を変更する前のセンサを実線により示し、かつ位置を変更した後のセンサを二点鎖線により示している。また、図16~図20では、図示を簡単にするため、断面を表すハッチングを示していない。 In FIGS. 16 to 20, three positions of one sensor are shown for easy understanding. Specifically, in FIGS. 16 to 20, the sensor before the position change is shown by a solid line, and the sensor after the position change is shown by a two-dot chain line. Further, in FIGS. 16 to 20, hatching showing a cross section is not shown for simplification of illustration.
 図16は、シャフト部11におけるセンサ位置B1、センサ位置B2およびセンサ位置B3を示す。 FIG. 16 shows the sensor position B1, the sensor position B2, and the sensor position B3 on the shaft portion 11.
 図16を参照して、位置変更部50は、センサ位置B1~B3間において加速度センサ14の位置を変更する。 With reference to FIG. 16, the position changing unit 50 changes the position of the acceleration sensor 14 between the sensor positions B1 to B3.
 センサ位置B2は、センサ位置B1に対してX方向においてずれており、かつシャフト部11の径方向Yにおいてずれている。センサ位置B3は、センサ位置B1に対してX方向においてずれており、かつ径方向Yにおいてずれていない。センサ位置B3は、センサ位置B2に対してX方向においてずれており、かつ径方向Yにおいてずれている。 The sensor position B2 is deviated from the sensor position B1 in the X direction and is deviated in the radial direction Y of the shaft portion 11. The sensor position B3 is deviated from the sensor position B1 in the X direction and is not deviated in the radial direction Y. The sensor position B3 is deviated from the sensor position B2 in the X direction and is deviated in the radial direction Y.
 図17は、シャフト部11におけるセンサ位置B1、センサ位置B3およびセンサ位置B4を示す。 FIG. 17 shows the sensor position B1, the sensor position B3, and the sensor position B4 on the shaft portion 11.
 図17を参照して、位置変更部50は、センサ位置B1,B3,B4間において加速度センサ14の位置を変更する。 With reference to FIG. 17, the position changing unit 50 changes the position of the acceleration sensor 14 between the sensor positions B1, B3 and B4.
 センサ位置B4は、センサ位置B1に対してX方向においてずれておらず、かつ径方向Yにおいてずれている。センサ位置B4は、センサ位置B3に対してX方向においてずれており、かつ径方向Yにおいてずれている。 The sensor position B4 is not deviated from the sensor position B1 in the X direction and is deviated in the radial direction Y. The sensor position B4 is deviated from the sensor position B3 in the X direction and is deviated in the radial direction Y.
 図18は、シャフト部11におけるセンサ位置B1、センサ位置B5およびセンサ位置B6を示す。 FIG. 18 shows the sensor position B1, the sensor position B5, and the sensor position B6 on the shaft portion 11.
 図18を参照して、位置変更部50は、センサ位置B1,B5,B6間において加速度センサ14の位置を変更する。 With reference to FIG. 18, the position changing unit 50 changes the position of the acceleration sensor 14 between the sensor positions B1, B5 and B6.
 センサ位置B5は、センサ位置B1に対してX方向においてずれており、かつ径方向においてずれている。センサ位置B6は、センサ位置B1に対してX方向においてずれており、かつ径方向においてずれている。センサ位置B6は、センサ位置B5に対してX方向においてずれており、かつ径方向においてずれている。 The sensor position B5 is deviated from the sensor position B1 in the X direction and is deviated in the radial direction. The sensor position B6 is deviated from the sensor position B1 in the X direction and is deviated in the radial direction. The sensor position B6 is deviated from the sensor position B5 in the X direction and is deviated in the radial direction.
 図19は、シャフト部11におけるセンサ位置B1、センサ位置B7およびセンサ位置B8を示す。 FIG. 19 shows the sensor position B1, the sensor position B7, and the sensor position B8 on the shaft portion 11.
 図19を参照して、位置変更部50は、センサ位置B1,B7,B8間において加速度センサ14の位置を変更する。 With reference to FIG. 19, the position changing unit 50 changes the position of the acceleration sensor 14 between the sensor positions B1, B7, and B8.
 センサ位置B7は、センサ位置B1に対してX方向においてずれておらず、かつ径方向においてずれている。センサ位置B8は、センサ位置B1に対してX方向においてずれておらず、かつ径方向においてずれている。センサ位置B8は、センサ位置B7に対してX方向においてずれておらず、かつ径方向においてずれている。 The sensor position B7 is not deviated from the sensor position B1 in the X direction and is deviated in the radial direction. The sensor position B8 is not deviated from the sensor position B1 in the X direction and is deviated in the radial direction. The sensor position B8 is not deviated from the sensor position B7 in the X direction and is deviated in the radial direction.
 図20は、シャフト部11におけるセンサ位置B1、センサ位置B3およびセンサ位置B9を示す。 FIG. 20 shows the sensor position B1, the sensor position B3, and the sensor position B9 on the shaft portion 11.
 図20を参照して、位置変更部50は、センサ位置B1,B3,B9間において加速度センサ14の位置を変更する。 With reference to FIG. 20, the position changing unit 50 changes the position of the acceleration sensor 14 between the sensor positions B1, B3 and B9.
 センサ位置B9は、センサ位置B1に対してX方向においてずれており、かつ径方向においてずれていない。センサ位置B9は、センサ位置B3に対してX方向においてずれており、かつ径方向Yにおいてずれていない。 The sensor position B9 is deviated from the sensor position B1 in the X direction and is not deviated in the radial direction. The sensor position B9 is deviated from the sensor position B3 in the X direction and is not deviated in the radial direction Y.
 図16~図18に示すように、位置変更部50は、X方向に沿って加速度センサ14の位置を変更することが可能であり、かつ径方向Yに沿って加速度センサ14の位置を変更することが可能である構成であってもよいし、図19および図20に示すように、X方向および径方向Yのいずれか一方の方向に加速度センサ14の位置を変更可能であってもよい。 As shown in FIGS. 16 to 18, the position changing unit 50 can change the position of the acceleration sensor 14 along the X direction, and changes the position of the acceleration sensor 14 along the radial direction Y. It may be possible to change the position of the acceleration sensor 14 in either the X direction or the radial direction Y, as shown in FIGS. 19 and 20.
 [変形例1]
 図21は、本開示の第1の実施の形態に係る切削システムの変形例1を示す図である。
[Modification 1]
FIG. 21 is a diagram showing a modified example 1 of the cutting system according to the first embodiment of the present disclosure.
 図21を参照して、変形例1に係る切削システム203は、図9に示す工作機械202の代わりに工作機械204を備える。工作機械204は、図9に示す切削工具101の代わりに切削工具102を含む。切削工具102は、図9に示す加速度センサ14の代わりに歪センサ19を有する。 With reference to FIG. 21, the cutting system 203 according to the first modification includes a machine tool 204 instead of the machine tool 202 shown in FIG. The machine tool 204 includes a cutting tool 102 instead of the cutting tool 101 shown in FIG. The cutting tool 102 has a strain sensor 19 instead of the acceleration sensor 14 shown in FIG.
 位置変更部50は、シャフト部11における歪センサ19の取付位置を変更可能である。 The position changing portion 50 can change the mounting position of the strain sensor 19 on the shaft portion 11.
 具体的には、たとえば、位置変更部50は、シャフト部11の軸方向、すなわち、中心軸17に沿った方向に歪センサ19の位置を変更することが可能である。 Specifically, for example, the position changing portion 50 can change the position of the strain sensor 19 in the axial direction of the shaft portion 11, that is, in the direction along the central axis 17.
 また、位置変更部50は、たとえば、シャフト部11の径方向に沿った方向に歪センサ19の位置を変更することが可能である。 Further, the position changing portion 50 can change the position of the strain sensor 19 in a direction along the radial direction of the shaft portion 11, for example.
 位置変更部50による歪センサ19の位置の変更方法は、図9に示す切削システム201における加速度センサ14の位置の変更方法と同様である。 The method of changing the position of the strain sensor 19 by the position changing unit 50 is the same as the method of changing the position of the acceleration sensor 14 in the cutting system 201 shown in FIG.
 切削工具102は、歪センサ19の計測結果を示すセンサ情報を含む無線信号を送信する。 The cutting tool 102 transmits a radio signal including sensor information indicating the measurement result of the strain sensor 19.
 管理装置301は、切削工具101からセンサ情報を含む無線信号を受信し、受信したセンサ情報が示す計測結果を処理する。具体的には、たとえば、管理装置301は、受信したセンサ情報が示す計測結果を解析する。 The management device 301 receives a wireless signal including sensor information from the cutting tool 101, and processes the measurement result indicated by the received sensor information. Specifically, for example, the management device 301 analyzes the measurement result indicated by the received sensor information.
 図22は、本開示の第1の実施の形態の変形例1に係る切削工具を模式的に示す側面図である。具体的には、図22は、図21に示す切削工具102を片持ち梁とみなした場合の切削工具の模式的側面図である。 FIG. 22 is a side view schematically showing a cutting tool according to a modification 1 of the first embodiment of the present disclosure. Specifically, FIG. 22 is a schematic side view of the cutting tool when the cutting tool 102 shown in FIG. 21 is regarded as a cantilever.
 図22を参照して、切削工具102の端部に位置する刃取付部12または刃部に、負荷すなわち切削抵抗Fが加えられる場合を想定する。 With reference to FIG. 22, it is assumed that a load, that is, a cutting resistance F is applied to the blade mounting portion 12 or the blade portion located at the end of the cutting tool 102.
 図23は、本開示の第1の実施の形態の変形例1における切削工具についてシミュレーションを行った結果を示すグラフである。具体的には、図23は、図21に示す切削工具についてシミュレーションを行った結果を示すグラフである。 FIG. 23 is a graph showing the result of simulating the cutting tool in the first modification of the first embodiment of the present disclosure. Specifically, FIG. 23 is a graph showing the results of simulating the cutting tool shown in FIG. 21.
 図23における横軸および縦軸は、それぞれ、切削工具102を片持ち梁とみなした場合における片持ち梁の支点からの距離、および歪を示している。 The horizontal axis and the vertical axis in FIG. 23 show the distance from the fulcrum of the cantilever and the strain when the cutting tool 102 is regarded as the cantilever, respectively.
 図23に示すシミュレーション結果から、切削工具102の支点に近いほど、換言すれば、刃取付部12または刃部から遠いほど、切削工具102の歪が大きくなることが分かる。このため、切削工具102における歪センサ19の取付位置が切削工具102の支点に近いほど、歪センサ19の感度が高くなる。 From the simulation results shown in FIG. 23, it can be seen that the closer to the fulcrum of the cutting tool 102, in other words, the farther from the blade mounting portion 12 or the blade portion, the greater the distortion of the cutting tool 102. Therefore, the closer the mounting position of the strain sensor 19 on the cutting tool 102 is to the fulcrum of the cutting tool 102, the higher the sensitivity of the strain sensor 19.
 以上のことから、負荷の大きい加工条件下において歪を計測する場合には、切削工具102の端部に近い位置に歪センサ19を取り付ける一方で、負荷の小さい加工条件下において歪を計測する場合には、切削工具102の支点すなわち根本部に近い位置に歪センサ19を取り付ける。これにより、負荷が大きい場合には意図的に加速度センサの感度を低下させ、負荷が小さい場合には意図的に加速度センサの感度を高めることができる。 From the above, when measuring the strain under a machining condition with a large load, the strain sensor 19 is attached at a position close to the end of the cutting tool 102, while the strain is measured under a machining condition with a small load. The strain sensor 19 is attached to the fulcrum of the cutting tool 102, that is, at a position close to the root portion. As a result, when the load is large, the sensitivity of the acceleration sensor can be intentionally lowered, and when the load is small, the sensitivity of the acceleration sensor can be intentionally increased.
 したがって、切削工具102に加えられる負荷の程度に応じて歪センサ19の位置を変更することにより、多様な加工条件下において歪を計測することができる。 Therefore, by changing the position of the strain sensor 19 according to the degree of the load applied to the cutting tool 102, the strain can be measured under various machining conditions.
 その他の構成は、上述した切削システム201と同様であるため、ここでは詳細な説明を繰り返さない。 Other configurations are the same as the cutting system 201 described above, so detailed description will not be repeated here.
 [変形例2]
 図24は、本開示の第1の実施の形態の変形例2に係る切削システムを示す図である。
[Modification 2]
FIG. 24 is a diagram showing a cutting system according to a second modification of the first embodiment of the present disclosure.
 図24を参照して、変形例2に係る切削システム205は、図9に示す工作機械202の代わりに工作機械206を備える。工作機械206は、図9に示す切削工具101の代わりに切削工具103を含む。切削工具103は、図9に示す加速度センサ14に加えて、さらに、温度センサ26および音センサ27を含む。 With reference to FIG. 24, the cutting system 205 according to the second modification includes a machine tool 206 instead of the machine tool 202 shown in FIG. The machine tool 206 includes a cutting tool 103 instead of the cutting tool 101 shown in FIG. The cutting tool 103 further includes a temperature sensor 26 and a sound sensor 27 in addition to the acceleration sensor 14 shown in FIG.
 図24に示す例では、温度センサ26および音センサ27は、加速度センサ14を支持する台座部51とは別に設けられた台座部51に支持される。温度センサ26および音センサ27を支持する台座部51は、加速度センサ14を支持する台座部51とは異なる位置に取り付けられる。たとえば、温度センサ26および音センサ27を支持する台座部51は、雄ねじ部材54により、第3のセンサ位置A3に取り付けられる。 In the example shown in FIG. 24, the temperature sensor 26 and the sound sensor 27 are supported by a pedestal portion 51 provided separately from the pedestal portion 51 that supports the acceleration sensor 14. The pedestal portion 51 that supports the temperature sensor 26 and the sound sensor 27 is attached at a position different from that of the pedestal portion 51 that supports the acceleration sensor 14. For example, the pedestal portion 51 that supports the temperature sensor 26 and the sound sensor 27 is attached to the third sensor position A3 by the male screw member 54.
 位置変更部50は、シャフト部11における加速度センサ14、温度センサ26および音センサ27の取付位置を変更可能である。 The position changing unit 50 can change the mounting positions of the acceleration sensor 14, the temperature sensor 26, and the sound sensor 27 on the shaft unit 11.
 具体的には、たとえば、位置変更部50は、シャフト部11の軸方向、すなわち、中心軸17に沿った方向に加速度センサ14、温度センサ26および音センサ27の位置を変更することが可能である。 Specifically, for example, the position changing unit 50 can change the positions of the acceleration sensor 14, the temperature sensor 26, and the sound sensor 27 in the axial direction of the shaft unit 11, that is, in the direction along the central axis 17. is there.
 また、位置変更部50は、たとえば、シャフト部11の径方向に沿った方向に加速度センサ14、温度センサ26および音センサ27の位置を変更することが可能である。 Further, the position changing unit 50 can change the positions of the acceleration sensor 14, the temperature sensor 26, and the sound sensor 27 in the direction along the radial direction of the shaft unit 11, for example.
 切削工具103は、加速度センサ14、温度センサ26および音センサ27の各計測結果を示すセンサ情報を含む無線信号を送信する。 The cutting tool 103 transmits a radio signal including sensor information indicating the measurement results of the acceleration sensor 14, the temperature sensor 26, and the sound sensor 27.
 管理装置301は、切削工具101からセンサ情報を含む無線信号を受信し、受信したセンサ情報が示す各計測結果を処理する。具体的には、たとえば、管理装置301は、受信したセンサ情報が示す各計測結果を解析する。 The management device 301 receives a wireless signal including sensor information from the cutting tool 101, and processes each measurement result indicated by the received sensor information. Specifically, for example, the management device 301 analyzes each measurement result indicated by the received sensor information.
 なお、切削工具103は、温度センサ26および音センサ27のいずれか一方を含まない構成であってもよい。 The cutting tool 103 may be configured not to include either the temperature sensor 26 or the sound sensor 27.
 その他の構成は、上述した切削システム201と同様であるため、ここでは詳細な説明を繰り返さない。 Other configurations are the same as the cutting system 201 described above, so detailed description will not be repeated here.
 ところで、切削工具にセンサを取り付けることにより、切削工具による加工の状態を示す物理量を計測することができる。このような計測を用いた優れた技術が望まれる。 By the way, by attaching a sensor to the cutting tool, it is possible to measure a physical quantity that indicates the state of machining by the cutting tool. An excellent technique using such measurement is desired.
 これに対して、本開示の第1の実施の形態に係る切削工具は、センサを取り付け可能なシャフト部11と、シャフト部11におけるセンサの取付位置を変更可能な位置変更部50とを備える。 On the other hand, the cutting tool according to the first embodiment of the present disclosure includes a shaft portion 11 to which a sensor can be attached and a position changing portion 50 to which the attachment position of the sensor on the shaft portion 11 can be changed.
 このように、シャフト部11におけるセンサの取付位置を変更可能な構成により、加速度の計測結果の大きさをセンサの位置変更によって変えることができる。これにより、加工条件に応じてセンサの感度を容易に変更することができる。 In this way, the size of the acceleration measurement result can be changed by changing the position of the sensor due to the configuration in which the mounting position of the sensor on the shaft portion 11 can be changed. Thereby, the sensitivity of the sensor can be easily changed according to the processing conditions.
 したがって、本開示の第1の実施の形態に係る切削工具では、より多様な加工条件下において切削工具101の状態を計測することができる。 Therefore, the cutting tool according to the first embodiment of the present disclosure can measure the state of the cutting tool 101 under a wider variety of machining conditions.
 また、本開示の第1の実施の形態に係る切削工具では、シャフト部11は、円柱形状であり、切削工具101は、転削工具である。 Further, in the cutting tool according to the first embodiment of the present disclosure, the shaft portion 11 has a cylindrical shape, and the cutting tool 101 is a rolling tool.
 このような構成により、たとえば、シャフト部11の回転速度等の加工条件に応じて加速度センサ14の感度を変更することができる。 With such a configuration, the sensitivity of the acceleration sensor 14 can be changed according to processing conditions such as the rotation speed of the shaft portion 11.
 また、本開示の第1の実施の形態に係る切削工具では、位置変更部50は、シャフト部11の軸方向に沿ってセンサの位置を変更することが可能である。 Further, in the cutting tool according to the first embodiment of the present disclosure, the position changing portion 50 can change the position of the sensor along the axial direction of the shaft portion 11.
 このような構成により、切削対象物を切削している際に切削工具101に発生する加速度を計測可能なセンサの位置を変更して、当該センサの計測結果の感度を変更することができる。したがって、切削対象物を切削している際に切削工具101に発生する加速度等を計測することができる。また、シャフト部11の軸方向に沿った方向のセンサの位置は、切削に伴い切削工具101に発生する変位のうちの曲げの成分に関与することから、このような構成により、当該曲げの成分に関する値を算出することができる。 With such a configuration, the position of the sensor capable of measuring the acceleration generated in the cutting tool 101 when cutting the object to be cut can be changed, and the sensitivity of the measurement result of the sensor can be changed. Therefore, it is possible to measure the acceleration and the like generated in the cutting tool 101 while cutting the object to be cut. Further, since the position of the sensor in the direction along the axial direction of the shaft portion 11 is involved in the bending component of the displacement generated in the cutting tool 101 due to cutting, the bending component is formed by such a configuration. You can calculate the value for.
 また、本開示の第1の実施の形態に係る切削工具では、位置変更部50は、シャフト部11の径方向に沿ってセンサの位置を変更することが可能である。 Further, in the cutting tool according to the first embodiment of the present disclosure, the position changing portion 50 can change the position of the sensor along the radial direction of the shaft portion 11.
 このような構成により、切削対象物を切削しているか否かに拘わらず切削工具101の回転時に発生する遠心加速度を計測可能なセンサの位置を変更して、当該センサの計測結果の感度を変更することができる。したがって、切削工具101の回転時に切削工具101に発生する遠心加速度を計測することができる。また、シャフト部11の径方向に沿った方向のセンサの位置は、切削に伴い切削工具101に発生する変位のうちのねじりの成分に関与することから、このような構成により、当該ねじりの成分に関する値を算出することができる。 With such a configuration, the position of the sensor capable of measuring the centrifugal acceleration generated when the cutting tool 101 rotates regardless of whether or not the object to be cut is being cut is changed, and the sensitivity of the measurement result of the sensor is changed. can do. Therefore, the centrifugal acceleration generated in the cutting tool 101 when the cutting tool 101 is rotated can be measured. Further, since the position of the sensor in the radial direction of the shaft portion 11 is involved in the torsional component of the displacement generated in the cutting tool 101 due to cutting, the torsional component is formed by such a configuration. You can calculate the value for.
 また、本開示の第1の実施の形態に係る切削工具では、位置変更部50は、シャフト部11の軸方向に沿ってセンサの位置を変更することが可能であり、かつシャフト部11の径方向に沿ってセンサの位置を変更することが可能である。 Further, in the cutting tool according to the first embodiment of the present disclosure, the position changing portion 50 can change the position of the sensor along the axial direction of the shaft portion 11, and the diameter of the shaft portion 11 It is possible to change the position of the sensor along the direction.
 このような構成により、切削対象物を切削している際に切削工具101に発生する加速度等を計測可能なセンサの位置を変更して、センサの計測結果の感度を変更することができる。これにより、切削対象物を切削している際に切削工具101に発生する加速度等を計測することができる。また、切削対象物を切削しているか否かに拘わらず切削工具101の回転時に発生する遠心加速度等を計測可能なセンサの位置を変更して、当該センサの計測結果の感度を変更することができる。これにより、切削工具101の回転時に切削工具101に発生する遠心加速度等を計測することができる。また、シャフト部11の軸方向に沿った方向のセンサの位置は、切削に伴い切削工具101に発生する変位のうちの曲げの成分に関与することから、当該曲げの成分に関する値を算出することができる。また、シャフト部11の径方向に沿った方向のセンサの位置は、切削に伴い切削工具101に発生する変位のうちのねじりの成分に関与することから、上記構成により、当該ねじりの成分に関する値を算出することができる。 With such a configuration, it is possible to change the position of the sensor capable of measuring the acceleration generated in the cutting tool 101 when cutting the object to be cut, and change the sensitivity of the measurement result of the sensor. This makes it possible to measure the acceleration and the like generated in the cutting tool 101 while cutting the object to be cut. Further, the sensitivity of the measurement result of the sensor can be changed by changing the position of the sensor capable of measuring the centrifugal acceleration generated when the cutting tool 101 rotates regardless of whether or not the object to be cut is being cut. it can. As a result, it is possible to measure the centrifugal acceleration and the like generated in the cutting tool 101 when the cutting tool 101 is rotated. Further, since the position of the sensor in the direction along the axial direction of the shaft portion 11 is involved in the bending component of the displacement generated in the cutting tool 101 due to cutting, the value related to the bending component is calculated. Can be done. Further, since the position of the sensor in the radial direction of the shaft portion 11 is involved in the torsional component of the displacement generated in the cutting tool 101 due to cutting, the value relating to the torsional component is obtained by the above configuration. Can be calculated.
 また、本開示の第1の実施の形態に係る切削工具では、切削工具101は、さらに、シャフト部11に取り付けられたセンサを備える。 Further, in the cutting tool according to the first embodiment of the present disclosure, the cutting tool 101 further includes a sensor attached to the shaft portion 11.
 このような構成により、より多様な加工条件下において切削工具101の状態を計測することが可能なセンサ付きの切削工具101を提供することができる。 With such a configuration, it is possible to provide a cutting tool 101 with a sensor capable of measuring the state of the cutting tool 101 under a wider variety of machining conditions.
 また、本開示の第1の実施の形態に係る切削工具では、上記センサは、加速度センサ14であり、加速度センサ14の計測方向141は、シャフト部11の中心軸17を法線とする平面18に沿った方向であって、加速度センサ14と中心軸17とを結ぶ直線に対して直交する方向に沿う。 Further, in the cutting tool according to the first embodiment of the present disclosure, the sensor is an acceleration sensor 14, and the measurement direction 141 of the acceleration sensor 14 is a plane 18 whose normal line is the central axis 17 of the shaft portion 11. Along the direction perpendicular to the straight line connecting the acceleration sensor 14 and the central axis 17.
 このような構成により、切削対象物との接触に伴う振動等の加速度を計測することができる。 With such a configuration, it is possible to measure acceleration such as vibration caused by contact with an object to be cut.
 また、本開示の第1の実施の形態に係る切削工具では、切削工具101は、歪センサ19、温度センサ26および音センサ27のうちの少なくともいずれか1つを上記センサとして備える。 Further, in the cutting tool according to the first embodiment of the present disclosure, the cutting tool 101 includes at least one of a strain sensor 19, a temperature sensor 26, and a sound sensor 27 as the sensor.
 このような構成により、たとえば、シャフト部11に発生する歪の異常な増大、シャフト部11に異常な振動が発生した場合の摩擦熱および異音、のうちの少なくともいずれか1つを検出することができる。 With such a configuration, for example, at least one of an abnormal increase in strain generated in the shaft portion 11 and frictional heat and abnormal noise when an abnormal vibration is generated in the shaft portion 11 can be detected. Can be done.
 また、本開示の第1の実施の形態に係る切削工具では、切削工具101は、さらに、無線通信装置23を備える。無線通信装置23は、センサの計測結果を示すセンサ情報を送信する。 Further, in the cutting tool according to the first embodiment of the present disclosure, the cutting tool 101 further includes a wireless communication device 23. The wireless communication device 23 transmits sensor information indicating the measurement result of the sensor.
 このような構成により、たとえば、受信側の装置において、各センサの計測結果を用いた異常検知等の処理を行うことができる。 With such a configuration, for example, in the device on the receiving side, it is possible to perform processing such as abnormality detection using the measurement results of each sensor.
 また、本開示の第1の実施の形態に係る切削システムは、切削工具101と、管理装置301とを備える。管理装置301は、切削工具101からセンサ情報を受信する。 Further, the cutting system according to the first embodiment of the present disclosure includes a cutting tool 101 and a management device 301. The management device 301 receives sensor information from the cutting tool 101.
 このように、シャフト部11におけるセンサの取付位置を変更可能な構成により、加速度等の計測結果の大きさをセンサの位置変更によって変えることができる。これにより、加工条件に応じてセンサの感度を容易に変更することができる。 In this way, the size of the measurement result such as acceleration can be changed by changing the position of the sensor due to the configuration in which the mounting position of the sensor on the shaft portion 11 can be changed. Thereby, the sensitivity of the sensor can be easily changed according to the processing conditions.
 したがって、本開示の第1の実施の形態に係る切削システムでは、より多様な加工条件下において切削工具101の状態を計測することができる。また、たとえば、管理装置301において、各センサの計測結果を用いた異常検知等の処理を行うことができる。 Therefore, in the cutting system according to the first embodiment of the present disclosure, the state of the cutting tool 101 can be measured under a wider variety of machining conditions. Further, for example, in the management device 301, processing such as abnormality detection using the measurement results of each sensor can be performed.
 また、本開示の第1の実施の形態に係る切削工具では、シャフト部11は、棒形状であり、拡径部15を含む。拡径部15は、シャフト部11のうちの他の部分よりも径が太く、センサを取り付け可能である。位置変更部50は、拡径部15におけるセンサの取付位置を変更可能である。 Further, in the cutting tool according to the first embodiment of the present disclosure, the shaft portion 11 has a rod shape and includes the enlarged diameter portion 15. The diameter-expanded portion 15 has a larger diameter than the other portions of the shaft portion 11, and a sensor can be attached to the enlarged diameter portion 15. The position changing portion 50 can change the mounting position of the sensor in the enlarged diameter portion 15.
 このような構成により、拡径部15によりシャフト部11の剛性が確保されるため、たとえば、シャフト部11の一部を除去してセンサを取り付ける場合であっても、シャフト部11の剛性を確保しつつ、シャフト部11にセンサを取り付けることができる。 With such a configuration, the rigidity of the shaft portion 11 is ensured by the enlarged diameter portion 15, so that the rigidity of the shaft portion 11 is ensured even when a part of the shaft portion 11 is removed and the sensor is attached, for example. While doing so, the sensor can be attached to the shaft portion 11.
 また、本開示の第1の実施の形態に係る切削工具では、拡径部15は、シャフト部11の中心軸17と平行でかつ平坦な表面55を有する。拡径部15は、表面55に対して中心軸17の反対側の部分が除去された形状である。 Further, in the cutting tool according to the first embodiment of the present disclosure, the enlarged diameter portion 15 has a flat surface 55 parallel to the central axis 17 of the shaft portion 11. The enlarged diameter portion 15 has a shape in which a portion opposite to the central axis 17 with respect to the surface 55 is removed.
 平坦な表面55には、センサを取り付けやすく、また、平坦な表面55には、センサの位置を調節する部材を取り付けやすいことから、シャフト部11の径方向Yにおいてセンサの位置を容易に変更することができる。 Since the sensor can be easily attached to the flat surface 55 and the member for adjusting the position of the sensor can be easily attached to the flat surface 55, the position of the sensor can be easily changed in the radial direction Y of the shaft portion 11. be able to.
 また、本開示の第1の実施の形態に係る切削工具では、拡径部15は、表面55の一部において開口し、かつ中心軸17側に凹む凹部16を有する。凹部16の底面161は、表面55に対して平行な平面である。 Further, in the cutting tool according to the first embodiment of the present disclosure, the enlarged diameter portion 15 has a recess 16 which is open at a part of the surface 55 and is recessed toward the central axis 17. The bottom surface 161 of the recess 16 is a plane parallel to the surface 55.
 平面である底面161には、センサを取り付けやすく、また、底面161にセンサを取り付けることにより、たとえば、位置変更板56を用いてシャフト部11の径方向Yにおいてセンサ位置を変更することができる。したがって、センサの位置を容易に変更することができる。 It is easy to attach the sensor to the flat bottom surface 161 and, by attaching the sensor to the bottom surface 161 it is possible to change the sensor position in the radial direction Y of the shaft portion 11 using, for example, the position changing plate 56. Therefore, the position of the sensor can be easily changed.
 次に、本開示の他の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。 Next, other embodiments of the present disclosure will be described with reference to the drawings. The same or corresponding parts in the drawings are designated by the same reference numerals, and the description thereof will not be repeated.
<第2の実施の形態>
 本開示の第2の実施の形態は、第1の実施の形態に係る切削システム201等の切削システムを用いる処理方法に関する。以下で説明する内容以外は第1の実施の形態に係る切削システム201と同様である。以下では、一例として、切削システム201を用いる場合の処理方法について説明する。
<Second embodiment>
The second embodiment of the present disclosure relates to a processing method using a cutting system such as the cutting system 201 according to the first embodiment. Except for the contents described below, the cutting system 201 is the same as that of the first embodiment. Hereinafter, as an example, a processing method when the cutting system 201 is used will be described.
 本開示の第2の実施の形態に係る切削システム201の管理装置301における無線通信部31は、工作機械202に取り付けられた切削工具101により切削対象物の切削が行われ、位置変更部50によりセンサの取付位置が変更され、センサの取付位置が変更された切削工具101により切削対象物の切削が行われる際に、保存処理部として、各切削が行われるごとにセンサの計測結果を記憶部35に書き込む。 In the wireless communication unit 31 of the management device 301 of the cutting system 201 according to the second embodiment of the present disclosure, the object to be cut is cut by the cutting tool 101 attached to the machine tool 202, and the position changing unit 50 cuts the object to be cut. When the mounting position of the sensor is changed and the cutting tool 101 whose mounting position of the sensor is changed cuts the object to be cut, the storage processing unit stores the measurement result of the sensor each time the cutting is performed. Write in 35.
 制御部32は、無線通信部31によって書き込まれた各計測結果を処理する。 The control unit 32 processes each measurement result written by the wireless communication unit 31.
 図25は、本開示の第2の実施の形態に係る処理方法の手順を定めたフローチャートである。 FIG. 25 is a flowchart defining the procedure of the processing method according to the second embodiment of the present disclosure.
 図25を参照して、本開示の第2の実施の形態に係る処理方法Mは、切削工具101を用いる処理方法である。 With reference to FIG. 25, the processing method M according to the second embodiment of the present disclosure is a processing method using a cutting tool 101.
 処理方法Mでは、まず、工作機械202は、切削工具101により切削対象物の切削を行う(ステップS201)。 In the processing method M, first, the machine tool 202 cuts the object to be cut by the cutting tool 101 (step S201).
 次に、管理装置301は、センサの計測結果を蓄積する(ステップS203)。 Next, the management device 301 accumulates the measurement results of the sensor (step S203).
 次に、ユーザは、切削工具101の位置変更部50によりセンサの位置を変更する(ステップS205)。 Next, the user changes the position of the sensor by the position changing portion 50 of the cutting tool 101 (step S205).
 次に、工作機械202は、センサの位置が変更された切削工具101により、切削対象物の切削を行う(ステップS207)。 Next, the machine tool 202 cuts the object to be cut by the cutting tool 101 whose sensor position has been changed (step S207).
 次に、管理装置301は、センサの計測結果を蓄積する(ステップS209)。 Next, the management device 301 accumulates the measurement results of the sensor (step S209).
 次に、管理装置301は、蓄積した各計測結果を処理する(ステップS211)。 Next, the management device 301 processes each accumulated measurement result (step S211).
 なお、処理方法Mでは、複数のセンサを用いてもよいし、1つのセンサを用いてもよく、たとえば、加速度センサ14または歪センサ19を1つ用いてもよい。また、処理方法Mでは、加速度センサ14および歪センサ19とは異なる種類のセンサを1または複数用いてもよい。 In the processing method M, a plurality of sensors may be used, one sensor may be used, and for example, one acceleration sensor 14 or one strain sensor 19 may be used. Further, in the processing method M, one or a plurality of sensors different from the acceleration sensor 14 and the strain sensor 19 may be used.
 より詳細には、処理方法Mは、たとえば、工作機械の切削に不具合があった場合に、その原因を検証する場合に用いられる。 More specifically, the processing method M is used, for example, when there is a problem in cutting of a machine tool and the cause is verified.
 具体的には、処理方法Mは、たとえば、工作機械202において、不具合の原因が切削工具以外の部分、たとえば、切削工具101を保持する工具ホルダ210、および工具ホルダ210を保持する主軸220にあるのかどうかを判定する方法である。 Specifically, in the machine tool 202, for example, the cause of the defect is a portion other than the cutting tool, for example, a tool holder 210 for holding the cutting tool 101 and a spindle 220 for holding the tool holder 210. It is a method of determining whether or not.
 図25に示す処理方法Mでは、まず、ユーザは、工作機械202の工具ホルダに切削工具101を取り付けて、切削工具101により切削対象物の切削を行い(ステップS201)、加速度センサ14の計測結果を管理装置301に蓄積する(ステップS203)。 In the processing method M shown in FIG. 25, the user first attaches the cutting tool 101 to the tool holder of the machine tool 202, cuts the object to be cut by the cutting tool 101 (step S201), and measures the acceleration sensor 14. Is stored in the management device 301 (step S203).
 次に、ユーザは、切削工具101における加速度センサ14の位置を変更する(ステップS205)。 Next, the user changes the position of the acceleration sensor 14 on the cutting tool 101 (step S205).
 次に、ユーザは、工作機械202の工具ホルダ210に、加速度センサ14の位置が変更された切削工具101を取り付けて、切削工具101により切削対象物の切削を行い(ステップS207)、加速度センサ14の計測結果を管理装置301に蓄積する(ステップS209)。 Next, the user attaches the cutting tool 101 whose position of the acceleration sensor 14 has been changed to the tool holder 210 of the machine tool 202, cuts the object to be cut by the cutting tool 101 (step S207), and the acceleration sensor 14 The measurement result of is stored in the management device 301 (step S209).
 次に、ユーザは、管理装置301を用いて、蓄積された加速度センサ14の計測結果を解析する。なお、管理装置301は、計測結果の解析に限らず、他の種類の処理を行う構成であってもよい(ステップS211)。 Next, the user analyzes the accumulated measurement result of the acceleration sensor 14 using the management device 301. The management device 301 is not limited to the analysis of the measurement result, and may be configured to perform other types of processing (step S211).
 処理方法Mでは、加速度センサ14の計測結果を、第1の実施の形態と比べてさらに有意に用いることができる。以下、詳細に説明する。 In the processing method M, the measurement result of the acceleration sensor 14 can be used more significantly as compared with the first embodiment. Hereinafter, a detailed description will be given.
 図26は、本開示の第2の実施の形態における係る切削工具、工具ホルダおよび主軸を模式的に示す側面図である。 FIG. 26 is a side view schematically showing the cutting tool, the tool holder, and the spindle according to the second embodiment of the present disclosure.
 図26においては、理解を容易にするため、工具ホルダ210および主軸220を一体化して1つの部材として示す。一体化した部材を、支持部材230とも称する。 In FIG. 26, the tool holder 210 and the spindle 220 are integrated and shown as one member for easy understanding. The integrated member is also referred to as a support member 230.
 図26を参照して、切削工具101に発生する曲げおよびねじり、ならびに支持部材230に発生する変位について説明する。 With reference to FIG. 26, bending and twisting that occur in the cutting tool 101, and displacement that occurs in the support member 230 will be described.
 切削工具101による切削を行う際に、切削対象物から切削工具101の刃部に荷重、すなわち切削抵抗F[N]が加わる場合を想定する。この場合、切削工具101に発生する曲げによる変位X1[mm]を、以下の式(2)により定式化することができる。 When cutting with the cutting tool 101, it is assumed that a load, that is, a cutting resistance F [N] is applied from the object to be cut to the blade portion of the cutting tool 101. In this case, the displacement X1 [mm] due to bending generated in the cutting tool 101 can be formulated by the following equation (2).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(2)において、dは切削工具101の端部から加速度の計測位置までの距離[mm]であり、Lは切削工具101の端部から支持部材230までの距離[mm]であり、Iは切削工具101の断面2次モーメント[mm^4]であり、Eは切削工具101のヤング率[MPa]である。 In the formula (2), d is the distance [mm] from the end of the cutting tool 101 to the measurement position of the acceleration, L is the distance [mm] from the end of the cutting tool 101 to the support member 230, and I. Is the cross-sectional secondary moment [mm ^ 4] of the cutting tool 101, and E is the Young ratio [MPa] of the cutting tool 101.
 また、切削工具101に切削抵抗Fが加わる場合、切削工具101に発生するねじりによる変位X2[mm]を、以下の式(3)により定式化することができる。 Further, when the cutting resistance F is added to the cutting tool 101, the displacement X2 [mm] due to the twist generated in the cutting tool 101 can be formulated by the following formula (3).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(3)において、dは切削工具101の端部から加速度の計測位置までの距離[mm]であり、Lは切削工具101の端部から支持部材230までの距離[mm]であり、rforceは切削抵抗Fの作用点および切削工具101の中心軸17間の距離[mm]であり、すなわち刃部および中心軸17間の距離、rsensorは加速度センサ14の取付位置および中心軸17間の距離[mm]であり、Gは切削工具101の横弾性係数[MPa]であり、Jは切削工具101の断面2次極モーメント[mm^4]である。 In the formula (3), d is the distance [mm] from the end of the cutting tool 101 to the measurement position of the acceleration, L is the distance [mm] from the end of the cutting tool 101 to the support member 230, and rforce. Is the point of action of the cutting resistance F and the distance [mm] between the central shaft 17 of the cutting tool 101, that is, the distance between the blade and the central shaft 17, and the riser is the mounting position of the acceleration sensor 14 and the distance between the central shaft 17. [Mm], G is the transverse elastic coefficient [MPa] of the cutting tool 101, and J is the cross-sectional secondary pole moment [mm ^ 4] of the cutting tool 101.
 また、切削工具101に切削抵抗Fが加わる場合、支持部材230に発生する変位X3[mm]を、以下の式(4)により定式化することができる。 Further, when the cutting resistance F is applied to the cutting tool 101, the displacement X3 [mm] generated in the support member 230 can be formulated by the following equation (4).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 式(4)において、K3は所定の係数[mm/N]である。 In equation (4), K3 is a predetermined coefficient [mm / N].
 式(2)~式(4)は、片持ち梁に荷重が加わったときのセンサの位置の変位が、当該位置において発生する加速度に比例することを前提とするものである。 Equations (2) to (4) are based on the premise that the displacement of the sensor position when a load is applied to the cantilever is proportional to the acceleration generated at that position.
 式(2)~式(4)をまとめると、式(5)および式(6)のように表すことができる。 Equations (2) to (4) can be summarized as equations (5) and (6).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 式(6)の右辺の大かっこ内において、左から1つ目の項をC1×P1、2つ目の項をC2×P2、3つ目の項をC3×P3と定義する。 In the brackets on the right side of equation (6), the first term from the left is defined as C1 × P1, the second term is defined as C2 × P2, and the third term is defined as C3 × P3.
 C1×P1、C2×P2、およびC3×P3は、それぞれ、切削工具101の曲げによる変位量、切削工具101のねじりによる変位量、および支持部材230の変位量に対応する。 C1 × P1, C2 × P2, and C3 × P3 correspond to the displacement amount due to bending of the cutting tool 101, the displacement amount due to twisting of the cutting tool 101, and the displacement amount of the support member 230, respectively.
 すなわち、上記1つ目の項において、(L^3)/(3EI)がC1であり、他の部分がP1である。また、上記2つ目の項において、rforce/(GJ)がC2であり、他の部分がP2である。また、上記3つ目の項において、1/K3がC3であり、P3は1である。 That is, in the first item above, (L ^ 3) / (3EI) is C1 and the other part is P1. Further, in the second item above, rforce / (GJ) is C2 and the other part is P2. Further, in the third item above, 1 / K3 is C3 and P3 is 1.
 式(6)を参照して、C1はヤング率Eおよび断面2次モーメントIによって決定され、C2は横弾性係数Gおよび断面2次極モーメントJによって決定され、C3は所定の係数K3によって決定される。ヤング率E、断面2次モーメントI、横弾性係数Gおよび断面2次極モーメントJは、切削工具101によって定まるため、事前に調査を実施すれば把握することができるが、把握に非常に手間がかかる。その一方で、所定の係数K3は支持部材230によって定まるため、測定することが困難である。また、P1により表されている数値は距離dおよび距離Lによって決定され、P2により表されている数値は距離d、距離Lおよび距離rsensorによって決定されるため、当該各数値は、センサの設置位置を把握できていれば計算が容易に可能である。 With reference to equation (6), C1 is determined by Young's modulus E and the moment of inertia of area I, C2 is determined by the modulus of lateral elasticity G and the moment of inertia of area J, and C3 is determined by the predetermined coefficient K3. To. Young's modulus E, moment of inertia of area I, transverse elastic modulus G and moment of inertia of area J are determined by the cutting tool 101 and can be grasped by conducting a survey in advance, but it is very troublesome to grasp. It takes. On the other hand, since the predetermined coefficient K3 is determined by the support member 230, it is difficult to measure. Further, since the numerical value represented by P1 is determined by the distance d and the distance L, and the numerical value represented by P2 is determined by the distance d, the distance L and the distance rsensol, each of the numerical values is the installation position of the sensor. If you can understand, the calculation is easy.
 図1に示す例では、8つのセンサ位置A1~A8が設けられているため、8つの位置の各々について、P1、P2およびP3、ならびに加速度の計測値accを以下の行列式(7)にまとめて記述する。 In the example shown in FIG. 1, since eight sensor positions A1 to A8 are provided, P1, P2 and P3, and the measured acceleration value acc are summarized in the following determinant (7) for each of the eight positions. Describe.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 式(7)の左辺において、たとえば、P11,P21,P31は、それぞれ、図1のセンサ位置A1におけるP1の値、センサ位置A1におけるP2の値、センサ位置A1におけるP3の値である。また、P12,P22,P32は、それぞれ、図1のセンサ位置A2におけるP1の値、センサ位置A2におけるP2の値、センサ位置A2におけるP3の値である。 On the left side of the equation (7), for example, P11, P21, and P31 are the value of P1 at the sensor position A1 in FIG. 1, the value of P2 at the sensor position A1, and the value of P3 at the sensor position A1, respectively. Further, P12, P22, and P32 are the value of P1 at the sensor position A2 in FIG. 1, the value of P2 at the sensor position A2, and the value of P3 at the sensor position A2, respectively.
 式(7)の右辺において、たとえば、acc1は図1のセンサ位置A1に加速度センサ14を取り付けた場合の計測結果であり、acc2は図1のセンサ位置A2に加速度センサ14を取り付けた場合の計測結果である。 On the right side of equation (7), for example, acc1 is the measurement result when the acceleration sensor 14 is attached to the sensor position A1 in FIG. 1, and acc2 is the measurement result when the acceleration sensor 14 is attached to the sensor position A2 in FIG. The result.
 式(7)の左辺に、式(7)におけるPに関する行列の逆行列を掛けると、以下の式(8)が導かれる。 Multiplying the left side of equation (7) by the inverse matrix of the matrix related to P in equation (7) leads to the following equation (8).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 すなわち、式(8)の右辺を計算することにより、左辺におけるC1、C2およびC3が算出される。 That is, by calculating the right side of the equation (8), C1, C2 and C3 on the left side are calculated.
 C1、C2およびC3を算出することにより、式(6)における右辺の大かっこ内の値、すなわちC1×P1、C2×P2、およびC3×P3をそれぞれ算出することができる。 By calculating C1, C2 and C3, the values in parentheses on the right side of the equation (6), that is, C1 × P1, C2 × P2, and C3 × P3, respectively, can be calculated.
 すなわち、切削工具101の曲げによる変位量、切削工具101のねじりによる変位量、および支持部材230の変位量を算出することができる。 That is, the amount of displacement due to bending of the cutting tool 101, the amount of displacement due to twisting of the cutting tool 101, and the amount of displacement of the support member 230 can be calculated.
 換言すれば、センサ位置A1~A8のそれぞれについて、加速度の計測結果における、切削工具101の曲げによる加速度、切削工具101のねじりによる加速度、および支持部材230の加速度の各成分の割合を算出することができる。 In other words, for each of the sensor positions A1 to A8, the ratio of each component of the acceleration due to bending of the cutting tool 101, the acceleration due to twisting of the cutting tool 101, and the acceleration of the support member 230 in the acceleration measurement result is calculated. Can be done.
 図27は、本開示の第2の実施の形態に係る処理方法により算出された、加速度の計測結果の3つの成分を示すグラフである。 FIG. 27 is a graph showing three components of the acceleration measurement result calculated by the processing method according to the second embodiment of the present disclosure.
 図27における横軸および縦軸は、それぞれ、図1に示すセンサ位置A1~A8、およびセンサ位置において発生した加速度を示している。 The horizontal axis and the vertical axis in FIG. 27 indicate the accelerations generated at the sensor positions A1 to A8 and the sensor positions shown in FIG. 1, respectively.
 図27は、センサ位置A1~A8における加速度の計測結果ごとに、切削工具101の曲げによる加速度の成分Xaの割合、切削工具101のねじりによる加速度の成分Xbの割合、および支持部材230の加速度の成分Xcの割合を示している。 FIG. 27 shows the ratio of the acceleration component Xa due to bending of the cutting tool 101, the ratio of the acceleration component Xb due to twisting of the cutting tool 101, and the acceleration of the support member 230 for each measurement result of the acceleration at the sensor positions A1 to A8. The ratio of the component Xc is shown.
 図22の内容について考察する。まず、成分Xaおよび成分Xbの和である成分Xabと、成分Xcとの大きさを比較することにより、切削中に計測位置において発生した加速度のうち、切削工具101に起因する加速度の大きさと支持部材230に起因する加速度の大きさとを比較することができる。 Consider the contents of FIG. 22. First, by comparing the magnitudes of the component Xab, which is the sum of the component Xa and the component Xb, and the component Xc, among the accelerations generated at the measurement position during cutting, the magnitude and support of the acceleration caused by the cutting tool 101. It is possible to compare with the magnitude of the acceleration caused by the member 230.
 比較の結果、Xabの大きさと比べて、成分Xcの大きさが大きすぎる場合には、たとえば、支持部材230の剛性が低すぎる、と判定することができる。すなわち、たとえば、工作機械202に不具合がある場合において、不具合の原因が工具ホルダ210および主軸220にあると判定することができる。 As a result of comparison, when the size of the component Xc is too large compared to the size of Xab, it can be determined that the rigidity of the support member 230 is too low, for example. That is, for example, when there is a defect in the machine tool 202, it can be determined that the cause of the defect is the tool holder 210 and the spindle 220.
 成分Xabの大きさと成分Xcの大きさとの比較は、たとえば、センサ位置A1~A8における成分Xabの平均値と成分Xcの大きさとの比較、または、センサ位置A1~A8における成分Xabの最大値と成分Xcの大きさとの比較である。 The comparison between the size of the component Xab and the size of the component Xc is, for example, a comparison between the average value of the component Xab at the sensor positions A1 to A8 and the size of the component Xc, or the maximum value of the component Xab at the sensor positions A1 to A8. It is a comparison with the size of the component Xc.
 また、加速度センサ14の取付位置が切削工具101の端部に近いほど、加速度センサ14の計測結果が大きくなる傾向がある。このため、センサ位置A1~A8間において加速度センサ14の取付位置を変更することにより、加速度センサ14の感度を調節することができる。したがって、切削工具101に加えられる切削抵抗Fの大きさに応じて、加速度センサ14の取付位置を変更することにより、加工条件に応じた適切な計測を行うことができる。 Further, the closer the mounting position of the acceleration sensor 14 is to the end of the cutting tool 101, the larger the measurement result of the acceleration sensor 14 tends to be. Therefore, the sensitivity of the acceleration sensor 14 can be adjusted by changing the mounting position of the acceleration sensor 14 between the sensor positions A1 to A8. Therefore, by changing the mounting position of the acceleration sensor 14 according to the magnitude of the cutting resistance F applied to the cutting tool 101, it is possible to perform appropriate measurement according to the machining conditions.
 次に、本開示の第2の実施の形態に係る管理装置301の処理の一例について説明する。 Next, an example of processing of the management device 301 according to the second embodiment of the present disclosure will be described.
 [動作の流れ]
 管理装置301は、記憶部35の一部または全部を含むコンピュータを備え、当該コンピュータにおけるCPU等の演算処理部は、以下のフローチャートおよびシーケンスの各ステップの一部または全部を含むプログラムを記憶部35等のメモリから読み出して実行する。この装置のプログラムは、外部からインストールすることができる。この装置のプログラムは、記録媒体に格納された状態で流通する。
[Operation flow]
The management device 301 includes a computer including a part or all of the storage unit 35, and an arithmetic processing unit such as a CPU in the computer stores a program including a part or all of each step of the following flowchart and sequence. Read from the memory such as, and execute. The program for this device can be installed externally. The program of this device is distributed in a state of being stored in a recording medium.
 図28は、本開示の第2の実施の形態に係る切削システムにおける管理装置の動作手順を定めたフローチャートである。 FIG. 28 is a flowchart defining the operation procedure of the management device in the cutting system according to the second embodiment of the present disclosure.
 図28を参照して、まず、無線通信部31は、工作機械202に取り付けられた切削工具101の無線通信装置23から、センサ情報および位置情報を含む無線信号を受信して、当該無線信号に含まれるセンサ情報の示す加速度センサ14の計測結果および位置情報を記憶部35に保存する。加速度センサ14は、切削工具101のセンサ位置A1に取り付けられている。上記位置情報は、センサ位置A1に対応する位置情報である(ステップS101)。 With reference to FIG. 28, first, the wireless communication unit 31 receives a wireless signal including sensor information and position information from the wireless communication device 23 of the cutting tool 101 attached to the machine tool 202, and converts the wireless signal into the wireless signal. The measurement result and the position information of the acceleration sensor 14 indicated by the included sensor information are stored in the storage unit 35. The acceleration sensor 14 is attached to the sensor position A1 of the cutting tool 101. The position information is the position information corresponding to the sensor position A1 (step S101).
 次に、無線通信部31は、ユーザにより加速度センサ14の位置がセンサ位置A2に変更され、工作機械202に取り付けられた切削工具101の無線通信装置23から、センサ情報を含む無線信号を受信して、当該無線信号に含まれるセンサ情報の示す加速度センサ14の計測結果および位置情報を記憶部35に保存する。上記位置情報は、センサ位置A2に対応する位置情報である(ステップS103)。 Next, the wireless communication unit 31 receives the wireless signal including the sensor information from the wireless communication device 23 of the cutting tool 101 attached to the machine tool 202 after the position of the acceleration sensor 14 is changed to the sensor position A2 by the user. The measurement result and the position information of the acceleration sensor 14 indicated by the sensor information included in the radio signal are stored in the storage unit 35. The position information is the position information corresponding to the sensor position A2 (step S103).
 以降、無線通信部31は、上記と同様の処理を、センサ位置A3~A8についても順次行う(ステップS105~S115)。 After that, the wireless communication unit 31 sequentially performs the same processing as described above for the sensor positions A3 to A8 (steps S105 to S115).
 次に、制御部32は、記憶部35に保存された各計測結果および各位置情報を処理する。具体的には、たとえば、各計測結果、各位置情報および式(2)~(8)に基づいて、センサ位置A1~A8のそれぞれについて、加速度の計測結果における、切削工具101の曲げによる加速度、切削工具101のねじりによる加速度、および支持部材230の加速度の各成分の割合を算出する(ステップS117)。 Next, the control unit 32 processes each measurement result and each position information stored in the storage unit 35. Specifically, for example, based on each measurement result, each position information, and equations (2) to (8), for each of the sensor positions A1 to A8, the acceleration due to bending of the cutting tool 101 in the acceleration measurement result, The ratio of each component of the acceleration due to the twist of the cutting tool 101 and the acceleration of the support member 230 is calculated (step S117).
 次に、表示部33は、センサ位置A1~A8における加速度の計測結果ごとに、切削工具101の曲げによる加速度の成分Xaの割合、切削工具101のねじりによる加速度の成分Xbの割合、および支持部材230の加速度の成分Xcの割合を、たとえば図27に示すようにグラフ化して表示する(ステップS119)。 Next, the display unit 33 displays the ratio of the acceleration component Xa due to bending of the cutting tool 101, the ratio of the acceleration component Xb due to twisting of the cutting tool 101, and the support member for each measurement result of the acceleration at the sensor positions A1 to A8. The ratio of the acceleration component Xc of 230 is displayed as a graph as shown in FIG. 27, for example (step S119).
 以上のように、本開示の第2の実施の形態に係る処理方法では、まず、ユーザは、工作機械202に取り付けられた切削工具101により切削対象物の切削を行う。次に、管理装置301は、センサの計測結果を蓄積する。次に、ユーザは、位置変更部50によりセンサの取付位置を変更する。次に、ユーザは、センサの取付位置が変更された切削工具101により切削対象物の切削を行う。次に、管理装置301は、センサの計測結果を蓄積する。次に、管理装置301は、蓄積した各計測結果を処理する。 As described above, in the processing method according to the second embodiment of the present disclosure, the user first cuts the object to be cut by the cutting tool 101 attached to the machine tool 202. Next, the management device 301 accumulates the measurement results of the sensor. Next, the user changes the mounting position of the sensor by the position changing unit 50. Next, the user cuts the object to be cut by the cutting tool 101 whose mounting position of the sensor is changed. Next, the management device 301 accumulates the measurement results of the sensor. Next, the management device 301 processes each accumulated measurement result.
 このように、シャフト部11におけるセンサの取付位置を変更可能な構成により、加速度等の計測結果の大きさをセンサの位置変更によって変えることができる。これにより、加工条件に応じてセンサの感度を容易に変更することができる。 In this way, the size of the measurement result such as acceleration can be changed by changing the position of the sensor due to the configuration in which the mounting position of the sensor on the shaft portion 11 can be changed. Thereby, the sensitivity of the sensor can be easily changed according to the processing conditions.
 したがって、本開示の第2の実施の形態に係る処理方法では、より多様な加工条件下において切削工具101の状態を計測することができる。 Therefore, in the processing method according to the second embodiment of the present disclosure, the state of the cutting tool 101 can be measured under a wider variety of machining conditions.
 また、複数の位置におけるセンサの計測結果に基づいて、たとえば、当該複数の位置の各々において発生する変位のうちの、切削工具の曲げによる成分、切削工具のねじりによる成分、および切削工具を支持する支持部材の変位の成分に関する値を算出することができる。すなわち、切削工具101の状態および切削工具101を支持する支持部材230の状態を把握することができる。 Further, based on the measurement results of the sensors at the plurality of positions, for example, among the displacements generated at each of the plurality of positions, the component due to the bending of the cutting tool, the component due to the twisting of the cutting tool, and the cutting tool are supported. The value related to the displacement component of the support member can be calculated. That is, the state of the cutting tool 101 and the state of the support member 230 that supports the cutting tool 101 can be grasped.
 また、本開示の第2の実施の形態に係る処理方法では、管理装置301は、計測結果から工作機械202に対応する成分を算出する。 Further, in the processing method according to the second embodiment of the present disclosure, the management device 301 calculates the component corresponding to the machine tool 202 from the measurement result.
 このような構成により、たとえば、工作機械202における、切削工具101を支持する支持部材230の状態を把握することができる。 With such a configuration, for example, the state of the support member 230 that supports the cutting tool 101 in the machine tool 202 can be grasped.
 また、本開示の第2の実施の形態に係る処理方法では、センサは加速度センサ14である。 Further, in the processing method according to the second embodiment of the present disclosure, the sensor is an acceleration sensor 14.
 このような構成により、複数の位置における加速度センサ14の計測結果に基づいて、たとえば、当該複数の位置の各々において発生する加速度のうちの、切削工具101の曲げによる加速度の成分に関する値、切削工具101のねじりによる加速度の成分に関する値、および切削工具101を支持する支持部材230の加速度の成分に関する値を算出することができる。したがって、切削工具101の状態および切削工具101を支持する支持部材230の状態を把握することができる。 With such a configuration, based on the measurement results of the acceleration sensor 14 at the plurality of positions, for example, the value related to the component of the acceleration due to the bending of the cutting tool 101 among the accelerations generated at each of the plurality of positions, the cutting tool. It is possible to calculate the value related to the acceleration component due to the twist of 101 and the value related to the acceleration component of the support member 230 that supports the cutting tool 101. Therefore, the state of the cutting tool 101 and the state of the support member 230 that supports the cutting tool 101 can be grasped.
 本開示の第2の実施の形態に係る管理装置301では、無線通信部31は、工作機械202に取り付けられた切削工具101により切削対象物の切削が行われ、位置変更部50によりセンサの取付位置が変更され、センサの取付位置が変更された切削工具101により切削対象物の切削が行われる際に、各切削が行われるごとにセンサの計測結果を記憶部35に書き込む。制御部32は、無線通信部31によって書き込まれた各計測結果を処理する。 In the management device 301 according to the second embodiment of the present disclosure, in the wireless communication unit 31, the cutting tool 101 attached to the machine tool 202 cuts the object to be cut, and the position changing unit 50 attaches the sensor. When the cutting tool 101 whose position has been changed and the mounting position of the sensor has been changed cuts the object to be cut, the measurement result of the sensor is written in the storage unit 35 each time each cutting is performed. The control unit 32 processes each measurement result written by the wireless communication unit 31.
 このように、シャフト部11におけるセンサの取付位置を変更可能な構成により、加速度等の計測結果の大きさをセンサの位置変更によって変えることができる。これにより、加工条件に応じてセンサの感度を容易に変更することができる。 In this way, the size of the measurement result such as acceleration can be changed by changing the position of the sensor due to the configuration in which the mounting position of the sensor on the shaft portion 11 can be changed. Thereby, the sensitivity of the sensor can be easily changed according to the processing conditions.
 したがって、本開示の第2の実施の形態に係る管理装置では、より多様な加工条件下において切削工具101の状態を計測することができる。 Therefore, the management device according to the second embodiment of the present disclosure can measure the state of the cutting tool 101 under a wider variety of machining conditions.
 また、複数の位置におけるセンサの計測結果に基づいて、たとえば、当該複数の位置の各々において発生する変位のうちの、切削工具101の曲げによる成分に関する値、切削工具101のねじりによる成分に関する値、および切削工具101を支持する支持部材の変位の成分に関する値を算出することができる。すなわち、切削工具101の状態および切削工具101を支持する支持部材230の状態を把握することができる。 Further, based on the measurement results of the sensors at the plurality of positions, for example, among the displacements generated at each of the plurality of positions, the value relating to the component due to bending of the cutting tool 101, the value relating to the component due to twisting of the cutting tool 101, And the value regarding the displacement component of the support member supporting the cutting tool 101 can be calculated. That is, the state of the cutting tool 101 and the state of the support member 230 that supports the cutting tool 101 can be grasped.
 上記実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The above embodiment should be considered to be exemplary in all respects and not restrictive. The scope of the present invention is shown by the claims rather than the above description, and it is intended to include all modifications within the meaning and scope equivalent to the claims.
 以上の説明は、以下に付記する特徴を含む。
 [付記1]
 センサを取り付け可能なシャフト部と、
 前記シャフト部における前記センサの取り付け位置を変更可能な位置変更部とを備え、
 シャフト部は、前記シャフト部のうちの他の部分よりも径が太く、前記センサを取り付け可能な拡径部を含み、
 前記位置変更部は、前記拡径部における前記センサの取り付け位置を変更可能であり、
 前記拡径部は、前記シャフト部の中心軸と平行でかつ平坦な表面を有し、
 前記拡径部は、前記表面に対して前記中心軸の反対側の部分が除去された形状であり、
 前記拡径部は、前記表面の一部において開口し、かつ前記中心軸側に凹む凹部を有し、
 前記凹部の底面は、前記表面に対して平行な平面である、切削工具。
The above description includes the features described below.
[Appendix 1]
The shaft part to which the sensor can be attached and
A position changing portion capable of changing the mounting position of the sensor on the shaft portion is provided.
The shaft portion has a larger diameter than the other portion of the shaft portion and includes an enlarged diameter portion to which the sensor can be attached.
The position changing portion can change the mounting position of the sensor in the enlarged diameter portion.
The enlarged diameter portion has a flat surface parallel to the central axis of the shaft portion.
The enlarged diameter portion has a shape in which a portion opposite to the central axis with respect to the surface is removed.
The enlarged diameter portion has a recess that is open at a part of the surface and is recessed on the central axis side.
A cutting tool in which the bottom surface of the recess is a flat surface parallel to the surface.
 11  シャフト部
 12  刃取付部
 14  加速度センサ
 15  拡径部
 17  中心軸
 18  平面
 19  歪センサ
 22  電池
 23  無線通信装置
 24  ハウジング
 26  温度センサ
 27  音センサ
 31  無線通信部
 32  制御部
 33  表示部
 35  記憶部
 36  操作入力部
 50  位置変更部
 51  台座部
 53,57,60  ねじ穴
 54,58  雄ねじ部材
 55  表面
 56  位置変更板
 101~103  切削工具
 111  シャンク
 143  直線
 161  底面
 201,203,205  切削システム
 202,204,206  工作機械
 210  工具ホルダ
 220  主軸
 230  支持部材
 301  管理装置
 A1~A8  センサ位置
11 Shaft part 12 Blade mounting part 14 Accelerometer 15 Expansion part 17 Central axis 18 Flat surface 19 Distortion sensor 22 Battery 23 Wireless communication device 24 Housing 26 Temperature sensor 27 Sound sensor 31 Wireless communication unit 32 Control unit 33 Display unit 35 Storage unit 36 Operation input part 50 Position change part 51 Pedestal part 53, 57, 60 Thread hole 54, 58 Male thread member 55 Surface 56 Position change plate 101-103 Cutting tool 111 Shank 143 Straight line 161 Bottom surface 201, 203, 205 Cutting system 202, 204, 206 Machine tool 210 Tool holder 220 Spindle 230 Support member 301 Management device A1 to A8 Sensor position

Claims (15)

  1.  センサを取り付け可能なシャフト部と、
     前記シャフト部における前記センサの取り付け位置を変更可能な位置変更部とを備える、切削工具。
    The shaft part to which the sensor can be attached and
    A cutting tool including a position changing portion capable of changing the mounting position of the sensor on the shaft portion.
  2.  前記シャフト部は、棒形状であり、拡径部を含み、
     前記拡径部は、前記シャフト部のうちの他の部分よりも径が太く、前記センサを取り付け可能であり、
     前記位置変更部は、前記拡径部における前記センサの取り付け位置を変更可能である、請求項1に記載の切削工具。
    The shaft portion has a rod shape and includes a diameter-expanded portion.
    The enlarged diameter portion has a larger diameter than the other portion of the shaft portion, and the sensor can be attached to the enlarged diameter portion.
    The cutting tool according to claim 1, wherein the position changing portion can change the mounting position of the sensor in the enlarged diameter portion.
  3.  前記位置変更部は、前記シャフト部の軸方向に沿って前記センサの位置を変更可能に構成されている、請求項1または請求項2に記載の切削工具。 The cutting tool according to claim 1 or 2, wherein the position changing portion is configured so that the position of the sensor can be changed along the axial direction of the shaft portion.
  4.  前記位置変更部は、前記シャフト部の径方向に沿って前記センサの位置を変更可能に構成されている、請求項1または請求項2に記載の切削工具。 The cutting tool according to claim 1 or 2, wherein the position changing portion is configured so that the position of the sensor can be changed along the radial direction of the shaft portion.
  5.  前記位置変更部は、前記シャフト部の軸方向に沿って前記センサの位置を変更可能に構成されており、かつ前記シャフト部の径方向に沿って前記センサの位置を変更可能に構成されている、請求項1または請求項2に記載の切削工具。 The position changing portion is configured so that the position of the sensor can be changed along the axial direction of the shaft portion, and the position of the sensor can be changed along the radial direction of the shaft portion. , The cutting tool according to claim 1 or 2.
  6.  前記切削工具は、さらに、
     前記シャフト部に取り付けられたセンサを備える、請求項1から請求項5のいずれか1項に記載の切削工具。
    The cutting tool further
    The cutting tool according to any one of claims 1 to 5, further comprising a sensor attached to the shaft portion.
  7.  前記センサは、加速度センサであり、
     前記加速度センサの計測方向は、前記シャフト部の回転軸を法線とする平面に沿った方向であって、前記加速度センサと前記回転軸とを結ぶ直線に対して直交する方向に沿う、請求項6に記載の切削工具。
    The sensor is an acceleration sensor.
    The claim that the measurement direction of the acceleration sensor is a direction along a plane having a rotation axis of the shaft portion as a normal line and along a direction orthogonal to a straight line connecting the acceleration sensor and the rotation axis. The cutting tool according to 6.
  8.  前記切削工具は、歪センサ、温度センサおよび音センサのうちの少なくともいずれか1つを前記センサとして備える、請求項6に記載の切削工具。 The cutting tool according to claim 6, wherein the cutting tool includes at least one of a strain sensor, a temperature sensor, and a sound sensor as the sensor.
  9.  前記切削工具は、さらに、
     無線通信装置を備え、
     前記無線通信装置は、前記センサの計測結果を示すセンサ情報を送信する、請求項6から請求項8のいずれか1項に記載の切削工具。
    The cutting tool further
    Equipped with wireless communication device
    The cutting tool according to any one of claims 6 to 8, wherein the wireless communication device transmits sensor information indicating a measurement result of the sensor.
  10.  前記シャフト部は、円柱形状であり、
     前記切削工具は、転削工具である、請求項1から請求項9のいずれか1項に記載の切削工具。
    The shaft portion has a cylindrical shape and has a cylindrical shape.
    The cutting tool according to any one of claims 1 to 9, wherein the cutting tool is a rolling tool.
  11.  請求項9に記載の切削工具と、
     管理装置とを備え、
     前記管理装置は、前記切削工具から前記センサの計測結果を示すセンサ情報を受信する、切削システム。
    The cutting tool according to claim 9 and
    Equipped with a management device
    The management device is a cutting system that receives sensor information indicating a measurement result of the sensor from the cutting tool.
  12.  切削工具を用いる処理方法であって、
     前記切削工具は、
     センサを取り付け可能なシャフト部と、
     前記シャフト部における前記センサの取り付け位置を変更可能な位置変更部とを備え、
     前記処理方法は、
     工作機械に取り付けられた前記切削工具により切削対象物の切削を行い、前記センサの計測結果を蓄積するステップと、
     前記位置変更部により前記センサの取り付け位置を変更するステップと、
     前記センサの取り付け位置が変更された前記切削工具により切削対象物の切削を行い、前記センサの計測結果を蓄積するステップと、
     蓄積した前記各計測結果を処理するステップとを含む、処理方法。
    It is a processing method that uses a cutting tool.
    The cutting tool
    The shaft part to which the sensor can be attached and
    A position changing portion capable of changing the mounting position of the sensor on the shaft portion is provided.
    The processing method is
    A step of cutting an object to be cut with the cutting tool attached to a machine tool and accumulating the measurement results of the sensor.
    The step of changing the mounting position of the sensor by the position changing portion, and
    A step of cutting an object to be cut with the cutting tool whose mounting position of the sensor has been changed and accumulating the measurement results of the sensor.
    A processing method including a step of processing each of the accumulated measurement results.
  13.  前記各計測結果を処理するステップにおいては、前記計測結果から前記工作機械に対応する成分を算出する、請求項12に記載の処理方法。 The processing method according to claim 12, wherein in the step of processing each measurement result, the component corresponding to the machine tool is calculated from the measurement result.
  14.  前記センサは加速度センサである、請求項12または請求項13に記載の処理方法。 The processing method according to claim 12, wherein the sensor is an acceleration sensor.
  15.  切削工具を管理する管理装置において用いられる処理プログラムであって、
     前記切削工具は、
     センサを取り付け可能なシャフト部と、
     前記シャフト部における前記センサの取り付け位置を変更可能な位置変更部とを備え、
     コンピュータを、
     工作機械に取り付けられた前切削工具により切削対象物の切削が行われ、前記位置変更部により前記センサの取り付け位置が変更され、前記センサの取り付け位置が変更された前記切削工具により切削対象物の切削が行われる際に、前記各切削が行われるごとに前記センサの計測結果を記憶部に書き込む保存処理部と、
     前記保存処理部によって書き込まれた前記各計測結果を処理する制御部、
    として機能させるための、処理プログラム。
    A processing program used in a management device that manages cutting tools.
    The cutting tool
    The shaft part to which the sensor can be attached and
    A position changing portion capable of changing the mounting position of the sensor on the shaft portion is provided.
    Computer,
    The object to be cut is cut by the pre-cutting tool attached to the machine tool, the attachment position of the sensor is changed by the position change portion, and the object to be cut is changed by the cutting tool whose attachment position of the sensor is changed. When cutting is performed, a storage processing unit that writes the measurement result of the sensor to a storage unit each time the cutting is performed, and a storage processing unit.
    A control unit that processes each measurement result written by the storage processing unit,
    A processing program to function as.
PCT/JP2020/032805 2019-09-09 2020-08-31 Cutting tool, cutting system, processing method, and processing program WO2021049337A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021510146A JP6885529B1 (en) 2019-09-09 2020-08-31 Cutting tools, cutting systems, processing methods and processing programs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019163698 2019-09-09
JP2019-163698 2019-09-09

Publications (1)

Publication Number Publication Date
WO2021049337A1 true WO2021049337A1 (en) 2021-03-18

Family

ID=74866163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032805 WO2021049337A1 (en) 2019-09-09 2020-08-31 Cutting tool, cutting system, processing method, and processing program

Country Status (2)

Country Link
JP (1) JP6885529B1 (en)
WO (1) WO2021049337A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7160230B1 (en) * 2021-10-18 2022-10-25 住友電気工業株式会社 MONITORING DEVICE, MONITORING METHOD, MACHINING SYSTEM AND PROGRAM

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61132809A (en) * 1984-11-29 1986-06-20 サントレード リミテイド Sensor for measuring deflection or torsion
JP2011500331A (en) * 2007-10-22 2011-01-06 エーアーデーエス・ドイッチェランド・ゲゼルシャフト ミット ベシュレンクテル ハフツング Tool holder and stepwise sheet forming method using the tool holder
JP2011518048A (en) * 2008-03-17 2011-06-23 エイ. サプロック,クリストファー Smart machining system and smart tool holder used therefor
JP4972925B2 (en) * 2005-12-19 2012-07-11 ブラザー工業株式会社 Temperature measurement position determination method for machine tool and temperature measurement position determination program for machine tool
JP2018043339A (en) * 2016-09-09 2018-03-22 株式会社NejiLaw Cutting head, cutting byte, and cutting processing system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61132809A (en) * 1984-11-29 1986-06-20 サントレード リミテイド Sensor for measuring deflection or torsion
JP4972925B2 (en) * 2005-12-19 2012-07-11 ブラザー工業株式会社 Temperature measurement position determination method for machine tool and temperature measurement position determination program for machine tool
JP2011500331A (en) * 2007-10-22 2011-01-06 エーアーデーエス・ドイッチェランド・ゲゼルシャフト ミット ベシュレンクテル ハフツング Tool holder and stepwise sheet forming method using the tool holder
JP2011518048A (en) * 2008-03-17 2011-06-23 エイ. サプロック,クリストファー Smart machining system and smart tool holder used therefor
JP2018043339A (en) * 2016-09-09 2018-03-22 株式会社NejiLaw Cutting head, cutting byte, and cutting processing system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7160230B1 (en) * 2021-10-18 2022-10-25 住友電気工業株式会社 MONITORING DEVICE, MONITORING METHOD, MACHINING SYSTEM AND PROGRAM
WO2023067642A1 (en) * 2021-10-18 2023-04-27 住友電気工業株式会社 Monitoring device, monitoring method, machining system, and program

Also Published As

Publication number Publication date
JP6885529B1 (en) 2021-06-16
JPWO2021049337A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
JP6950856B2 (en) Cutting tools, cutting systems, processing methods and processing programs
JP7468464B2 (en) Mounting Module
US9211624B2 (en) Vibration determination method and vibration determination device
US9186765B2 (en) Monitoring method and monitoring apparatus for machine tool, and machine tool
US9737968B2 (en) Machine tool with vibration detection
US8229598B2 (en) Vibration suppressing device for machine tool
JP5608036B2 (en) Operation history management method and operation history management device
WO2010137433A1 (en) Device and method for measuring dynamic rigidity of spindle of machine tool
JP6885529B1 (en) Cutting tools, cutting systems, processing methods and processing programs
US7536924B2 (en) Flexure-based dynamometer for determining cutting force
JP5631792B2 (en) Machine tool monitoring device
CN100453262C (en) Conveying device, conveying acceleration decision method for conveying device
JP2018502726A (en) Measuring device for chip removal machining tool and operation parameter selection method
JP5660850B2 (en) Vibration display device
WO2021044989A1 (en) Cutting tool, module, cutting tool unit, and cutting system
JP5666397B2 (en) Machine Tools
JP7243945B1 (en) Condition detection system, method and program
JP5364663B2 (en) Rotor disk groove machining method, damper specification determination system, control method, and program
WO2021038859A1 (en) Rotary machining tool and rotary machining system
JP6277073B2 (en) Workpiece balance measurement method, balance correction processing method, and machine tool using the same
WO2024052979A1 (en) Cutting system and method for determining status of rotating tool
JP5176210B2 (en) Processing equipment
JP2018128962A (en) Processing precision prediction method
JP5570339B2 (en) How to set runout measurement position
JP2020082232A (en) Holding device and system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021510146

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20863887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20863887

Country of ref document: EP

Kind code of ref document: A1