WO2021037085A1 - 一种光模块 - Google Patents

一种光模块 Download PDF

Info

Publication number
WO2021037085A1
WO2021037085A1 PCT/CN2020/111499 CN2020111499W WO2021037085A1 WO 2021037085 A1 WO2021037085 A1 WO 2021037085A1 CN 2020111499 W CN2020111499 W CN 2020111499W WO 2021037085 A1 WO2021037085 A1 WO 2021037085A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
chip
light
lens
lens assembly
Prior art date
Application number
PCT/CN2020/111499
Other languages
English (en)
French (fr)
Inventor
刘旭霞
邵乾
钟岩
罗成双
杨思更
宿靖
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910812590.0A external-priority patent/CN110501789A/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2021037085A1 publication Critical patent/WO2021037085A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections

Definitions

  • the present disclosure relates to the field of optical communication technology, and in particular to an optical module.
  • the optical module is a connection module that plays the role of photoelectric conversion.
  • the COB (chip on board) process platform has the advantages of low cost, high density, good high frequency performance, and simple packaging process. More and more optical modules will be processed by traditional coaxial Or the micro-optics process platform is converted to the COB process platform.
  • the embodiment of the present disclosure provides an optical module, which mainly includes: a circuit board; an optical chip arranged on the circuit board; a driving chip arranged on the circuit board and electrically connected to the optical chip; a lens assembly covered on the optical chip and
  • the driving chip includes a cavity part and a lens part connected to the cavity part.
  • the cavity part is used to provide a cavity for the optical chip and the driving chip.
  • the lens part is provided with a reflecting surface and a first lens array.
  • the reflecting surface For establishing optical connection between the optical chip and the optical fiber, the first lens array is arranged between the optical chip and the reflective surface.
  • Figure 1 is a schematic diagram of the connection relationship of an optical communication terminal
  • Figure 2 is a schematic diagram of the structure of an optical network unit
  • FIG. 3 is a schematic structural diagram of an optical module provided by an embodiment of the disclosure.
  • FIG. 4 is a schematic diagram of an exploded structure of an optical module provided by an embodiment of the disclosure.
  • FIG. 5 is a schematic diagram of a first split structure of a lens assembly provided by an embodiment of the disclosure.
  • FIG. 6 is a schematic diagram of a second split structure of a lens assembly provided by an embodiment of the disclosure.
  • FIG. 7 is a schematic diagram of an assembly structure of a lens assembly provided by an embodiment of the disclosure.
  • FIG. 8 is a schematic diagram of the structure of a lens component, an optical chip, and an electrical chip provided by an embodiment of the disclosure
  • FIG. 9 is a schematic diagram of the split structure of the lens component and the optical fiber holder provided by the embodiments of the disclosure.
  • FIG. 10 is a schematic diagram of an assembly structure of a lens component and an optical fiber holder provided by an embodiment of the disclosure
  • FIG. 11 is a side view of the assembled lens component and the optical fiber holder provided by the embodiment of the disclosure.
  • FIG. 12 is a schematic diagram of the split structure of the first lens assembly, the second lens assembly and the fiber holder provided by the embodiments of the disclosure;
  • FIG. 13 is a side view of the assembly structure of the first lens assembly, the second lens assembly and the fiber holder provided by the embodiments of the disclosure;
  • FIG. 14 is a schematic diagram of the disassembled structure of the second cavity component and the second lens component provided by the embodiments of the disclosure.
  • 15 is a schematic diagram of an assembly structure of a second cavity component and a second lens component provided by an embodiment of the disclosure
  • FIG. 16 is a side view of the second cavity part and the second lens part after assembly according to an embodiment of the disclosure.
  • FIG. 17 is a side view of the first lens assembly, the second lens assembly, and the light bracket provided by the embodiments of the disclosure after being assembled;
  • FIG. 18 is a schematic diagram of the back structure of a second lens assembly provided by an embodiment of the disclosure.
  • FIG. 19 is an optical path diagram in an optical module provided by an embodiment of the disclosure.
  • 20 is a schematic diagram of the split structure of the first cavity component and the first lens component provided by the embodiments of the disclosure.
  • FIG. 21 is a schematic diagram of an assembly structure of a first cavity component and a first lens component provided by an embodiment of the disclosure
  • FIG. 22 is a schematic diagram of a cross-sectional structure of a first lens assembly provided by an embodiment of the disclosure.
  • FIG. 23 is a schematic diagram of the back structure of a first lens assembly provided by an embodiment of the disclosure.
  • 24 is a schematic diagram of a relatively large deviation of the relative position and angle of the light emitting chip and the light receiving chip provided by the embodiments of the disclosure;
  • FIG. 25 is a schematic diagram of the light receiving chip and the second lens assembly provided by an embodiment of the disclosure when coupled and aligned; FIG.
  • FIG. 26 is a schematic diagram of a light emitting chip provided by an embodiment of the disclosure when coupled and aligned with a first lens assembly.
  • One of the core links of optical fiber communication is the mutual conversion of optical and electrical signals.
  • Optical fiber communication uses information-carrying optical signals to be transmitted in optical fibers/optical waveguides and other information transmission equipment.
  • the passive transmission characteristics of light in optical fibers/optical waveguides can achieve low-cost and low-loss information transmission; and computers and other information processing equipment Electrical signals are used.
  • information transmission equipment such as optical fibers/optical waveguides and information processing equipment such as computers, it is necessary to realize mutual conversion between electrical signals and optical signals.
  • the optical module realizes the above-mentioned mutual conversion function of optical and electrical signals in the field of optical fiber communication technology, and the mutual conversion of optical signals and electrical signals is the core function of the optical module.
  • the optical module realizes the electrical connection with the external host computer through the golden finger on its internal circuit board.
  • the main electrical connections include power supply, I2C signal, data signal and grounding, etc.; the electrical connection method realized by the golden finger has become the optical module.
  • the mainstream connection method of the industry based on this, the definition of pins on the golden finger has formed a variety of industry protocols/standards.
  • Figure 1 is a schematic diagram of the connection relationship of an optical communication terminal.
  • the connection of the optical communication terminal mainly includes the interconnection between the optical network terminal 100, the optical module 200, the optical fiber 101, and the network cable 103;
  • One end of the optical fiber 101 is connected to the remote server, and one end of the network cable 103 is connected to the local information processing equipment.
  • the connection between the local information processing equipment and the remote server is completed by the connection of the optical fiber 101 and the network cable 103; and the connection between the optical fiber 101 and the network cable 103 is The optical network terminal 100 with the optical module 200 is completed.
  • the optical port of the optical module 200 is externally connected to the optical fiber 101 to establish a bidirectional optical signal connection with the optical fiber 101;
  • the electrical port of the optical module 200 is externally connected to the optical network terminal 100 to establish a bidirectional electrical signal connection with the optical network terminal 100;
  • the optical module realizes the mutual conversion between optical signals and electrical signals, thereby realizing the establishment of an information connection between the optical fiber and the optical network terminal; specifically, the optical signal from the optical fiber is converted into an electrical signal by the optical module and then input to the optical network terminal 100 , The electrical signal from the optical network terminal 100 is converted into an optical signal by the optical module and input into the optical fiber.
  • the optical network terminal has an optical module interface 102, which is used to connect to the optical module 200 and establish a two-way electrical signal connection with the optical module 200; the optical network terminal has a network cable interface 104, which is used to connect to the network cable 103 and establish a two-way electrical connection with the network cable 103.
  • Signal connection; a connection is established between the optical module 200 and the network cable 103 through the optical network terminal 100.
  • the optical network terminal transmits the signal from the optical module to the network cable, and transmits the signal from the network cable to the optical module, and the optical network terminal serves as the optical The upper computer of the module monitors the work of the optical module.
  • the remote server establishes a two-way signal transmission channel with the local information processing equipment through optical fibers, optical modules, optical network terminals and network cables.
  • Common information processing equipment includes routers, switches, electronic computers, etc.; the optical network terminal is the upper computer of the optical module, which provides data signals to the optical module and receives data signals from the optical module.
  • the common optical module upper computer also has optical lines Terminal and so on.
  • FIG 2 is a schematic diagram of the optical network terminal structure.
  • the optical network terminal 100 has a circuit board 105, and a cage 106 is provided on the surface of the circuit board 105; an electrical connector is provided inside the cage 106 for accessing optical module electrical ports such as golden fingers; A heat sink 107 is provided on the cage 106, and the heat sink 107 has protrusions such as fins that increase the heat dissipation area.
  • the optical module 200 is inserted into the optical network terminal. Specifically, the electrical port of the optical module is inserted into the electrical connector inside the cage 106, and the optical port of the optical module is connected to the optical fiber 101.
  • the cage 106 is located on the circuit board and wraps the electrical connector on the circuit board in the cage, so that the electrical connector is arranged inside the cage; the optical module is inserted into the cage, and the optical module is fixed by the cage, and the heat generated by the optical module is conducted to the cage 106, and then spread through the radiator 107 on the cage.
  • FIG. 3 is a schematic structural diagram of an optical module provided by an embodiment of the disclosure
  • FIG. 4 is a schematic diagram of an exploded structure of an optical module provided by an embodiment of the disclosure.
  • the optical module 200 provided by the embodiment of the present disclosure includes an upper housing 201, a lower housing 202, an unlocking component 203, a circuit board 300 and a lens assembly 400.
  • the upper shell 201 is covered on the lower shell 202 to form a wrapping cavity with two openings; the outer contour of the wrapping cavity generally presents a square shape.
  • the lower shell includes a main board and is located on both sides of the main board and is connected to the main board.
  • Two side plates are arranged vertically; the upper shell includes a cover plate, and the cover plate covers the two side plates of the upper shell to form a wrapping cavity; the upper shell may also include two sides of the cover plate and a cover plate.
  • the two vertical side walls of the plate are combined with the two side plates to realize the cover of the upper shell on the lower shell.
  • the two openings can be two openings (204, 205) in the same direction, or two openings in different directions; one of the openings is the electrical port 204, and the gold finger of the circuit board protrudes from the electrical port 204 , Inserted into an upper computer such as an optical network terminal; the other opening is an optical port 205 for external optical fiber access to connect the optical transceiver components inside the optical module; the circuit board 300, optical transceiver components and other optoelectronic devices are located in the package cavity.
  • the assembly method of the upper shell and the lower shell is used to facilitate the installation of the circuit board 300, optical transceiver devices and other components into the shell.
  • the upper shell and the lower shell form the outermost package protection shell of the optical module;
  • the upper shell and the lower shell are generally made of metal materials, which is conducive to electromagnetic shielding and heat dissipation; generally, the shell of the optical module is not made into an integrated part, so that when assembling circuit boards and other devices, positioning parts, heat dissipation and electromagnetic shielding parts Unable to install, it is not conducive to production automation.
  • the unlocking component 203 is located on the outer wall of the wrapping cavity/lower casing 202, and is used to realize the fixed connection between the optical module and the upper computer, or to release the fixed connection between the optical module and the upper computer.
  • the unlocking component 203 has an engaging component that matches the cage of the host computer; pulling the end of the unlocking component can make the unlocking component move relatively on the surface of the outer wall; the optical module is inserted into the cage of the host computer, and the optical module is held by the engaging component of the unlocking component Fixed in the cage of the host computer; by pulling the unlocking part, the locking part of the unlocking part moves accordingly, and then the connection relationship between the locking part and the host computer is changed, so as to release the optical module and the host computer. The optical module is withdrawn from the cage of the host computer.
  • the circuit board 300 is provided with a light emitting chip, a driving chip of the light emitting chip, a light receiving chip, a transimpedance amplification chip, a limiting amplification chip, a microprocessor chip, etc., wherein the light emitting chip and the light receiving chip are directly mounted on the light
  • COB chip on board
  • the circuit board connects the electrical components in the optical module according to the circuit design through circuit traces to achieve electrical functions such as power supply, electrical signal transmission, and grounding.
  • the circuit board is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also realize the carrying function. For example, the rigid circuit board can carry the chip smoothly; when the optical transceiver is on the circuit board, the rigid circuit board can also provide Stable bearing; the rigid circuit board can also be inserted into the electrical connector in the upper computer cage, specifically, metal pins/gold fingers are formed on the end surface of one side of the rigid circuit board for connection with the electrical connector; these are all It is inconvenient to realize the flexible circuit board.
  • Some optical modules also use flexible circuit boards as a supplement to rigid circuit boards; flexible circuit boards are generally used in conjunction with rigid circuit boards.
  • the lens assembly 400 is arranged on the circuit board 300, and is arranged above the optical chip in a cover-mounted manner.
  • the lens assembly 400 and the circuit board 300 form a cavity that wraps the optical chip such as the light emitting chip and the light receiving chip.
  • the light emitted by the light emitting chip enters the optical fiber after being reflected by the lens assembly, and the light from the optical fiber enters the light receiving chip after being reflected by the lens assembly.
  • the lens assembly not only functions to seal the optical chip, but also establishes the relationship between the optical chip and the optical fiber. Optical connection between.
  • High-speed data transmission requires the optical chip and its driving/matching chip to be arranged close to each other to shorten the connection between the chips and reduce the signal loss caused by the connection.
  • the lens assembly 400 is covered above the optical chip, so The lens assembly generally covers the optical chip and its driving/matching chip at the same time.
  • the light emitting chip and the driving chip of the light emitting chip are arranged close, the lens assembly covers the light emitting chip and the driving chip of the light emitting chip; the driving chip of the light receiving chip and the light receiving chip (also It is called a light-receiving driving chip), a transimpedance amplifying chip is arranged at a close distance, and the lens assembly is covered with a light-receiving chip, a light-receiving driving chip and a transimpedance amplifying chip.
  • the size of the optical chip is generally small, and the size of the drive/matching chip of the optical chip is generally large, especially the drive/matching chip that achieves a rate of more than 100G, and the size of the drive/matching chip of different products is quite different.
  • the size of the lens assembly 400 is limited, and the location of the optical chip and its driving/matching chip is limited, and there is not much space freedom. Therefore, in order to improve the versatility of the lens assembly 400 for driving/matching chips of different sizes, the present embodiment designs the lens assembly 400 into two parts, namely a lens component and a cavity component.
  • FIG. 5 is a schematic diagram of a first split structure of a lens assembly provided by an embodiment of the disclosure
  • FIG. 6 is a schematic diagram of a second split structure of a lens assembly provided by an embodiment of the disclosure.
  • the lens assembly 400 is divided into two parts, a cavity part 410 and a lens part 420.
  • the cavity component 410 is not provided with an optical surface for adjusting the optical path, but only used for the optical chip (light emitting chip, light receiving chip) and driving chip (light emitting driving chip, light receiving chip) mounted on the circuit board.
  • the light-receiving driving chip provides a accommodating cavity to realize the protection of the optical chip and the driving chip.
  • the lens component 420 is provided with a fiber holder post 421, a first lens array 424, a reflective surface 423 and a second lens array 422.
  • the cavity part 410 and the lens part 420 can be made of light-transmitting materials, such as plastic, or different materials.
  • the lens part 420 is made of transparent materials, and the cavity part 410 is made of stable moldings such as metal.
  • the inner wall of the cavity part 410 is made of an insulating material and a metal layer is provided on the outside. In this way, the metal layer structure is used to provide electromagnetic shielding. At the same time, insulating materials are used on the inner wall to prevent leakage from touching the chip.
  • the cavity part 410 is provided with a card joint 411
  • the lens part 420 is provided with a card joint 411.
  • Matching card interface 425 When assembling the cavity part 410 and the lens part 420, the lens part 420 is clamped to the card joint 411 of the cavity part 410 through the card interface 425. After the assembly is completed, glue can be used to bond the two together.
  • the card joint 411 is arranged in parallel in this embodiment. Extending in the direction of the circuit board 300, the opening direction of the card interface 425 faces the circuit board 300.
  • the cavity part 410 and the lens part 420 can also be assembled in other ways. For example, a positioning part is provided on the cavity part 410, the lens part 420 is directly clamped to the cavity part 410, and the lens part is aligned with the positioning part. 420 for positioning, or directly glue the two together.
  • FIG. 7 is a schematic diagram of an assembly structure of a lens assembly provided by an embodiment of the disclosure. As shown in FIG. 7, after the cavity part 410 and the lens part 420 are assembled, the lens part 420 is erected on the cavity part 410 so that the cavity part 410 is in contact with the circuit board 300, and the lens part 420 is suspended relative to the circuit board. .
  • the cavity part 410 is first fixed on the circuit board 300, and then the lens part 420 is fixed based on the position of the cavity part 410, because the volume of the cavity part 410 is larger than the lens part
  • the volume of 420 is easier to achieve the coupling between devices than the method of first fixing the lens component 420 on the circuit board, completing the coupling, and then assembling the cavity component 410 based on it; on the other hand, due to The lens component 420 is provided with a series of high precision optical surfaces. After the lens component 420 is suspended relative to the circuit board 300, the chip fixed on the circuit board 300 can be prevented from touching the optical surface of the lens component 420, which affects the optics. The problem of surface imaging accuracy.
  • FIG. 8 is a schematic diagram of the structure of a lens component, an optical chip, and an electric chip provided by an embodiment of the disclosure.
  • the top of the lens component 420 forms an inclined reflecting surface 423.
  • the reflective surface 423 can be formed by digging a groove downward from the top of the lens component 420.
  • One surface of the groove is an inclined surface.
  • the inclined surface is the reflecting surface 423.
  • the reflecting surface 423 is inclined to realize the optical signal. The reflection makes the light path turn 90°.
  • the light emission chip 610 and the light emission driving chip 620 for driving the light emission chip are attached to the circuit board 300, and the light emission chip 610 is positioned directly below the reflective surface 423, so that The light exit of the light emitting chip 610 corresponds to the reflective surface 423, so that the light emitted by the light emitting chip 610 can propagate to the reflective surface 423, and be reflected by the reflective surface 423 and then transmitted to the optical fiber to transmit the optical signal.
  • the light receiving chip 710 and the light receiving driving chip 720 for driving the light receiving chip 710 are attached to the circuit board 300, and at the same time, the receiving chip 710 is also arranged directly under the reflective surface 423, so that the light
  • the light entrance of the receiving chip 710 corresponds to the reflective surface 423, so that the light emitted by the light emitting chip 610 can propagate to the reflective surface 423, and be reflected by the reflective surface 423 and then transmitted to the optical fiber, so that the optical signal received by the optical fiber can be transmitted to the optical fiber first.
  • the reflective surface 423 is reflected by the reflective surface 423 and then transmitted to the light receiving chip 710.
  • a first emitting lens array 242 is provided between the light emitting chip 610 and the reflective surface 423.
  • the light entrance of the first emitting lens array 242 is opposite to the light exit of the light emitting chip 610, and the light exit of the first emitting lens array 242 is opposite to the reflective surface 423.
  • the first emitting lens array 242 responds to the light emitted by the light emitting chip 610.
  • the convergence is performed so that the obtained convergent light propagates in the direction of the reflective surface 423.
  • the first emitting lens array 242 may be integrally formed by the lens component 420.
  • the first emitting lens array 242 is arranged on the back of the lens component 420, the back of the lens component 420 faces 300, and the light emitting chip 610 is attached to the circuit board. 300, and make the light exit of the light emitting chip 610 face the first emitting lens array 242, so that the light emitted by the light emitting chip 610 propagates in the direction of the first emitting lens array 242.
  • the propagation direction of the light emitted by the light emitting chip 610 is perpendicular to the circuit board 300. Therefore, in order to ensure that the first emitting lens array 242 can condense the light emitted by the light emitting chip 610, in this embodiment, the first emitting lens array The 242 is placed horizontally, so that the light propagating in the vertical direction emitted by the light emitting chip 610 can pass through the first emitting lens array 242.
  • a second transmitting lens array 222 is provided between the reflective surface 423 and the optical fiber.
  • the light entrance of the second transmitting lens array 222 is opposite to the light receiving surface of the reflective surface 423, and the light exit is opposite to the light entrance of the optical fiber.
  • the second transmitting lens array 222 collimates the light from the reflective surface 423, so that The parallel light propagates to the optical fiber.
  • a second receiving lens array 221 is provided between the optical fiber and the reflective surface 423.
  • the light entrance port of the second receiving lens array 221 is opposite to the light exit port of the optical fiber, and the light exit port is opposite to the light receiving surface of the reflective surface 423.
  • the second receiving lens array 221 collimates the light from the optical fiber so that the parallel light is obtained. It propagates in the direction of the reflecting surface 423.
  • the light receiving chip 710 and the reflective surface A first receiving lens array 241 is arranged between 423, the light entrance of the first receiving lens array 241 is opposite to the reflective surface 423, and the light exit is opposite to the light receiving chip 710.
  • the first receiving lens array 241 condenses the light propagating on the reflective surface 423 so that the condensed light propagates to the light receiving chip 710.
  • FIG. 9 is a schematic diagram of a split structure of a lens component and an optical fiber holder provided by an embodiment of the disclosure.
  • the fiber holder 500 is used for the optical fiber.
  • an optical fiber fixing structure 501 is provided in the optical fiber holder 500, and an optical fiber is installed in the optical fiber fixing structure 501.
  • multiple V-shaped grooves can be opened in the optical fiber fixing structure 501, and each V-shaped groove is used to fix an optical fiber.
  • the optical fiber and the V-groove can be fixed by glue bonding, and the optical fiber can be stuck in the corresponding V-groove.
  • the optical fiber fixing structure 501 can be designed to be multiple and the outer diameter of the optical fiber. Round holes with matching sizes, each hole is used to fix an optical fiber, but this method is compared with the way designed as a V-shaped groove, the V-shaped groove can be adapted to more optical fibers with different outer diameters.
  • the lens component 420 is symmetrically provided with The two fiber support pillars 421 are matched with the fiber support pillars 421, and two pillar holes 502 are symmetrically provided on the fiber support 500.
  • FIG. 10 is a schematic diagram of an assembly structure of a lens component and an optical fiber holder provided by an embodiment of the disclosure. As shown in FIG. 10, the fiber holder pillar 421 is embedded in the pillar hole 502 of the fiber holder 500 to fix the fiber holder 500.
  • the fiber support 500 is also suspended relative to the circuit board 300, that is, there is a gap between the fiber support 500 and the circuit board 300, and the fiber support 500 is only supported by the lens assembly 400, thereby preventing the optical module During the working process, the circuit board 300 is thermally deformed, which affects the fixed position of the optical fiber holder 500 and ensures the optical coupling efficiency.
  • FIG. 11 is a side view of the assembled lens component and the fiber holder provided by the embodiment of the disclosure.
  • the gap between the lens assembly 400 and the optical fiber holder 500 forms an optical path propagation port for the propagation of optical signals.
  • the optical fiber 503 and the second lens array 422 are not in direct contact, so as to avoid direct contact with the optical fiber 503 to scratch the surface of the second lens array 422.
  • low refractive index optical glue can also be filled between the two to prevent the outside world. The air contaminates the optical surface of the optical fiber 503 and the second lens array 422.
  • the light emission driving chip 620 drives the light emission chip 610 to emit the light signal.
  • the light signal is collimated by the first emitting lens array in the first lens array 424, and then propagated to the reflective surface 423. , Is emitted to the second emitting lens array in the second lens array 422 through the reflecting surface 423, and finally, collimated by the second emitting lens array, enters the optical fiber in the optical fiber holder 500.
  • the lens assembly 400 is designed as a two-piece structure composed of a cavity part 410 and a lens part 420.
  • the second lens array 422, the reflective surface 423, and the first lens array 424 require high-precision optical surfaces that need to be processed on the lens component 420;
  • the cavity component 410 is not provided with any optical surfaces, and is only used for installation in the circuit
  • the optical chip (the light emitting chip 610 and the light receiving chip 710) and the electric chip (the light emitting driving chip 620 and the light receiving driving chip 720) on the board 300 provide accommodating cavities to realize the protection of the optical chip and the electric chip.
  • the optical fiber 503 includes two types of optical fibers for transmitting optical signals and for receiving optical signals, but in this embodiment, they are collectively referred to as optical fibers.
  • the transmitting optical signals and receiving optical signals can also be transmitted in the same optical fiber, that is, using multi-mode single-fiber bidirectional technology.
  • this embodiment provides a single-fiber bidirectional optical module.
  • the lens assembly is divided into two independent lens assemblies. In this implementation, they are called the first lens assembly and the second lens assembly to reduce the mounting precision requirements for the light emitting chip array and the light receiving chip array.
  • the relative position and angle requirements between the array and the light receiving chip array are relatively loose, so as to avoid the deviation of the optical path and affect the coupling effect of the optical module.
  • FIG. 12 is a schematic diagram of the split structure of the first lens assembly, the second lens assembly and the fiber holder provided by the embodiments of the disclosure
  • FIG. 13 is the assembly of the first lens assembly, the second lens assembly and the fiber holder provided by the embodiments of the disclosure Structural side view.
  • the lens assembly in this embodiment includes a first lens assembly 430 and a second lens assembly 440.
  • the first lens assembly 430 is used for transmitting optical signals
  • the second lens assembly 440 is used for receiving optical signals.
  • the first lens assembly 430 includes a first cavity part 431 and a first lens part 432 connected to the first cavity part 431, wherein the first cavity part 431 is used for the light mounted on the circuit board 300
  • the emission chip 610 and the light emission driving chip 620 provide a accommodating cavity
  • the first lens component 432 is provided with a reflective surface 4322 and a first emission lens array 4324.
  • the second lens assembly 440 includes a second cavity part 442 and a second lens part 441 connected to the second cavity part 442, wherein the second cavity part 442 is used for a light receiving chip mounted on the circuit board 300
  • the 710 and the light receiving driving chip 720 provide a accommodating cavity
  • the second lens assembly is provided with an inclined filter 4412 and a first receiving lens array 4415.
  • the optical structure in the optical module provided by the embodiment of the present disclosure no longer adopts an integrally formed structure, but adopts a separate structure, therefore, in order to ensure two separate optical structures, that is, the first lens assembly 430
  • the light-emitting surface 4323 of the first lens component 430 and the light-incident surface 4416 of the second lens component 440 are opposite to each other, so that the optical signal emitted by the first lens component 430 can enter the first lens component 440.
  • FIG. 14 is a schematic diagram of the disassembled structure of the second cavity component and the second lens component provided by the embodiment of the disclosure
  • FIG. 15 is a schematic diagram of the assembly structure of the second cavity component and the second lens component provided by the embodiment of the disclosure.
  • the second cavity part 442 and the second lens part 441 can be assembled using the snap joint and the open port in the above embodiment to achieve snap connection.
  • the specific implementation please refer to the above implementation.
  • it is not limited to this connection method.
  • the second cavity part 442 not only provides accommodating cavity for the light receiving chip 710 and the light receiving driving chip 720 to protect the light receiving chip 710 and the light receiving driving chip 720, it is also used to provide a fixed space for the optical fiber holder 500, as shown in FIG. 15 As shown, after the second cavity part 442 and the second lens part 441 are assembled, an optical fiber fixing cavity 4421 is formed between the top of the second cavity part 442 and the second lens part 441, on the second lens part 441 A fiber support pillar 4414 is provided, and the fiber support 500 is fixed in the fiber fixing cavity 4421 through the fiber support pillar 4414.
  • FIG. 16 shows the second cavity part and the second lens part provided by the embodiments of the present disclosure.
  • the light receiving chip 710 is located directly under the filter 4412 and attached to the 300 so that the light path of the light receiving chip 710 corresponds to the light path of the filter 4412.
  • FIG. 17 is a side view of the assembled first lens assembly, the second lens assembly and the light support provided by the embodiments of the disclosure.
  • the receiving and transmitting of optical signals is realized by an optical fiber. That is, the optical fiber 503 not only receives the optical signal from the light emitting chip 610 in the first lens assembly 430, but also transmits The light receiving chip 710 in the two-lens assembly 440 emits light signals to be received by the light receiving chip 710. For this reason, in this embodiment, an optical fiber holder 500 is provided on the side of the filter 4412 away from the light incident surface on the second lens assembly 440.
  • the light exit of the optical fiber 503 in the optical fiber holder 500 and the light reflecting surface of the filter 4412 In contrast, the optical signal from the optical fiber 503 propagates to the filter 4412 and then is reflected, and the formed reflected light propagates into the light receiving chip 710.
  • the filter 4412 is arranged obliquely, where the inclination angle relative to the optical fiber 503 can be 40° to 50°.
  • the optical signal from the optical fiber 503 propagates to the obliquely arranged filter 4412 and is reflected, the optical path is turned 90°, and the reflection direction is facing
  • the direction of the light receiving chip 710 is such that the reflected light whose light path is rotated by 90° can be received by the light receiving chip 710.
  • a third lens array 4413 is provided between the optical fiber 503 and the filter 4412.
  • the two light ports (the light entrance and the light exit) of the third lens array 4413 are respectively opposite to the light exit of the optical fiber 503 and the light receiving surface of the filter 4412, and the optical signal from the optical fiber 503 is collimated by the third lens array 4413 Straight, so that the received parallel light propagates in the direction of the filter 4412.
  • the propagation direction of the optical signal from the optical fiber 503 is the horizontal direction.
  • the third lens array 4413 is arranged vertically so that the optical signal from the optical fiber The optical signal of 503 can pass through the third lens array 4413.
  • FIG. 18 is a schematic diagram of the back structure of a second lens assembly provided by an embodiment of the disclosure.
  • a first receiving lens array 4415 is provided between 4412. The light entrance of the first receiving lens array 4415 is opposite to the filter 4412, and the light exit of the first receiving lens array 4415 is opposite to the light receiving chip 710. The first receiving lens array 4415 converges the light signals that have been reflected and propagated on the filter 4412 so that the condensed light can propagate into the light receiving chip 710.
  • the first receiving lens array 4415 may be integrally formed by the second lens component 441.
  • the first receiving lens array 4415 is arranged on the back of the second lens component 441.
  • the back of the second lens component 441 faces the circuit board 300,
  • the receiving chip 710 is attached to the circuit board 300, and the light-sensitive surface of the light receiving chip 710 faces the first receiving lens array 4415, so that the light receiving chip 710 can receive the light signal condensed by the first receiving lens array 4415.
  • FIG. 19 is an optical path diagram in an optical module provided by an embodiment of the disclosure.
  • the optical signal propagation path with the wavelength ⁇ 2 the optical signal propagation path in the second lens component 441 is: the optical signal from the optical fiber 503 is collimated by the third lens array 4413, and the formed parallel light propagates After reaching the filter 4412, reflection occurs, the light path is turned 90°, and the formed reflected light is condensed by the first receiving lens array 4415, and then is received by the light receiving chip 710 located under the first receiving lens array 4415.
  • the first receiving lens array 4415 and the third lens array 4413 can be integrally formed by injection molding, and the filter 4412 is fixed to the second lens component by glue bonding.
  • the optical signal received by the light receiving chip 710 in the second lens assembly 440 comes from the optical fiber 503, and the optical power of the optical signal from the optical fiber 503 is closer to the optical power required by the optical module. Therefore, there is no need for the second lens assembly 440.
  • the optical power of the optical signal is attenuated, and the optical signal from the optical fiber 503 is directly reflected into the light receiving chip 710.
  • the part of the second lens assembly 440 for realizing the propagation of the optical signal may adopt a hollow structure, that is, the side of the filter 4412 close to the first lens assembly 430 has a hollow structure.
  • the first lens assembly 430 is used to realize the emission of optical signals, and the device that realizes the emission of optical signals is the light emitting chip 610.
  • the optical power of the optical signal emitted by the light emitting chip 610 is relatively high, which is higher than the optical power required by the optical module. .
  • the optical power of the optical signal emitted by the optical transmitter chip 610 needs to be attenuated.
  • the material of the first lens assembly 430 and the material of the second lens assembly 440 are different, so that the first lens assembly 430
  • the attenuation degree of the optical signal power of the lens assembly 430 is greater than the attenuation degree of the optical signal power of the second lens assembly 440.
  • the first lens part 432 in the first lens assembly 430 may be a solid structure, and the injection molding material of the first lens part 432 may be doped with other substances.
  • This substance can be used to attenuate light power, such as graphite.
  • the optical module can be adjusted to achieve different degrees of optical power attenuation, so that the optical power of the optical signal emitted by the first lens assembly 430 meets the requirements of the optical module.
  • the optical power finally coupled into the optical fiber 503 is kept consistent to ensure the optical coupling effect.
  • the first cavity part 431 and the first lens part 432 can also be designed to be made of the same material.
  • FIG. 20 is a schematic diagram of the disassembled structure of the first cavity component and the first lens component provided by the embodiment of the disclosure
  • FIG. 21 is a schematic diagram of the assembly structure of the first cavity component and the first lens component provided by the embodiment of the disclosure.
  • the first cavity part 432 and the first lens part 432 can be assembled by using the snap joint and the opening interface in the above-mentioned embodiment to realize the snap-fit assembly.
  • the specific implementation method please refer to the above-mentioned The embodiment, of course, is not limited to this connection method.
  • the top of the first lens part 432 forms an inclined reflecting surface 4322. Since the first lens assembly 430 is a solid structure, the reflective surface 4322 can be formed by digging a groove 4321 downward from the top of the first lens component 432. One surface of the groove 4321 is an inclined surface, and the inclined direction of the inclined surface It is inclined downward in a direction from close to the second lens assembly 440 to away from the second lens assembly 440.
  • the inclined surface is the reflecting surface 4322, and the reflecting surface 4322 is arranged obliquely to realize the reflection of the optical signal and turn the optical path by 90°.
  • the bottom of the first lens part 432 is provided with a light emitting chip 610.
  • the light emitting chip 610 is placed on the circuit board 300.
  • the light emitting chip 610 and a light emitting driving chip for driving the light emitting chip 610 are combined.
  • 720 is attached to the circuit board 300, and the light emitting chip 610 is located directly below the reflective surface 4322, so that the light outlet of the light emitting chip 610 corresponds to the reflective surface 4322, so that the light signal emitted by the light emitting chip 610 can propagate to the reflective surface On 4322.
  • the optical module provided by the embodiment of the present disclosure is a single-fiber bidirectional optical module, one optical fiber realizes the reception and transmission of optical signals.
  • the optical fiber 503 for receiving the optical signal is provided at the second lens assembly 440. Therefore, it is necessary for the optical signal emitted by the first lens assembly 430 to be able to propagate into the optical fiber 503 in the second lens assembly 440.
  • the first lens assembly 430 and the second lens assembly 440 are relatively independent optical structures.
  • the light exit surface 4323 of the first lens assembly 430 is opposite to the light entrance surface 4416 of the second lens assembly 440, and both are attached.
  • the optical signal emitted by the first lens assembly 430 needs to travel a certain distance in the air before entering the second lens assembly 440.
  • the optical signal propagation path is: the optical signal emitted by the light emitting chip 610 propagates to the reflective surface 4322 and is reflected, the optical path is rotated by 90°, and the reflection direction is toward the direction where the second lens assembly 440 is located.
  • the reflected light that causes the light path to be rotated by 90° is emitted from the light exit surface 4323, and then enters the optical fiber 503 at the second lens assembly 440 via the light entrance surface 4416.
  • the filter 4412 functions to allow the light signal emitted by the first lens assembly 430 to pass through, and then converge through the third lens array 4413 and enter the optical fiber 503.
  • FIG. 22 is a schematic cross-sectional structure diagram of a first lens assembly provided by an embodiment of the present disclosure
  • FIG. 23 is a schematic diagram of a rear structure of the first lens assembly provided by an embodiment of the present disclosure.
  • the light signal emitted by the light emitting chip 610 is divergent light, in order to ensure the optical coupling effect and avoid light loss, in this embodiment, as shown in FIG. 22 and FIG. 23, a light emitting chip 610 is provided between the light emitting chip 610 and the reflective surface 4322.
  • the light entrance of the first emitting lens array 4324 is opposite to the light exit of the light emitting chip 610, and the light exit of the first emitting lens array 4324 is opposite to the reflecting surface 4322.
  • the first emitting lens array 4324 responds to the light emitted by the light emitting chip 610.
  • the signals are converged, so that the resulting convergent light propagates in the direction of the reflective surface 4322.
  • the first emitting lens array 4324 can be integrally formed with the first lens part 432.
  • the first emitting lens array 4324 is arranged on the back of the first lens part 432, and the back of the first lens part 432 faces the circuit board 300.
  • the light emitting chip 610 is attached to the circuit board 300, and the light exit of the light emitting chip 610 faces the first emitting lens array 4324, so that the light signal emitted by the light emitting chip 610 propagates in the direction of the first emitting lens array 4324.
  • the propagation direction of the optical signal emitted by the light emitting chip 610 is from bottom to top. Therefore, in order to ensure that the first emitting lens array 4324 can converge the optical signal emitted by the light emitting chip 610, in this embodiment, the first emitting lens array 4324 is placed horizontally, so that the optical signal transmitted in the vertical direction from the light emitting chip 610 can pass through the first emitting lens array 4324.
  • the propagation path of the optical signal emitted by the first lens assembly 430 is: the optical signal emitted by the light emitting chip 610 passes through the first emitting lens After the array 4324 is converged, the formed convergent light propagates to the reflective surface 4322 and is reflected. The light path is rotated by 90°. The formed reflected light is emitted from the light-emitting surface 4323 and enters the second lens assembly 440 from the light-incident surface 4416 after a certain distance in air. Inside, the optical signal passes through the filter 4412 and then enters the third lens array 4413 for convergence, and the formed convergent light enters the optical fiber 503.
  • the embodiments of the present disclosure provide an optical module, in which the first lens assembly 430 needs to attenuate the optical power of the optical signal emitted by the light emitting chip 610, so that the coupled optical power of the optical module remains consistent, even if the light finally coupled into the optical fiber 503 The power is consistent with the optical power required by the optical fiber 503.
  • the foregoing embodiment adopts a method of adding graphite or other materials that can be used to attenuate light power into the injection material of the first lens assembly 430, while in other embodiments, a method of plating an attenuation film on the reflective surface 4322 may also be adopted.
  • an attenuation film is plated on the reflective surface 4322, and the attenuation film is used to attenuate the optical power of the optical signal emitted by the light emitting chip 610, so that the optical signal emitted by the light emitting chip 610 is transmitted to the reflective surface.
  • the surface 4322 reflects, the optical power of the optical signal is attenuated at the same time.
  • the reflective surface 4322 can be coated with an attenuation film that can achieve the same attenuation degree as the coupled optical power of the optical module, so that the light reflected and attenuated by the reflective surface 4322
  • the signal can meet the requirements of the optical module, that is, the optical power requirement of the optical fiber 503 to transmit the optical signal, and the optical coupling effect is ensured.
  • a method of plating an attenuation film on the first emitting lens array 4324 may also be used. If the first transmitting lens array 4324 and the first receiving lens array 4415 are relatively close, when the first transmitting lens array 4324 is coated with an attenuation film, it is very easy to be plated on the first receiving lens array 4415.
  • the first receiving lens array 4415 is used to realize the convergence of the optical signal from the optical fiber 503, and there is no need to perform optical power attenuation here.
  • the optical power of the received optical signal will be reduced again, causing the optical signal power received by the optical receiving chip 710 to be different from the coupling optical power required by the optical module, which affects the coupling effect.
  • the first receiving lens array 4415 is far away from the first transmitting lens array 4324.
  • the optical module provided by the embodiment of the present disclosure adopts a separate structure.
  • the first lens assembly 430 and the second lens assembly 440 are separated by a certain distance, so that the first transmitting lens array 4324 and the first receiving lens array 4415 are also separated by a certain distance.
  • the first transmitting lens array 4324 is coated with an attenuation film, it is plated on the first receiving lens array 4415, and the first lens assembly 430 attenuates the optical power of the optical signal emitted by the light emitting chip 610 without causing the
  • the two-lens component 440 affects the optical power of the optical signal, thereby ensuring the optical coupling effect of the optical module.
  • the optical module provided by the embodiment of the present disclosure adopts a separate structure, that is, the optical structure of the optical module is divided into two parts, which are the first lens assembly 430 and the second lens assembly 440 respectively.
  • the light emitting chip 610 under the first lens assembly 430 and the chip under the second lens assembly 440 are attached to the circuit board 300 in a bonding manner.
  • the light emitting chip 610 and the light The mounting precision of the receiving chip 710 is required to be very high, so that the light exit of the light emitting chip 610 can be opposite to the first lens part 432, and the light entrance of the light receiving chip 710 is opposite to the second lens part 441.
  • the first emitting lens array 4324 and the reflecting surface 4322 in the first lens part 432 are integrally formed with the first lens part 432, the first receiving lens array 4415 and the filter 4412 in the second lens part 441 are both integrated with the second lens
  • the component 441 is integrally formed so that the optical path between the first emitting lens array 4324 and the reflective surface 4322 is stable, and the optical path between the first receiving lens array 4415 and the filter 4412 is also stable, and there will be no deviation.
  • the light path between the light emitting chip 610 and the first emitting lens array 4324 will deviate, and the light receiving chip 710 and the first receiving lens array 4415 will deviate from each other.
  • the deviation of the optical path will affect the optical coupling effect.
  • the relative position tolerance of the light emitting chip 610 and the light receiving chip 710 is large, for example, when the tolerance is greater than 7 ⁇ m, the light emitting chip 610 and the light receiving chip 710 cannot be coupled to the optical fiber at the same time, and the light emitting chip may appear.
  • the 610 is well coupled, but the light receiving chip 710 cannot be coupled to the best situation, or vice versa, or both cannot be coupled to the best situation.
  • the optical module In order to avoid deviations in the relative positions of the light emitting chip 610 and the light receiving chip 710 and ensure the optical coupling effect of the optical module, the optical module provided by the embodiment of the present disclosure divides the optical structure into a first lens assembly 430 and a second lens assembly 440 .
  • the optical structure in the optical module adopts a separate structure, which can reduce the requirements on the placement accuracy of the light emitting chip 610 and the light receiving chip 710, and the relative position and angle requirements between the light emitting chip 610 and the light receiving chip 710 are looser, which can reduce the mounting accuracy. Difficulty of the film process.
  • a schematic diagram of the relative position and angle deviation of the light emitting chip 610 and the light receiving chip 710 is relatively large.
  • the second lens assembly 440 is coupled to the light receiving chip 710
  • the first lens assembly 430 is coupled to the light emitting chip 610, that is, the light receiving chip 710 and the second lens assembly 440 are coupled to each other. Aligning, and coupling and aligning the light emitting chip 610 and the first lens assembly 430.
  • the light receiving chip 710 and the second lens assembly 440 are coupled and aligned. According to the coupling optical path of the light receiving chip 710 and the first receiving lens array 4415, the first receiving lens array 4415 and the light receiving chip 710 The coupling alignment realizes the coupling of the second lens assembly 440 to the light receiving chip 710. At this time, the angle and position of the second lens assembly 440 are consistent with the coupling of the light receiving chip 710.
  • the light emitting chip 610 and the first lens assembly 430 are coupled and aligned. According to the coupling optical path of the light emitting chip 610 and the first lens assembly 430, the first emitting lens array 4324 and the light emitting chip 610 are coupled Alignment realizes the coupling of the first lens assembly 430 to the light emitting chip 610. At this time, the angle and position of the first lens assembly 430 are consistent with the light emitting chip 610.
  • the separated first lens assembly 430 is coupled to the light emitting chip 610, and the second lens assembly 440 is coupled to the light receiving chip 710, and then the coupled first lens assembly 430 and the second lens assembly are aligned 440 is aligned so that the light exit surface 4323 of the first lens assembly 430 is opposite to the light entrance surface 4416 of the second lens assembly 440 to form the optical structure of the optical module, which can ensure the coupling effect of the optical module.
  • the optical module provided by the embodiment of the present disclosure adopts a separate structure, and specifically includes a first lens assembly 430 and a second lens assembly 440 attached to the circuit board 300.
  • the top of the second lens assembly 440 is provided with a filter 4412, and the side of the filter 4412 away from the light incident surface 4416 is provided with an optical fiber 503.
  • the optical signal from the optical fiber 503 propagates to the filter 4412 and then is reflected, and the formed reflected light propagates Into the light receiving chip 710 located at the bottom of the second lens assembly 440.
  • a reflecting surface 4322 is formed on the top of the first lens assembly 430, and the light signal emitted by the light emitting chip 610 is transmitted to the reflecting surface 4322 and then reflected.
  • the formed reflected light is emitted from the light exit surface 4323 and enters the optical fiber 503 in the second lens assembly 440 .
  • the first lens assembly 430 and the second lens assembly 440 both adopt a structure in which the lens component and the cavity component are separated, which can solve the problem of the long processing cycle required by the existing lens component for chips of different sizes.
  • the first lens assembly 430 and the second lens assembly 440 may also be designed as an integrated lens assembly, and the lens part of the lens assembly It is designed as a separate structure from the cavity part for protecting and mounting on the circuit board 300.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光模块,将透镜组件(400)设计为由腔体部件(410)和透镜部件(420)组成的两件式结构。其中,反射面以及透镜等需要加工精度高的光学面设置在透镜部件(420)上;腔体部件(410)上不设置任何光学面,只用于为设置在电路板上的光芯片和电芯片提供容纳腔,以实现对光芯片和电芯片保护。因此,当透镜组件(400)所罩设的芯片的尺寸改变时,只需要调整腔体部件(410)的尺寸即可,而腔体部件(410)上没有光学面,进而对加工精度要求低,与重新设计整个透镜组件相比,具有加工周期短且成本也低的优势。

Description

一种光模块
本申请要求在2020年01月16日提交中国专利局、申请号为202010048813.3、发明名称为“一种光模块”,在2019年08月30日提交中国专利局、申请号为201910812590.0、发明名称为“一种光模块”的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及光通信技术领域,尤其涉及一种光模块。
背景技术
在光纤通信***中,光模块是起到光电转换作用的一种连接模块。在光模块产品封装中,COB(chip On board)工艺平台具备低成本、高密集度、高频性能好、封装工艺简单等优势,越来越多的光模块的加工将会由传统的同轴或微光学工艺平台转为COB工艺平台。
发明内容
本公开实施例提供一种光模块,其主要包括:电路板;光芯片,设置在电路板上;驱动芯片,设置在电路板上,与光芯片电连接;透镜组件,罩设在光芯片和驱动芯片上,包括腔体部件、与腔体部件连接的透镜部件,其中,腔体部件用于为光芯片和驱动芯片提供容纳腔,透镜部件上设有反射面和第一透镜阵列,反射面用于将光芯片与光纤建立光连接,第一透镜阵列设置在光芯片和反射面之间。
附图说明
为了更清楚地说明本公开的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为光通信终端连接关系示意图;
图2为光网络单元结构示意图;
图3为本公开实施例提供的一种光模块结构示意图;
图4为本公开实施例提供光模块分解结构示意图;
图5为本公开实施例提供的一种透镜组件的第一拆分结构示意图;
图6为本公开实施例提供的一种透镜组件的第二拆分结构示意图;
图7为本公开实施例提供的一种透镜组件的组装结构示意图;
图8为本公开实施例提供的透镜部件、光芯片和电芯片的结构示意图;
图9为本公开实施例提供的透镜部件与光纤支架的拆分结构示意图;
图10为本公开实施例提供的透镜部件与光纤支架的组装结构示意图;
图11为本公开实施例提供的透镜部件与光纤支架的组装后的侧视图;
图12为本公开实施例提供的第一透镜组件、第二透镜组件与光纤支架的拆分结构示意图;
图13为本公开实施例提供的第一透镜组件、第二透镜组件与光纤支架的组装结构侧视图;
图14为本公开实施例提供的第二腔体部件和第二透镜部件的拆分结构示意图;
图15为本公开实施例提供的第二腔体部件和第二透镜部件的组装结构示意图;
图16为本公开实施例提供的第二腔体部件和第二透镜部件的组装后的侧视图;
图17为本公开实施例提供的第一透镜组件、第二透镜组件和光线支架的组装后的侧视图;
图18为本公开实施例提供的第二透镜组件的背面结构示意图;
图19为本公开实施例提供的光模块中的光路图;
图20为本公开实施例提供的第一腔体部件和第一透镜部件的拆分结构示意图;
图21为本公开实施例提供的第一腔体部件和第一透镜部件的组装结构示意图;
图22为本公开实施例提供的第一透镜组件的剖面结构示意图;
图23为本公开实施例提供的第一透镜组件的背面结构示意图;
图24为本公开实施例提供的光发射芯片和光接收芯片的贴片相对位置角度偏差较大的示意图;
图25为本公开实施例提供的光接收芯片与第二透镜组件耦合对准时的示意图;
图26为本公开实施例提供的光发射芯片与第一透镜组件耦合对准时的示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
光纤通信的核心环节之一是光、电信号的相互转换。光纤通信使用携带信息的光信号在光纤/光波导等信息传输设备中传输,利用光在光纤/光波导中的无源传输特性可以实现低成本、低损耗的信息传输;而计算机等信息处理设备使用的是电信号,为了在光纤/光波导等信息传输设备与计算机等信息处理设备之间建立信息连接,就需要实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光、电信号的相互转换功能,光信号与电信号的相互转换是光模块的核心功能。光模块通过其内部电路板上的金手指实现与外部上位机之间的电连接,主要的电连接包括供电、I2C信号、数据信号以及接地等;采用金手指实现的电连接方式已经成为光模块行业的主流连接方式,以此为基础,金手指上引脚的定义形成了多种行业协议/规范。
图1为光通信终端连接关系示意图。如图1所示,光通信终端的连接主要包括光网络终端100、光模块200、光纤101及网线103之间的相互连接;
光纤101的一端连接远端服务器,网线103的一端连接本地信息处理设备,本地信息 处理设备与远端服务器的连接由光纤101与网线103的连接完成;而光纤101与网线103之间的连接由具有光模块200的光网络终端100完成。
光模块200的光口对外接入光纤101,与光纤101建立双向的光信号连接;光模块200的电口对外接入光网络终端100中,与光网络终端100建立双向的电信号连接;在光模块内部实现光信号与电信号的相互转换,从而实现在光纤与光网络终端之间建立信息连接;具体地,来自光纤的光信号由光模块转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块转换为光信号输入至光纤中。
光网络终端具有光模块接口102,用于接入光模块200,与光模块200建立双向的电信号连接;光网络终端具有网线接口104,用于接入网线103,与网线103建立双向的电信号连接;光模块200与网线103之间通过光网络终端100建立连接,具体地,光网络终端将来自光模块的信号传递给网线,将来自网线的信号传递给光模块,光网络终端作为光模块的上位机监控光模块的工作。
至此,远端服务器通过光纤、光模块、光网络终端及网线,与本地信息处理设备之间建立双向的信号传递通道。
常见的信息处理设备包括路由器、交换机、电子计算机等;光网络终端是光模块的上位机,向光模块提供数据信号,并接收来自光模块的数据信号,常见的光模块上位机还有光线路终端等。
图2为光网络终端结构示意图。如图2所示,在光网络终端100中具有电路板105,在电路板105的表面设置笼子106;在笼子106内部设置有电连接器,用于接入金手指等光模块电口;在笼子106上设置有散热器107,散热器107具有增大散热面积的翅片等凸起部。
光模块200***光网络终端中,具体为光模块的电口***笼子106内部的电连接器,光模块的光口与光纤101连接。
笼子106位于电路板上,将电路板上的电连接器包裹在笼子中,从而使笼子内部设置有电连接器;光模块***笼子中,由笼子固定光模块,光模块产生的热量传导给笼子106,然后通过笼子上的散热器107进行扩散。
图3为本公开实施例提供的一种光模块结构示意图,图4为本公开实施例提供光模块分解结构示意图。如图3、图4所示,本公开实施例提供的光模块200包括上壳体201、下壳体202、解锁部件203、电路板300及透镜组件400。
上壳体201盖合在下壳体202上,以形成具有两个开口的包裹腔体;包裹腔体的外轮廓一般呈现方形体,具体地,下壳体包括主板以及位于主板两侧、与主板垂直设置的两个侧板;上壳体包括盖板,盖板盖合在上壳体的两个侧板上,以形成包裹腔体;上壳体还可以包括位于盖板两侧、与盖板垂直设置的两个侧壁,由两个侧壁与两个侧板结合,以实现上壳体盖合在下壳体上。
两个开口具体可以是在同一方向的两端开口(204、205),也可以是在不同方向上的两处开口;其中一个开口为电口204,电路板的金手指从电口204伸出,***光网络终端等上位机中;另一个开口为光口205,用于外部光纤接入以连接光模块内部的光收发器件; 电路板300、光收发器件等光电器件位于包裹腔体中。
采用上壳体、下壳体结合的装配方式,便于将电路板300、光收发器件等器件安装到壳体中,由上壳体、下壳体形成光模块最外层的封装保护壳体;上壳体及下壳体一般采用金属材料,利于实现电磁屏蔽以及散热;一般不会将光模块的壳体做成一体部件,这样在装配电路板等器件时,定位部件、散热以及电磁屏蔽部件无法安装,也不利于生产自动化。
解锁部件203位于包裹腔体/下壳体202的外壁,用于实现光模块与上位机之间的固定连接,或解除光模块与上位机之间的固定连接。
解锁部件203具有与上位机笼子匹配的卡合部件;拉动解锁部件的末端可以在使解锁部件在外壁的表面相对移动;光模块***上位机的笼子里,由解锁部件的卡合部件将光模块固定在上位机的笼子里;通过拉动解锁部件,解锁部件的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块与上位机的卡合关系,从而可以将光模块从上位机的笼子里抽出。
电路板300上设置有光发射芯片、光发射芯片的驱动芯片、光接收芯片、跨阻放大芯片、限幅放大芯片及微处理器芯片等,其中光发射芯片与光接收芯片直接贴装在光模块的电路板上,此种形态业内称为COB(chip on board)封装。
电路板通过电路走线将光模块中的用电器件按照电路设计连接在一起,以实现供电、电信号传输及接地等电功能。
电路板一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳的承载芯片;当光收发器件位于电路板上时,硬性电路板也可以提供平稳的承载;硬性电路板还可以***上位机笼子中的电连接器中,具体地,在硬性电路板的一侧末端表面形成金属引脚/金手指,用于与电连接器连接;这些都是柔性电路板不便于实现的。
部分光模块中也会使用柔性电路板,作为硬性电路板的补充;柔性电路板一般与硬性电路板配合使用。
透镜组件400设置在电路板300上,采用罩设式的方式设置在光芯片的上方,透镜组件400与电路板300形成包裹光发射芯片、光接收芯片等光芯片的腔体。光发射芯片发出的光经透镜组件反射后进入光纤中,来自光纤的光经透镜组件反射后进入光接收芯片中,透镜组件不仅起到密封光芯片的作用,同时也建立了光芯片与光纤之间的光连接。
高速率数据传输要求光芯片及其驱动/匹配芯片之间近距离设置,以缩短芯片之间的连线、减小连线造成的信号损失,而透镜组件400罩设在光芯片的上方,所以透镜组件一般将光芯片及其驱动/匹配芯片同时罩设住。所以光发射芯片与光发射芯片的驱动芯片(又称光发射驱动芯片)近距离设置,透镜组件罩设光发射芯片与光发射芯片的驱动芯片;光接收芯片与光接收芯片的驱动芯片(又称光接收驱动芯片)、跨阻放大芯片近距离设置,透镜组件罩设光接收芯片、光接收驱动芯片和跨阻放大芯片。
其中,光芯片的尺寸一般很小,而光芯片的驱动/匹配芯片的尺寸一般很大,特别是实现100G以上速率的驱动/匹配芯片,并且,不同产品的驱动/匹配芯片的尺寸差异较大,而透镜组件400的尺寸有限,光芯片及其驱动/匹配芯片的设置位置存在一定的限制,没 有太多的空间自由度。因此,为提高透镜组件400针对不同尺寸的驱动/匹配芯片的通用性,本实施例将透镜组件400设计为两部分,分别为透镜部件和腔体部件。
图5为本公开实施例提供的一种透镜组件的第一拆分结构示意图,图6为本公开实施例提供的一种透镜组件的第二拆分结构示意图。如图5和6所示,透镜组件400分为腔体部件410和透镜部件420两部分。其中,腔体部件410上不设置用于对光路进行调整的光学面,只是用于为贴装在电路板上的光芯片(光发射芯片、光接收芯片)和驱动芯片(光发射驱动芯片、光接收驱动芯片)提供容纳腔,以实现对光芯片和驱动芯片的保护。透镜部件420上设有光纤架支柱421、第一透镜阵列424、反射面423和第二透镜阵列422。
腔体部件410和透镜部件420可以均采用透光材料制成、如塑料,也可以采用不同的材质制成,如透镜部件420采用透明材料制成、腔体部件410采用如金属等稳定成型的材料制成,另外,考虑到腔体部件410主要用于保护芯片,本实施例将腔体部件410的内壁采用绝缘材质制成、外部设置金属层,这样,利用金属层结构提供电磁屏蔽作用,同时内壁采用绝缘材料以防止碰触到芯片造成漏电。
在本公开的某些实施例中,为了实现腔体部件410和透镜部件420的牢固卡接,本实施例中在腔体部件410上设有卡接头411,透镜部件420上设有与卡接头相匹配的卡接口425。将腔体部件410和透镜部件420装配时,将透镜部件420通过卡接口425卡接在腔体部件410的卡接头411上,完成装配后,还可以使用胶水将两者粘合。考虑到透镜组件400的底部固定在电路板上、以及透镜组件400还需要与光纤支架连接,为保证腔体部件410和透镜部件420装配后的结构稳定性,本实施例设置卡接头411沿平行于电路板300的方向延伸,卡接口425的开口方向朝向电路板300。当然,腔体部件410和透镜部件420还可以采用其它装配方式,例如,在腔体部件410上设置定位部件,直接将透镜部件420卡接到腔体部件410上,并利用定位部件对透镜部件420进行定位,或者,直接将两者通过胶水粘接。
图7为本公开实施例提供的一种透镜组件的组装结构示意图。如图7所示,腔体部件410和透镜部件420装配后,透镜部件420架设在腔体部件410上,以使腔体部件410与电路板300相接触,而透镜部件420相对于电路板悬空。这样,一方面,在装配时,先将腔体部件410固定在电路板300上,然后,透镜部件420以腔体部件410的位置为基准进行固定,由于腔体部件410的体积要大于透镜部件420的体积,与先将透镜部件420固定在电路板上,完成过耦合后,再以其为基准装配腔体部件410的方式相比,更容易实现器件之间的耦合;另一方面,由于透镜部件420上设有一系列精度要求高的光学面,将透镜部件420相对与电路板300悬空后,便可以防止固定在电路板300上的芯片碰触到透镜部件420上的光学面,影响光学面的成像精度的问题。
图8为本公开实施例提供的透镜部件、光芯片和电芯片的结构示意图。如图8所示,透镜部件420的顶部形成倾斜的反射面423。其中,形成反射面423的方式可为在透镜部件420的顶部向下挖一个凹槽,凹槽的一个面为斜面,该斜面即为反射面423,反射面423倾斜设置,用于实现光信号的反射,使光路转90°。
其中,为实现光信号的发射,将光发射芯片610和用于驱动光发射芯片的光发射驱动 芯片620贴合在电路板300上,同时使光发射芯片610位于反射面423的正下方,使得光发射芯片610的出光口与反射面423对应,进而使光发射芯片610发射的光能够传播到反射面423上,经反射面423反射后传输至光纤中,以将光信号发送出去。为实现光信号的接收,将光接收芯片710和用于驱动光接收芯片710的光接收驱动芯片720贴合在电路板300上,同时使接收芯片710也设置在反射面423正下方,使得光接收芯片710的入光口与反射面423对应,便于光发射芯片610发射的光能够传播到反射面423上,经反射面423反射后传输至光纤中,进而使光纤接收的光信号先传播到反射面423上,经反射面423反射后传输至光接收芯片710。
在本公开的某些实施例中,由于光发射芯片610发出的光为发散光,而光纤的口径通常较小(多数在微米量级),为保证光耦合效果,避免出现光损耗,如图8所示,在光发射芯片610和反射面423之间设有第一发射透镜阵列242。第一发射透镜阵列242的入光口与光发射芯片610的出光口相对,第一发射透镜阵列242的出光口与反射面423相对,由第一发射透镜阵列242对光发射芯片610发射的光进行会聚,使得到的会聚光向反射面423的方向传播。
本实施例中,第一发射透镜阵列242可由透镜部件420一体成型,第一发射透镜阵列242设置在透镜部件420的背面,透镜部件420的背面朝向300,将光发射芯片610贴合在电路板300上,并使光发射芯片610的出光口朝向第一发射透镜阵列242,使得光发射芯片610发出的光向第一发射透镜阵列242的方向传播。
光发射芯片610发出的光的传播方向为垂直于电路板300,因此,为保证第一发射透镜阵列242能够对光发射芯片610发出的光进行会聚,本实施例中,将第一发射透镜阵列242水平放置,使得光发射芯片610发出的沿垂直方向传播的光能够穿过第一发射透镜阵列242。
在本公开的某些实施例中,由于第一发射透镜阵列242输出的光在反射面423处发生反射时,为避免光发散,影响光耦合效果,本实施例中,如图8所示,在反射面423和光纤之间设有第二发射透镜阵列222。第二发射透镜阵列222的入光口与反射面423的光接收面相对、出光口与光纤的入光口相对,由第二发射透镜阵列222对来自反射面423的光进行准直,使得到的平行光向光纤传播。
同理,由于来自光纤的光为发散光,为保证光耦合效果,避免出现光损耗,本实施例中,在光纤和反射面423之间设有第二接收透镜阵列221。第二接收透镜阵列221的入光口与光纤的出光口相对、出光口与反射面423的光接收面相对,由第二接收透镜阵列221对来自光纤的光进行准直,使得到的平行光向反射面423的方向传播。
在本公开的某些实施例中,由于光在反射面423处发生反射时,为避免光发散,影响光耦合效果,本实施例中,如图8所示,在光接收芯片710和反射面423之间设有第一接收透镜阵列241,第一接收透镜阵列241的入光口与反射面423相对、出光口与光接收芯片710相对。第一接收透镜阵列241对在反射面423传播过来的光进行会聚,以使会聚光传播到光接收芯片710。
图9为本公开实施例提供的透镜部件与光纤支架的拆分结构示意图。如图9所示,由 于光纤透镜组件之间涉及到光耦合,为保证光耦合效率的稳定性,光纤与透镜组件的相对位置的稳定性也非常重要,因此本实施例采用光纤支架500对光纤进行固定,本实施例中,在光纤支架500内设有光纤固定结构501,光纤固定结构501内安装有光纤。在安装光纤时,可在光纤固定结构501内开设多个V型槽,每个V型槽用于固定一根光纤。光纤与V型槽的固定方式可采用胶水粘接的方式,将光纤粘在对应的V型槽内,当然,也可以如图9所示,将光纤固定结构501设计为多个与光纤外径尺寸相匹配的圆孔,每个圆孔用于固定一根光纤,只是该方式与设计为V型槽的方式相比,V型槽可以适应于更多的不同外径的光纤。
在本公开的某些实施例中,为实现光纤支架500的固定,避免光纤支架500与透镜组件400相对位置的不稳定,影响光耦合效果,在本实施例中,透镜部件420上对称设置有两个光纤架支柱421,与光纤架支柱421相匹配的,在光纤支架500上对称设有两个支柱孔502。图10为本公开实施例提供的透镜部件与光纤支架的组装结构示意图。如图10所示,将光纤架支柱421嵌入光纤支架500的支柱孔502中,以固定光纤支架500。在本公开的某些实施例中,光纤支架500相对于电路板300也是悬空的、即光纤支架500与电路板300之间具有间隙,光纤支架500仅依靠透镜组件400支撑,进而可以防止光模块在工作过程中,电路板300受热变形,对光纤支架500固定位置的影响,保证光耦合效率。
图11为本公开实施例提供的透镜部件与光纤支架的组装后的侧视图。如图11所示,透镜组件400与光纤支架500装配后,透镜组件400与光纤支架500之间的间隙形成光路传播口,用于实现光信号的传播。这样,光纤503与第二透镜阵列422并非直接接触,以避免直接接触对光纤503对第二透镜阵列422表面的划伤,当然,还可以两者之间填充低折射率光学胶水,以防止外界空气对光纤503和第二透镜阵列422的光学面的污染。以光模块发射光信号为例,光发射驱动芯片620驱动光发射芯片610发出光信号,该光信号经第一透镜阵列424中的第一发射透镜阵列准直后,传播至反射面423,然后,经反射面423发射至第二透镜阵列422中的第二发射透镜阵列,最后,经第二发射透镜阵列准直后进入光纤支架500中的光纤中。
基于上述实施例可知,通过将透镜组件400设计为由腔体部件410和透镜部件420组成的两件式结构。其中,第二透镜阵列422、反射面423以及第一透镜阵列424等需要加工精度高的光学面设置在透镜部件420上;腔体部件410上不设置任何光学面,只用于为设置在电路板300上的光芯片(光发射芯片610和光接收芯片710)和电芯片(光发射驱动芯片620和光接收驱动芯片720)提供容纳腔,以实现对光芯片和电芯片保护。因此,当透镜组件400所罩设的芯片的尺寸改变时,只需要调整腔体部件410的尺寸即可,而腔体部件410上没有光学面,进而对加工精度要求低,所以,与重新设计整个透镜组件相比,具有加工周期短且成本也低的优势。需要说明的是,在腔体部件410所提供的容纳腔内,还可以罩设其它芯片、如跨阻放大器等。
需要说明的是,基于上述透镜组件400的结构设计,光纤503包括用于发射光信号和用于接收光信号的两种类型的光纤,只是本实施例将其统称为光纤。除了发射光信号和接收光信号在不同的光纤中传输以外,还可以将发射光信号和接收光信号在同一根光纤中传 输,即采用多模单纤双向技术。
在本公开的某些实施例中,为了能够在COB工艺平台上实现多模单纤双向技术,且能够保证光耦合效果,本实施例提供了一种单纤双向的光模块,将该光模块中的透镜组件被分为两个独立的透镜组件,本实施称其为第一透镜组件和第二透镜组件,以降低对光发射芯片阵列和光接收芯片阵列的贴片精度要求,对光发射芯片阵列和光接收芯片阵列之间的相对位置及角度要求较松,避免光路出现偏差而影响光模块的耦合效果。
图12为本公开实施例提供的第一透镜组件、第二透镜组件与光纤支架的拆分结构示意图,图13为本公开实施例提供的第一透镜组件、第二透镜组件与光纤支架的组装结构侧视图。如图12和13所示,本实施例中的透镜组件包括第一透镜组件430和第二透镜组件440。其中,第一透镜组件430用于实现光信号的发射,由第二透镜组件440用于实现光信号的接收。
同时,第一透镜组件430包括第一腔体部件431、与第一腔体部件431连接的第一透镜部件432,其中,第一腔体部件431用于为贴装在电路板300上的光发射芯片610和光发射驱动芯片620提供容纳腔,第一透镜部件432上设有反射面4322和第一发射透镜阵列4324。第二透镜组件440包括第二腔体部件442、与第二腔体部件442连接的第二透镜部件441,其中,第二腔体部件442用于为贴装在电路板300上的光接收芯片710和光接收驱动芯片720提供容纳腔,第二透镜组件上设有倾斜的滤波片4412和第一接收透镜阵列4415。
如图13所示,由于本公开实施例提供的光模块中的光学结构不再采用一体成型的结构,而是采用分离结构,因此,为保证两个分离的光学结构,即第一透镜组件430和第二透镜组件440能够进行光信号的传播,将第一透镜组件430的出光面4323与第二透镜组件440的入光面4416相对,使得由第一透镜组件430射出的光信号能够进入第二透镜组件440内,并被与第二透镜组件440相连接的光纤支架500中的光纤503接收。
图14为本公开实施例提供的第二腔体部件和第二透镜部件的拆分结构示意图,图15为本公开实施例提供的第二腔体部件和第二透镜部件的组装结构示意图。如图14和15所示,第二腔体部件442与第二透镜部件441可以采用上述实施例中的卡接头和开接口相卡接的方式实现卡接装配,其具体实现方式可以参考上述实施例,当然,并不限于该连接方式。第二腔体部件442除了为光接收芯片710和光接收驱动芯片720提供容纳腔,实现对光接收芯片710和光接收驱动芯片720保护作用为,还用于为光纤支架500提供固定空间,如图15所示,第二腔体部件442与第二透镜部件441装配后,在第二腔体部件442的顶部与第二透镜部件441之间形成一光纤固定腔体4421,在第二透镜部件441上设有光纤架支柱4414,光纤支架500通过光纤架支柱4414固定在光纤固定腔体4421内。
如图15所示,第二透镜部件441的顶部设有倾斜的滤波片4412,在本公开的某些实施例中,图16为本公开实施例提供的第二腔体部件和第二透镜部件的组装后的侧视图,如图16所示,在第二透镜部件441的顶部形成具有倾斜角度的支架4411,将滤波片4412固定在支架4411上,可采用胶水粘接的方式,使得滤波片4412为倾斜状态,滤波片4412用于实现光纤503所接收的光信号的反射、以及发射向光纤的光信号的透射。光接收芯片 710位于滤波片4412的正下方,并贴合在300上,使得光接收芯片710的光路与滤波片4412的光路对应。
图17为本公开实施例提供的第一透镜组件、第二透镜组件和光线支架的组装后的侧视图。如图17所示,作为单纤双向的光模块,由一个光纤实现光信号的接收和发射,即该光纤503中既接收来自第一透镜组件430中光发射芯片610的光信号,又向第二透镜组件440内的光接收芯片710发射光信号,以被光接收芯片710接收。为此,本实施例中,在滤波片4412的远离第二透镜组件440上的入光面的一侧设有光纤支架500,光纤支架500中光纤503的出光口与滤波片4412的光反射面相对,来自光纤503的光信号传播到滤波片4412后发生反射,形成的反射光传播到光接收芯片710内。
滤波片4412倾斜设置,其中,相对于光纤503的倾斜角度可为40°至50°,来自光纤503的光信号传播到倾斜设置的滤波片4412后产生反射,光路转90°,且反射方向朝向光接收芯片710所在方向,使得光路转90°的反射光能够被光接收芯片710接收。
由于来自光纤503的光信号为发散光,为保证光耦合效果,避免出现光损耗,本实施例中,在光纤503和滤波片4412之间设有第三透镜阵列4413。第三透镜阵列4413的两个光口(入光口和出光口)分别与光纤503的出光口和滤波片4412的光接收面相对,由第三透镜阵列4413对来自光纤503的光信号进行准直,使得到的平行光向滤波片4412的方向传播。
来自光纤503的光信号的传播方向为水平方向,为保证第三透镜阵列4413能够对来自光纤503的光信号进行准直,本实施例中,将第三透镜阵列4413竖直设置,使得来自光纤503的光信号能够穿过第三透镜阵列4413。
图18为本公开实施例提供的第二透镜组件的背面结构示意图。如图18所示,光信号在滤波片4412处发生反射时,为避免光信号发散,影响光耦合效果,本实施例中,如图17和图18所示,在光接收芯片710和滤波片4412之间设有第一接收透镜阵列4415,第一接收透镜阵列4415的入光口与滤波片4412相对,第一接收透镜阵列4415的出光口与光接收芯片710相对。第一接收透镜阵列4415对在滤波片4412发生反射传播过来的光信号进行会聚,以使会聚光传播到光接收芯片710内。
本实施例中,第一接收透镜阵列4415可由第二透镜部件441一体成型,第一接收透镜阵列4415设置在第二透镜部件441的背面,第二透镜部件441的背面朝向电路板300,将光接收芯片710贴合在电路板300上,并使光接收芯片710的光感面朝向第一接收透镜阵列4415,使得光接收芯片710能够接收由第一接收透镜阵列4415会聚后的光信号。
图19为本公开实施例提供的光模块中的光路图。如图19所示,波长为λ2的光信号传播路径,在第二透镜部件441内的光信号传播路径为:来自光纤503的光信号经由第三透镜阵列4413准直后,形成的平行光传播到滤波片4412后发生反射,光路转90°,形成的反射光经过第一接收透镜阵列4415会聚后,被位于第一接收透镜阵列4415下方的光接收芯片710接收。
本公开实施例提供的第二透镜部件441中,第一接收透镜阵列4415和第三透镜阵列4413均可采用注塑的方式一体成型,滤波片4412则采用胶水粘接的方式固定在第二透镜 部件441内。第二透镜组件440内光接收芯片710所接收的光信号来自光纤503,来自光纤503的光信号的光功率更接近于光模块要求的光功率,因此,在第二透镜组件440中不需要对光信号的光功率进行衰减,直接将来自光纤503的光信号反射进光接收芯片710即可。
为此,第二透镜组件440的用于实现光信号传播的部分可采用空心结构,即滤波片4412中靠近第一透镜组件430的一侧为空心结构。而第一透镜组件430用于实现光信号的发射,实现发射光信号的器件为光发射芯片610,通常,光发射芯片610发射的光信号的光功率较高,要高于光模块所要求的光功率。因此,为保证光模块的光功率的一致性,即保证耦合进光纤503的光信号功率与光纤503所要求的光功率一致,需要对光发射芯片610发射光信号的光功率进行衰减。
本实施例中,为使第一透镜组件430能够对光发射芯片610发射光信号的光功率进行衰减,采用第一透镜组件430的材质和第二透镜组件440的材质不同的方式,使第一透镜组件430的光信号功率衰减程度大于第二透镜组件440的光信号功率衰减程度。
具体地,为提高第一透镜组件430的光信号功率衰减程度,第一透镜组件430中的第一透镜部件432可为实心结构,并在第一透镜部件432的注塑材料中掺杂其他物质,该物质可用于衰减光功率,例如石墨。通过调节添加在第一透镜部件432的注塑材料中石墨的掺杂比例,来调节光模块实现不同程度的光功率衰减,使得第一透镜组件430发射的光信号的光功率符合光模块的需求,使最终耦合进入光纤503的光功率保持一致,保证光耦合效果,当然,也可以设计第一腔体部件431与第一透镜部件432采用同样的材质制成。
图20为本公开实施例提供的第一腔体部件和第一透镜部件的拆分结构示意图,图21为本公开实施例提供的第一腔体部件和第一透镜部件的组装结构示意图。如图20和图21所示,第一腔体部件432与第一透镜部件432可以采用上述实施例中的卡接头和开接口相卡接的方式实现卡接装配,其具体实现方式可以参考上述实施例,当然,并不限于该连接方式。
第一透镜部件432的顶部形成倾斜的反射面4322。由于第一透镜组件430为实心结构,因此,形成反射面4322的方式可为在第一透镜部件432的顶部向下挖一个凹槽4321,凹槽4321的一个面为斜面,该斜面的倾斜方向为沿靠近第二透镜组件440至远离第二透镜组件440的方向向下倾斜。该斜面即为反射面4322,反射面4322倾斜设置,用于实现光信号的反射,使光路转90°。
第一透镜部件432的底部设有光发射芯片610,光发射芯片610放置在电路板300上,为实现光信号的发射,将光发射芯片610和用于驱动光发射芯片610的光发射驱动芯片720贴合在电路板300上,且光发射芯片610位于反射面4322的正下方,使得光发射芯片610的出光口与反射面4322对应,便于光发射芯片610发射的光信号能够传播到反射面4322上。
由于本公开实施例提供的光模块为单纤双向的光模块,由一个光纤实现光信号的接收和发射。而用于接收光信号的光纤503设置在第二透镜组件440处,因此,需要第一透镜组件430发射的光信号能够传播到第二透镜组件440内的光纤503中。
本实施例中,第一透镜组件430和第二透镜组件440为相对独立的光学结构,第一透镜组件430的出光面4323与第二透镜组件440的入光面4416相对,二者均贴合在电路板300上,但相距一段距离,使得由第一透镜组件430射出的光信号需在空气中传播一段距离后再进入第二透镜组件440内。而在第一透镜组件430中,光信号传播路径为:光发射芯片610发出的光信号传播到反射面4322后产生反射,光路转90°,且反射方向朝向第二透镜组件440所在的方向,使得光路转90°的反射光由出光面4323射出,再经由入光面4416进入第二透镜组件440处的光纤503中。
在第二透镜组件440内,由于光纤503的入光口分别与滤波片4412和第三透镜阵列4413相对,使得第一透镜组件430发射过来的光信号在进入光纤503之前,需经过滤波片4412和第三透镜阵列4413,此时滤波片4412的作用为允许第一透镜组件430发射过来的光信号透过,再经过第三透镜阵列4413会聚后进入光纤503。
图22为本公开实施例提供的第一透镜组件的剖面结构示意图,图23为本公开实施例提供的第一透镜组件的背面结构示意图。由于光发射芯片610发出的光信号为发散光,为保证光耦合效果,避免出现光损耗,本实施例中,如图22和图23所示,在光发射芯片610和反射面4322之间设有第一发射透镜阵列4324。第一发射透镜阵列4324的入光口与光发射芯片610的出光口相对,第一发射透镜阵列4324的出光口与反射面4322相对,由第一发射透镜阵列4324对光发射芯片610发射的光信号进行会聚,使得到的会聚光向反射面4322的方向传播。
本实施例中,第一发射透镜阵列4324可与第一透镜部件432一体成型,第一发射透镜阵列4324设置在第一透镜部件432的背面,第一透镜部件432的背面朝向电路板300,将光发射芯片610贴合在电路板300上,并使光发射芯片610的出光口朝向第一发射透镜阵列4324,使得光发射芯片610发出的光信号向第一发射透镜阵列4324的方向传播。
光发射芯片610发出的光信号的传播方向为由下至上,因此,为保证第一发射透镜阵列4324能够对光发射芯片610发出的光信号进行会聚,本实施例中,将第一发射透镜阵列4324水平放置,使得光发射芯片610发出的沿垂直方向传播的光信号能够穿过第一发射透镜阵列4324。
参见图19所示的光模块的光路图,如图中波长为λ1的光信号传播路径,第一透镜组件430发射光信号的传播路径为:光发射芯片610发出的光信号经由第一发射透镜阵列4324会聚后,形成的会聚光传播到反射面4322后产生反射,光路转90°,形成的反射光由出光面4323射出,在空气传播一段距离后由入光面4416进入第二透镜组件440内,光信号透过滤波片4412后进入第三透镜阵列4413进行会聚,形成的会聚光进入光纤503中。
本公开实施例提供光模块,其中的第一透镜组件430需要对光发射芯片610发射的光信号的光功率进行衰减,以使光模块的耦合光功率保持一致,即使最终耦合进入光纤503的光功率与光纤503所要求的光功率保持一致。前述实施例采用在第一透镜组件430的注塑材料中添加石墨等可用于衰减光功率的材料的方式,而在其他实施例中,还可采用在反射面4322上镀衰减膜的方式。
具体地,本实施例中,在反射面4322上镀有衰减膜,衰减膜用于对光发射芯片610发出的光信号的光功率进行衰减,使得光发射芯片610发射的光信号在传播到反射面4322进行反射时,同时对光信号的光功率进行衰减。在实际镀膜时,可根据光模块的需求光功率,在反射面4322上镀具有能够实现与光模块的耦合光功率一致的衰减程度的衰减膜,使得经过反射面4322反射并衰减功率后的光信号能够满足光模块的需求,即光纤503传输光信号的光功率要求,保证光耦合效果。
为了使第一透镜组件430能够对光发射芯片610发射的光信号的光功率进行衰减,还可采用在第一发射透镜阵列4324上镀衰减膜的方式。如果第一发射透镜阵列4324和第一接收透镜阵列4415相距较近,在对第一发射透镜阵列4324进行镀衰减膜时,极易镀到第一接收透镜阵列4415上。而第一接收透镜阵列4415用于实现来自光纤503的光信号的会聚,此处不需要进行光功率衰减。若第一接收透镜阵列4415上镀有衰减膜,会再次减少接收光信号的光功率,导致光接收芯片710接收的光信号功率与光模块所需的耦合光功率不同,影响耦合效果。
因此,本实施例中,将第一接收透镜阵列4415远离第一发射透镜阵列4324。本公开实施例提供的光模块采用分离结构,第一透镜组件430与第二透镜组件440相距一定距离,使得第一发射透镜阵列4324和第一接收透镜阵列4415也相距一段距离,那么,可以避免在对第一发射透镜阵列4324镀衰减膜时镀到第一接收透镜阵列4415上,在保证第一透镜组件430对光发射芯片610发射的光信号的光功率衰减的情况下,不会导致第二透镜组件440对光信号的光功率产生影响,进而可以保证光模块的光耦合效果。
本公开实施例提供的光模块,采用分离的结构,即将光模块的光学结构分隔成两部分,分别为第一透镜组件430和第二透镜组件440。第一透镜组件430下方的光发射芯片610和第二透镜组件440下方的芯片均采用贴合的方式贴附在电路板300上,而为保证光模块的光耦合效果,对光发射芯片610和光接收芯片710的贴片精度要求很高,使得光发射芯片610的出光口能够与第一透镜部件432相对,使光接收芯片710的入光口与第二透镜部件441相对。
由于第一透镜部件432中的第一发射透镜阵列4324和反射面4322均与第一透镜部件432一体成型,第二透镜部件441中的第一接收透镜阵列4415和滤波片4412均与第二透镜部件441一体成型,使得第一发射透镜阵列4324和反射面4322之间的光路是稳定的,第一接收透镜阵列4415和滤波片4412之间的光路也是稳定的,均不会出现偏离。而如果光发射芯片610和光接收芯片710的相对位置出现偏差,那么会导致光发射芯片610与第一发射透镜阵列4324的光路出现偏离,以及,导致光接收芯片710与第一接收透镜阵列4415的光路出现偏离,将会影响光耦合效果。
可见,当光发射芯片610及光接收芯片710的相对位置公差较大时,比如公差大于7μm时,就会导致光发射芯片610和光接收芯片710无法同时和光纤耦合好,可能会出现光发射芯片610耦合好、而光接收芯片710无法耦合到最佳的情况,或者反之,或者二者均无法耦合到最佳的情况。
为避免光发射芯片610及光接收芯片710的相对位置出现偏差,保证光模块的光耦合 效果,本公开实施例提供的光模块,将光学结构分隔成第一透镜组件430和第二透镜组件440。光模块中的光学结构采用分离结构,可以降低对光发射芯片610和光接收芯片710的贴片精度要求,对光发射芯片610和光接收芯片710之间的相对位置及角度要求较松,可降低贴片工艺难度。
具体地,如图24所示的光发射芯片610和光接收芯片710的贴片相对位置角度偏差较大的示意图。具体耦合时,分别将第二透镜组件440耦合到光接收芯片710上,以及,将第一透镜组件430耦合到光发射芯片610上,即分别使光接收芯片710与第二透镜组件440耦合对准,以及,使光发射芯片610与第一透镜组件430耦合对准。
如图25所示的光接收芯片710与第二透镜组件440耦合对准时的示意图,按照光接收芯片710与第一接收透镜阵列4415的耦合光路,将第一接收透镜阵列4415与光接收芯片710耦合对准,实现将第二透镜组件440耦合到光接收芯片710上,此时第二透镜组件440的角度和位置与光接收芯片710耦合一致。
如图26所示的光发射芯片610与第一透镜组件430耦合对准时的示意图,按照光发射芯片610与第一透镜组件430的耦合光路,将第一发射透镜阵列4324与光发射芯片610耦合对准,实现将第一透镜组件430耦合到光发射芯片610上,此时第一透镜组件430的角度和位置与光发射芯片610一致。
将分离的第一透镜组件430耦合对准光发射芯片610,以及,将第二透镜组件440耦合对准光接收芯片710后,再将耦合对准后的第一透镜组件430和第二透镜组件440对齐,使得第一透镜组件430的出光面4323与第二透镜组件440的入光面4416相对,形成光模块的光学结构,可以保证光模块的耦合效果。
由以上技术方案可知,本公开实施例提供的光模块,采用分离结构,具体包括贴附在电路板300上的第一透镜组件430和第二透镜组件440。第二透镜组件440的顶部设有滤波片4412,滤波片4412的远离入光面4416的一侧设有光纤503,来自光纤503的光信号传播到滤波片4412后发生反射,形成的反射光传播到位于第二透镜组件440底部的光接收芯片710内。第一透镜组件430的顶部形成反射面4322,光发射芯片610发出的光信号传播到反射面4322后产生反射,形成的反射光由出光面4323射出并进入第二透镜组件440内的光纤503中。并且,第一透镜组件430和第二透镜组件440均采用透镜部件和腔体部件分离式的结构,可以解决已有透镜组件针对不同尺寸的芯片需要的加工周期长的问题。
需要说明的是,在上述采用多模单纤双向技术的光模块中,也可以将第一透镜组件430和第二透镜组件440设计为一体式的透镜组件,并且在该透镜组件中的透镜部分与用于保护贴装在电路板300上的腔体部分设计为分离式结构。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (10)

  1. 一种光模块,其特征在于,包括:
    电路板;
    光芯片,设置在所述电路板上;
    驱动芯片,设置在所述电路板上,与所述光芯片电连接;
    透镜组件,罩设在所述光芯片和所述驱动芯片上,包括腔体部件、与所述腔体部件连接的透镜部件,其中,所述腔体部件用于为所述光芯片和所述驱动芯片提供容纳腔,所述透镜部件上设有反射面和第一透镜阵列,所述反射面用于将所述光芯片与光纤建立光连接,所述第一透镜阵列设置在所述光芯片和所述反射面之间。
  2. 根据权利要求1所述的光模块,其特征在于,所述光芯片包括光发射芯片和光接收芯片;
    所述驱动芯片包括与所述光发射芯片电连接的激光光驱动芯片、与所述光接收芯片电连接的光接收驱动芯片;
    所述第一透镜阵列包括第一发射透镜阵列和第二接收透镜阵列;
    其中,所述第一发射透镜阵列设置在所述光发射芯片和所述反射面之间,所述光发射芯片发出的光经所述第一发射透镜阵列传播到所述反射面后产生反射,形成的反射光进入所述光纤;
    所述第一接收透镜阵列设置在所述光接收芯片和所述反射面之间,来自所述光纤的光传播到所述反射面后发生反射,形成的反射光经所述第一接收透镜阵列传播到所述光接收芯片。
  3. 根据权利要求2所述的光模块,其特征在于,在所述光纤和所述反射面之间设置有第二发射透镜阵列和第二接收透镜阵列,其中:
    经所述反射面后形成的反射光经过所述第二发射透镜阵列进入所述光纤;
    来自所述光纤的光经所述第二接收透镜阵列后传播到所述反射面。
  4. 根据权利要求1所述光模块,其特征在于,所述光芯片包括光发射芯片和光接收芯片;
    所述驱动芯片包括与所述光发射芯片电连接的激光光驱动芯片、与所述光接收芯片电连接的光接收驱动芯片;
    所述透镜组件包括第一透镜组件和第二透镜组件,所述第一透镜组件的出光面与所述第二透镜组件的入光面相对;
    所述第二透镜组件包括第二腔体部件、与所述二腔体部件连接的第二透镜部件;其中,所述第二腔体部件用于为所述光接收芯片和所述光接收驱动芯片提供容纳腔,所述第二透镜组件上设有倾斜的滤波片和第一接收透镜阵列,所述滤波片中远离所述入光面的一侧设有所述光纤,来自所述光纤的光传播到所述滤波片后发生反射,形成的反射光经所述第一接收透镜阵列传播到所述光接收芯片;
    所述第一透镜组件包括第一腔体部件、与所述第一腔体部件连接的第一透镜部件;其 中,所述第一腔体部件用于为所述光发射芯片和所述光发射驱动芯片提供容纳腔,所述第一透镜部件上设有所述反射面和第一发射透镜阵列,所述光发射芯片发出的光经所述第一发射透镜阵列传播到所述反射面后产生反射,形成的反射光依次经过所述出光面、所述入光面和所述滤波片后进入所述光纤。
  5. 根据权利要求4所述的光模块,其特征在于,所述第一透镜组件的材质和所述第二透镜组件的材质不同,所述第一透镜组件的光信号功率衰减程度大于所述第二透镜组件的光信号功率衰减程度。
  6. 根据权利要求1所述的光模块,其特征在于,所述透镜部件架设在所述腔体部件上,所述腔体部件与所述电路板相接触,所述透镜部件相对于所述电路板悬空。
  7. 根据权利要求1或6所述的光模块,其特征在于,所述腔体部件上设有卡接头,所述透镜部件上设有与所述卡接头相匹配的卡接口,所述卡接头沿平行于所述电路板方向延伸,所述卡接口的开口方向朝向所述电路板。
  8. 根据权利要求1或6所述的光模块,其特征在于,所述腔体部件的外壁上涂有金属层。
  9. 根据权利要求4所述的光模块,其特征在于,所述第一透镜组件的材质中包括用于衰减光功率的物质。
  10. 根据权利要求4所述的光模块,其特征在于,所述反射面的表面镀有衰减膜,所述衰减膜用于对所述光发射芯片发出的光的光功率进行衰减。
PCT/CN2020/111499 2019-08-30 2020-08-26 一种光模块 WO2021037085A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910812590.0A CN110501789A (zh) 2019-08-30 2019-08-30 一种光模块
CN201910812590.0 2019-08-30
CN202010048813.3 2020-01-16
CN202010048813.3A CN112444923A (zh) 2019-08-30 2020-01-16 一种光模块

Publications (1)

Publication Number Publication Date
WO2021037085A1 true WO2021037085A1 (zh) 2021-03-04

Family

ID=74683455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111499 WO2021037085A1 (zh) 2019-08-30 2020-08-26 一种光模块

Country Status (1)

Country Link
WO (1) WO2021037085A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050141823A1 (en) * 2003-12-24 2005-06-30 Han Sang P. Connection apparatus for parallel optical interconnect module and parallel optical interconnect module using the same
CN203241580U (zh) * 2013-05-29 2013-10-16 青岛海信宽带多媒体技术有限公司 一种具有硅基光学基座的光电模块
CN106918877A (zh) * 2015-11-05 2017-07-04 新科实业有限公司 用于数据通信的光学引擎
CN108957645A (zh) * 2018-07-06 2018-12-07 江苏奥雷光电有限公司 一种单模并行光模块
CN109031547A (zh) * 2018-08-17 2018-12-18 青岛海信宽带多媒体技术有限公司 一种光模块
CN109683333A (zh) * 2019-01-08 2019-04-26 青岛海信宽带多媒体技术有限公司 光接收器和光模块
CN110501789A (zh) * 2019-08-30 2019-11-26 青岛海信宽带多媒体技术有限公司 一种光模块

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050141823A1 (en) * 2003-12-24 2005-06-30 Han Sang P. Connection apparatus for parallel optical interconnect module and parallel optical interconnect module using the same
CN203241580U (zh) * 2013-05-29 2013-10-16 青岛海信宽带多媒体技术有限公司 一种具有硅基光学基座的光电模块
CN106918877A (zh) * 2015-11-05 2017-07-04 新科实业有限公司 用于数据通信的光学引擎
CN108957645A (zh) * 2018-07-06 2018-12-07 江苏奥雷光电有限公司 一种单模并行光模块
CN109031547A (zh) * 2018-08-17 2018-12-18 青岛海信宽带多媒体技术有限公司 一种光模块
CN109683333A (zh) * 2019-01-08 2019-04-26 青岛海信宽带多媒体技术有限公司 光接收器和光模块
CN110501789A (zh) * 2019-08-30 2019-11-26 青岛海信宽带多媒体技术有限公司 一种光模块

Similar Documents

Publication Publication Date Title
WO2021212849A1 (zh) 一种光模块
CN112444923A (zh) 一种光模块
WO2021227317A1 (zh) 一种光模块
WO2021120668A1 (zh) 一种光模块
WO2021012591A1 (zh) 一种单纤双向多模波分复用光电转换装置及制备方法
WO2022057621A1 (zh) 一种光模块
CN114488439B (zh) 一种光模块
CN114488438B (zh) 一种光模块
CN115097579A (zh) 光模块
WO2021109776A1 (zh) 一种光模块
CN113484960A (zh) 一种光模块
WO2023035711A1 (zh) 光模块
WO2021218462A1 (zh) 一种光模块
CN217606135U (zh) 光模块
CN214795316U (zh) 一种光模块
CN217606136U (zh) 光模块
CN217521402U (zh) 光模块
WO2021037085A1 (zh) 一种光模块
CN216772050U (zh) 一种光模块
WO2022267805A1 (zh) 光模块
WO2021120669A1 (zh) 一种光模块
WO2022193733A1 (zh) 一种光模块
WO2021232862A1 (zh) 一种光模块
WO2021248955A1 (zh) 一种光模块
CN111983759A (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20859576

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20859576

Country of ref document: EP

Kind code of ref document: A1