WO2021036687A1 - 电池包和车辆 - Google Patents

电池包和车辆 Download PDF

Info

Publication number
WO2021036687A1
WO2021036687A1 PCT/CN2020/106464 CN2020106464W WO2021036687A1 WO 2021036687 A1 WO2021036687 A1 WO 2021036687A1 CN 2020106464 W CN2020106464 W CN 2020106464W WO 2021036687 A1 WO2021036687 A1 WO 2021036687A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid storage
battery pack
drain hole
box body
battery
Prior art date
Application number
PCT/CN2020/106464
Other languages
English (en)
French (fr)
Inventor
陈兴地
游凯杰
汪用广
唐彧
陈艳波
李龙
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2021036687A1 publication Critical patent/WO2021036687A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/691Arrangements or processes for draining liquids from casings; Cleaning battery or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular

Definitions

  • the embodiments of the present application relate to the field of batteries, and in particular to a battery pack and a vehicle.
  • the battery pack includes a battery module and a box for installing the battery module.
  • the battery module is installed inside the box.
  • the existing battery pack has at least the following problem: when there is water in the box, the positive and negative electrodes of the battery module are likely to be short-circuited.
  • Various aspects of the present application provide a battery pack and a vehicle to optimize the structure of the battery pack.
  • the first aspect of this application provides a battery pack, including:
  • the box body includes an accommodating cavity for accommodating the battery module and a drain hole communicating with the accommodating cavity;
  • the blocking member is installed on the box body and located between the drain hole and the battery module to prevent the glue used for fixing the battery module from entering the drain hole.
  • the blocking member is located on the outer side of the length direction of the battery module.
  • the blocking member and the drain hole are provided on the same wall of the box body.
  • the blocking member includes:
  • the connecting plate is fixedly connected with the box body
  • a vertical board is connected to the connecting board, and the vertical board extends along the height direction of the battery module.
  • the connecting plate and the vertical plate are integrated.
  • the connecting plate and the vertical plate are connected to form an L-shaped plate.
  • the length of the blocking member is L1
  • the farthest distance between the side wall of the first drain hole and the side wall of the second drain hole is L2
  • L1 is greater than L2
  • the liquid hole and the second liquid drain hole are the two liquid drain holes located at the edge of a row of liquid drain holes located at the same end in the length direction of the battery module. The width direction prevents the glue used for fixing the battery module from entering the drain hole.
  • the blocking member is disposed at each end of the battery module in the length direction.
  • a liquid storage cavity for storing liquid is provided below the battery module, and the liquid storage cavity is in communication with the drain hole;
  • the battery pack further includes a liquid storage portion provided outside the box; the liquid storage portion is provided with the liquid storage cavity, or the liquid storage portion and the box jointly form the liquid storage cavity .
  • the liquid storage portion is installed below the wall of the box, and the liquid storage portion is connected to the wall in a sealing manner; wherein, the liquid storage portion and the wall surround The liquid storage cavity.
  • the liquid storage portion is provided with an inner concave portion recessed in a direction away from the box body.
  • the inner recess is located outside all the drainage holes and covers all the drainage holes.
  • the battery pack further includes:
  • the protection part is installed on the side of the liquid storage part away from the box body.
  • the hardness of the protection part is greater than the hardness of the liquid storage part, and the protection part completely covers the liquid storage part.
  • the box includes:
  • the first box and
  • the second box body encloses the accommodating cavity with the first box body and is located below the first box body; the drain hole is provided in the second box body.
  • the drainage holes have a plurality and are arranged along the width direction of the box.
  • the battery pack further includes the battery module.
  • a second aspect of the present application provides a vehicle including the battery pack.
  • FIG. 1 is a schematic diagram of a three-dimensional structure of a battery pack provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of an exploded structure of a battery pack provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of a partial three-dimensional structure of a battery pack provided by an embodiment of the application
  • Fig. 4 is a partial enlarged schematic diagram of A in Fig. 3;
  • FIG. 5 is a schematic diagram of a partial structure of some components of a battery pack provided by an embodiment of the application.
  • Fig. 6 is a partial enlarged schematic diagram of B in Fig. 5;
  • FIG. 7 is a schematic diagram of an exploded structure of partial components of a battery pack provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of a three-dimensional structure of a box body of a battery pack provided by an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of a battery cell of a battery pack provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of the structure of a laminated electrode assembly
  • Figure 11 is a schematic view of the structure of a wound electrode assembly
  • FIG. 12 is a schematic diagram of an exploded structure of a carrier, a second box, a blocking member, and a protective part of a battery pack according to another embodiment of the application;
  • FIG. 13 is a schematic diagram of a partial three-dimensional structure of a battery pack provided by another embodiment of the application.
  • FIG. 14 is a schematic partial cross-sectional view taken along the line C in FIG.
  • the X axis is the length direction of the battery pack.
  • the Y axis is perpendicular to the X axis in the horizontal plane, and the Y axis represents the width direction of the battery pack.
  • the Z axis is perpendicular to the plane formed by the X axis and the Y axis, and the Z axis represents the height direction of the battery module.
  • the terms "upper” and “lower” are both relative to the Z-axis direction.
  • the length direction of the box 1 coincides with the length direction of the battery pack
  • the width direction of the box 1 coincides with the width direction of the battery pack
  • the height direction of the box 1 coincides with the height direction of the battery pack.
  • FIG. 1 shows a schematic diagram of the three-dimensional structure of the battery pack, with the box body 1 in an open state.
  • Figure 2 shows a schematic diagram of the three-dimensional structure of the battery pack, with the box body 1 in an open state.
  • Figure 2 one side wall of the second box 14 of the box 1 described later is removed to clearly show the structure of the battery module 2 inside the box 1 and the battery module 2 and the second The positional relationship of the box 14.
  • an embodiment of the present application provides a battery pack including a box body 1, a battery module 2 and a blocking member 3.
  • the box body 1 includes an accommodation cavity 11 and a drain hole 12 communicating with the accommodation cavity 11.
  • the battery module 2 is installed inside the accommodating cavity 11.
  • the blocking member 3 is installed in the box body 1, and the blocking member 3 is located between the drain hole 12 and the battery module 2 to prevent the glue used for fixing the battery module 2 from entering the drain hole 12.
  • a liquid storage cavity 10 for storing liquid is provided under the battery module 2, and the liquid storage cavity 10 is in communication with the drain hole 12.
  • the bottom mentioned here can be directly below or obliquely below, as long as the liquid in the containing cavity 11 can flow through the drain hole 12 into the liquid storage cavity 10 under the action of gravity.
  • the liquid storage cavity 10 is located inside and/or outside the box 1. Specifically, the liquid storage cavity 10 may be completely located inside the box body 1; the liquid storage cavity 10 may also be completely located outside the box body 1.
  • the battery pack is provided with a liquid storage cavity 10, and the liquid storage cavity 10 is located below the direction of gravity of the battery module 2.
  • the liquid storage cavity 10 is provided under the battery module 2, which reduces or even avoids the short circuit of the battery module 2 when there is liquid in the containing cavity 11, and improves the safety of the battery pack. .
  • the box body 1 includes a first box body 13 and a second box body 14.
  • the second box body 14 and the first box body 13 enclose an accommodating cavity 11 and are located below the first box body 13; the drain hole 12 is provided in the second box body 14.
  • the first box body 13 and the second box body 14 are buckled together to form the aforementioned accommodating cavity 11.
  • the first box body 13 and the second box body 14 may be connected by bolts and other detachable connection methods. That is, the box body 1 is formed by patching two parts of the first box body 13 and the second box body 14, and the height dimension of the first box body 13 may be the same as or different from the height dimension of the second box body 14. Two parts of the box body are used to form the box body 1. On the one hand, it is convenient to install, replace, maintain and maintain the various components in the containing cavity 11 of the box body 1. On the other hand, it also makes the manufacturing and processing of the box body 1 easier.
  • the box 1 is used to install the battery module 2.
  • the box body 1 and the battery module 2 are fixed with glue, for example, a structural glue is applied to the box body 1, and then the battery module 2 is placed. After the glue is cured, the battery module 2 is glued to the box body 1.
  • the drain hole 12 is provided at the bottom of the second box 14.
  • the liquid in the accommodating cavity 11 flows out of the accommodating cavity 11 through the drain hole 12 under the action of its own gravity, so that the accommodating cavity 11 is automatically discharged.
  • the second box body 14 includes a box body 141 and a carrier 142.
  • the carrier 142 is disposed inside the box body 141.
  • the supporting member 142 divides the internal space of the box 1 into an accommodating cavity 11 and a liquid storage cavity 10; the supporting member 142 is provided with a drain hole 12, and the battery module 2 is carried by the supporting member 142.
  • the blocking member 3 is installed on the carrier 142.
  • the blocking member 3 and the drain hole 12 are both provided on the supporting member 142, and the battery module 2 is also installed on the supporting member 142 and carried by the supporting member 142.
  • the blocking member 3 can effectively prevent the glue from flowing from the surface of the supporting member 142 to the drain hole 12 when the battery module 2 is installed.
  • the bottom of the box body 141 is provided with an inner concave area recessed in a direction away from the first box body 13, and the carrier 142 is connected to the edge of the inner concave area.
  • the battery pack has a box body 1 and a battery module 2 arranged inside the accommodating cavity 11 of the box body 1.
  • a battery module 2 arranged inside the accommodating cavity 11 of the box body 1.
  • the battery module of the above technical solution The tank 1 of 2 is provided with a drain hole 12, the drain hole 12 is in communication with the accommodating cavity 11 of the tank 1, and the liquid in the accommodating cavity 11 can be discharged through the drain hole 12.
  • a stopper 3 is provided between the battery module 2 and the drain hole 12.
  • the battery module 2 is fixed with glue.
  • the glue When the glue is in an unsolidified state, the glue will flow around when subjected to external force and gravity. Since the stopper 3 is provided between the battery module 2 and the drain hole 12, even if the glue flows around, when it flows to the position of the stopper 3, it will be blocked by the stopper 3 and cannot continue to flow, which is effective It reduces or even avoids the occurrence of glue blocking the drain hole 12, ensures that the drain hole 12 can drain normally, reduces the occurrence of short circuit of the battery module 2 due to the accumulation of liquid inside the box 1, and improves the battery pack Performance.
  • the battery module 2 includes a battery cell assembly 21 and a cooling system 22.
  • the battery cell assembly 21 includes a plurality of battery cells 210 arranged side by side.
  • the plurality of battery cells 210 are electrically connected to each other.
  • the cooling system 22 abuts against a plurality of battery cells 210, the cooling system 22 is filled with cooling liquid, and the cooling system 22 can cool each battery cell 210.
  • leakage may occur.
  • the drain hole 12 is used to drain the liquid leaked from the cooling system 22, so that there is little or no liquid accumulation in the tank 1 and reduces or even eliminates the risk of a short circuit in the battery pack.
  • the battery module 2 includes a plurality of battery cell assemblies 21, and the electrical connection mode between the battery cell assemblies 21 is set to be serial, parallel, or hybrid as required to achieve what the battery pack requires Electrical performance.
  • the battery cell 210 includes a housing 211, an electrode assembly 212 arranged inside the housing 211, a connector 213 arranged at an end of the electrode assembly 212, and a cover plate 214 connected to the housing 211.
  • the cover plate 214 is provided with electrode terminals 215.
  • the housing 211 One end of the housing 211 is closed and one end is open.
  • the cover plate 214 is disposed at the opening of the housing 211.
  • the electrode assembly 212 is installed to the inside of the case 211 via the opening.
  • the largest side of the electrode assembly 212 and the largest side of the case 211 face each other, and the largest side of the case 211 serves as the largest side of the battery cell.
  • the manufacturing method of the electrode assembly 212 includes a laminated type and a winding type. As shown in FIG. 10, the laminated electrode assembly 212 cuts the positive pole piece 216, the negative pole piece 217, and the separator 218 into a predetermined size, and then stacks the positive pole piece 216, the separator 218, and the negative pole piece 217 to form an electrode. Component 212. As shown in FIG. 11, the wound electrode assembly 212 is formed by winding a positive pole piece 216, a negative pole piece 217, and a separator 218.
  • the largest surface of the laminated electrode assembly 212 and the wound electrode assembly 212 is the surface with the largest amount of expansion and deformation. As shown in FIGS. 1 and 2, the maximum expansion surface of the battery cell 210 is set toward the Z-axis direction. Because the maximum expansion deformation of the battery cell 210 is along the Z-axis direction, and the size of the battery module 2 along the Z-axis direction It is smaller than the size along the X-axis or Y-axis direction, so the swelling accumulation of the battery cell assembly 21 can be effectively reduced, thereby reducing the swelling accumulation of the battery pack.
  • each battery cell 210 of the battery cell assembly 21 will be described below.
  • the battery cells 210 of the battery module 2 are arranged along the length direction of the box 1, and the largest side of each battery cell 210 is the same as that of the box 1.
  • the walls 15 where the drain holes 12 are located face each other.
  • a plurality of battery cells 210 are arranged in a flat arrangement along the length direction X of the box 1, that is, the largest side A of the battery cells 210 is substantially parallel to the length direction X of the box 1, and the battery cells 210 The largest side A and the wall 15 of the box 1 face each other.
  • two rows of battery cell assemblies 21 are arranged along the width direction of the battery pack, that is, in the Y-axis direction. In practical applications, three rows or more can also be arranged. In actual use, according to needs, one or more layers of battery cell assemblies 21 may also be provided in the height direction of the battery pack, that is, in the Z axis direction in FIG. 1.
  • the way in which the largest side surface A of the battery cell 210 and the wall 15 of the box 1 face each other can also be referred to as a flat laying.
  • the height of the battery cell assembly 21 in the Z direction is relatively short, and the overall height of the battery pack is reduced. Therefore, the battery pack with this structure is more suitable for vehicles with a relatively short battery pack installation space.
  • the position of the bus bar of the battery cell 210 is also relatively low, and the distance between the electrode terminal 215 and the bottom of the box 1 is relatively short. If the structure of the embodiment of the present application is not adopted, when the cooling system 22 inside the box 1 leaks and liquid accumulates in the box 1, the flat battery cell 210 is more likely to have a short circuit.
  • the above two problems can be well balanced, so that the height of the battery pack can be relatively short to meet the requirements of vehicle installation; it is also less prone to short-circuit phenomenon inside the battery pack, which improves the battery The performance of the package.
  • the battery pack has a liquid storage part 4, the liquid storage part 4 and the accommodating cavity 11 are connected through the drain hole 12, and the effusion in the accommodating cavity 11 can flow out of the accommodating cavity 11 through the drain hole 12 in time, thus effectively reducing
  • the possibility of water accumulation in the box body 1 reduces or even avoids the possibility of a short circuit in the battery module, and improves the performance and structure of the battery pack.
  • each battery cell 210 of the battery module 2 is laid flat, because the maximum expansion and deformation of each battery cell 210 included in the battery cell assembly 21 is along the Z-axis direction, so that each battery The swelling accumulation of the monomer 210 is small, which optimizes the performance of the battery pack.
  • the cooling system 22 is provided outside the battery cell assembly 21 and is used to cool the battery cell assembly 21.
  • the cooling system 22 cools the bottom surface of the battery cell assembly 21.
  • the bottom surface of the battery cell assembly 21 refers to the surface of each battery cell 210 included in the battery cell assembly 21 that is directly opposite to the top surface on which the electrode terminal 215 is provided.
  • two rows of battery cell assemblies 21 share a set of cooling system 22.
  • the top surfaces of the two rows of battery cell assemblies 21 provided with electrode terminals 215 are opposite, and the cooling system 22 is used to cool the bottom surfaces of the two rows of battery cells at the same time.
  • the top surfaces of the two rows of battery cells provided with the electrode terminals 215 are far apart.
  • the bottom surfaces of the battery cells 210 of the two rows of battery cell assemblies 21 are arranged oppositely, and there is a gap between the two rows of battery cell assemblies 21, and the cooling plate 221 of the cooling system 22 is arranged at the gap to cool the two rows of battery cells at the same time.
  • the bottom surface of the body assembly 21 is arranged oppositely, and there is a gap between the two rows of battery cell assemblies 21, and the cooling plate 221 of the cooling system 22 is arranged at the gap to cool the two rows of battery cells at the same time.
  • the cooling system 22 includes a cooling plate 221 and a connecting pipe 222.
  • a cooling channel is provided inside the cooling plate 221, and the number of the cooling plate 221 is two or more.
  • the connecting pipe 222 is connected to the cooling plate 221 to communicate the cooling flow channels of the cooling plates 221.
  • the drain hole 12 is adjacent to the junction of the cooling plate 221 and the connecting pipe 222.
  • the arrow N in Figure 4 indicates the flow direction of the glue
  • the arrow M indicates the flow direction of the condensed water.
  • the outside of the box 1 may be additionally provided with a liquid inlet pipe and a liquid discharge pipe, and the cooling system 22 is in communication with the liquid inlet pipe and the liquid discharge pipe.
  • This structure realizes the circulation of the cooling liquid inside the cooling system 22, so that the battery The cooling effect of the bag is good.
  • the cooling system 22 includes two connecting pipes 222, and the two connecting pipes 222 are respectively located on both sides of the length direction of the battery module 2.
  • One or more rows of drain holes 12 are provided below the connection position of each connecting pipe 222 and the cooling plate 221. When leakage occurs at the connection between the connecting pipe 222 and the cooling plate 221, the drain hole 12 can remove the liquid accumulation in time to ensure the normal use of the battery module 2 inside the box body 1.
  • the cooling system 22 is arranged between the two end faces of the battery cell assembly 21, that is, one of the two cooling plates 221 of the cooling system 22 cools the bottom surface of one battery cell assembly 21, and the other cools The plate 221 cools the bottom surface of the other battery cell assembly 21.
  • the above arrangement realizes the use of a set of cooling system 22 to cool the two battery cell assemblies 21 at the same time, which reduces the number of cooling components and makes the structure of the battery pack lighter.
  • the battery module 2 is integrally installed on one of the walls of the box 1, and this wall is called the wall 15.
  • the drain hole 12 is also provided on the wall 15 of the box 1. Taking the direction shown in FIG. 1 as an example, the wall 15 is the bottom wall of the second box 14. In addition, the drain hole 12 is located below the gravity direction of the battery module 2.
  • the drain hole 12 is arranged at the bottom of the box 1, so that when the cooling system 22 described later inside the box 1 leaks, the liquid flows directly to the drain under the action of gravity. The hole 12 then flows into the liquid storage chamber 10. The flow path of the liquid is shown by the path M in FIG. 4.
  • the drain holes 12 are arranged in a row on the wall 15 of the box 1, and the drain holes 12 penetrate the wall 15. Specifically, the drain holes 12 arranged in rows are arranged along the width direction of the box 1.
  • the drain hole 12 is, for example, a round hole, a trapezoidal hole, a special-shaped hole, or the like.
  • the shape of the drain hole 12 is not limited, and its function is to enable the effusion to pass through and flow into the liquid storage cavity 10 smoothly.
  • the liquid drain hole 12 in the shape of a round hole is adopted, which is convenient for processing and manufacturing.
  • the trapezoidal hole of the drain hole 12 is adopted.
  • the size of the end of the drain hole 12 that communicates with the accommodating cavity 11 is larger than the size of the end of the drain hole 12 that communicates with the liquid storage cavity 10. This structure effectively reduces the size of the liquid reservoir 10 The possibility of liquid reflux.
  • the structure, shape and size of the liquid discharge hole 12 can be arbitrarily designed according to the needs, and the individual communication requirements are met.
  • the drain hole 12 is configured to allow liquid to flow from the drain hole 12 to the liquid storage cavity 10 in one direction.
  • the drain hole 12 is provided with a direction regulating member that allows the liquid to flow unidirectionally from the drain hole 12 to the liquid storage portion 4.
  • the drain hole 12 is configured as a special-shaped structure, or one end is larger in size and the other end is smaller in size.
  • an anti-reflux film is provided at the end of the drain hole 12 to prevent backflow.
  • the opening size of the end of the drain hole 12 communicating with the containing cavity 11 is large, and the opening size of the end communicating with the liquid storage cavity 10 is small.
  • the end with the larger size is located upstream in the direction of gravity, and the end with the smaller size is located downstream in the direction of gravity.
  • the liquid storage cavity 10 After the accumulation of liquid in the containing cavity 11 of the box 1 flows out into the liquid storage cavity 10 through the drain hole 12, even if there are accidents such as bumps or impacts during the use of the battery pack, the liquid storage cavity 10 The liquid in the liquid is not easy to fold back and flow into the accommodating cavity 11, which reduces the risk of short circuit of the battery module 2 caused by the liquid in the liquid reservoir 10 flowing back to the accommodating cavity 11, optimizes the structure of the battery pack, and improves the battery The performance of the package.
  • the blocking member 3 is located on the outer side of the length direction of the battery module 2.
  • the battery module 2 is fixed on the inner wall of the box 1 with glue.
  • the glue is squeezed by the gravity of the battery module 2 and external force, and will flow around.
  • the stopper 3 is arranged between the battery module 2 and the drain hole. When the glue flows to the position of the stopper 3, it will be blocked by the stopper 3 and cannot continue to flow forward into the drain hole 12. It can be seen that the above technical solution effectively prevents the glue from flowing into the drain hole 12 to block the drain hole 12, so that the drain hole 12 can subsequently drain normally, and reduces the short circuit of the battery module 2 caused by the accumulation of liquid inside the box 1. Phenomenon, improving the performance of the battery pack.
  • Both ends of the battery module 2 in the longitudinal direction are provided with stoppers 3.
  • the above structure enables the blocking member 3 to play a blocking role no matter which end of the length direction of the battery module 2 the glue flows.
  • the drain holes 12 located at any end of the length of the battery module 2 are not easily blocked by glue, and the drain effect of the drain holes 12 is ensured.
  • the blocking member 3 and the drain hole 12 are provided on the same wall 15 of the box body 1.
  • the blocking member 3 is fixed on the wall 15 of the box body 1, and the wall body 15 is the bottom wall of the second box body 14.
  • the blocking member 3 is completely attached to the bottom wall, and there is no gap between the two.
  • the battery module 2 is also installed on the bottom wall. Since the glue is coated on the bottom wall and easily flows around the bottom wall, the stopper 3 is also installed on the bottom wall, which can effectively prevent the glue from entering the drain hole 12.
  • the blocking member 3 includes a connecting plate 31 and a vertical plate 32.
  • the connecting plate 31 is fixedly connected to the box body 1, such as welding or riveting.
  • the structure of the connecting plate 31 is, for example, a flat plate or other heterogeneous structure having a plane attached to the bottom wall.
  • the vertical plate 32 is installed on the side of the connecting plate 31 facing the top of the box body 1.
  • the vertical plate 32 extends along the height direction of the box body 1, that is, the vertical plate 32 has a certain height to prevent glue from flowing over the top of the vertical plate 32 into the drain hole 12.
  • the above technical solution can also play a better blocking effect when the amount of flowing glue is relatively large, and effectively guarantee the normal operation of the drain hole 12.
  • connecting plate 31 and the vertical plate 32 There are many ways to connect the connecting plate 31 and the vertical plate 32, such as welding, plugging, or, in some embodiments, the connecting plate 31 and the vertical plate 32 are integrated.
  • the connecting plate 31 and the vertical plate 32 are connected to form an L-shaped plate.
  • a flat plate is used and bent to form the blocking member 3.
  • a row of drain holes 12 is provided at each end of the battery module 2 in the longitudinal direction.
  • a plurality of blocking members 3 can be used to block the flow of glue to these drainage holes 12 together, or a relatively long blocking member 3 can be used to block the flow of glue to these drainage holes 12.
  • the length of the blocking member 3 satisfies the following relationship, as shown in FIG. 6: L1 is greater than L2. Wherein, the length of the blocking member 3 is L1, and L2 is the farthest distance between the side walls of the first drain hole 121 and the second drain hole 122.
  • the first drain hole 121 and the second drain hole 122 are the two most marginal ones in a row of drain holes 12.
  • the stopper 3 is used to prevent the glue used to fix the battery module 2 from entering the drain hole 12 in the width direction of the box body 1.
  • each end of the battery module 2 in the length direction is provided with a blocking member 3.
  • the liquid storage cavity 10 may be located inside or outside the box 1, or partly inside the box 1 and partly outside the box 1.
  • the liquid storage cavity 10 does not communicate with the outside of the battery pack to prevent external liquid or water vapor from flowing into the accommodating cavity 11 through the liquid storage cavity 10, thereby ensuring the safety performance of the battery pack.
  • the battery pack further includes a liquid storage part 4 which is arranged outside the box 1.
  • the liquid storage portion 4 is provided with a liquid storage cavity 10, or the liquid storage portion 4 and the tank 1 together form a liquid storage cavity 10.
  • the liquid storage part 4 is located outside the bottom of the box body 1, and the liquid storage part 4 and the wall 15 of the box body 1 are fixed together.
  • the liquid storage portion 4 and the tank 1 are also connected in a sealed manner, so that the liquid storage cavity 10 is in communication with the drain hole 12, and the liquid does not flow from the liquid storage portion 4 and Leakage at the junction of box 1.
  • the liquid storage part 4 and the box body 1 are connected in a sealed manner, for example, the two are directly sealed in a sealed connection, for example, a sealed connection is realized by providing a mutually matched sealing structure.
  • a sealing element is sandwiched between the liquid storage part 4 and the box body 1, and the liquid storage part 4 and the box body 1 are connected in a sealed manner through the sealing element.
  • the liquid storage part 4 and the box body 1 together form the liquid storage cavity 10
  • the liquid storage part 4 and the box body 1 also need to be connected in a sealed manner.
  • One alternative is that the liquid storage part 4 and the box The body 1 is directly sealed and connected.
  • Another way is that a sealing element is sandwiched between the liquid storage portion 4 and the box body 1, and the liquid storage portion 4 and the box body 1 are hermetically connected through the sealing element.
  • the seal is, for example, a sealing ring.
  • the liquid storage portion 4 is sealed to the box body 1 so that the liquid in the accommodating cavity 11 will not leak through the connection between the liquid storage portion 4 and the box body 1, thereby improving the performance of the battery pack.
  • external liquid and water vapor will not flow into the accommodating cavity 11 through the liquid storage part 4, thereby ensuring the safety performance of the battery pack.
  • the wall body 15 and the other parts of the second box body 14 can be connected to each other in a sealed manner or not.
  • the entire box body 14 is mainly sealed by the liquid storage part 4 to prevent external water vapor and liquid from entering the box body 1.
  • the second box body 14 can be integrally formed, or a split structure, for example, formed by welding or riveting multiple plates.
  • the liquid storage part 4 can form the liquid storage cavity 10 in two ways:
  • the first type is a structure in which the liquid storage portion 4 itself has a closed cavity, and the closed cavity has an inflow port, which is in communication with the drain hole 12.
  • the closed cavity serves as a liquid storage cavity 10.
  • the liquid storage portion 4 is a separate component, and the liquid storage cavity 10 is formed separately.
  • the liquid storage part 4 is sealed and fixed with the box body 1 so that the liquid storage cavity 10 communicates with the liquid discharge hole 12 to prevent liquid from leaking from the liquid discharge hole 12 to the area outside the liquid storage cavity 10.
  • the second implementation is that the liquid storage part 4 and the tank 1 jointly form a liquid storage cavity 10.
  • the liquid storage portion 4 is installed on the outer side of the wall 15 provided with the drain hole 12 of the box 1, and is connected to the wall 15 in a sealed manner. Wherein, the liquid storage part 4 and the outer side of the wall 15 enclose a liquid storage cavity 10.
  • the sealed connection between the liquid storage 4 and the wall 15 is similar to the sealed connection described above. I won't repeat them here.
  • the liquid storage portion 4 and the wall 15 are connected in a sealed manner, so that the liquid in the accommodating cavity 11 does not leak through the connection between the liquid storage portion 4 and the wall 15 and improves the performance of the battery pack.
  • the liquid storage portion 4 is provided with an inner concave portion 41 that is recessed in a direction away from the box body 1, and the inner concave portion 41 and the wall 15 enclose the liquid storage cavity 10.
  • the number of the inner recesses 41 is multiple, and the multiple inner recesses 41 collectively cover all the drain holes 12.
  • the inner recess 41 is located outside all the drain holes 12. That is, the inner concave portion 41 completely covers all the liquid discharge holes 12 so that all the liquid in the liquid discharge holes 12 flows to the liquid storage cavity 10.
  • the number of inner recesses 41 provided in one liquid storage portion 4 is multiple, and the multiple inner recesses 41 of the same liquid storage portion 4 are connected or not connected.
  • the material of the liquid storage part 4 includes plastic.
  • Plastic materials have good deformation properties and can effectively absorb energy when impacted, reducing the possibility of seal failure.
  • the volume of the liquid storage cavity 10 is greater than or equal to the volume of the cooling liquid in the cooling system 22.
  • the liquid storage portion 4 further includes a protection portion 5 installed on a side of the liquid storage portion 4 away from the outer surface.
  • the protective portion 5 is, for example, a plate-like structure provided with an inner concave structure, which matches the inner concave portion 41 of the liquid storage portion 4 so as to be completely wrapped around the outer side of the liquid storage portion 4, reducing the possibility of the liquid storage portion 4 becoming invalid due to collision Sex.
  • the protection part 5 is used to protect the liquid storage part 4 and prevent the liquid storage part 4 from being deformed and damaged due to an impact.
  • the hardness of the protection part 5 is higher than the hardness of the liquid storage part 4.
  • the protection part 5 completely covers the liquid storage part 4. The protection part 5 can effectively prevent the external force from damaging the liquid storage part 4.
  • the second box body 14 includes a box body 141 and a bearing member 142 disposed inside the box body 141.
  • the bearing member 142 divides the inner space of the box body 1 into an accommodating cavity 11 and a liquid storage cavity 10.
  • the supporting member 142 is provided with a drain hole 12, and the battery module 2 is installed on the supporting member 142.
  • the blocking member 3 and the battery module 2 are both installed on the supporting member 142, and the drain hole 12 is also provided on the supporting member 142. Please refer to the above description for the structure of the blocking member 3, which will not be repeated here.
  • the carrier 142 is, for example, flat.
  • the carrier 142 is welded or bolted to the inner wall of the box 1. The above structure makes the structure of the battery pack more compact and lighter in weight.
  • the functions of the accommodating cavity 11 and the liquid storage cavity 10 are the same as those described above.
  • the accommodating cavity 11 is used for installing the battery module 2.
  • the liquid storage cavity 10 is used to store liquid leaked from the containing cavity 11. Please refer to the above for other content.
  • the bottom of the box 1 is provided with a concave area, and the carrier 142 is installed on the edge of the concave area 16.
  • the recessed area 16 is a part of the box 1.
  • a protection part 5 is provided on the outside of the liquid storage chamber 10, and the protection part 5 is used to cover the outer wall of the liquid storage chamber 10.
  • the hardness of the protection part 5 is higher than the hardness of the outer wall of the liquid storage chamber 10.
  • the protective part 5 is used to protect the outer wall of the liquid storage chamber 10 to reduce the possibility of leakage of the liquid storage chamber 10 in the event of a collision or the like, and to ensure the normal use of the battery pack.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请公开了一种电池包和车辆,涉及电池领域,用以优化电池包的结构。电池包包括箱体以及阻挡件。箱体包括用于容置电池模组的容置腔以及与容置腔连通的排液孔。电池模组安装于容置腔内部。阻挡件安装于箱体,并且位于排液孔和电池模组之间,以阻止用于固定电池模组的胶进入到排液孔中。

Description

电池包和车辆
本申请要求于2019年8月27日提交中国专利局、申请号为201910794345.1、发明名称为“电池包”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及电池领域,具体涉及一种电池包和车辆。
背景技术
为了减少汽油等对环境的污染,电池被广泛应用于车辆中,以为车辆提供电力驱动。为了满足车辆较高的动力需求,一般以电池包作为车辆的电力来源。电池包包括电池模组、用于安装电池模组的箱体,电池模组安装于箱体内部。
发明人发现,现有的电池包至少存在下述问题:在箱体内有积水的情况下,易造成电池模组的正负电极短路。
发明内容
本申请的多个方面提供一种电池包和车辆,用以优化电池包的结构。
本申请的第一方面提供了一种电池包,包括:
箱体,包括用于容置电池模组的容置腔以及与所述容置腔连通的排液孔;以及
阻挡件,安装于所述箱体,并且位于所述排液孔和所述电池模组之间,以阻止用于固定所述电池模组的胶进入到所述排液孔中。
在一些实施例中,所述阻挡件位于所述电池模组的长度方向的外侧。
在一些实施例中,所述阻挡件与所述排液孔设置于所述箱体的同一个壁体。
在一些实施例中,所述阻挡件包括:
连接板,与所述箱体固定相连;以及
立板,连接于所述连接板,所述立板沿着所述电池模组的高度方向延伸。
在一些实施例中,所述连接板和所述立板是一体的。
在一些实施例中,所述连接板和所述立板连接形成L形板。
在一些实施例中,所述阻挡件的长度为L1,第一排液孔的侧壁和第二排液孔的侧壁之间的最远距离为L2,L1大于L2,所述第一排液孔和所述第二排液孔为位于所述电池模组长度方向同一端的一排排液孔中位于边缘的两个所述排液孔,所述阻挡件用于在所述箱体的宽度方向阻止用于固定所述电池模组的胶进入到所述排液孔中。
在一些实施例中,所述阻挡件设置于所述电池模组的长度方向的每一端。
在一些实施例中,用于储液的储液腔设置于所述电池模组的下方,所述储液腔与所述排液孔连通;
所述电池包还包括设置于所述箱体外部的储液部;所述储液部设有所述储液腔,或者,所述储液部与所述箱体共同形成所述储液腔。
在一些实施例中,所述储液部安装于所述箱体的壁体的下方,所述储液部与所述壁体密封连接;其中,所述储液部与所述壁体围成所述储液腔。
在一些实施例中,所述储液部设有朝着远离所述箱体的方向凹陷的内凹部。
在一些实施例中,所述排液孔具有多个,所述内凹部位于全部的所述排液孔的外侧且覆盖全部的所述排液孔。
在一些实施例中,电池包还包括:
防护部,安装于所述储液部远离所述箱体的一侧。
在一些实施例中,所述防护部的硬度大于所述储液部的硬度,所述防护部完全覆盖所述储液部。
在一些实施例中,所述箱体包括:
第一箱体;以及
第二箱体,与所述第一箱体围成所述容置腔,且位于所述第一箱体的下方;所述排液孔设置于所述第二箱体。
在一些实施例中,所述排液孔具有多个且沿所述箱体的宽度方向排列。
在一些实施例中,所述电池包还包括所述电池模组。
本申请的第二方面提供一种车辆,包括所述电池包。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例提供的电池包的立体结构示意图;
图2为本申请实施例提供的电池包的分解结构示意图;
图3为本申请实施例提供的电池包的局部立体结构示意图;
图4为图3的A局部放大示意图;
图5为本申请实施例提供的电池包部分部件局部结构示意图;
图6为图5的B局部放大示意图;
图7为本申请实施例提供的电池包部分部件分解结构示意图;
图8为本申请实施例提供的电池包的箱体立体结构示意图;
图9为本申请实施例提供的电池包的电池单体的结构示意图;
图10为叠片式电极组件的结构示意图;
图11为卷绕式电极组件的结构示意图;
图12为本申请另一实施例提供的电池包的承载件、第二箱体、阻挡件以及防护部的分解结构示意图;
图13为本申请另一实施例提供的电池包局部立体结构示意图;
图14为图13的C向局部剖视示意图。
具体实施方式
下面结合图1~图14对本申请实施例提供的技术方案进行更为详细的阐述。
为了更加清楚地描述本申请各实施例的技术方案,在图1中建立了坐标系,后续关于电池包的各个方位的描述基于该坐标系进行。参见图1,X轴为电池包的长度方向。Y轴在水平面内与X轴垂直,Y轴表示电池包的宽度方向。Z轴垂直于X轴和Y轴形成的平面,Z轴表示电池模组的高度方向。本申请的描述中,术语“上”、“下”、均是相对于Z轴方向而言。箱体1的长度方向与电池包的长度方向一致,箱体1的宽度方向与电池包的宽度方向一致,箱体1的高度方向与电池包的高度方向一致。
在本申请的描述中,需要理解的是,术语“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为便于描述本申请和简化描述,而不是指示或暗指所指的装置或元件必须具有特定的方位、为特定的方位构造和操作,因而不能理解为对本申请保护内容的限制。
参见图1,图1示意了电池包的立体结构示意图,其箱体1处于打开状态。参见图2,图2中去除了后文所述的箱体1的第二箱体14的一侧侧壁,以清楚显示箱体1内部电池模组2的结构以及电池模组2与第二箱体14的位置关系。
参见图1至图4,本申请实施例提供一种电池包,包括箱体1、电池模组2以及阻挡件3。箱体1包括容置腔11以及与容置腔11连通的排液孔12。电池模组2安装于容置腔11内部。阻挡件3安装于箱体1,并且阻挡件3位于排液孔12和电池模组2之间,以阻止用于固定电池模组2的胶进入到排液孔12中。
在一些实施例中,电池模组2的下方设有用于储液的储液腔10,储液腔 10与排液孔12连通。这里说的下方,可以是正下方,也可以是斜下方,只要容置腔11内部的液体在重力作用下能够流经排液孔12进入到储液腔10中。
储液腔10位于箱体1的内部和/或外部。具体来说,储液腔10可以完全位于箱体1内部;储液腔10也可以完全位于箱体1外部。
上述技术方案,电池包设有储液腔10,储液腔10位于电池模组2的重力方向的下方。当容置腔11内出现积液时,积液在重力作用下往下流动,流到排液孔12处,经由排液孔12流入到储液腔10中存储。可见,上述技术方案,由于在电池模组2的下方设置了储液腔10,降低甚至避免了容置腔11内有液体时造成电池模组2短路的现象,提高了电池包的使用安全性。
下面详细介绍各个部件的结构的位置关系。
参见图1至图7,首先介绍箱体1。在一些实施例中,箱体1包括第一箱体13以及第二箱体14。第二箱体14与第一箱体13围成容置腔11,且位于第一箱体13的下方;排液孔12设置于第二箱体14。
第一箱体13与第二箱体14扣合在一起,形成上述的容置腔11。第一箱体13与第二箱体14可采用螺栓连接等其他的可拆卸连接方式。即箱体1采用第一箱体13和第二箱体14两部分箱体拼凑形成,第一箱体13的高度尺寸可以与第二箱体14的高度尺寸相同或者不相同。采用两部分箱体拼凑形成箱体1,一方面便于安装、更换、维修和养护位于箱体1的容置腔11内的各个部件,另一方面也使得箱体1的制造加工更加简便。
参见图1,箱体1用于安装电池模组2。箱体1与电池模组2用胶进行固定,比如在箱体1涂上结构胶,然后放置电池模组2,待胶固化后,电池模组2胶接于箱体1。采用上述的实现方式,使得电池模组2与箱体1的连接稳固可靠,并且简化了电池包结构,从而提高电池包的能量密度。
在一些实施例中,排液孔12设置于第二箱体14的底部。容置腔11内部出现积液时,容置腔11内的液体在自身重力作用下,经由排液孔12流出容置腔11,实现了容置腔11内积液的自动排出。
参见图12至图14,在另一些实施例中,第二箱体14包括箱本体141以 及承载件142。承载件142设置于箱本体141的内部。承载件142将箱体1的内部空间分为容置腔11和储液腔10;承载件142设有排液孔12,电池模组2由承载件142承载。阻挡件3安装于承载件142。阻挡件3和排液孔12都设置于承载件142,电池模组2也安装于承载件142且由承载件142承载。上述技术方案,阻挡件3能有有效防止电池模组2安装时,胶从承载件142表面流向排液孔12。
在一些实施例中,箱本体141的底部设有朝着远离第一箱体13的方向凹陷的内凹区域,承载件142与内凹区域的边缘相连。
综上所述,电池包具有箱体1和设置于箱体1的容置腔11内部的电池模组2。电池包在实际使用过程中,箱体1的容置腔11内部可能会有液体,为了防止液体接触到电池模组2的正负电极而造成电池模组2短路,上述技术方案的电池模组2的箱体1设置了排液孔12,排液孔12与箱体1的容置腔11连通,容置腔11中的液体可以经由排液孔12排出。并且,上述技术方案,在电池模组2和排液孔12之间设置了阻挡件3。电池模组2在使用胶固定,当胶处于未凝固状态时,胶受到外力和自身重力作用时会四处流动。由于在电池模组2和排液孔12之间设置了阻挡件3,即便胶四处流动,当其流动到阻挡件3所在位置时,会被阻挡件3阻挡,从而不能继续流动,这就有效降低甚至避免了胶堵塞排液孔12现象的发生,保证了排液孔12能够正常排液,降低了因箱体1内部有积液而造成电池模组2短路现象的发生,提高了电池包的性能。
参见图1、图3和图4,下面介绍电池模组2的相关内容。
在一些实施例中,电池模组2包括电池单体组件21以及冷却***22。电池单体组件21包括并排设置的多个电池单体210。多个电池单体210相互电连接。冷却***22与多个电池单体210抵靠,冷却***22中充满冷却用的液体,冷却***22能够冷却各电池单体210。在冷却***22的各部件的连接处,有可能发生泄漏现象。其中,排液孔12用于排出冷却***22泄露的液体,以使得箱体1内部很少、甚至没有积液,减少甚至消除电池包发生短路的危险。
参见图1至图4,电池模组2包括多个电池单体组件21,各个电池单体 组件21之间的电连接方式根据需要设置为串联、并联或者混联,以实现电池包所需要的电学性能。
参见图9,电池单体210包括壳体211、设置于壳体211内部的电极组件212、设置于电极组件212端部的连接件213、以及连接壳体211的盖板214。盖板214设有电极端子215。
壳体211的一端封闭,一端敞口。盖板214设置于壳体211的敞口处。电极组件212经由敞口安装到壳体211内部。电极组件212的最大侧面与壳体211的最大侧面相互面对,壳体211的最大侧面作为电池单体的最大侧面。
电极组件212的制作方式包括叠片式和卷绕式。如图10所示,叠片式电极组件212是将正极极片216、负极极片217、隔膜218裁成规定尺寸的大小,随后将正极极片216、隔膜218、负极极片217叠合成电极组件212。如图11所示,卷绕式电极组件212是将正极极片216、负极极片217、隔膜218卷绕成形。
叠片式电极组件212、卷绕式电极组件212的最大表面为膨胀变形量最大的表面。如图1和图2所示,电池单体210的最大膨胀面朝向Z轴方向设置,由于电池单体210的最大膨胀变形是沿着Z轴方向,而且电池模组2沿Z轴方向的尺寸小于沿X轴或Y轴方向的尺寸,故能有效降低电池单体组件21的膨胀积累,进而降低电池包的膨胀积累。
参见图1、图2和图3,下面介绍电池单体组件21的各个电池单体210的排列方式。
参见图1、图2和图3,在一些实施例中,电池模组2的各电池单体210沿着箱体1的长度方向排列,且各电池单体210的最大侧面与箱体1的排液孔12所在的壁体15相互面对。
如图2所示,多个电池单体210沿着箱体1的长度方向X平铺排列,即电池单体210最大的侧面A与箱体1的长度方向X大致平行,并且电池单体210最大的侧面A与箱体1的壁体15相互面对。
如图1所示,沿电池包的宽度方向即Y轴方向设置了两排电池单体组件 21,实际应用中,也可以设置三排或者更多数量。实际使用中,根据需要,在电池包的高度方向,即图1中的Z轴方向上,也可以设置一层或者多层电池单体组件21。
电池单体210最大侧面A与箱体1的壁体15相互面对的放置方式也可称为平放。采用平放的布置方式,由于电池单体组件21在Z方向上的高度比较矮,电池包的整体高度得以降低,故这种结构的电池包更适合电池包安装空间比较矮的车辆。但是,由于电池单体组件21的高度矮,电池单体210的汇流排的位置也较低,电极端子215距离箱体1底部的距离比较近。如果不采用本申请实施例的结构,在箱体1内部的冷却***22出现泄漏、箱体1内出现积液时,平放的电池单体210更易发生短路现象。
如果采用本申请实施例的上述结构,就能很好地平衡上述两个问题,使得电池包的高度既可以比较矮,以满足车辆安装要求;又使得电池包内部不易出现短路现象,提高了电池包的性能。由于电池包具有储液部4,储液部4与容置腔11通过排液孔12连通,容置腔11内的积液通过排液孔12能够及时流出容置腔11,故有效降低了箱体1内出现积水现象的可能性,降低甚至避免了电池模组出现短路现象的可能,提高了电池包的性能和结构。
另外,采用上述布置方式,电池模组2的各个电池单体210是平放的,由于电池单体组件21所包括的各个电池单体210的最大膨胀变形是沿Z轴方向的,使得各电池单体210的膨胀累积较小,优化了电池包的性能。
参见图1至图4,下面介绍电池模组2的冷却***22的相关内容。
冷却***22设置于电池单体组件21的外部,并且用于冷却电池单体组件21。可选地,冷却***22冷却电池单体组件21的底面。电池单体组件21的底面是指,电池单体组件21所包括的各个电池单体210的与设有电极端子215的顶面正对的面。
参见图1和图2,在一些实施例中,两排电池单体组件21共用一套冷却***22。如图1所示,两排电池单体组件21的设有电极端子215的顶面相对,冷却***22用于同时冷却两排电池单体的底面。或者,两排电池单体的设有电极端子215的顶面相远离。两排电池单体组件21的各电池单体210的底面相对布置,且两排电池单体组件21之间具有间隙,冷却***22的冷 却板221设置于间隙处,以同时冷却两排电池单体组件21的底面。
参见图1至图4,承上述,在一些实施例中,冷却***22包括冷却板221以及连接管222。冷却板221内部设有冷却流道,且冷却板221的数量为两块以上。连接管222与冷却板221连接,以将各冷却板221的冷却流道连通。其中,排液孔12邻近冷却板221与连接管222的连接处。图4中箭头N示意了胶的流动方向,箭头M示意了冷凝水的流动方向。
可选地,箱体1的外部可以另外设置有进液管和排液管,冷却***22与进液管和排液管均连通,该结构实现了冷却***22内部的冷却液循环,使得电池包的冷却效果好。
参见图1和图3,冷却***22包括两根连接管222,两根连接管222分别位于电池模组2的长度方向的两侧。在每根连接管222与冷却板221的连接位置的下方,都设有一排或者多排排液孔12。在连接管222与冷却板221的连接处发生泄漏时,排液孔12能够及时排除积液,保证箱体1内部电池模组2的正常使用。
参见图1至图4,冷却***22设置于电池单体组件21的两个端面之间,即冷却***22的两块冷却板221中的一块冷却一个电池单体组件21的底面,另一块冷却板221冷却另一个电池单体组件21的底面。上述设置实现了采用一套冷却***22,同时冷却两个电池单体组件21,减少了冷却部件的数量,使得电池包的结构得以轻量化。
参见图1至图6,下面进一步详细介绍排液孔12的相关内容。
电池模组2整体安装于箱体1其中一个壁面,该壁面称为壁体15。排液孔12也设置于箱体1的壁体15。以图1所示方向为例,壁体15为第二箱体14的底壁。并且,排液孔12位于电池模组2重力方向的下方。
以图1所示方向为例,排液孔12设置于箱体1的底部,如此设置使得箱体1内部的后文所述的冷却***22出现泄露时,液体直接在重力作用下流向排液孔12,而后流入储液腔10。液体的流动路径参见图4中路径M所示意的。
参见图1、图6,在一些实施例中,排液孔12成排设置于箱体1的壁体 15,并且排液孔12贯穿壁体15。具体来说,成排设置的排液孔12沿箱体1的宽度方向排列。
排液孔12比如为圆孔、梯形孔、异型孔等。排液孔12的形状不加以限定,其作用是使得积液能够通过并顺利流入储液腔10。采用圆孔形状的排液孔12,便于加工制造。采用梯形孔的排液孔12,排液孔12的与容置腔11连通的一端尺寸大于排液孔12的与储液腔10连通的一端尺寸,该结构有效降低了储液腔10内的液体出现反流的可能性。采用异型孔的排液孔12,则实现了根据需要任意设计排液孔12的结构、形状和尺寸,满足了个性化的连通需求。
在一些实施例中,排液孔12被构造为允许液体从排液孔12单向流动至储液腔10。或者,排液孔12处设有允许液体从排液孔12单向流动至储液部4的方向调节部件。
具体比如,将排液孔12设置为异形结构、或者一端尺寸大一端尺寸小。或者,在排液孔12的端部设置抗反流薄膜,以防止回流。
在一些实施例中,排液孔12的与容置腔11连通的一端的开口尺寸大,与储液腔10连通的一端的开口尺寸小。尺寸大的一端位于重力方向的上游,尺寸小的一端位于重力方向的下游。该结构使得箱体1倒置时,液体较难经由排液孔12回流至箱体1中。
通过上述设置,箱体1的容置腔11内的积液经由排液孔12流出到储液腔10中之后,在电池包使用过程中,即便出现磕碰、撞击等意外情况,储液腔10中的液体也不易折返流入容置腔11,降低了因储液腔10中的液体反流至容置腔11带来的电池模组2短路的风险,优化了电池包的结构,提高了电池包的性能。
参见图1至图7,下面介绍阻挡件3的设置位置和结构。
在一些实施例中,阻挡件3位于电池模组2的长度方向的外侧。
电池模组2采用胶固定在箱体1的内壁上。在胶未凝固时,胶受到电池模组2的重力以及外力的挤压,会四处流淌。阻挡件3设置于电池模组2和排液孔之间,胶流到阻挡件3的位置时,会被阻挡件3挡住,从而不能继续 向前流入到排液孔12中。可见上述技术方案,有效防止了胶流入到排液孔12中堵塞排液孔12,使得排液孔12后续能够正常排液,降低了箱体1内部因积液造成的电池模组2短路的现象,提高了电池包的性能。
电池模组2的长度方向的两端都设置有阻挡件3。上述结构使得不管胶往电池模组2长度方向的哪一端流动,阻挡件3都能够起到阻挡作用。采用上述技术方案,位于电池模组2长度方向任意一端的排液孔12都不易被胶堵塞,保证了排液孔12的排液效果。
在一些实施例中,阻挡件3与排液孔12设置于箱体1的同一个壁体15。
阻挡件3固定在箱体1的壁体15上,壁体15为第二箱体14的底壁。阻挡件3与底壁完全贴合,两者之间没有缝隙。电池模组2也安装在底壁上。由于胶涂在底壁上,且容易沿着底壁四处流淌,因此将阻挡件3也安装于该底壁,能够有效防止胶进入到排液孔12中。
参见图1和图6,在一些实施例中,阻挡件3包括连接板31以及立板32。连接板31与箱体1固定相连,比如焊接或者铆接等。连接板31的结构比如为平板或者具有于底壁贴合的平面的其他异性结构。立板32安装于连接板31朝向箱体1顶部的一侧。立板32沿着箱体1的高度方向延伸,即立板32具有一定的高度,防止胶越过立板32的顶部流入到排液孔12中。上述技术方案在流动的胶的量比较大的情况下,也能起到较好的阻挡作用,有效保障了排液孔12的正常工作。
连接板31和立板32的连接方式有多种,比如焊接、插接,或者,在一些实施例中,连接板31和立板32是一体的。
在一些实施例中,连接板31和立板32连接形成L形板。实际制造过程中,比如采用一块平板,弯折形成阻挡件3。
排液孔12比如为多个。在电池模组2的长度方向的每一端都设置有一排排液孔12。可以采用多块阻挡件3共同阻挡胶流向这些排液孔12,也可以采用一块比较长的阻挡件3来阻挡胶流向这些排液孔12。具体来说,该阻挡件3的长度满足下述关系,如图6所示:L1大于L2。其中,阻挡件3的长度为L1,L2为第一排液孔121和第二排液孔122的侧壁之间的最远距离。第一排液孔121和第二排液孔122为一排排液孔12中最边缘的两个。阻挡件3用于 在箱体1的宽度方向阻止用于固定电池模组2的胶进入到排液孔12中。
参见图1,在一些实施例中,电池模组2的长度方向的每一端都设置有阻挡件3。阻挡件3有2块,在电池模组2的长度方向的每一端都布置有一块。上述技术方案结构非常紧凑,并且能很好地防止排液孔12被胶堵塞。
参见图1,接下来介绍储液腔10的多种实现方式。
按照储液腔10的位置来划分,储液腔10可以位于箱体1的内部、外部、或者部分位于箱体1内部、部分位于箱体1外部。储液腔10不与电池包的外部连通,以防止外部的液体或水汽经由储液腔10而流入到容置腔11内部,从而保证电池包的安全性能。
在一些实施例中,电池包还包括储液部4,储液部4设置于箱体1外部。储液部4设有储液腔10,或者,储液部4与箱体1共同形成储液腔10。
参见图1、图6和图7,储液部4位于箱体1的底部外侧,并且储液部4与箱体1的壁体15固定在一起。
储液部4单独设有储液腔10时,储液部4与箱体1之间也是密封连接的,以使得储液腔10与排液孔12连通,且液体不从储液部4与箱体1连接处泄露。储液部4与箱体1实现密封连接的方式比如为两者直接密封连接,比如通过设置相互配合的密封结构实现密封连接。或者,储液部4与箱体1之间夹设有密封件,通过密封件实现储液部4与箱体1密封连接。
储液部4与箱体1共同形成储液腔10时,储液部4与箱体1也需要密封连接,密封连接方式有多种,一种可选的方式为,储液部4与箱体1直接密封连接。另一种方式为,储液部4与箱体1之间夹设有密封件,通过密封件使得储液部4与箱体1密封连接。密封件比如为密封圈等。上述实现方式,储液部4与箱体1密封连接,使得容置腔11内的液体不会经由储液部4与箱体1的连接处泄露,提高了电池包的性能。并且外部的液体和水汽不会经由储液部4而流入到容置腔11内部,从而保证了电池包的安全性能。
由上述介绍可知,当储液腔10形成在箱体1外部时,此时壁体15和第二箱体14的其他部分(即第二箱体14的侧壁)可密封连接也可以不密封连接,整个箱体14主要是通过储液部4进行密封,以防止外界水汽和液体进入 箱体1内。正是由于壁体15与第二箱体14的其他部分连接关系有上述多种可能,第二箱体14可以一体成型,也可以采用分体式结构,比如采用多块板焊接、铆接形成。
储液部4位于箱体1外部时,储液部4形成储液腔10的方式可以有两种:
第一种为储液部4自身具有封闭腔体的结构,封闭腔体具有流入口,流入口与排液孔12连通。该封闭腔体作为储液腔10。上述技术方案,储液部4是单独的构件,并且单独形成了储液腔10。在安装时,将储液部4与箱体1密封固定,使得储液腔10与排液孔12连通,以防止液体从排液孔12处泄露到储液腔10之外的区域。
第二种实现方式为:储液部4与箱体1共同形成储液腔10。
参见图1和图7,在一些实施例中,储液部4安装于箱体1设有排液孔12的壁体15的外侧,与壁体15密封连接。其中,储液部4与壁体15的外侧围成储液腔10。
储液部4与壁体15共同形成储液腔10时,储液部4与壁体15的密封连接方式与上文介绍的密封连接方式类似。此处不再赘述。上述实现方式,储液部4与壁体15密封连接,使得容置腔11内的液体不会经由储液部4与壁体15的连接处泄露,提高了电池包的性能。
具体地,参见图1、图7,储液部4设有朝着远离箱体1的方向凹陷的内凹部41,内凹部41与壁体15围成储液腔10。
在一些实施例中,内凹部41比如数量为多个,多个内凹部41共同覆盖住所有的排液孔12。
或者,在一些实施例中,内凹部41位于全部的排液孔12的外侧。即内凹部41完全覆盖住全部的排液孔12,以使得排液孔12内的液体全部流向储液腔10。
一个储液部4设置的内凹部41的数量比如为多个,同一个储液部4的多个内凹部41连通或者不连通。
在一些实施例中,储液部4的材质包括塑胶。塑胶材料具有良好的变形 性能,在受到撞击时,能有效吸收能量,降低密封失效的可能性。
在一些实施例中,储液腔10的容积大于或者等于冷却***22中的冷却液的容量。上述设置使得冷却***22出现较严重泄露时,电池模组2也不会浸泡于液体中,增加了电池包的使用安全性。
参见图1至图7,在一些实施例中,储液部4还包括防护部5,防护部5安装于储液部4远离外侧面的一侧。
防护部5比如为设有内凹结构的板状结构,内凹结构与储液部4的内凹部41匹配,以完全包裹在储液部4的外侧,降低储液部4因碰撞失效的可能性。
防护部5用于保护储液部4,防止储液部4因撞击而变形受损。
在一些实施例中,防护部5的硬度高于储液部4的硬度。防护部5完全覆盖住储液部4。防护部5能够有效防止外力损伤储液部4。
参见图12至图14,接下来介绍储液腔10形成在箱体1内部的具体实现方式。
参见图12,第二箱体14包括箱本体141以及设置于箱本体141内部的承载件142,承载件142将箱体1的内部空间分为容置腔11和储液腔10。承载件142设有排液孔12,电池模组2安装于承载件142。阻挡件3和电池模组2都安装于承载件142,排液孔12也设于承载件142。阻挡件3的结构请参见上文介绍的,此处不再赘述。当储液腔10形成在箱体1内部时,要求箱体1本身是密封的,外界水汽和液体不能进入箱体1内。
承载件142比如为平板状的。承载件142与箱体1的内壁焊接或者螺栓连接。上述结构使得电池包的结构更加紧凑、重量更轻。
容置腔11和储液腔10的作用与上文介绍的相同。容置腔11用于安装电池模组2。储液腔10用于存储从容置腔11中泄露的液体。其他内容请参见上文所述。
箱体1的底部设有内凹区域,承载件142安装于内凹区域16的边缘。内凹区域16是箱体1的一部分。采用上述设置,简化了加工,且使得储液腔10的结构稳固可靠。
储液腔10的外部设有防护部5,防护部5用于包覆储液腔10的外壁。
防护部5的硬度高于储液腔10的外壁的硬度。防护部5用于保护储液腔10的外壁,以降低在碰撞等情况下,储液腔10出现泄露风险的可能性,保证电池包的正常使用。
可以理解的是,上述各实施例中,只要不发生矛盾,均可以参考或组合其余实施例的相关内容,以实现储液腔10部分位于箱体1内部、部分位于箱体1外部。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (18)

  1. 一种电池包,其中,包括:
    箱体(1),包括用于容置电池模组(2)的容置腔(11)以及与所述容置腔(11)连通的排液孔(12);以及
    阻挡件(3),安装于所述箱体(1),并且位于所述排液孔(12)和所述电池模组(2)之间,以阻止用于固定所述电池模组(2)的胶进入到所述排液孔(12)中。
  2. 根据权利要求1所述的电池包,其中,所述阻挡件(3)位于所述电池模组(2)的长度方向的外侧。
  3. 根据权利要求1或者2所述的电池包,其中,所述阻挡件(3)与所述排液孔(12)设置于所述箱体(1)的同一个壁体(15)。
  4. 根据权利要求1-3中任意一项所述的电池包,其中,所述阻挡件(3)包括:
    连接板(31),与所述箱体(1)固定相连;以及
    立板(32),连接于所述连接板(31),所述立板(32)沿着所述电池模组(2)的高度方向延伸。
  5. 根据权利要求4所述的电池包,其中,所述连接板(31)和所述立板(32)是一体的。
  6. 根据权利要求4-5中任意一项所述的电池包,其中,所述连接板(31)和所述立板(32)连接形成L形板。
  7. 根据权利要求1-6中任意一项所述的电池包,其中,所述阻挡件(3)的长度为L1,第一排液孔(121)的侧壁和第二排液孔(122)的侧壁之间的最远距离为L2,L1大于L2;所述第一排液孔(121)和所述第二排液孔(122)为位于所述电池模组长度方向同一端的一排所述排液孔(12)中位于边缘的两个所述排液孔(12);所述阻挡件(3)用于在所述箱体(1)的宽度方向阻止用于固定所述电池模组的胶进入到所述排液孔(12)中。
  8. 根据权利要求1-7中任意一项所述的电池包,其中,所述阻挡件(3) 设置于所述电池模组(2)的长度方向的每一端。
  9. 根据权利要求1-8中任意一项所述的电池包,其中,用于储液的储液腔(10)设置于所述电池模组(2)的下方,所述储液腔(10)与所述排液孔(12)连通;
    所述电池包还包括设置于所述箱体(1)外部的储液部(4);所述储液部(4)设有所述储液腔(10),或者,所述储液部(4)与所述箱体(1)共同形成所述储液腔(10)。
  10. 根据权利要求9所述的电池包,其中,所述储液部(4)安装于所述箱体(1)的壁体(15)的下方,所述储液部(4)与所述壁体(15)密封连接;其中,所述储液部(4)与所述壁体(15)围成所述储液腔(10)。
  11. 根据权利要求10所述的电池包,其中,所述储液部(4)设有朝着远离所述箱体(1)的方向凹陷的内凹部(41)。
  12. 根据权利要求11所述的电池包,其中,所述排液孔(12)具有多个,所述内凹部(41)位于全部的所述排液孔(12)的外侧且覆盖全部的所述排液孔(12)。
  13. 根据权利要求9-12中任意一项所述的电池包,其中,还包括:
    防护部(5),安装于所述储液部(4)远离所述箱体(1)的一侧。
  14. 根据权利要求13所述的电池包,其中,所述防护部(5)的硬度大于所述储液部(4)的硬度,所述防护部(5)完全覆盖所述储液部(4)。
  15. 根据权利要求1-14中任意一项所述的电池包,其中,所述箱体(1)包括:
    第一箱体(13);以及
    第二箱体(14),与所述第一箱体(13)围成所述容置腔(11),且位于所述第一箱体(13)的下方;所述排液孔(12)设置于所述第二箱体(14)。
  16. 根据权利要求1-15中任意一项所述的电池包,其中,所述排液孔(12)具有多个且沿所述箱体(1)的宽度方向排列。
  17. 根据权利要求1-16中任意一项所述的电池包,其中,所述电池包还 包括所述电池模组(2)。
  18. 一种车辆,其中,包括如权利要求1-17任意一项所述的电池包。
PCT/CN2020/106464 2019-08-27 2020-07-31 电池包和车辆 WO2021036687A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910794345.1 2019-08-27
CN201910794345.1A CN111106281B (zh) 2019-08-27 2019-08-27 电池包

Publications (1)

Publication Number Publication Date
WO2021036687A1 true WO2021036687A1 (zh) 2021-03-04

Family

ID=70008307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106464 WO2021036687A1 (zh) 2019-08-27 2020-07-31 电池包和车辆

Country Status (4)

Country Link
US (1) US11923556B2 (zh)
EP (1) EP3787057B1 (zh)
CN (1) CN111106281B (zh)
WO (1) WO2021036687A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112259937A (zh) * 2019-07-05 2021-01-22 宁德时代新能源科技股份有限公司 电池包
CN111106281B (zh) * 2019-08-27 2021-08-06 宁德时代新能源科技股份有限公司 电池包
KR20220133245A (ko) * 2020-07-10 2022-10-04 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 배터리 및 관련 장치, 제조 방법 및 제조 장치
CN113690525B (zh) * 2021-08-03 2023-06-23 奇瑞新能源汽车股份有限公司 电池包下壳体及具有其的电池包
CN116111696B (zh) * 2023-04-07 2023-06-23 广东贝森新能源有限公司 一种蓄电池充电用紧急保护装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021438A (ja) * 1998-06-30 2000-01-21 Aiwa Co Ltd 蓄電池
CN202308107U (zh) * 2011-07-31 2012-07-04 徐工集团工程机械股份有限公司江苏徐州工程机械研究院 矿用自卸车电瓶箱
CN103947025A (zh) * 2011-11-23 2014-07-23 Sk新技术株式会社 电池组
CN206931626U (zh) * 2017-07-14 2018-01-26 深圳市优特利电源有限公司 一种高压盖及锂离子电池
CN107845751A (zh) * 2017-10-25 2018-03-27 成都远东高科科技有限公司 防水电池盒
CN107887537A (zh) * 2016-09-30 2018-04-06 财团法人金属工业研究发展中心 具有散热及排水结构的电动车电池箱壳体
CN207441765U (zh) * 2017-11-07 2018-06-01 深圳市优特利电源有限公司 注塑电池
CN209963138U (zh) * 2019-07-05 2020-01-17 宁德时代新能源科技股份有限公司 电池包
CN111106281A (zh) * 2019-08-27 2020-05-05 宁德时代新能源科技股份有限公司 电池包
CN111106280A (zh) * 2019-08-27 2020-05-05 宁德时代新能源科技股份有限公司 电池包

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5392873A (en) 1992-01-22 1995-02-28 Honda Giken Kogyo Kabushiki Kaisha Structure for securing batteries used in an electric vehicle
KR101042132B1 (ko) * 2005-03-23 2011-06-16 에스케이이노베이션 주식회사 고출력 리튬 2차 전지용 케이스
KR101182427B1 (ko) 2009-12-21 2012-09-12 에스비리모티브 주식회사 배터리 팩 및 이를 구비하는 자동차
JP5592194B2 (ja) 2010-08-20 2014-09-17 三洋電機株式会社 電池パック
JP5928059B2 (ja) 2012-03-23 2016-06-01 三菱自動車工業株式会社 電池パックを搭載した電気自動車
JP6419839B2 (ja) * 2014-11-10 2018-11-07 株式会社東芝 電池モジュール
JP2017137002A (ja) * 2016-02-04 2017-08-10 本田技研工業株式会社 電動車両のバッテリ搭載構造
CN205385056U (zh) * 2016-03-17 2016-07-13 深圳市商宇电子科技有限公司 一种电池托盘
KR102308632B1 (ko) * 2016-10-13 2021-10-05 삼성에스디아이 주식회사 배터리 모듈
CN207409544U (zh) * 2017-10-25 2018-05-25 成都远东高科科技有限公司 一种电池盒
CN207338489U (zh) * 2017-10-25 2018-05-08 成都远东高科科技有限公司 一种锂电池存放盒

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021438A (ja) * 1998-06-30 2000-01-21 Aiwa Co Ltd 蓄電池
CN202308107U (zh) * 2011-07-31 2012-07-04 徐工集团工程机械股份有限公司江苏徐州工程机械研究院 矿用自卸车电瓶箱
CN103947025A (zh) * 2011-11-23 2014-07-23 Sk新技术株式会社 电池组
CN107887537A (zh) * 2016-09-30 2018-04-06 财团法人金属工业研究发展中心 具有散热及排水结构的电动车电池箱壳体
CN206931626U (zh) * 2017-07-14 2018-01-26 深圳市优特利电源有限公司 一种高压盖及锂离子电池
CN107845751A (zh) * 2017-10-25 2018-03-27 成都远东高科科技有限公司 防水电池盒
CN207441765U (zh) * 2017-11-07 2018-06-01 深圳市优特利电源有限公司 注塑电池
CN209963138U (zh) * 2019-07-05 2020-01-17 宁德时代新能源科技股份有限公司 电池包
CN111106281A (zh) * 2019-08-27 2020-05-05 宁德时代新能源科技股份有限公司 电池包
CN111106280A (zh) * 2019-08-27 2020-05-05 宁德时代新能源科技股份有限公司 电池包

Also Published As

Publication number Publication date
CN111106281B (zh) 2021-08-06
US20210066682A1 (en) 2021-03-04
EP3787057A1 (en) 2021-03-03
EP3787057B1 (en) 2022-08-10
US11923556B2 (en) 2024-03-05
CN111106281A (zh) 2020-05-05

Similar Documents

Publication Publication Date Title
WO2021036687A1 (zh) 电池包和车辆
WO2021036686A1 (zh) 电池包和车辆
KR101610876B1 (ko) 이차 전지용 프레임 및 이를 포함하는 배터리 모듈
WO2021004230A1 (zh) 电池包、装置和箱体
US20240030517A1 (en) Battery Module Having Improved Cooling Structure
EP4016703A1 (en) Battery module and battery pack including same
KR20220008558A (ko) 전지 팩 및 이를 포함하는 디바이스
CN209963138U (zh) 电池包
KR101655328B1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
EP4040577A1 (en) Battery pack and device including same
JP2023518999A (ja) 電池モジュールおよびこれを含む電池パック
KR20210133531A (ko) 전지팩 및 이를 포함하는 디바이스
EP4210154A1 (en) Battery pack and device comprising same
US20220376325A1 (en) Battery pack and device including the same
EP4184666A1 (en) Battery pack and device including same
US20230073470A1 (en) Battery module and battery pack including the same
KR20240071813A (ko) 전지 모듈 및 이를 포함하는 전지 팩
KR20210133530A (ko) 전지 팩 및 이를 포함하는 디바이스

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20859544

Country of ref document: EP

Kind code of ref document: A1