JP2017007030A - Machine tool and swing correction method of tool - Google Patents

Machine tool and swing correction method of tool Download PDF

Info

Publication number
JP2017007030A
JP2017007030A JP2015124945A JP2015124945A JP2017007030A JP 2017007030 A JP2017007030 A JP 2017007030A JP 2015124945 A JP2015124945 A JP 2015124945A JP 2015124945 A JP2015124945 A JP 2015124945A JP 2017007030 A JP2017007030 A JP 2017007030A
Authority
JP
Japan
Prior art keywords
tool
phase
runout
spindle
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015124945A
Other languages
Japanese (ja)
Other versions
JP6532769B2 (en
Inventor
康雅 守分
Yasumasa Moriwake
康雅 守分
聡 廣田
Satoshi Hirota
聡 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yasuda Kogyo KK
Original Assignee
Yasuda Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yasuda Kogyo KK filed Critical Yasuda Kogyo KK
Priority to JP2015124945A priority Critical patent/JP6532769B2/en
Publication of JP2017007030A publication Critical patent/JP2017007030A/en
Application granted granted Critical
Publication of JP6532769B2 publication Critical patent/JP6532769B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Tool Replacement In Machine Tools (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a machine tool and a swing correction method of a tool for enabling high accuracy installation of the tool by automatically correcting a swing of the tool to a rotary shaft of a main spindle, in the machine tool having an attaching-detaching mechanism for automatically attaching-detaching a tool holder for installing the tool to the main spindle.SOLUTION: A machine tool comprises a swing sensor 10 for measuring a swing of a rotary system R constituted of a main spindle 3, a tool holder 5 and a tool 6 to a rotary shaft 3a of the main spindle 3 when rotating the main spindle 3 and a phase control mechanism for installing the tool holder 5 in a different phase to the main spindle 3, and the phase control mechanism comprises a swing correction mechanism for installing the tool holder 5 on the main spindle 3 in a phase of becoming the smallest in the swing by comparing the swing of the rotary system R measured in two or more of different phases.SELECTED DRAWING: Figure 1

Description

本発明は、工具を装着した工具ホルダを主軸に自動着脱する着脱機構を備えた工作機械に関し、特に、主軸の回転軸に対する工具の振れを自動的に修正することができる工作機械及び工具の振れ修正方法に関する。   The present invention relates to a machine tool including an attachment / detachment mechanism for automatically attaching / detaching a tool holder on which a tool is mounted to / from a spindle, and in particular, a machine tool capable of automatically correcting runout of a tool with respect to a rotation axis of the spindle and tool runout. Regarding the correction method.

従来、工作機械の主軸に取り付けた工具の交換を行う自動工具交換装置において、主軸に取り付けた工具の芯振れを検出するための検出手段として、接触式の電気マイクロメータなどを備えたものが知られている(例えば、特許文献1参照)。特許文献1に記載の工作機械は、主軸に取り付けた工具の芯振れを検出し、工具が精度よく主軸に取り付けられていないと判断された場合には工具の再取り付けが行われ、工具が精度よく主軸に取り付けられていると判断された場合には加工を行う。   Conventionally, in an automatic tool changer for exchanging a tool attached to a spindle of a machine tool, a device equipped with a contact-type electric micrometer or the like is known as a detecting means for detecting the runout of a tool attached to the spindle. (For example, refer to Patent Document 1). The machine tool described in Patent Document 1 detects the runout of the tool attached to the spindle, and if it is determined that the tool is not accurately attached to the spindle, the tool is reattached, and the tool is accurate. If it is often determined that it is attached to the spindle, it will be processed.

近年、マシニングセンタなどの工作機械では、工具の長寿命化や加工面精度の更なる向上が要求されている。しかし、一般的なマシニングセンタとして普及している工具を装着した工具ホルダを主軸に自動着脱する着脱機構を備えた工作機械では、工具を工具ホルダに装着する際に生じるズレ及び工具ホルダを主軸に装着する際に生じるズレが重畳されて工具の芯振れが大きくなることがある。   In recent years, machine tools such as machining centers have been required to have longer tool life and further improved machining surface accuracy. However, in a machine tool equipped with an attachment / detachment mechanism that automatically attaches / detaches a tool holder equipped with a tool, which is widely used as a general machining center, to the spindle, the deviation and tool holder that are generated when the tool is attached to the tool holder are attached to the spindle. In some cases, the deviation of the tool is superimposed and the tool runout increases.

この工作機械で高度な面精度を要求される加工を行う場合には、工具ホルダに工具を装着した後、主軸に該工具ホルダを取り付け、工具の芯振れを検出するための検出手段を用いて工具の芯振れを確認している。検出した工具の芯振れが目標値より大きい場合には、a)工具を工具ホルダから取り外して工具の取り付け位相を変更するか、b)工具ホルダを主軸から取り外して工具ホルダの取り付け位相を変更し、再度工具の芯振れを確認している。検出した工具の芯振れが目標値に収まるまでこの手順を繰り返し、工具の芯振れが目標値に収まった状態で加工を行っている。   When performing machining that requires a high degree of surface accuracy with this machine tool, after attaching the tool to the tool holder, attach the tool holder to the spindle, and use detection means to detect tool runout Check for tool runout. If the detected tool runout is greater than the target value, a) remove the tool from the tool holder and change the tool attachment phase, or b) remove the tool holder from the spindle and change the tool holder attachment phase. The tool runout is confirmed again. This procedure is repeated until the detected tool runout falls within the target value, and machining is performed with the tool runout within the target value.

特開平1−222846号公報Japanese Patent Laid-Open No. 1-222846

特許文献1に記載の工作機械は、主軸に取り付けた工具の芯振れを検出し、この芯振れが一定の範囲を超えた場合に、工具が精度よく主軸に取り付けられていない状態であると判断し、精度が悪い状態での加工を行わないようにすることはできる。しかし、特許文献1に記載の工作機械は、自動工具交換装置による主軸への工具の装着不良を検出し、工具の再取り付けによって装着不良を解消するものに過ぎないので、工具の芯振れを更に小さくすることができるように、高精度に工具を主軸に装着することはできないという課題があった。   The machine tool described in Patent Document 1 detects the runout of the tool attached to the spindle, and determines that the tool is not accurately attached to the spindle when the runout exceeds a certain range. However, it is possible not to perform processing in a state where accuracy is poor. However, the machine tool described in Patent Document 1 only detects a mounting failure of the tool on the spindle by the automatic tool changer and eliminates the mounting failure by reattaching the tool. There was a problem that the tool could not be mounted on the spindle with high accuracy so that it could be made smaller.

また、工具の芯振れを検出し、検出した工具の芯振れが目標値より大きい場合に、a)工具を工具ホルダから取り外して工具の取り付け位相を変更するか、b)工具ホルダを主軸から取り外して工具ホルダの取り付け位相を変更し、検出した工具の芯振れが目標値に収まるまでこの手順を繰り返すことによって工具の芯振れを更に小さくすることはできるが、工具の取り付けに多大な労力を要するという問題があった。また、この手法では、検出した工具の芯振れが目標値に収まるまで必要な手順を繰り返すだけなので、目標値を高く設定すると工具の取り付けに要する労力が大きくなり、目標値を低く設定すると工具の取り付け精度が低下するという問題があった。   Also, if tool runout is detected and the detected tool runout is greater than the target value, a) remove the tool from the tool holder and change the tool mounting phase, or b) remove the tool holder from the spindle. By changing the tool holder mounting phase and repeating this procedure until the detected tool runout falls within the target value, the tool runout can be further reduced, but it takes a lot of labor to install the tool. There was a problem. Also, with this method, only the necessary steps are repeated until the detected tool runout falls within the target value, so setting the target value high increases the effort required to install the tool, and setting the target value low reduces the tool's effort. There was a problem that the mounting accuracy was lowered.

そこで、本発明は、工具を装着した工具ホルダを主軸に自動着脱する着脱機構を備えた工作機械において、主軸の回転軸に対する工具の振れを自動的に修正して工具の高精度な取り付けを可能にする工作機械及び工具の振れ修正方法を提供するものである。   Therefore, the present invention enables high-precision mounting of a tool by automatically correcting the runout of the tool relative to the rotation axis of the spindle in a machine tool equipped with an attachment / detachment mechanism that automatically attaches / detaches the tool holder with the tool to / from the spindle. The present invention provides a machine tool and a tool runout correction method.

本発明は、上記課題を解決するために、工具を装着した工具ホルダを主軸に自動着脱する着脱機構を備えた工作機械であって、前記主軸の回転時に、前記主軸の回転軸に対する前記主軸、前記工具ホルダ及び前記工具で構成される回転系の振れを測定する振れセンサと、前記工具ホルダを前記主軸に対して異なる位相で装着する位相制御機構と、を有し、前記位相制御機構が、二以上の異なる位相において測定した前記回転系の振れを比較し、該振れが最小となる位相で前記工具ホルダを前記主軸に装着する振れ修正機構を備えた工作機械を提供するものである。   In order to solve the above problems, the present invention is a machine tool including an attachment / detachment mechanism for automatically attaching / detaching a tool holder on which a tool is mounted to / from a main shaft, and when the main shaft rotates, the main shaft with respect to the rotation shaft of the main shaft, A vibration sensor that measures vibration of a rotating system constituted by the tool holder and the tool, and a phase control mechanism that mounts the tool holder in a different phase with respect to the main shaft, and the phase control mechanism includes: The present invention provides a machine tool provided with a shake correction mechanism that compares shakes of the rotating system measured at two or more different phases and attaches the tool holder to the spindle at a phase where the shake is minimized.

また、本発明の工作機械は、前記振れ修正機構が、前記主軸に対する前記工具ホルダの位相を変えて前記回転系の振れを測定する回数で360°を等分した所定角度ずつ前記工具ホルダの位相を変えて前記回転系の振れを測定するものである。   In the machine tool according to the present invention, the runout correction mechanism may change the phase of the tool holder with respect to the spindle to change the phase of the tool holder and measure the runout of the rotary system by a predetermined angle obtained by equally dividing 360 °. Is used to measure the runout of the rotating system.

また、本発明の工作機械は、前記振れセンサが、前記工具の振れを測定する光学センサ又は/及び前記主軸の振動を測定する振動センサを含むものである。   In the machine tool of the present invention, the vibration sensor includes an optical sensor for measuring the vibration of the tool and / or a vibration sensor for measuring vibration of the main shaft.

また、本発明の工作機械は、前記光学センサで測定した前記工具の振れが最小となる位相と前記振動センサで測定した前記主軸の振動が最小となる位相が異なる場合に、前記振れ修正機構は、前記工具の振れ及び前記主軸の振動の双方が許容範囲内であるか否かを判断し、一の位相のみが該条件を満たすときには該位相を前記回転系の振れ及び振動が最小となる位相であると判断し、何れの位相も該条件を満たす又は何れの位相も該条件を満たさないときには前記工具の振れが最小となる位相を前記回転系の振れ及び振動が最小となる位相であると判断することを特徴とする。   In the machine tool of the present invention, when the phase at which the vibration of the tool measured by the optical sensor is minimized and the phase at which the vibration of the spindle measured by the vibration sensor is different are different, , It is determined whether both the vibration of the tool and the vibration of the spindle are within an allowable range, and when only one phase satisfies the condition, the phase is a phase that minimizes the vibration and vibration of the rotating system. And when any phase satisfies the condition or when neither phase satisfies the condition, the phase that minimizes the vibration of the tool is the phase that minimizes the vibration and vibration of the rotating system. It is characterized by judging.

また、本発明の工作機械は、前記振れ修正機構が、測定した前記回転系の振れに基づいて前記主軸の回転軸に対する前記工具ホルダ及び前記工具の偏芯方向を割り出し、前記回転系の振れが最小となる位相を予測する手段を備えたものである。   Further, in the machine tool of the present invention, the runout correction mechanism calculates the eccentric direction of the tool holder and the tool relative to the rotation axis of the main shaft based on the measured runout of the rotary system, and the runout of the rotary system is determined. Means for predicting the minimum phase are provided.

また、本発明の工作機械は、前記回転系の振れが前記工具の振れであることを特徴とする。   The machine tool of the present invention is characterized in that the runout of the rotating system is the runout of the tool.

また、本発明の工作機械は、前記振れ修正機構が、二以上の異なる位相において測定した前記回転系の振れを比較して該振れが最小となる位相を判断又は予測する第一の測定手段と、前記第一の測定手段で前記振れが最小であると判断又は予測した位相を含む所定角度の範囲を前記第一の測定手段より細かい位相差で二以上の異なる位相において前記回転系の振れを測定し、該振れを比較して該振れが最小となる位相で前記工具ホルダを前記主軸に装着する第二の測定手段と、を備えたものである。   Further, the machine tool of the present invention is characterized in that the shake correction mechanism compares the shake of the rotating system measured at two or more different phases, and judges or predicts a phase at which the shake is minimized. The rotation of the rotating system is detected in two or more different phases with a phase difference smaller than that of the first measuring means within a range of a predetermined angle that includes the phase determined or predicted to be the minimum by the first measuring means. And a second measuring means for mounting the tool holder to the spindle at a phase where the vibration is compared and the vibration is minimized.

また、本発明は、上記の工作機械を用いた工具の振れ又は/及び前記主軸の振動の修正方法であって、前記工具ホルダを前記主軸に対して二以上の異なる位相で装着し、それぞれの位相において前記回転系の振れを測定する振れ測定工程と、それぞれの位相において測定した前記回転系の振れを比較する振れ比較工程と、前記回転系の振れが最小となる位相で前記工具ホルダを前記主軸に装着する振れ修正工程と、を有する振れ修正方法を提供するものである。   The present invention is also a method for correcting tool runout and / or spindle vibration using the machine tool, wherein the tool holder is mounted on the spindle at two or more different phases, The shake measuring step for measuring the runout of the rotating system in phase, the runout comparing step for comparing the runout of the rotating system measured in each phase, and the tool holder at the phase that minimizes the runout of the rotating system. There is provided a shake correction method including a shake correction process attached to a main shaft.

また、本発明の振れ修正方法は、前記振れ比較工程が、それぞれの位相において測定した前記回転系の振れを予め定めた振れの許容値と比較する工程を備え、前記振れ修正工程が、前記回転系の振れが前記許容値以下になった位相で前記工具ホルダを前記主軸に装着することを特徴とする。   Further, the shake correction method of the present invention includes a step in which the shake comparison step compares the rotation of the rotating system measured in each phase with a predetermined shake allowance, and the shake correction step includes the rotation correction step. The tool holder is mounted on the spindle at a phase where the runout of the system is equal to or less than the allowable value.

また、本発明の振れ修正方法は、前記振れ比較工程が、それぞれの位相において測定した前記回転系の振れを予め定めた振れの許容値と比較する工程を備え、該工程で比較した前記回転系の振れが全ての位相において前記許容値を上回った場合に、前記工具ホルダから前記工具を取り外し、前記工具ホルダに対して前記工具の位相を変えて該工具を装着する工具位相変更工程を有し、前記回転系の振れが前記許容値以下になるまで前記工具位相変更工程と、前記振れ測定工程と、前記振れ比較工程と、を繰り返すことを特徴とする。   Further, the shake correction method of the present invention includes a step in which the shake comparison step compares the rotation of the rotation system measured in each phase with a predetermined shake tolerance, and the rotation system compared in the step A tool phase changing step of removing the tool from the tool holder and changing the phase of the tool with respect to the tool holder and mounting the tool when the runout of the tool exceeds the allowable value in all phases. The tool phase changing step, the run-out measuring step, and the run-out comparing step are repeated until the run-out of the rotating system falls below the allowable value.

本発明の工作機械は、工具を装着した工具ホルダを主軸に自動着脱する着脱機構を備えた工作機械であって、前記主軸の回転時に、前記主軸の回転軸に対する前記主軸、前記工具ホルダ及び前記工具で構成される回転系の振れを測定する振れセンサと、前記工具ホルダを前記主軸に対して異なる位相で装着する位相制御機構と、を有し、前記位相制御機構が、二以上の異なる位相において測定した前記回転系の振れを比較し、該振れが最小となる位相で前記工具ホルダを前記主軸に装着する振れ修正機構を備えた構成を有することにより、主軸と工具ホルダの関係において工具又は回転系の振れが最小になる工具ホルダの位相を自動的に検出することができ、工具又は回転系の振れが最も小さくなる位相で工具ホルダを自動的に装着することができる効果がある。   The machine tool of the present invention is a machine tool provided with an attachment / detachment mechanism that automatically attaches / detaches a tool holder on which a tool is mounted to / from the spindle, and the spindle, the tool holder, and the spindle with respect to the rotation axis of the spindle when the spindle rotates. And a phase control mechanism for mounting the tool holder at different phases with respect to the spindle, wherein the phase control mechanism has two or more different phases. In the relationship between the spindle and the tool holder, by comparing the runout of the rotating system measured in step 1 and having a runout correction mechanism for mounting the tool holder on the spindle at a phase where the runout is minimized. The phase of the tool holder that minimizes the runout of the rotary system can be automatically detected, and the tool holder is automatically mounted at the phase where the runout of the tool or rotary system is minimized. There can be effectively.

また、本発明は、一般的なマシニングセンタとして普及している工具を装着した工具ホルダを主軸に自動着脱する着脱機構を備えた工作機械であっても、工具を工具ホルダに装着する際に生じるズレと、工具ホルダを主軸に装着する際に生じるズレとが打ち消し合う位相で工具ホルダを主軸に装着することができるから、工具の芯振れを抑制して高精度の加工が可能になる。   Further, the present invention provides a displacement that occurs when a tool is mounted on the tool holder, even in a machine tool having a mounting / removing mechanism that automatically mounts / dismounts a tool holder mounted with a tool that is widely used as a general machining center. Since the tool holder can be mounted on the main shaft at a phase where the deviation generated when mounting the tool holder on the main shaft cancels out, high-precision machining can be performed while suppressing the tool runout.

また、本発明の工作機械は、前記振れ修正機構が、前記主軸に対する前記工具ホルダの位相を変えて前記回転系の振れを測定する回数で360°を等分した所定角度ずつ前記工具ホルダの位相を変えて前記回転系の振れを測定することにより、工具又は回転系の振れが最も小さくなる位相を確実に検出することができる効果がある。   In the machine tool according to the present invention, the runout correction mechanism may change the phase of the tool holder with respect to the spindle to change the phase of the tool holder and measure the runout of the rotary system by a predetermined angle obtained by equally dividing 360 °. By measuring the runout of the rotary system while changing the above, it is possible to reliably detect the phase at which the runout of the tool or the rotary system is minimized.

また、本発明の工作機械は、前記振れセンサが、前記工具の振れを測定する光学センサ又は/及び前記主軸の振動を測定する振動センサを含むことにより、光学センサで工具の振れを直接的に測定することができ、振動センサで工具の振れや回転系のアンバランスによる振動を測定することができる効果がある。   In the machine tool of the present invention, the vibration sensor includes an optical sensor for measuring the vibration of the tool and / or a vibration sensor for measuring the vibration of the main shaft, whereby the vibration of the tool is directly measured by the optical sensor. It is possible to measure, and there is an effect that it is possible to measure vibration due to tool vibration or unbalance of the rotation system with a vibration sensor.

また、本発明の工作機械は、前記光学センサで測定した前記工具の振れが最小となる位相と前記振動センサで測定した前記主軸の振動が最小となる位相が異なる場合に、前記振れ修正機構は、前記工具の振れ及び前記主軸の振動の双方が許容範囲内であるか否かを判断し、一の位相のみが該条件を満たすときには該位相を前記回転系の振れ及び振動が最小となる位相であると判断し、何れの位相も該条件を満たす又は何れの位相も該条件を満たさないときには前記工具の振れが最小となる位相を前記回転系の振れ及び振動が最小となる位相であると判断することにより、工具の振れが小さく、且つ回転系の振動が小さい位相を検出することができるから、回転系のバランスを適切に保つことができ、主軸への負担を軽減して高精度の加工を行うことができる効果がある。   In the machine tool of the present invention, when the phase at which the vibration of the tool measured by the optical sensor is minimized and the phase at which the vibration of the spindle measured by the vibration sensor is different are different, , It is determined whether both the vibration of the tool and the vibration of the spindle are within an allowable range, and when only one phase satisfies the condition, the phase is a phase that minimizes the vibration and vibration of the rotating system. And when any phase satisfies the condition or when neither phase satisfies the condition, the phase that minimizes the vibration of the tool is the phase that minimizes the vibration and vibration of the rotating system. By judging, it is possible to detect the phase with small tool runout and small vibration of the rotary system, so that the balance of the rotary system can be maintained appropriately, reducing the burden on the spindle and achieving high accuracy. Process There is an effect that can be.

また、本発明の工作機械は、前記振れ修正機構が、測定した前記回転系の振れに基づいて前記主軸の回転軸に対する前記工具ホルダ及び前記工具の偏芯方向を割り出し、前記回転系の振れが最小となる位相を予測する手段を備えたことにより、少ない測定回数によって迅速に工具又は回転系の振れが最小になる工具ホルダの位相を検出することができる効果がある。   Further, in the machine tool of the present invention, the runout correction mechanism calculates the eccentric direction of the tool holder and the tool relative to the rotation axis of the main shaft based on the measured runout of the rotary system, and the runout of the rotary system is determined. By providing the means for predicting the minimum phase, it is possible to quickly detect the phase of the tool holder that minimizes the vibration of the tool or the rotating system with a small number of measurements.

また、本発明の工作機械は、前記回転系の振れが前記工具の振れであることにより、工具の振れが最も小さくなる位相で工具ホルダを自動的に装着することができるから、工具の芯振れを抑制して高精度の加工を行うことができる効果がある。   Further, the machine tool of the present invention can automatically mount the tool holder at a phase where the tool runout is minimized because the runout of the rotating system is the runout of the tool. There is an effect that high-precision processing can be performed while suppressing the above.

また、本発明の工作機械は、前記振れ修正機構が、二以上の異なる位相において測定した前記回転系の振れを比較して該振れが最小となる位相を判断又は予測する第一の測定手段と、前記第一の測定手段で前記振れが最小であると判断又は予測した位相を含む所定角度の範囲を前記第一の測定手段より細かい位相差で二以上の異なる位相において前記回転系の振れを測定し、該振れを比較して該振れが最小となる位相で前記工具ホルダを前記主軸に装着する第二の測定手段と、を備えたことにより、工具又は回転系の振れが最小になる工具ホルダの位相を迅速且つ確実に検出することができるから、工具の振れ又は/及び主軸の振動の修正プロセスの効率向上と加工精度の向上を両立させることができる効果がある。   Further, the machine tool of the present invention is characterized in that the shake correction mechanism compares the shake of the rotating system measured at two or more different phases, and judges or predicts a phase at which the shake is minimized. The rotation of the rotating system is detected in two or more different phases with a phase difference smaller than that of the first measuring means within a range of a predetermined angle that includes the phase determined or predicted to be the minimum by the first measuring means. And a second measuring means for mounting the tool holder to the spindle at a phase where the runout is minimized by comparing the runout, and thereby the tool or runout of the rotating system is minimized. Since the phase of the holder can be detected quickly and reliably, there is an effect that it is possible to achieve both improvement in the efficiency of the correction process for tool runout and / or spindle vibration and improvement in machining accuracy.

また、本発明は、上記の工作機械を用いた工具の振れ又は/及び前記主軸の振動の修正方法であって、前記工具ホルダを前記主軸に対して二以上の異なる位相で装着し、それぞれの位相において前記回転系の振れを測定する振れ測定工程と、それぞれの位相において測定した前記回転系の振れを比較する振れ比較工程と、前記回転系の振れが最小となる位相で前記工具ホルダを前記主軸に装着する振れ修正工程と、を有することにより、主軸と工具ホルダの関係において工具又は回転系の振れが最小になる工具ホルダの位相を自動的に検出することができ、工具又は回転系の振れが最も小さくなる位相で工具ホルダを自動的に装着することができる効果がある。   The present invention is also a method for correcting tool runout and / or spindle vibration using the machine tool, wherein the tool holder is mounted on the spindle at two or more different phases, The shake measuring step for measuring the runout of the rotating system in phase, the runout comparing step for comparing the runout of the rotating system measured in each phase, and the tool holder at the phase that minimizes the runout of the rotating system. Having a runout correction process mounted on the spindle, the phase of the tool holder that minimizes the runout of the tool or the rotary system in the relationship between the spindle and the tool holder can be automatically detected. There is an effect that the tool holder can be automatically mounted at a phase where the runout is minimized.

また、本発明の振れ修正方法は、前記振れ比較工程が、それぞれの位相において測定した前記回転系の振れを予め定めた振れの許容値と比較する工程を備え、前記振れ修正工程が、前記回転系の振れが前記許容値以下になった位相で前記工具ホルダを前記主軸に装着することにより、回転系の振れを許容値以下に抑えつつ、迅速に工具の振れを修正することができる効果がある。   Further, the shake correction method of the present invention includes a step in which the shake comparison step compares the rotation of the rotating system measured in each phase with a predetermined shake allowance, and the shake correction step includes the rotation correction step. By mounting the tool holder on the spindle at a phase where the runout of the system is less than or equal to the allowable value, it is possible to quickly correct the runout of the tool while suppressing the runout of the rotating system to be less than or equal to the allowable value. is there.

また、本発明の振れ修正方法は、前記振れ比較工程が、それぞれの位相において測定した前記回転系の振れを予め定めた振れの許容値と比較する工程を備え、該工程で比較した前記回転系の振れが全ての位相において前記許容値を上回った場合に、前記工具ホルダから前記工具を取り外し、前記工具ホルダに対して前記工具の位相を変えて該工具を装着する工具位相変更工程を有し、前記回転系の振れが前記許容値以下になるまで前記工具位相変更工程と、前記振れ測定工程と、前記振れ比較工程と、を繰り返すことにより、更に工具又は回転系の振れを小さくすることができ、より高い精度の加工を行うことができる効果がある。   Further, the shake correction method of the present invention includes a step in which the shake comparison step compares the rotation of the rotation system measured in each phase with a predetermined shake tolerance, and the rotation system compared in the step A tool phase changing step of removing the tool from the tool holder and changing the phase of the tool with respect to the tool holder and mounting the tool when the runout of the tool exceeds the allowable value in all phases. By repeating the tool phase change step, the runout measurement step, and the runout comparison step until the runout of the rotating system is equal to or less than the allowable value, the runout of the tool or the rotary system can be further reduced. It is possible to perform processing with higher accuracy.

本発明に係る工作機械の一実施例を示す斜視図。The perspective view which shows one Example of the machine tool which concerns on this invention. 本発明に係る振れ修正方法の一実施例を示すフローチャート。The flowchart which shows one Example of the shake correction method which concerns on this invention. 低速・高速回転での工具振れ原因の一例を示す断面図。Sectional drawing which shows an example of the tool runout in low speed and high speed rotation. 工具振れ修正後の状態を示す断面図。Sectional drawing which shows the state after tool run correction. 低速・高速回転での工具振れ原因の他の例を示す断面図。Sectional drawing which shows the other example of the tool runout in low speed and high speed rotation. 工具振れ修正後の状態を示す断面図。Sectional drawing which shows the state after tool run correction. 低速・高速回転での工具振れ原因の他の例を示す断面図。Sectional drawing which shows the other example of the tool runout in low speed and high speed rotation. 工具振れ修正後の状態を示す断面図。Sectional drawing which shows the state after tool run correction. 高速回転での工具振れ原因の一例を示す断面図。Sectional drawing which shows an example of the tool runout at high speed rotation. 工具振れ修正後の状態を示す断面図。Sectional drawing which shows the state after tool run correction.

本発明の実施の形態を図示する実施例に基づいて説明する。
本発明は、工具6を装着した工具ホルダ5を主軸3に自動着脱する着脱機構7を備えた工作機械1であって、前記主軸3の回転時に、前記主軸3の回転軸3aに対する前記主軸3、前記工具ホルダ5及び前記工具6で構成される回転系Rの振れを測定する振れセンサ10と、前記工具ホルダ5を前記主軸3に対して異なる位相で装着する位相制御機構と、を有し、前記位相制御機構が、二以上の異なる位相において測定した前記回転系Rの振れを比較し、該振れが最小となる位相で前記工具ホルダ5を前記主軸3に装着する振れ修正機構を備えている。ここで、回転系Rの振れには、工具6の振れと主軸3の振動が含まれる。
Embodiments of the present invention will be described based on examples shown in the drawings.
The present invention is a machine tool 1 provided with an attachment / detachment mechanism 7 for automatically attaching / detaching a tool holder 5 to which a tool 6 is mounted to / from a main shaft 3, and the main shaft 3 with respect to a rotation shaft 3 a of the main shaft 3 when the main shaft 3 rotates. A runout sensor 10 for measuring runout of the rotating system R composed of the tool holder 5 and the tool 6, and a phase control mechanism for mounting the tool holder 5 on the spindle 3 in different phases. The phase control mechanism includes a shake correction mechanism that compares the runout of the rotating system R measured at two or more different phases and attaches the tool holder 5 to the spindle 3 at a phase where the runout is minimized. Yes. Here, the vibration of the rotating system R includes the vibration of the tool 6 and the vibration of the main shaft 3.

図3(a)に示すように、工具ホルダ5は回転軸を中心とした回転体形状を成し、工具ホルダ5の先端部には工具6を嵌合して装着する工具クランプ部51が形成され、工具ホルダ5の後端部には主軸3の主軸テーパー部31に嵌合して主軸3に装着されるホルダテーパー部52が形成されている。   As shown in FIG. 3 (a), the tool holder 5 has a rotating body shape centered on the rotation axis, and a tool clamp portion 51 for fitting and mounting the tool 6 is formed at the tip of the tool holder 5. At the rear end of the tool holder 5, a holder taper portion 52 that is fitted to the main shaft 3 by being fitted to the main shaft taper portion 31 of the main shaft 3 is formed.

本願の発明者らは、工作機械1における工具6の先端振れの主な要因を以下の4つに分類し、これらの振れが最小となるような主軸3に対する工具ホルダ5の位相を自動的に検出することにより、工具6又は回転系Rの振れが最も小さくなる位相で工具ホルダ5を自動的に装着することができると考えた。   The inventors of the present application classify the main factors of the tip runout of the tool 6 in the machine tool 1 into the following four, and automatically set the phase of the tool holder 5 with respect to the spindle 3 so that these runouts are minimized. It was considered that the tool holder 5 can be automatically mounted at a phase where the vibration of the tool 6 or the rotating system R is minimized by detecting.

工作機械1において、低速回転領域を含む主軸3の回転時における工具6の先端振れが発生する個別の要素としては、主軸3に起因するものとして、
(A)主軸中心の振れ回り(主軸の軸受回転精度などによる自転・公転軸のズレ)
(B)主軸中心と主軸テーパー部の芯ズレ
(C)主軸中心と主軸テーパー部の角度差
が挙げられ、工具ホルダ5に起因するものとして、
(D)ホルダテーパー部と工具クランプ部の芯ズレ
(E)ホルダテーパー部と工具クランプ部の角度差
が挙げられ、工具6に起因するものとして、
(F)工具の形状精度
が挙げられる。これら個別要素の組み合わせとして、主軸3の低速・高速回転時における工具6の先端振れの主な要因は以下の3つに分類される。
In the machine tool 1, as an individual element in which the tip deflection of the tool 6 occurs when the spindle 3 including the low-speed rotation region is rotated,
(A) Swing around the spindle center (deviation of rotation / revolution shaft due to bearing rotation accuracy of the spindle)
(B) Center misalignment between the spindle center and the spindle taper part (C) The angle difference between the spindle center and the spindle taper part is mentioned,
(D) Center misalignment between the holder taper part and the tool clamp part (E) The angle difference between the holder taper part and the tool clamp part is mentioned,
(F) The shape accuracy of a tool is mentioned. As a combination of these individual elements, the main factors of the tip runout of the tool 6 when the spindle 3 rotates at low speed and high speed are classified into the following three.

図3(a)に示すように、主軸3の回転軸3aである主軸中心と、主軸テーパー部31の形状中心である主軸テーパー中心が完全に一致しないことによる主軸中心と主軸テーパー部の芯ズレ(B)が生じる。また、工具ホルダ5において、ホルダテーパー部52の形状中心と工具クランプ部51の形状中心が完全に一致しないことによるホルダテーパー部と工具クランプ部の芯ズレ(D)が生じる。この主軸中心と主軸テーパー部の芯ズレ(B)と、ホルダテーパー部と工具クランプ部の芯ズレ(D)との組み合わせによって、工具6の先端振れが発生する。図3(a)に示すように、芯ズレ(B)と芯ズレ(D)が重畳される位相で工具ホルダ5が主軸3に装着されると工具6の先端振れが最大となり、図3(b)に示すように、芯ズレ(B)と芯ズレ(D)が打ち消し合う位相で工具ホルダ5が主軸3に装着されると工具6の先端振れが最小となる。なお、各ズレの大きさは、説明のために拡大して描画している。   As shown in FIG. 3 (a), the main shaft center that is the rotation shaft 3a of the main shaft 3 and the main shaft taper center that is the shape center of the main shaft taper portion 31 do not completely coincide with each other. (B) occurs. Further, in the tool holder 5, a misalignment (D) between the holder taper portion and the tool clamp portion occurs due to the shape center of the holder taper portion 52 and the shape center of the tool clamp portion 51 not being completely coincident with each other. The tip deflection of the tool 6 occurs due to the combination of the center misalignment (B) of the spindle center and the spindle taper portion and the center misalignment (D) of the holder taper portion and the tool clamp portion. As shown in FIG. 3A, when the tool holder 5 is mounted on the main shaft 3 in a phase in which the core misalignment (B) and the core misalignment (D) are superimposed, the tip deflection of the tool 6 becomes maximum, and FIG. As shown in b), when the tool holder 5 is mounted on the main shaft 3 at a phase where the core misalignment (B) and the core misalignment (D) cancel each other, the tip deflection of the tool 6 is minimized. Note that the size of each shift is enlarged for the sake of explanation.

図4(a)に示すように、主軸3の回転軸3aである主軸中心と、主軸テーパー部31の形状中心である主軸テーパー中心の方向が完全に一致しないことによる主軸中心と主軸テーパー部の角度差(C)が生じる。また、工具ホルダ5において、ホルダテーパー部52の形状中心と工具クランプ部51の形状中心の方向が完全に一致しないことによるホルダテーパー部と工具クランプ部の角度差(E)が生じる。この主軸中心と主軸テーパー部の角度差(C)と、ホルダテーパー部と工具クランプ部の角度差(E)との組み合わせによって、工具6の先端振れが発生する。図4(a)に示すように、角度差(C)と角度差(E)が重畳される位相で工具ホルダ5が主軸3に装着されると工具6の先端振れが最大となり、図4(b)に示すように、角度差(C)と角度差(E)が打ち消し合う位相で工具ホルダ5が主軸3に装着されると工具6の先端振れが最小となる。   As shown in FIG. 4A, the main shaft center and the main shaft taper portion are not completely aligned with the main shaft center which is the rotation shaft 3a of the main shaft 3 and the main shaft taper center direction which is the shape center of the main shaft taper portion 31. An angular difference (C) occurs. Further, in the tool holder 5, an angle difference (E) between the holder taper portion and the tool clamp portion is generated due to the fact that the shape center direction of the holder taper portion 52 and the shape center direction of the tool clamp portion 51 do not completely coincide. The tip deflection of the tool 6 occurs due to the combination of the angle difference (C) between the spindle center and the spindle taper portion and the angle difference (E) between the holder taper portion and the tool clamp portion. As shown in FIG. 4A, when the tool holder 5 is mounted on the main shaft 3 in a phase in which the angle difference (C) and the angle difference (E) are superimposed, the tip deflection of the tool 6 becomes maximum, and FIG. As shown in b), when the tool holder 5 is attached to the main shaft 3 at a phase where the angle difference (C) and the angle difference (E) cancel each other, the tip deflection of the tool 6 is minimized.

図5(a)に示すように、主軸3の回転軸3aと主軸中心が完全に一致しないことによる主軸中心の振れ回り(A)が生じる。また、工具6において、工具の形状精度によるズレ(F)が生じる。この主軸中心の振れ回り(A)と、工具の形状精度によるズレ(F)との組み合わせによって、工具6の先端振れが発生する。図5(a)に示すように、主軸中心の振れ回り(A)と工具の形状精度によるズレ(F)が重畳される位相で工具ホルダ5が主軸3に装着されると工具6の先端振れが最大となり、図5(b)に示すように、主軸中心の振れ回り(A)と工具の形状精度によるズレ(F)が打ち消し合う位相で工具ホルダ5が主軸3に装着されると工具6の先端振れが最小となる。   As shown in FIG. 5A, the rotation of the main shaft center (A) occurs due to the rotation shaft 3a of the main shaft 3 and the main shaft center not being completely coincident with each other. Moreover, in the tool 6, the shift | offset | difference (F) by the shape accuracy of a tool arises. The tip runout of the tool 6 occurs due to the combination of the swing around the center of the spindle (A) and the deviation (F) due to the shape accuracy of the tool. As shown in FIG. 5 (a), when the tool holder 5 is mounted on the spindle 3 at a phase in which the swing around the spindle center (A) and the deviation (F) due to the shape accuracy of the tool are superimposed, the tip runout of the tool 6 occurs. As shown in FIG. 5B, when the tool holder 5 is mounted on the spindle 3 at a phase where the swing around the spindle center (A) and the deviation (F) due to the shape accuracy of the tool cancel each other, the tool 6 The tip runout is minimized.

上記の主軸3の低速・高速回転時における工具6の先端振れに加えて、主軸3の高速回転時には、主軸3、工具ホルダ5及び工具6で構成される回転系Rのアンバランスによる遠心力の影響が大きくなり、全体の振れ回り量が増大する。回転系Rのアンバランスの要因としては、上記(A)〜(F)の形状的な精度の他に、主軸3、工具ホルダ5又は工具6の材料不均一などが影響し、工具6の先端振れが発生する。図6(a)に示すように、主軸3の回転軸3aに対する主軸3の重心3cのズレと工具ホルダ5及び工具6の重心5cのズレが重畳される位相で工具ホルダ5が主軸3に装着されるとアンバランスが最大となり、主軸3の振動の原因となる。一方、図6(b)に示すように、主軸3の回転軸3aに対する主軸3の重心3cのズレと工具ホルダ5及び工具6の重心5cのズレが打ち消し合う位相で工具ホルダ5が主軸3に装着されるとアンバランスが最小となる。   In addition to the tip deflection of the tool 6 when the spindle 3 is rotated at a low speed and at a high speed, the centrifugal force due to the unbalance of the rotating system R composed of the spindle 3, the tool holder 5 and the tool 6 is increased when the spindle 3 is rotated at a high speed. The effect is increased, and the total amount of swing is increased. As a cause of the unbalance of the rotating system R, in addition to the geometrical accuracy of the above (A) to (F), material unevenness of the main shaft 3, the tool holder 5 or the tool 6 influences the leading end of the tool 6. Shake occurs. As shown in FIG. 6 (a), the tool holder 5 is mounted on the spindle 3 at a phase where the deviation of the center of gravity 3c of the spindle 3 from the rotation axis 3a of the spindle 3 and the deviation of the center of gravity 5c of the tool holder 5 and the tool 6 are superimposed. If this is done, the imbalance will be maximized, causing vibration of the main shaft 3. On the other hand, as shown in FIG. 6B, the tool holder 5 is moved to the main shaft 3 at a phase where the deviation of the center of gravity 3c of the main shaft 3 and the deviation of the center of gravity 5c of the tool holder 5 and the tool 6 cancel each other. When installed, unbalance is minimized.

図1は、本発明に係る工作機械1の一実施例を示す斜視図である。
図1に示す実施例において、工作機械1はマシニングセンタであり、ワークを載置するテーブル2と、工具6を装着した工具ホルダ5を装着する主軸3と、主軸3を回転自在に支持する主軸ハウジング4と、を有する。テーブル2は、X軸方向及びY軸方向に駆動され、主軸ハウジング4はZ軸方向に駆動される。工作機械1は、主軸3の先端に工具ホルダ5を介して工具6が装着され、工具6を回転させながらワークに対してX,Y,Z軸方向に相対移動させ、ワークを所望の形状に加工する。また、工作機械1は、図示しないが、工具6の加工軌跡を数値制御する制御装置と、加工条件、工具交換、座標設定などの指示を入力する操作パネルと、加工情報や位置情報などを表示するモニターを備えている。なお、工作機械1は、図示の立形マシニングセンタに限られず、横形マシニングセンタの他、ボール盤、中ぐり盤、フライス盤、研削盤など各種の工作機械に本発明を適用することが可能である。
FIG. 1 is a perspective view showing an embodiment of a machine tool 1 according to the present invention.
In the embodiment shown in FIG. 1, the machine tool 1 is a machining center, a table 2 on which a workpiece is placed, a spindle 3 on which a tool holder 5 on which a tool 6 is mounted, and a spindle housing that rotatably supports the spindle 3. 4 and. The table 2 is driven in the X-axis direction and the Y-axis direction, and the spindle housing 4 is driven in the Z-axis direction. The machine tool 1 has a tool 6 attached to the tip of a spindle 3 via a tool holder 5 and moves the tool 6 relative to the workpiece in the X, Y, and Z axis directions while rotating the tool 6 so that the workpiece has a desired shape. Process. Although not shown, the machine tool 1 displays a control device that numerically controls the machining trajectory of the tool 6, an operation panel that inputs instructions such as machining conditions, tool change, and coordinate settings, and machining information and position information. A monitor is provided. The machine tool 1 is not limited to the illustrated vertical machining center, and the present invention can be applied to various machine tools such as a drilling machine, a boring machine, a milling machine, and a grinding machine in addition to a horizontal machining center.

工作機械1は、主軸3の回転時に、主軸3の回転軸3aに対する主軸3、工具ホルダ5及び工具6で構成される回転系Rの振れを測定する振れセンサ10と、工具ホルダ5を主軸3に対して異なる位相で装着する位相制御機構と、を有している。位相制御機構は、制御装置によって制御され、主軸3の割り出し機能を利用して主軸3に対する工具ホルダ5の位相を制御する。位相制御機構は、二以上の異なる位相において測定した回転系Rの振れを比較し、該振れが最小となる位相で工具ホルダ5を主軸3に装着する振れ修正機構を備えている。   The machine tool 1 includes a runout sensor 10 that measures the runout of the rotation system R including the spindle 3, the tool holder 5, and the tool 6, and the tool holder 5. And a phase control mechanism for mounting at different phases. The phase control mechanism is controlled by the control device, and controls the phase of the tool holder 5 with respect to the spindle 3 by using the indexing function of the spindle 3. The phase control mechanism includes a shake correction mechanism that compares the shake of the rotating system R measured at two or more different phases and attaches the tool holder 5 to the spindle 3 at a phase where the shake is minimized.

工作機械1は、工具6を装着した工具ホルダを主軸3に着脱させる着脱機構7を備えている。着脱機構7は、ATC(Auto Tool Changer)フィンガーなどで構成され、図示しないが、主軸3から取り外した工具ホルダ5を収容する工具マガジンを備えている。また、工作機械1は、位相制御機構を着脱機構7に設けてもよく、主軸3が割り出し機能を備えていない場合でも、工具ホルダ5を主軸3に対して異なる位相で装着することができる。位相制御機構は、例えばATCフィンガーに設けることができる。   The machine tool 1 includes an attachment / detachment mechanism 7 for attaching / detaching a tool holder with a tool 6 attached to / from the main shaft 3. The attachment / detachment mechanism 7 is composed of an ATC (Auto Tool Changer) finger or the like, and includes a tool magazine that accommodates the tool holder 5 removed from the main shaft 3 (not shown). Further, the machine tool 1 may be provided with a phase control mechanism in the attachment / detachment mechanism 7, and the tool holder 5 can be mounted on the spindle 3 with different phases even when the spindle 3 does not have an indexing function. The phase control mechanism can be provided in the ATC finger, for example.

位相制御機構は、着脱機構7が工具ホルダ5を把持して主軸3から取り外したときに、回転系Rの振れを測定する回数Nで360°を等分した所定角度(360°/N)だけ一定方向に主軸3を回転させ、着脱機構7が工具ホルダ5を主軸3に装着したときに、主軸3に対する工具ホルダ5の位相を所定角度(360°/N)だけ変えることができる。なお、工具ホルダ5が位置決めキーを有する場合には、前記所定角度は180°(N=2)となる。工具ホルダ5が位置決めキーを有さない場合は、測定回数Nを2以上の任意の自然数に設定することができる。   The phase control mechanism is a predetermined angle (360 ° / N) obtained by equally dividing 360 ° by the number N of times of measuring the runout of the rotating system R when the attachment / detachment mechanism 7 grips the tool holder 5 and removes it from the spindle 3. When the main shaft 3 is rotated in a fixed direction and the attachment / detachment mechanism 7 mounts the tool holder 5 on the main shaft 3, the phase of the tool holder 5 with respect to the main shaft 3 can be changed by a predetermined angle (360 ° / N). When the tool holder 5 has a positioning key, the predetermined angle is 180 ° (N = 2). When the tool holder 5 does not have a positioning key, the number of measurements N can be set to an arbitrary natural number of 2 or more.

工作機械1は、振れセンサ10として、レーザセンサや画像センサなどによって工具6の振れを直接的に測定する光学センサ11と、加速度センサ、振動センサや音響センサなどによって主軸3の振動を測定する振動センサ12と、を備えている。図1に示す実施例において、光学センサ11はレーザセンサであり、テーブル2上の加工の妨げにならない場所に設置している。光学センサ11は、主軸3の停止時及び回転時に工具6をセンサ間の直交する方向に移動させて工具6の両側端を検出し、停止時と回転時の幅を比較することにより、回転時の工具6の振れ幅を検出する。光学センサ11は、加工精度に影響を与える工具6の先端部の振れを検出することが好ましい。図3乃至図6に示すように、工具6がボールエンドミルである場合には、先端のボール部の中心位置での振れを検出することが好ましい。   The machine tool 1 includes an optical sensor 11 that directly measures the vibration of the tool 6 using a laser sensor, an image sensor, or the like as the vibration sensor 10, and a vibration that measures the vibration of the main shaft 3 using an acceleration sensor, a vibration sensor, an acoustic sensor, or the like. And a sensor 12. In the embodiment shown in FIG. 1, the optical sensor 11 is a laser sensor, and is installed in a place on the table 2 that does not interfere with processing. The optical sensor 11 detects the both ends of the tool 6 by moving the tool 6 in the direction orthogonal to the sensor when the spindle 3 is stopped and rotated, and compares the width at the time of stop and rotation. The runout width of the tool 6 is detected. The optical sensor 11 preferably detects the deflection of the tip of the tool 6 that affects the machining accuracy. As shown in FIGS. 3 to 6, when the tool 6 is a ball end mill, it is preferable to detect the deflection at the center position of the ball portion at the tip.

振動センサ12は、主軸ハウジング4に設置され、主軸3の振動を加速度、振幅の大きさ、音の大きさなどで測定する。振動センサ12の設置場所は、図1に示すように、主軸ハウジング4の表面に限らず、主軸ハウジング4の内部に設置してもよい。13は、Z軸方向の位置を検出する機械軸スケールであり、この機械軸スケールに振動検出機能を設けてもよい。振れセンサ10は、少なくとも光学センサ11を備えていることが好ましく、振動センサ12の他、複数の光学センサを備えていてもよい。   The vibration sensor 12 is installed in the main shaft housing 4 and measures the vibration of the main shaft 3 by acceleration, amplitude, sound, and the like. As shown in FIG. 1, the installation location of the vibration sensor 12 is not limited to the surface of the spindle housing 4 and may be installed inside the spindle housing 4. Reference numeral 13 denotes a mechanical axis scale that detects a position in the Z-axis direction, and the mechanical axis scale may be provided with a vibration detection function. The shake sensor 10 preferably includes at least the optical sensor 11, and may include a plurality of optical sensors in addition to the vibration sensor 12.

振れ修正機構は、工具6の振れ及び主軸3の振動に許容値を設定してもよい。実施例において、振れ修正機構は、光学センサ11で測定した工具6の振れが最小となる位相と振動センサ12で測定した主軸3の振動が最小となる位相が異なる場合に、工具6の振れ及び主軸3の振動の双方が許容範囲内であるか否かを判断し、一の位相のみが該条件を満たすときには該位相を回転系Rの振れが最小となる位相であると判断し、何れの位相も該条件を満たす又は何れの位相も該条件を満たさないときには工具6の振れが最小となる位相を回転系Rの振れが最小となる位相であると判断する。また、振れ修正機構は、振動センサ12で測定した主軸3の振動が許容値に収まる各位相において、光学センサ11で測定した工具6の振れが最小となる位相を回転系Rの振れが最小となる位相であると判断してもよい。   The shake correction mechanism may set allowable values for the shake of the tool 6 and the vibration of the main shaft 3. In the embodiment, the shake correction mechanism is configured such that when the phase at which the vibration of the tool 6 measured by the optical sensor 11 is minimum and the phase at which the vibration of the main shaft 3 measured by the vibration sensor 12 are different are different, It is determined whether or not both of the vibrations of the main shaft 3 are within an allowable range, and when only one phase satisfies the condition, the phase is determined to be a phase that minimizes the vibration of the rotating system R. When the phase satisfies the condition or when neither phase satisfies the condition, the phase at which the deflection of the tool 6 is minimized is determined to be the phase at which the deflection of the rotating system R is minimized. Further, the shake correction mechanism has a phase in which the shake of the tool 6 measured by the optical sensor 11 is minimized in each phase where the vibration of the main shaft 3 measured by the vibration sensor 12 falls within an allowable value. It may be determined that the phase is.

また、振れ修正機構は、測定した回転系Rの振れに基づいて主軸3の回転軸3aに対する工具ホルダ5及び工具6の偏芯方向を割り出し、回転系Rの振れが最小となる位相を予測する手段を備えていることが好ましい。振れ修正機構は、二以上の異なる位相において測定した回転系Rの振れを比較して該振れが最小となる位相を判断又は予測する第一の測定手段と、第一の測定手段で振れが最小であると判断又は予測した位相を含む所定角度の範囲を第一の測定手段より細かい位相差で二以上の異なる位相において回転系Rの振れを測定し、該振れを比較して該振れが最小となる位相で工具ホルダ5を主軸3に装着する第二の測定手段と、を備えた構成にすることもできる。   Further, the run-out correction mechanism calculates the eccentric direction of the tool holder 5 and the tool 6 with respect to the rotary shaft 3a of the main shaft 3 based on the measured run-out of the rotary system R, and predicts the phase at which the run-out of the rotary system R is minimized. Preferably means are provided. The shake correction mechanism includes a first measurement unit that compares the shakes of the rotating system R measured at two or more different phases and determines or predicts a phase where the shake is minimized, and the first measurement unit minimizes the shake. The vibration of the rotating system R is measured in two or more different phases with a phase difference finer than the first measuring means within the range of the predetermined angle including the phase determined or predicted to be, and the vibration is minimized by comparing the vibrations. And a second measuring means for mounting the tool holder 5 on the main shaft 3 at a phase of

次に、本発明に係る工作機械1を用いた工具6の振れ修正方法について説明する。図2は、本発明に係る振れ修正方法の一実施例を示すフローチャートである。工具6の振れ修正方法は、工具ホルダ5を主軸3に対して二以上の異なる位相で装着し、それぞれの位相において工具6の振れを含む回転系Rの振れを測定する振れ測定工程と、それぞれの位相において測定した回転系Rの振れを比較する振れ比較工程と、回転系Rの振れが最小となる位相で工具ホルダ5を主軸3に装着する振れ修正工程と、を有する。   Next, a method for correcting runout of the tool 6 using the machine tool 1 according to the present invention will be described. FIG. 2 is a flowchart showing an embodiment of the shake correction method according to the present invention. The runout correction method for the tool 6 includes a runout measurement process in which the tool holder 5 is mounted on the spindle 3 at two or more different phases, and the runout of the rotating system R including the runout of the tool 6 is measured at each phase. And a runout comparison step for comparing the runout of the rotating system R measured in this phase, and a runout correcting step for mounting the tool holder 5 on the spindle 3 at a phase where the runout of the rotary system R is minimized.

(1)制御装置は、工具6の振れを含む回転系Rの振れを測定する全計測回数をN(Nは2以上の自然数)に設定する。全計測回数は予め決められた回数に設定してもよく、操作者に回数の設定を求めてもよい。制御装置は、計測回(n)、主軸3の位相(angle)及び振れ・振動の大きさ(data)を初期値(0)に設定する。   (1) The control device sets N (N is a natural number equal to or greater than 2) to N (N is a natural number equal to or greater than 2). The total number of measurements may be set to a predetermined number, or the operator may be asked to set the number of times. The control device sets the measurement time (n), the phase (angle) of the spindle 3 and the magnitude of vibration / vibration (data) to the initial value (0).

(2)制御装置は、主軸3の位相(angle)が360°×n/Nとなる角度に主軸3の割り出しを行う。着脱機構7は、ATCフィンガーが工具マガジンから所望の工具6を装着した工具ホルダ5を取り出し、工具ホルダ5を主軸に装着する。ATCフィンガー及び工具マガジンが主軸3から退避すると、振れセンサ10が工具6の振れ及び主軸3の振動を測定する。   (2) The control device performs indexing of the main shaft 3 at an angle at which the phase of the main shaft 3 is 360 ° × n / N. The attaching / detaching mechanism 7 takes out the tool holder 5 on which a desired tool 6 is attached from the tool magazine by the ATC finger, and attaches the tool holder 5 to the spindle. When the ATC finger and the tool magazine are retracted from the main shaft 3, the vibration sensor 10 measures the vibration of the tool 6 and the vibration of the main shaft 3.

(3)制御装置は、計測回(n)が初期値(0)のとき、振れセンサ10が測定した計測値を振れ・振動の大きさ(data)として入力する。制御装置は、計測回(n)が初期値(0)以外のとき、振れセンサ10が測定した計測値と、振れ・振動の大きさとして既に入力されている値(data)とを比較し、計測値が小さいときには該計測値を振れ・振動の大きさ(data)として主軸3の位相(angle=360°×n/N)と共に上書きして入力する。一方、計測値が、振れ・振動の大きさとして既に入力されている値(data)と同じか大きいときには、制御装置はdataとして入力しない。   (3) When the measurement time (n) is the initial value (0), the control device inputs the measurement value measured by the shake sensor 10 as the magnitude (data) of shake / vibration. When the measurement time (n) is other than the initial value (0), the control device compares the measured value measured by the shake sensor 10 with the value (data) already input as the magnitude of the shake / vibration, When the measured value is small, the measured value is overwritten with the phase of the main shaft 3 (angle = 360 ° × n / N) as the magnitude of vibration / vibration (data). On the other hand, when the measured value is the same as or larger than the value (data) already input as the magnitude of vibration / vibration, the control device does not input it as data.

(4)制御装置は、計測回(n)に「1」を加え、計測回(n)と全計測回数Nとを比較する。   (4) The control device adds “1” to the measurement time (n), and compares the measurement time (n) with the total number N of measurement times.

(5)計測回(n)が全計測回数Nに達していないとき、着脱機構7は、ATCフィンガー及び工具マガジンを主軸3へ移動させ、ATCフィンガーが主軸3から工具ホルダ5を取り外し、該工具ホルダ5を工具マガジンに移動させる。ATCフィンガー及び工具マガジンが主軸3から退避して、上記(2)以降の工程を繰り返す。   (5) When the number of measurement times (n) has not reached the total number of measurements N, the attachment / detachment mechanism 7 moves the ATC finger and the tool magazine to the main shaft 3, and the ATC finger removes the tool holder 5 from the main shaft 3, and the tool The holder 5 is moved to the tool magazine. The ATC finger and the tool magazine are retracted from the main shaft 3, and the steps (2) and subsequent steps are repeated.

(6)計測回(n)が全計測回数Nに達したとき、制御装置は、主軸3の位相(angle)として入力されている角度が360°×(n−1)/Nであるときには、回転系Rの振れが最小となる位相で工具ホルダ5が主軸3に装着されていると判断し、主軸3への工具6の装着を終了する。   (6) When the number of measurement times (n) reaches the total number of measurement times N, the control device, when the angle input as the phase of the spindle 3 is 360 ° × (n−1) / N, It is determined that the tool holder 5 is mounted on the main shaft 3 at a phase where the runout of the rotating system R is minimum, and the mounting of the tool 6 on the main shaft 3 is terminated.

(7)計測回(n)が全計測回数Nに達したとき、制御装置が主軸3の位相(angle)として入力されている角度が360°×(n−1)/Nでないと判断したときには、着脱機構7は、ATCフィンガー及び工具マガジンを主軸3へ移動させ、ATCフィンガーが主軸3から工具ホルダ5を取り外し、該工具ホルダ5を工具マガジンに移動させる。ATCフィンガー及び工具マガジンが主軸3から退避すると、制御装置は、回転系Rの振れが最小となる主軸3の位相(angle)として入力されている角度に主軸3の割り出しを行う。着脱機構7は、ATCフィンガーが工具マガジンから工具ホルダ5を取り出し、回転系Rの振れが最小となる位相で工具ホルダ5を主軸に装着する。ATCフィンガー及び工具マガジンが主軸3から退避して、主軸3への工具6の装着を終了する。   (7) When the number of measurement times (n) reaches the total number of measurement times N, the control device determines that the angle input as the phase of the spindle 3 is not 360 ° × (n−1) / N The attaching / detaching mechanism 7 moves the ATC finger and the tool magazine to the main shaft 3, the ATC finger removes the tool holder 5 from the main shaft 3, and moves the tool holder 5 to the tool magazine. When the ATC finger and the tool magazine are retracted from the main shaft 3, the control device indexes the main shaft 3 to the angle input as the phase of the main shaft 3 at which the swing of the rotating system R is minimized. In the attaching / detaching mechanism 7, the ATC finger takes out the tool holder 5 from the tool magazine, and attaches the tool holder 5 to the spindle at a phase where the runout of the rotating system R is minimized. The ATC finger and the tool magazine are retracted from the spindle 3 and the mounting of the tool 6 on the spindle 3 is finished.

本発明の振れ修正方法は、上記(1)〜(7)の工程によって、主軸3と工具ホルダ5の関係において工具6又は回転系Rの振れ又は振動が最小になる工具ホルダ5の位相を自動的に検出することができ、工具6又は回転系Rの振れ又は振動が最も小さくなる位相で工具ホルダ5を自動的に装着することができる。   In the shake correction method of the present invention, the phase of the tool holder 5 that minimizes the shake or vibration of the tool 6 or the rotation system R in the relationship between the spindle 3 and the tool holder 5 is automatically performed by the steps (1) to (7). The tool holder 5 can be automatically mounted at a phase where the vibration or vibration of the tool 6 or the rotary system R is minimized.

本発明の振れ修正方法は、振れ比較工程が、それぞれの位相において測定した回転系Rの振れを予め定めた振れの許容値と比較する工程を備え、振れ修正工程が、回転系Rの振れ又は振動が該許容値以下になった位相で工具ホルダ5を主軸3に装着する構成にしてもよい。また、発明の振れ修正方法は、工具3の振れと主軸3の振動が共に許容値以下になった位相で工具ホルダ5を主軸3に装着するようにしてもよく、工具3の振れと主軸3の振動に優先順位をつける又は重み付けをして位相を決定するようにしてもよい。   The shake correction method of the present invention includes a step in which the shake comparison step compares the runout of the rotating system R measured at each phase with a predetermined shake allowance, and the shake correction step includes the runout of the rotary system R or The tool holder 5 may be mounted on the main shaft 3 at a phase where the vibration is less than the allowable value. In the runout correcting method of the invention, the tool holder 5 may be mounted on the main spindle 3 at a phase where both the runout of the tool 3 and the vibration of the main spindle 3 are less than the allowable values. The phase may be determined by prioritizing or weighting the vibrations.

本発明の振れ修正方法は、振れ比較工程が、それぞれの位相において測定した回転系Rの振れを予め定めた振れの許容値と比較する工程を備え、該工程で比較した回転系Rの振れが全ての位相において該許容値を上回った場合に、工具ホルダ5から工具6を取り外し、工具ホルダ5に対して工具6の位相を変えて該工具6を装着する工具位相変更工程を有し、回転系Rの振れが該許容値以下になるまで工具位相変更工程と、振れ測定工程と、振れ比較工程と、を繰り返す構成にしてもよい。工具位相変更工程は、機械で工具6の位相を変えるものでもよく、人手で工具6の位相を変えるものでもよい。   The shake correction method of the present invention includes a step in which the shake comparison step compares the runout of the rotating system R measured at each phase with a predetermined shake allowance, and the runout of the rotary system R compared in the step is compared. A tool phase changing step of removing the tool 6 from the tool holder 5 and changing the phase of the tool 6 with respect to the tool holder 5 and mounting the tool 6 when the allowable value is exceeded in all phases; You may make it the structure which repeats a tool phase change process, a run-out measurement process, and a run-out comparison process until the run-out of system R becomes below this tolerance. In the tool phase changing step, the phase of the tool 6 may be changed by a machine, or the phase of the tool 6 may be changed manually.

1 工作機械
2 テーブル
3 主軸
3a 回転軸
4 主軸ハウジング
5 工具ホルダ
6 工具
7 着脱機構
10 振れセンサ
11 光学センサ
12 振動センサ
DESCRIPTION OF SYMBOLS 1 Machine tool 2 Table 3 Spindle 3a Rotating shaft 4 Spindle housing 5 Tool holder 6 Tool 7 Attachment / detachment mechanism 10 Vibration sensor 11 Optical sensor 12 Vibration sensor

Claims (10)

工具を装着した工具ホルダを主軸に自動着脱する着脱機構を備えた工作機械であって、
前記主軸の回転時に、前記主軸の回転軸に対する前記主軸、前記工具ホルダ及び前記工具で構成される回転系の振れを測定する振れセンサと、
前記工具ホルダを前記主軸に対して異なる位相で装着する位相制御機構と、を有し、
前記位相制御機構が、二以上の異なる位相において測定した前記回転系の振れを比較し、該振れが最小となる位相で前記工具ホルダを前記主軸に装着する振れ修正機構を備えた工作機械。
A machine tool equipped with an attachment / detachment mechanism for automatically attaching / detaching a tool holder with a tool to / from a main spindle,
A runout sensor that measures runout of a rotation system constituted by the spindle, the tool holder, and the tool with respect to the rotation axis of the spindle when the spindle is rotated;
A phase control mechanism for mounting the tool holder in a different phase with respect to the spindle,
A machine tool comprising a shake correction mechanism in which the phase control mechanism compares shakes of the rotating system measured at two or more different phases and attaches the tool holder to the spindle at a phase where the shake is minimized.
前記振れ修正機構が、前記主軸に対する前記工具ホルダの位相を変えて前記回転系の振れを測定する回数で360°を等分した所定角度ずつ前記工具ホルダの位相を変えて前記回転系の振れを測定する請求項1に記載の工作機械。   The shake correcting mechanism changes the phase of the rotating system by changing the phase of the tool holder by a predetermined angle obtained by equally dividing 360 ° by the number of times of measuring the shaking of the rotating system by changing the phase of the tool holder with respect to the spindle. The machine tool according to claim 1 to be measured. 前記振れセンサが、前記工具の振れを測定する光学センサ又は/及び前記主軸の振動を測定する振動センサを含む請求項1又は2に記載の工作機械。   The machine tool according to claim 1, wherein the runout sensor includes an optical sensor for measuring runout of the tool and / or a vibration sensor for measuring vibration of the spindle. 前記光学センサで測定した前記工具の振れが最小となる位相と前記振動センサで測定した前記主軸の振動が最小となる位相が異なる場合に、
前記振れ修正機構は、前記工具の振れ及び前記主軸の振動の双方が許容範囲内であるか否かを判断し、一の位相のみが該条件を満たすときには該位相を前記回転系の振れが最小となる位相であると判断し、何れの位相も該条件を満たす又は何れの位相も該条件を満たさないときには前記工具の振れが最小となる位相を前記回転系の振れが最小となる位相であると判断することを特徴とする請求項3に記載の工作機械。
When the phase that minimizes the vibration of the tool measured by the optical sensor is different from the phase that minimizes the vibration of the spindle measured by the vibration sensor,
The runout correction mechanism determines whether both of the runout of the tool and the vibration of the spindle are within an allowable range. When only one phase satisfies the condition, the runout of the rotating system is minimized. The phase that minimizes the runout of the tool is the phase that minimizes the runout of the rotating system when any phase satisfies the condition or none of the phases satisfy the condition. The machine tool according to claim 3, wherein the machine tool is determined.
前記振れ修正機構が、測定した前記回転系の振れに基づいて前記主軸の回転軸に対する前記工具ホルダ及び前記工具の偏芯方向を割り出し、前記回転系の振れが最小となる位相を予測する手段を備えた請求項1乃至4の何れか一項に記載の工作機械。   Means for predicting a phase at which the runout of the rotary system is minimized, the runout correction mechanism determining the eccentric direction of the tool holder and the tool relative to the rotation axis of the main shaft based on the measured runout of the rotary system; The machine tool as described in any one of Claims 1 thru | or 4 provided. 前記回転系の振れが前記工具の振れであることを特徴とする請求項1、2又は5に記載の工作機械。   The machine tool according to claim 1, wherein the runout of the rotating system is runout of the tool. 前記振れ修正機構が、二以上の異なる位相において測定した前記回転系の振れを比較して該振れが最小となる位相を判断又は予測する第一の測定手段と、前記第一の測定手段で前記振れが最小であると判断又は予測した位相を含む所定角度の範囲を前記第一の測定手段より細かい位相差で二以上の異なる位相において前記回転系の振れを測定し、該振れを比較して該振れが最小となる位相で前記工具ホルダを前記主軸に装着する第二の測定手段と、を備えた請求項1乃至6の何れか一項に記載の工作機械。   The shake correction mechanism compares the shake of the rotating system measured at two or more different phases, and judges or predicts the phase at which the shake is minimized, and the first measurement means uses the first measurement means. Measure the vibration of the rotating system in two or more different phases with a phase difference finer than the first measuring means within a range of a predetermined angle that includes a phase that is judged or predicted that the vibration is minimal, and compares the vibration The machine tool according to any one of claims 1 to 6, further comprising: a second measuring unit that mounts the tool holder on the spindle at a phase in which the deflection is minimized. 請求項1乃至7の何れか一項に記載の工作機械を用いた工具の振れ又は/及び前記主軸の振動の修正方法であって、
前記工具ホルダを前記主軸に対して二以上の異なる位相で装着し、それぞれの位相において前記回転系の振れを測定する振れ測定工程と、
それぞれの位相において測定した前記回転系の振れを比較する振れ比較工程と、
前記回転系の振れが最小となる位相で前記工具ホルダを前記主軸に装着する振れ修正工程と、を有する振れ修正方法。
A method for correcting vibration of a tool and / or vibration of the main shaft using the machine tool according to claim 1,
The tool holder is mounted in two or more different phases with respect to the main shaft, and a run-out measuring step of measuring the run-out of the rotating system in each phase;
A shake comparison step of comparing the rotation of the rotating system measured in each phase;
And a shake correction step of attaching the tool holder to the spindle at a phase where the shake of the rotating system is minimized.
前記振れ比較工程が、それぞれの位相において測定した前記回転系の振れを予め定めた振れの許容値と比較する工程を備え、
前記振れ修正工程が、前記回転系の振れが前記許容値以下になった位相で前記工具ホルダを前記主軸に装着することを特徴とする請求項8に記載の振れ修正方法。
The shake comparison step comprises a step of comparing the rotation of the rotating system measured at each phase with a predetermined shake tolerance value,
9. The shake correction method according to claim 8, wherein the shake correction step attaches the tool holder to the main shaft at a phase where the runout of the rotating system is equal to or less than the allowable value.
前記振れ比較工程が、それぞれの位相において測定した前記回転系の振れを予め定めた振れの許容値と比較する工程を備え、
該工程で比較した前記回転系の振れが全ての位相において前記許容値を上回った場合に、前記工具ホルダから前記工具を取り外し、前記工具ホルダに対して前記工具の位相を変えて該工具を装着する工具位相変更工程を有し、
前記回転系の振れが前記許容値以下になるまで前記工具位相変更工程と、前記振れ測定工程と、前記振れ比較工程と、を繰り返すことを特徴とする請求項8又は9に記載の振れ修正方法。
The shake comparison step comprises a step of comparing the rotation of the rotating system measured at each phase with a predetermined shake tolerance value,
When the rotation of the rotating system compared in the process exceeds the allowable value in all phases, the tool is removed from the tool holder, and the tool is mounted on the tool holder while changing the phase of the tool. A tool phase changing step to
The runout correction method according to claim 8 or 9, wherein the tool phase change step, the runout measurement step, and the runout comparison step are repeated until the runout of the rotating system becomes equal to or less than the allowable value. .
JP2015124945A 2015-06-22 2015-06-22 Runout correction method for machine tools and tools Active JP6532769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015124945A JP6532769B2 (en) 2015-06-22 2015-06-22 Runout correction method for machine tools and tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015124945A JP6532769B2 (en) 2015-06-22 2015-06-22 Runout correction method for machine tools and tools

Publications (2)

Publication Number Publication Date
JP2017007030A true JP2017007030A (en) 2017-01-12
JP6532769B2 JP6532769B2 (en) 2019-06-19

Family

ID=57761040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015124945A Active JP6532769B2 (en) 2015-06-22 2015-06-22 Runout correction method for machine tools and tools

Country Status (1)

Country Link
JP (1) JP6532769B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6452898B1 (en) * 2017-10-25 2019-01-16 三菱電機株式会社 Spindle unit runout detector
JP2019014005A (en) * 2017-07-06 2019-01-31 ファナック株式会社 Machine tool and origin correction method
JP2020011366A (en) * 2018-07-20 2020-01-23 株式会社牧野フライス製作所 Method for adjusting deflection of tool and machine tool
CN111975449A (en) * 2019-05-23 2020-11-24 发那科株式会社 Spindle abnormality detection device
US10888966B2 (en) 2019-03-19 2021-01-12 Fanuc Corporation Machine tool
JP6868147B1 (en) * 2020-08-04 2021-05-12 Dmg森精機株式会社 Machine tools, detection methods, and detection programs
CN114096367A (en) * 2019-08-09 2022-02-25 住友电气工业株式会社 Milling tool, module, cutting system, processing method, and processing program
CN114273971A (en) * 2021-12-09 2022-04-05 致远金属科技(徐州)有限公司 Milling cutter correcting device for multi-axis machining center

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0335952A (en) * 1989-07-04 1991-02-15 Toyoda Mach Works Ltd Tool attaching device
JPH09155617A (en) * 1995-12-15 1997-06-17 Niigata Pref Gov Cutting process of fiber type organic material, rigid and brittle inorganic material, and glass type inorganic material, by end mill shpaed tool
JP2015051494A (en) * 2013-09-09 2015-03-19 東芝機械株式会社 Tool installation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0335952A (en) * 1989-07-04 1991-02-15 Toyoda Mach Works Ltd Tool attaching device
JPH09155617A (en) * 1995-12-15 1997-06-17 Niigata Pref Gov Cutting process of fiber type organic material, rigid and brittle inorganic material, and glass type inorganic material, by end mill shpaed tool
JP2015051494A (en) * 2013-09-09 2015-03-19 東芝機械株式会社 Tool installation method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019014005A (en) * 2017-07-06 2019-01-31 ファナック株式会社 Machine tool and origin correction method
US10792776B2 (en) 2017-07-06 2020-10-06 Fanuc Corporation Machine tool and origin point correction method
JP6452898B1 (en) * 2017-10-25 2019-01-16 三菱電機株式会社 Spindle unit runout detector
WO2019082302A1 (en) * 2017-10-25 2019-05-02 三菱電機株式会社 Spindle unit center runout detection apparatus
JP2020011366A (en) * 2018-07-20 2020-01-23 株式会社牧野フライス製作所 Method for adjusting deflection of tool and machine tool
US10888966B2 (en) 2019-03-19 2021-01-12 Fanuc Corporation Machine tool
CN111975449A (en) * 2019-05-23 2020-11-24 发那科株式会社 Spindle abnormality detection device
US11040424B2 (en) 2019-05-23 2021-06-22 Fanuc Corporation Spindle abnormity detection device
CN114096367A (en) * 2019-08-09 2022-02-25 住友电气工业株式会社 Milling tool, module, cutting system, processing method, and processing program
CN114096367B (en) * 2019-08-09 2023-12-12 住友电气工业株式会社 Cutting system, processing method, and non-volatile computer-readable recording medium
JP6868147B1 (en) * 2020-08-04 2021-05-12 Dmg森精機株式会社 Machine tools, detection methods, and detection programs
JP2022029120A (en) * 2020-08-04 2022-02-17 Dmg森精機株式会社 Machine tool, detection method, and detection program
CN114273971A (en) * 2021-12-09 2022-04-05 致远金属科技(徐州)有限公司 Milling cutter correcting device for multi-axis machining center

Also Published As

Publication number Publication date
JP6532769B2 (en) 2019-06-19

Similar Documents

Publication Publication Date Title
JP6532769B2 (en) Runout correction method for machine tools and tools
US9511464B2 (en) Adjustment mechanism for rotation runout and dynamic balance of rotating tool
US11256229B2 (en) Industrial machinery and control method thereof
JP2008540146A (en) How to optimize machine tool vibration
US20100000320A1 (en) Method and apparatus for quantitatively detecting unbalanced state and method for detecting clamping state of a workpiece
JP2017154202A (en) Processing method and processing device by end mill
JP6921511B2 (en) Machine tools with automatic tool changer and automatic measurement method
JP2012206188A (en) High-precision processing apparatus
JP2012047707A (en) Vibration detector, vibration suppression device, and vibration information display device
JP2019188540A (en) Determination device and machine tool system
KR20230035687A (en) Balance and oscillation adjustment system for rotary tool, balance and oscillation measurement device, balance and oscillation adjustment method, and tool holder
JP2011189417A (en) Processing robot and gravity compensating method thereof
JP5369718B2 (en) Machine Tools
JP6623061B2 (en) Machine tool and control method of machine tool
CN112334748A (en) Method for determining the mass and the position of the center of gravity of a load in a mobile system, in particular a machine tool
JP7058210B2 (en) Machine tools, defect detection methods, and defect detection programs
JP2005324287A (en) Workpiece machining device and workpiece machining method
WO2020203844A1 (en) Industrial machine, eccentricity specifying device, eccentricity specifying method, and program
WO2019082302A1 (en) Spindle unit center runout detection apparatus
JP4292675B2 (en) Machine Tools
JP7264255B2 (en) Rotary tools and rotary machining systems
JP2009291915A (en) Machine tool
JP2010029973A (en) Grinding machine and grinding method
KR20180047495A (en) Method and apparatus for compensating spindle protrusion of machine tool
WO2024127624A1 (en) Misalignment detection method, misalignment detection device, and machine tool equipped with misalignment detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190522

R150 Certificate of patent or registration of utility model

Ref document number: 6532769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250