WO2021035493A1 - 光学***、镜头模组和电子设备 - Google Patents

光学***、镜头模组和电子设备 Download PDF

Info

Publication number
WO2021035493A1
WO2021035493A1 PCT/CN2019/102639 CN2019102639W WO2021035493A1 WO 2021035493 A1 WO2021035493 A1 WO 2021035493A1 CN 2019102639 W CN2019102639 W CN 2019102639W WO 2021035493 A1 WO2021035493 A1 WO 2021035493A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
object side
image side
optical axis
Prior art date
Application number
PCT/CN2019/102639
Other languages
English (en)
French (fr)
Inventor
谢晗
刘彬彬
邹海荣
Original Assignee
南昌欧菲精密光学制品有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南昌欧菲精密光学制品有限公司 filed Critical 南昌欧菲精密光学制品有限公司
Priority to PCT/CN2019/102639 priority Critical patent/WO2021035493A1/zh
Publication of WO2021035493A1 publication Critical patent/WO2021035493A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces

Definitions

  • This application belongs to the field of optical imaging technology, and in particular relates to an optical system, a lens module and an electronic device.
  • the wide-angle lens can expand the shooting field of view and take pictures of panoramic or large scenes within a limited distance.
  • the general wide-angle camera lens due to its large field of view and large relative aperture characteristics, the total length of the lens group is often relatively long, and it is difficult to mount on ultra-thin electronic products.
  • the pixel size of the chip is getting smaller and smaller, and the requirements for the imaging quality of the matching optical system are getting higher and higher. It is difficult to match the requirements of a high-pixel photosensitive chip.
  • the purpose of this application is to provide an optical system that meets the requirements of miniaturization and large viewing angles.
  • the present application provides an optical system, which is characterized in that, from the object side to the image side along the optical axis direction, it includes: a first lens having a negative refractive power, and the first lens is positioned on the optical axis.
  • the object side surface is concave, the object side surface at the circumference is convex, the image side surface of the first lens is concave; the second lens has positive refractive power, the object side surface of the second lens is convex, and the image side surface is convex.
  • the third lens has negative refractive power, and the image side surface of the third lens at the optical axis is concave; the fourth lens has refractive power, and the image side surface of the fourth lens at the optical axis is convex;
  • the fifth lens has refractive power, the image side surface of the fifth lens at the optical axis is concave, and the image side surface of the fifth lens at the optical axis is provided with at least one inflection point.
  • the optical system satisfies the following conditional formula: 1.1 ⁇ tan ⁇ /SD1 ⁇ 1.8; where ⁇ is half of the maximum angle of view of the optical system, SD1 is the maximum effective half-aperture of the object side of the first lens; and 1.7 ⁇ TL/ ImgH ⁇ 2.2; where TL is the distance from the object side of the first lens to the imaging surface of the optical system on the optical axis, and ImgH is half of the diagonal length of the effective pixel area of the optical system.
  • the first lens aperture of the system becomes larger, resulting in the enlargement of the entire module; when the value of tan ⁇ /SD1 is higher than the upper limit, the first lens aperture is excessively compressed, which is not conducive to large viewing angles The light enters the camera lens. Setting the value of tan ⁇ /SD1 reasonably can maintain a wide viewing angle while keeping the aperture of the first lens from excessively increasing, which is conducive to miniaturization of the system.
  • TL/ImgH When the value of TL/ImgH is higher than the upper limit, the system length becomes longer, resulting in a larger module height; when the value of TL/ImgH is lower than the lower limit, the system is over-compressed and the aberration correction is insufficient, making it difficult to achieve higher resolution force. Setting a suitable ratio of TL/ImgH is conducive to the compression of the total length of the system and realizes an ultra-thin design.
  • the optical system satisfies the following conditional formula: -5 ⁇ f5/f1 ⁇ 7; where f1 is the effective focal length of the first lens, and f5 is the effective focal length of the fifth lens.
  • the first lens with negative refractive power is set to allow a larger angle of incident light to enter the system, which is conducive to wide-angle.
  • the optical power of the fifth lens is reasonably configured to correct system aberrations and improve image quality. It can ensure a sufficient back focus length, which is beneficial to the assembly and coordination of the electronic photosensitive element and improves the yield rate.
  • the optical system satisfies the following conditional formula: 0.4 ⁇ SD1/ImgH ⁇ 0.7. Reasonably setting the ratio of SD1/ImgH can not only allow the system to have a larger diameter to ensure the amount of light, but also can maintain the head of the system not to increase excessively.
  • the optical system satisfies the following conditional formula: 0.16 ⁇ T12/OAL ⁇ 0.26; where T12 is the distance from the image side surface of the first lens to the object side surface of the second lens on the optical axis , OAL is the distance on the optical axis from the object side of the first lens to the image side of the fifth lens.
  • T12/OAL is the distance from the image side surface of the first lens to the object side surface of the second lens on the optical axis
  • OAL is the distance on the optical axis from the object side of the first lens to the image side of the fifth lens.
  • the optical system satisfies the following conditional formula: -3 ⁇ R1/R2 ⁇ 0, where R1 is the curvature radius of the object side surface of the first lens, and R2 is the curvature radius of the image side surface of the first lens.
  • the optical system satisfies the following conditional formula: -6 ⁇ R3/R4 ⁇ -2, where R3 is the curvature radius of the object side surface of the second lens, and R4 is the curvature radius of the image side surface of the second lens.
  • the optical system satisfies the following conditional formula: 2 ⁇ (CT2+CT3)/CT1 ⁇ 4; where CT1 is the central thickness of the first lens on the optical axis, and CT2 is the second The center thickness of the lens on the optical axis, CT3 is the center thickness of the third lens on the optical axis.
  • the optical system satisfies the following conditional formula: 1 ⁇ V1/V5 ⁇ 2.5; where V1 is the dispersion coefficient of the first lens, and V5 is the dispersion coefficient of the fifth lens. Setting the ratio of V1/V5 reasonably can reduce the chromatic aberration of the wide-angle lens and improve the resolution.
  • the optical system satisfies the following conditional formula: -1 ⁇ f2/f3 ⁇ 0; where f2 is the effective focal length of the second lens, and f3 is the effective focal length of the third lens.
  • the second lens provides strong positive refractive power, which is conducive to the development of ultra-thin wide-angle lenses; the third lens provides negative refractive power, which can correct the aberrations generated by the second lens and improve the resolution.
  • the reasonable configuration of the focal length ratio of the two lenses is conducive to the ultra-thinness of the optical system, while also correcting the aberrations generated by the second lens and improving the resolution capability.
  • the present application also provides a lens module, including a lens barrel and the optical system according to any one of the first aspect, wherein the first lens to the fifth lens of the optical system are installed in the In the lens barrel.
  • the lens module can meet the characteristics of miniaturization and large-angle shooting.
  • the present application also provides an electronic device, including a housing, an electronic photosensitive element, and the lens module described in the second aspect, the lens module and the electronic photosensitive element are arranged in the housing, so The electronic photosensitive element is arranged on the imaging surface of the optical system, and is used for converting light passing through the first lens to the fifth lens and incident on the electronic photosensitive element into an electrical signal of an image.
  • the electronic device can be light, thin, and miniaturized, and can be used for wide-angle shooting.
  • Fig. 1a is a schematic structural diagram of the optical system of the first embodiment
  • Figure 1b is the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the first embodiment
  • 2a is a schematic diagram of the structure of the optical system of the second embodiment
  • Fig. 2b is the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the second embodiment
  • Fig. 3a is a schematic structural diagram of the optical system of the third embodiment
  • Figure 3b is a longitudinal spherical aberration curve, astigmatism curve and distortion curve of the third embodiment
  • 4a is a schematic diagram of the structure of the optical system of the fourth embodiment
  • 4b is a longitudinal spherical aberration curve, astigmatism curve and distortion curve of the fourth embodiment
  • 5a is a schematic diagram of the structure of the optical system of the fifth embodiment
  • Figure 5b is a longitudinal spherical aberration curve, astigmatism curve and distortion curve of the fifth embodiment
  • Fig. 6a is a schematic structural diagram of an optical system of a sixth embodiment
  • Fig. 6b is a longitudinal spherical aberration curve, astigmatism curve and distortion curve of the sixth embodiment
  • Fig. 7a is a schematic structural diagram of an optical system of a seventh embodiment
  • Fig. 7b shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the seventh embodiment.
  • the embodiment of the present application provides a lens module, including a lens barrel and the optical system provided in the embodiment of the present application, and the first lens to the fifth lens of the optical system are installed in the lens barrel.
  • the lens module can be an independent lens of a digital camera, or it can be an imaging module integrated on an electronic device such as a smart phone. By installing each lens of the optical system, the lens module has the characteristics of miniaturization and large-angle shooting.
  • the embodiment of the application also provides an electronic device, including a housing, an electronic photosensitive element, and the lens module provided in the embodiment of the application.
  • the lens module and the electronic photosensitive element are arranged in the housing, and the electronic photosensitive element is arranged in the optical system.
  • the imaging surface is used to convert light passing through the first lens to the fifth lens and incident on the electronic photosensitive element into an electrical signal of the image.
  • the electronic photosensitive element may be a complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor, CMOS) or a charge-coupled device (Charge-coupled Device, CCD).
  • the electronic device can be a smart phone, a personal digital assistant (PDA), a tablet computer, a smart watch, a drone, an e-book reader, a driving recorder, a wearable device, etc.
  • PDA personal digital assistant
  • the electronic device can be light, thin, and miniaturized, and can be used for wide-angle shooting.
  • the embodiment of the present application provides an optical system composed of, for example, five lenses, that is, a first lens, a second lens, a third lens, a fourth lens, and a fifth lens.
  • the first to fifth lenses are along the optical axis. From the object side to the image side. In the first lens to the fifth lens, there may be an air gap between any two adjacent lenses.
  • the specific shapes and structures of the five lenses are as follows:
  • the first lens has negative refractive power, the object side surface of the first lens at the optical axis is a concave surface, the object side surface at the circumference is a convex surface, and the image side surface of the first lens is a concave surface.
  • the second lens has positive refractive power, the object side surface of the second lens is convex, and the image side surface is convex.
  • the third lens has negative refractive power, and the image side surface of the third lens at the optical axis is concave.
  • the fourth lens has refractive power, and the image side surface of the fourth lens at the optical axis is convex.
  • the fifth lens has refractive power, the image side surface of the fifth lens at the optical axis is concave, and the image side surface of the fifth lens at the optical axis is provided with at least one inflection point.
  • the optical system further includes a diaphragm, and the optical system further includes a diaphragm.
  • the diaphragm can be arranged at any position between the first lens and the fifth lens, such as between the first lens and the second lens.
  • optical system satisfies the following conditional formula:
  • TL is the distance from the object side of the first lens to the imaging surface of the optical system on the optical axis
  • ImgH is half of the diagonal length of the effective pixel area of the optical system.
  • each lens from the first lens to the fifth lens are set reasonably to ensure that the optical system meets the requirements of miniaturization, high resolution, and large viewing angle.
  • an appropriate ratio of tan ⁇ /SD1 is set to maintain a wide viewing angle while keeping the aperture of the first lens from excessively increasing, which is beneficial to the miniaturization of the system.
  • Setting an appropriate ratio of TL/ImgH is conducive to the compression of the total length of the optical system and realizes an ultra-thin design.
  • the aperture of the first lens becomes larger, resulting in an increase in the structure of the entire optical system. If tan ⁇ /SD1 ⁇ 1.8, the aperture of the first lens is over-compressed, which is not conducive for light with a large viewing angle to enter the optical system.
  • TL/ImgH ⁇ 1.7 the optical system is over-compressed, the phase difference correction is insufficient, and it is difficult to achieve high resolution. If TL/ImgH ⁇ 2.2, the total length of the optical system becomes longer, resulting in a larger structure, making it difficult to achieve miniaturization.
  • the optical system satisfies the following conditional formula: -5 ⁇ f5/f1 ⁇ 7; where f1 is the effective focal length of the first lens, and f5 is the effective focal length of the fifth lens.
  • the first lens provides a negative refractive power, so that a larger angle of incident light can enter the optical system, which is conducive to the design of wide viewing angles.
  • the fifth lens is reasonably configured with a refractive power to correct system aberrations and improve image quality. It can ensure a sufficient back focus length, which is beneficial to the assembly and coordination of the electronic photosensitive element and improves the yield rate.
  • the optical system satisfies the following conditional formula: 0.4 ⁇ SD1/ImgH ⁇ 0.7; SD1 is the maximum effective half-aperture of the object side of the first lens; ImgH is half of the diagonal length of the effective pixel area of the optical system. Not only can the optical system have a larger aperture to ensure the amount of light, but also can maintain the head of the system not to increase excessively.
  • the optical system satisfies the following conditional formula: 0.16 ⁇ T12/OAL ⁇ 0.26; where T12 is the distance from the image side of the first lens to the object side of the second lens on the optical axis, and OAL is the first lens The distance from the object side to the image side of the fifth lens on the optical axis. If T12/OAL ⁇ 0.16, the distance between the lenses will be compressed, and the shape of the first lens cannot be effectively realized, which is not conducive to the design of wide viewing angle. If T12/OAL ⁇ 0.26, the optical system has a large gap and insufficient ultra-thinness, which is not conducive to the structure. miniaturization. A reasonable configuration of the value of T12/OAL can effectively increase the maximum field of view of the wide-angle lens group.
  • the optical system satisfies the following conditional formula: -3 ⁇ R1/R2 ⁇ 0,
  • R1 is the curvature radius of the object side surface of the first lens
  • R2 is the curvature radius of the image side surface of the first lens.
  • the optical system satisfies the following conditional formula: -6 ⁇ R3/R4 ⁇ -2, where R3 is the curvature radius of the object side surface of the second lens, and R4 is the curvature radius of the image side surface of the second lens.
  • the optical system satisfies the following conditional formula: 2 ⁇ (CT2+CT3)/CT1 ⁇ 4; where CT1 is the central thickness of the first lens on the optical axis, and CT2 is the second lens on the optical axis. Center thickness, CT3 is the center thickness of the third lens on the optical axis.
  • the optical system satisfies the following conditional formula: 1 ⁇ V1/V5 ⁇ 2.5; where V1 is the dispersion coefficient of the first lens, and V5 is the dispersion coefficient of the fifth lens.
  • V1/V5 satisfies the above relationship, the chromatic aberration of the optical system can be reduced and the resolution can be improved.
  • the optical system satisfies the following conditional formula: -1 ⁇ f2/f3 ⁇ 0; where f2 is the effective focal length of the second lens, and f3 is the effective focal length of the third lens.
  • the second lens provides strong positive refractive power, which is conducive to the ultra-thin design of the optical system.
  • the third lens provides negative refractive power, which can correct the aberrations generated by the second lens and improve the resolution ability.
  • the optical system of this embodiment from the object side to the image side along the optical axis direction, includes:
  • the first lens L1 has a negative refractive power, the object side surface S1 of the first lens L1 at the optical axis is a concave surface, the object side surface S1 at the circumference is a convex surface, and the image side surface S2 of the first lens L1 is a concave surface;
  • the second lens L2 has a positive refractive power, the object side surface S3 of the second lens L2 is convex, and the image side surface S4 of the second lens L2 is convex;
  • the third lens L3 has negative refractive power, the object side surface S5 of the third lens L3 at the optical axis is convex, the object side surface S5 at the circumference is concave, and the image side surface S6 of the third lens L3 is concave;
  • the fourth lens L4 has a positive refractive power, the object side surface S7 of the fourth lens L4 is a concave surface, and the image side surface S8 of the fourth lens L4 is a convex surface;
  • the fifth lens L5 has negative refractive power.
  • the object side surface S9 of the fifth lens L5 at the optical axis is convex, and the object side surface S9 at the circumference is concave; the image side S10 of the fifth lens L5 at the optical axis is concave , The image side surface S10 at the circumference is convex.
  • the materials of the first lens L1 to the fifth lens L5 are all plastic.
  • the optical system also includes a stop STO, an infrared cut filter L6, and an imaging surface S13.
  • the stop STO is arranged between the first lens L1 and the second lens L2, and is adjacent to the second lens L2, for controlling the amount of light entering. In other embodiments, the stop STO can also be arranged between two other adjacent lenses.
  • the infrared cut filter L6 is arranged on the image side of the fifth lens L5 and includes the object side S11 and the image side S12.
  • the infrared cut filter L6 is used to filter out infrared light so that the light entering the imaging surface S13 is visible light , The wavelength of visible light is 380nm-780nm.
  • the material of the infrared cut filter L6 is glass, and it can be coated on the glass.
  • the imaging surface S13 is the effective pixel area of the electronic photosensitive element.
  • Table 1a shows a table of the characteristics of the optical system of this embodiment, where the data is obtained using light with a wavelength of 555 nm, and the units of Y radius, thickness, and focal length are all millimeters (mm).
  • EFL is the effective focal length of the optical system
  • FNO is the aperture number of the optical system
  • FOV is the field angle of the optical system
  • TL is the distance from the object side of the first lens to the imaging surface of the optical system on the optical axis.
  • the object side surface and the image side surface of any one of the first lens L1 to the fifth lens L5 are aspherical surfaces, and the surface shape x of each aspherical lens can be defined by but not limited to the following aspherical surface formula:
  • x is the distance vector height of the aspheric surface at a height h along the optical axis direction;
  • k is the conic coefficient;
  • Ai is the correction coefficient of the i-th order of the aspheric surface.
  • Table 1b shows the high-order coefficients A4, A6, A8, A10, A12, A14, A15, A17, and A18 that can be used for each aspheric mirror surface S1-S10 in the first embodiment.
  • FIG. 1b shows the longitudinal spherical aberration curve, astigmatism curve, and distortion curve of the optical system of the first embodiment.
  • the longitudinal spherical aberration curve represents the deviation of the focus point of light of different wavelengths after passing through the lenses of the optical system
  • the astigmatism curve represents the meridional curvature of the field and the sagittal curvature of the field
  • the distortion curve represents the magnitude of distortion corresponding to different field angles .
  • the optical system of this embodiment from the object side to the image side along the optical axis direction, includes:
  • the first lens L1 has a negative refractive power, the object side surface S1 of the first lens L1 at the optical axis is a concave surface, the object side surface S1 at the circumference is a convex surface, and the image side surface S2 of the first lens L1 is a concave surface;
  • the second lens L2 has a positive refractive power, the object side surface S3 of the second lens L2 is convex, and the image side surface S4 of the third lens L2 is convex;
  • the third lens L3 has negative refractive power, the object side surface S5 of the third lens L3 is a convex surface, and the image side surface S6 of the third lens L3 is a concave surface;
  • the fourth lens L4 has a positive refractive power, the object side surface S7 at the optical axis of the fourth lens L4 is a concave surface, the object side surface S7 at the circumference is a convex surface, and the image side surface S8 of the fourth lens L4 is a convex surface;
  • the fifth lens L5 has positive refractive power.
  • the object side surface S9 of the fifth lens L5 at the optical axis is convex, and the object side surface S9 at the circumference is concave; the image side S10 of the fifth lens L5 at the optical axis is concave.
  • the image side surface S10 at the circumference is convex.
  • the other structure of the second embodiment is the same as that of the first embodiment, so refer to.
  • Table 2a shows a table of the characteristics of the optical system of this embodiment, where the data is obtained using light with a wavelength of 587.6 nm, and the units of the Y radius, thickness, and focal length are all millimeters (mm).
  • each parameter in Table 2a is the same as the meaning of each parameter in the first embodiment.
  • Table 2b shows the coefficients of the higher-order terms of each aspheric lens that can be used in the second embodiment, where each aspheric surface type can be defined by the formula given in the first embodiment.
  • Fig. 2b shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the optical system of the second embodiment.
  • the longitudinal spherical aberration curve represents the deviation of the focus point of light of different wavelengths after passing through the lenses of the optical system;
  • the astigmatism curve represents the meridional curvature of the field and the sagittal curvature of the field;
  • the distortion curve represents the magnitude of distortion corresponding to different field angles .
  • the optical system of this embodiment from the object side to the image side along the optical axis direction, includes:
  • the first lens L1 has a negative refractive power, the object side surface S1 of the first lens L1 at the optical axis is a concave surface, the object side surface S1 at the circumference is a convex surface, and the image side surface S2 of the first lens L1 is a concave surface;
  • the second lens L2 has a positive refractive power, the object side surface S3 of the second lens L2 is convex, and the image side surface S4 of the third lens L2 is convex;
  • the third lens L3 has negative refractive power, the object side S5 of the third lens L3 is concave, the image side S6 at the optical axis of the third lens L3 is concave, and the image side S6 at the circumference is convex;
  • the fourth lens L4 has a positive refractive power, the object side surface S7 of the fourth lens L4 is a concave surface, and the image side surface S8 of the fourth lens L4 is a convex surface;
  • the fifth lens L5 has negative refractive power.
  • the object side surface S9 of the fifth lens L5 at the optical axis is convex, and the object side surface S9 at the circumference is concave; the image side S10 of the fifth lens L5 at the optical axis is concave , The image side surface S10 at the circumference is convex.
  • the other structure of the third embodiment is the same as that of the first embodiment, so refer to.
  • Table 3a shows a table of the characteristics of the optical system of this embodiment, where the data is obtained using light with a wavelength of 587.6 nm, and the units of Y radius, thickness, and focal length are all millimeters (mm).
  • Table 3b shows the coefficients of the higher-order terms of each aspheric lens that can be used in the third embodiment, where each aspheric surface type can be defined by the formula given in the first embodiment.
  • Fig. 3b shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the optical system of the third embodiment.
  • the longitudinal spherical aberration curve represents the deviation of the focus point of light of different wavelengths after passing through the lenses of the optical system;
  • the astigmatism curve represents the meridional curvature of the field and the sagittal curvature of the field;
  • the distortion curve represents the magnitude of distortion corresponding to different field angles .
  • the optical system of this embodiment from the object side to the image side along the optical axis direction, includes:
  • the first lens L1 has a negative refractive power, the object side surface S1 of the first lens L1 at the optical axis is a concave surface, the object side surface S1 at the circumference is a convex surface, and the image side surface S2 of the first lens L1 is a concave surface;
  • the second lens L2 has a positive refractive power, the object side surface S3 of the second lens L2 is convex, and the image side surface S4 of the third lens L2 is convex;
  • the third lens L3 has negative refractive power, the object side surface S5 of the third lens L3 is concave, and the image side surface S6 of the third lens L3 is concave;
  • the fourth lens L4 has a positive refractive power, the object side surface S7 of the fourth lens L4 is convex, and the image side surface S8 of the fourth lens L4 is convex;
  • the fifth lens L5 has negative refractive power, and the object side surface S9 of the fifth lens L5 is concave; the image side surface S10 of the fifth lens L5 at the optical axis is concave surface, and the image side surface S10 at the circumference is convex surface.
  • the other structure of the fourth embodiment is the same as that of the first embodiment, so refer to.
  • Table 4a shows a table of the characteristics of the optical system of this embodiment, where the data is obtained using light with a wavelength of 555 nm, and the units of Y radius, thickness, and focal length are all millimeters (mm).
  • Table 4b shows the coefficients of the higher-order terms of each aspheric lens that can be used in the fourth embodiment, where each aspheric surface type can be defined by the formula given in the first embodiment.
  • Fig. 4b shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the optical system of the fourth embodiment.
  • the longitudinal spherical aberration curve represents the deviation of the focus point of light of different wavelengths after passing through the lenses of the optical system;
  • the astigmatism curve represents the meridional curvature of the field and the sagittal curvature of the field;
  • the distortion curve represents the magnitude of distortion corresponding to different field angles .
  • the optical system provided in the fourth embodiment can achieve good imaging quality.
  • the optical system of this embodiment from the object side to the image side along the optical axis direction, includes:
  • the first lens L1 has a negative refractive power, the object side surface S1 of the first lens L1 at the optical axis is a concave surface, the object side surface S1 at the circumference is a convex surface, and the image side surface S2 of the first lens L1 is a concave surface;
  • the second lens L2 has a positive refractive power, the object side surface S3 of the second lens L2 is convex, and the image side surface S4 of the third lens L2 is convex;
  • the third lens L3 has negative refractive power, the object side surface S5 of the third lens L3 is concave, and the image side surface S6 of the third lens L3 is concave;
  • the fourth lens L4 has a positive refractive power, the object side surface S7 of the fourth lens L4 at the optical axis is concave, the object side surface S7 at the circumference is convex, and the image side surface S8 of the fourth lens L4 is convex;
  • the fifth lens L5 has negative refractive power.
  • the object side surface S9 of the fifth lens L5 at the optical axis is convex, and the object side surface S9 at the circumference is concave; the image side S10 of the fifth lens L5 at the optical axis is concave , The image side surface S10 at the circumference is convex.
  • the other structure of the fifth embodiment is the same as that of the first embodiment, so refer to.
  • Table 5a shows a table of the characteristics of the optical system of this embodiment, where the data is obtained using light with a wavelength of 587.6 nm, and the units of Y radius, thickness, and focal length are all millimeters (mm).
  • Table 5a The meaning of each parameter in Table 5a is the same as the meaning of each parameter in the first embodiment.
  • Table 5b shows the coefficients of the higher-order terms of each aspheric lens that can be used in the fifth embodiment, where each aspheric surface type can be defined by the formula given in the first embodiment.
  • Fig. 5b shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the optical system of the fifth embodiment.
  • the longitudinal spherical aberration curve represents the deviation of the focus point of light of different wavelengths after passing through the lenses of the optical system;
  • the astigmatism curve represents the meridional curvature of the field and the sagittal curvature of the field;
  • the distortion curve represents the magnitude of distortion corresponding to different field angles .
  • the optical system of this embodiment from the object side to the image side along the optical axis direction, includes:
  • the first lens L1 has a negative refractive power, the object side surface S1 of the first lens L1 at the optical axis is a concave surface, the object side surface S1 at the circumference is a convex surface, and the image side surface S2 of the first lens L1 is a concave surface;
  • the second lens L2 has a positive refractive power, the object side surface S3 of the second lens L2 is convex, and the image side surface S4 of the third lens L2 is convex;
  • the third lens L3 has negative refractive power, the object side surface S5 of the third lens L3 at the optical axis is convex, the object side surface S5 at the circumference is concave, and the image side surface S6 of the third lens L3 is concave;
  • the fourth lens L4 has a negative refractive power, the object side surface S7 of the fourth lens L4 is a concave surface, and the image side surface S8 of the fourth lens L4 is a convex surface;
  • the fifth lens L5 has positive refractive power.
  • the object side surface S9 of the fifth lens L5 at the optical axis is convex, and the object side surface S9 at the circumference is concave; the image side S10 of the fifth lens L5 at the optical axis is concave.
  • the image side surface S10 at the circumference is convex.
  • the other structure of the sixth embodiment is the same as that of the first embodiment, so please refer to it.
  • Table 6a shows a table of the characteristics of the optical system of this embodiment, where the data is obtained using light with a wavelength of 587.6 nm, and the units of the Y radius, thickness, and focal length are all millimeters (mm).
  • Table 6a The meaning of each parameter in Table 6a is the same as the meaning of each parameter in the first embodiment.
  • Table 6b shows the coefficients of the higher-order terms of each aspheric lens that can be used in the sixth embodiment, where each aspheric surface type can be defined by the formula given in the first embodiment.
  • Fig. 6b shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the optical system of the sixth embodiment.
  • the longitudinal spherical aberration curve represents the deviation of the focus point of light of different wavelengths after passing through the lenses of the optical system;
  • the astigmatism curve represents the meridional curvature of the field and the sagittal curvature of the field;
  • the distortion curve represents the magnitude of distortion corresponding to different field angles .
  • the optical system of this embodiment from the object side to the image side along the optical axis direction, includes:
  • the first lens L1 has a negative refractive power, the object side surface S1 of the first lens L1 at the optical axis is a concave surface, the object side surface S1 at the circumference is a convex surface, and the image side surface S2 of the first lens L1 is a concave surface;
  • the second lens L2 has a positive refractive power, the object side surface S3 of the second lens L2 is convex, and the image side surface S4 of the third lens L2 is convex;
  • the third lens L3 has negative refractive power, the object side surface S5 of the third lens L3 at the optical axis is convex, the object side surface S5 at the circumference is concave, and the image side surface S6 of the third lens L3 is concave;
  • the fourth lens L4 has positive refractive power, the object side S7 of the fourth lens L4 is convex, the image side S8 of the fourth lens L4 on the optical axis is convex, and the image side S8 at the circumference is concave;
  • the fifth lens L5 has negative refractive power.
  • the object side surface S9 of the fifth lens L5 at the optical axis is convex, and the object side surface S9 at the circumference is concave; the image side S10 of the fifth lens L5 at the optical axis is concave , The image side surface S10 at the circumference is convex.
  • the other structure of the seventh embodiment is the same as that of the first embodiment, so refer to.
  • Table 7a shows a table of the characteristics of the optical system of this embodiment, in which the data is obtained using light with a wavelength of 587.6 nm, and the units of the Y radius, thickness, and focal length are all millimeters (mm).
  • Table 7a The meaning of each parameter in Table 7a is the same as the meaning of each parameter in the first embodiment.
  • Table 7b shows the coefficients of the higher-order terms of each aspheric lens that can be used in the seventh embodiment, where each aspheric surface type can be defined by the formula given in the first embodiment.
  • Fig. 7b shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the optical system of the seventh embodiment.
  • the longitudinal spherical aberration curve represents the deviation of the focus point of light of different wavelengths after passing through the lenses of the optical system;
  • the astigmatism curve represents the meridional curvature of the field and the sagittal curvature of the field;
  • the distortion curve represents the magnitude of distortion corresponding to different field angles .
  • Table 8 shows the TL/ImgH, tan ⁇ /SD1, f5/f1, SD1/ImgH, T12/OAL, R1/R2, R3/R4, (CT2+CT3 )/CT1, V1/V5, and f2/f3.
  • each embodiment meets the conditions: 1.7 ⁇ TL/ImgH ⁇ 2.2, 1.1 ⁇ tan ⁇ /SD1 ⁇ 1.8, -5 ⁇ f5/f1 ⁇ 7, 0.4 ⁇ SD1/ImgH ⁇ 0.7, 0.16 ⁇ T12 /OAL ⁇ 0.26, -3 ⁇ R1/R2 ⁇ 0, -6 ⁇ R3/R4 ⁇ -2, 2 ⁇ (CT2+CT3)/CT1 ⁇ 4, 1 ⁇ V1/V5 ⁇ 2.5 and -1 ⁇ f2/f3 ⁇ 0.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本申请提供了一种光学***、镜头模组和电子设备,该光学***沿光轴方向的物侧至像侧依次包括:具有负光焦度的第一透镜;具有正光焦度的第二透镜;具有负光焦度的第三透镜;具有光焦度的第四透镜和第五透镜;且第五透镜于光轴处的像侧面至少设置有一个反曲点;该光学***满足条件式:1.1<tanω/SD1<1.8以及1.7<TL/ImgH<2.2。通过合理设置第一透镜至第五透镜的各透镜的面型与光焦度,以及设置合适tanω/SD1的合适比例,可以在维持广视角的同时,使第一透镜的口径不会过度增大,有利于***小型化;设置合适TL/ImgH的合适比例,有利于***总长的压缩,保持高解析力的同时实现超薄化设计。

Description

光学***、镜头模组和电子设备 技术领域
本申请属于光学成像技术领域,尤其涉及一种光学***、镜头模组和电子设备。
背景技术
近年来,随着智能手机及平板电脑等便携式电子装置的发展和网路社群的流行,越来越多人喜欢拍照或自拍后与别人分享,并且对拍摄角度的需求越来越大。广角镜头可以扩大拍摄视野,在有限距离范围内拍摄出全景或大场面的照片。
但一般的广角摄像镜头,由于其大视场角度和大相对孔径的特点,镜头组总长往往比较长,难以搭载在超薄的电子产品上。同时随着CMOS芯片技术的发展,芯片的像素尺寸越来越小,对相配套的光学***的成像质量要求也越来越高,很难做到匹配一个高像素感光芯片的要求。
发明内容
本申请的目的是提供一种光学***,满足结构小型化和大视角的要求。
为实现本申请的目的,本申请提供了如下的技术方案:
第一方面,本申请提供了一种光学***,其特征在于,沿光轴方向的物侧至像侧依次包括:第一透镜,具有负光焦度,所述第一透镜于光轴处的物侧面为凹面,于圆周处的物侧面为凸面,所述第一透镜于的像侧面为凹面;第二透镜,具有正光焦度,所述第二透镜的物侧面为凸面,像侧面为凸面;第三透镜,具有负光焦度,所述第三透镜于光轴处的像侧面为凹面;第四透镜,具有光焦度,所述第四透镜于光轴处的像侧面为凸面;第五透镜,具有光焦度,所述第五透镜于光轴处的像侧面为凹面,且所述第五透镜于光轴处的像侧面至少设置有一个反曲点。所述光学***满足以下条件式:1.1<tanω/SD1<1.8;其中,ω为所述光学***最大视场角的一半,SD1为第一透镜的物侧面最大有效半口径;以及1.7<TL/ImgH<2.2;其中,TL为第一透镜的物侧面至所述光学***的成像 面于光轴上的距离,ImgH为所述光学***的有效像素区域对角线长度的一半。通过合理设置第一透镜至第五透镜的各透镜的面型与光焦度,保证光学***满足小型化、高解析力和大视角的需求。当tanω/SD1的值低于下限时,***的第一透镜口径变大,导致整个模组大型化;当tanω/SD1的值高于上限时,第一透镜口径被过度压缩,不利于大视角的光线进入本摄像镜头内。合理设置tanω/SD1的值,可以在维持广视角的同时,使第一透镜的口径不会过度增大,有利于***小型化。当TL/ImgH的值高于上限,***长度变长,导致模组高度变大;当TL/ImgH的值低于下限,***被过度压缩,像差校正也不充分,难以达到较高的解析力。设置合适TL/ImgH的合适比例,有利于***总长的压缩,实现超薄化设计。
一种实施方式中,所述光学***满足以下条件式:-5<f5/f1<7;其中,f1为所述第一透镜的有效焦距,f5为所述第五透镜的有效焦距。设置负光焦度的第一透镜,使更大角度的入射光线能进入本***,有利于广角化;同时合理配置第五透镜的光焦度,在校正***像差,提升像质的同时,可保证足够的后焦长度,有利于电子感光元件的组装与配合,提高良率。一种实施方式中,所述光学***满足以下条件式:0.4<SD1/ImgH<0.7。合理设置SD1/ImgH的比值,既可让***有较大的口径保证通光量,又可以维持***的头部不会过度增大。
一种实施方式中,所述光学***满足以下条件式:0.16<T12/OAL<0.26;其中,T12为所述第一透镜的像侧面到所述第二透镜的物侧面于光轴上的距离,OAL为所述第一透镜的物侧面到所述第五透镜的像侧面于光轴上的距离。T12/OAL的值低于下限时,镜片空气间距压缩,第一透镜的形状会不充分,不利于广角化;T12/OAL的值高于上限时,***间隙大,超薄化不足。合理配置T12/OAL的值,可以有效增大该广角镜头组的最大视场角。一种实施方式中,所述光学***满足以下条件式:-3<R1/R2<0,其中,R1为第一透镜的物侧面曲率半径,R2为第一透镜的像侧面曲率半径。通过将第一透镜近光轴处设置为双凹形状,使得第一透镜具备充分强度的负光焦度,实现广角化。
一种实施方式中,所述光学***满足以下条件式:-6<R3/R4<-2,其中,R3为第二透镜的物侧面曲率半径,R4为第二透镜的像侧面曲率半径。通过将第二透镜近光轴处设置为双凸形状,有利于将光线汇聚,实现全长的缩短化。
一种实施方式中,所述光学***满足以下条件式:2<(CT2+CT3)/CT1<4; 其中,CT1为所述第一透镜于光轴上的中心厚度,CT2为所述第二透镜于光轴上的中心厚度,CT3为所述第三透镜于光轴上的中心厚度。通过对上述的厚度进行合理的配置,可进一步缩短镜头的长度,并使第一透镜较易成型,降低成本。
一种实施方式中,所述光学***满足以下条件式:1≤V1/V5<2.5;其中,V1为所述第一透镜的色散系数,V5为所述第五透镜的色散系数。合理地设置V1/V5的比值,可降低该广角镜头的色差,提高解析力。
一种实施方式中,所述光学***满足以下条件式:-1<f2/f3<0;其中,f2为所述第二透镜的有效焦距,f3为所述第三透镜的有效焦距。第二透镜提供较强的正光焦度,有利于广角镜头的超薄化发展;第三透镜提供负的光焦度,可以修正第二透镜产生的像差,提高解析能力。通过两个透镜的焦距比值的合理配置,有利于光学***的超薄化的同时,也能修正第二透镜产生的像差,提高解析能力。
第二方面,本申请还提供了一种镜头模组,包括镜筒和第一方面任一项所述的光学***,所述光学***的所述第一透镜至所述第五透镜安装在所述镜筒内。通过安装该光学***的各透镜,使得该镜头模组能满足小型化和大角度拍摄的特性。
第三方面,本申请还提供一种电子设备,包括壳体、电子感光元件和第二方面所述的镜头模组,所述镜头模组和所述电子感光元件设置在所述壳体内,所述电子感光元件设置在所述光学***的成像面上,用于将穿过所述第一透镜至所述第五透镜入射到所述电子感光元件上的物的光线转换成图像的电信号。通过设置本申请的镜头模组,使得电子设备可实现轻薄小型化,并可进行大角度的拍摄。
附图说明
为了更清楚地说明本申请实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a是第一实施例的光学***的结构示意图;
图1b是第一实施例的纵向球差曲线、像散曲线和畸变曲线;
图2a是第二实施例的光学***的结构示意图;
图2b是第二实施例的纵向球差曲线、像散曲线和畸变曲线;
图3a是第三实施例的光学***的结构示意图;
图3b是第三实施例的纵向球差曲线、像散曲线和畸变曲线;
图4a是第四实施例的光学***的结构示意图;
图4b是第四实施例的纵向球差曲线、像散曲线和畸变曲线;
图5a是第五实施例的光学***的结构示意图;
图5b是第五实施例的纵向球差曲线、像散曲线和畸变曲线;
图6a是第六实施例的光学***的结构示意图;
图6b是第六实施例的纵向球差曲线、像散曲线和畸变曲线;
图7a是第七实施例的光学***的结构示意图;
图7b是第七实施例的纵向球差曲线、像散曲线和畸变曲线。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供一种镜头模组,包括镜筒和本申请实施例提供的光学***,光学***的第一透镜至第五透镜安装在镜筒内。该镜头模组可以是数码相机的独立的镜头,也可以是集成在如智能手机等电子设备上的成像模块。通过安装该光学***的各透镜,使得该镜头模组具有小型化和大角度拍摄的特性。
本申请实施例还提供了一种电子设备,包括壳体、电子感光元件和本申请实施例提供的镜头模组,镜头模组和电子感光元件设置在壳体内,电子感光元件设置在光学***的成像面上,用于将穿过第一透镜至第五透镜入射到电子感光元件上的物的光线转换成图像的电信号。电子感光元件可以为互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)或电荷耦合器件(Charge-coupled Device,CCD)。该电子设备可以为智能手机、个人数字助理 (PDA)、平板电脑、智能手表、无人机、电子书籍阅读器、行车记录仪、可穿戴装置等。通过设置本申请的镜头模组,使得电子设备可实现轻薄小型化,并可进行大角度的拍摄。
本申请实施例提供一种包括例如五片透镜构成的光学***,即第一透镜、第二透镜、第三透镜、第四透镜和第五透镜,该第一透镜至第五透镜沿光轴方向的物侧至像侧依次设置。在第一透镜至第五透镜中,任意相邻两透镜之间均可具有空气间隔。
具体的,五片透镜的具体形状和结构如下:
第一透镜具有负光焦度,第一透镜于光轴处的物侧面为凹面,于圆周处的物侧面为凸面,第一透镜于的像侧面为凹面。第二透镜具有正光焦度,第二透镜的物侧面为凸面,像侧面为凸面。第三透镜具有负光焦度,第三透镜于光轴处的像侧面为凹面。第四透镜具有光焦度,第四透镜于光轴处的像侧面为凸面。第五透镜具有光焦度,第五透镜于光轴处的像侧面为凹面,且第五透镜于光轴处的像侧面至少设置有一个反曲点。
光学***还包括光阑,该光学***还包括光阑,光阑可设置在第一透镜至第五透镜之间的任一位置,如第一透镜和第二透镜之间等。
光学***满足以下条件式:
1.1<tanω/SD1<1.8;其中,ω为光学***最大视场角的一半,SD1为第一透镜的物侧面最大有效半口径。以及
1.7<TL/ImgH<2.2;其中,TL为第一透镜的物侧面至光学***的成像面于光轴上的距离,ImgH为光学***的有效像素区域对角线长度的一半。
合理设置第一透镜至第五透镜的各透镜的面型与光焦度,保证光学***满足小型化、高解析力和大视角的需求。同时,设置tanω/SD1的合适比例,在维持广视角的同时,使第一透镜的口径不会过度增大,有利于***小型化。设置TL/ImgH的合适比例,有利于光学***总长的压缩,实现超薄化设计。
如果tanω/SD1≤1.1,第一透镜的口径变大,导致整个光学***结构增大,如果tanω/SD1≥1.8,第一透镜的口径被过度压缩,不利于大视角的光线进入光学***内。
如果TL/ImgH≤1.7,光学***被过度压缩,相差校正不充分,难以达到较高的解析力。如果TL/ImgH≥2.2,光学***的总长度变长,导致结构变大,难 以实现小型化。
一种实施例中,光学***满足以下条件式:-5<f5/f1<7;其中,f1为第一透镜的有效焦距,f5为第五透镜的有效焦距。第一透镜提供负的光焦度,使更大角度的入射光线能进入光学***,有利于广视角设计,合理配置第五透镜的光焦度,在校正***像差,提升像质的同时,可保证足够的后焦长度,有利于电子感光元件的组装与配合,提高良率。
一种实施例中,光学***满足以下条件式:0.4<SD1/ImgH<0.7;SD1为第一透镜的物侧面最大有效半口径;ImgH为光学***的有效像素区域对角线长度的一半。既可让光学***有较大的口径保证通光量,又可以维持***的头部不会过度增大。
一种实施例中,光学***满足以下条件式:0.16<T12/OAL<0.26;其中,T12为第一透镜的像侧面到第二透镜的物侧面于光轴上的距离,OAL为第一透镜的物侧面到第五透镜的像侧面于光轴上的距离。如果T12/OAL≤0.16,会造成透镜间的间距压缩,第一透镜的形状不能有效实现,不利于广视角设计,如果T12/OAL≥0.26,光学***间隙大,超薄化不足,不利于结构小型化。合理配置T12/OAL的值,可以有效增大该广角镜头组的最大视场角。
一种实施例中,光学***满足以下条件式:-3<R1/R2<0,
其中,R1为第一透镜的物侧面曲率半径,R2为第一透镜的像侧面曲率半径。通过将第一透镜近光轴处设置为双凹形状,使得第一透镜具备充分强度的负光焦度,实现广角化。
一种实施例中,光学***满足以下条件式:-6<R3/R4<-2,其中,R3为第二透镜的物侧面曲率半径,R4为第二透镜的像侧面曲率半径。通过将第二透镜近光轴处设置为双凸形状,有利于将光线汇聚,实现全长的缩短化。
一种实施例中,光学***满足以下条件式:2<(CT2+CT3)/CT1<4;其中,CT1为第一透镜于光轴上的中心厚度,CT2为第二透镜于光轴上的中心厚度,CT3为第三透镜于光轴上的中心厚度。当满足上述厚度配置,可进一步缩短光学***的长度,并使第一透镜较易成型,降低成本。
一种实施例中,光学***满足以下条件式:1≤V1/V5<2.5;其中,V1为第一透镜的色散系数,V5为第五透镜的色散系数。当V1/V5满足上述关系式时, 可降低该光学***的色差,提高解析力。
一种实施例中,光学***满足以下条件式:-1<f2/f3<0;其中,f2为第二透镜的有效焦距,f3为第三透镜的有效焦距。第二透镜提供较强的正光焦度,有利于光学***的超薄化设计,第三透镜提供负的光焦度,可以修正第二透镜产生的像差,提高解析能力。
第一实施例
请参考图1a和图1b,本实施例的光学***,沿光轴方向的物侧至像侧依次包括:
第一透镜L1,具有负光焦度,第一透镜L1于光轴处的物侧面S1为凹面,于圆周处的物侧面S1为凸面,第一透镜L1的像侧面S2为凹面;
第二透镜L2,具有正光焦度,第二透镜L2的物侧面S3为凸面,第二透镜L2的像侧面S4为凸面;
第三透镜L3,具有负光焦度,第三透镜L3于光轴处的物侧面S5为凸面,于圆周处的物侧面S5为凹面,第三透镜L3的像侧面S6为凹面;
第四透镜L4,具有正光焦度,第四透镜L4的物侧面S7为凹面,第四透镜L4的像侧面S8为凸面;
第五透镜L5,具有负光焦度,第五透镜L5于光轴处的物侧面S9为凸面,于圆周处的物侧面S9为凹面;第五透镜L5于光轴处的像侧面S10为凹面,于圆周处的像侧面S10为凸面。
上述第一透镜L1至第五透镜L5的材质均为塑料(Plastic)。
此外,光学***还包括光阑STO、红外截止滤光片L6和成像面S13。光阑STO设置在第一透镜L1和第二透镜L2之间,并紧邻第二透镜L2,用于控制进光量。其他实施例中,光阑STO还可以设置在其他的相邻两透镜之间。红外截止滤光片L6设置在第五透镜L5的像方侧,其包括物侧面S11和像侧面S12,红外截止滤光片L6用于过滤掉红外光线,使得射入成像面S13的光线为可见光,可见光的波长为380nm-780nm。红外截止滤光片L6的材质为玻璃(Glass),并可在玻璃上镀膜。成像面S13为电子感光元件的有效像素区域。
表1a示出了本实施例的光学***的特性的表格,其中的数据采用波长为555nm的光线获得,Y半径、厚度和焦距的单位均为毫米(mm)。
表1a
Figure PCTCN2019102639-appb-000001
其中,EFL为光学***的有效焦距,FNO为光学***的光圈数,FOV为光学***的视场角,TL为第一透镜的物侧面至光学***的成像面于光轴上的距离。
在本实施例中,第一透镜L1至第五透镜L5的任意一个透镜的物侧面和像侧面均为非球面,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2019102639-appb-000002
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1a中Y半径R的倒数);k为圆锥系数;Ai是非球面第i-th阶的修正系数。表1b给出了可用于第一实施例中各非球面镜面S1-S10的高次项系数A4、A6、A8、A10、A12、A14、A15、A17和A18。
表1b
Figure PCTCN2019102639-appb-000003
Figure PCTCN2019102639-appb-000004
图1b示出了第一实施例的光学***的纵向球差曲线、像散曲线和畸变曲线。其中,纵向球差曲线表示不同波长的光线经由光学***的各透镜后的会聚焦点偏离;像散曲线表示子午像面弯曲和弧矢像面弯曲;畸变曲线表示不同视场角对应的畸变大小值。根据图1b可知,第一实施例所给出的光学***能够实现良好的成像品质。
第二实施例
请参考图2a和图2b,本实施例的光学***,沿光轴方向的物侧至像侧依次包括:
第一透镜L1,具有负光焦度,第一透镜L1于光轴处的物侧面S1为凹面,于圆周处的物侧面S1为凸面,第一透镜L1的像侧面S2为凹面;
第二透镜L2,具有正光焦度,第二透镜L2的物侧面S3为凸面,第三透镜L2的像侧面S4为凸面;
第三透镜L3,具有负光焦度,第三透镜L3的物侧面S5为凸面,第三透镜L3的像侧面S6为凹面;
第四透镜L4,具有正光焦度,第四透镜L4的于光轴处的物侧面S7为凹面,于圆周处的物侧面S7为凸面,第四透镜L4的像侧面S8为凸面;
第五透镜L5,具有正光焦度,第五透镜L5于光轴处的物侧面S9为凸面,于圆周处的物侧面S9为凹面;第五透镜L5于光轴处的像侧面S10为凹面,于 圆周处的像侧面S10为凸面。
第二实施例的其他结构与第一实施例相同,参照即可。
表2a示出了本实施例的光学***的特性的表格,其中的数据采用波长为587.6nm的光线获得,Y半径、厚度和焦距的单位均为毫米(mm)。
表2a
Figure PCTCN2019102639-appb-000005
其中,表2a的各参数含义均与第一实施例各参数含义相同。
表2b给出了可用于第二实施例的各非球面透镜的高次项系数,其中,各非球面面型可由第一实施例中给出的公式限定。
表2b
Figure PCTCN2019102639-appb-000006
Figure PCTCN2019102639-appb-000007
图2b示出了第二实施例的光学***的纵向球差曲线、像散曲线和畸变曲线。其中,纵向球差曲线表示不同波长的光线经由光学***的各透镜后的会聚焦点偏离;像散曲线表示子午像面弯曲和弧矢像面弯曲;畸变曲线表示不同视场角对应的畸变大小值。根据图2b可知,第二实施例所给出的光学***能够实现良好的成像品质。
第三实施例
请参考图3a和图3b,本实施例的光学***,沿光轴方向的物侧至像侧依次包括:
第一透镜L1,具有负光焦度,第一透镜L1于光轴处的物侧面S1为凹面,于圆周处的物侧面S1为凸面,第一透镜L1的像侧面S2为凹面;
第二透镜L2,具有正光焦度,第二透镜L2的物侧面S3为凸面,第三透镜L2的像侧面S4为凸面;
第三透镜L3,具有负光焦度,第三透镜L3的物侧面S5为凹面,第三透镜L3的于光轴处的像侧面S6为凹面,于圆周处的像侧面S6为凸面;
第四透镜L4,具有正光焦度,第四透镜L4的物侧面S7为凹面,第四透镜L4的像侧面S8为凸面;
第五透镜L5,具有负光焦度,第五透镜L5于光轴处的物侧面S9为凸面,于圆周处的物侧面S9为凹面;第五透镜L5于光轴处的像侧面S10为凹面,于圆周处的像侧面S10为凸面。
第三实施例的其他结构与第一实施例相同,参照即可。
表3a示出了本实施例的光学***的特性的表格,其中的数据采用波长为587.6nm的光线获得,Y半径、厚度和焦距的单位均为毫米(mm)。
表3a
Figure PCTCN2019102639-appb-000008
Figure PCTCN2019102639-appb-000009
其中,表3a的各参数含义均与第一实施例各参数含义相同。
表3b给出了可用于第三实施例的各非球面透镜的高次项系数,其中,各非球面面型可由第一实施例中给出的公式限定。
表3b
Figure PCTCN2019102639-appb-000010
Figure PCTCN2019102639-appb-000011
图3b示出了第三实施例的光学***的纵向球差曲线、像散曲线和畸变曲线。其中,纵向球差曲线表示不同波长的光线经由光学***的各透镜后的会聚焦点偏离;像散曲线表示子午像面弯曲和弧矢像面弯曲;畸变曲线表示不同视场角对应的畸变大小值。根据图3b可知,第三实施例所给出的光学***能够实现良好的成像品质。
第四实施例
请参考图4a和图4b,本实施例的光学***,沿光轴方向的物侧至像侧依次包括:
第一透镜L1,具有负光焦度,第一透镜L1于光轴处的物侧面S1为凹面,于圆周处的物侧面S1为凸面,第一透镜L1的像侧面S2为凹面;
第二透镜L2,具有正光焦度,第二透镜L2的物侧面S3为凸面,第三透镜L2的像侧面S4为凸面;
第三透镜L3,具有负光焦度,第三透镜L3的物侧面S5为凹面,第三透镜L3的像侧面S6为凹面;
第四透镜L4,具有正光焦度,第四透镜L4的物侧面S7为凸面,第四透镜L4的像侧面S8为凸面;
第五透镜L5,具有负光焦度,第五透镜L5的物侧面S9为凹面;第五透镜L5于光轴处的像侧面S10为凹面,于圆周处的像侧面S10为凸面。
第四实施例的其他结构与第一实施例相同,参照即可。
表4a示出了本实施例的光学***的特性的表格,其中的数据采用波长为555nm的光线获得,Y半径、厚度和焦距的单位均为毫米(mm)。
表4a
Figure PCTCN2019102639-appb-000012
Figure PCTCN2019102639-appb-000013
其中,表4a的各参数含义均与第一实施例各参数含义相同。
表4b给出了可用于第四实施例的各非球面透镜的高次项系数,其中,各非球面面型可由第一实施例中给出的公式限定。
表4b
Figure PCTCN2019102639-appb-000014
图4b示出了第四实施例的光学***的纵向球差曲线、像散曲线和畸变曲线。其中,纵向球差曲线表示不同波长的光线经由光学***的各透镜后的会聚焦点偏离;像散曲线表示子午像面弯曲和弧矢像面弯曲;畸变曲线表示不同视场角对应的畸变大小值。根据图4b可知,第四实施例所给出的光学***能够实现良好的成像品质。
第五实施例
请参考图5a和图5b,本实施例的光学***,沿光轴方向的物侧至像侧依次包括:
第一透镜L1,具有负光焦度,第一透镜L1于光轴处的物侧面S1为凹面,于圆周处的物侧面S1为凸面,第一透镜L1的像侧面S2为凹面;
第二透镜L2,具有正光焦度,第二透镜L2的物侧面S3为凸面,第三透镜L2的像侧面S4为凸面;
第三透镜L3,具有负光焦度,第三透镜L3的物侧面S5为凹面,第三透镜L3的像侧面S6为凹面;
第四透镜L4,具有正光焦度,第四透镜L4于光轴处的物侧面S7为凹面,于圆周处的物侧面S7为凸面,第四透镜L4的像侧面S8为凸面;
第五透镜L5,具有负光焦度,第五透镜L5于光轴处的物侧面S9为凸面,于圆周处的物侧面S9为凹面;第五透镜L5于光轴处的像侧面S10为凹面,于圆周处的像侧面S10为凸面。
第五实施例的其他结构与第一实施例相同,参照即可。
表5a示出了本实施例的光学***的特性的表格,其中的数据采用波长为587.6nm的光线获得,Y半径、厚度和焦距的单位均为毫米(mm)。
表5a
Figure PCTCN2019102639-appb-000015
其中,表5a的各参数含义均与第一实施例各参数含义相同。表5b给出了可用于第五实施例的各非球面透镜的高次项系数,其中,各非球面面型可由第 一实施例中给出的公式限定。
表5b
Figure PCTCN2019102639-appb-000016
图5b示出了第五实施例的光学***的纵向球差曲线、像散曲线和畸变曲线。其中,纵向球差曲线表示不同波长的光线经由光学***的各透镜后的会聚焦点偏离;像散曲线表示子午像面弯曲和弧矢像面弯曲;畸变曲线表示不同视场角对应的畸变大小值。根据图5b可知,第五实施例所给出的光学***能够实现良好的成像品质。
第六实施例
请参考图6a和图6b,本实施例的光学***,沿光轴方向的物侧至像侧依次包括:
第一透镜L1,具有负光焦度,第一透镜L1于光轴处的物侧面S1为凹面,于圆周处的物侧面S1为凸面,第一透镜L1的像侧面S2为凹面;
第二透镜L2,具有正光焦度,第二透镜L2的物侧面S3为凸面,第三透镜L2的像侧面S4为凸面;
第三透镜L3,具有负光焦度,第三透镜L3于光轴处的物侧面S5为凸面, 于圆周处的物侧面S5为凹面,第三透镜L3的像侧面S6为凹面;
第四透镜L4,具有负光焦度,第四透镜L4的物侧面S7为凹面,第四透镜L4的像侧面S8为凸面;
第五透镜L5,具有正光焦度,第五透镜L5于光轴处的物侧面S9为凸面,于圆周处的物侧面S9为凹面;第五透镜L5于光轴处的像侧面S10为凹面,于圆周处的像侧面S10为凸面。
第六实施例的其他结构与第一实施例相同,参照即可。
表6a示出了本实施例的光学***的特性的表格,其中的数据采用波长为587.6nm的光线获得,Y半径、厚度和焦距的单位均为毫米(mm)。
表6a
Figure PCTCN2019102639-appb-000017
其中,表6a的各参数含义均与第一实施例各参数含义相同。表6b给出了可用于第六实施例的各非球面透镜的高次项系数,其中,各非球面面型可由第一实施例中给出的公式限定。
表6b
Figure PCTCN2019102639-appb-000018
Figure PCTCN2019102639-appb-000019
图6b示出了第六实施例的光学***的纵向球差曲线、像散曲线和畸变曲线。其中,纵向球差曲线表示不同波长的光线经由光学***的各透镜后的会聚焦点偏离;像散曲线表示子午像面弯曲和弧矢像面弯曲;畸变曲线表示不同视场角对应的畸变大小值。根据图6b可知,第六实施例所给出的光学***能够实现良好的成像品质。
第七实施例
请参考图7a和图7b,本实施例的光学***,沿光轴方向的物侧至像侧依次包括:
第一透镜L1,具有负光焦度,第一透镜L1于光轴处的物侧面S1为凹面,于圆周处的物侧面S1为凸面,第一透镜L1的像侧面S2为凹面;
第二透镜L2,具有正光焦度,第二透镜L2的物侧面S3为凸面,第三透镜L2的像侧面S4为凸面;
第三透镜L3,具有负光焦度,第三透镜L3于光轴处的物侧面S5为凸面,于圆周处的物侧面S5为凹面,第三透镜L3的像侧面S6为凹面;
第四透镜L4,具有正光焦度,第四透镜L4的物侧面S7为凸面,第四透镜L4于光轴处的像侧面S8为凸面,于圆周处的像侧面S8为凹面;
第五透镜L5,具有负光焦度,第五透镜L5于光轴处的物侧面S9为凸面,于圆周处的物侧面S9为凹面;第五透镜L5于光轴处的像侧面S10为凹面,于圆周处的像侧面S10为凸面。
第七实施例的其他结构与第一实施例相同,参照即可。
表7a示出了本实施例的光学***的特性的表格,其中的数据采用波长为587.6nm的光线获得,Y半径、厚度和焦距的单位均为毫米(mm)。
表7a
Figure PCTCN2019102639-appb-000020
其中,表7a的各参数含义均与第一实施例各参数含义相同。表7b给出了可用于第七实施例的各非球面透镜的高次项系数,其中,各非球面面型可由第一实施例中给出的公式限定。
表7b
Figure PCTCN2019102639-appb-000021
Figure PCTCN2019102639-appb-000022
图7b示出了第七实施例的光学***的纵向球差曲线、像散曲线和畸变曲线。其中,纵向球差曲线表示不同波长的光线经由光学***的各透镜后的会聚焦点偏离;像散曲线表示子午像面弯曲和弧矢像面弯曲;畸变曲线表示不同视场角对应的畸变大小值。根据图7b可知,第七实施例所给出的光学***能够实现良好的成像品质。
表8示出了第一实施例至第七实施例的光学***的TL/ImgH、tanω/SD1、f5/f1、SD1/ImgH、T12/OAL、R1/R2、R3/R4、(CT2+CT3)/CT1、V1/V5以及f2/f3的值。由表8可得知,各实施例均满足条件:1.7<TL/ImgH<2.2、1.1<tanω/SD1<1.8、-5<f5/f1<7、0.4<SD1/ImgH<0.7、0.16<T12/OAL<0.26、-3<R1/R2<0、-6<R3/R4<-2、2<(CT2+CT3)/CT1<4、1≤V1/V5<2.5以及-1<f2/f3<0。
表8
  1.7<TL/ImgH<2.2 1.1<tanω/SD1<1.8 -5<f5/f1<7 0.4<SD1/ImgH<0.7 0.16<T12/OAL<0.26
第一实施例 1.746 1.783 1.487 0.500 0.183
第二实施例 2.063 1.252 -4.027 0.549 0.248
第三实施例 2.056 1.430 1.413 0.492 0.185
第四实施例 2.181 1.155 0.469 0.646 0.255
第五实施例 1.774 1.488 1.216 0.481 0.167
第六实施例 1.815 1.575 -3.131 0.499 0.176
第七实施例 1.782 1.375 6.489 0.494 0.199
  -3<R1/R2<0 -6<R3/R4<-2 2<(CT2+CT3)/CT1<4 1≤V1/V5<2.5 -1<f2/f3<0
第一实施例 -0.492 -3.347 2.975 2.385 -0.305
第二实施例 -1.668 -3.635 3.254 2.359 -0.364
第三实施例 -0.495 -4.394 3.711 1.000 -0.537
第四实施例 -2.814 -2.814 3.061 2.359 -0.460
第五实施例 -0.261 -4.057 3.279 2.359 -0.521
第六实施例 -0.481 -5.672 2.827 2.447 -0.237
第七实施例 -0.372 -3.366 3.107 2.359 -0.399
以上所揭露的仅为本申请一种较佳实施方式而已,当然不能以此来限定本申请之权利范围,本领域普通技术人员可以理解实现上述实施方式的全部或部分流程,并依本申请权利要求所作的等同变化,仍属于申请所涵盖的范围。

Claims (11)

  1. 一种光学***,其特征在于,沿光轴方向的物侧至像侧依次包括:
    第一透镜,具有负光焦度,所述第一透镜于光轴处的物侧面为凹面,于圆周处的物侧面为凸面,所述第一透镜于的像侧面为凹面;
    第二透镜,具有正光焦度,所述第二透镜的物侧面为凸面,像侧面为凸面;
    第三透镜,具有负光焦度,所述第三透镜于光轴处的像侧面为凹面;
    第四透镜,具有光焦度,所述第四透镜于光轴处的像侧面为凸面;
    第五透镜,具有光焦度,所述第五透镜于光轴处的像侧面为凹面,且所述第五透镜于光轴处的像侧面至少设置有一个反曲点;
    所述光学***满足以下条件式:
    1.1<tanω/SD1<1.8;
    其中,ω为所述光学***最大视场角的一半,SD1为第一透镜的物侧面最大有效半口径;以及
    1.7<TL/ImgH<2.2;
    其中,TL为第一透镜的物侧面至所述光学***的成像面于光轴上的距离,ImgH为所述光学***的有效像素区域对角线长度的一半。
  2. 如权利要求1所述的光学***,其特征在于,所述光学***满足以下条件式:
    -5<f5/f1<7;
    其中,f1为所述第一透镜的有效焦距,f5为所述第五透镜的有效焦距。
  3. 如权利要求1所述的光学***,其特征在于,所述光学***满足以下条件式:
    0.4<SD1/ImgH<0.7。
  4. 如权利要求1所述的光学***,其特征在于,所述光学***满足以下条件式:
    0.16<T12/OAL<0.26;
    其中,T12为所述第一透镜的像侧面到所述第二透镜的物侧面于光轴上的距离,OAL为所述第一透镜的物侧面到所述第五透镜的像侧面于光轴上的距离。
  5. 如权利要求1所述的光学***,其特征在于,所述光学***满足以下条件式:
    -3<R1/R2<0;
    其中,R1为第一透镜的物侧面曲率半径,R2为第一透镜的像侧面曲率半径。
  6. 如权利要求1所述的光学***,其特征在于,所述光学***满足以下条件式:
    -6<R3/R4<-2;
    其中R3为第二透镜的物侧面曲率半径,R4为第二透镜的像侧面曲率半径。
  7. 如权利要求1所述的光学***,其特征在于,所述光学***满足以下条件式:
    2<(CT2+CT3)/CT1<4;
    其中,CT1为所述第一透镜于光轴上的中心厚度,CT2为所述第二透镜于光轴上的中心厚度,CT3为所述第三透镜于光轴上的中心厚度。
  8. 如权利要求1所述的光学***,其特征在于,所述光学***满足以下条件式:
    1≤V1/V5<2.5;
    其中,V1为所述第一透镜的色散系数,V5为所述第五透镜的色散系数。
  9. 如权利要求7所述的光学***,其特征在于,所述光学***满足以下条件式:
    -1<f2/f3<0;
    其中,f2为所述第二透镜的有效焦距,f3为所述第三透镜的有效焦距。
  10. 一种镜头模组,其特征在于,包括镜筒和如权利要求1至9任一项所述的光学***,所述光学***的所述第一透镜至所述第五透镜安装在所述镜筒内。
  11. 一种电子设备,其特征在于,包括壳体、电子感光元件和如权利要求10所述的镜头模组,所述镜头模组和所述电子感光元件设置在所述壳体内,所述电子感光元件设置在所述光学***的成像面上,用于将穿过所述第一透镜至所述第五透镜入射到所述电子感光元件上的物的光线转换成图像的电信号。
PCT/CN2019/102639 2019-08-26 2019-08-26 光学***、镜头模组和电子设备 WO2021035493A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/102639 WO2021035493A1 (zh) 2019-08-26 2019-08-26 光学***、镜头模组和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/102639 WO2021035493A1 (zh) 2019-08-26 2019-08-26 光学***、镜头模组和电子设备

Publications (1)

Publication Number Publication Date
WO2021035493A1 true WO2021035493A1 (zh) 2021-03-04

Family

ID=74684951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102639 WO2021035493A1 (zh) 2019-08-26 2019-08-26 光学***、镜头模组和电子设备

Country Status (1)

Country Link
WO (1) WO2021035493A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106291889A (zh) * 2015-06-10 2017-01-04 大立光电股份有限公司 光学取像镜头组、取像装置及电子装置
KR20190080527A (ko) * 2017-12-28 2019-07-08 오필름코리아(주) 촬상 광학계
CN110119020A (zh) * 2015-12-15 2019-08-13 大立光电股份有限公司 取像用光学镜头组、取像装置及电子装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106291889A (zh) * 2015-06-10 2017-01-04 大立光电股份有限公司 光学取像镜头组、取像装置及电子装置
CN110119020A (zh) * 2015-12-15 2019-08-13 大立光电股份有限公司 取像用光学镜头组、取像装置及电子装置
KR20190080527A (ko) * 2017-12-28 2019-07-08 오필름코리아(주) 촬상 광학계

Similar Documents

Publication Publication Date Title
WO2021233052A1 (zh) 光学镜头及成像设备
CN204256243U (zh) 摄像镜头以及具备该摄像镜头的摄像装置
CN104395806B (zh) 摄像镜头以及具备该摄像镜头的摄像装置
WO2021189431A1 (zh) 光学***、镜头模组及电子设备
WO2021196030A1 (zh) 光学***、镜头模组和电子设备
WO2022033326A1 (zh) 光学***、镜头模组和电子设备
WO2022061904A1 (zh) 光学***、摄像头模组及终端设备
WO2022199465A1 (zh) 光学镜头及成像设备
WO2021022524A1 (zh) 光学***、镜头模组和电子设备
CN112433340A (zh) 光学***、镜头模组和电子设备
WO2021031235A1 (zh) 摄像光学镜头
CN113391430A (zh) 光学***、镜头模组和电子设备
CN111338063A (zh) 光学***、镜头模组和电子设备
WO2021035758A1 (zh) 光学***、镜头模组和电子设备
US20210405330A1 (en) Optical system, lens module, and electronic device
JP7035157B2 (ja) 撮像光学レンズ
WO2021203425A1 (zh) 光学***、镜头模组及终端设备
CN108431663B (zh) 用于拍摄图像的标准到远摄镜头***
WO2021217663A1 (zh) 光学***、镜头模组和电子设备
WO2022227016A1 (zh) 光学***、镜头模组和电子设备
WO2022041054A1 (zh) 光学***、摄像模组和电子设备
CN213122416U (zh) 光学***、镜头模组和电子设备
WO2022082761A1 (zh) 光学***、镜头模组和电子设备
WO2022160121A1 (zh) 光学成像镜头、取像装置及电子设备
CN213091989U (zh) 光学***、摄像头模组和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19942676

Country of ref document: EP

Kind code of ref document: A1