WO2021033227A1 - Method for bonding multilayer units - Google Patents

Method for bonding multilayer units Download PDF

Info

Publication number
WO2021033227A1
WO2021033227A1 PCT/JP2019/032219 JP2019032219W WO2021033227A1 WO 2021033227 A1 WO2021033227 A1 WO 2021033227A1 JP 2019032219 W JP2019032219 W JP 2019032219W WO 2021033227 A1 WO2021033227 A1 WO 2021033227A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
laminated unit
laminated
unit
adhesive surface
Prior art date
Application number
PCT/JP2019/032219
Other languages
French (fr)
Japanese (ja)
Inventor
亮 榊原
亮二郎 富永
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to JP2021541350A priority Critical patent/JP7213361B2/en
Priority to PCT/JP2019/032219 priority patent/WO2021033227A1/en
Publication of WO2021033227A1 publication Critical patent/WO2021033227A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present disclosure relates to a method of adhering a plurality of laminated units.
  • Patent Document 1 discloses a technique for forming a laminated unit including electronic components and electronic circuits by three-dimensional laminated modeling.
  • one three-dimensional laminated electronic device is manufactured by mounting another laminated unit on an arbitrary laminated unit and fixing the two laminated units to each other. ..
  • the adhesive When fixing the two laminated units with an adhesive, for example, in the method of ejecting the adhesive from the nozzle to the adhesive surface of the laminated unit, the adhesive may adhere to the electronic circuit of the laminated unit, and the adhesive is conductive. There is a problem that defects occur. Therefore, in order to prevent the adhesive from adhering to the electronic circuit or the like, it is necessary to finely adjust the position where the adhesive is discharged and the amount to be applied according to the structure of the laminated unit and the like.
  • the present disclosure has been made in view of the above points, and is a method for adhering a laminated unit capable of applying an adhesive to the adhesive surface of the laminated unit while suppressing the adhesive from adhering to an electronic circuit.
  • the challenge is to provide.
  • This specification describes a laminated unit forming step of forming a first laminated unit and a second laminated unit by three-dimensional laminated molding, and a first adhesive surface of the first laminated unit and a second adhesive surface of the second laminated unit.
  • An adhesive is provided in the opening of the gap in the assembling step of combining the first laminated unit and the second laminated unit with a gap between the first laminated unit and the second laminated unit.
  • the adhesive is applied to the first adhesive surface and the second adhesive surface by infiltrating the adhesive from the opening into the gap, and the first adhesive surface and the second adhesive surface.
  • a method for adhering a laminated unit including a curing step of curing the adhesive by applying heat to the adhesive applied to the adhesive surface and fixing the second laminated unit to the first laminated unit. To do.
  • a gap is provided between the first and second adhesive surfaces of the two laminated units.
  • the applied adhesive can be permeated into the gap by a capillary phenomenon or the like.
  • the second laminated unit can be fixed to the first laminated unit by applying an adhesive to the first and second adhesive surfaces and applying heat to the adhesive to cure the adhesive.
  • the adhesive permeates through the opening into the gap, the progress of the adhesive can be stopped only in the gap where the capillary phenomenon or the like acts, and the electronic circuit provided in the first laminated unit or the second laminated unit. It is possible to suppress the adhesion of the adhesive to the surface and suppress the occurrence of defects such as poor insulation. Further, by applying the adhesive to the opening of the gap, the adhesive can be permeated into the gap, so that it is not necessary to directly apply the adhesive to the adhesive surface, and depending on the structure of the laminated unit, etc. There is no need to finely adjust the position and amount of adhesive applied.
  • FIG. 1 shows the laminated unit forming device 10.
  • the stacking unit forming device 10 includes a transport device 20, a first modeling unit 22, a second modeling unit 24, a mounting unit 26, a third modeling unit 200, an adhesive coating unit 205, and a control device 27 (FIG. 6). 2, see Fig. 3).
  • the transport device 20, the first modeling unit 22, the second modeling unit 24, the mounting unit 26, the third modeling unit 200, and the adhesive coating unit 205 are arranged on the base 28 of the stacking unit forming device 10.
  • the base 28 is generally rectangular in plan view.
  • the longitudinal direction of the base 28 will be referred to as the X-axis direction
  • the lateral direction of the base 28 will be referred to as the Y-axis direction
  • the direction orthogonal to both the X-axis direction and the Y-axis direction will be referred to as the Z-axis direction.
  • the transport device 20 includes an X-axis slide mechanism 30 and a Y-axis slide mechanism 32.
  • the X-axis slide mechanism 30 has an X-axis slide rail 34 and an X-axis slider 36.
  • the X-axis slide rail 34 is arranged on the base 28 so as to extend in the X-axis direction.
  • the X-axis slider 36 is slidably held in the X-axis direction by the X-axis slide rail 34.
  • the X-axis slide mechanism 30 has an electromagnetic motor 38 (see FIG. 2), and the X-axis slider 36 is moved to an arbitrary position in the X-axis direction by driving the electromagnetic motor 38.
  • the Y-axis slide mechanism 32 has a Y-axis slide rail 50 and a stage 52.
  • the Y-axis slide rail 50 is arranged on the base 28 so as to extend in the Y-axis direction.
  • One end of the Y-axis slide rail 50 is connected to the X-axis slider 36. Therefore, the Y-axis slide rail 50 is movable in the X-axis direction.
  • the stage 52 is slidably held in the Y-axis direction by the Y-axis slide rail 50.
  • the Y-axis slide mechanism 32 has an electromagnetic motor 56 (see FIG. 2), and the stage 52 is moved to an arbitrary position in the Y-axis direction by driving the electromagnetic motor 56. As a result, the stage 52 moves to an arbitrary position on the base 28 by driving the X-axis slide mechanism 30 and the Y-axis slide mechanism 32.
  • the stage 52 has a base 60, a holding device 62, and an elevating device 64.
  • the base 60 is formed in a flat plate shape, and the base material 70 is placed on the upper surface.
  • the holding devices 62 are provided on both sides of the base 60 in the X-axis direction.
  • the holding device 62 holds the base material 70 fixedly to the base 60 by sandwiching both edges of the base material 70 placed on the base 60 in the X-axis direction.
  • the elevating device 64 is arranged below the base 60, and raises and lowers the base 60 in the Z-axis direction.
  • the first modeling unit 22 is a unit for modeling circuit wiring on a base material 70 placed on a base 60 of a stage 52, and has a first printing unit 72 and a firing unit 74.
  • the first printing unit 72 has an inkjet head 76 (see FIG. 2), and linearly ejects conductive ink onto the base material 70 placed on the base 60.
  • the conductive ink contains, for example, nanometer-sized metal (silver or the like) fine particles dispersed in a solvent as a main component, and is cured by being fired by heat.
  • the surface of the metal nanoparticles is, for example, coated with a dispersant to suppress agglutination in the solvent.
  • the inkjet head 76 ejects conductive ink from a plurality of nozzles by, for example, a piezo method using a piezoelectric element.
  • the device for ejecting the conductive ink is not limited to the inkjet head provided with a plurality of nozzles, and for example, a dispenser provided with one nozzle may be used.
  • the type of metal nanoparticles contained in the conductive ink is not limited to silver, and may be copper, gold, or the like.
  • the number of types of metal nanoparticles contained in the conductive ink is not limited to one, and may be a plurality of types.
  • the firing unit 74 has an irradiation device 78 (see FIG. 2).
  • the irradiation device 78 includes, for example, an infrared heater that heats the conductive ink ejected onto the base material 70.
  • the conductive ink is fired by applying heat from an infrared heater to form a circuit wiring.
  • the solvent is vaporized and the protective film of the metal nanoparticles, that is, the dispersant is decomposed, and the metal nanoparticles are contacted or fused. This is a phenomenon in which the conductivity is increased.
  • the circuit wiring can be formed by firing the conductive ink.
  • the device for heating the conductive ink is not limited to the infrared heater.
  • an infrared lamp, a laser irradiation device that irradiates the conductive ink with laser light, or a base material 70 to which the conductive ink is discharged is placed in the furnace. It may be provided with an electric furnace for heating.
  • the second modeling unit 24 is a unit for forming an insulating layer on the base material 70 placed on the base 60, and has a second printing unit 84 and a curing unit 86.
  • the second printing unit 84 has an inkjet head 88 (see FIG. 2), and discharges an ultraviolet curable resin onto a base material 70 placed on a base 60.
  • the ultraviolet curable resin is a resin that is cured by irradiation with ultraviolet rays.
  • the method in which the inkjet head 88 discharges the ultraviolet curable resin may be, for example, a piezo method using a piezoelectric element, or a thermal method in which the resin is heated to generate bubbles and discharged from a plurality of nozzles.
  • the hardened portion 86 has a flattening device 90 (see FIG. 2) and an irradiation device 92 (see FIG. 2).
  • the flattening device 90 flattens the upper surface of the ultraviolet curable resin discharged onto the base material 70 by the inkjet head 88.
  • the flattening device 90 makes the thickness of the ultraviolet curable resin uniform by, for example, scraping off the excess resin with a roller or a blade while leveling the surface of the ultraviolet curable resin.
  • the irradiation device 92 includes a mercury lamp or an LED as a light source, and irradiates the ultraviolet curable resin discharged on the base material 70 with ultraviolet rays. As a result, the ultraviolet curable resin discharged onto the base material 70 is cured, and an insulating layer can be formed.
  • the mounting unit 26 is a unit for mounting electronic components and probe pins on the base material 70 mounted on the base 60, and has a supply unit 100 and a mounting unit 102.
  • the supply unit 100 has a plurality of tape feeders 110 (see FIG. 2) for feeding the taped electronic components one by one, and supplies the electronic components at each supply position.
  • the supply unit 100 has a tray 201 (see FIG. 2) in which the probe pins are arranged in an upright state, and supplies the probe pins in a state where the probe pins can be picked up from the tray 201.
  • the electronic component is, for example, a sensor element such as a temperature sensor.
  • the probe pin is a member that electrically connects the electronic circuit of one laminated unit and the electronic circuit of another laminated unit.
  • the laminated unit referred to here is a unit formed by the laminated unit forming device 10 as described later, and is a unit obtained by dividing a three-dimensional laminated electronic device having an electronic circuit into a plurality of units.
  • the probe pin may be configured so that it does not stroke (displace) in the axial direction.
  • the supply of electronic components is not limited to the supply by the tape feeder 110, and may be supplied by the tray. Further, the probe pin is supplied not only by the tray 201 but also by a tape feeder. Further, the electronic components and the probe pins may be supplied by both the tape feeder and the tray, or other supply.
  • the mounting unit 102 has a mounting head 112 (see FIG. 2) and a moving device 114 (see FIG. 2).
  • the mounting head 112 has a suction nozzle for sucking and holding an electronic component or a probe pin.
  • the suction nozzle sucks and holds electronic components and the like by suctioning air by supplying negative pressure from a positive / negative pressure supply device (not shown). Then, when a slight positive pressure is supplied from the positive / negative pressure supply device, the electronic component or the like is separated. Further, the moving device 114 moves the mounting head 112 between the supply position of the tape feeder 110 or the tray 201 and the base material 70 mounted on the base 60.
  • the mounting portion 102 holds the electronic parts and the like by the suction nozzle, and arranges the electronic parts and the like held by the suction nozzle on the base material 70.
  • the third modeling unit 200 is a unit for applying the conductive paste on the base material 70 placed on the base 60.
  • the conductive paste is, for example, a viscous fluid containing micro-sized metal particles (such as microfillers) in a resin adhesive.
  • Micro-sized metal microparticles are, for example, flake-state metals (such as silver).
  • the metal microparticles are not limited to silver, but may be gold, copper, or a plurality of types of metals.
  • the adhesive contains, for example, an epoxy resin as a main component.
  • the conductive paste is cured by heating and is used, for example, to form connection terminals connected to circuit wiring.
  • connection terminals are connection terminals (bumps) connected to component terminals of electronic components, electrode pads (exposed pads, etc.) connected to external devices, pin terminals provided at contact points of probe pins, and laminated devices. It is a through hole or the like that conducts circuit wiring in the direction.
  • the third modeling unit 200 has a dispenser 202 as a device for discharging (applying) the conductive paste.
  • the device for applying the conductive paste is not limited to the dispenser, but may be a screen printing device or a gravure printing device.
  • the dispenser 202 discharges the conductive paste into the through hole of the insulating layer, the surface of the insulating layer, and the like.
  • the conductive paste filled in the through holes is heated and cured by the firing portion 74 of the first modeling unit 22, for example, to form connection terminals and through holes. Further, the conductive paste applied to the surface of the insulating layer is heated and cured by, for example, the firing unit 74 to form a connection terminal or the like.
  • the adhesive (resin, etc.) is cured, and the flaky metals are cured in contact with each other.
  • the method of curing the conductive paste is not limited to the method of heating, and may be a method of curing by ultraviolet rays using an ultraviolet curable resin as an adhesive.
  • the adhesive application unit 205 is a unit that applies an adhesive to the laminating unit.
  • the adhesive is, for example, a thermosetting resin containing an epoxy resin as a main component.
  • the curing temperature of the adhesive is preferably 80 ° C. or lower, for example, from the viewpoint of protecting electronic circuits (electronic components and circuit wiring).
  • the adhesive application unit 205 includes a bathtub 206 for storing the adhesive and a robot arm 207 for gripping a combination of a plurality of laminated units.
  • the adhesive coating unit 205 applies the adhesive to the laminating unit by immersing the laminating unit gripped by the robot arm 207 in the bathtub 206.
  • the laminated unit forming apparatus 10 of the present embodiment forms a gap between the adhesive surface of an arbitrary laminated unit and the adhesive surface of another laminated unit. As a result, the adhesive penetrates between the laminating units due to the capillary phenomenon. Then, the laminated unit forming apparatus 10 fixes the plurality of laminated units to each other by applying heat to the permeated adhesive and curing the adhesive to manufacture a three-dimensional laminated electronic device having a desired structure.
  • the control device 27 includes a controller 120, a plurality of drive circuits 122, and a storage device 124.
  • the plurality of drive circuits 122 include the electromagnetic motors 38 and 56, a holding device 62, an elevating device 64, an inkjet head 76, an irradiation device 78, an inkjet head 88, a flattening device 90, and an irradiation device 92. It is connected to the tape feeder 110, the mounting head 112, and the moving device 114. Further, as shown in FIG. 3, the plurality of drive circuits 122 are connected to the third modeling unit 200 and the robot arm 207.
  • the controller 120 includes a CPU, a ROM, a RAM, and the like, and is mainly a computer, and is connected to a plurality of drive circuits 122.
  • the storage device 124 includes a RAM, a ROM, a hard disk, and the like, and stores a control program 126 that controls the stacking unit forming device 10.
  • the controller 120 operates the transfer device 20, the first modeling unit 22, the second modeling unit 24, the mounting unit 26, the third modeling unit 200, the adhesive coating unit 205, and the like. It is controllable.
  • the fact that the controller 120 executes the control program 126 to control each device may be simply described as "device”. For example, “the controller 120 moves the stage 52” means that "the controller 120 executes the control program 126, controls the operation of the transfer device 20 via the drive circuit 122, and causes the stage by the operation of the transfer device 20.” It means “move 52".
  • the laminated unit forming apparatus 10 of the present embodiment forms a plurality of laminated units including circuit wiring, connection terminals, electronic components, probe pins, etc. by the above configuration.
  • a three-dimensional laminated electronic device is manufactured by assembling a plurality of laminated units. More specifically, FIG. 4 is a flowchart showing the flow of the manufacturing process of the three-dimensional laminated electronic device.
  • 5 and 6 are cross-sectional views showing a manufacturing process of a three-dimensional laminated electronic device.
  • FIG. 7 is a cross-sectional view showing a three-dimensional laminated electronic device 150.
  • the manufacturing process and the three-dimensional laminated electronic device 150 (number and structure of laminated units) shown in FIGS. 5 and 6 are examples.
  • the first to third laminated units 218A to 218C have, for example, a disk shape.
  • the three-dimensional laminated electronic device 150 has a cylindrical shape in which the first to third laminated units 218A to 218C are stacked.
  • the manufacturing process 130 of the three-dimensional laminated electronic device 150 by the three-dimensional laminated molding includes a lamination unit forming step P10, an assembly step P12, an adhesive application step P13, and a curing step P15.
  • the laminated unit forming step P10 the first to third laminated units 218A, 218B, and 218C are formed on the base material 70 by the laminated unit forming apparatus 10 described above.
  • the assembly step P12, the adhesive application step P13, and the curing step P15 the first to third laminated units 218A, 218B, and 218C are stacked in the vertical direction, and then the first to third laminated units 218A are stacked.
  • laminated units 218 are fixed with an adhesive to manufacture a three-dimensional laminated electronic device 150 (see FIG. 7).
  • first to third laminated units 218A to 218C are generically referred to without distinction, they are referred to as laminated units 218.
  • the controller 120 executes the control program 126 to control each device of the stacking unit forming device 10 to execute the stacking unit forming step P10.
  • the laminated unit forming step P10 includes an insulating layer forming process S10, a circuit wiring forming process S20, a connection terminal forming process S30, and a mounting process S40.
  • the execution order of each of the above processes S10, S20, S30, and S40 is determined by the laminated structure of the three-dimensional laminated electronic devices 150 (that is, the first to third laminated units 218A to 218C). Therefore, the above processes S10, S20, S30, and S40 are not repeated in their notation order.
  • the user sets the base material 70 on the base 60 of the stage 52, and instructs the laminated unit forming apparatus 10 to start the manufacturing process 130 shown in FIG. Further, as shown in FIG. 5, for example, a release film 71 that is peeled off by applying heat is attached on the base material 70.
  • the controller 120 forms each laminating unit 218 on the release film 71. As will be described later, each laminating unit 218 can be peeled from the base material 70 by heating the release film 71 after molding.
  • the lamination unit forming apparatus 10 may automatically execute the setting of the base material 70 on the stage 52 and the attachment of the release film 71 to the base material 70.
  • the laminated unit forming device 10 may set the base material 70 or attach the release film 71 by the robot arm 207 of the adhesive coating unit 205. Further, the setting of the base material 70 and the attachment of the release film 71 may be performed manually by a person.
  • the controller 120 moves the stage 52 on which the base material 70 is set below the second modeling unit 24.
  • the insulating layer forming process S10 includes a discharge process S11, a flattening process S13, and a hardening process S15.
  • the controller 120 controls the second modeling unit 24 in the discharge process S11, and discharges the ultraviolet curable resin from the inkjet head 88 onto the base material 70 in the form of a thin film.
  • the controller 120 controls the flattening device 90 of the curing portion 86 in the flattening process S13, and flattens the ultraviolet curable resin discharged onto the base material 70 so that the film thickness becomes uniform by a roller or the like.
  • the controller 120 controls the irradiation device 92 of the curing portion 86 in the curing process S15, and irradiates the flattened ultraviolet curable resin with ultraviolet rays. As a result, the ultraviolet curable resin is cured.
  • the controller 120 repeats the ultraviolet curable resin discharge treatment S11, the flattening treatment S13, and the curing treatment S15 to form the insulating layer 220 of each laminated unit 218 on the base material 70 (see FIG. 5).
  • the controller 120 forms a housing portion 222 for accommodating the electronic component 96 (see FIG. 5) and a pin insertion hole 223 for inserting the probe pin 99 (see FIG. 5).
  • the accommodating portion 222 is, for example, a recess in which the insulating layer 220 is recessed downward.
  • the pin insertion hole 223 is, for example, a cylindrical hole formed along the vertical direction.
  • the controller 120 stops discharging the ultraviolet curable resin from the inkjet head 88 in accordance with the positions of the accommodating portion 222 and the pin insertion hole 223, and forms recesses and holes in the insulating layer 220 to form the accommodating portion. It forms 222 and a pin insertion hole 223.
  • the controller 120 executes the circuit wiring formation process S20, the controller 120 moves the stage 52 below the first modeling unit 22.
  • the controller 120 controls the first modeling unit 22, ejects conductive ink from the inkjet head 76 onto the release film 71, the upper surface of the insulating layer 220, the connection terminal, and the like, and irradiates the ejected conductive ink.
  • the circuit wiring 225 is formed.
  • the controller 120 executes the connection terminal forming process S30, the controller 120 moves the stage 52 below the third modeling unit 200.
  • the controller 120 controls the third modeling unit 200 to apply the conductive paste from the dispenser 202 on the release film 71, the upper surface of the insulating layer 220, the circuit wiring 225, the bottom of the accommodating portion 222, and the pin insertion hole 223. Discharge to the bottom of the The controller 120 forms the connection terminal 227 (see FIG. 5) by heating the discharged conductive paste with the irradiation device 78 of the first modeling unit 22.
  • the controller 120 forms a component connection terminal 227A, a pin terminal 227B, and an electrode pad 227C as a connection terminal 227.
  • the component connection terminal 227A is, for example, a connection terminal 227 connected to the component terminal 96A of the electronic component 96.
  • the pin terminal 227B is, for example, a connection terminal 227 connected to the lower end of the probe pin 99.
  • the electrode pad 227C is, for example, a connection terminal 227 for electrically connecting the electronic circuit of each laminated unit 218 to the upper end of the probe pin 99 and for connecting the three-dimensional laminated electronic device 150 to an external device.
  • the controller 120 When the controller 120 is formed so that the electrode pad 227C connected to the probe pin 99 is exposed from the lower surface of the insulating layer 220, for example, the insulating layer 220 having a through hole is formed first, and the insulating layer 220 is penetrated. A conductive paste is discharged (filled) into the holes to form an electrode pad 227C exposed from the lower surface.
  • the controller 120 may first form the electrode pad 227C on the release film 71, and then fill the periphery of the electrode pad 227C with the insulating layer 220.
  • Each connection terminal 227 is electrically connected by a circuit wiring 225 to form an electronic circuit.
  • the electronic circuit in the present disclosure means, for example, a part or the whole of a circuit to which the above-mentioned electronic component 96, circuit wiring 225, connection terminal 227, probe pin 99, and the like are connected.
  • the controller 120 has the shape, position, number, etc. of the insulating layer 220 formed by the insulating layer forming process S10, the circuit wiring 225 formed by the circuit wiring forming process S20, and the connecting terminals 227 formed by the connecting terminal forming process S30.
  • the first to third laminated units 218A to 218C are collectively modeled on the base material 70 (release film 71) by appropriately changing the above.
  • the controller 120 does not have to form the first to third laminated units 218A to 218C together on the base material 70. Further, the controller 120 may form four or more laminated units 218 together on the base material 70.
  • the controller 120 appropriately executes the mounting process S40 in the process of modeling the laminated unit 218. As shown in FIG. 5, the controller 120 controls the mounting unit 26 to arrange the electronic component 96 in the accommodating portion 222. Further, the controller 120 controls the mounting unit 26 to arrange the probe pin 99 in the pin insertion hole 223.
  • the control program 126 for example, three-dimensional data of each layer obtained by slicing the three-dimensional laminated electronic device 150 (each laminated unit 218) is set. Based on the data of the control program 126, the controller 120 executes each manufacturing process such as the circuit wiring forming process S20 to form the stacking unit 218.
  • the controller 120 detects information such as a layer and a position where the electronic component 96 and the probe pin 99 are arranged based on the data of the control program 126, and based on the detected information, each of the electronic component 96 and the probe pin 99 is used. It is arranged in the stacking unit 218.
  • the controller 120 controls the third modeling unit 200 to discharge the conductive paste, and then controls the mounting unit 26 so that the component terminals 96A of the electronic component 96 come into contact with the conductive paste. Is arranged in the accommodating portion 222. After arranging the electronic component 96, the controller 120 connects the component connection terminal 227A and the component terminal 96A by curing the conductive paste, and fixes the electronic component 96 to the insulating layer 220. After arranging the electronic component 96, the controller 120 may discharge the conductive paste onto the component terminal 96A of the electronic component 96 and cure the component connection terminal 227A.
  • the controller 120 controls, for example, the third modeling unit 200 to discharge the conductive paste to the bottom of the pin insertion hole 223.
  • the controller 120 forms the pin terminal 227B at the bottom of the pin insertion hole 223 by curing the conductive paste with the irradiation device 78 of the first modeling unit 22.
  • the controller 120 controls the mounting unit 26 and arranges the probe pin 99 in the pin insertion hole 223 so that the lower end of the probe pin 99 comes into contact with the hardened pin terminal 227B. In this way, each laminated unit 218 having a desired structure is modeled by three-dimensional laminated modeling.
  • the controller 120 assembles the above-mentioned stacking unit 218 in the assembly step P12.
  • the controller 120 heats the release film 71 on the base material 70 to separate the release film 71 (base material 70) from each laminating unit 218.
  • the laminated unit forming apparatus 10 heats the release film 71 by the fired portion 74 of the first modeling unit 22 to separate each laminated unit 218 from the base material 70 (release film 71).
  • the method of heating the release film 71 is not limited to the method of using the fired portion 74.
  • the lamination unit forming apparatus 10 may include an electric furnace, put the base material 70 in the electric furnace, heat the release film 71, and separate each laminate unit 218 from the release film 71.
  • the laminated unit forming apparatus 10 may peel off the release film 71 by directly applying heat to the base material 70 with an infrared lamp or the like to heat the base material 70.
  • the method for separating the base material 70 and the laminating unit 218 is not limited to the method using the release film 71.
  • a member (support material or the like) that melts by heat may be arranged between the base material 70 and the laminating unit 218, and the member may be melted and separated.
  • the laminated unit 218 may be directly formed on the base material 70 without sticking the release film 71 on the base material 70. That is, it is not necessary to use the release film 71.
  • the intermediate second laminated unit 218B is mounted on the lowermost first laminated unit 218A, and the third laminated unit 218C is mounted on the second laminated unit 218B.
  • the stacking unit forming device 10 automatically executes the work of stacking and assembling the plurality of stacking units 218.
  • the controller 120 controls the firing unit 74 to heat the release film 71, and then controls the robot arm 207 of the adhesive coating unit 205 to peel each laminated unit 218 from the release film 71.
  • the controller 120 controls the robot arm 207 to, for example, peel the first to third laminated units 218A to 218C in order from the release film 71, and assemble them by stacking them on a workbench.
  • the work of separating the base material 70 and each laminated unit 218 and assembling each laminated unit 218 may be performed manually by a person.
  • FIG. 8 shows a state in which the adhesive is applied to the laminated unit 218 after assembly.
  • the robot arm 207 of the adhesive coating unit 205 sandwiches and fixes the assembled laminating unit 218 from both sides in the laminating direction (vertical direction in FIG. 6), for example.
  • Adhesive 231 is stored in the bathtub 206 of the adhesive application unit 205.
  • the stacking unit forming device 10 of the present embodiment assembles one three-dimensional laminated electronic device 150 by bringing the upper surface 233 and the lower surface 234 of each stacking unit 218 into contact with each other.
  • the stacking unit forming apparatus 10 creates a groove 235 (see FIG. 8) on the upper surface 233 of each stacking unit 218 by three-dimensional laminating. Form.
  • the adhesive 231 stored in the bathtub 206 can be permeated into the groove 235 due to the capillary phenomenon.
  • FIG. 9 schematically shows the upper surface 233 of the first laminated unit 218A.
  • FIG. 10 schematically shows a cross section of the laminated unit 218 after assembly in which the adhesive 231 penetrates.
  • FIG. 9 shows the upper surface of the assembled laminated unit 218 shown in FIG. 10 as viewed in the direction of the arrow on the AA line indicated by the alternate long and short dash line.
  • FIGS. 9 and 10 simplify the laminated unit 218 after assembly in order to avoid cluttering the drawings.
  • the groove portion 235 is shown larger than the actual size.
  • the groove portion 235 can be similarly formed on the upper surface 233 of the second laminated unit 218B.
  • the surface forming the groove 235 is not limited to the upper surface 233, but may be the lower surface 234.
  • the groove portion 235 may be formed on both the upper surface 233 and the lower surface 234. Therefore, the groove portion 235 can be provided on various adhesive surfaces for adhering the arbitrary laminating unit 218 and the other laminating unit 218 when assembling the plurality of laminating units 218.
  • a plurality of groove portions 235 are formed on the circular upper surface 233, for example, in a direction parallel to the diameter direction.
  • the depth of the groove portion 235 is preferably, for example, 20 ⁇ m to 150 ⁇ m.
  • the depth of the groove portion 235 is substantially the same as the width of the gap formed by the groove portion 235 when the upper surface 233 and the lower surface 234 are brought into contact with each other.
  • the width of the groove 235 is, for example, about the same as the depth of the groove 235.
  • the groove portion 235 is connected to the pin insertion hole 223 and the accommodating portion 222.
  • the groove portion 235 is connected to a space (see FIG.
  • the groove portion 235 is connected to a space (see FIG. 10) formed by the pin insertion hole 223 of the first stacking unit 218A and the lower surface 234 of the second stacking unit 218B.
  • a gap is formed by the groove portion 235 between the upper surface 233 and the lower surface 234.
  • a gap opening 235A is opened on the side surface 237 of the laminated unit 218 after assembly.
  • the robot arm 207 of the adhesive application unit 205 immerses the side surface 237 of the laminated unit 218 after assembly in the bathtub 206.
  • the robot arm 207 immerses the first to third laminated units 218A to 218C to a depth of, for example, several mm to several cm, and maintains the state for a certain period of time.
  • the adhesive 231 penetrates from the opening 235A of the groove 235 to the deeper part of the groove 235 due to the capillary phenomenon. Therefore, the time for immersing the opening 235A of the side surface 237 in the bathtub 206 is the time required for the adhesive 231 to penetrate into the groove 235.
  • the work of applying the adhesive 231 to each laminating unit 218 may be performed manually by a person.
  • FIG. 11 shows a cross-sectional view of the three-dimensional laminated electronic device 150, that is, a cross-sectional view after the adhesive 231 is cured.
  • the adhesive 231 that has penetrated into the gap is connected to a space formed by the accommodating portion 222 and the pin insertion hole 223, that is, a space wider than the gap formed by the groove portion 235. It has stopped progressing and has hardened at the part where it is. This is because the progress of the adhesive 231 that had been progressing in the narrow groove portion 235 is suppressed by the surface tension of the adhesive 231 at the portion connected to the wide space.
  • the accommodating portion 222 accommodating the electronic component 96 is formed in the first lamination unit 218A.
  • the accommodating portion 222 forms a large space with the lower surface 234 as compared with the gap. According to this, even if the adhesive 231 that has penetrated into the gap (groove 235) tries to move from the gap into the accommodating portion 222, the progress to the accommodating portion 222 is suppressed by the surface tension of the adhesive 231 or the like. .. Therefore, it is possible to suppress the adhesion of the adhesive 231 to the electronic component 96 in the accommodating portion 222.
  • the groove portion 235 can be formed even at a position where it is connected to the accommodating portion 222 and the pin insertion hole 223, that is, it can be provided regardless of the design of the three-dimensional laminated electronic device 150. In other words, if there is a better position where the adhesive strength can be improved, the groove portion 235 can be provided at that position, and the upper surface 233 can be firmly fixed to the lower surface 234.
  • the robot arm 207 is used to immerse a part of the side surface 237 in the adhesive 231 for a certain period of time, and then immerse the opening 235A of the other groove 235 in the bathtub 206.
  • the laminated unit 218 after assembly is rotated.
  • the robot arm 207 modifies the side surface 237 (opening 235A) facing the adhesive 231 to allow the adhesive 231 to penetrate through another opening 235A (eg, opening 235A in the groove 235 on the left side of FIG. 9).
  • the adhesive 231 advancing into the groove 235 fills the space between the laminated units 218 after assembly.
  • the adhesive 231 traveling inward from the opening 235A eliminates the escape of air in the groove 235, the accommodating portion 222, and the like, and may hinder the progress of the adhesive 231. Therefore, as shown in FIGS. 10 and 11, the controller 120 forms a through hole 239 as an air vent at a position on the inside (back side) of the groove 235 with respect to the opening 235A.
  • the through hole 239 is formed, for example, at a position corresponding to the upper portion or a bottom portion of the accommodating portion 222 and the pin insertion hole 223.
  • the through hole 239 connects the internal space of the accommodating portion 222 and the pin insertion hole 223 to the outside of the laminated unit 218 after assembly.
  • the controller 120 can form the through hole 239 at a desired position of the laminated unit 218 by stopping the discharge of the ultraviolet curable resin at a predetermined position.
  • a through hole 239 is formed in the first laminated unit 218A in the insulating layer forming process S10 of the laminated unit forming step P10.
  • the gap (groove 235) is connected to the outside of the first laminating unit 218A through the through hole 239.
  • a through hole 239 is formed in the first laminated unit 218A, and when the first and second laminated units 218A and 218B are assembled, the gap is connected to the outside through the through hole 239.
  • the adhesive 231 can be smoothly penetrated into the gap. Therefore, it is not necessary to finely adjust the position where the adhesive 231 is applied, and the processing content of the controller 120 in the adhesive application step P13 can be simplified.
  • the groove portion 235 having the upper surface 233 recessed in the direction away from the lower surface 234 is formed in the first laminated unit 218A. Then, in the assembly step P12, the groove portion 235 forms a gap between the upper surface 233 and the lower surface 234.
  • the groove portion 235 can be formed by three-dimensional laminating molding, and the upper surface 233 and the lower surface 234 can be separated by the groove portion 235 to form a gap.
  • the groove portion 235 having a desired position, width, depth, etc. can be designed by the three-dimensional laminated molding, and the position and the amount of the adhesive 231 to be applied can be changed.
  • the controller 120 executes the adhesive application step P13 to apply the adhesive 231 to the laminated unit 218 after assembly
  • the controller 120 executes the curing step P15 to cure the adhesive 231.
  • the robot arm 207 includes a heater 241 as a heating device in a portion facing the stacking unit 218.
  • the robot arm 207 immerses one side surface 237 in the adhesive 231 to allow the adhesive 231 to penetrate into the groove 235, and then pulls up the assembled laminating unit 218 from the bathtub 206.
  • the robot arm 207 rotates the laminated unit 218 after assembly so that the opening 235A of the groove 235 filled with the adhesive 231 is directed upward.
  • the adhesive 231 penetrates into the groove 235 due to gravity in addition to the capillary phenomenon. Then, the robot arm 207 heats the laminated unit 218 after assembly by the heater 241. As a result, the adhesive 231 filled in the groove 235 is cured, and the upper surface 233 and the lower surface 234 are adhered to each other.
  • the robot arm 207 After heating, the robot arm 207 elapses for a certain period of time, and after the laminated unit 218 after assembly has cooled, another opening 235A (opening 235A of the groove 235 where the adhesive 231 has not penetrated) is opened again in the bathtub 206.
  • the adhesive 231 is impregnated into the water, and the adhesive is pulled up and then heated by the heater 241.
  • the first to third laminated units 218A to 218C are adhered to and fixed to each other to form the three-dimensional laminated electronic device 150.
  • the robot arm 207 uses, for example, a three-dimensional laminated electronic device 150 in which the release film 71 heated and floated in the assembly step P12 is removed from the base material 70 and the adhesive 231 is cured, that is, the completed adhesive 231 is used as the base material. Place it on 70.
  • the controller 120 can deliver the completed three-dimensional laminated electronic device 150 to the user by carrying out the base material 70 to the outside.
  • the means and procedure for curing the adhesive 231 are not limited to the method using the heater 241 described above.
  • the controller 120 controls the robot arm 207 to fill the groove 235 with the adhesive 231 and then carries the assembled laminating unit 218 to the first modeling unit 22, and the calcined section 74 carries the assembled laminating unit 218. 218 may be heated.
  • the robot arm 207 does not have to include the heater 241.
  • the adhesive 231 may be heated manually by a person using a heater or the like.
  • the laminated unit forming apparatus 10 of the present embodiment fixes each laminated unit 218 with the adhesive 231 by executing the manufacturing process 130 shown in FIG. 4, and manufactures the three-dimensional laminated electronic device 150. Can be done.
  • the method of applying the adhesive 231 to the laminated unit 218 after assembly is not limited to the method of immersing in the bathtub 206 shown in FIG.
  • FIG. 12 shows the configuration of another example adhesive coating unit 205.
  • the adhesive coating unit 205 may include a pair of arms 243 and a nozzle 245 for discharging the adhesive 231.
  • the laminated unit 218 after assembly is sandwiched by a pair of arms 243 from both sides in the laminating direction, and the opening 235A of the groove 235 into which the adhesive 231 is to be introduced faces the upper surface.
  • the adhesive coating unit 205 permeates the adhesive 231 into the groove 235 by discharging the adhesive 231 from the nozzle 245 to the opening 235A. In this case, the adhesive 231 can penetrate deep into the groove 235 by gravity in addition to the capillary phenomenon.
  • FIG. 13 is a diagram schematically showing the upper surface 233 of the first laminated unit 218A of another example.
  • the groove portion 235 may have a configuration in which the width of the upper surface 233 in the plane direction is widened and the plurality of groove portions 235 shown in FIG. 9 are combined into one.
  • the depth of the groove 235 (height in the direction orthogonal to the paper surface of FIG. 13) to, for example, several ⁇ m to several hundred ⁇ m, the adhesive can be permeated into the groove 235 by the capillary phenomenon. it can.
  • FIG. 14 is a diagram schematically showing the upper surface 233 of the first laminated unit 218A according to the second embodiment.
  • FIG. 15 is a cross-sectional view schematically showing a cross section of the laminated unit 218 after assembly according to the second embodiment.
  • the groove portion 235 is formed by three-dimensional laminated molding, and the upper surface 233 is recessed in the direction away from the lower surface 234.
  • a gap is formed by forming a protrusion 247 on the upper surface 233.
  • the same components as those in the first embodiment will be designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the controller 120 discharges, for example, an ultraviolet curable resin and laminates them to form a protrusion 247 on the upper surface 233.
  • the protrusion 247 formed on the upper surface 233 of the first laminated unit 218A comes into contact with the lower surface 234 of the second laminated unit 218B, and the upper surface 233 of the first laminated unit 218A and the lower surface 234 of the second laminated unit 218B come into contact with each other. Form a gap between them.
  • the protrusion 247 of the upper surface 233 of the second laminated unit 218B forms a gap with the lower surface 234 of the third laminated unit 218C.
  • the height (protrusion amount) of the protrusion 247 is preferably, for example, 20 ⁇ m to 150 ⁇ m.
  • the number of protrusions 247 is not particularly limited, but by providing a plurality of protrusions at distant positions, gaps having a more uniform width can be formed.
  • one continuous gap can be formed between the upper surface 233 and the lower surface 234.
  • the adhesive 231 can be permeated through the opening 235A on one side of the side surface 237, so that the adhesive 231 can be applied to the entire gap, that is, the entire upper surface 233 and lower surface 234.
  • the opening 235A on one side of the side surface 237 is closed with the adhesive 231, the air in the gap can be discharged from the opening 235A on the other side surface. Therefore, even if the through hole 239 shown in FIG. 11 is not provided, the air in the gap can be evacuated and the adhesive 231 can smoothly enter the gap by the capillary phenomenon.
  • a protrusion 247 protruding in a direction approaching the lower surface 234 is formed on the upper surface 233.
  • the protrusion 247 is brought into contact with the lower surface 234 to form a gap between the upper surface 233 and the lower surface 234.
  • a protrusion 247 is formed on the upper surface 233 by three-dimensional laminated molding, and by bringing the protrusion 247 into contact with the lower surface 234, the upper surface 233 and the lower surface 234 can be separated to form a gap.
  • the protrusions 247 such as a desired position, height, and number can be designed by the three-dimensional laminated molding, and the position and the amount of the adhesive 231 to be applied can be changed.
  • the through hole 239 for the air through hole shown in FIG. 11 may be provided in the stacking unit 218.
  • the protrusion 247 may be provided on the lower surface 234.
  • the protrusion 247 may be provided on both the upper surface 233 and the lower surface 234.
  • both the groove portion 235 and the protrusion portion 247 may be formed in the laminated unit 218 by combining the first embodiment and the second embodiment.
  • FIG. 16 is a diagram showing a manufacturing process according to the third embodiment.
  • the third laminated unit 218C is not shown in FIG.
  • a gap is formed by the flattening process S13 shown in FIG. More specifically, as shown in FIG. 16, in the discharge process S11 in the manufacturing process 130 (see FIG. 4), the second modeling unit 24 is formed when the insulating layer 220 (see FIG. 7) of the first laminated unit 218A is formed. 249 droplets of the ultraviolet curable resin are ejected from the inkjet head 88 of the above.
  • the rollers of the flattening device 90 smooth and flatten the unevenness formed by the discharged droplets 249.
  • the flattening process S13 depending on various conditions such as the frequency of flattening by the flattening device 90, the structure of the flattening device 90, the load applied from the flattening device 90 to the droplet 249, and the moving speed of the flattening device 90. , The accuracy of the flattening process S13 (the accuracy of forming a horizontal plane) is different. Therefore, the upper surface 233 of the first stacking unit 218A, which has been repeatedly executed with the discharge process S11, the flattening process S13, and the hardening process S15, has irregularities corresponding to the accuracy of the flattening process S13 (hereinafter referred to as the first uneven portion 251). ) Is formed.
  • the first uneven portion 251 forms, for example, a wavy curved upper surface 233 as shown in FIG.
  • the height difference of the first uneven portion 251 is, for example, 1 ⁇ m to 10 ⁇ m.
  • the upper surface 233 of the arbitrary laminating unit 218 brings the first uneven portion 251 into contact with the lower surface 234 of the other laminating unit 218, so that the lower surface 234 has a gap corresponding to the height difference of the first uneven portion 251.
  • a gap is formed by using the first uneven portion 251 formed in the flattening treatment S13, and the adhesive 231 is permeated into the gap by a capillary phenomenon to perform adhesion.
  • the first laminated unit 218A has an insulating layer 220 having an upper surface 233.
  • the ultraviolet curable resin an example of a curable resin
  • the ultraviolet curable resin discharged by the discharge process S11 is flattened by the flattening device 90.
  • the flattening treatment S13 and the curing treatment S15 for curing the ultraviolet curable resin flattened by the flattening treatment S13 are included.
  • the discharge process S11, the flattening process S13, and the curing process S15 are repeatedly executed to form the insulating layer 220, and the flattening process S13 forms the first uneven portion 251 on the upper surface 233 of the insulating layer 220. Then, in the assembly step P12, a gap is formed by bringing the first uneven portion 251 formed on the upper surface 233 into contact with the lower surface 234.
  • the ultraviolet curable resin ejected in the three-dimensional laminated molding is flattened by a roller or a squeegee, a certain amount of the ejected ultraviolet curable resin droplets 249 are flattened, while unevenness is formed according to the flattening accuracy. .. Therefore, the first uneven portion 251 formed by this flattening can be intentionally formed, and the upper surface 233 and the lower surface 234 can be separated from each other by using the first uneven portion 251 to form a gap. As a result, the position and amount of the adhesive 231 to be applied can be changed depending on the size of the unevenness formed by the flattening, the height difference, and the like.
  • a through hole 239 for an air escape hole shown in FIG. 11 may be provided in each laminated unit 218. Further, at least one of the groove portion 235 of the first embodiment and the protrusion 247 of the second embodiment may be combined with the first uneven portion 251 by the flattening treatment S13 to form a gap. Further, in the first embodiment, the second embodiment, and the fourth embodiment described later, it is not necessary to execute the flattening process S13.
  • FIG. 17 is a diagram showing a manufacturing process according to the fourth embodiment.
  • a rough surface film is used as the release film 71 to form a gap. More specifically, fine irregularities 255 are formed on the upper surface of the rough surface film 253 shown in FIG.
  • the surface roughness Rz of the rough surface film 253 is, for example, 1.2 ⁇ m to 8.0 ⁇ m.
  • the rough surface film 253 is, for example, a film containing a copper foil as a main component, and is peeled off from the base material 70 by applying heat.
  • the rough surface film 253 is not limited to the copper foil film, and may be a resin film that has been blasted to roughen the surface. Further, instead of using a film-like member, a metal plate having a rough surface or the like may be used.
  • the second modeling unit 24 249 droplets of the ultraviolet curable resin are ejected from the inkjet head 88 of the above onto the rough surface film 253.
  • the controller 120 repeatedly executes the discharge process S11, the flattening process S13, and the curing process S15 (see FIG. 4) to form the insulating layer 220 of the first laminated unit 218A on the rough surface film 253.
  • a second uneven portion 257 corresponding to the unevenness 255 of the rough surface film 253 is formed on the surface of the first laminated unit 218A facing the rough surface film 253.
  • the surface facing the rough surface film 253 is brought into contact with the lower surface 234 of the second laminated unit 218B as the upper surface 233 of the first laminated unit 218A.
  • a gap corresponding to the height of the second uneven portion 257 can be formed between the upper surface 233 and the lower surface 234.
  • FIG. 17 omits the illustration of the third laminated unit 218C.
  • the first laminated unit 218A is formed on the rough surface film 253 having the uneven surface 255, and the second uneven surface portion 257 is formed on the upper surface 233 facing the rough surface film 253.
  • the second uneven portion 257 formed on the upper surface 233 is brought into contact with the lower surface 234 to form a gap between the upper surface 233 and the lower surface 234.
  • the second uneven portion 257 corresponding to the roughness of the rough surface film 253 is formed on the surface facing the rough surface film 253. Can be formed. Therefore, the second uneven portion 257 formed by the rough surface film 253 can be intentionally formed, and the upper surface 233 and the lower surface 234 can be separated from each other by using the second uneven portion 257 to form a gap. .. As a result, the position and amount of the adhesive 231 applied can be changed depending on the size of the unevenness formed by the rough surface film 253, the height difference, and the like.
  • a through hole 239 for an air escape hole shown in FIG. 11 may be provided in each laminated unit 218.
  • a gap is formed by combining at least one of the groove portion 235 of the first embodiment, the protrusion 247 of the second embodiment, the first uneven portion 251 of the third embodiment, and the second uneven portion 257 of the fourth embodiment. You may.
  • the intermediate second laminated unit 218B is formed on the rough surface film 253, the second uneven portion 257 is formed on the lower surface 234, and the upper surface of the second laminated unit 218B is leveled by the flattening device 90. 1 Concavo-convex portion 251 may be formed.
  • the manufacturing process 130 of the laminated unit 218 of each of the above embodiments includes the laminated unit forming step P10, the assembling step P12, the adhesive coating step P13, and the curing step P15.
  • the laminated unit forming step P10 the first laminated unit 218A and the second laminated unit 218B are formed by three-dimensional laminated modeling.
  • the assembly step P12 a gap is provided between the upper surface 233 of the first laminated unit 218A and the lower surface 234 of the second laminated unit 218B, and the first laminated unit 218A and the second laminated unit 218B are combined.
  • the adhesive 231 is applied to the opening 235A of the gap, and the adhesive 231 penetrates into the gap through the opening 235A to penetrate the upper surface 233. And the adhesive 231 is applied to the lower surface 234.
  • the adhesive 231 is cured by applying heat to the adhesive 231 applied to the upper surface 233 and the lower surface 234, and the second laminated unit 218B is fixed to the first laminated unit 218A.
  • a gap is provided between the upper surface 233 and the lower surface 234.
  • the applied adhesive 231 can be permeated into the gap by a capillary phenomenon or the like.
  • the second laminated unit 218B can be fixed to the first laminated unit 218A by applying the adhesive 231 to the upper surface 233 and the lower surface 234 and applying heat to the adhesive 231 to cure it. ..
  • the adhesive 231 can be stopped only in the gap where the capillary phenomenon or the like acts, and the first laminated unit 218A and the second laminated unit 218B can be stopped. It is possible to suppress the adhesion of the adhesive 231 to the provided electronic circuit (electronic component 96, probe pin 99, circuit wiring 225, connection terminal 227, etc.) and suppress the occurrence of defects such as insulation failure. Further, since the adhesive 231 can be permeated into the gap by applying the adhesive 231 to the opening 235A of the gap, it is necessary to directly apply the adhesive 231 to the adhesive surfaces (upper surface 233 and lower surface 234).
  • the electronic circuit of the present disclosure includes, for example, a connection terminal 227 connected to an electronic component 96, an electronic component 96, etc., a circuit wiring 225 connecting the connection terminal 227 to another connection terminal 227, etc., and a circuit wiring 225. It is a concept that includes at least one member each constituting an electrically connected circuit in the laminated unit 218, such as a through hole connected to the circuit wiring 225 of the above and a probe pin 99 connecting between the laminated units 218.
  • the upper surface 233 is an example of the first contact surface.
  • the lower surface 234 is an example of the second contact surface.
  • the discharge process S11 is an example of a discharge process.
  • the flattening process S13 is an example of a flattening step.
  • the curing treatment S15 is an example of a curing step.
  • Example of change The present disclosure is not limited to each of the above embodiments, and various changes can be made without departing from the spirit of the present.
  • the method of forming the gap is not limited to the method shown in the first to fourth embodiments described above.
  • a metal spacer may be arranged between the upper surface 233 and the lower surface 234 to form a gap.
  • the first and second contact surfaces in the present disclosure are not defined by the direction such as the upper surface 233 and the lower surface 234, but are surfaces for adhering the two laminated units 218.
  • the right side surface of the first laminated unit 218A becomes the first bonding surface
  • the left side surface of the second laminated unit 218B becomes the second contact. It becomes a face.
  • the upper surface 233 is adopted as the first contact surface
  • the lower surface 234 may be adopted as the first contact surface. That is, at least one of the groove portion 235, the protrusion portion 247, the first uneven portion 251 and the second uneven portion 257 may be formed on the lower surface 234.
  • the curable resin of the present disclosure is not limited to the ultraviolet curable resin, and may be, for example, a thermoplastic resin or a thermosetting resin.
  • the stacking unit 218 does not have to include the accommodating portion 222 accommodating the electronic component 96 and the pin insertion hole 223 accommodating the probe pin 99.
  • the stacking unit 218 may have an electronic component 96 thinner than the gap or a short probe pin 99 surface-mounted on the upper surface 233.
  • the configuration of the laminated unit forming device 10 described above is an example, and can be changed as appropriate.
  • the stacking unit forming device 10 does not have to include a mounting unit 26 for mounting the electronic component 96.
  • a fused deposition modeling method or the like can be adopted in addition to the inkjet method.
  • Laminated unit forming device 90 Flattening device 96 Electronic components 130 Manufacturing process 218A 1st laminated unit 218B 2nd laminated unit 220 Insulation layer 222 Accommodating part 231 Adhesive 233 Upper surface (first contact surface) 234 Bottom surface (second contact surface) 235 Groove 235A Opening 239 Through hole 247 Protrusion 251 1st uneven part 253 Rough surface film 257 2nd uneven part P10 Laminating unit forming process P12 Assembly process P13 Adhesive application process P15 Hardening process S11 Discharge process (discharge process) S13 Flattening process (flattening step) S15 Hardening process (hardening process)

Abstract

The present invention provides a method for bonding multilayer units, wherein an adhesive is able to be applied to bonding surfaces of the multilayer units, while suppressing adhesion of the adhesive to an electronic circuit. A method for bonding multilayer units according to the present invention comprises: a multilayer unit formation step wherein a first multilayer unit and a second multilayer unit are formed by three-dimensional deposition modeling; an assembly step wherein the first multilayer unit and the second multilayer unit are assembled with each other, while forming a space between a first bonding surface of the first multilayer unit and a second bonding surface of the second multilayer unit; an adhesive application step wherein an adhesive is applied to the opening of the space, while maintaining the first multilayer unit and the second multilayer unit in the assembled state, so that the adhesive enters into the space from the opening and is applied to the first bonding surface and the second bonding surface; and a curing step wherein the adhesive applied to the first bonding surface and the second bonding surface is cured by means of application of heat, thereby affixing the second multilayer unit to the first multilayer unit.

Description

積層ユニットの接着方法Adhesion method of laminated unit
 本開示は、複数の積層ユニットを接着する方法に関するものである。 The present disclosure relates to a method of adhering a plurality of laminated units.
 従来、3次元積層造形に関し、種々の技術が提案されている。例えば、下記特許文献1には、3次元積層造形により電子部品や電子回路を含んだ積層ユニットを形成する技術が開示されている。特許文献1に記載された製造方法では、任意の積層ユニットの上に、他の積層ユニットを搭載し、2つの積層ユニットを互いに固定することで、1つの3次元積層電子デバイスを製造している。 Conventionally, various techniques have been proposed for three-dimensional laminated modeling. For example, Patent Document 1 below discloses a technique for forming a laminated unit including electronic components and electronic circuits by three-dimensional laminated modeling. In the manufacturing method described in Patent Document 1, one three-dimensional laminated electronic device is manufactured by mounting another laminated unit on an arbitrary laminated unit and fixing the two laminated units to each other. ..
国際公開第WO/2019/102522号International Publication No. WO / 2019/102522
 上記した2つの積層ユニットを接着剤で固定する場合、例えば、ノズルから積層ユニットの接着面へ接着剤を吐出する方法では、積層ユニットの電子回路などに接着剤が付着する可能性があり、導通不良などが発生する問題がある。そのため、電子回路などへの接着剤の付着を避けるため、積層ユニットの構造などに応じて、接着剤を吐出する位置や塗布する量を細かく調整する必要が生じる。 When fixing the two laminated units with an adhesive, for example, in the method of ejecting the adhesive from the nozzle to the adhesive surface of the laminated unit, the adhesive may adhere to the electronic circuit of the laminated unit, and the adhesive is conductive. There is a problem that defects occur. Therefore, in order to prevent the adhesive from adhering to the electronic circuit or the like, it is necessary to finely adjust the position where the adhesive is discharged and the amount to be applied according to the structure of the laminated unit and the like.
 本開示は、上述した点を鑑みてなされたものであり、接着剤が電子回路に付着することを抑制しつつ、積層ユニットの接着面に接着剤を塗布することができる積層ユニットの接着方法を提供することを課題とする。 The present disclosure has been made in view of the above points, and is a method for adhering a laminated unit capable of applying an adhesive to the adhesive surface of the laminated unit while suppressing the adhesive from adhering to an electronic circuit. The challenge is to provide.
 本明細書は、第1積層ユニット及び第2積層ユニットを、3次元積層造形により形成する積層ユニット形成工程と、前記第1積層ユニットの第1接着面と前記第2積層ユニットの第2接着面との間に隙間を設けて、前記第1積層ユニットと前記第2積層ユニットを組み合わせる組立工程と、前記第1積層ユニットと前記第2積層ユニットを組み合わせた状態で、前記隙間の開口に接着剤を塗布し、前記開口から前記隙間内へ前記接着剤を浸透させ前記第1接着面と前記第2接着面に前記接着剤を塗布する接着剤塗布工程と、前記第1接着面と前記第2接着面に塗布した前記接着剤に熱を加えることで前記接着剤を硬化させ、前記第1積層ユニットに対して前記第2積層ユニットを固定する硬化工程と、を含む積層ユニットの接着方法を開示する。 This specification describes a laminated unit forming step of forming a first laminated unit and a second laminated unit by three-dimensional laminated molding, and a first adhesive surface of the first laminated unit and a second adhesive surface of the second laminated unit. An adhesive is provided in the opening of the gap in the assembling step of combining the first laminated unit and the second laminated unit with a gap between the first laminated unit and the second laminated unit. The adhesive is applied to the first adhesive surface and the second adhesive surface by infiltrating the adhesive from the opening into the gap, and the first adhesive surface and the second adhesive surface. Disclosed is a method for adhering a laminated unit including a curing step of curing the adhesive by applying heat to the adhesive applied to the adhesive surface and fixing the second laminated unit to the first laminated unit. To do.
 本開示によれば、第1及び第2積層ユニットを組み合わせる際に、2つの積層ユニットの第1及び第2接着面の間に隙間を設けておく。その隙間の開口に接着剤を塗布することで、塗布した接着剤を毛管現象等により隙間内へ浸透させることができる。特に、3次元積層造形では、例えば、数十μmの隙間など、毛管現象を発生させるのに必要な極めて狭い隙間を精度良く容易に形成できる。そして、第1及び第2接着面に接着剤を塗布しておき、その接着剤に熱を加えて硬化させることで、第1積層ユニットに対して第2積層ユニットを固定することができる。これにより、開口から隙間内へ接着剤を浸透させる一方、毛管現象等が作用する隙間内だけで接着剤の進行を止めることができ、第1積層ユニットや第2積層ユニットに設けられた電子回路に接着剤が付着することを抑制し、絶縁不良などの不具合の発生を抑制できる。また、隙間の開口に接着剤を塗布することで、隙間内へ接着剤を浸透させることができるため、接着面へ接着剤を直接塗布等する必要がなくなり、積層ユニットの構造などに応じて、接着剤を塗布する位置や量を細かく調整する必要がなくなる。 According to the present disclosure, when combining the first and second laminated units, a gap is provided between the first and second adhesive surfaces of the two laminated units. By applying an adhesive to the opening of the gap, the applied adhesive can be permeated into the gap by a capillary phenomenon or the like. In particular, in the three-dimensional laminated molding, it is possible to accurately and easily form an extremely narrow gap necessary for causing a capillary phenomenon, for example, a gap of several tens of μm. Then, the second laminated unit can be fixed to the first laminated unit by applying an adhesive to the first and second adhesive surfaces and applying heat to the adhesive to cure the adhesive. As a result, while the adhesive permeates through the opening into the gap, the progress of the adhesive can be stopped only in the gap where the capillary phenomenon or the like acts, and the electronic circuit provided in the first laminated unit or the second laminated unit. It is possible to suppress the adhesion of the adhesive to the surface and suppress the occurrence of defects such as poor insulation. Further, by applying the adhesive to the opening of the gap, the adhesive can be permeated into the gap, so that it is not necessary to directly apply the adhesive to the adhesive surface, and depending on the structure of the laminated unit, etc. There is no need to finely adjust the position and amount of adhesive applied.
第1実施形態に係わる積層ユニット形成装置を示す図である。It is a figure which shows the laminated unit forming apparatus which concerns on 1st Embodiment. 第1実施形態に係わる制御装置を示すブロック図である。It is a block diagram which shows the control device which concerns on 1st Embodiment. 第1実施形態に係わる制御装置を示すブロック図である。It is a block diagram which shows the control device which concerns on 1st Embodiment. 第1実施形態に係わる3次元積層電子デバイスの製造工程の流れを示すフローチャートである。It is a flowchart which shows the flow of the manufacturing process of the 3D laminated electronic device which concerns on 1st Embodiment. 第1実施形態に係わる3次元積層電子デバイスの製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the 3D laminated electronic device which concerns on 1st Embodiment. 第1実施形態に係わる3次元積層電子デバイスの製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the 3D laminated electronic device which concerns on 1st Embodiment. 第1実施形態に係わる3次元積層電子デバイスを示す断面図である。It is sectional drawing which shows the 3D laminated electronic device which concerns on 1st Embodiment. 第1実施形態に係わる組み立て後の積層ユニットに接着剤を塗布する状態を示す図である。It is a figure which shows the state which applies the adhesive to the laminated unit after assembly which concerns on 1st Embodiment. 第1実施形態に係わる第1積層ユニットの上面を模式的に示す図である。It is a figure which shows typically the upper surface of the 1st laminated unit which concerns on 1st Embodiment. 第1実施形態に係わる接着剤が浸透する組み立て後の積層ユニットの断面を模式的に示す断面図である。It is sectional drawing which shows typically the cross section of the laminated unit after assembly which the adhesive which concerns on 1st Embodiment permeates. 第1実施形態に係わる3次元積層電子デバイスの断面を模式的に示す断面図である。It is sectional drawing which shows typically the cross section of the 3D laminated electronic device which concerns on 1st Embodiment. 別例の接着剤塗布ユニットの構成を示す模式図である。It is a schematic diagram which shows the structure of the adhesive coating unit of another example. 別例の第1積層ユニットの上面を模式的に示す図である。It is a figure which shows typically the upper surface of the 1st laminated unit of another example. 第2実施形態に係わる第1積層ユニットの上面を模式的に示す図である。It is a figure which shows typically the upper surface of the 1st laminated unit which concerns on 2nd Embodiment. 第2実施形態に係わる組み立て後の積層ユニットの断面を模式的に示す断面図である。It is sectional drawing which shows typically the cross section of the laminated unit after assembly which concerns on 2nd Embodiment. 第3実施形態に係わる製造工程を示す図である。It is a figure which shows the manufacturing process which concerns on 3rd Embodiment. 第4実施形態に係わる製造工程を示す図である。It is a figure which shows the manufacturing process which concerns on 4th Embodiment.
 以下、本開示の好適な第1実施形態を、図面を参照しつつ詳細に説明する。 Hereinafter, a preferred first embodiment of the present disclosure will be described in detail with reference to the drawings.
(1)積層ユニット形成装置の構成
 図1に積層ユニット形成装置10を示す。積層ユニット形成装置10は、搬送装置20と、第1造形ユニット22と、第2造形ユニット24と、装着ユニット26と、第3造形ユニット200と、接着剤塗布ユニット205と、制御装置27(図2,図3参照)を備える。それら搬送装置20、第1造形ユニット22、第2造形ユニット24、装着ユニット26、第3造形ユニット200、接着剤塗布ユニット205は、積層ユニット形成装置10のベース28の上に配置されている。ベース28は、平面視において概して長方形状をなしている。以下の説明では、ベース28の長手方向をX軸方向、ベース28の短手方向をY軸方向、X軸方向及びY軸方向の両方に直交する方向をZ軸方向と称して説明する。
(1) Configuration of Laminated Unit Forming Device FIG. 1 shows the laminated unit forming device 10. The stacking unit forming device 10 includes a transport device 20, a first modeling unit 22, a second modeling unit 24, a mounting unit 26, a third modeling unit 200, an adhesive coating unit 205, and a control device 27 (FIG. 6). 2, see Fig. 3). The transport device 20, the first modeling unit 22, the second modeling unit 24, the mounting unit 26, the third modeling unit 200, and the adhesive coating unit 205 are arranged on the base 28 of the stacking unit forming device 10. The base 28 is generally rectangular in plan view. In the following description, the longitudinal direction of the base 28 will be referred to as the X-axis direction, the lateral direction of the base 28 will be referred to as the Y-axis direction, and the direction orthogonal to both the X-axis direction and the Y-axis direction will be referred to as the Z-axis direction.
 搬送装置20は、X軸スライド機構30と、Y軸スライド機構32とを備えている。そのX軸スライド機構30は、X軸スライドレール34と、X軸スライダ36とを有している。X軸スライドレール34は、X軸方向に延びるように、ベース28の上に配設されている。X軸スライダ36は、X軸スライドレール34によって、X軸方向にスライド可能に保持されている。さらに、X軸スライド機構30は、電磁モータ38(図2参照)を有しており、電磁モータ38の駆動により、X軸スライダ36をX軸方向の任意の位置に移動させる。また、Y軸スライド機構32は、Y軸スライドレール50と、ステージ52とを有している。Y軸スライドレール50は、Y軸方向に延びるように、ベース28の上に配設されている。Y軸スライドレール50の一端部は、X軸スライダ36に連結されている。そのため、Y軸スライドレール50は、X軸方向に移動可能とされている。ステージ52は、Y軸スライドレール50によって、Y軸方向にスライド可能に保持されている。Y軸スライド機構32は、電磁モータ56(図2参照)を有しており、電磁モータ56の駆動により、ステージ52をY軸方向の任意の位置に移動させる。これにより、ステージ52は、X軸スライド機構30及びY軸スライド機構32の駆動により、ベース28上の任意の位置に移動する。 The transport device 20 includes an X-axis slide mechanism 30 and a Y-axis slide mechanism 32. The X-axis slide mechanism 30 has an X-axis slide rail 34 and an X-axis slider 36. The X-axis slide rail 34 is arranged on the base 28 so as to extend in the X-axis direction. The X-axis slider 36 is slidably held in the X-axis direction by the X-axis slide rail 34. Further, the X-axis slide mechanism 30 has an electromagnetic motor 38 (see FIG. 2), and the X-axis slider 36 is moved to an arbitrary position in the X-axis direction by driving the electromagnetic motor 38. Further, the Y-axis slide mechanism 32 has a Y-axis slide rail 50 and a stage 52. The Y-axis slide rail 50 is arranged on the base 28 so as to extend in the Y-axis direction. One end of the Y-axis slide rail 50 is connected to the X-axis slider 36. Therefore, the Y-axis slide rail 50 is movable in the X-axis direction. The stage 52 is slidably held in the Y-axis direction by the Y-axis slide rail 50. The Y-axis slide mechanism 32 has an electromagnetic motor 56 (see FIG. 2), and the stage 52 is moved to an arbitrary position in the Y-axis direction by driving the electromagnetic motor 56. As a result, the stage 52 moves to an arbitrary position on the base 28 by driving the X-axis slide mechanism 30 and the Y-axis slide mechanism 32.
 ステージ52は、基台60と、保持装置62と、昇降装置64とを有している。基台60は、平板状に形成され、上面に基材70が載置される。保持装置62は、X軸方向における基台60の両側部に設けられている。保持装置62は、基台60に載置された基材70のX軸方向の両縁部を挟むことで、基台60に対して基材70を固定的に保持する。また、昇降装置64は、基台60の下方に配設されており、基台60をZ軸方向で昇降させる。 The stage 52 has a base 60, a holding device 62, and an elevating device 64. The base 60 is formed in a flat plate shape, and the base material 70 is placed on the upper surface. The holding devices 62 are provided on both sides of the base 60 in the X-axis direction. The holding device 62 holds the base material 70 fixedly to the base 60 by sandwiching both edges of the base material 70 placed on the base 60 in the X-axis direction. Further, the elevating device 64 is arranged below the base 60, and raises and lowers the base 60 in the Z-axis direction.
 第1造形ユニット22は、ステージ52の基台60に載置された基材70の上に回路配線を造形するユニットであり、第1印刷部72と、焼成部74とを有している。第1印刷部72は、インクジェットヘッド76(図2参照)を有しており、基台60に載置された基材70の上に、導電性インクを線状に吐出する。導電性インクは、例えば、主成分としてナノメートルサイズの金属(銀など)の微粒子を溶媒中に分散させたものを含み、熱により焼成されることで硬化する。金属ナノ粒子の表面は、例えば、分散剤によりコーティングされており、溶媒中での凝集が抑制されている。 The first modeling unit 22 is a unit for modeling circuit wiring on a base material 70 placed on a base 60 of a stage 52, and has a first printing unit 72 and a firing unit 74. The first printing unit 72 has an inkjet head 76 (see FIG. 2), and linearly ejects conductive ink onto the base material 70 placed on the base 60. The conductive ink contains, for example, nanometer-sized metal (silver or the like) fine particles dispersed in a solvent as a main component, and is cured by being fired by heat. The surface of the metal nanoparticles is, for example, coated with a dispersant to suppress agglutination in the solvent.
 尚、インクジェットヘッド76は、例えば、圧電素子を用いたピエゾ方式によって複数のノズルから導電性インクを吐出する。また、導電性インクを吐出する装置としては、複数のノズルを備えるインクジェットヘッドに限らず、例えば、1つのノズルを備えたディスペンサーでも良い。また、導電性インクに含まれる金属ナノ粒子の種類は、銀に限らず、銅、金等でも良い。また、導電性インクに含まれる金属ナノ粒子の種類数は、1種類に限らず、複数種類でも良い。 The inkjet head 76 ejects conductive ink from a plurality of nozzles by, for example, a piezo method using a piezoelectric element. Further, the device for ejecting the conductive ink is not limited to the inkjet head provided with a plurality of nozzles, and for example, a dispenser provided with one nozzle may be used. Further, the type of metal nanoparticles contained in the conductive ink is not limited to silver, and may be copper, gold, or the like. Further, the number of types of metal nanoparticles contained in the conductive ink is not limited to one, and may be a plurality of types.
 焼成部74は、照射装置78(図2参照)を有している。照射装置78は、例えば、基材70の上に吐出された導電性インクを加熱する赤外線ヒータを備えている。導電性インクは、赤外線ヒータから熱を付与されることで焼成され、回路配線を形成する。ここでいう導電性インクの焼成とは、例えば、エネルギーを付与することによって、溶媒の気化や金属ナノ粒子の保護膜、つまり、分散剤の分解等が行われ、金属ナノ粒子が接触又は融着することで、導電率が高くなる現象である。そして、導電性インクを焼成することで、回路配線を形成することができる。尚、導電性インクを加熱する装置は、赤外線ヒータに限らない。例えば、積層ユニット形成装置10は、導電性インクを加熱する装置として、赤外線ランプ、レーザ光を導電性インクに照射するレーザ照射装置、あるいは導電性インクを吐出された基材70を炉内に入れて加熱する電気炉を備えても良い。 The firing unit 74 has an irradiation device 78 (see FIG. 2). The irradiation device 78 includes, for example, an infrared heater that heats the conductive ink ejected onto the base material 70. The conductive ink is fired by applying heat from an infrared heater to form a circuit wiring. In the firing of the conductive ink referred to here, for example, by applying energy, the solvent is vaporized and the protective film of the metal nanoparticles, that is, the dispersant is decomposed, and the metal nanoparticles are contacted or fused. This is a phenomenon in which the conductivity is increased. Then, the circuit wiring can be formed by firing the conductive ink. The device for heating the conductive ink is not limited to the infrared heater. For example, in the lamination unit forming device 10, as a device for heating the conductive ink, an infrared lamp, a laser irradiation device that irradiates the conductive ink with laser light, or a base material 70 to which the conductive ink is discharged is placed in the furnace. It may be provided with an electric furnace for heating.
 また、第2造形ユニット24は、基台60に載置された基材70の上に絶縁層を造形するユニットであり、第2印刷部84と、硬化部86とを有している。第2印刷部84は、インクジェットヘッド88(図2参照)を有しており、基台60に載置された基材70の上に紫外線硬化樹脂を吐出する。紫外線硬化樹脂は、紫外線の照射により硬化する樹脂である。尚、インクジェットヘッド88が紫外線硬化樹脂を吐出する方式は、例えば、圧電素子を用いたピエゾ方式でもよく、樹脂を加熱して気泡を発生させ複数のノズルから吐出するサーマル方式でも良い。 Further, the second modeling unit 24 is a unit for forming an insulating layer on the base material 70 placed on the base 60, and has a second printing unit 84 and a curing unit 86. The second printing unit 84 has an inkjet head 88 (see FIG. 2), and discharges an ultraviolet curable resin onto a base material 70 placed on a base 60. The ultraviolet curable resin is a resin that is cured by irradiation with ultraviolet rays. The method in which the inkjet head 88 discharges the ultraviolet curable resin may be, for example, a piezo method using a piezoelectric element, or a thermal method in which the resin is heated to generate bubbles and discharged from a plurality of nozzles.
 硬化部86は、平坦化装置90(図2参照)と、照射装置92(図2参照)とを有している。平坦化装置90は、インクジェットヘッド88によって基材70の上に吐出された紫外線硬化樹脂の上面を平坦化するものである。平坦化装置90は、例えば、紫外線硬化樹脂の表面を均しながら余剰分の樹脂を、ローラもしくはブレードによって掻き取ることで、紫外線硬化樹脂の厚みを均一にさせる。また、照射装置92は、光源として水銀ランプもしくはLEDを備えており、基材70の上に吐出された紫外線硬化樹脂に紫外線を照射する。これにより、基材70の上に吐出された紫外線硬化樹脂が硬化し、絶縁層を形成することができる。 The hardened portion 86 has a flattening device 90 (see FIG. 2) and an irradiation device 92 (see FIG. 2). The flattening device 90 flattens the upper surface of the ultraviolet curable resin discharged onto the base material 70 by the inkjet head 88. The flattening device 90 makes the thickness of the ultraviolet curable resin uniform by, for example, scraping off the excess resin with a roller or a blade while leveling the surface of the ultraviolet curable resin. Further, the irradiation device 92 includes a mercury lamp or an LED as a light source, and irradiates the ultraviolet curable resin discharged on the base material 70 with ultraviolet rays. As a result, the ultraviolet curable resin discharged onto the base material 70 is cured, and an insulating layer can be formed.
 また、装着ユニット26は、基台60に載置された基材70の上に、電子部品やプローブピンを装着するユニットであり、供給部100と、装着部102とを有している。供給部100は、テーピング化された電子部品を1つずつ送り出すテープフィーダ110(図2参照)を複数有しており、各供給位置において、電子部品を供給する。さらに、供給部100は、プローブピンが立った状態で並べられたトレイ201(図2参照)を有しており、トレイ201からピックアップされることが可能な状態でプローブピンを供給する。電子部品は、例えば、温度センサ等のセンサ素子である。また、プローブピンは、1つの積層ユニットの電子回路と、他の積層ユニットの電子回路とを電気的に接続する部材である。プローブピンとしては、軸方向へストローク可能なものが好ましい。ここでいう積層ユニットとは、後述するように、積層ユニット形成装置10によって形成するユニットであって、電子回路を有する3次元積層電子デバイスを複数に分割したユニットである。 Further, the mounting unit 26 is a unit for mounting electronic components and probe pins on the base material 70 mounted on the base 60, and has a supply unit 100 and a mounting unit 102. The supply unit 100 has a plurality of tape feeders 110 (see FIG. 2) for feeding the taped electronic components one by one, and supplies the electronic components at each supply position. Further, the supply unit 100 has a tray 201 (see FIG. 2) in which the probe pins are arranged in an upright state, and supplies the probe pins in a state where the probe pins can be picked up from the tray 201. The electronic component is, for example, a sensor element such as a temperature sensor. Further, the probe pin is a member that electrically connects the electronic circuit of one laminated unit and the electronic circuit of another laminated unit. As the probe pin, one capable of stroking in the axial direction is preferable. The laminated unit referred to here is a unit formed by the laminated unit forming device 10 as described later, and is a unit obtained by dividing a three-dimensional laminated electronic device having an electronic circuit into a plurality of units.
 尚、プローブピンは、軸方向にストロークしない(変位しない)構成でも良い。また、電子部品の供給は、テープフィーダ110による供給に限らず、トレイによる供給でも良い。また、プローブピンの供給は、トレイ201による供給に限らず、テープフィーダによる供給でも良い。また、電子部品とプローブピンの供給は、テープフィーダによる供給とトレイによる供給との両方、あるいはそれ以外の供給でも良い。 Note that the probe pin may be configured so that it does not stroke (displace) in the axial direction. Further, the supply of electronic components is not limited to the supply by the tape feeder 110, and may be supplied by the tray. Further, the probe pin is supplied not only by the tray 201 but also by a tape feeder. Further, the electronic components and the probe pins may be supplied by both the tape feeder and the tray, or other supply.
 装着部102は、装着ヘッド112(図2参照)と、移動装置114(図2参照)とを有している。装着ヘッド112は、電子部品、又はプローブピンを吸着保持するための吸着ノズルを有している。吸着ノズルは、正負圧供給装置(図示省略)から負圧が供給されることで、エアの吸引により電子部品等を吸着保持する。そして、正負圧供給装置から僅かな正圧が供給されることで、電子部品等を離脱する。また、移動装置114は、テープフィーダ110の供給位置又はトレイ201と、基台60に載置された基材70との間で、装着ヘッド112を移動させる。これにより、装着部102は、吸着ノズルにより電子部品等を保持し、吸着ノズルによって保持した電子部品等を、基材70の上に配置する。 The mounting unit 102 has a mounting head 112 (see FIG. 2) and a moving device 114 (see FIG. 2). The mounting head 112 has a suction nozzle for sucking and holding an electronic component or a probe pin. The suction nozzle sucks and holds electronic components and the like by suctioning air by supplying negative pressure from a positive / negative pressure supply device (not shown). Then, when a slight positive pressure is supplied from the positive / negative pressure supply device, the electronic component or the like is separated. Further, the moving device 114 moves the mounting head 112 between the supply position of the tape feeder 110 or the tray 201 and the base material 70 mounted on the base 60. As a result, the mounting portion 102 holds the electronic parts and the like by the suction nozzle, and arranges the electronic parts and the like held by the suction nozzle on the base material 70.
 また、第3造形ユニット200は、基台60に載置された基材70の上に、導電性ペーストを塗布するユニットである。導電性ペーストは、例えば、マイクロサイズの金属粒子(マイクロフィラなど)を、樹脂製の接着剤に含めた粘性流体である。マイクロサイズの金属マイクロ粒子は、例えば、フレーク状態の金属(銀など)である。金属マイクロ粒子は、銀に限らず、金、銅などや複数種類の金属でも良い。接着剤は、例えば、エポキシ系の樹脂を主成分として含んでいる。導電性ペーストは、加熱により硬化し、例えば、回路配線に接続される接続端子の形成に使用される。接続端子とは、後述するように、電子部品の部品端子に接続する接続端子(バンプ)、外部機器などに接続する電極パッド(露出パッドなど)、プローブピンの接触箇所に設けられるピン端子、積層方向に回路配線を導通させるスルーホールなどである。 Further, the third modeling unit 200 is a unit for applying the conductive paste on the base material 70 placed on the base 60. The conductive paste is, for example, a viscous fluid containing micro-sized metal particles (such as microfillers) in a resin adhesive. Micro-sized metal microparticles are, for example, flake-state metals (such as silver). The metal microparticles are not limited to silver, but may be gold, copper, or a plurality of types of metals. The adhesive contains, for example, an epoxy resin as a main component. The conductive paste is cured by heating and is used, for example, to form connection terminals connected to circuit wiring. As will be described later, the connection terminals are connection terminals (bumps) connected to component terminals of electronic components, electrode pads (exposed pads, etc.) connected to external devices, pin terminals provided at contact points of probe pins, and laminated devices. It is a through hole or the like that conducts circuit wiring in the direction.
 また、第3造形ユニット200は、導電性ペーストを吐出(塗布)する装置としてディスペンサー202を有する。尚、導電性ペーストを塗布する装置は、ディスペンサーに限らず、スクリーン印刷装置やグラビア印刷装置でも良い。 Further, the third modeling unit 200 has a dispenser 202 as a device for discharging (applying) the conductive paste. The device for applying the conductive paste is not limited to the dispenser, but may be a screen printing device or a gravure printing device.
 ディスペンサー202は、絶縁層の貫通孔内や絶縁層の表面等に導電性ペーストを吐出する。貫通孔に充填された導電性ペーストは、例えば、第1造形ユニット22の焼成部74によって加熱され硬化することで接続端子やスルーホールを形成する。また、絶縁層の表面に塗布された導電性ペーストは、例えば、焼成部74によって加熱され硬化することで、接続端子等を形成する。 The dispenser 202 discharges the conductive paste into the through hole of the insulating layer, the surface of the insulating layer, and the like. The conductive paste filled in the through holes is heated and cured by the firing portion 74 of the first modeling unit 22, for example, to form connection terminals and through holes. Further, the conductive paste applied to the surface of the insulating layer is heated and cured by, for example, the firing unit 74 to form a connection terminal or the like.
 導電性ペーストは、加熱されることで接着剤(樹脂など)が硬化し、フレーク状の金属同士が接触した状態で硬化する。導電性ペーストを硬化する方法は、加熱による方法に限らず、接着剤として紫外線硬化樹脂を用いて紫外線により硬化する方法でも良い。 When the conductive paste is heated, the adhesive (resin, etc.) is cured, and the flaky metals are cured in contact with each other. The method of curing the conductive paste is not limited to the method of heating, and may be a method of curing by ultraviolet rays using an ultraviolet curable resin as an adhesive.
 また、接着剤塗布ユニット205は、積層ユニットに接着剤を塗布するユニットである。接着剤は、例えば、エポキシ系の樹脂を主成分として有する熱硬化性の樹脂である。接着剤の硬化温度は、電子回路(電子部品や回路配線)を保護する観点では、例えば、80℃以下の温度が好ましい。 The adhesive application unit 205 is a unit that applies an adhesive to the laminating unit. The adhesive is, for example, a thermosetting resin containing an epoxy resin as a main component. The curing temperature of the adhesive is preferably 80 ° C. or lower, for example, from the viewpoint of protecting electronic circuits (electronic components and circuit wiring).
 接着剤塗布ユニット205は、接着剤を貯留する浴槽206と、複数の積層ユニットを組み合わせたものを把持するロボットアーム207と、を備えている。接着剤塗布ユニット205は、ロボットアーム207によって把持した積層ユニットを、浴槽206に浸すことで積層ユニットに接着剤を塗布する。本実施形態の積層ユニット形成装置10は、任意の積層ユニットの接着面と、他の積層ユニットの接着面との間に隙間を形成する。これにより、毛管現象により積層ユニットの間に接着剤を浸透させる。そして、積層ユニット形成装置10は、浸透させた接着剤に熱を加えて硬化することで、複数の積層ユニットを互いに固定し、所望の構造を有する3次元積層電子デバイスを製造する。 The adhesive application unit 205 includes a bathtub 206 for storing the adhesive and a robot arm 207 for gripping a combination of a plurality of laminated units. The adhesive coating unit 205 applies the adhesive to the laminating unit by immersing the laminating unit gripped by the robot arm 207 in the bathtub 206. The laminated unit forming apparatus 10 of the present embodiment forms a gap between the adhesive surface of an arbitrary laminated unit and the adhesive surface of another laminated unit. As a result, the adhesive penetrates between the laminating units due to the capillary phenomenon. Then, the laminated unit forming apparatus 10 fixes the plurality of laminated units to each other by applying heat to the permeated adhesive and curing the adhesive to manufacture a three-dimensional laminated electronic device having a desired structure.
 また、制御装置27は、図2及び図3に示すように、コントローラ120と、複数の駆動回路122と、記憶装置124とを備えている。複数の駆動回路122は、図2に示すように、上記電磁モータ38,56、保持装置62、昇降装置64、インクジェットヘッド76、照射装置78、インクジェットヘッド88、平坦化装置90、照射装置92、テープフィーダ110、装着ヘッド112、移動装置114に接続されている。さらに、複数の駆動回路122は、図3に示すように、第3造形ユニット200、ロボットアーム207に接続されている。コントローラ120は、CPU,ROM,RAM等を備え、コンピュータを主体とするものであり、複数の駆動回路122に接続されている。記憶装置124は、RAM、ROM、ハードディスク等を備えており、積層ユニット形成装置10の制御を行う制御プログラム126が記憶されている。コントローラ120は、制御プログラム126をCPUで実行することで、搬送装置20、第1造形ユニット22、第2造形ユニット24、装着ユニット26、第3造形ユニット200、接着剤塗布ユニット205等の動作を制御可能となっている。以下の説明では、コントローラ120が、制御プログラム126を実行して各装置を制御することを、単に「装置が」と記載する場合がある。例えば、「コントローラ120がステージ52を移動させる」とは、「コントローラ120が、制御プログラム126を実行し、駆動回路122を介して搬送装置20の動作を制御して、搬送装置20の動作によってステージ52を移動させる」ことを意味している。 Further, as shown in FIGS. 2 and 3, the control device 27 includes a controller 120, a plurality of drive circuits 122, and a storage device 124. As shown in FIG. 2, the plurality of drive circuits 122 include the electromagnetic motors 38 and 56, a holding device 62, an elevating device 64, an inkjet head 76, an irradiation device 78, an inkjet head 88, a flattening device 90, and an irradiation device 92. It is connected to the tape feeder 110, the mounting head 112, and the moving device 114. Further, as shown in FIG. 3, the plurality of drive circuits 122 are connected to the third modeling unit 200 and the robot arm 207. The controller 120 includes a CPU, a ROM, a RAM, and the like, and is mainly a computer, and is connected to a plurality of drive circuits 122. The storage device 124 includes a RAM, a ROM, a hard disk, and the like, and stores a control program 126 that controls the stacking unit forming device 10. By executing the control program 126 on the CPU, the controller 120 operates the transfer device 20, the first modeling unit 22, the second modeling unit 24, the mounting unit 26, the third modeling unit 200, the adhesive coating unit 205, and the like. It is controllable. In the following description, the fact that the controller 120 executes the control program 126 to control each device may be simply described as "device". For example, "the controller 120 moves the stage 52" means that "the controller 120 executes the control program 126, controls the operation of the transfer device 20 via the drive circuit 122, and causes the stage by the operation of the transfer device 20." It means "move 52".
(2)3次元積層電子デバイスの製造方法
 本実施形態の積層ユニット形成装置10は、上記した構成によって、回路配線、接続端子、電子部品、及びプローブピンなどを含んだ積層ユニットを複数造形し、複数の積層ユニットを組み立てることで3次元積層電子デバイスを製造する。詳述すると、図4は、3次元積層電子デバイスの製造工程の流れを示すフローチャートである。図5及び図6は、3次元積層電子デバイスの製造工程を示す断面図である。図7は、3次元積層電子デバイス150を示す断面図である。尚、図5及び図6に示す製造工程や3次元積層電子デバイス150(積層ユニットの数や構造)は、一例である。一例として、図7に示すように、第1積層ユニット218A、第2積層ユニット218B、第3積層ユニット218Cの3つの積層ユニット218を積層した3次元積層電子デバイス150を製造する場合について説明する。第1~第3積層ユニット218A~218Cは、例えば、円板形状をなしている。3次元積層電子デバイス150は、第1~第3積層ユニット218A~218Cを積み上げた円柱形状をなしている。
(2) Manufacturing Method of Three-Dimensional Laminated Electronic Device The laminated unit forming apparatus 10 of the present embodiment forms a plurality of laminated units including circuit wiring, connection terminals, electronic components, probe pins, etc. by the above configuration. A three-dimensional laminated electronic device is manufactured by assembling a plurality of laminated units. More specifically, FIG. 4 is a flowchart showing the flow of the manufacturing process of the three-dimensional laminated electronic device. 5 and 6 are cross-sectional views showing a manufacturing process of a three-dimensional laminated electronic device. FIG. 7 is a cross-sectional view showing a three-dimensional laminated electronic device 150. The manufacturing process and the three-dimensional laminated electronic device 150 (number and structure of laminated units) shown in FIGS. 5 and 6 are examples. As an example, as shown in FIG. 7, a case where a three-dimensional laminated electronic device 150 in which three laminated units 218 of the first laminated unit 218A, the second laminated unit 218B, and the third laminated unit 218C are laminated will be described. The first to third laminated units 218A to 218C have, for example, a disk shape. The three-dimensional laminated electronic device 150 has a cylindrical shape in which the first to third laminated units 218A to 218C are stacked.
 図4に示すように、3次元積層造形による3次元積層電子デバイス150の製造工程130は、積層ユニット形成工程P10と、組立工程P12と、接着剤塗布工程P13と、硬化工程P15とを含んでいる。積層ユニット形成工程P10では、上記した積層ユニット形成装置10によって、基材70の上に、第1~第3積層ユニット218A,218B,218Cを形成する。これに対して、組立工程P12、接着剤塗布工程P13、硬化工程P15では、第1~第3積層ユニット218A,218B,218Cを上下方向に積み上げた後、積み上げた第1~第3積層ユニット218A,218B,218Cを接着剤で固定することによって、3次元積層電子デバイス150(図7参照)を製造する。尚、以下の説明において、第1~第3積層ユニット218A~218Cを区別せずに総称する場合は、積層ユニット218と表記する。 As shown in FIG. 4, the manufacturing process 130 of the three-dimensional laminated electronic device 150 by the three-dimensional laminated molding includes a lamination unit forming step P10, an assembly step P12, an adhesive application step P13, and a curing step P15. There is. In the laminated unit forming step P10, the first to third laminated units 218A, 218B, and 218C are formed on the base material 70 by the laminated unit forming apparatus 10 described above. On the other hand, in the assembly step P12, the adhesive application step P13, and the curing step P15, the first to third laminated units 218A, 218B, and 218C are stacked in the vertical direction, and then the first to third laminated units 218A are stacked. , 218B, 218C are fixed with an adhesive to manufacture a three-dimensional laminated electronic device 150 (see FIG. 7). In the following description, when the first to third laminated units 218A to 218C are generically referred to without distinction, they are referred to as laminated units 218.
 コントローラ120は、制御プログラム126を実行し積層ユニット形成装置10の各装置を制御することで、積層ユニット形成工程P10を実行する。積層ユニット形成工程P10は、絶縁層形成処理S10と、回路配線形成処理S20と、接続端子形成処理S30と、実装処理S40とを有している。尚、上記の各処理S10,S20,S30,S40の実行順序は、3次元積層電子デバイス150(つまり、第1~第3積層ユニット218A~218C)の積層構造等によって決定される。そのため、上記の各処理S10,S20,S30,S40は、それらの表記順で繰り返されるものでない。 The controller 120 executes the control program 126 to control each device of the stacking unit forming device 10 to execute the stacking unit forming step P10. The laminated unit forming step P10 includes an insulating layer forming process S10, a circuit wiring forming process S20, a connection terminal forming process S30, and a mounting process S40. The execution order of each of the above processes S10, S20, S30, and S40 is determined by the laminated structure of the three-dimensional laminated electronic devices 150 (that is, the first to third laminated units 218A to 218C). Therefore, the above processes S10, S20, S30, and S40 are not repeated in their notation order.
 例えば、ユーザが、ステージ52の基台60に基材70をセットし、積層ユニット形成装置10に対して図4に示す製造工程130の開始を指示する。また、図5に示すように、基材70の上には、例えば、熱を加えることによって剥離する剥離フィルム71が貼り付けられている。コントローラ120は、剥離フィルム71の上に各積層ユニット218を形成する。後述するように、この剥離フィルム71を、造形後に加熱することで、各積層ユニット218を基材70から剥離することができる。尚、基材70のステージ52へのセットや剥離フィルム71の基材70への貼り付けは、積層ユニット形成装置10が自動で実行しても良い。例えば、積層ユニット形成装置10は、接着剤塗布ユニット205のロボットアーム207により基材70のセットや剥離フィルム71の貼り付けを行なっても良い。また、基材70のセットや剥離フィルム71の貼り付けは、人が手作業で行なっても良い。 For example, the user sets the base material 70 on the base 60 of the stage 52, and instructs the laminated unit forming apparatus 10 to start the manufacturing process 130 shown in FIG. Further, as shown in FIG. 5, for example, a release film 71 that is peeled off by applying heat is attached on the base material 70. The controller 120 forms each laminating unit 218 on the release film 71. As will be described later, each laminating unit 218 can be peeled from the base material 70 by heating the release film 71 after molding. The lamination unit forming apparatus 10 may automatically execute the setting of the base material 70 on the stage 52 and the attachment of the release film 71 to the base material 70. For example, the laminated unit forming device 10 may set the base material 70 or attach the release film 71 by the robot arm 207 of the adhesive coating unit 205. Further, the setting of the base material 70 and the attachment of the release film 71 may be performed manually by a person.
 コントローラ120は、図4に示す絶縁層形成処理S10を実行する場合、基材70がセットされたステージ52を第2造形ユニット24の下方に移動させる。図4に示すように、絶縁層形成処理S10は、吐出処理S11、平坦化処理S13、及び硬化処理S15を含んでいる。コントローラ120は、吐出処理S11において、第2造形ユニット24を制御し、インクジェットヘッド88から紫外線硬化樹脂を基材70の上に薄膜状に吐出する。続いて、コントローラ120は、平坦化処理S13において、硬化部86の平坦化装置90を制御し、基材70の上に吐出した紫外線硬化樹脂を、ローラなどにより膜厚が均一となるように平坦化する。続いて、コントローラ120は、硬化処理S15において、硬化部86の照射装置92を制御し、平坦化された紫外線硬化樹脂に紫外線を照射する。これにより、紫外線硬化樹脂が硬化する。コントローラ120は、紫外線硬化樹脂の吐出処理S11、平坦化処理S13、硬化処理S15を繰り返して、各積層ユニット218の絶縁層220を基材70上に形成する(図5参照)。 When executing the insulating layer forming process S10 shown in FIG. 4, the controller 120 moves the stage 52 on which the base material 70 is set below the second modeling unit 24. As shown in FIG. 4, the insulating layer forming process S10 includes a discharge process S11, a flattening process S13, and a hardening process S15. The controller 120 controls the second modeling unit 24 in the discharge process S11, and discharges the ultraviolet curable resin from the inkjet head 88 onto the base material 70 in the form of a thin film. Subsequently, the controller 120 controls the flattening device 90 of the curing portion 86 in the flattening process S13, and flattens the ultraviolet curable resin discharged onto the base material 70 so that the film thickness becomes uniform by a roller or the like. To become. Subsequently, the controller 120 controls the irradiation device 92 of the curing portion 86 in the curing process S15, and irradiates the flattened ultraviolet curable resin with ultraviolet rays. As a result, the ultraviolet curable resin is cured. The controller 120 repeats the ultraviolet curable resin discharge treatment S11, the flattening treatment S13, and the curing treatment S15 to form the insulating layer 220 of each laminated unit 218 on the base material 70 (see FIG. 5).
 また、コントローラ120は、絶縁層形成処理S10において、電子部品96(図5参照)を収容する収容部222、プローブピン99(図5参照)を挿入するピン挿入孔223を形成する。収容部222は、例えば、下方に向かって絶縁層220を凹ませた凹部である。ピン挿入孔223は、例えば、上下方向に沿って形成された円筒形状の穴である。コントローラ120は、例えば、収容部222やピン挿入孔223の位置に合わせて、インクジェットヘッド88から紫外線硬化樹脂を吐出するのを停止し、絶縁層220に対して凹部や穴を形成して収容部222やピン挿入孔223を形成する。 Further, in the insulating layer forming process S10, the controller 120 forms a housing portion 222 for accommodating the electronic component 96 (see FIG. 5) and a pin insertion hole 223 for inserting the probe pin 99 (see FIG. 5). The accommodating portion 222 is, for example, a recess in which the insulating layer 220 is recessed downward. The pin insertion hole 223 is, for example, a cylindrical hole formed along the vertical direction. The controller 120 stops discharging the ultraviolet curable resin from the inkjet head 88 in accordance with the positions of the accommodating portion 222 and the pin insertion hole 223, and forms recesses and holes in the insulating layer 220 to form the accommodating portion. It forms 222 and a pin insertion hole 223.
 また、コントローラ120は、回路配線形成処理S20を実行する場合、ステージ52を第1造形ユニット22の下方に移動させる。コントローラ120は、第1造形ユニット22を制御し、インクジェットヘッド76から導電性インクを、剥離フィルム71の上、絶縁層220の上面、接続端子の上などに吐出し、吐出した導電性インクを照射装置78で加熱することで、回路配線225(図5参照)を形成する。 Further, when the controller 120 executes the circuit wiring formation process S20, the controller 120 moves the stage 52 below the first modeling unit 22. The controller 120 controls the first modeling unit 22, ejects conductive ink from the inkjet head 76 onto the release film 71, the upper surface of the insulating layer 220, the connection terminal, and the like, and irradiates the ejected conductive ink. By heating with the device 78, the circuit wiring 225 (see FIG. 5) is formed.
 また、コントローラ120は、接続端子形成処理S30を実行する場合、ステージ52を第3造形ユニット200の下方に移動させる。コントローラ120は、第3造形ユニット200を制御して、ディスペンサー202から導電性ペーストを、剥離フィルム71の上、絶縁層220の上面、回路配線225の上、収容部222の底部、ピン挿入孔223の底部などに吐出する。コントローラ120は、吐出した導電性ペーストを、第1造形ユニット22の照射装置78で加熱することで、接続端子227(図5参照)を形成する。 Further, when the controller 120 executes the connection terminal forming process S30, the controller 120 moves the stage 52 below the third modeling unit 200. The controller 120 controls the third modeling unit 200 to apply the conductive paste from the dispenser 202 on the release film 71, the upper surface of the insulating layer 220, the circuit wiring 225, the bottom of the accommodating portion 222, and the pin insertion hole 223. Discharge to the bottom of the The controller 120 forms the connection terminal 227 (see FIG. 5) by heating the discharged conductive paste with the irradiation device 78 of the first modeling unit 22.
 例えば、図5に示すように、コントローラ120は、接続端子227として、部品接続端子227A、ピン端子227B、電極パッド227Cを形成する。部品接続端子227Aは、例えば、電子部品96の部品端子96Aと接続される接続端子227である。また、ピン端子227Bは、例えば、プローブピン99の下端と接続される接続端子227である。電極パッド227Cは、例えば、各積層ユニット218の電子回路をプローブピン99の上端に電気的に接続するためや、3次元積層電子デバイス150を外部機器と接続するための接続端子227である。コントローラ120は、プローブピン99に接続する電極パッド227Cを絶縁層220の下面から露出するように形成する場合、例えば、先に貫通孔を有する絶縁層220を形成しておき、絶縁層220の貫通孔に導電性ペーストを吐出(充填)して下面から露出する電極パッド227Cを形成する。あるいは、コントローラ120は、先に電極パッド227Cを剥離フィルム71上に形成してから、電極パッド227Cの周りを絶縁層220で埋めても良い。各接続端子227は、回路配線225によって電気的に接続され、電子回路を構成している。尚、本開示における電子回路とは、例えば、上記した電子部品96、回路配線225、接続端子227、プローブピン99等を接続した回路の一部又は全体を意味している。 For example, as shown in FIG. 5, the controller 120 forms a component connection terminal 227A, a pin terminal 227B, and an electrode pad 227C as a connection terminal 227. The component connection terminal 227A is, for example, a connection terminal 227 connected to the component terminal 96A of the electronic component 96. Further, the pin terminal 227B is, for example, a connection terminal 227 connected to the lower end of the probe pin 99. The electrode pad 227C is, for example, a connection terminal 227 for electrically connecting the electronic circuit of each laminated unit 218 to the upper end of the probe pin 99 and for connecting the three-dimensional laminated electronic device 150 to an external device. When the controller 120 is formed so that the electrode pad 227C connected to the probe pin 99 is exposed from the lower surface of the insulating layer 220, for example, the insulating layer 220 having a through hole is formed first, and the insulating layer 220 is penetrated. A conductive paste is discharged (filled) into the holes to form an electrode pad 227C exposed from the lower surface. Alternatively, the controller 120 may first form the electrode pad 227C on the release film 71, and then fill the periphery of the electrode pad 227C with the insulating layer 220. Each connection terminal 227 is electrically connected by a circuit wiring 225 to form an electronic circuit. The electronic circuit in the present disclosure means, for example, a part or the whole of a circuit to which the above-mentioned electronic component 96, circuit wiring 225, connection terminal 227, probe pin 99, and the like are connected.
 コントローラ120は、上記した絶縁層形成処理S10で形成する絶縁層220、回路配線形成処理S20で形成する回路配線225、接続端子形成処理S30で形成する接続端子227のそれぞれの形状、位置、数等を適宜変更して第1~第3積層ユニット218A~218Cを基材70(剥離フィルム71)上にまとめて造形する。尚、コントローラ120は、第1~第3積層ユニット218A~218Cをまとめて基材70上に形成しなくとも良い。また、コントローラ120は、4つ以上の積層ユニット218をまとめて基材70上に形成しても良い。 The controller 120 has the shape, position, number, etc. of the insulating layer 220 formed by the insulating layer forming process S10, the circuit wiring 225 formed by the circuit wiring forming process S20, and the connecting terminals 227 formed by the connecting terminal forming process S30. The first to third laminated units 218A to 218C are collectively modeled on the base material 70 (release film 71) by appropriately changing the above. The controller 120 does not have to form the first to third laminated units 218A to 218C together on the base material 70. Further, the controller 120 may form four or more laminated units 218 together on the base material 70.
 また、コントローラ120は、積層ユニット218を造形する過程で、実装処理S40を適宜実行する。図5に示すように、コントローラ120は、装着ユニット26を制御して、電子部品96を収容部222に配置する。また、コントローラ120は、装着ユニット26を制御して、プローブピン99をピン挿入孔223内に配置する。制御プログラム126には、例えば、3次元積層電子デバイス150(各積層ユニット218)をスライスした各層の三次元のデータが設定されている。コントローラ120は、制御プログラム126のデータに基づいて、回路配線形成処理S20等の各製造工程を実行し積層ユニット218を形成する。また、コントローラ120は、制御プログラム126のデータに基づいて、電子部品96やプローブピン99を配置する層や位置等の情報を検出し、検出した情報に基づいて電子部品96やプローブピン99を各積層ユニット218に配置する。 Further, the controller 120 appropriately executes the mounting process S40 in the process of modeling the laminated unit 218. As shown in FIG. 5, the controller 120 controls the mounting unit 26 to arrange the electronic component 96 in the accommodating portion 222. Further, the controller 120 controls the mounting unit 26 to arrange the probe pin 99 in the pin insertion hole 223. In the control program 126, for example, three-dimensional data of each layer obtained by slicing the three-dimensional laminated electronic device 150 (each laminated unit 218) is set. Based on the data of the control program 126, the controller 120 executes each manufacturing process such as the circuit wiring forming process S20 to form the stacking unit 218. Further, the controller 120 detects information such as a layer and a position where the electronic component 96 and the probe pin 99 are arranged based on the data of the control program 126, and based on the detected information, each of the electronic component 96 and the probe pin 99 is used. It is arranged in the stacking unit 218.
 コントローラ120は、例えば、第3造形ユニット200を制御して導電性ペーストを吐出した後、装着ユニット26を制御して電子部品96の部品端子96Aが導電性ペーストに接触するように、電子部品96を収容部222に配置する。コントローラ120は、電子部品96を配置した後、導電性ペーストを硬化することで部品接続端子227Aと部品端子96Aを接続し、絶縁層220に対して電子部品96を固定する。尚、コントローラ120は、電子部品96を配置した後に、電子部品96の部品端子96Aの上に導電性ペーストを吐出して硬化して部品接続端子227Aを形成しても良い。 For example, the controller 120 controls the third modeling unit 200 to discharge the conductive paste, and then controls the mounting unit 26 so that the component terminals 96A of the electronic component 96 come into contact with the conductive paste. Is arranged in the accommodating portion 222. After arranging the electronic component 96, the controller 120 connects the component connection terminal 227A and the component terminal 96A by curing the conductive paste, and fixes the electronic component 96 to the insulating layer 220. After arranging the electronic component 96, the controller 120 may discharge the conductive paste onto the component terminal 96A of the electronic component 96 and cure the component connection terminal 227A.
 また、図5に示すように、コントローラ120は、例えば、第3造形ユニット200を制御して、ピン挿入孔223の底部に導電性ペーストを吐出する。コントローラ120は、第1造形ユニット22の照射装置78により導電性ペーストを硬化することで、ピン挿入孔223の底部にピン端子227Bを形成する。コントローラ120は、装着ユニット26を制御し、プローブピン99の下端が硬化したピン端子227Bに接触するように、プローブピン99をピン挿入孔223内に配置する。このようにして所望の構造の各積層ユニット218を3次元積層造形により造形する。 Further, as shown in FIG. 5, the controller 120 controls, for example, the third modeling unit 200 to discharge the conductive paste to the bottom of the pin insertion hole 223. The controller 120 forms the pin terminal 227B at the bottom of the pin insertion hole 223 by curing the conductive paste with the irradiation device 78 of the first modeling unit 22. The controller 120 controls the mounting unit 26 and arranges the probe pin 99 in the pin insertion hole 223 so that the lower end of the probe pin 99 comes into contact with the hardened pin terminal 227B. In this way, each laminated unit 218 having a desired structure is modeled by three-dimensional laminated modeling.
 次に、コントローラ120は、組立工程P12において、上記した積層ユニット218の組み立てを行なう。コントローラ120は、基材70上の剥離フィルム71を加熱し、剥離フィルム71(基材70)と各積層ユニット218とを分離する。積層ユニット形成装置10は、第1造形ユニット22の焼成部74により剥離フィルム71を加熱して、各積層ユニット218を基材70(剥離フィルム71)から剥離する。尚、剥離フィルム71を加熱する方法は、焼成部74を用いる方法に限らない。例えば、積層ユニット形成装置10は、電気炉を備え、基材70を電気炉内に入れて剥離フィルム71を加熱して各積層ユニット218を剥離フィルム71から分離しても良い。あるいは、積層ユニット形成装置10は、赤外線ランプ等で基材70に直接熱を加えて基材70を温めることで、剥離フィルム71を剥離しても良い。また、基材70と積層ユニット218の分離方法は、剥離フィルム71を用いる方法に限らない。例えば、基材70と積層ユニット218との間に、熱によって溶ける部材(サポート材など)を配置し、その部材を溶かして分離しても良い。また、基材70の上に剥離フィルム71を貼り付けずに、基材70の上に積層ユニット218を直接造形しても良い。即ち、剥離フィルム71を用いなくとも良い。 Next, the controller 120 assembles the above-mentioned stacking unit 218 in the assembly step P12. The controller 120 heats the release film 71 on the base material 70 to separate the release film 71 (base material 70) from each laminating unit 218. The laminated unit forming apparatus 10 heats the release film 71 by the fired portion 74 of the first modeling unit 22 to separate each laminated unit 218 from the base material 70 (release film 71). The method of heating the release film 71 is not limited to the method of using the fired portion 74. For example, the lamination unit forming apparatus 10 may include an electric furnace, put the base material 70 in the electric furnace, heat the release film 71, and separate each laminate unit 218 from the release film 71. Alternatively, the laminated unit forming apparatus 10 may peel off the release film 71 by directly applying heat to the base material 70 with an infrared lamp or the like to heat the base material 70. Further, the method for separating the base material 70 and the laminating unit 218 is not limited to the method using the release film 71. For example, a member (support material or the like) that melts by heat may be arranged between the base material 70 and the laminating unit 218, and the member may be melted and separated. Further, the laminated unit 218 may be directly formed on the base material 70 without sticking the release film 71 on the base material 70. That is, it is not necessary to use the release film 71.
 そして、図6に示すように、組立工程P12において、最下層の第1積層ユニット218Aの上に、中間の第2積層ユニット218Bを搭載し、第2積層ユニット218Bの上に第3積層ユニット218Cを搭載する。複数の積層ユニット218を積み上げて組み立てる作業は、積層ユニット形成装置10が自動で実行する。例えば、コントローラ120は、焼成部74を制御して剥離フィルム71を加熱した後、接着剤塗布ユニット205のロボットアーム207を制御して、剥離フィルム71から各積層ユニット218を剥がす。コントローラ120は、ロボットアーム207を制御して、例えば、第1~第3積層ユニット218A~218Cを順番に剥離フィルム71から剥離し、作業台の上に積み上げて組み立てる。尚、基材70と、各積層ユニット218の分離や、各積層ユニット218を組み立てる作業は、人が手作業で行なっても良い。 Then, as shown in FIG. 6, in the assembly process P12, the intermediate second laminated unit 218B is mounted on the lowermost first laminated unit 218A, and the third laminated unit 218C is mounted on the second laminated unit 218B. Is installed. The stacking unit forming device 10 automatically executes the work of stacking and assembling the plurality of stacking units 218. For example, the controller 120 controls the firing unit 74 to heat the release film 71, and then controls the robot arm 207 of the adhesive coating unit 205 to peel each laminated unit 218 from the release film 71. The controller 120 controls the robot arm 207 to, for example, peel the first to third laminated units 218A to 218C in order from the release film 71, and assemble them by stacking them on a workbench. The work of separating the base material 70 and each laminated unit 218 and assembling each laminated unit 218 may be performed manually by a person.
 コントローラ120は、ロボットアーム207により第1~第3積層ユニット218A~218Cを組み立てると、接着剤塗布工程P13を実行し、組み立てた第1~第3積層ユニット218A~218Cに接着剤を塗布する。尚、以下の説明では、組み立てた第1~第3積層ユニット218A~218Cを、組み立て後の積層ユニット218と称して説明する。図8は、組み立て後の積層ユニット218に接着剤を塗布する状態を示している。図8に示すように、接着剤塗布ユニット205のロボットアーム207は、例えば、組み立て後の積層ユニット218を、積層方向(図6における上下方向)の両側から挟んで固定する。 When the controller 120 assembles the first to third laminated units 218A to 218C by the robot arm 207, the controller 120 executes the adhesive application step P13, and applies the adhesive to the assembled first to third laminated units 218A to 218C. In the following description, the assembled first to third laminated units 218A to 218C will be referred to as the assembled laminated unit 218. FIG. 8 shows a state in which the adhesive is applied to the laminated unit 218 after assembly. As shown in FIG. 8, the robot arm 207 of the adhesive coating unit 205 sandwiches and fixes the assembled laminating unit 218 from both sides in the laminating direction (vertical direction in FIG. 6), for example.
 接着剤塗布ユニット205の浴槽206内には、接着剤231が貯留されている。ここで、本実施形態の積層ユニット形成装置10は、図6に示すように、各積層ユニット218の上面233と、下面234を接触させて1つの3次元積層電子デバイス150を組み立てる。この際に、上面233と下面234との間に隙間が形成されるように、積層ユニット形成装置10は、各積層ユニット218の上面233に溝部235(図8参照)を、3次元積層造形により形成する。これにより、図8に示すように、組み立て後の積層ユニット218を接着剤231に浸した際に、毛管現象により、浴槽206に貯留された接着剤231を溝部235に浸透させることができる。 Adhesive 231 is stored in the bathtub 206 of the adhesive application unit 205. Here, as shown in FIG. 6, the stacking unit forming device 10 of the present embodiment assembles one three-dimensional laminated electronic device 150 by bringing the upper surface 233 and the lower surface 234 of each stacking unit 218 into contact with each other. At this time, in order to form a gap between the upper surface 233 and the lower surface 234, the stacking unit forming apparatus 10 creates a groove 235 (see FIG. 8) on the upper surface 233 of each stacking unit 218 by three-dimensional laminating. Form. As a result, as shown in FIG. 8, when the assembled laminated unit 218 is immersed in the adhesive 231, the adhesive 231 stored in the bathtub 206 can be permeated into the groove 235 due to the capillary phenomenon.
 詳述すると、図9は、第1積層ユニット218Aの上面233を模式的に示している。図10は、接着剤231が浸透する組み立て後の積層ユニット218の断面を模式的に示している。図9は、図10に示す組み立て後の積層ユニット218を、一点鎖線で示すA-A線において、矢印の向きで見た上面を示している。尚、図9及び図10は、図面が繁雑となるのを避けるため、組み立て後の積層ユニット218を簡略化して図示している。また、図9は、溝部235の形状を分かり易く示すため、溝部235を実際の大きさよりも大きく図示している。 More specifically, FIG. 9 schematically shows the upper surface 233 of the first laminated unit 218A. FIG. 10 schematically shows a cross section of the laminated unit 218 after assembly in which the adhesive 231 penetrates. FIG. 9 shows the upper surface of the assembled laminated unit 218 shown in FIG. 10 as viewed in the direction of the arrow on the AA line indicated by the alternate long and short dash line. It should be noted that FIGS. 9 and 10 simplify the laminated unit 218 after assembly in order to avoid cluttering the drawings. Further, in FIG. 9, in order to show the shape of the groove portion 235 in an easy-to-understand manner, the groove portion 235 is shown larger than the actual size.
 また、以下の説明では、第1積層ユニット218Aの上面233について主に説明するが、第2積層ユニット218Bの上面233についても同様に溝部235を形成することができる。また、溝部235を形成する面は、上面233に限らず、下面234でも良い。また、溝部235を上面233と下面234の両方に形成しても良い。従って、溝部235は、複数の積層ユニット218を組み立てる際に、任意の積層ユニット218と、他の積層ユニット218を接着する様々な接着面に設けることができる。 Further, in the following description, the upper surface 233 of the first laminated unit 218A will be mainly described, but the groove portion 235 can be similarly formed on the upper surface 233 of the second laminated unit 218B. Further, the surface forming the groove 235 is not limited to the upper surface 233, but may be the lower surface 234. Further, the groove portion 235 may be formed on both the upper surface 233 and the lower surface 234. Therefore, the groove portion 235 can be provided on various adhesive surfaces for adhering the arbitrary laminating unit 218 and the other laminating unit 218 when assembling the plurality of laminating units 218.
 図9に示すように、溝部235は、円形をなす上面233において、例えば、直径方向と平行な方向へ複数個形成されている。溝部235の深さは、例えば、20μm~150μmが好ましい。この溝部235の深さは、上面233と下面234とを接触させた際に、溝部235によって形成される隙間の幅と略同一である。溝部235の幅は、例えば、溝部235の深さと同程度となっている。溝部235は、ピン挿入孔223や収容部222と接続されている。溝部235は、第1積層ユニット218Aの収容部222と、第2積層ユニット218Bの下面234で形成される空間(図10参照)に接続されている。また、溝部235は、第1積層ユニット218Aのピン挿入孔223と、第2積層ユニット218Bの下面234で形成される空間(図10参照)に接続されている。図10に示すように、組み立て後の積層ユニット218では、上面233と下面234の間に、溝部235によって隙間が形成される。組み立て後の積層ユニット218の側面237には、隙間の開口235Aが開口している。 As shown in FIG. 9, a plurality of groove portions 235 are formed on the circular upper surface 233, for example, in a direction parallel to the diameter direction. The depth of the groove portion 235 is preferably, for example, 20 μm to 150 μm. The depth of the groove portion 235 is substantially the same as the width of the gap formed by the groove portion 235 when the upper surface 233 and the lower surface 234 are brought into contact with each other. The width of the groove 235 is, for example, about the same as the depth of the groove 235. The groove portion 235 is connected to the pin insertion hole 223 and the accommodating portion 222. The groove portion 235 is connected to a space (see FIG. 10) formed by the accommodating portion 222 of the first laminated unit 218A and the lower surface 234 of the second laminated unit 218B. Further, the groove portion 235 is connected to a space (see FIG. 10) formed by the pin insertion hole 223 of the first stacking unit 218A and the lower surface 234 of the second stacking unit 218B. As shown in FIG. 10, in the laminated unit 218 after assembly, a gap is formed by the groove portion 235 between the upper surface 233 and the lower surface 234. A gap opening 235A is opened on the side surface 237 of the laminated unit 218 after assembly.
 図8に示すように、接着剤塗布ユニット205のロボットアーム207は、組み立て後の積層ユニット218の側面237を浴槽206に浸す。ロボットアーム207は、例えば、数mm~数cmほどの深さまで第1~第3積層ユニット218A~218Cを浸し、その状態を一定時間だけ維持する。接着剤231は、毛管現象により溝部235の開口235Aから溝部235のより奥へと浸透していく。従って、側面237の開口235Aを、浴槽206へ浸す時間は、接着剤231が、溝部235内へ浸透するのに必要な時間である。尚、各積層ユニット218に接着剤231を塗布する作業は、人が手作業で行なっても良い。 As shown in FIG. 8, the robot arm 207 of the adhesive application unit 205 immerses the side surface 237 of the laminated unit 218 after assembly in the bathtub 206. The robot arm 207 immerses the first to third laminated units 218A to 218C to a depth of, for example, several mm to several cm, and maintains the state for a certain period of time. The adhesive 231 penetrates from the opening 235A of the groove 235 to the deeper part of the groove 235 due to the capillary phenomenon. Therefore, the time for immersing the opening 235A of the side surface 237 in the bathtub 206 is the time required for the adhesive 231 to penetrate into the groove 235. The work of applying the adhesive 231 to each laminating unit 218 may be performed manually by a person.
 図11は、3次元積層電子デバイス150の断面図、即ち、接着剤231を硬化した後の断面図を示してる。図11の拡大図で示すように、隙間内へ浸透した接着剤231は、収容部222やピン挿入孔223で形成される空間、即ち、溝部235で形成される隙間に比べて広い空間と接続される部分において進行を停止し、硬化している。これは、狭い溝部235内を進行していた接着剤231の進行が、広い空間に接続される部分で接着剤231の表面張力によって抑制されるためである。 FIG. 11 shows a cross-sectional view of the three-dimensional laminated electronic device 150, that is, a cross-sectional view after the adhesive 231 is cured. As shown in the enlarged view of FIG. 11, the adhesive 231 that has penetrated into the gap is connected to a space formed by the accommodating portion 222 and the pin insertion hole 223, that is, a space wider than the gap formed by the groove portion 235. It has stopped progressing and has hardened at the part where it is. This is because the progress of the adhesive 231 that had been progressing in the narrow groove portion 235 is suppressed by the surface tension of the adhesive 231 at the portion connected to the wide space.
 従って、本実施形態の製造工程130では、積層ユニット形成工程P10において、電子部品96を収容する収容部222を第1積層ユニット218Aに形成する。この収容部222は、隙間に比べて大きな空間を下面234との間に形成する。これによれば、隙間(溝部235)内へ浸透してきた接着剤231が、隙間から収容部222内へ移動しようとしても、接着剤231の表面張力等により収容部222への進行が抑制される。従って、収容部222内の電子部品96への接着剤231の付着を抑制できる。 Therefore, in the manufacturing process 130 of the present embodiment, in the lamination unit forming step P10, the accommodating portion 222 accommodating the electronic component 96 is formed in the first lamination unit 218A. The accommodating portion 222 forms a large space with the lower surface 234 as compared with the gap. According to this, even if the adhesive 231 that has penetrated into the gap (groove 235) tries to move from the gap into the accommodating portion 222, the progress to the accommodating portion 222 is suppressed by the surface tension of the adhesive 231 or the like. .. Therefore, it is possible to suppress the adhesion of the adhesive 231 to the electronic component 96 in the accommodating portion 222.
 上記したように、接着剤231の進行は、収容部222やピン挿入孔223によって抑制される。このため、溝部235は、収容部222やピン挿入孔223と接続される位置であっても形成できる、即ち、3次元積層電子デバイス150のデザインに係わらず設けることができる。換言すれば、接着強度を向上できるより良い位置があれば、その位置に溝部235を設け、上面233を下面234に強固に固定できる。 As described above, the progress of the adhesive 231 is suppressed by the accommodating portion 222 and the pin insertion hole 223. Therefore, the groove portion 235 can be formed even at a position where it is connected to the accommodating portion 222 and the pin insertion hole 223, that is, it can be provided regardless of the design of the three-dimensional laminated electronic device 150. In other words, if there is a better position where the adhesive strength can be improved, the groove portion 235 can be provided at that position, and the upper surface 233 can be firmly fixed to the lower surface 234.
 また、図9に示す例では、図9における右側の開口235Aから接着剤231を浸透させても、収容部222によって進行を抑制され、図9における左側の溝部235内へは接着剤231が進行しない。そこで、ロボットアーム207は、図8に矢印で示すように、側面237の一部を接着剤231に浸して一定時間だけ経過した後、他の溝部235の開口235Aを浴槽206に浸すために、組み立て後の積層ユニット218を回転させる。ロボットアーム207は、接着剤231に面する側面237(開口235A)を変更して、別の開口235A(例えば、図9の左側の溝部235の開口235A)から接着剤231を浸透させる。 Further, in the example shown in FIG. 9, even if the adhesive 231 is infiltrated through the opening 235A on the right side in FIG. 9, the progress is suppressed by the accommodating portion 222, and the adhesive 231 advances into the groove portion 235 on the left side in FIG. do not do. Therefore, as shown by an arrow in FIG. 8, the robot arm 207 is used to immerse a part of the side surface 237 in the adhesive 231 for a certain period of time, and then immerse the opening 235A of the other groove 235 in the bathtub 206. The laminated unit 218 after assembly is rotated. The robot arm 207 modifies the side surface 237 (opening 235A) facing the adhesive 231 to allow the adhesive 231 to penetrate through another opening 235A (eg, opening 235A in the groove 235 on the left side of FIG. 9).
 また、図10及び図11に示す例では、溝部235内へ進行する接着剤231が、組み立て後の積層ユニット218の間を埋める。このような構成では、開口235Aから内部へ進行する接着剤231によって、溝部235内や収容部222内等の空気の逃げ場がなくなり、接着剤231の進行が妨げられる可能性がある。そこで、図10及び図11に示すように、コントローラ120は、開口235Aに対して溝部235の内側(奥側)となる位置に、空気の抜け穴として貫通孔239を形成する。貫通孔239は、例えば、収容部222、ピン挿入孔223の上部に相当する位置や底部に相当する位置に形成される。この場合、貫通孔239は、収容部222やピン挿入孔223の内部空間を、組み立て後の積層ユニット218の外部と接続する。コントローラ120は、例えば、図4に示す絶縁層形成処理S10において、紫外線硬化樹脂の吐出を所定位置で停めるなどして、貫通孔239を積層ユニット218の所望の位置に形成することができる。 Further, in the examples shown in FIGS. 10 and 11, the adhesive 231 advancing into the groove 235 fills the space between the laminated units 218 after assembly. In such a configuration, the adhesive 231 traveling inward from the opening 235A eliminates the escape of air in the groove 235, the accommodating portion 222, and the like, and may hinder the progress of the adhesive 231. Therefore, as shown in FIGS. 10 and 11, the controller 120 forms a through hole 239 as an air vent at a position on the inside (back side) of the groove 235 with respect to the opening 235A. The through hole 239 is formed, for example, at a position corresponding to the upper portion or a bottom portion of the accommodating portion 222 and the pin insertion hole 223. In this case, the through hole 239 connects the internal space of the accommodating portion 222 and the pin insertion hole 223 to the outside of the laminated unit 218 after assembly. For example, in the insulating layer forming process S10 shown in FIG. 4, the controller 120 can form the through hole 239 at a desired position of the laminated unit 218 by stopping the discharge of the ultraviolet curable resin at a predetermined position.
 従って、本開示の製造工程130では、積層ユニット形成工程P10の絶縁層形成処理S10において、第1積層ユニット218Aに貫通孔239を形成する。組立工程P12において、その貫通孔239を通じて隙間(溝部235)を第1積層ユニット218Aの外部に接続する。これによれば、第1積層ユニット218Aに貫通孔239を形成し、第1及び第2積層ユニット218A,218Bを組み立てた際に、この貫通孔239を通じて隙間を外部に接続する。これにより、接着剤塗布工程P13において隙間の開口235Aに接着剤231を塗布し、開口235Aを接着剤231で閉じたとしても、隙間内の空気が貫通孔239から外へ出て行くことで、接着剤231を隙間内へ円滑に浸透させることができる。このため、接着剤231を塗布する位置を細かく調整する必要がなくなり、接着剤塗布工程P13におけるコントローラ120の処理内容を簡素化できる。 Therefore, in the manufacturing process 130 of the present disclosure, a through hole 239 is formed in the first laminated unit 218A in the insulating layer forming process S10 of the laminated unit forming step P10. In the assembly step P12, the gap (groove 235) is connected to the outside of the first laminating unit 218A through the through hole 239. According to this, a through hole 239 is formed in the first laminated unit 218A, and when the first and second laminated units 218A and 218B are assembled, the gap is connected to the outside through the through hole 239. As a result, even if the adhesive 231 is applied to the opening 235A of the gap in the adhesive application step P13 and the opening 235A is closed by the adhesive 231, the air in the gap goes out from the through hole 239. The adhesive 231 can be smoothly penetrated into the gap. Therefore, it is not necessary to finely adjust the position where the adhesive 231 is applied, and the processing content of the controller 120 in the adhesive application step P13 can be simplified.
 また、積層ユニット形成工程P10の絶縁層形成処理S10において、下面234から離れる方向へ上面233を凹ませた溝部235を、第1積層ユニット218Aに形成する。そして、組立工程P12において、溝部235により、上面233と下面234の間に隙間を形成する。これによれば、積層ユニット形成工程P10において、3次元積層造形により溝部235を形成し、その溝部235により上面233及び下面234を離して隙間を形成することができる。これにより、3次元積層造形により、所望の位置、幅、深さ等の溝部235をデザインすることができ、接着剤231を塗布する位置や塗布量を変更することができる。 Further, in the insulating layer forming process S10 of the laminated unit forming step P10, the groove portion 235 having the upper surface 233 recessed in the direction away from the lower surface 234 is formed in the first laminated unit 218A. Then, in the assembly step P12, the groove portion 235 forms a gap between the upper surface 233 and the lower surface 234. According to this, in the laminating unit forming step P10, the groove portion 235 can be formed by three-dimensional laminating molding, and the upper surface 233 and the lower surface 234 can be separated by the groove portion 235 to form a gap. Thereby, the groove portion 235 having a desired position, width, depth, etc. can be designed by the three-dimensional laminated molding, and the position and the amount of the adhesive 231 to be applied can be changed.
 次に、図4に示すように、コントローラ120は、接着剤塗布工程P13を実行して組み立て後の積層ユニット218に接着剤231を塗布すると、硬化工程P15を実行して接着剤231を硬化させる。例えば、図8に示すように、ロボットアーム207は、積層ユニット218に面する部分に加熱装置としてヒータ241を備える。ロボットアーム207は、例えば、1つの側面237を接着剤231に浸して溝部235内に接着剤231を浸透させた後、組み立て後の積層ユニット218を浴槽206から引き上げる。ロボットアーム207は、組み立て後の積層ユニット218を回転させて接着剤231が充填された溝部235の開口235Aを上方に向ける。これにより、接着剤231は、毛管現象に加え、重力によっても溝部235の奥へ浸透して行く。そして、ロボットアーム207は、ヒータ241により組み立て後の積層ユニット218を加熱する。これにより、溝部235内に充填された接着剤231が硬化し、上面233と下面234を接着される。 Next, as shown in FIG. 4, when the controller 120 executes the adhesive application step P13 to apply the adhesive 231 to the laminated unit 218 after assembly, the controller 120 executes the curing step P15 to cure the adhesive 231. .. For example, as shown in FIG. 8, the robot arm 207 includes a heater 241 as a heating device in a portion facing the stacking unit 218. For example, the robot arm 207 immerses one side surface 237 in the adhesive 231 to allow the adhesive 231 to penetrate into the groove 235, and then pulls up the assembled laminating unit 218 from the bathtub 206. The robot arm 207 rotates the laminated unit 218 after assembly so that the opening 235A of the groove 235 filled with the adhesive 231 is directed upward. As a result, the adhesive 231 penetrates into the groove 235 due to gravity in addition to the capillary phenomenon. Then, the robot arm 207 heats the laminated unit 218 after assembly by the heater 241. As a result, the adhesive 231 filled in the groove 235 is cured, and the upper surface 233 and the lower surface 234 are adhered to each other.
 ロボットアーム207は、加熱した後、一定時間だけ経過し、組み立て後の積層ユニット218が冷えた後、再度、別の開口235A(接着剤231が浸透していない溝部235の開口235A)を浴槽206に浸し、接着剤231を浸透させた後、引き上げた後にヒータ241で加熱する。これにより、第1~第3積層ユニット218A~218Cが互いに接着され固定されることで、3次元積層電子デバイス150が形成される。ロボットアーム207は、例えば、組立工程P12で加熱して浮かせた剥離フィルム71を基材70から取り除き、接着剤231を硬化した3次元積層電子デバイス150、即ち、完成後の接着剤231を基材70に載置する。コントローラ120は、基材70を外部に搬出することで、完成した3次元積層電子デバイス150をユーザに受け渡すことができる。 After heating, the robot arm 207 elapses for a certain period of time, and after the laminated unit 218 after assembly has cooled, another opening 235A (opening 235A of the groove 235 where the adhesive 231 has not penetrated) is opened again in the bathtub 206. The adhesive 231 is impregnated into the water, and the adhesive is pulled up and then heated by the heater 241. As a result, the first to third laminated units 218A to 218C are adhered to and fixed to each other to form the three-dimensional laminated electronic device 150. The robot arm 207 uses, for example, a three-dimensional laminated electronic device 150 in which the release film 71 heated and floated in the assembly step P12 is removed from the base material 70 and the adhesive 231 is cured, that is, the completed adhesive 231 is used as the base material. Place it on 70. The controller 120 can deliver the completed three-dimensional laminated electronic device 150 to the user by carrying out the base material 70 to the outside.
 尚、接着剤231を硬化する手段や手順は、上記したヒータ241を用いる方法に限らない。例えば、コントローラ120は、ロボットアーム207を制御して、接着剤231を溝部235に充填した後、組み立て後の積層ユニット218を第1造形ユニット22まで運んで、焼成部74により組み立て後の積層ユニット218を加熱しても良い。この場合、ロボットアーム207は、ヒータ241を備えなくとも良い。あるいは、接着剤231の加熱を、人がヒータなどを用いて手作業で実施しても良い。このようにして本実施形態の積層ユニット形成装置10は、図4に示す製造工程130を実行することで、各積層ユニット218を接着剤231で固定し、3次元積層電子デバイス150を製造することができる。 The means and procedure for curing the adhesive 231 are not limited to the method using the heater 241 described above. For example, the controller 120 controls the robot arm 207 to fill the groove 235 with the adhesive 231 and then carries the assembled laminating unit 218 to the first modeling unit 22, and the calcined section 74 carries the assembled laminating unit 218. 218 may be heated. In this case, the robot arm 207 does not have to include the heater 241. Alternatively, the adhesive 231 may be heated manually by a person using a heater or the like. In this way, the laminated unit forming apparatus 10 of the present embodiment fixes each laminated unit 218 with the adhesive 231 by executing the manufacturing process 130 shown in FIG. 4, and manufactures the three-dimensional laminated electronic device 150. Can be done.
 また、組み立て後の積層ユニット218に接着剤231を塗布する方法は、図8に示す浴槽206に浸す方法に限らない。図12は、別例の接着剤塗布ユニット205の構成を示している。図12に示すように、接着剤塗布ユニット205は、一対のアーム243と、接着剤231を吐出するノズル245とを備える構成でも良い。接着剤塗布ユニット205は、例えば、一対のアーム243によって組み立て後の積層ユニット218を積層方向の両側から挟み、接着剤231を導入したい溝部235の開口235Aを上面に向ける。接着剤塗布ユニット205は、ノズル245から開口235Aへ接着剤231を吐出することで、接着剤231を溝部235内へ浸透させる。この場合、接着剤231を、毛管現象に加え、重力によっても溝部235の奥へ浸透させることができる。 Further, the method of applying the adhesive 231 to the laminated unit 218 after assembly is not limited to the method of immersing in the bathtub 206 shown in FIG. FIG. 12 shows the configuration of another example adhesive coating unit 205. As shown in FIG. 12, the adhesive coating unit 205 may include a pair of arms 243 and a nozzle 245 for discharging the adhesive 231. In the adhesive coating unit 205, for example, the laminated unit 218 after assembly is sandwiched by a pair of arms 243 from both sides in the laminating direction, and the opening 235A of the groove 235 into which the adhesive 231 is to be introduced faces the upper surface. The adhesive coating unit 205 permeates the adhesive 231 into the groove 235 by discharging the adhesive 231 from the nozzle 245 to the opening 235A. In this case, the adhesive 231 can penetrate deep into the groove 235 by gravity in addition to the capillary phenomenon.
 また、図9に示す溝部235の数、形状等は、一例である。図13は、別例の第1積層ユニット218Aの上面233を模式的に示す図である。図13に示すように、溝部235は、上面233の平面方向の幅を広げ、図9に示す複数の溝部235を1つにまとめた構成でも良い。この場合にも、溝部235の深さ(図13の紙面直交方向の高さ)を、例えば、数μm~数百μmにすることで、毛管現象により接着剤を溝部235内へ浸透させることができる。 The number, shape, etc. of the groove portions 235 shown in FIG. 9 are examples. FIG. 13 is a diagram schematically showing the upper surface 233 of the first laminated unit 218A of another example. As shown in FIG. 13, the groove portion 235 may have a configuration in which the width of the upper surface 233 in the plane direction is widened and the plurality of groove portions 235 shown in FIG. 9 are combined into one. Also in this case, by setting the depth of the groove 235 (height in the direction orthogonal to the paper surface of FIG. 13) to, for example, several μm to several hundred μm, the adhesive can be permeated into the groove 235 by the capillary phenomenon. it can.
(3)第2実施形態
 次に、本開示の第2実施形態について説明する。図14は、第2実施形態に係わる第1積層ユニット218Aの上面233を模式的に示す図である。図15は、第2実施形態に係わる組み立て後の積層ユニット218の断面を模式的に示す断面図である。上記した第1実施形態では、3次元積層造形により溝部235を形成し、上面233を下面234から離間する方向へ凹ませた。これに対し、第2実施形態では、上面233に突部247を形成することで隙間を形成する。以下の説明では、上記した第1実施形態と同様の構成については、同一符号を付し、その説明を適宜省略する。
(3) Second Embodiment Next, the second embodiment of the present disclosure will be described. FIG. 14 is a diagram schematically showing the upper surface 233 of the first laminated unit 218A according to the second embodiment. FIG. 15 is a cross-sectional view schematically showing a cross section of the laminated unit 218 after assembly according to the second embodiment. In the first embodiment described above, the groove portion 235 is formed by three-dimensional laminated molding, and the upper surface 233 is recessed in the direction away from the lower surface 234. On the other hand, in the second embodiment, a gap is formed by forming a protrusion 247 on the upper surface 233. In the following description, the same components as those in the first embodiment will be designated by the same reference numerals, and the description thereof will be omitted as appropriate.
 詳述すると、コントローラ120は、図4の絶縁層形成処理S10において、例えば、紫外線硬化樹脂を吐出して積層し、突部247を上面233に形成する。例えば、第1積層ユニット218Aの上面233に形成された突部247は、第2積層ユニット218Bの下面234と接触し、第1積層ユニット218Aの上面233と第2積層ユニット218Bの下面234との間に隙間を形成する。同様に、第2積層ユニット218Bの上面233の突部247は、第3積層ユニット218Cの下面234との間に隙間を形成する。このため、突部247の高さ(突出量)は、例えば、20μm~150μmが好ましい。突部247の数は、特に限定されないが、離れた位置に複数個設けることで、より均等な幅の隙間を形成することができる。 More specifically, in the insulating layer forming process S10 of FIG. 4, the controller 120 discharges, for example, an ultraviolet curable resin and laminates them to form a protrusion 247 on the upper surface 233. For example, the protrusion 247 formed on the upper surface 233 of the first laminated unit 218A comes into contact with the lower surface 234 of the second laminated unit 218B, and the upper surface 233 of the first laminated unit 218A and the lower surface 234 of the second laminated unit 218B come into contact with each other. Form a gap between them. Similarly, the protrusion 247 of the upper surface 233 of the second laminated unit 218B forms a gap with the lower surface 234 of the third laminated unit 218C. Therefore, the height (protrusion amount) of the protrusion 247 is preferably, for example, 20 μm to 150 μm. The number of protrusions 247 is not particularly limited, but by providing a plurality of protrusions at distant positions, gaps having a more uniform width can be formed.
 また、図14に示すように、突部247を上面233の中央や外周部分に分散して設けることで、上面233と下面234との間に、1つの連続した隙間を形成することができる。これにより、側面237の一方側の開口235Aから接着剤231を浸透させることで、隙間の全体、即ち、上面233及び下面234の全体へ接着剤231を塗布することができる。また、側面237の一方側の開口235Aを接着剤231で塞いだとしても、他の側面の開口235Aから隙間内の空気を吐き出すことができる。このため、図11に示す貫通孔239を設けなくとも、隙間内の空気を抜き、毛管現象により接着剤231を隙間内へ円滑に進入させることができる。 Further, as shown in FIG. 14, by providing the protrusions 247 in a dispersed manner in the center or the outer peripheral portion of the upper surface 233, one continuous gap can be formed between the upper surface 233 and the lower surface 234. As a result, the adhesive 231 can be permeated through the opening 235A on one side of the side surface 237, so that the adhesive 231 can be applied to the entire gap, that is, the entire upper surface 233 and lower surface 234. Further, even if the opening 235A on one side of the side surface 237 is closed with the adhesive 231, the air in the gap can be discharged from the opening 235A on the other side surface. Therefore, even if the through hole 239 shown in FIG. 11 is not provided, the air in the gap can be evacuated and the adhesive 231 can smoothly enter the gap by the capillary phenomenon.
 従って、第2実施形態の製造工程130では、積層ユニット形成工程P10の絶縁層形成処理S10において、下面234に近づく方向(図15では上方)へ突出した突部247を、上面233に形成する。また、組立工程P12において、突部247を下面234に接触させることで、上面233と下面234の間に隙間を形成する。これによれば、3次元積層造形により上面233に突部247を形成し、その突部247を下面234に接触させることで上面233及び下面234を離して隙間を形成することができる。これにより、3次元積層造形により、所望の位置、高さ、数等の突部247をデザインすることができ、接着剤231を塗布する位置や塗布量を変更することができる。 Therefore, in the manufacturing process 130 of the second embodiment, in the insulating layer forming process S10 of the laminated unit forming step P10, a protrusion 247 protruding in a direction approaching the lower surface 234 (upper in FIG. 15) is formed on the upper surface 233. Further, in the assembly step P12, the protrusion 247 is brought into contact with the lower surface 234 to form a gap between the upper surface 233 and the lower surface 234. According to this, a protrusion 247 is formed on the upper surface 233 by three-dimensional laminated molding, and by bringing the protrusion 247 into contact with the lower surface 234, the upper surface 233 and the lower surface 234 can be separated to form a gap. Thereby, the protrusions 247 such as a desired position, height, and number can be designed by the three-dimensional laminated molding, and the position and the amount of the adhesive 231 to be applied can be changed.
 尚、第2実施形態において、図11に示す空気の抜け穴用の貫通孔239を、積層ユニット218に設けても良い。また、突部247を、下面234に設けても良い。また、突部247を、上面233と下面234の両方に設けても良い。また、第1実施形態と第2実施形態とを組み合わせて、溝部235と突部247の両方を、積層ユニット218に形成しても良い。 In the second embodiment, the through hole 239 for the air through hole shown in FIG. 11 may be provided in the stacking unit 218. Further, the protrusion 247 may be provided on the lower surface 234. Further, the protrusion 247 may be provided on both the upper surface 233 and the lower surface 234. Further, both the groove portion 235 and the protrusion portion 247 may be formed in the laminated unit 218 by combining the first embodiment and the second embodiment.
(4)第3実施形態
 次に、本開示の第3実施形態について説明する。図16は、第3実施形態に係わる製造工程を示す図である。尚、図面が繁雑となるのを避けるため、図16では、第3積層ユニット218Cの図示を省略している。第3実施形態では、図4に示す平坦化処理S13により、隙間を形成する。詳述すると、図16に示すように、製造工程130(図4参照)の吐出処理S11では、第1積層ユニット218Aの絶縁層220(図7参照)を形成する際に、第2造形ユニット24のインクジェットヘッド88から紫外線硬化樹脂の液滴249を吐出する。次に、平坦化処理S13において、例えば、平坦化装置90のローラによって、吐出した液滴249で形成された凹凸を均して平坦化する。
(4) Third Embodiment Next, the third embodiment of the present disclosure will be described. FIG. 16 is a diagram showing a manufacturing process according to the third embodiment. In addition, in order to avoid cluttering the drawings, the third laminated unit 218C is not shown in FIG. In the third embodiment, a gap is formed by the flattening process S13 shown in FIG. More specifically, as shown in FIG. 16, in the discharge process S11 in the manufacturing process 130 (see FIG. 4), the second modeling unit 24 is formed when the insulating layer 220 (see FIG. 7) of the first laminated unit 218A is formed. 249 droplets of the ultraviolet curable resin are ejected from the inkjet head 88 of the above. Next, in the flattening process S13, for example, the rollers of the flattening device 90 smooth and flatten the unevenness formed by the discharged droplets 249.
 この平坦化処理S13では、平坦化装置90によって平坦化する頻度、平坦化装置90の構造、平坦化装置90から液滴249へ付与する荷重、平坦化装置90の移動速度など、様々な条件によって、平坦化処理S13の精度(水平な平面を形成できる精度)が異なってくる。このため、吐出処理S11、平坦化処理S13、硬化処理S15を繰り返して実行した第1積層ユニット218Aの上面233には、平坦化処理S13の精度に応じた凹凸(以下、第1凹凸部251という)が形成される。第1凹凸部251は、例えば、図16に示すように、波を打ったような湾曲した上面233を形成する。第1凹凸部251の高低差は、例えば、1μm~10μmである。組立工程P12において、任意の積層ユニット218の上面233は、他の積層ユニット218の下面234に第1凹凸部251を接触させることで、第1凹凸部251の高低差に応じた隙間を下面234との間に形成する。第3実施形態では、このような平坦化処理S13で形成した第1凹凸部251を利用して隙間を形成し、毛管現象により隙間内へ接着剤231を浸透させ、接着を行なう。 In the flattening process S13, depending on various conditions such as the frequency of flattening by the flattening device 90, the structure of the flattening device 90, the load applied from the flattening device 90 to the droplet 249, and the moving speed of the flattening device 90. , The accuracy of the flattening process S13 (the accuracy of forming a horizontal plane) is different. Therefore, the upper surface 233 of the first stacking unit 218A, which has been repeatedly executed with the discharge process S11, the flattening process S13, and the hardening process S15, has irregularities corresponding to the accuracy of the flattening process S13 (hereinafter referred to as the first uneven portion 251). ) Is formed. The first uneven portion 251 forms, for example, a wavy curved upper surface 233 as shown in FIG. The height difference of the first uneven portion 251 is, for example, 1 μm to 10 μm. In the assembly step P12, the upper surface 233 of the arbitrary laminating unit 218 brings the first uneven portion 251 into contact with the lower surface 234 of the other laminating unit 218, so that the lower surface 234 has a gap corresponding to the height difference of the first uneven portion 251. Form between and. In the third embodiment, a gap is formed by using the first uneven portion 251 formed in the flattening treatment S13, and the adhesive 231 is permeated into the gap by a capillary phenomenon to perform adhesion.
 従って、第3実施形態では、第1積層ユニット218Aは、上面233を有する絶縁層220を有する。積層ユニット形成工程P10の絶縁層形成処理S10は、紫外線硬化樹脂(硬化性樹脂の一例)を吐出する吐出処理S11と、吐出処理S11により吐出した紫外線硬化樹脂を、平坦化装置90により平坦化する平坦化処理S13と、平坦化処理S13により平坦化した紫外線硬化樹脂を硬化する硬化処理S15と、を含む。製造工程130は、吐出処理S11、平坦化処理S13、硬化処理S15を繰り返し実行し、絶縁層220を形成し、平坦化処理S13によって絶縁層220の上面233に第1凹凸部251を形成する。そして、組立工程P12において、上面233に形成した第1凹凸部251を下面234に接触させることで隙間を形成する。 Therefore, in the third embodiment, the first laminated unit 218A has an insulating layer 220 having an upper surface 233. In the insulating layer forming process S10 of the laminated unit forming step P10, the ultraviolet curable resin (an example of a curable resin) is discharged, and the ultraviolet curable resin discharged by the discharge process S11 is flattened by the flattening device 90. The flattening treatment S13 and the curing treatment S15 for curing the ultraviolet curable resin flattened by the flattening treatment S13 are included. In the manufacturing process 130, the discharge process S11, the flattening process S13, and the curing process S15 are repeatedly executed to form the insulating layer 220, and the flattening process S13 forms the first uneven portion 251 on the upper surface 233 of the insulating layer 220. Then, in the assembly step P12, a gap is formed by bringing the first uneven portion 251 formed on the upper surface 233 into contact with the lower surface 234.
 3次元積層造形において吐出した紫外線硬化樹脂をローラやスキージにより平坦化すると、吐出された紫外線硬化樹脂の液滴249が一定量平坦化される一方、平坦化の精度に応じた凹凸が形成される。そこで、この平坦化によって形成される第1凹凸部251を意図的に形成しておき、その第1凹凸部251を利用して上面233及び下面234を離して隙間を形成することができる。これにより、平坦化によって形成される凹凸の大きさ、高低差等により、接着剤231を塗布する位置や塗布量を変更することができる。 When the ultraviolet curable resin ejected in the three-dimensional laminated molding is flattened by a roller or a squeegee, a certain amount of the ejected ultraviolet curable resin droplets 249 are flattened, while unevenness is formed according to the flattening accuracy. .. Therefore, the first uneven portion 251 formed by this flattening can be intentionally formed, and the upper surface 233 and the lower surface 234 can be separated from each other by using the first uneven portion 251 to form a gap. As a result, the position and amount of the adhesive 231 to be applied can be changed depending on the size of the unevenness formed by the flattening, the height difference, and the like.
 尚、図16では、図示を省略しているが、第3実施形態において、図11に示す空気の抜け穴用の貫通孔239を、各積層ユニット218に設けても良い。また、第1実施形態の溝部235、及び第2実施形態の突部247の少なくとも一方と、平坦化処理S13による第1凹凸部251を組み合わせて隙間を形成しても良い。また、第1実施形態、第2実施形態、後述する第4実施形態において、平坦化処理S13を実行しなくとも良い。 Although not shown in FIG. 16, in the third embodiment, a through hole 239 for an air escape hole shown in FIG. 11 may be provided in each laminated unit 218. Further, at least one of the groove portion 235 of the first embodiment and the protrusion 247 of the second embodiment may be combined with the first uneven portion 251 by the flattening treatment S13 to form a gap. Further, in the first embodiment, the second embodiment, and the fourth embodiment described later, it is not necessary to execute the flattening process S13.
(5)第4実施形態
 次に、本開示の第4実施形態について説明する。図17は、第4実施形態に係わる製造工程を示す図である。第4実施形態では、剥離フィルム71として粗面フィルムを用いることで、隙間を形成する。詳述すると、図17に示す粗面フィルム253の上面には、微細な凹凸255が形成されている。粗面フィルム253の表面粗さRzは、例えば、1.2μm~8.0μmである。粗面フィルム253は、例えば、銅箔を主成分として含むフィルムであり、熱を加えることで基材70から剥離する。尚、粗面フィルム253は、銅箔フィルムに限らず、樹脂性のフィルムにブラスト加工を施して、表面を粗くしたものでも良い。また、フィルム状の部材を用いずに、表面の粗い金属板等を用いても良い。
(5) Fourth Embodiment Next, the fourth embodiment of the present disclosure will be described. FIG. 17 is a diagram showing a manufacturing process according to the fourth embodiment. In the fourth embodiment, a rough surface film is used as the release film 71 to form a gap. More specifically, fine irregularities 255 are formed on the upper surface of the rough surface film 253 shown in FIG. The surface roughness Rz of the rough surface film 253 is, for example, 1.2 μm to 8.0 μm. The rough surface film 253 is, for example, a film containing a copper foil as a main component, and is peeled off from the base material 70 by applying heat. The rough surface film 253 is not limited to the copper foil film, and may be a resin film that has been blasted to roughen the surface. Further, instead of using a film-like member, a metal plate having a rough surface or the like may be used.
 詳述すると、図17に示すように、製造工程130(図4参照)の吐出処理S11では、第1積層ユニット218Aの絶縁層220(図7参照)を形成する際に、第2造形ユニット24のインクジェットヘッド88から紫外線硬化樹脂の液滴249を、粗面フィルム253の上に吐出する。コントローラ120は、吐出処理S11、平坦化処理S13、硬化処理S15(図4参照)を繰り返し実行し、粗面フィルム253上に第1積層ユニット218Aの絶縁層220を形成する。これにより、第1積層ユニット218Aの粗面フィルム253に面する面には、粗面フィルム253の凹凸255に応じた第2凹凸部257が形成される。 More specifically, as shown in FIG. 17, in the discharge process S11 of the manufacturing process 130 (see FIG. 4), when the insulating layer 220 (see FIG. 7) of the first laminated unit 218A is formed, the second modeling unit 24 249 droplets of the ultraviolet curable resin are ejected from the inkjet head 88 of the above onto the rough surface film 253. The controller 120 repeatedly executes the discharge process S11, the flattening process S13, and the curing process S15 (see FIG. 4) to form the insulating layer 220 of the first laminated unit 218A on the rough surface film 253. As a result, a second uneven portion 257 corresponding to the unevenness 255 of the rough surface film 253 is formed on the surface of the first laminated unit 218A facing the rough surface film 253.
 第4実施形態では、例えば、組立工程P12において、この粗面フィルム253に面する面を、第1積層ユニット218Aの上面233として、第2積層ユニット218Bの下面234と接触させる。これにより、第2凹凸部257を下面234に接触させることで、上面233と下面234との間に、第2凹凸部257の高さ等に応じた隙間を形成することができる。尚、図面が繁雑となるのを避けるため、図17は、第3積層ユニット218Cの図示を省略している。 In the fourth embodiment, for example, in the assembly step P12, the surface facing the rough surface film 253 is brought into contact with the lower surface 234 of the second laminated unit 218B as the upper surface 233 of the first laminated unit 218A. As a result, by bringing the second uneven portion 257 into contact with the lower surface 234, a gap corresponding to the height of the second uneven portion 257 can be formed between the upper surface 233 and the lower surface 234. In order to avoid cluttering the drawings, FIG. 17 omits the illustration of the third laminated unit 218C.
 従って、第4実施形態では、絶縁層形成処理S10において、凹凸255を有する粗面フィルム253の上に第1積層ユニット218Aを形成し、粗面フィルム253に面した上面233に第2凹凸部257を形成する。組立工程P12において、上面233に形成した第2凹凸部257を下面234に接触させることで、上面233と下面234の間に隙間を形成する。 Therefore, in the fourth embodiment, in the insulating layer forming treatment S10, the first laminated unit 218A is formed on the rough surface film 253 having the uneven surface 255, and the second uneven surface portion 257 is formed on the upper surface 233 facing the rough surface film 253. To form. In the assembly step P12, the second uneven portion 257 formed on the upper surface 233 is brought into contact with the lower surface 234 to form a gap between the upper surface 233 and the lower surface 234.
 表面が粗い粗面フィルム253の上に、3次元積層造形によって第1積層ユニット218Aを形成すると、粗面フィルム253に面した面に、粗面フィルム253の粗さに応じた第2凹凸部257を形成することができる。そこで、この粗面フィルム253によって形成される第2凹凸部257を意図的に形成しておき、その第2凹凸部257を利用して上面233及び下面234を離して隙間を形成することができる。これにより、粗面フィルム253によって形成される凹凸の大きさ、高低差等により、接着剤231を塗布する位置や塗布量を変更することができる。 When the first laminating unit 218A is formed on the rough surface film 253 having a rough surface by three-dimensional laminating molding, the second uneven portion 257 corresponding to the roughness of the rough surface film 253 is formed on the surface facing the rough surface film 253. Can be formed. Therefore, the second uneven portion 257 formed by the rough surface film 253 can be intentionally formed, and the upper surface 233 and the lower surface 234 can be separated from each other by using the second uneven portion 257 to form a gap. .. As a result, the position and amount of the adhesive 231 applied can be changed depending on the size of the unevenness formed by the rough surface film 253, the height difference, and the like.
 尚、図17では、図示を省略しているが、第4実施形態において、図11に示す空気の抜け穴用の貫通孔239を、各積層ユニット218に設けても良い。また、第1実施形態の溝部235、第2実施形態の突部247、第3実施形態の第1凹凸部251の少なくとも1つと、第4実施形態の第2凹凸部257を組み合わせて隙間を形成しても良い。例えば、中間の第2積層ユニット218Bを、粗面フィルム253の上に形成し、下面234に第2凹凸部257を形成し、第2積層ユニット218Bの上面を平坦化装置90で均して第1凹凸部251を形成しても良い。これにより、第2積層ユニット218Bに対する加工のみで、第2積層ユニット218Bと第1積層ユニット218Aの間の隙間、第2積層ユニット218Bと第3積層ユニット218Cの間の隙間を形成することができる。 Although not shown in FIG. 17, in the fourth embodiment, a through hole 239 for an air escape hole shown in FIG. 11 may be provided in each laminated unit 218. Further, a gap is formed by combining at least one of the groove portion 235 of the first embodiment, the protrusion 247 of the second embodiment, the first uneven portion 251 of the third embodiment, and the second uneven portion 257 of the fourth embodiment. You may. For example, the intermediate second laminated unit 218B is formed on the rough surface film 253, the second uneven portion 257 is formed on the lower surface 234, and the upper surface of the second laminated unit 218B is leveled by the flattening device 90. 1 Concavo-convex portion 251 may be formed. As a result, it is possible to form a gap between the second laminated unit 218B and the first laminated unit 218A and a gap between the second laminated unit 218B and the third laminated unit 218C only by processing the second laminated unit 218B. ..
(6)まとめ
 以上詳細に説明したように、上記各実施形態の積層ユニット218の製造工程130は、積層ユニット形成工程P10、組立工程P12、接着剤塗布工程P13、硬化工程P15を含む。積層ユニット形成工程P10では、第1積層ユニット218A及び第2積層ユニット218Bを、3次元積層造形により形成する。組立工程P12では、第1積層ユニット218Aの上面233と第2積層ユニット218Bの下面234との間に隙間を設けて、第1積層ユニット218Aと第2積層ユニット218Bを組み合わせる。接着剤塗布工程P13では、第1積層ユニット218Aと第2積層ユニット218Bを組み合わせた状態で、隙間の開口235Aに接着剤231を塗布し、開口235Aから隙間内へ接着剤231を浸透させ上面233と下面234に接着剤231を塗布する。硬化工程P15は、上面233と下面234に塗布した接着剤231に熱を加えることで接着剤231を硬化させ、第1積層ユニット218Aに対して第2積層ユニット218Bを固定する。
(6) Summary As described in detail above, the manufacturing process 130 of the laminated unit 218 of each of the above embodiments includes the laminated unit forming step P10, the assembling step P12, the adhesive coating step P13, and the curing step P15. In the laminated unit forming step P10, the first laminated unit 218A and the second laminated unit 218B are formed by three-dimensional laminated modeling. In the assembly step P12, a gap is provided between the upper surface 233 of the first laminated unit 218A and the lower surface 234 of the second laminated unit 218B, and the first laminated unit 218A and the second laminated unit 218B are combined. In the adhesive application step P13, with the first lamination unit 218A and the second lamination unit 218B combined, the adhesive 231 is applied to the opening 235A of the gap, and the adhesive 231 penetrates into the gap through the opening 235A to penetrate the upper surface 233. And the adhesive 231 is applied to the lower surface 234. In the curing step P15, the adhesive 231 is cured by applying heat to the adhesive 231 applied to the upper surface 233 and the lower surface 234, and the second laminated unit 218B is fixed to the first laminated unit 218A.
 これによれば、第1及び第2積層ユニット218A,218Bを組み合わせる際に、上面233及び下面234の間に隙間を設けておく。その隙間の開口235Aに接着剤231を塗布することで、塗布した接着剤231を毛管現象等により隙間内へ浸透させることができる。特に、3次元積層造形では、例えば、数十μmの隙間など、毛管現象を発生させるのに必要な極めて狭い隙間を精度良く容易に形成できる。そして、上面233及び下面234に接着剤231を塗布しておき、その接着剤231に熱を加えて硬化させることで、第1積層ユニット218Aに対して第2積層ユニット218Bを固定することができる。これにより、開口235Aから隙間内へ接着剤231を浸透させる一方、毛管現象等が作用する隙間内だけで接着剤231の進行を止めることができ、第1積層ユニット218Aや第2積層ユニット218Bに設けられた電子回路(電子部品96、プローブピン99、回路配線225、接続端子227など)に接着剤231が付着することを抑制し、絶縁不良などの不具合の発生を抑制できる。また、隙間の開口235Aに接着剤231を塗布することで、隙間内へ接着剤231を浸透させることができるため、接着面(上面233及び下面234)へ接着剤231を直接塗布等する必要がなくなり、積層ユニット218の構造などに応じて、接着剤231を塗布する位置や量を細かく調整する必要がなくなる。尚、本開示の電子回路とは、例えば、電子部品96、電子部品96等に接続される接続端子227、接続端子227を他の接続端子227等に接続する回路配線225、回路配線225を他の回路配線225に接続するスルーホール、積層ユニット218間を接続するプローブピン99など、積層ユニット218内で電気的に接続された回路を構成する各部材を少なくとも1つ含む概念である。 According to this, when combining the first and second laminated units 218A and 218B, a gap is provided between the upper surface 233 and the lower surface 234. By applying the adhesive 231 to the opening 235A of the gap, the applied adhesive 231 can be permeated into the gap by a capillary phenomenon or the like. In particular, in the three-dimensional laminated molding, it is possible to accurately and easily form an extremely narrow gap necessary for causing a capillary phenomenon, for example, a gap of several tens of μm. Then, the second laminated unit 218B can be fixed to the first laminated unit 218A by applying the adhesive 231 to the upper surface 233 and the lower surface 234 and applying heat to the adhesive 231 to cure it. .. As a result, while the adhesive 231 penetrates into the gap through the opening 235A, the progress of the adhesive 231 can be stopped only in the gap where the capillary phenomenon or the like acts, and the first laminated unit 218A and the second laminated unit 218B can be stopped. It is possible to suppress the adhesion of the adhesive 231 to the provided electronic circuit (electronic component 96, probe pin 99, circuit wiring 225, connection terminal 227, etc.) and suppress the occurrence of defects such as insulation failure. Further, since the adhesive 231 can be permeated into the gap by applying the adhesive 231 to the opening 235A of the gap, it is necessary to directly apply the adhesive 231 to the adhesive surfaces (upper surface 233 and lower surface 234). Therefore, it is not necessary to finely adjust the position and amount of the adhesive 231 to be applied according to the structure of the laminating unit 218 and the like. The electronic circuit of the present disclosure includes, for example, a connection terminal 227 connected to an electronic component 96, an electronic component 96, etc., a circuit wiring 225 connecting the connection terminal 227 to another connection terminal 227, etc., and a circuit wiring 225. It is a concept that includes at least one member each constituting an electrically connected circuit in the laminated unit 218, such as a through hole connected to the circuit wiring 225 of the above and a probe pin 99 connecting between the laminated units 218.
 因みに、上記各実施形態において、上面233は、第1接触面の一例である。下面234は、第2接触面の一例である。吐出処理S11は、吐出工程の一例である。平坦化処理S13は、平坦化工程の一例である。硬化処理S15は、硬化工程の一例である。 By the way, in each of the above embodiments, the upper surface 233 is an example of the first contact surface. The lower surface 234 is an example of the second contact surface. The discharge process S11 is an example of a discharge process. The flattening process S13 is an example of a flattening step. The curing treatment S15 is an example of a curing step.
(7)変更例
 尚、本開示は上記各実施形態に限定されるものでなく、その趣旨を逸脱しない範囲で様々な変更が可能である。
 例えば、隙間を形成する方法は、上記した第1~第4実施形態に示す方法に限らない。例えば、上面233と下面234の間に、金属のスペーサを配置して隙間を形成しても良い。
 また、本開示における第1及び第2接触面は、上面233や下面234など、方向によって規定されるものではなく、2つの積層ユニット218を接着する面である。従って、第1積層ユニット218Aと第2積層ユニット218Bを左右方向で接着する場合、例えば、第1積層ユニット218Aの右側面が第1接着面となり、第2積層ユニット218Bの左側面が第2接触面となる。
 また、上記各実施形態では、上面233を、第1接触面として採用したが、下面234を第1接触面として採用しても良い。即ち、下面234に、溝部235、突部247、第1凹凸部251、第2凹凸部257の少なくとも1つを形成しても良い。
 また、本開示の硬化性樹脂は、紫外線硬化樹脂に限らず、例えば、熱可塑性樹脂や熱硬化性樹脂でも良い。
 また、積層ユニット218は、電子部品96を収容する収容部222やプローブピン99を収容するピン挿入孔223を備えなくとも良い。例えば、積層ユニット218は、隙間より薄い電子部品96や短いプローブピン99を上面233に表面実装しても良い。
 上記した積層ユニット形成装置10の構成は一例であり、適宜変更可能である。例えば、積層ユニット形成装置10は、電子部品96を装着するための装着ユニット26を備えなくとも良い。
 また、本開示の3次元積層造形法としては、インクジェット法以外に、例えば、熱溶解積層法などを採用できる。
(7) Example of change The present disclosure is not limited to each of the above embodiments, and various changes can be made without departing from the spirit of the present.
For example, the method of forming the gap is not limited to the method shown in the first to fourth embodiments described above. For example, a metal spacer may be arranged between the upper surface 233 and the lower surface 234 to form a gap.
Further, the first and second contact surfaces in the present disclosure are not defined by the direction such as the upper surface 233 and the lower surface 234, but are surfaces for adhering the two laminated units 218. Therefore, when the first laminated unit 218A and the second laminated unit 218B are bonded in the left-right direction, for example, the right side surface of the first laminated unit 218A becomes the first bonding surface, and the left side surface of the second laminated unit 218B becomes the second contact. It becomes a face.
Further, in each of the above embodiments, the upper surface 233 is adopted as the first contact surface, but the lower surface 234 may be adopted as the first contact surface. That is, at least one of the groove portion 235, the protrusion portion 247, the first uneven portion 251 and the second uneven portion 257 may be formed on the lower surface 234.
Further, the curable resin of the present disclosure is not limited to the ultraviolet curable resin, and may be, for example, a thermoplastic resin or a thermosetting resin.
Further, the stacking unit 218 does not have to include the accommodating portion 222 accommodating the electronic component 96 and the pin insertion hole 223 accommodating the probe pin 99. For example, the stacking unit 218 may have an electronic component 96 thinner than the gap or a short probe pin 99 surface-mounted on the upper surface 233.
The configuration of the laminated unit forming device 10 described above is an example, and can be changed as appropriate. For example, the stacking unit forming device 10 does not have to include a mounting unit 26 for mounting the electronic component 96.
Further, as the three-dimensional additive manufacturing method of the present disclosure, for example, a fused deposition modeling method or the like can be adopted in addition to the inkjet method.
 10 積層ユニット形成装置
 90 平坦化装置
 96 電子部品
 130 製造工程
 218A 第1積層ユニット
 218B 第2積層ユニット
 220 絶縁層
 222 収容部
 231 接着剤
 233 上面(第1接触面)
 234 下面(第2接触面)
 235 溝部
 235A 開口
 239 貫通孔
 247 突部
 251 第1凹凸部
 253 粗面フィルム
 257 第2凹凸部
 P10 積層ユニット形成工程
 P12 組立工程
 P13 接着剤塗布工程
 P15 硬化工程
 S11 吐出処理(吐出工程)
 S13 平坦化処理(平坦化工程)
 S15 硬化処理(硬化工程)
10 Laminated unit forming device 90 Flattening device 96 Electronic components 130 Manufacturing process 218A 1st laminated unit 218B 2nd laminated unit 220 Insulation layer 222 Accommodating part 231 Adhesive 233 Upper surface (first contact surface)
234 Bottom surface (second contact surface)
235 Groove 235A Opening 239 Through hole 247 Protrusion 251 1st uneven part 253 Rough surface film 257 2nd uneven part P10 Laminating unit forming process P12 Assembly process P13 Adhesive application process P15 Hardening process S11 Discharge process (discharge process)
S13 Flattening process (flattening step)
S15 Hardening process (hardening process)

Claims (7)

  1.  第1積層ユニット及び第2積層ユニットを、3次元積層造形により形成する積層ユニット形成工程と、
     前記第1積層ユニットの第1接着面と前記第2積層ユニットの第2接着面との間に隙間を設けて、前記第1積層ユニットと前記第2積層ユニットを組み合わせる組立工程と、
     前記第1積層ユニットと前記第2積層ユニットを組み合わせた状態で、前記隙間の開口に接着剤を塗布し、前記開口から前記隙間内へ前記接着剤を浸透させ前記第1接着面と前記第2接着面に前記接着剤を塗布する接着剤塗布工程と、
     前記第1接着面と前記第2接着面に塗布した前記接着剤に熱を加えることで前記接着剤を硬化させ、前記第1積層ユニットに対して前記第2積層ユニットを固定する硬化工程と、
     を含む積層ユニットの接着方法。
    A laminated unit forming step of forming the first laminated unit and the second laminated unit by three-dimensional laminated modeling, and
    An assembly step of combining the first laminated unit and the second laminated unit by providing a gap between the first adhesive surface of the first laminated unit and the second adhesive surface of the second laminated unit.
    In a state where the first laminated unit and the second laminated unit are combined, an adhesive is applied to the opening of the gap, and the adhesive is allowed to permeate into the gap through the opening to penetrate the first adhesive surface and the second. An adhesive application step of applying the adhesive to the adhesive surface and
    A curing step of curing the adhesive by applying heat to the first adhesive surface and the adhesive applied to the second adhesive surface, and fixing the second laminated unit to the first laminated unit.
    Adhesion method of laminated unit including.
  2.  前記積層ユニット形成工程において、
     前記第2接着面から離れる方向へ前記第1接着面を凹ませた溝部を、前記第1積層ユニットに形成し、
     前記組立工程において、
     前記溝部により、前記第1接着面と前記第2接着面の間に前記隙間を形成する、請求項1に記載の積層ユニットの接着方法。
    In the laminated unit forming step,
    A groove portion in which the first adhesive surface is recessed in a direction away from the second adhesive surface is formed in the first laminated unit.
    In the assembly process
    The method for adhering a laminated unit according to claim 1, wherein the gap is formed between the first adhesive surface and the second adhesive surface by the groove portion.
  3.  前記積層ユニット形成工程において、
     前記第2接着面に近づく方向へ突出した突部を、前記第1接着面に形成し、
     前記組立工程において、
     前記突部を前記第2接着面に接触させることで、前記第1接着面と前記第2接着面の間に前記隙間を形成する、請求項1又は請求項2に記載の積層ユニットの接着方法。
    In the laminated unit forming step,
    A protrusion protruding in a direction approaching the second adhesive surface is formed on the first adhesive surface.
    In the assembly process
    The method for adhering a laminated unit according to claim 1 or 2, wherein the gap is formed between the first adhesive surface and the second adhesive surface by bringing the protrusion into contact with the second adhesive surface. ..
  4.  前記第1積層ユニットは、
     前記第1接着面を有する絶縁層を有し、
     前記積層ユニット形成工程は、
     硬化性樹脂を吐出する吐出工程と、
     前記吐出工程により吐出した前記硬化性樹脂を、平坦化装置により平坦化する平坦化工程と、
     前記平坦化工程により平坦化した前記硬化性樹脂を硬化する硬化工程と、を含み、前記吐出工程、前記平坦化工程、前記硬化工程を繰り返し実行し、前記絶縁層を形成し、前記平坦化工程によって前記絶縁層の前記第1接着面に第1凹凸部を形成し、
     前記組立工程において、
     前記第1接着面に形成した前記第1凹凸部を前記第2接着面に接触させることで、前記第1接着面と前記第2接着面の間に前記隙間を形成する、請求項1乃至請求項3の何れか1項に記載の積層ユニットの接着方法。
    The first laminated unit is
    Having an insulating layer having the first adhesive surface,
    The laminated unit forming step is
    Discharge process that discharges curable resin and
    A flattening step of flattening the curable resin discharged by the discharging step with a flattening device,
    A curing step of curing the curable resin flattened by the flattening step is included, and the discharging step, the flattening step, and the curing step are repeatedly executed to form the insulating layer, and the flattening step is performed. A first uneven portion is formed on the first adhesive surface of the insulating layer.
    In the assembly process
    Claims 1 to claim that the first uneven portion formed on the first adhesive surface is brought into contact with the second adhesive surface to form the gap between the first adhesive surface and the second adhesive surface. Item 3. The method for adhering a laminated unit according to any one of items 3.
  5.  前記積層ユニット形成工程において、
     凹凸を有する粗面フィルムの上に前記第1積層ユニットを形成し、前記粗面フィルムに面した前記第1接着面に第2凹凸部を形成し、
     前記組立工程において、
     前記第1接着面に形成した前記第2凹凸部を前記第2接着面に接触させることで、前記第1接着面と前記第2接着面の間に前記隙間を形成する、請求項1乃至請求項4の何れか1項に記載の積層ユニットの接着方法。
    In the laminated unit forming step,
    The first laminated unit is formed on the rough surface film having unevenness, and the second uneven surface portion is formed on the first adhesive surface facing the rough surface film.
    In the assembly process
    Claims 1 to claim that the gap is formed between the first adhesive surface and the second adhesive surface by bringing the second uneven portion formed on the first adhesive surface into contact with the second adhesive surface. Item 2. The method for adhering a laminated unit according to any one of Item 4.
  6.  前記積層ユニット形成工程において、
     前記第1積層ユニットに貫通孔を形成し、
     前記組立工程において、
     前記貫通孔を通じて前記隙間を前記第1積層ユニットの外部に接続する、請求項1乃至請求項5の何れか1項に記載の積層ユニットの接着方法。
    In the laminated unit forming step,
    A through hole is formed in the first laminated unit.
    In the assembly process
    The method for adhering a laminated unit according to any one of claims 1 to 5, wherein the gap is connected to the outside of the first laminated unit through the through hole.
  7.  前記積層ユニット形成工程において、
     電子部品を収容する収容部を前記第1積層ユニットに形成し、
     前記収容部は、
     前記隙間に比べて大きな空間を前記第2接着面との間に形成する、請求項1乃至請求項6の何れか1項に記載の積層ユニットの接着方法。
    In the laminated unit forming step,
    An accommodating portion for accommodating electronic components is formed in the first laminated unit.
    The accommodating part
    The method for bonding a laminated unit according to any one of claims 1 to 6, wherein a space larger than the gap is formed between the second bonding surface and the bonding surface.
PCT/JP2019/032219 2019-08-19 2019-08-19 Method for bonding multilayer units WO2021033227A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021541350A JP7213361B2 (en) 2019-08-19 2019-08-19 Laminated unit bonding method
PCT/JP2019/032219 WO2021033227A1 (en) 2019-08-19 2019-08-19 Method for bonding multilayer units

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/032219 WO2021033227A1 (en) 2019-08-19 2019-08-19 Method for bonding multilayer units

Publications (1)

Publication Number Publication Date
WO2021033227A1 true WO2021033227A1 (en) 2021-02-25

Family

ID=74660065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032219 WO2021033227A1 (en) 2019-08-19 2019-08-19 Method for bonding multilayer units

Country Status (2)

Country Link
JP (1) JP7213361B2 (en)
WO (1) WO2021033227A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017834A (en) * 2001-06-29 2003-01-17 Toshiba Corp Method of manufacturing wiring board and wiring board forming member
JP2004235236A (en) * 2003-01-28 2004-08-19 Fujikura Ltd Multilayered printed board and its manufacturing method
JP2008159955A (en) * 2006-12-26 2008-07-10 Shinko Electric Ind Co Ltd Substrate incorporating electronic component
JP2012243829A (en) * 2011-05-17 2012-12-10 Panasonic Corp Multilayered printed wiring board and method of manufacturing the same
US20170042034A1 (en) * 2014-04-21 2017-02-09 Cornell University System and methods for additive manufacturing of electromechanical assemblies
JP2017130553A (en) * 2016-01-20 2017-07-27 株式会社ミマキエンジニアリング Method for manufacturing electronic element installation base material, method for manufacturing electronic component, and molding device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017834A (en) * 2001-06-29 2003-01-17 Toshiba Corp Method of manufacturing wiring board and wiring board forming member
JP2004235236A (en) * 2003-01-28 2004-08-19 Fujikura Ltd Multilayered printed board and its manufacturing method
JP2008159955A (en) * 2006-12-26 2008-07-10 Shinko Electric Ind Co Ltd Substrate incorporating electronic component
JP2012243829A (en) * 2011-05-17 2012-12-10 Panasonic Corp Multilayered printed wiring board and method of manufacturing the same
US20170042034A1 (en) * 2014-04-21 2017-02-09 Cornell University System and methods for additive manufacturing of electromechanical assemblies
JP2017130553A (en) * 2016-01-20 2017-07-27 株式会社ミマキエンジニアリング Method for manufacturing electronic element installation base material, method for manufacturing electronic component, and molding device

Also Published As

Publication number Publication date
JP7213361B2 (en) 2023-01-26
JPWO2021033227A1 (en) 2021-02-25

Similar Documents

Publication Publication Date Title
WO2016042657A1 (en) Manufacturing apparatus and manufacturing method
WO2019102522A1 (en) Three-dimensional multi-layer electronic device production method and three-dimensional multi-layer electronic device
JP6987975B2 (en) 3D structure forming method and 3D structure forming device
JP7053832B2 (en) Circuit forming method and circuit forming device
JP6533112B2 (en) Circuit formation method
JP6714109B2 (en) Circuit forming method and circuit forming apparatus
WO2021033227A1 (en) Method for bonding multilayer units
WO2017009922A1 (en) Wiring formation method and wiring formation device
WO2016189577A1 (en) Wiring forming method
WO2021181561A1 (en) Manufacturing method for mounting substrate by three-dimensional laminate molding
JP6987972B2 (en) Circuit forming method and circuit forming device
WO2022113186A1 (en) Electric circuit forming method
WO2021075051A1 (en) Component mounting method and component mounting device
WO2021176498A1 (en) Wiring formation method
WO2021033228A1 (en) Method for manufacturing 3-dimensional stacked electronic device by 3-dimensional additive manufacturing
JP7145334B2 (en) Electronic circuit manufacturing method by 3D additive manufacturing
WO2021186539A1 (en) Molding method
WO2023079607A1 (en) Circuit-forming method and circuit-forming apparatus
WO2022101965A1 (en) Circuit forming method
JPWO2019111347A1 (en) Method of forming a support member and method of forming a structure
WO2023058111A1 (en) Ejection device and detection method
WO2021176499A1 (en) Method for forming wiring line
JP7142781B2 (en) Wiring board manufacturing method and wiring board manufacturing apparatus
WO2023223562A1 (en) Manufacturing method and manufacturing device
US11570900B2 (en) Circuit forming method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942167

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021541350

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19942167

Country of ref document: EP

Kind code of ref document: A1