WO2021176499A1 - Method for forming wiring line - Google Patents

Method for forming wiring line Download PDF

Info

Publication number
WO2021176499A1
WO2021176499A1 PCT/JP2020/008621 JP2020008621W WO2021176499A1 WO 2021176499 A1 WO2021176499 A1 WO 2021176499A1 JP 2020008621 W JP2020008621 W JP 2020008621W WO 2021176499 A1 WO2021176499 A1 WO 2021176499A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
pedestal member
forming
resin layer
via hole
Prior art date
Application number
PCT/JP2020/008621
Other languages
French (fr)
Japanese (ja)
Inventor
亮 榊原
亮二郎 富永
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to JP2022504760A priority Critical patent/JP7358614B2/en
Priority to PCT/JP2020/008621 priority patent/WO2021176499A1/en
Publication of WO2021176499A1 publication Critical patent/WO2021176499A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits

Definitions

  • the present disclosure relates to a wiring forming method in which wiring is formed by a fluid containing metal particles by three-dimensional laminated modeling.
  • Patent Document 1 a technique has been developed in which a fluid containing metal particles is discharged and the discharged fluid is fired to form a circuit for connecting electronic components and the like.
  • the first wiring is formed by a fluid containing metal particles, and a resin layer is formed on the first wiring by an ultraviolet curable resin. Via holes are formed in the resin layer.
  • the inner wall of the via hole is inclined, and the lower end of the inclined surface is continuous with the upper surface of the first wiring.
  • a second wiring connected to the first wiring is formed on the resin layer via an inclined surface of the via hole.
  • the first wiring arranged under the resin layer and the second wiring arranged on the upper surface of the resin layer are formed in via holes by three-dimensional laminated molding. It can be connected by wiring formed on an inclined surface.
  • a fluid containing metal particles is discharged to an inclined surface of a via hole by an inkjet method, if the angle of the inclined surface is steep, the discharged fluid may flow down along the inclined surface. .. As a result, the thickness of the wiring may be locally reduced or disconnection may occur, which causes a problem that the reliability of the connection is lowered.
  • the present disclosure has been made in view of the above circumstances, and an object of the present invention is to provide a wiring forming method capable of improving the reliability of wiring connection when wiring is formed on an inclined surface by three-dimensional laminated modeling. do.
  • the present disclosure discloses a pedestal member forming step of forming a pedestal member having a predetermined height from a resin material, and a first method of arranging the pedestal member on the surface of the pedestal member by a fluid containing metal particles.
  • a wiring forming method including a second wiring forming step of forming two wirings and forming the second wiring so as to be connected to the first wiring on the pedestal member.
  • the first wiring is formed on the pedestal member.
  • the inclined surface is formed according to the position of the pedestal member, and the second wiring is formed on the inclined surface. Connect the second wiring and the first wiring on the pedestal member.
  • the first wiring can be raised to a predetermined height and arranged.
  • the angle of the inclined surface can be made gentle and the second wiring can be connected.
  • FIG. 1 shows an electronic device manufacturing apparatus 10.
  • the electronic device manufacturing apparatus 10 includes a transport device 20, a first modeling unit 22, a second modeling unit 24, a mounting unit 26, a third modeling unit 29, and a control device 27 (see FIGS. 2 and 3). Be prepared.
  • the transfer device 20, the first modeling unit 22, the second modeling unit 24, the mounting unit 26, and the third modeling unit 29 are arranged on the base 28 of the electronic device manufacturing apparatus 10.
  • the base 28 is generally rectangular in plan view.
  • the longitudinal direction of the base 28 will be referred to as the X-axis direction
  • the lateral direction of the base 28 will be referred to as the Y-axis direction
  • the direction orthogonal to both the X-axis direction and the Y-axis direction will be referred to as the Z-axis direction.
  • the transport device 20 includes an X-axis slide mechanism 30 and a Y-axis slide mechanism 32.
  • the X-axis slide mechanism 30 has an X-axis slide rail 34 and an X-axis slider 36.
  • the X-axis slide rail 34 is arranged on the base 28 so as to extend in the X-axis direction.
  • the X-axis slider 36 is slidably held in the X-axis direction by the X-axis slide rail 34.
  • the X-axis slide mechanism 30 has an electromagnetic motor 38 (see FIG. 2), and the X-axis slider 36 is moved to an arbitrary position in the X-axis direction by driving the electromagnetic motor 38.
  • the Y-axis slide mechanism 32 has a Y-axis slide rail 50 and a stage 52.
  • the Y-axis slide rail 50 is arranged on the base 28 so as to extend in the Y-axis direction.
  • One end of the Y-axis slide rail 50 is connected to the X-axis slider 36. Therefore, the Y-axis slide rail 50 is movable in the X-axis direction.
  • the stage 52 is slidably held in the Y-axis direction by the Y-axis slide rail 50.
  • the Y-axis slide mechanism 32 has an electromagnetic motor 56 (see FIG. 2), and the stage 52 is moved to an arbitrary position in the Y-axis direction by driving the electromagnetic motor 56. As a result, the stage 52 moves to an arbitrary position on the base 28 by driving the X-axis slide mechanism 30 and the Y-axis slide mechanism 32.
  • the stage 52 has a base 60, a holding device 62, and an elevating device 64.
  • the base 60 is formed in a flat plate shape, and the base material 70 is placed on the upper surface.
  • the holding devices 62 are provided on both sides of the base 60 in the X-axis direction.
  • the holding device 62 holds the base material 70 fixedly to the base 60 by sandwiching both edges of the base material 70 placed on the base 60 in the X-axis direction.
  • the elevating device 64 is arranged below the base 60, and raises and lowers the base 60 in the Z-axis direction.
  • the first modeling unit 22 is a unit for modeling wiring on a base material 70 placed on a base 60 of a stage 52, and has a first printing unit 72 and a firing unit 74.
  • the first printing unit 72 has an inkjet head 76 (see FIG. 2), and linearly ejects conductive ink onto the base material 70 placed on the base 60.
  • the conductive ink is an example of a fluid containing the metal particles of the present disclosure.
  • the conductive ink contains, for example, nanometer-sized metal (silver or the like) fine particles dispersed in a solvent as a main component, and is cured by being fired by heat.
  • the conductive ink contains, for example, metal nanoparticles having a size of several hundred nanometers or less.
  • the surface of the metal nanoparticles is, for example, coated with a dispersant to suppress agglutination in the solvent.
  • the inkjet head 76 ejects conductive ink from a plurality of nozzles by, for example, a piezo method using a piezoelectric element.
  • the device for ejecting the conductive ink is not limited to the inkjet head provided with a plurality of nozzles, and for example, a dispenser provided with one nozzle may be used.
  • the type of metal nanoparticles contained in the conductive ink is not limited to silver, and may be copper, gold, or the like.
  • the number of types of metal nanoparticles contained in the conductive ink is not limited to one, and may be a plurality of types.
  • the firing unit 74 has an irradiation device 78 (see FIG. 2).
  • the irradiation device 78 includes, for example, an infrared heater that heats the conductive ink ejected onto the base material 70.
  • the conductive ink is fired by applying heat from an infrared heater to form wiring.
  • the solvent is vaporized and the protective film of the metal nanoparticles, that is, the dispersant is decomposed, and the metal nanoparticles are brought into contact with or fused together. This is a phenomenon in which the conductivity is increased.
  • the wiring can be formed by firing the conductive ink.
  • the device for heating the conductive ink is not limited to the infrared heater.
  • an infrared lamp, a laser irradiation device that irradiates the conductive ink with laser light, or a base material 70 to which the conductive ink is discharged is placed in the furnace. It may be provided with an electric furnace for heating.
  • the second modeling unit 24 is a unit that forms a resin layer on the base material 70 placed on the base 60, and has a second printing unit 84 and a curing unit 86.
  • the second printing unit 84 has an inkjet head 88 (see FIG. 2), and discharges the ultraviolet curable resin onto the base material 70 placed on the base 60.
  • the ultraviolet curable resin is a resin that is cured by irradiation with ultraviolet rays.
  • the method in which the inkjet head 88 discharges the ultraviolet curable resin may be, for example, a piezo method using a piezoelectric element, or a thermal method in which the resin is heated to generate bubbles and discharged from a plurality of nozzles.
  • the cured portion 86 has a flattening device 90 (see FIG. 2) and an irradiation device 92 (see FIG. 2).
  • the flattening device 90 flattens the upper surface of the ultraviolet curable resin discharged onto the base material 70 by the inkjet head 88.
  • the flattening device 90 makes the thickness of the UV curable resin uniform by, for example, scraping the excess resin with a roller or a blade while leveling the surface of the UV curable resin.
  • the irradiation device 92 includes a mercury lamp or an LED as a light source, and irradiates the ultraviolet curable resin discharged on the base material 70 with ultraviolet rays. As a result, the ultraviolet curable resin discharged onto the base material 70 is cured, and a resin layer can be formed.
  • the mounting unit 26 is a unit for arranging electronic components on the base material 70 mounted on the base 60, and has a supply unit 100 and a mounting unit 102.
  • the supply unit 100 has a plurality of tape feeders 110 (see FIG. 2) that send out taped electronic components one by one, and supplies the electronic components at each supply position.
  • the electronic component is, for example, a sensor element such as a temperature sensor.
  • the electronic components are not limited to the tape feeder 110 and may be supplied by the tray.
  • the mounting unit 102 has a mounting head 112 (see FIG. 2) and a moving device 114 (see FIG. 2).
  • the mounting head 112 has a suction nozzle for sucking and holding electronic components.
  • the suction nozzle sucks and holds electronic components by sucking air by supplying negative pressure from a positive / negative pressure supply device (not shown). Then, when a slight positive pressure is supplied from the positive / negative pressure supply device, the electronic component is separated. Further, the moving device 114 moves the mounting head 112 between the supply position of the tape feeder 110 and the base material 70 mounted on the base 60. As a result, the mounting portion 102 holds the electronic component by the suction nozzle, and arranges the electronic component held by the suction nozzle on the base material 70.
  • the third modeling unit 29 is a unit for applying the conductive paste on the base material 70 placed on the base 60.
  • the conductive paste is, for example, a viscous fluid containing micro-sized metal particles (such as microfilament) in a resin adhesive.
  • Micro-sized metal microparticles are, for example, flake-state metals (such as silver).
  • the metal microparticles are not limited to silver, but may be gold, copper, or a plurality of types of metals.
  • the adhesive contains, for example, an epoxy resin as a main component.
  • the conductive paste is cured by heating and is used, for example, to form connection terminals connected to wiring.
  • the connection terminal is, for example, a bump connected to a component terminal of an electronic component, an external electrode connected to an external device, or the like.
  • the third modeling unit 29 has a dispenser 130 as a device for discharging (applying) the conductive paste.
  • the device for applying the conductive paste is not limited to the dispenser, but may be a screen printing device or a gravure printing device.
  • the "coating" in the present disclosure is a concept including an operation of discharging a fluid from a nozzle or the like and an operation of adhering a fluid onto an object by screen printing or gravure printing.
  • the dispenser 130 discharges the conductive paste onto the base material 70 and the resin layer.
  • the discharged conductive paste is heated and cured by the fired portion 74 of the first modeling unit 22, for example, to form a connection terminal (external electrode or the like).
  • the conductive paste contains, for example, metal microparticles having a size of several tens of micrometers or less.
  • the adhesive resin or the like
  • the flaky metals are cured in contact with each other.
  • the conductive ink becomes an integrated metal by fusing the metal nanoparticles to each other by heating, and the conductivity is higher than that in the state where the metal nanoparticles are only in contact with each other.
  • the conductive paste is cured by bringing micro-sized metal microparticles into contact with each other by curing the adhesive.
  • the resistance (electric resistivity) of the wiring formed by curing the conductive ink is extremely small, for example, several to several tens of micro ⁇ ⁇ cm, and the resistance of the wiring formed by curing the conductive paste (several tens to several tens to severals). It is smaller than 1000 micro ⁇ ⁇ cm). Therefore, the conductive ink is suitable for modeling a modeled object that requires a low resistance value, such as a circuit wiring having a low resistance.
  • the conductive paste can improve the adhesiveness with other members by curing the adhesive at the time of curing, and is superior in adhesion to other members as compared with the conductive ink.
  • the other member referred to here is a member to which the conductive paste is discharged and adhered, and is, for example, a resin layer, wiring, a component terminal of an electronic component, and the like. Therefore, the conductive paste is suitable for modeling a modeled object that requires mechanical strength (tensile strength, etc.), such as a connection terminal for fixing an electronic component to a resin layer.
  • an electronic circuit having improved electrical properties and mechanical properties can be manufactured by properly using such a conductive ink and a conductive paste and making the best use of the characteristics.
  • the control device 27 includes a controller 120, a plurality of drive circuits 122, and a storage device 124.
  • the plurality of drive circuits 122 include the electromagnetic motors 38 and 56, a holding device 62, an elevating device 64, an inkjet head 76, an irradiation device 78, an inkjet head 88, a flattening device 90, an irradiation device 92, a tape feeder 110, and a mounting head 112. , Connected to the mobile device 114 (see FIG. 2). Further, the drive circuit 122 is connected to the third modeling unit 29 (see FIG. 3).
  • the controller 120 includes a CPU, ROM, RAM, etc., and is mainly a computer, and is connected to a plurality of drive circuits 122.
  • the storage device 124 includes a RAM, a ROM, a hard disk, and the like, and stores a control program 126 that controls the electronic device manufacturing device 10.
  • the controller 120 can control the operations of the transfer device 20, the first modeling unit 22, the second modeling unit 24, the mounting unit 26, the third modeling unit 29, and the like by executing the control program 126 on the CPU. ..
  • the fact that the controller 120 executes the control program 126 to control each device may be simply described as "device".
  • the controller 120 moves the stage 52 means that "the controller 120 executes the control program 126, controls the operation of the transfer device 20 via the drive circuit 122, and causes the stage by the operation of the transfer device 20.” It means "move 52".
  • the electronic device manufacturing apparatus 10 of the present embodiment manufactures an electronic device including wiring, connection terminals, and electronic components as a modeled object by the above-described configuration.
  • a case where a circuit board on which electronic components are mounted is manufactured as an electronic device (modeled object) will be described.
  • the structure, manufacturing procedure, etc. of the modeled object described below are examples.
  • the control program 126 of the storage device 124 three-dimensional data of each layer obtained by slicing the circuit board at the time of completion is set.
  • the controller 120 controls the first modeling unit 22 and the like based on the data of the control program 126, and discharges and cures the ultraviolet curable resin and the like to form a circuit board.
  • the controller 120 creates an electronic device on the base material 70 while moving the stage 52.
  • a release film 150 that can be peeled off by heat is attached to the upper surface of the base material 70, and a modeled object (electronic device or the like) is formed on the release film 150. ..
  • the release film 150 is separated from the base material 70 together with the modeled object by being heated.
  • the method of separating the base material 70 and the modeled object is not limited to the method of using the release film 150.
  • a member (support material or the like) that melts by heat may be arranged between the base material 70 and the modeled object, and melted and separated. Further, it may be formed directly on the base material 70 without using a separating member such as the release film 150.
  • the controller 120 forms a pedestal member 149 on the release film 150 as shown in FIG.
  • the controller 120 forms the pedestal member 149 in accordance with the position of the via hole 155 of the resin layer 153 (see FIG. 6) described later.
  • the positions of the pedestal member 149 and the via hole 155 are set, for example, in the data of the control program 126 stored in the storage device 124.
  • the controller 120 repeats a process of discharging the ultraviolet curable resin from the inkjet head 88 of the second modeling unit 24 onto the release film 150 and a process of irradiating the discharged ultraviolet curable resin with ultraviolet rays from the irradiation device 92 of the curing unit 86.
  • the pedestal member 149 is formed.
  • the controller 120 moves the stage 52 below the second modeling unit 24, controls the second printing unit 84, and thins the ultraviolet curable resin from the inkjet head 88 onto the release film 150. Discharge to.
  • the controller 120 controls the inkjet head 88 to discharge the ultraviolet curable resin to a position corresponding to the bottom of the via hole 155 (see FIG. 6).
  • the curing unit 86 irradiates the thin film ultraviolet curable resin with ultraviolet rays by the irradiation device 92. As a result, a thin film-shaped pedestal member is formed on the release film 150.
  • the controller 120 may appropriately perform a process of flattening the ultraviolet curable resin discharged in the form of a thin film by the flattening device 90.
  • the controller 120 adjusts the ejection position of the ultraviolet curable resin at the position of the bottom of the via hole 155, and repeatedly executes the ejection of the ultraviolet curable resin and the irradiation of ultraviolet rays to form the pedestal member 149.
  • the controller 120 moves the stage 52 below the first modeling unit 22.
  • the controller 120 controls the first printing unit 72 to eject the conductive ink onto the surface of the pedestal member 149 and the release film 150 by the inkjet head 76.
  • the inkjet head 76 ejects conductive ink linearly according to the wiring pattern.
  • This wiring pattern is set in the control program 126, for example, according to the modeled object to be manufactured.
  • the wiring pattern shown in FIG. 5 is, for example, a pattern connected from a predetermined position of the release film 150 (the position at the right end in FIG. 5) to the upper surface of the pedestal member 149. As shown in FIG.
  • the controller 120 of the present embodiment connects the lower layer wiring 151 and the upper layer wiring 159 through one via hole 155. Therefore, the controller 120 controls the inkjet head 76 to eject the conductive ink to, for example, a position corresponding to the wiring 151 in the lower layer.
  • the controller 120 controls the firing unit 74 to heat the conductive ink discharged onto the pedestal member 149 and the release film 150 by the infrared heater of the irradiation device 78.
  • the wiring 151 can be formed on the pedestal member 149 and the release film 150 by firing the conductive ink.
  • FIG. 9 shows a plan view of the resin layer 153 having the via holes 155 described later. Note that FIG. 9 omits the illustration of the electronic component 163 (see FIG. 8), which will be described later. Further, in FIG. 9, the lower layer wiring 151 is shown by a broken line.
  • the pedestal member 149 is formed, for example, at a predetermined height H1 (see FIG. 4), and is formed in a thin plate shape which is circular when viewed in a plan view (see FIG. 9). The corners of the pedestal member 149 have a curved shape according to the viscosity of the conductive ink. As shown in FIG. 5, the wiring 151 is continuously formed from the top of the release film 150 to the top of the pedestal member 149.
  • the upper part of the release film 150 and the upper part of the pedestal member 149 (the position of the height H1) can be made conductive by the wiring 151.
  • a part of the wiring 151 is raised by the height H1.
  • the conductive ink is ejected to the surface or the curved surface of the pedestal member 149 by the inkjet method, if the angle of the surface or the curved surface is steep, the ejected conductive ink may flow down. As a result, the thickness of the wiring 151 may be locally reduced or disconnection may occur. Therefore, the height H1 of the pedestal member 149 and the angle ⁇ 1 (see FIG.
  • the curved surface of the pedestal member 149 and the base material 70 are, for example, values that prevent the conductive ink forming the wiring 151 from flowing down as much as possible. It is preferable to set a value at which conductive ink can be laminated to obtain continuity.
  • the height H1 of the pedestal member 149 is preferably a height that does not interfere with the inkjet heads 76, 88, the rollers of the flattening device 90, or the like when forming the wirings 151, 159 and the resin layer 153.
  • the controller 120 forms a resin layer 153 on the release film 150 so as to cover the wiring 151 and the pedestal member 149.
  • the controller 120 forms a via hole 155 in the resin layer 153 from which a part of the pedestal member 149 and the wiring 151 is exposed (see FIG. 9).
  • the controller 120 repeatedly executes a process of discharging the ultraviolet curable resin from the inkjet head 88 of the second modeling unit 24 and a process of irradiating the discharged ultraviolet curable resin with ultraviolet rays from the irradiation device 92 of the curing unit 86.
  • a resin layer 153 having via holes 155 is formed.
  • the controller 120 moves the stage 52 below the second modeling unit 24, controls the second printing unit 84, and cures ultraviolet rays from the inkjet head 88 so as to cover the wiring 151 and the pedestal member 149.
  • the resin is discharged into a thin film on the release film 150.
  • the controller 120 controls the inkjet head 88 to discharge the ultraviolet curable resin to a portion other than the via hole 155 that exposes a part of the pedestal member 149 and the wiring 151. That is, the inkjet head 88 exposes a part of the pedestal member 149 and the wiring 151 from the via hole 155, and thins the ultraviolet curable resin on the release film 150 so as to cover the other part of the pedestal member 149 and the wiring 151. Discharge in the form.
  • the controller 120 may be flattened by the flattening device 90 so that the film thickness becomes uniform. Then, the curing unit 86 irradiates the thin film ultraviolet curable resin with ultraviolet rays by the irradiation device 92. As a result, a thin-film resin layer is formed on the release film 150.
  • the controller 120 adjusts the ejection position of the ultraviolet curable resin so as to expose a part of the pedestal member 149 and the wiring 151, and ejects, flattens, and irradiates the ultraviolet curable resin as appropriate repeatedly.
  • a resin layer 153 having via holes 155 is formed.
  • the controller 120 forms a mortar-shaped via hole 155 with an inclined inner wall.
  • an inclined surface 157 inclined so as to reduce the inner diameter is formed from the upper upper opening 155A toward the lower opening 155B on the lower side (wiring 151 side).
  • the lower layer wiring 151 and the pedestal member 149 are in a state where the upper surface is exposed from the lower opening 155B of the via hole 155 (see FIG. 9).
  • the pedestal member 149 has a disk shape formed with an inner diameter longer than, for example, a circular lower opening 155B (via hole 155) when the resin layer 153 (board) is viewed in a plan view. I'm doing it. As described above, the pedestal member 149 has a shape that matches the via hole 155, and is formed in a shape that is longer (larger outer diameter) than the inner diameter of the via hole 155.
  • the pedestal member 149 of the present embodiment is formed to have a size larger than the size of the lower opening 155B formed on the bottom side of the via hole 155 when the via hole 155 is viewed in a plan view. According to this, the pedestal member 149 is formed with a size larger than the lower opening 155B of the via hole 155.
  • the pedestal member 149 is formed that is wider in the plan view, the inclination of the slope of the pedestal member 149 can be reduced (smoothly) while maintaining the height H1 of the pedestal member 149. It is possible to prevent the conductive ink from flowing down, and it is possible to prevent the thickness of the wiring 151 formed on the pedestal member 149 from being locally reduced or the occurrence of disconnection.
  • the controller 120 forms an upper layer wiring 159 that is pulled out to the upper surface 153A of the resin layer 153 on a part of the inclined surface 157 of the via hole 155, as shown in FIG.
  • the controller 120 connects the wiring 159 to the wiring 151 in the via hole 155. More specifically, the controller 120 controls the first printing unit 72 to linearly eject the conductive ink to the bottom portion of the via hole 155 and the inclined surface 157 by the inkjet head 76.
  • the controller 120 ejects conductive ink in alignment with the position of the wiring 151 in the via hole 155 (see FIG. 9).
  • the conductive ink is ejected from the wiring 151 exposed in the via hole 155 to the upper surface 153A of the resin layer 153 via the inclined surface 157.
  • the controller 120 may remove excess resin on the wiring 151 before forming the upper layer wiring 159.
  • excess UV curable resin may adhere to the wiring 151 exposed from the lower opening 155B. Therefore, for example, the controller 120 may irradiate the wiring 151 exposed from the lower opening 155B of the via hole 155 with a laser or the like to remove excess resin residue on the wiring 151. As a result, the resistance at the connection portion between the wiring 151 and the wiring 159 can be reduced.
  • the controller 120 controls the firing unit 74 and applies heat from the infrared heater of the irradiation device 78 to the conductive ink discharged from the upper part of the wiring 151 to the upper surface 153A of the resin layer 153. As a result, the conductive ink can be fired to form the upper layer wiring 159 electrically connected to the lower layer wiring 151.
  • Each wiring pattern of the lower layer and each wiring pattern of the upper layer formed on the resin layer 153 can be made conductive (see FIG. 9).
  • the inclination angle ⁇ 2 (see FIG. 7) of the inclined surface 157 of the via hole 155 is, for example, 25 degrees or less.
  • the length of the inclined surface 157 along the direction parallel to the base material 70 is, for example, several hundred ⁇ m.
  • the thickness of the resin layer 153 is, for example, 20 to 40 ⁇ m.
  • FIG. 10 shows a cross section of the wiring 151, 159 and the resin layer 153 of the comparative example.
  • the pedestal member 149 is not formed under the lower layer wiring 151. Similar to the wiring 151 described above, when the conductive ink is ejected to the inclined surface 157 of the via hole 155 when the wiring 159 is formed, if the inclination angle ⁇ 2 of the inclined surface 157 is steep, the ejected conductive ink May run down along the slope 157. As a result, the thickness of the wiring 159 may be locally reduced or disconnection may occur, and the reliability of the connection is lowered. Further, in the manufacturing process (an example of the resin layer forming step) of FIG.
  • the controller 120 of the present embodiment penetrates the resin layer 153 and forms a via hole 155 having an inclined surface 157 on the inner wall in the resin layer 153.
  • the via hole 155 having such an inclined surface 157 if the inclination angle ⁇ 2 is reduced in order to prevent the conductive ink from flowing down from the inclined surface 157, if the thickness of the resin layer 153 is constant, the via hole 155
  • the diameter L1 of the upper opening 155A becomes longer in inverse proportion to the reduction of the inclination angle ⁇ 2.
  • the occupied area of the via hole 155 in the resin layer 153 increases, and the wiring density of the wirings 151 and 159 decreases.
  • the pedestal member 149 is first formed, and the lower layer wiring 151 is formed on the pedestal member 149. Then, as shown in FIG. 7, the lower layer wiring 151 raised by the pedestal member 149 and the upper layer wiring 159 are connected below the inclined surface 157.
  • the diameter L1 can be shortened to reduce the via hole 155.
  • the reliability of the connection of the wiring 159 can be improved while reducing the diameter L1 and increasing the wiring density of the wirings 151 and 159.
  • the controller 120 for example, after forming the wiring 159, the electronic component 163 is mounted on the wiring 159 on the upper surface 153A of the resin layer 153. Specifically, the controller 120 moves the stage 52 below the third modeling unit 29, for example, after forming the wiring 159. The controller 120 controls the third modeling unit 29 and discharges the conductive paste onto the wiring 159 by the dispenser 130.
  • the controller 120 moves the stage 52 below the mounting unit 26, and mounts the electronic component 163 by the mounting unit 102.
  • the mounting head 112 of the mounting portion 102 is arranged so that the component terminal 165 of the electronic component 163 is located at the position of the conductive paste.
  • the controller 120 forms the bump 167 by heating and curing the conductive paste by the firing portion 74 of the first modeling unit 22.
  • the component terminal 165 of the electronic component 163 is electrically connected to the wiring 159 via the bump 167.
  • the electronic device manufacturing apparatus 10 of the present embodiment can form a circuit board (resin layer 153 having wirings 151 and 159) on which the electronic component 163 is mounted.
  • the manufacturing process of the resin layer 153 having the wirings 151 and 159 and the structure of the modeled object are examples.
  • the controller 120 may fill the via holes 155 with a resin layer (ultraviolet curable resin) after forming the upper wiring 159. Then, the controller 120 may further form a resin layer having a via hole on the buried resin layer to form an upper layer wiring connected to the wiring 159.
  • the pedestal member 149 similarly to the wiring 151, the pedestal member 149 may be formed to raise the wiring 159. That is, when forming the multilayer substrate, the pedestal member 149 may be appropriately formed in each layer.
  • FIG. 11 shows a state in which a plurality of sets of wirings 151 and 159 are connected by one via hole 155.
  • the controller 120 forms a combination of wirings 151 and 159 connected in one via hole 155 side by side with a predetermined pitch P1 in between.
  • the controller 120 forms, for example, a via hole 155 with a hole (slit shape) having a hole diameter long in one direction (left-right direction in FIG. 11).
  • the via hole 155 has a substantially rectangular upper opening 155A and a lower opening 155B that are long in one direction in a plan view.
  • the pedestal member 149 is formed in a substantially rectangular thin plate shape that is long in the longitudinal direction of the via hole 155 in a plan view according to the shape of the via hole 155.
  • the controller 120 is arranged in the longitudinal direction of the via hole 155 to form a plurality of sets of wirings 151 and 159.
  • the central three sets are formed in a straight line along, for example, one direction (vertical direction in FIG. 11).
  • the upper layer wiring 159 connected to the wiring 151 is formed along the direction in which the lower layer wiring 151 is pulled out from the via hole 155.
  • a plurality of wirings 159 are arranged side by side on the inclined surface 157 of the via hole 155 along the longitudinal direction of the via hole 155 (the left-right direction in FIG. 11). Further, the plurality of lower layer wirings 151 are arranged side by side on the horizontally long pedestal member 149.
  • the pitch P1 between the wires 159 may increase.
  • the pitch P1 between the wirings 151 and the wirings 159 can be extremely narrowed. ..
  • This pitch P1 can be narrowed to, for example, several hundred ⁇ m or less, although it depends on the accuracy of the three-dimensional laminated modeling (resolution of the inkjet method). This makes it possible to extremely increase the wiring density of the wirings 151 and 159.
  • the wiring 159 can be formed at an arbitrary position on the inclined surface 157 by using the three-dimensional laminated modeling.
  • the electronic device manufacturing apparatus 10 of the present embodiment can utilize the advantages of the three-dimensional laminated molding to form a plurality of sets of wirings 151 and 159 in one via hole 155 to increase the wiring density. can.
  • the controller 120 of the present embodiment may form a pedestal member 149 that is long in one direction. Further, the controller 120 forms a plurality of wirings 151 arranged side by side in the longitudinal direction of the pedestal member 149, and forms a resin layer 153 having an inclined surface 157 long in the longitudinal direction of the pedestal member 149. Then, the controller 120 may form a plurality of wirings 159 to be connected to each of the plurality of wirings 151 arranged on the pedestal member 149.
  • a plurality of wirings 151 and 159 are connected through one inclined surface 157 formed on the resin layer 153.
  • the reliability of the connection of the wiring 159 can be improved, and the pitch P1 between the wirings 151 and 159 can be narrowed to increase the wiring density.
  • the wiring density can be made extremely high as compared with the case where only one set of wirings 151 and 159 is formed on one inclined surface 157 shown in FIG. As a result, it is possible to reduce the size of a modeled object such as a circuit board.
  • FIG. 12 is a schematic view showing the surface 149A of the pedestal member 149 when a plurality of wirings 151 are formed.
  • the controller 120 flattens the surface 149A of the pedestal member 149 with a roller of the flattening device 90 or the like to form a flat surface.
  • the surface 149A is formed, for example, by a plane having the same height H1 (see FIG. 4) from the lower end of the pedestal member 149.
  • the controller 120 forms the lower layer wiring 151 at a predetermined pitch on the surface 149A having the same height. Then, the controller 120 may form an upper layer wiring 159 (see FIG. 11) so as to be connected to each wiring 151 on the surface 149A. According to this, the pedestal member 149 is formed at the same height H1 so that the ends of the plurality of wirings 151 on the wiring 159 side have the same height.
  • the direction in which the lower layer wiring 151 is pulled out from the via hole 155 and the direction in which the upper layer wiring 159 is pulled out from the via hole 155 may be different. ..
  • the outermost pair of wirings 151 may be arranged so as to spread outward. In this way, by changing the arrangement direction of the wirings 151 and 159 drawn out from one via hole 155, a more free wiring pattern can be formed.
  • the via hole 155 in which a plurality of sets of wirings 151 and 159 are arranged is not limited to a long shape along one direction. As shown in FIG. 13, for example, a plurality of misaligned via holes may be connected to each other to form one via hole 155.
  • the controller 120 has the controller 120 in which each via hole is adjacent to a predetermined distance or less. You may judge whether or not it is. Then, the controller 120 may connect a plurality of via holes depending on whether they are adjacent to each other by a predetermined distance or less.
  • the inclined surface 157 of the via hole 155 has a comb-like shape in a plan view, for example.
  • the wirings 151 and 159 can be brought closer to each other by the amount of overlapping the plurality of via holes, and the wiring density can be increased.
  • FIG. 14 shows, as an example, a plan view of a state in which the electronic component 163 is mounted on the upper surface 153A of the resin layer 153.
  • FIG. 14 omits the illustration of the resin layer 153.
  • the electronic component 163 is provided with a plurality of component terminals 165 at predetermined intervals along the vertical direction in FIG.
  • the via hole 155 is formed by a long hole in the direction in which the component terminals 165 are lined up.
  • Each wiring 159 drawn from the via hole 155 is connected to the component terminal 165 via the inclined surface 157, that is, is connected to the electronic component 163.
  • a plurality of component terminals 165 provided on an electronic component 163 such as an IC chip may be arranged side by side in one direction.
  • a long via hole 155 may be formed in accordance with the arrangement of such component terminals 165, and a plurality of wirings 159 drawn out through the via hole 155 may be formed. Then, each of the plurality of wirings 159 is connected to each of the plurality of component terminals 165.
  • a plurality of wirings 159 connected to the electronic component 163 can be formed at high density by three-dimensional laminated modeling.
  • the wiring connected to the electronic component 163 is not limited to the wiring 159 connected to the lower layer wiring 151.
  • the folded-back wiring 169 may be formed by entering the via hole 155 once, passing over the pedestal member 149, and folding back (not connected to the lower layer wiring 151).
  • the controller 120 forms the folded wiring 169 with the conductive paste in the process of manufacturing the wiring 159.
  • the folded-back wiring 169 descends downward from the upper surface 153A of the resin layer 153 via the inclined surface 157, passes through the upper surface of the pedestal member 149, and passes through the inclined surface 157 to the upper surface 153A at another position of the resin layer 153. It is the wiring that comes back to.
  • wiring that passes near the wiring 159 or the via hole 155 but does not go down to the lower layer on which the wiring 151 is formed but is desired to be arranged on the upper surface 153A of the resin layer 153 is generated.
  • the manufacturing process increases. It causes a delay in manufacturing time and an increase in manufacturing cost.
  • by forming the folded wiring 169 in the same process as the wiring 159 it is possible to form two types of wiring in one process, and it is possible to shorten the manufacturing time and reduce the manufacturing cost.
  • the inclined surface 157 on which the plurality of wirings 159 are arranged is not limited to the inner wall of the via hole 155.
  • an inclined surface 157 may be formed at the end of the resin layer 153.
  • the inclined surface 157 of FIG. 15 is not an inner wall of the via hole 155 as shown in FIG. 7, but an end surface formed at an end portion of the resin layer 153.
  • the controller 120 forms, for example, the lower layer wiring 151, and forms the upper layer wiring 159 along the inclined surface 157 so as to fold back the lower layer wiring 151.
  • the controller 120 may fill the end portion of the resin layer 153 with the resin layer 161. In this case, the controller 120 forms the pedestal member 149 in accordance with the connection position (position of the inclined surface 157) of the wirings 151 and 159.
  • the wiring 151 is an example of the first wiring.
  • the lower opening 155B is an example of an opening.
  • Wiring 159 is an example of the second wiring.
  • Conductive inks and conductive pastes are examples of fluids containing metal particles.
  • the process of FIG. 4 is an example of a pedestal member forming process.
  • the process of FIG. 5 is an example of the first wiring forming process.
  • the process of FIG. 6 is an example of a resin layer forming process.
  • the process of FIG. 7 is an example of the second wiring forming process.
  • a step of forming the pedestal member 149 having a predetermined height H1 from a resin material see FIG. 4
  • a step of forming the pedestal member 149 having a predetermined height H1 on the surface of the pedestal member 149 with conductive ink It has a step of forming the wiring 151 (see FIG. 5).
  • the forming step includes a step of forming a resin layer 153 having an inclined surface 157 formed in accordance with the position of the pedestal member 149 (see FIG. 6) and forming wiring 159 on the inclined surface 157 with conductive ink. It also has a step of forming the wiring 159 so as to be connected to the wiring 151 on the pedestal member 149 (see FIG. 7).
  • the wiring 151 can be raised to a predetermined height H1 and arranged.
  • the angle of the inclined surface 157 can be made gentle and the wiring 159 can be connected.
  • the conductive ink can be prevented from flowing down on the inclined surface 157, and the wiring 159 can be formed with a more uniform thickness to suppress the occurrence of disconnection. The reliability of the connection of the wiring 159 can be improved.
  • the present disclosure is not limited to the above embodiment, and can be carried out in various modes with various changes and improvements based on the knowledge of those skilled in the art.
  • the resin layer 153 may be a circuit board on which the electronic component 163 is not mounted.
  • the pedestal member 149 may have a disk shape having an inner diameter smaller than that of the lower opening 155B of the via hole 155 in a plan view. That is, the pedestal member 149 may be smaller in shape and size than the via hole 155.
  • the surface 149A of the pedestal member 149 does not have to be formed on a flat surface.
  • the surface 149A may be formed of a slope, a curved surface, an uneven surface, or the like.
  • an ultraviolet curable resin that is cured by irradiation with ultraviolet rays is adopted, but various curable resins such as a thermosetting resin that is cured by heat can be adopted.
  • the method of three-dimensional lamination modeling in the present disclosure is not limited to the inkjet method and the stereolithography method (SL: Stereolithography), and for example, other methods such as Fused Deposition Modeling (FDM) are adopted. can.
  • 149 pedestal member 149A surface, 151 wiring (first wiring), 153 resin layer, 153A upper surface, 155 via hole, 155B lower opening (opening), 157 inclined surface, 159 wiring (second wiring), H1 height.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

The present invention provides a method for forming a wiring line, said method being capable of improving the reliability of the connection of a wiring line in cases where the wiring line is formed on an inclined surface by means of three-dimensional deposition modeling. A method for forming a wiring line according to the present disclosure comprises: a pedestal member formation step wherein a pedestal member having a predetermined height is formed from a resin material; a first wiring line formation step wherein a first wiring line that is provided on the surface of the pedestal member is formed using a fluid that contains metal particles; a resin layer formation step wherein a resin layer, which has an inclined surface that is formed so as to correspond to the position of the pedestal member, is formed; and a second wiring line formation step wherein a second wiring line is formed on the inclined surface using a fluid that contains metal particles in such a manner that the second wiring line is connected to the first wiring line on the pedestal member.

Description

配線形成方法Wiring formation method
 本開示は、3次元積層造形により、金属粒子を含む流体によって配線を形成する配線形成方法に関する。 The present disclosure relates to a wiring forming method in which wiring is formed by a fluid containing metal particles by three-dimensional laminated modeling.
 近年、下記特許文献1に記載されているように、金属粒子を含む流体を吐出し、その吐出した流体を焼成することで、電子部品などを接続する回路を形成する技術が開発されている。特許文献1の配線形成方法では、金属粒子を含む流体によって第1配線を形成し、第1配線の上に紫外線硬化樹脂によって樹脂層を形成する。樹脂層にはビア穴が形成される。ビア穴は、内壁が傾斜しており、傾斜面の下端が第1配線の上面に連続している。樹脂層の上には、ビア穴の傾斜面を介して第1配線と接続される第2配線が形成される。 In recent years, as described in Patent Document 1 below, a technique has been developed in which a fluid containing metal particles is discharged and the discharged fluid is fired to form a circuit for connecting electronic components and the like. In the wiring forming method of Patent Document 1, the first wiring is formed by a fluid containing metal particles, and a resin layer is formed on the first wiring by an ultraviolet curable resin. Via holes are formed in the resin layer. The inner wall of the via hole is inclined, and the lower end of the inclined surface is continuous with the upper surface of the first wiring. A second wiring connected to the first wiring is formed on the resin layer via an inclined surface of the via hole.
国際公開WO2016-189557号International Publication WO 2016-189557
 上記した特許文献1に記載の技術によれば、3次元積層造形により、樹脂層の下に配設された第1配線と、樹脂層の上面に配設された第2配線とをビア穴の傾斜面に形成された配線により接続することができる。ここで、例えば、インクジェット方式により金属粒子を含む流体をビア穴の傾斜面に吐出した場合、傾斜面の角度が急であると、吐出した流体が傾斜面に沿って流れ落ちてしまう可能性がある。その結果、配線の厚みが局所的に減少する、あるいは断線が発生する虞があり、接続の信頼性が低下することが問題となる。 According to the technique described in Patent Document 1 described above, the first wiring arranged under the resin layer and the second wiring arranged on the upper surface of the resin layer are formed in via holes by three-dimensional laminated molding. It can be connected by wiring formed on an inclined surface. Here, for example, when a fluid containing metal particles is discharged to an inclined surface of a via hole by an inkjet method, if the angle of the inclined surface is steep, the discharged fluid may flow down along the inclined surface. .. As a result, the thickness of the wiring may be locally reduced or disconnection may occur, which causes a problem that the reliability of the connection is lowered.
 本開示は、上記した実情に鑑みてなされたものであり、3次元積層造形により傾斜面に配線を形成する場合に、配線の接続の信頼性を向上できる配線形成方法を提供することを課題とする。 The present disclosure has been made in view of the above circumstances, and an object of the present invention is to provide a wiring forming method capable of improving the reliability of wiring connection when wiring is formed on an inclined surface by three-dimensional laminated modeling. do.
 上記課題を解決するために、本開示は、所定の高さを有する台座部材を樹脂材料により形成する台座部材形成工程と、金属粒子を含む流体によって前記台座部材の表面に配設される第1配線を形成する第1配線形成工程と、前記台座部材の位置に合せて形成された傾斜面を有する樹脂層を形成する樹脂層形成工程と、金属粒子を含む流体によって前記傾斜面の上に第2配線を形成し、且つ前記台座部材の上の前記第1配線と接続させるように前記第2配線を形成する第2配線形成工程と、を含む、配線形成方法を開示する。 In order to solve the above problems, the present disclosure discloses a pedestal member forming step of forming a pedestal member having a predetermined height from a resin material, and a first method of arranging the pedestal member on the surface of the pedestal member by a fluid containing metal particles. A first wiring forming step of forming wiring, a resin layer forming step of forming a resin layer having an inclined surface formed according to the position of the pedestal member, and a first step on the inclined surface by a fluid containing metal particles. Disclosed is a wiring forming method including a second wiring forming step of forming two wirings and forming the second wiring so as to be connected to the first wiring on the pedestal member.
 本開示の配線形成方法によれば、台座部材の上に第1配線を形成する。傾斜面を台座部材の位置に合せて形成し、傾斜面の上に第2配線を形成する。第2配線と台座部材の上の第1配線を接続する。これにより、台座部材の上に第1配線を形成することで、所定の高さまで第1配線を底上げして配設することができる。第1配線をより高い位置まで持って行くことで、傾斜面の角度を緩やかにして第2配線を接続することができる。第2配線を形成する際に、金属粒子を含む流体が傾斜面で流れ落ちることを抑制でき、第2配線をより均一な厚さで形成し断線の発生を抑制することができる。第2配線の接続の信頼性を向上できる。 According to the wiring forming method of the present disclosure, the first wiring is formed on the pedestal member. The inclined surface is formed according to the position of the pedestal member, and the second wiring is formed on the inclined surface. Connect the second wiring and the first wiring on the pedestal member. As a result, by forming the first wiring on the pedestal member, the first wiring can be raised to a predetermined height and arranged. By bringing the first wiring to a higher position, the angle of the inclined surface can be made gentle and the second wiring can be connected. When forming the second wiring, it is possible to prevent the fluid containing the metal particles from flowing down on the inclined surface, and it is possible to form the second wiring with a more uniform thickness and suppress the occurrence of disconnection. The reliability of the connection of the second wiring can be improved.
電子デバイス製造装置を示す図である。It is a figure which shows the electronic device manufacturing apparatus. 制御装置を示すブロック図である。It is a block diagram which shows the control device. 制御装置を示すブロック図である。It is a block diagram which shows the control device. 配線の形成工程を説明するための模式図である。It is a schematic diagram for demonstrating the process of forming a wiring. 配線の形成工程を説明するための模式図である。It is a schematic diagram for demonstrating the process of forming a wiring. 配線の形成工程を説明するための模式図である。It is a schematic diagram for demonstrating the process of forming a wiring. 配線の形成工程を説明するための模式図である。It is a schematic diagram for demonstrating the process of forming a wiring. 配線の形成工程を説明するための模式図である。It is a schematic diagram for demonstrating the process of forming a wiring. 樹脂層を平面視した図である。It is the figure which looked at the resin layer in a plan view. 比較例の配線及び樹脂層の断面図である。It is sectional drawing of the wiring and the resin layer of the comparative example. 別例における、1つのビア穴で複数組の配線を接続した状態を示す図である。It is a figure which shows the state which connected a plurality of sets of wirings with one via hole in another example. 複数の配線を形成した台座部材の表面を示す模式図である。It is a schematic diagram which shows the surface of the pedestal member which formed a plurality of wirings. 別例における、1つのビア穴で複数組の配線を接続した状態を示す図である。It is a figure which shows the state which connected a plurality of sets of wirings with one via hole in another example. 電子部品を実装した状態を平面視した図である。It is the figure which looked at the state which mounted the electronic component in a plan view. 別例の傾斜面の断面図である。It is sectional drawing of the inclined surface of another example.
(電子デバイス製造装置の構成)
 以下、本開示の好適な実施形態を、図面を参照しつつ詳細に説明する。図1に電子デバイス製造装置10を示す。電子デバイス製造装置10は、搬送装置20と、第1造形ユニット22と、第2造形ユニット24と、装着ユニット26と、第3造形ユニット29と、制御装置27(図2、図3参照)を備える。それら搬送装置20、第1造形ユニット22、第2造形ユニット24、装着ユニット26、第3造形ユニット29は、電子デバイス製造装置10のベース28の上に配置されている。ベース28は、平面視において概して長方形状をなしている。以下の説明では、ベース28の長手方向をX軸方向、ベース28の短手方向をY軸方向、X軸方向及びY軸方向の両方に直交する方向をZ軸方向と称して説明する。
(Configuration of electronic device manufacturing equipment)
Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the drawings. FIG. 1 shows an electronic device manufacturing apparatus 10. The electronic device manufacturing apparatus 10 includes a transport device 20, a first modeling unit 22, a second modeling unit 24, a mounting unit 26, a third modeling unit 29, and a control device 27 (see FIGS. 2 and 3). Be prepared. The transfer device 20, the first modeling unit 22, the second modeling unit 24, the mounting unit 26, and the third modeling unit 29 are arranged on the base 28 of the electronic device manufacturing apparatus 10. The base 28 is generally rectangular in plan view. In the following description, the longitudinal direction of the base 28 will be referred to as the X-axis direction, the lateral direction of the base 28 will be referred to as the Y-axis direction, and the direction orthogonal to both the X-axis direction and the Y-axis direction will be referred to as the Z-axis direction.
 搬送装置20は、X軸スライド機構30と、Y軸スライド機構32とを備えている。そのX軸スライド機構30は、X軸スライドレール34と、X軸スライダ36とを有している。X軸スライドレール34は、X軸方向に延びるように、ベース28の上に配設されている。X軸スライダ36は、X軸スライドレール34によって、X軸方向にスライド可能に保持されている。さらに、X軸スライド機構30は、電磁モータ38(図2参照)を有しており、電磁モータ38の駆動により、X軸スライダ36をX軸方向の任意の位置に移動させる。また、Y軸スライド機構32は、Y軸スライドレール50と、ステージ52とを有している。Y軸スライドレール50は、Y軸方向に延びるように、ベース28の上に配設されている。Y軸スライドレール50の一端部は、X軸スライダ36に連結されている。そのため、Y軸スライドレール50は、X軸方向に移動可能とされている。ステージ52は、Y軸スライドレール50によって、Y軸方向にスライド可能に保持されている。Y軸スライド機構32は、電磁モータ56(図2参照)を有しており、電磁モータ56の駆動により、ステージ52をY軸方向の任意の位置に移動させる。これにより、ステージ52は、X軸スライド機構30及びY軸スライド機構32の駆動により、ベース28上の任意の位置に移動する。 The transport device 20 includes an X-axis slide mechanism 30 and a Y-axis slide mechanism 32. The X-axis slide mechanism 30 has an X-axis slide rail 34 and an X-axis slider 36. The X-axis slide rail 34 is arranged on the base 28 so as to extend in the X-axis direction. The X-axis slider 36 is slidably held in the X-axis direction by the X-axis slide rail 34. Further, the X-axis slide mechanism 30 has an electromagnetic motor 38 (see FIG. 2), and the X-axis slider 36 is moved to an arbitrary position in the X-axis direction by driving the electromagnetic motor 38. Further, the Y-axis slide mechanism 32 has a Y-axis slide rail 50 and a stage 52. The Y-axis slide rail 50 is arranged on the base 28 so as to extend in the Y-axis direction. One end of the Y-axis slide rail 50 is connected to the X-axis slider 36. Therefore, the Y-axis slide rail 50 is movable in the X-axis direction. The stage 52 is slidably held in the Y-axis direction by the Y-axis slide rail 50. The Y-axis slide mechanism 32 has an electromagnetic motor 56 (see FIG. 2), and the stage 52 is moved to an arbitrary position in the Y-axis direction by driving the electromagnetic motor 56. As a result, the stage 52 moves to an arbitrary position on the base 28 by driving the X-axis slide mechanism 30 and the Y-axis slide mechanism 32.
 ステージ52は、基台60と、保持装置62と、昇降装置64とを有している。基台60は、平板状に形成され、上面に基材70が載置される。保持装置62は、X軸方向における基台60の両側部に設けられている。保持装置62は、基台60に載置された基材70のX軸方向の両縁部を挟むことで、基台60に対して基材70を固定的に保持する。また、昇降装置64は、基台60の下方に配設されており、基台60をZ軸方向で昇降させる。 The stage 52 has a base 60, a holding device 62, and an elevating device 64. The base 60 is formed in a flat plate shape, and the base material 70 is placed on the upper surface. The holding devices 62 are provided on both sides of the base 60 in the X-axis direction. The holding device 62 holds the base material 70 fixedly to the base 60 by sandwiching both edges of the base material 70 placed on the base 60 in the X-axis direction. Further, the elevating device 64 is arranged below the base 60, and raises and lowers the base 60 in the Z-axis direction.
 第1造形ユニット22は、ステージ52の基台60に載置された基材70の上に配線を造形するユニットであり、第1印刷部72と、焼成部74とを有している。第1印刷部72は、インクジェットヘッド76(図2参照)を有しており、基台60に載置された基材70の上に、導電性インクを線状に吐出する。導電性インクは、本開示の金属粒子を含む流体の一例である。導電性インクは、例えば、主成分としてナノメートルサイズの金属(銀など)の微粒子を溶媒中に分散させたものを含み、熱により焼成されることで硬化する。導電性インクは、例えば、数百ナノメートル以下のサイズの金属ナノ粒子を含んでいる。金属ナノ粒子の表面は、例えば、分散剤によりコーティングされており、溶媒中での凝集が抑制されている。 The first modeling unit 22 is a unit for modeling wiring on a base material 70 placed on a base 60 of a stage 52, and has a first printing unit 72 and a firing unit 74. The first printing unit 72 has an inkjet head 76 (see FIG. 2), and linearly ejects conductive ink onto the base material 70 placed on the base 60. The conductive ink is an example of a fluid containing the metal particles of the present disclosure. The conductive ink contains, for example, nanometer-sized metal (silver or the like) fine particles dispersed in a solvent as a main component, and is cured by being fired by heat. The conductive ink contains, for example, metal nanoparticles having a size of several hundred nanometers or less. The surface of the metal nanoparticles is, for example, coated with a dispersant to suppress agglutination in the solvent.
 尚、インクジェットヘッド76は、例えば、圧電素子を用いたピエゾ方式によって複数のノズルから導電性インクを吐出する。また、導電性インク(金属ナノ粒子を含む流体)を吐出する装置としては、複数のノズルを備えるインクジェットヘッドに限らず、例えば、1つのノズルを備えたディスペンサーでも良い。また、導電性インクに含まれる金属ナノ粒子の種類は、銀に限らず、銅、金等でも良い。また、導電性インクに含まれる金属ナノ粒子の種類数は、1種類に限らず、複数種類でも良い。 The inkjet head 76 ejects conductive ink from a plurality of nozzles by, for example, a piezo method using a piezoelectric element. Further, the device for ejecting the conductive ink (fluid containing metal nanoparticles) is not limited to the inkjet head provided with a plurality of nozzles, and for example, a dispenser provided with one nozzle may be used. Further, the type of metal nanoparticles contained in the conductive ink is not limited to silver, and may be copper, gold, or the like. Further, the number of types of metal nanoparticles contained in the conductive ink is not limited to one, and may be a plurality of types.
 焼成部74は、照射装置78(図2参照)を有している。照射装置78は、例えば、基材70の上に吐出された導電性インクを加熱する赤外線ヒータを備えている。導電性インクは、赤外線ヒータから熱を付与されることで焼成され、配線を形成する。ここでいう導電性インクの焼成とは、例えば、エネルギーを付与することによって、溶媒の気化や金属ナノ粒子の保護膜、つまり、分散剤の分解等が行われ、金属ナノ粒子が接触又は融着することで、導電率が高くなる現象である。そして、導電性インクを焼成することで、配線を形成することができる。尚、導電性インクを加熱する装置は、赤外線ヒータに限らない。例えば、電子デバイス製造装置10は、導電性インクを加熱する装置として、赤外線ランプ、レーザ光を導電性インクに照射するレーザ照射装置、あるいは導電性インクを吐出された基材70を炉内に入れて加熱する電気炉を備えても良い。 The firing unit 74 has an irradiation device 78 (see FIG. 2). The irradiation device 78 includes, for example, an infrared heater that heats the conductive ink ejected onto the base material 70. The conductive ink is fired by applying heat from an infrared heater to form wiring. In the firing of the conductive ink referred to here, for example, by applying energy, the solvent is vaporized and the protective film of the metal nanoparticles, that is, the dispersant is decomposed, and the metal nanoparticles are brought into contact with or fused together. This is a phenomenon in which the conductivity is increased. Then, the wiring can be formed by firing the conductive ink. The device for heating the conductive ink is not limited to the infrared heater. For example, in the electronic device manufacturing apparatus 10, as an apparatus for heating the conductive ink, an infrared lamp, a laser irradiation device that irradiates the conductive ink with laser light, or a base material 70 to which the conductive ink is discharged is placed in the furnace. It may be provided with an electric furnace for heating.
 また、第2造形ユニット24は、基台60に載置された基材70の上に樹脂層を造形するユニットであり、第2印刷部84と、硬化部86とを有している。第2印刷部84は、インクジェットヘッド88(図2参照)を有しており、基台60に載置された基材70の上に紫外線硬化樹脂を吐出する。紫外線硬化樹脂は、紫外線の照射により硬化する樹脂である。尚、インクジェットヘッド88が紫外線硬化樹脂を吐出する方式は、例えば、圧電素子を用いたピエゾ方式でもよく、樹脂を加熱して気泡を発生させ複数のノズルから吐出するサーマル方式でも良い。 Further, the second modeling unit 24 is a unit that forms a resin layer on the base material 70 placed on the base 60, and has a second printing unit 84 and a curing unit 86. The second printing unit 84 has an inkjet head 88 (see FIG. 2), and discharges the ultraviolet curable resin onto the base material 70 placed on the base 60. The ultraviolet curable resin is a resin that is cured by irradiation with ultraviolet rays. The method in which the inkjet head 88 discharges the ultraviolet curable resin may be, for example, a piezo method using a piezoelectric element, or a thermal method in which the resin is heated to generate bubbles and discharged from a plurality of nozzles.
 硬化部86は、平坦化装置90(図2参照)と、照射装置92(図2参照)とを有している。平坦化装置90は、インクジェットヘッド88によって基材70の上に吐出された紫外線硬化樹脂の上面を平坦化するものである。平坦化装置90は、例えば、紫外線硬化樹脂の表面を均しながら余剰分の樹脂を、ローラもしくはブレードによって掻き取ることで、紫外線硬化樹脂の厚みを均一にさせる。また、照射装置92は、光源として水銀ランプもしくはLEDを備えており、基材70の上に吐出された紫外線硬化樹脂に紫外線を照射する。これにより、基材70の上に吐出された紫外線硬化樹脂が硬化し、樹脂層を形成することができる。 The cured portion 86 has a flattening device 90 (see FIG. 2) and an irradiation device 92 (see FIG. 2). The flattening device 90 flattens the upper surface of the ultraviolet curable resin discharged onto the base material 70 by the inkjet head 88. The flattening device 90 makes the thickness of the UV curable resin uniform by, for example, scraping the excess resin with a roller or a blade while leveling the surface of the UV curable resin. Further, the irradiation device 92 includes a mercury lamp or an LED as a light source, and irradiates the ultraviolet curable resin discharged on the base material 70 with ultraviolet rays. As a result, the ultraviolet curable resin discharged onto the base material 70 is cured, and a resin layer can be formed.
 また、装着ユニット26は、基台60に載置された基材70の上に、電子部品を配置するユニットであり、供給部100と、装着部102とを有している。供給部100は、テーピング化された電子部品を1つずつ送り出すテープフィーダ110(図2参照)を複数有しており、各供給位置において、電子部品を供給する。電子部品は、例えば、温度センサ等のセンサ素子である。尚、電子部品の供給は、テープフィーダ110による供給に限らず、トレイによる供給でも良い。 Further, the mounting unit 26 is a unit for arranging electronic components on the base material 70 mounted on the base 60, and has a supply unit 100 and a mounting unit 102. The supply unit 100 has a plurality of tape feeders 110 (see FIG. 2) that send out taped electronic components one by one, and supplies the electronic components at each supply position. The electronic component is, for example, a sensor element such as a temperature sensor. The electronic components are not limited to the tape feeder 110 and may be supplied by the tray.
 装着部102は、装着ヘッド112(図2参照)と、移動装置114(図2参照)とを有している。装着ヘッド112は、電子部品を吸着保持するための吸着ノズルを有している。吸着ノズルは、正負圧供給装置(図示省略)から負圧が供給されることで、エアの吸引により電子部品を吸着保持する。そして、正負圧供給装置から僅かな正圧が供給されることで、電子部品を離脱する。また、移動装置114は、テープフィーダ110の供給位置と、基台60に載置された基材70との間で、装着ヘッド112を移動させる。これにより、装着部102は、吸着ノズルにより電子部品を保持し、吸着ノズルによって保持した電子部品を、基材70の上に配置する。 The mounting unit 102 has a mounting head 112 (see FIG. 2) and a moving device 114 (see FIG. 2). The mounting head 112 has a suction nozzle for sucking and holding electronic components. The suction nozzle sucks and holds electronic components by sucking air by supplying negative pressure from a positive / negative pressure supply device (not shown). Then, when a slight positive pressure is supplied from the positive / negative pressure supply device, the electronic component is separated. Further, the moving device 114 moves the mounting head 112 between the supply position of the tape feeder 110 and the base material 70 mounted on the base 60. As a result, the mounting portion 102 holds the electronic component by the suction nozzle, and arranges the electronic component held by the suction nozzle on the base material 70.
 また、第3造形ユニット29は、基台60に載置された基材70の上に、導電性ペーストを塗布するユニットである。導電性ペーストは、例えば、マイクロサイズの金属粒子(マイクロフィラなど)を、樹脂製の接着剤に含めた粘性流体である。マイクロサイズの金属マイクロ粒子は、例えば、フレーク状態の金属(銀など)である。金属マイクロ粒子は、銀に限らず、金、銅などや複数種類の金属でも良い。接着剤は、例えば、エポキシ系の樹脂を主成分として含んでいる。導電性ペーストは、加熱により硬化し、例えば、配線に接続される接続端子の形成に使用される。接続端子とは、例えば、電子部品の部品端子に接続するバンプ、外部機器などに接続する外部電極などである。 Further, the third modeling unit 29 is a unit for applying the conductive paste on the base material 70 placed on the base 60. The conductive paste is, for example, a viscous fluid containing micro-sized metal particles (such as microfilament) in a resin adhesive. Micro-sized metal microparticles are, for example, flake-state metals (such as silver). The metal microparticles are not limited to silver, but may be gold, copper, or a plurality of types of metals. The adhesive contains, for example, an epoxy resin as a main component. The conductive paste is cured by heating and is used, for example, to form connection terminals connected to wiring. The connection terminal is, for example, a bump connected to a component terminal of an electronic component, an external electrode connected to an external device, or the like.
 また、第3造形ユニット29は、導電性ペーストを吐出(塗布)する装置としてディスペンサー130を有する。尚、導電性ペーストを塗布する装置は、ディスペンサーに限らず、スクリーン印刷装置やグラビア印刷装置でも良い。また、本開示における「塗布」とは、流体をノズルなどから吐出する動作や、スクリーン印刷やグラビア印刷によって対象物の上に流体を付着させる動作を含む概念である。ディスペンサー130は、基材70や樹脂層の上に導電性ペーストを吐出する。吐出された導電性ペーストは、例えば、第1造形ユニット22の焼成部74によって加熱され硬化することで接続端子(外部電極など)を形成する。 Further, the third modeling unit 29 has a dispenser 130 as a device for discharging (applying) the conductive paste. The device for applying the conductive paste is not limited to the dispenser, but may be a screen printing device or a gravure printing device. Further, the "coating" in the present disclosure is a concept including an operation of discharging a fluid from a nozzle or the like and an operation of adhering a fluid onto an object by screen printing or gravure printing. The dispenser 130 discharges the conductive paste onto the base material 70 and the resin layer. The discharged conductive paste is heated and cured by the fired portion 74 of the first modeling unit 22, for example, to form a connection terminal (external electrode or the like).
 ここで、導電性ペーストは、例えば、数十マイクロメートル以下のサイズの金属マイクロ粒子を含んでいる。導電性ペーストは、加熱されることで接着剤(樹脂など)が硬化し、フレーク状の金属同士が接触した状態で硬化する。上記したように導電性インクは、例えば、加熱によって金属ナノ粒子同士が融着することで一体化した金属となり、金属ナノ粒子同士が接触しているだけの状態に比べて導電率が高くなる。一方、導電性ペーストは、接着剤の硬化によってマイクロサイズの金属マイクロ粒子を互いに接触させて硬化する。このため、導電性インクを硬化して形成した配線の抵抗(電気抵抗率)は、例えば、数~数十マイクロΩ・cmと極めて小さく、導電性ペーストを硬化した配線の抵抗(数十~数千マイクロΩ・cm)に比べて小さい。従って、導電性インクは、低抵抗の回路配線など、低い抵抗値を要求される造形物の造形に適している。 Here, the conductive paste contains, for example, metal microparticles having a size of several tens of micrometers or less. When the conductive paste is heated, the adhesive (resin or the like) is cured, and the flaky metals are cured in contact with each other. As described above, the conductive ink becomes an integrated metal by fusing the metal nanoparticles to each other by heating, and the conductivity is higher than that in the state where the metal nanoparticles are only in contact with each other. On the other hand, the conductive paste is cured by bringing micro-sized metal microparticles into contact with each other by curing the adhesive. Therefore, the resistance (electric resistivity) of the wiring formed by curing the conductive ink is extremely small, for example, several to several tens of microΩ · cm, and the resistance of the wiring formed by curing the conductive paste (several tens to several tens to severals). It is smaller than 1000 micro Ω · cm). Therefore, the conductive ink is suitable for modeling a modeled object that requires a low resistance value, such as a circuit wiring having a low resistance.
 一方で、導電性ペーストは、硬化時に接着剤を硬化させることで、他の部材との接着性を高めることができ、導電性インクに比べて他の部材との密着性に優れている。ここでいう他の部材とは、導電性ペーストを吐出等して付着させる部材であり、例えば、樹脂層、配線、電子部品の部品端子などである。従って、導電性ペーストは、電子部品を樹脂層に固定する接続端子など、機械的強度(引っ張り強度など)が要求される造形物の造形に適している。本実施形態の電子デバイス製造装置10では、このような導電性インクと導電性ペーストを使い分けて、特性を活かすことで、電気的性質及び機械的性質を向上した電子回路を製造できる。 On the other hand, the conductive paste can improve the adhesiveness with other members by curing the adhesive at the time of curing, and is superior in adhesion to other members as compared with the conductive ink. The other member referred to here is a member to which the conductive paste is discharged and adhered, and is, for example, a resin layer, wiring, a component terminal of an electronic component, and the like. Therefore, the conductive paste is suitable for modeling a modeled object that requires mechanical strength (tensile strength, etc.), such as a connection terminal for fixing an electronic component to a resin layer. In the electronic device manufacturing apparatus 10 of the present embodiment, an electronic circuit having improved electrical properties and mechanical properties can be manufactured by properly using such a conductive ink and a conductive paste and making the best use of the characteristics.
 次に、電子デバイス製造装置10の制御装置27の構成について説明する。図2及び図3に示すように、制御装置27は、コントローラ120、複数の駆動回路122、記憶装置124を備えている。複数の駆動回路122は、上記電磁モータ38,56、保持装置62、昇降装置64、インクジェットヘッド76、照射装置78、インクジェットヘッド88、平坦化装置90、照射装置92、テープフィーダ110、装着ヘッド112、移動装置114に接続されている(図2参照)。さらに、駆動回路122は、第3造形ユニット29に接続されている(図3参照)。 Next, the configuration of the control device 27 of the electronic device manufacturing device 10 will be described. As shown in FIGS. 2 and 3, the control device 27 includes a controller 120, a plurality of drive circuits 122, and a storage device 124. The plurality of drive circuits 122 include the electromagnetic motors 38 and 56, a holding device 62, an elevating device 64, an inkjet head 76, an irradiation device 78, an inkjet head 88, a flattening device 90, an irradiation device 92, a tape feeder 110, and a mounting head 112. , Connected to the mobile device 114 (see FIG. 2). Further, the drive circuit 122 is connected to the third modeling unit 29 (see FIG. 3).
 コントローラ120は、CPU,ROM,RAM等を備え、コンピュータを主体とするものであり、複数の駆動回路122に接続されている。記憶装置124は、RAM、ROM、ハードディスク等を備えており、電子デバイス製造装置10の制御を行う制御プログラム126が記憶されている。コントローラ120は、制御プログラム126をCPUで実行することで、搬送装置20、第1造形ユニット22、第2造形ユニット24、装着ユニット26、第3造形ユニット29等の動作を制御可能となっている。以下の説明では、コントローラ120が、制御プログラム126を実行して各装置を制御することを、単に「装置が」と記載する場合がある。例えば、「コントローラ120がステージ52を移動させる」とは、「コントローラ120が、制御プログラム126を実行し、駆動回路122を介して搬送装置20の動作を制御して、搬送装置20の動作によってステージ52を移動させる」ことを意味している。 The controller 120 includes a CPU, ROM, RAM, etc., and is mainly a computer, and is connected to a plurality of drive circuits 122. The storage device 124 includes a RAM, a ROM, a hard disk, and the like, and stores a control program 126 that controls the electronic device manufacturing device 10. The controller 120 can control the operations of the transfer device 20, the first modeling unit 22, the second modeling unit 24, the mounting unit 26, the third modeling unit 29, and the like by executing the control program 126 on the CPU. .. In the following description, the fact that the controller 120 executes the control program 126 to control each device may be simply described as "device". For example, "the controller 120 moves the stage 52" means that "the controller 120 executes the control program 126, controls the operation of the transfer device 20 via the drive circuit 122, and causes the stage by the operation of the transfer device 20." It means "move 52".
(電子デバイス製造装置の動作)
 本実施形態の電子デバイス製造装置10は、上記した構成によって、配線、接続端子及び電子部品を含んだ電子デバイスを造形物として製造する。以下の説明では、電子部品を実装した回路基板を電子デバイス(造形物)として製造する場合について説明する。尚、以下に説明する造形物の構造、製造手順等は、一例である。また、例えば、記憶装置124の制御プログラム126には、完成時の回路基板をスライスした各層の三次元のデータが設定されている。コントローラ120は、制御プログラム126のデータに基づいて第1造形ユニット22等を制御し、紫外線硬化樹脂等を吐出、硬化等させて、回路基板を形成する。
(Operation of electronic device manufacturing equipment)
The electronic device manufacturing apparatus 10 of the present embodiment manufactures an electronic device including wiring, connection terminals, and electronic components as a modeled object by the above-described configuration. In the following description, a case where a circuit board on which electronic components are mounted is manufactured as an electronic device (modeled object) will be described. The structure, manufacturing procedure, etc. of the modeled object described below are examples. Further, for example, in the control program 126 of the storage device 124, three-dimensional data of each layer obtained by slicing the circuit board at the time of completion is set. The controller 120 controls the first modeling unit 22 and the like based on the data of the control program 126, and discharges and cures the ultraviolet curable resin and the like to form a circuit board.
 まず、コントローラ120は、ステージ52の基台60に基材70がセットされると、ステージ52を移動させつつ、基材70の上に電子デバイスの造形を行なう。図4に示すように、基材70の上面には、例えば、熱によって剥離可能な剥離フィルム150が貼り付けられており、その剥離フィルム150の上に造形物(電子デバイスなど)が形成される。剥離フィルム150は、加熱されることで、造形物とともに基材70から剥離される。尚、基材70と造形物を分離する方法は、剥離フィルム150を用いる方法に限らない。例えば、基材70と造形物の間に、熱によって溶ける部材(サポート材など)を配置し、溶かして分離しても良い。また、剥離フィルム150などの分離する部材を用いずに、基材70の上に直接造形しても良い。 First, when the base material 70 is set on the base 60 of the stage 52, the controller 120 creates an electronic device on the base material 70 while moving the stage 52. As shown in FIG. 4, for example, a release film 150 that can be peeled off by heat is attached to the upper surface of the base material 70, and a modeled object (electronic device or the like) is formed on the release film 150. .. The release film 150 is separated from the base material 70 together with the modeled object by being heated. The method of separating the base material 70 and the modeled object is not limited to the method of using the release film 150. For example, a member (support material or the like) that melts by heat may be arranged between the base material 70 and the modeled object, and melted and separated. Further, it may be formed directly on the base material 70 without using a separating member such as the release film 150.
 コントローラ120は、基材70をセットされると、図4に示すように、剥離フィルム150の上に台座部材149を形成する。コントローラ120は、後述する樹脂層153(図6参照)のビア穴155の位置に合せて台座部材149を形成する。この台座部材149やビア穴155の位置は、例えば、記憶装置124に記憶された制御プログラム126のデータに設定されている。コントローラ120は、第2造形ユニット24のインクジェットヘッド88から紫外線硬化樹脂を剥離フィルム150の上に吐出する処理と、吐出した紫外線硬化樹脂へ硬化部86の照射装置92から紫外線を照射する処理を繰り返し実行することで、台座部材149を形成する。 When the base material 70 is set, the controller 120 forms a pedestal member 149 on the release film 150 as shown in FIG. The controller 120 forms the pedestal member 149 in accordance with the position of the via hole 155 of the resin layer 153 (see FIG. 6) described later. The positions of the pedestal member 149 and the via hole 155 are set, for example, in the data of the control program 126 stored in the storage device 124. The controller 120 repeats a process of discharging the ultraviolet curable resin from the inkjet head 88 of the second modeling unit 24 onto the release film 150 and a process of irradiating the discharged ultraviolet curable resin with ultraviolet rays from the irradiation device 92 of the curing unit 86. By executing, the pedestal member 149 is formed.
 具体的には、コントローラ120は、ステージ52を、第2造形ユニット24の下方に移動させ、第2印刷部84を制御して、インクジェットヘッド88から紫外線硬化樹脂を剥離フィルム150の上に薄膜状に吐出する。コントローラ120は、インクジェットヘッド88を制御して、ビア穴155(図6参照)の底部に対応する位置に、紫外線硬化樹脂を吐出させる。硬化部86は、照射装置92により、薄膜状の紫外線硬化樹脂に紫外線を照射する。これにより、剥離フィルム150の上に、薄膜状の台座部材が形成される。尚、コントローラ120は、薄膜状に吐出した紫外線硬化樹脂を、平坦化装置90により平坦化する処理を適宜実行しても良い。コントローラ120は、ビア穴155の底部の位置に、紫外線硬化樹脂の吐出位置を調整し、紫外線硬化樹脂の吐出、紫外線の照射を、繰り返し実行することで、台座部材149を形成する。 Specifically, the controller 120 moves the stage 52 below the second modeling unit 24, controls the second printing unit 84, and thins the ultraviolet curable resin from the inkjet head 88 onto the release film 150. Discharge to. The controller 120 controls the inkjet head 88 to discharge the ultraviolet curable resin to a position corresponding to the bottom of the via hole 155 (see FIG. 6). The curing unit 86 irradiates the thin film ultraviolet curable resin with ultraviolet rays by the irradiation device 92. As a result, a thin film-shaped pedestal member is formed on the release film 150. The controller 120 may appropriately perform a process of flattening the ultraviolet curable resin discharged in the form of a thin film by the flattening device 90. The controller 120 adjusts the ejection position of the ultraviolet curable resin at the position of the bottom of the via hole 155, and repeatedly executes the ejection of the ultraviolet curable resin and the irradiation of ultraviolet rays to form the pedestal member 149.
 次に、コントローラ120は、第1造形ユニット22の下方に、ステージ52を移動させる。コントローラ120は、図5に示すように、第1印刷部72を制御してインクジェットヘッド76によって台座部材149の表面及び剥離フィルム150の上に導電性インクを吐出する。インクジェットヘッド76は、配線パターンに応じて線状に導電性インクを吐出する。この配線パターンは、例えば、製造したい造形物に応じて制御プログラム126に設定されている。図5に示す配線パターンは、例えば、剥離フィルム150の所定の位置(図5では右端の位置)から台座部材149の上面まで接続されるパターンである。本実施形態のコントローラ120は、図7に示すように、1つのビア穴155を通じて、下層の配線151と、上層の配線159を接続する。このため、コントローラ120は、インクジェットヘッド76を制御して、例えば、下層の配線151に対応した位置に導電性インクを吐出する。 Next, the controller 120 moves the stage 52 below the first modeling unit 22. As shown in FIG. 5, the controller 120 controls the first printing unit 72 to eject the conductive ink onto the surface of the pedestal member 149 and the release film 150 by the inkjet head 76. The inkjet head 76 ejects conductive ink linearly according to the wiring pattern. This wiring pattern is set in the control program 126, for example, according to the modeled object to be manufactured. The wiring pattern shown in FIG. 5 is, for example, a pattern connected from a predetermined position of the release film 150 (the position at the right end in FIG. 5) to the upper surface of the pedestal member 149. As shown in FIG. 7, the controller 120 of the present embodiment connects the lower layer wiring 151 and the upper layer wiring 159 through one via hole 155. Therefore, the controller 120 controls the inkjet head 76 to eject the conductive ink to, for example, a position corresponding to the wiring 151 in the lower layer.
 次に、コントローラ120は、焼成部74を制御して、台座部材149や剥離フィルム150の上に吐出した導電性インクを、照射装置78の赤外線ヒータによって加熱する。これにより、導電性インクを焼成することで、図5に示すように、台座部材149及び剥離フィルム150の上に配線151を形成することができる。 Next, the controller 120 controls the firing unit 74 to heat the conductive ink discharged onto the pedestal member 149 and the release film 150 by the infrared heater of the irradiation device 78. Thereby, as shown in FIG. 5, the wiring 151 can be formed on the pedestal member 149 and the release film 150 by firing the conductive ink.
 図9は、後述するビア穴155を有する樹脂層153を平面視した状態を示している。尚、図9は、後述する電子部品163(図8参照)の図示を省略している。また、図9は、下層の配線151を破線で示している。台座部材149は、例えば、所定の高さH1(図4参照)で形成され、平面視した場合に円形をなす、薄い板状に形成されている(図9参照)。台座部材149の角は、導電性インクの粘性に応じた湾曲した形状をなしている。図5に示すように、配線151は、剥離フィルム150の上から台座部材149の上まで連続して形成される。これにより、剥離フィルム150の上と、台座部材149の上(高さH1の位置)とを配線151により導通させることができる。換言すれば、配線151の一部は、高さH1だけ底上げされた状態となる。ここで、例えば、インクジェット方式により導電性インクを台座部材149の表面や曲面に吐出した場合、表面や曲面の角度が急であると、吐出した導電性インクが流れ落ちてしまう可能性がある。その結果、配線151の厚みが局所的に減少する、あるいは断線が発生する虞がある。このため、台座部材149の高さH1や、台座部材149の曲面と基材70とのなす角度θ1(図4参照)は、例えば、配線151を形成する導電性インクが極力流れ落ちない値、あるいは導電性インクを積層して導通を取れる値を設定することが好ましい。 FIG. 9 shows a plan view of the resin layer 153 having the via holes 155 described later. Note that FIG. 9 omits the illustration of the electronic component 163 (see FIG. 8), which will be described later. Further, in FIG. 9, the lower layer wiring 151 is shown by a broken line. The pedestal member 149 is formed, for example, at a predetermined height H1 (see FIG. 4), and is formed in a thin plate shape which is circular when viewed in a plan view (see FIG. 9). The corners of the pedestal member 149 have a curved shape according to the viscosity of the conductive ink. As shown in FIG. 5, the wiring 151 is continuously formed from the top of the release film 150 to the top of the pedestal member 149. Thereby, the upper part of the release film 150 and the upper part of the pedestal member 149 (the position of the height H1) can be made conductive by the wiring 151. In other words, a part of the wiring 151 is raised by the height H1. Here, for example, when the conductive ink is ejected to the surface or the curved surface of the pedestal member 149 by the inkjet method, if the angle of the surface or the curved surface is steep, the ejected conductive ink may flow down. As a result, the thickness of the wiring 151 may be locally reduced or disconnection may occur. Therefore, the height H1 of the pedestal member 149 and the angle θ1 (see FIG. 4) formed by the curved surface of the pedestal member 149 and the base material 70 are, for example, values that prevent the conductive ink forming the wiring 151 from flowing down as much as possible. It is preferable to set a value at which conductive ink can be laminated to obtain continuity.
 また、台座部材149の上には、配線151,159や、後述する樹脂層153を形成する(図7参照)。このため、台座部材149の高さH1は、配線151,159や樹脂層153を形成する際に、インクジェットヘッド76,88や平坦化装置90のローラ等と干渉しない高さであることが好ましい。 Further, wirings 151 and 159 and a resin layer 153 described later are formed on the pedestal member 149 (see FIG. 7). Therefore, the height H1 of the pedestal member 149 is preferably a height that does not interfere with the inkjet heads 76, 88, the rollers of the flattening device 90, or the like when forming the wirings 151, 159 and the resin layer 153.
 次に、コントローラ120は、図6に示すように、配線151や台座部材149の上を覆うように、剥離フィルム150の上に樹脂層153を形成する。コントローラ120は、樹脂層153を形成する際に、台座部材149及び配線151の一部が露出するビア穴155を樹脂層153に形成する(図9参照)。コントローラ120は、第2造形ユニット24のインクジェットヘッド88から紫外線硬化樹脂を吐出する処理と、吐出した紫外線硬化樹脂へ硬化部86の照射装置92から紫外線を照射する処理とを繰り返し実行することで、ビア穴155を有する樹脂層153を形成する。 Next, as shown in FIG. 6, the controller 120 forms a resin layer 153 on the release film 150 so as to cover the wiring 151 and the pedestal member 149. When the controller 120 forms the resin layer 153, the controller 120 forms a via hole 155 in the resin layer 153 from which a part of the pedestal member 149 and the wiring 151 is exposed (see FIG. 9). The controller 120 repeatedly executes a process of discharging the ultraviolet curable resin from the inkjet head 88 of the second modeling unit 24 and a process of irradiating the discharged ultraviolet curable resin with ultraviolet rays from the irradiation device 92 of the curing unit 86. A resin layer 153 having via holes 155 is formed.
 具体的には、コントローラ120は、ステージ52を、第2造形ユニット24の下方に移動させ、第2印刷部84を制御して、配線151や台座部材149を覆うようにインクジェットヘッド88から紫外線硬化樹脂を剥離フィルム150の上に薄膜状に吐出する。コントローラ120は、インクジェットヘッド88を制御して、台座部材149及び配線151の一部を露出するビア穴155を除いた箇所に、紫外線硬化樹脂を吐出させる。つまり、インクジェットヘッド88は、台座部材149及び配線151の一部をビア穴155から露出させ、台座部材149及び配線151の他の部分を覆うように、剥離フィルム150の上に紫外線硬化樹脂を薄膜状に吐出する。コントローラ120は、薄膜状に紫外線硬化樹脂を吐出した後、膜厚が均一となるように平坦化装置90により平坦を実行しても良い。そして、硬化部86は、照射装置92により、薄膜状の紫外線硬化樹脂に紫外線を照射する。これにより、剥離フィルム150の上に薄膜状の樹脂層が形成される。 Specifically, the controller 120 moves the stage 52 below the second modeling unit 24, controls the second printing unit 84, and cures ultraviolet rays from the inkjet head 88 so as to cover the wiring 151 and the pedestal member 149. The resin is discharged into a thin film on the release film 150. The controller 120 controls the inkjet head 88 to discharge the ultraviolet curable resin to a portion other than the via hole 155 that exposes a part of the pedestal member 149 and the wiring 151. That is, the inkjet head 88 exposes a part of the pedestal member 149 and the wiring 151 from the via hole 155, and thins the ultraviolet curable resin on the release film 150 so as to cover the other part of the pedestal member 149 and the wiring 151. Discharge in the form. After discharging the ultraviolet curable resin in the form of a thin film, the controller 120 may be flattened by the flattening device 90 so that the film thickness becomes uniform. Then, the curing unit 86 irradiates the thin film ultraviolet curable resin with ultraviolet rays by the irradiation device 92. As a result, a thin-film resin layer is formed on the release film 150.
 コントローラ120は、台座部材149及び配線151の一部を露出させるように、紫外線硬化樹脂の吐出位置を調整し、紫外線硬化樹脂の吐出、平坦化、紫外線の照射を、適宜繰り返し実行することで、ビア穴155を有する樹脂層153を形成する。図6に示すように、コントローラ120は、内壁が傾斜したすり鉢状のビア穴155を形成する。ビア穴155の内壁には、上側の上側開口155Aから下側(配線151側)の下側開口155Bに向かうに従って、内径を小さくするように傾いた傾斜面157が形成される。下層の配線151及び台座部材149は、ビア穴155の下側開口155Bから上面を露出させた状態となる(図9参照)。 The controller 120 adjusts the ejection position of the ultraviolet curable resin so as to expose a part of the pedestal member 149 and the wiring 151, and ejects, flattens, and irradiates the ultraviolet curable resin as appropriate repeatedly. A resin layer 153 having via holes 155 is formed. As shown in FIG. 6, the controller 120 forms a mortar-shaped via hole 155 with an inclined inner wall. On the inner wall of the via hole 155, an inclined surface 157 inclined so as to reduce the inner diameter is formed from the upper upper opening 155A toward the lower opening 155B on the lower side (wiring 151 side). The lower layer wiring 151 and the pedestal member 149 are in a state where the upper surface is exposed from the lower opening 155B of the via hole 155 (see FIG. 9).
 図9に示すように、台座部材149は、樹脂層153(基板)を平面視した場合に、例えば、円形の下側開口155B(ビア穴155)よりも長い内径で形成された円板形状をなしている。このように、台座部材149は、例えば、ビア穴155に合わせた形状をなし、ビア穴155の内径よりも長い(外径が大きい)形状で形成される。 As shown in FIG. 9, the pedestal member 149 has a disk shape formed with an inner diameter longer than, for example, a circular lower opening 155B (via hole 155) when the resin layer 153 (board) is viewed in a plan view. I'm doing it. As described above, the pedestal member 149 has a shape that matches the via hole 155, and is formed in a shape that is longer (larger outer diameter) than the inner diameter of the via hole 155.
 従って、本実施形態の台座部材149は、ビア穴155を平面視した場合に、ビア穴155の底部側に形成された下側開口155Bの大きさ以上の大きさで形成されている。これによれば、ビア穴155の下側開口155Bよりも大きい大きさで台座部材149を形成する。平面視においてより広がった台座部材149を形成することで、台座部材149の高さH1を維持しつつ、台座部材149の斜面の傾きを小さく(なだらかに)することができる。導電性インクが流れ落ちることを抑制でき、台座部材149の上に形成する配線151の厚みが局所的に減少する、あるいは断線が発生することを抑制できる。 Therefore, the pedestal member 149 of the present embodiment is formed to have a size larger than the size of the lower opening 155B formed on the bottom side of the via hole 155 when the via hole 155 is viewed in a plan view. According to this, the pedestal member 149 is formed with a size larger than the lower opening 155B of the via hole 155. By forming the pedestal member 149 that is wider in the plan view, the inclination of the slope of the pedestal member 149 can be reduced (smoothly) while maintaining the height H1 of the pedestal member 149. It is possible to prevent the conductive ink from flowing down, and it is possible to prevent the thickness of the wiring 151 formed on the pedestal member 149 from being locally reduced or the occurrence of disconnection.
 次に、コントローラ120は、樹脂層153を形成すると、図7に示すように、ビア穴155の傾斜面157の一部に、樹脂層153の上面153Aまで引き出される上層の配線159を形成する。コントローラ120は、ビア穴155内で配線151に配線159を接続する。詳述すると、コントローラ120は、第1印刷部72を制御して、インクジェットヘッド76によって、ビア穴155の底部や傾斜面157に、導電性インクを線状に吐出する。コントローラ120は、ビア穴155内の配線151の位置に合わせて、導電性インクを吐出する(図9参照)。導電性インクは、ビア穴155内で露出する配線151から、傾斜面157を経由して、樹脂層153の上面153Aに至るまで吐出される。 Next, when the resin layer 153 is formed, the controller 120 forms an upper layer wiring 159 that is pulled out to the upper surface 153A of the resin layer 153 on a part of the inclined surface 157 of the via hole 155, as shown in FIG. The controller 120 connects the wiring 159 to the wiring 151 in the via hole 155. More specifically, the controller 120 controls the first printing unit 72 to linearly eject the conductive ink to the bottom portion of the via hole 155 and the inclined surface 157 by the inkjet head 76. The controller 120 ejects conductive ink in alignment with the position of the wiring 151 in the via hole 155 (see FIG. 9). The conductive ink is ejected from the wiring 151 exposed in the via hole 155 to the upper surface 153A of the resin layer 153 via the inclined surface 157.
 尚、コントローラ120は、上層の配線159を形成する前に、配線151の上の余分な樹脂を除去しても良い。樹脂層153の造形において、余分な紫外線硬化樹脂が下側開口155Bから露出した配線151の上に付着する虞がある。このため、コントローラ120は、例えば、ビア穴155の下側開口155Bから露出する配線151に向かってレーザなどを照射し配線151の上の余分な樹脂の残滓を除去しても良い。これにより、配線151と配線159との接続部分における抵抗を減らすことができる。 Note that the controller 120 may remove excess resin on the wiring 151 before forming the upper layer wiring 159. In the molding of the resin layer 153, excess UV curable resin may adhere to the wiring 151 exposed from the lower opening 155B. Therefore, for example, the controller 120 may irradiate the wiring 151 exposed from the lower opening 155B of the via hole 155 with a laser or the like to remove excess resin residue on the wiring 151. As a result, the resistance at the connection portion between the wiring 151 and the wiring 159 can be reduced.
 コントローラ120は、焼成部74を制御し、配線151の上部から樹脂層153の上面153Aに至るまで吐出された導電性インクに、照射装置78の赤外線ヒータから熱を加える。これにより、導電性インクを焼成し、下層の配線151と電気的に接続された上層の配線159を形成できる。樹脂層153に形成された下層の各配線パターンと上層の各配線パターンを導通させることができる(図9参照)。尚、ビア穴155の傾斜面157の傾斜角度θ2(図7参照)は、例えば、25度以下である。傾斜面157の基材70と平行な方向に沿った長さは、例えば、数百μmである。また、樹脂層153の厚さは、例えば、20~40μmである。 The controller 120 controls the firing unit 74 and applies heat from the infrared heater of the irradiation device 78 to the conductive ink discharged from the upper part of the wiring 151 to the upper surface 153A of the resin layer 153. As a result, the conductive ink can be fired to form the upper layer wiring 159 electrically connected to the lower layer wiring 151. Each wiring pattern of the lower layer and each wiring pattern of the upper layer formed on the resin layer 153 can be made conductive (see FIG. 9). The inclination angle θ2 (see FIG. 7) of the inclined surface 157 of the via hole 155 is, for example, 25 degrees or less. The length of the inclined surface 157 along the direction parallel to the base material 70 is, for example, several hundred μm. The thickness of the resin layer 153 is, for example, 20 to 40 μm.
 ここで、図10は、比較例の配線151,159及び樹脂層153の断面を示している。図10の回路基板は、下層の配線151の下には、台座部材149が形成されていない。上記した配線151と同様に、配線159を形成する際に、導電性インクをビア穴155の傾斜面157に吐出した場合、傾斜面157の傾斜角度θ2が急であると、吐出した導電性インクが傾斜面157に沿って流れ落ちてしまう可能性がある。その結果、配線159の厚みが局所的に減少する、あるいは断線が発生する虞があり、接続の信頼性が低下する。また、本実施形態のコントローラ120は、図6の製造工程(樹脂層形成工程の一例)において、樹脂層153を貫通し、傾斜面157を内壁に有するビア穴155を樹脂層153に形成する。このような傾斜面157を有するビア穴155において、導電性インクが傾斜面157から流れ落ちることを抑制するために傾斜角度θ2を小さくすると、樹脂層153の厚みが一定であれば、ビア穴155の上側開口155Aの直径L1は、傾斜角度θ2を小さくするのに反比例して長くなってしまう。樹脂層153におけるビア穴155の占有面積が増大し、配線151,159の配線密度が低下する。 Here, FIG. 10 shows a cross section of the wiring 151, 159 and the resin layer 153 of the comparative example. In the circuit board of FIG. 10, the pedestal member 149 is not formed under the lower layer wiring 151. Similar to the wiring 151 described above, when the conductive ink is ejected to the inclined surface 157 of the via hole 155 when the wiring 159 is formed, if the inclination angle θ2 of the inclined surface 157 is steep, the ejected conductive ink May run down along the slope 157. As a result, the thickness of the wiring 159 may be locally reduced or disconnection may occur, and the reliability of the connection is lowered. Further, in the manufacturing process (an example of the resin layer forming step) of FIG. 6, the controller 120 of the present embodiment penetrates the resin layer 153 and forms a via hole 155 having an inclined surface 157 on the inner wall in the resin layer 153. In the via hole 155 having such an inclined surface 157, if the inclination angle θ2 is reduced in order to prevent the conductive ink from flowing down from the inclined surface 157, if the thickness of the resin layer 153 is constant, the via hole 155 The diameter L1 of the upper opening 155A becomes longer in inverse proportion to the reduction of the inclination angle θ2. The occupied area of the via hole 155 in the resin layer 153 increases, and the wiring density of the wirings 151 and 159 decreases.
 そこで、本実施形態の配線形成方法では、図4及び図5に示すように、まず、台座部材149を形成し、台座部材149の上に下層の配線151を形成する。そして、図7に示すように、台座部材149で高く上げた下層の配線151と上層の配線159を傾斜面157の下方で接続している。これにより、台座部材149により配線151を底上げしたことで、直径L1が長くなること(上側開口155Aの拡大)を抑制しつつ、傾斜面157の傾斜角度θ2を小さくすることができる。換言すれば、直径L1を短くしてビア穴155を小さくできる。これにより、直径L1を小さくして配線151,159の配線密度を高めつつ、配線159の接続の信頼性を向上できる。 Therefore, in the wiring forming method of the present embodiment, as shown in FIGS. 4 and 5, the pedestal member 149 is first formed, and the lower layer wiring 151 is formed on the pedestal member 149. Then, as shown in FIG. 7, the lower layer wiring 151 raised by the pedestal member 149 and the upper layer wiring 159 are connected below the inclined surface 157. As a result, by raising the bottom of the wiring 151 by the pedestal member 149, it is possible to reduce the inclination angle θ2 of the inclined surface 157 while suppressing an increase in the diameter L1 (expansion of the upper opening 155A). In other words, the diameter L1 can be shortened to reduce the via hole 155. As a result, the reliability of the connection of the wiring 159 can be improved while reducing the diameter L1 and increasing the wiring density of the wirings 151 and 159.
 また、図8に示すように、コントローラ120は、例えば、配線159を形成した後、樹脂層153の上面153Aの配線159に電子部品163を実装する。具体的には、コントローラ120は、例えば、配線159を形成した後、第3造形ユニット29の下方にステージ52を移動させる。コントローラ120は、第3造形ユニット29を制御してディスペンサー130によって配線159の上に導電性ペーストを吐出する。 Further, as shown in FIG. 8, in the controller 120, for example, after forming the wiring 159, the electronic component 163 is mounted on the wiring 159 on the upper surface 153A of the resin layer 153. Specifically, the controller 120 moves the stage 52 below the third modeling unit 29, for example, after forming the wiring 159. The controller 120 controls the third modeling unit 29 and discharges the conductive paste onto the wiring 159 by the dispenser 130.
 コントローラ120は、導電性ペーストを吐出した後、装着ユニット26の下方へステージ52を移動させ、装着部102により電子部品163の装着を行なう。装着部102の装着ヘッド112は、電子部品163の部品端子165が導電性ペーストの位置となるように配置する。そして、コントローラ120は、第1造形ユニット22の焼成部74によって導電性ペーストを加熱して硬化することでバンプ167を形成する。電子部品163の部品端子165は、バンプ167を介して配線159に電気的に接続される。このようにして、本実施形態の電子デバイス製造装置10は、電子部品163を実装した回路基板(配線151,159を有する樹脂層153)を形成することができる。 After discharging the conductive paste, the controller 120 moves the stage 52 below the mounting unit 26, and mounts the electronic component 163 by the mounting unit 102. The mounting head 112 of the mounting portion 102 is arranged so that the component terminal 165 of the electronic component 163 is located at the position of the conductive paste. Then, the controller 120 forms the bump 167 by heating and curing the conductive paste by the firing portion 74 of the first modeling unit 22. The component terminal 165 of the electronic component 163 is electrically connected to the wiring 159 via the bump 167. In this way, the electronic device manufacturing apparatus 10 of the present embodiment can form a circuit board (resin layer 153 having wirings 151 and 159) on which the electronic component 163 is mounted.
 尚、上記した配線151,159を有する樹脂層153の製造工程、造形物の構造等は、一例である。例えば、コントローラ120は、上層の配線159を形成した後、ビア穴155を樹脂層(紫外線硬化樹脂)で埋めても良い。そして、コントローラ120は、埋めた樹脂層の上に、さらにビア穴を有する樹脂層を形成し、配線159と接続される上層の配線を形成しても良い。この場合、配線151と同様に、台座部材149を形成して配線159を底上げしても良い。即ち、多層の基板を形成する際に、各層に台座部材149を適宜形成しても良い。 The manufacturing process of the resin layer 153 having the wirings 151 and 159 and the structure of the modeled object are examples. For example, the controller 120 may fill the via holes 155 with a resin layer (ultraviolet curable resin) after forming the upper wiring 159. Then, the controller 120 may further form a resin layer having a via hole on the buried resin layer to form an upper layer wiring connected to the wiring 159. In this case, similarly to the wiring 151, the pedestal member 149 may be formed to raise the wiring 159. That is, when forming the multilayer substrate, the pedestal member 149 may be appropriately formed in each layer.
 また、図9に示す例では、1つのビア穴155で一組の配線151,159を接続したが、1つのビア穴155で複数組の配線151,159を接続しても良い。図11は、1つのビア穴155で、複数組の配線151,159を接続した状態を示している。図11に示すように、例えば、コントローラ120は、1つのビア穴155内で接続される配線151,159の組み合わせを、所定のピッチP1を間に設けて並んで形成する。コントローラ120は、例えば、ビア穴155を、穴径が一方向(図11における左右方向)に長い穴(スリット形状)で形成する。ビア穴155は、平面視において、一方向に長い略長方形状の上側開口155A及び下側開口155Bを有している。台座部材149は、ビア穴155の形状に合わせて、平面視においてビア穴155の長手方向に長い略長方形の薄い板状に形成されている。そして、コントローラ120は、ビア穴155の長手方向に並んで、複数組の配線151,159を形成する。複数組の配線151,159のうち、中央の3組は、例えば、一方向(図11における上下方向)に沿って一直線上に形成される。即ち、ビア穴155から下層の配線151を引き出す方向に沿って、その配線151に接続される上層の配線159を形成する。ビア穴155の傾斜面157には、ビア穴155の長手方向(図11における左右方向)に沿って複数の配線159が並んで配置される。また、複数の下層の配線151は、横長の台座部材149の上に並んで配置される。 Further, in the example shown in FIG. 9, one set of wirings 151 and 159 is connected by one via hole 155, but a plurality of sets of wirings 151 and 159 may be connected by one via hole 155. FIG. 11 shows a state in which a plurality of sets of wirings 151 and 159 are connected by one via hole 155. As shown in FIG. 11, for example, the controller 120 forms a combination of wirings 151 and 159 connected in one via hole 155 side by side with a predetermined pitch P1 in between. The controller 120 forms, for example, a via hole 155 with a hole (slit shape) having a hole diameter long in one direction (left-right direction in FIG. 11). The via hole 155 has a substantially rectangular upper opening 155A and a lower opening 155B that are long in one direction in a plan view. The pedestal member 149 is formed in a substantially rectangular thin plate shape that is long in the longitudinal direction of the via hole 155 in a plan view according to the shape of the via hole 155. Then, the controller 120 is arranged in the longitudinal direction of the via hole 155 to form a plurality of sets of wirings 151 and 159. Of the plurality of sets of wiring 151 and 159, the central three sets are formed in a straight line along, for example, one direction (vertical direction in FIG. 11). That is, the upper layer wiring 159 connected to the wiring 151 is formed along the direction in which the lower layer wiring 151 is pulled out from the via hole 155. A plurality of wirings 159 are arranged side by side on the inclined surface 157 of the via hole 155 along the longitudinal direction of the via hole 155 (the left-right direction in FIG. 11). Further, the plurality of lower layer wirings 151 are arranged side by side on the horizontally long pedestal member 149.
 ここで、図9に示すように、1つのビア穴155に1組みの配線151,159だけを形成すると、ビア穴155の上側開口155Aの大きさに応じて、配線159の間のピッチP1(図9参照)が増大する可能性がある。これに対し、図11に示すように、1つのビア穴155内に複数組みの配線151,159をまとめて造形することで、配線151や配線159の間のピッチP1を極めて狭くすることができる。このピッチP1は、三次元積層造形の精度(インクジェット方式の解像度)にもよるが、例えば、数百μm以下まで狭くすることが可能となる。これにより、配線151,159の配線密度を極めて高くすることが可能となる。 Here, as shown in FIG. 9, when only one set of wires 151 and 159 is formed in one via hole 155, the pitch P1 between the wires 159 ( (See FIG. 9) may increase. On the other hand, as shown in FIG. 11, by forming a plurality of sets of wirings 151 and 159 together in one via hole 155, the pitch P1 between the wirings 151 and the wirings 159 can be extremely narrowed. .. This pitch P1 can be narrowed to, for example, several hundred μm or less, although it depends on the accuracy of the three-dimensional laminated modeling (resolution of the inkjet method). This makes it possible to extremely increase the wiring density of the wirings 151 and 159.
 また、従来の基板製造においてビア穴やスルーホールの製造に用いられる無電解めっき法などでは、ビア穴の内壁の全面にめっきすることが一般的であり、図11に示すような傾斜面157(内壁)の一部に配線を形成することは困難である。一方、本実施形態の電子デバイス製造装置10では、三次元積層造形を用いることで、傾斜面157の任意な位置に配線159を形成することができる。換言すれば、本実施形態の電子デバイス製造装置10は、この三次元積層造形の長所を活かして、1つのビア穴155内に複数組みの配線151,159を造形し、配線密度を高めることができる。 Further, in the electroless plating method used for manufacturing via holes and through holes in the conventional substrate manufacturing, it is common to plate the entire inner wall of the via holes, and the inclined surface 157 as shown in FIG. 11 ( It is difficult to form wiring on a part of the inner wall). On the other hand, in the electronic device manufacturing apparatus 10 of the present embodiment, the wiring 159 can be formed at an arbitrary position on the inclined surface 157 by using the three-dimensional laminated modeling. In other words, the electronic device manufacturing apparatus 10 of the present embodiment can utilize the advantages of the three-dimensional laminated molding to form a plurality of sets of wirings 151 and 159 in one via hole 155 to increase the wiring density. can.
 従って、本実施形態のコントローラ120は、図11に示すように、一方向に長い台座部材149を形成しても良い。また、コントローラ120は、台座部材149の長手方向において並んで配置される複数の配線151を形成し、台座部材149の長手方向に長い傾斜面157を有する樹脂層153を形成する。そして、コントローラ120は、台座部材149の上に配設された複数の配線151の各々と接続させる複数の配線159を形成しても良い。 Therefore, as shown in FIG. 11, the controller 120 of the present embodiment may form a pedestal member 149 that is long in one direction. Further, the controller 120 forms a plurality of wirings 151 arranged side by side in the longitudinal direction of the pedestal member 149, and forms a resin layer 153 having an inclined surface 157 long in the longitudinal direction of the pedestal member 149. Then, the controller 120 may form a plurality of wirings 159 to be connected to each of the plurality of wirings 151 arranged on the pedestal member 149.
 これによれば、樹脂層153に形成した1つの傾斜面157を通じて、複数の配線151,159を接続する。これにより、台座部材149を形成することで配線159の接続の信頼性を高めつつ、配線151,159の間のピッチP1を狭くし配線密度を高めることができる。図9に示す1つの傾斜面157に配線151,159を1組だけ形成する場合に比べて、配線密度を極めて高くすることができる。引いては、回路基板などの造形物の小型化を図ることができる。 According to this, a plurality of wirings 151 and 159 are connected through one inclined surface 157 formed on the resin layer 153. As a result, by forming the pedestal member 149, the reliability of the connection of the wiring 159 can be improved, and the pitch P1 between the wirings 151 and 159 can be narrowed to increase the wiring density. The wiring density can be made extremely high as compared with the case where only one set of wirings 151 and 159 is formed on one inclined surface 157 shown in FIG. As a result, it is possible to reduce the size of a modeled object such as a circuit board.
 また、複数の下層の配線151を形成する場合、コントローラ120は、台座部材149の形成において、複数の配線151の各々における配線159側の端部が同一の高さとなるように、台座部材149の表面を形成しても良い。図12は、複数の配線151を形成した場合の台座部材149の表面149Aを示す模式図である。図12に示すように、例えば、コントローラ120は、台座部材149の表面149Aを、平坦化装置90のローラなどで平坦化して平面を形成する。表面149Aは、例えば、台座部材149の下端から同一の高さH1(図4参照)の平面で形成される。コントローラ120は、この同一高さの表面149Aに、所定のピッチで下層の配線151を形成する。そして、コントローラ120は、表面149A上の各配線151に接続されるように、上層の配線159(図11参照)を形成しても良い。これによれば、複数の配線151の配線159側の端部が同一高さとなるように、台座部材149を同じ高さH1で形成する。複数組みの配線151,159を同一高さで接続する構造とすることで、インクジェットヘッド76を同一の高さにしたまま複数の配線151,159をまとめて造形することができる。複数組みの配線151,159を1つのビア穴155で接続する回路基板を製造する時間を短縮できる。 Further, when forming the plurality of lower layer wirings 151, the controller 120 uses the pedestal member 149 so that the ends of the plurality of wirings 151 on the wiring 159 side have the same height in the formation of the pedestal member 149. A surface may be formed. FIG. 12 is a schematic view showing the surface 149A of the pedestal member 149 when a plurality of wirings 151 are formed. As shown in FIG. 12, for example, the controller 120 flattens the surface 149A of the pedestal member 149 with a roller of the flattening device 90 or the like to form a flat surface. The surface 149A is formed, for example, by a plane having the same height H1 (see FIG. 4) from the lower end of the pedestal member 149. The controller 120 forms the lower layer wiring 151 at a predetermined pitch on the surface 149A having the same height. Then, the controller 120 may form an upper layer wiring 159 (see FIG. 11) so as to be connected to each wiring 151 on the surface 149A. According to this, the pedestal member 149 is formed at the same height H1 so that the ends of the plurality of wirings 151 on the wiring 159 side have the same height. By constructing a structure in which a plurality of sets of wirings 151 and 159 are connected at the same height, it is possible to form the plurality of wirings 151 and 159 together while keeping the inkjet head 76 at the same height. It is possible to shorten the time for manufacturing a circuit board in which a plurality of sets of wirings 151 and 159 are connected by one via hole 155.
 また、図11の左右方向における両端の配線151,159で図示すように、ビア穴155から下層の配線151を引き出す方向と、ビア穴155から上層の配線159を引き出す方向とは異なる方向でも良い。例えば、最も外側の一対の配線151を外側に広げるように配設しても良い。このように、1つのビア穴155から引き出す配線151,159の配設方向を変更することで、より自由な配線パターンを形成することができる。 Further, as shown in the wirings 151 and 159 at both ends in the left-right direction of FIG. 11, the direction in which the lower layer wiring 151 is pulled out from the via hole 155 and the direction in which the upper layer wiring 159 is pulled out from the via hole 155 may be different. .. For example, the outermost pair of wirings 151 may be arranged so as to spread outward. In this way, by changing the arrangement direction of the wirings 151 and 159 drawn out from one via hole 155, a more free wiring pattern can be formed.
 また、複数組みの配線151,159を配置するビア穴155は、一方向に沿って長い形状に限らない。図13に示すように、例えば、位置のずれた複数のビア穴を互いに連結させて1つのビア穴155を形成しても良い。例えば、1組の配線151,159の接続位置に合せてビア穴を形成することが設計データとして制御プログラム126に設定されている場合、コントローラ120は、各ビア穴が所定距離以下に隣接しているか否かを判断しても良い。そして、コントローラ120は、所定距離以下に隣接していることに応じて、複数のビア穴を連結させても良い。ビア穴155の傾斜面157は、例えば、平面視において、櫛歯状の形状となる。これにより、複数のビア穴を重ねた分だけ配線151,159を近づけることができ、配線密度を高めることができる。 Further, the via hole 155 in which a plurality of sets of wirings 151 and 159 are arranged is not limited to a long shape along one direction. As shown in FIG. 13, for example, a plurality of misaligned via holes may be connected to each other to form one via hole 155. For example, when the control program 126 is set to form via holes according to the connection positions of one set of wirings 151 and 159 as design data, the controller 120 has the controller 120 in which each via hole is adjacent to a predetermined distance or less. You may judge whether or not it is. Then, the controller 120 may connect a plurality of via holes depending on whether they are adjacent to each other by a predetermined distance or less. The inclined surface 157 of the via hole 155 has a comb-like shape in a plan view, for example. As a result, the wirings 151 and 159 can be brought closer to each other by the amount of overlapping the plurality of via holes, and the wiring density can be increased.
 また、図14は、一例として、樹脂層153の上面153Aに電子部品163を実装した状態を平面視した図を示している。尚、図14は、樹脂層153の図示を省略している。例えば、電子部品163は、図14における上下方向に沿って所定の間隔で複数の部品端子165が設けられている。ビア穴155は、この部品端子165が並ぶ方向に長い穴で形成されている。ビア穴155から引き出された各配線159は、傾斜面157を介して部品端子165に接続、即ち、電子部品163に接続されている。 Further, FIG. 14 shows, as an example, a plan view of a state in which the electronic component 163 is mounted on the upper surface 153A of the resin layer 153. Note that FIG. 14 omits the illustration of the resin layer 153. For example, the electronic component 163 is provided with a plurality of component terminals 165 at predetermined intervals along the vertical direction in FIG. The via hole 155 is formed by a long hole in the direction in which the component terminals 165 are lined up. Each wiring 159 drawn from the via hole 155 is connected to the component terminal 165 via the inclined surface 157, that is, is connected to the electronic component 163.
 ICチップなどの電子部品163に設けられた複数の部品端子165は、図14に示すように、一方向に並んで配置される場合がある。このような部品端子165の配列に合わせて長いビア穴155を形成し、そのビア穴155を通じて引き出される複数の配線159を形成しても良い。そして、複数の配線159の各々を複数の部品端子165の各々に接続する。これにより、電子部品163に接続される複数の配線159を3次元積層造形により高密度に形成できる。 As shown in FIG. 14, a plurality of component terminals 165 provided on an electronic component 163 such as an IC chip may be arranged side by side in one direction. A long via hole 155 may be formed in accordance with the arrangement of such component terminals 165, and a plurality of wirings 159 drawn out through the via hole 155 may be formed. Then, each of the plurality of wirings 159 is connected to each of the plurality of component terminals 165. As a result, a plurality of wirings 159 connected to the electronic component 163 can be formed at high density by three-dimensional laminated modeling.
 また、電子部品163に接続する配線は、下層の配線151に接続する配線159に限らない。例えば、図14に示すように、ビア穴155内に一度入って台座部材149の上を通って折り返す(下層の配線151とは接続されない)折り返し配線169を形成しても良い。例えば、コントローラ120は、配線159を製造する工程において、導電性ペーストにより折り返し配線169を形成する。折り返し配線169は、例えば、樹脂層153の上面153Aから傾斜面157を介して下方に下がった後、台座部材149の上面を通り、傾斜面157を介して樹脂層153の別の位置の上面153Aに戻ってくる配線である。 Further, the wiring connected to the electronic component 163 is not limited to the wiring 159 connected to the lower layer wiring 151. For example, as shown in FIG. 14, the folded-back wiring 169 may be formed by entering the via hole 155 once, passing over the pedestal member 149, and folding back (not connected to the lower layer wiring 151). For example, the controller 120 forms the folded wiring 169 with the conductive paste in the process of manufacturing the wiring 159. For example, the folded-back wiring 169 descends downward from the upper surface 153A of the resin layer 153 via the inclined surface 157, passes through the upper surface of the pedestal member 149, and passes through the inclined surface 157 to the upper surface 153A at another position of the resin layer 153. It is the wiring that comes back to.
 配線パターンによっては、配線159やビア穴155の近くを通るものの配線151が形成された下層に下がらず樹脂層153の上面153Aに配設したい配線が発生する。一方で、下層に下がらない配線を配設するためだけに、ビア穴155の一部を埋める、あるいはビア穴155を全部埋めた後に埋めた穴の上に配線を形成すると、製造工程が増え、製造時間の遅延や製造コストの増大を招く。これに対し、配線159と同一工程で折り返し配線169を形成することで、1回の工程で2種類の配線を形成し、製造時間の短縮と製造コストの低減を図ることが可能となる。 Depending on the wiring pattern, wiring that passes near the wiring 159 or the via hole 155 but does not go down to the lower layer on which the wiring 151 is formed but is desired to be arranged on the upper surface 153A of the resin layer 153 is generated. On the other hand, if a part of the via hole 155 is filled or the wiring is formed on the filled hole after the via hole 155 is completely filled only for arranging the wiring that does not go down in the lower layer, the manufacturing process increases. It causes a delay in manufacturing time and an increase in manufacturing cost. On the other hand, by forming the folded wiring 169 in the same process as the wiring 159, it is possible to form two types of wiring in one process, and it is possible to shorten the manufacturing time and reduce the manufacturing cost.
 尚、複数の配線159を配設する傾斜面157は、ビア穴155の内壁に限らない。例えば、図15に示すように、樹脂層153の端部に傾斜面157を形成しても良い。図15の傾斜面157は、図7に示すようなビア穴155の内壁ではなく、樹脂層153の端部に形成された端面である。コントローラ120は、例えば、下層の配線151を形成し、それを折り返すように、傾斜面157に沿って上層の配線159を形成する。コントローラ120は、配線159を形成した後、樹脂層161によって樹脂層153の端部を埋めても良い。この場合、コントローラ120は、配線151,159の接続位置(傾斜面157の位置)に合せて台座部材149を形成する。 The inclined surface 157 on which the plurality of wirings 159 are arranged is not limited to the inner wall of the via hole 155. For example, as shown in FIG. 15, an inclined surface 157 may be formed at the end of the resin layer 153. The inclined surface 157 of FIG. 15 is not an inner wall of the via hole 155 as shown in FIG. 7, but an end surface formed at an end portion of the resin layer 153. The controller 120 forms, for example, the lower layer wiring 151, and forms the upper layer wiring 159 along the inclined surface 157 so as to fold back the lower layer wiring 151. After forming the wiring 159, the controller 120 may fill the end portion of the resin layer 153 with the resin layer 161. In this case, the controller 120 forms the pedestal member 149 in accordance with the connection position (position of the inclined surface 157) of the wirings 151 and 159.
 因みに、上記実施例において、配線151は、第1配線の一例である。下側開口155Bは、開口の一例である。配線159は、第2配線の一例である。導電性インク及び導電性ペーストは、金属粒子を含む流体の一例である。図4の工程は、台座部材形成工程の一例である。図5の工程は、第1配線形成工程の一例である。図6の工程は、樹脂層形成工程の一例である。図7の工程は、第2配線形成工程の一例である。 Incidentally, in the above embodiment, the wiring 151 is an example of the first wiring. The lower opening 155B is an example of an opening. Wiring 159 is an example of the second wiring. Conductive inks and conductive pastes are examples of fluids containing metal particles. The process of FIG. 4 is an example of a pedestal member forming process. The process of FIG. 5 is an example of the first wiring forming process. The process of FIG. 6 is an example of a resin layer forming process. The process of FIG. 7 is an example of the second wiring forming process.
 以上、上記した本実施形態によれば以下の効果を奏する。
 本実施形態の配線151,159の形成工程では、所定の高さH1を有する台座部材149を樹脂材料により形成する工程(図4参照)と、導電性インクによって台座部材149の表面に配設される配線151を形成する工程(図5参照)と、を有している。また、形成工程は、台座部材149の位置に合せて形成された傾斜面157を有する樹脂層153を形成する工程(図6参照)と、導電性インクによって傾斜面157の上に配線159を形成し、且つ台座部材149の上の配線151と接続させるように配線159を形成する工程(図7参照)と、を有している。
As described above, according to the present embodiment described above, the following effects are obtained.
In the steps of forming the wirings 151 and 159 of the present embodiment, a step of forming the pedestal member 149 having a predetermined height H1 from a resin material (see FIG. 4) and a step of forming the pedestal member 149 having a predetermined height H1 on the surface of the pedestal member 149 with conductive ink are provided. It has a step of forming the wiring 151 (see FIG. 5). Further, the forming step includes a step of forming a resin layer 153 having an inclined surface 157 formed in accordance with the position of the pedestal member 149 (see FIG. 6) and forming wiring 159 on the inclined surface 157 with conductive ink. It also has a step of forming the wiring 159 so as to be connected to the wiring 151 on the pedestal member 149 (see FIG. 7).
 これによれば、台座部材149の上に配線151を形成することで、所定の高さH1まで配線151を底上げして配設することができる。配線151をより高い位置まで持って行くことで、傾斜面157の角度を緩やかにして配線159を接続することができる。配線159を形成する際に、導電性インクが傾斜面157で流れ落ちることを抑制でき、配線159をより均一な厚さで形成し断線の発生を抑制することができる。配線159の接続の信頼性を向上できる。 According to this, by forming the wiring 151 on the pedestal member 149, the wiring 151 can be raised to a predetermined height H1 and arranged. By bringing the wiring 151 to a higher position, the angle of the inclined surface 157 can be made gentle and the wiring 159 can be connected. When the wiring 159 is formed, the conductive ink can be prevented from flowing down on the inclined surface 157, and the wiring 159 can be formed with a more uniform thickness to suppress the occurrence of disconnection. The reliability of the connection of the wiring 159 can be improved.
 尚、本開示は、上記実施例に限定されるものではなく、当業者の知識に基づいて種々の変更、改良を施した種々の態様で実施することが可能である。
 例えば、上記実施例では、1層の配線151,159を形成する場合について説明したが、複数の樹脂層153を重ねて複数層の配線151,159を、台座部材149、ビア穴155を介して接続しても良い。
 また、樹脂層153は、電子部品163を実装しない回路基板でも良い。
 また、台座部材149は、平面視において、ビア穴155の下側開口155Bよりも小さい内径の円板形状でも良い。即ち、台座部材149は、ビア穴155より小さく形状や大きさでも良い。
 また、図12に示す複数の配線151を接続する場合において、台座部材149の表面149Aを平面で形成しなくとも良い。例えば、表面149Aを斜面、曲面、凹凸面等で形成しても良い。
 また、上記実施例では、紫外線の照射により硬化する紫外線硬化樹脂が採用されているが、熱により硬化する熱硬化樹脂等の種々の硬化性樹脂を採用することが可能である。
 また、本開示における3次元積層造形の方法としては、インクジェット方式や光造形法(SL:Stereo Lithography)に限らず、例えば、熱溶解積層法(FDM:Fused Deposition Molding)などの他の方法を採用できる。
The present disclosure is not limited to the above embodiment, and can be carried out in various modes with various changes and improvements based on the knowledge of those skilled in the art.
For example, in the above embodiment, the case of forming the one- layer wiring 151 and 159 has been described, but the plurality of resin layers 153 are stacked and the plurality of layers of wiring 151 and 159 are provided through the pedestal member 149 and the via hole 155. You may connect.
Further, the resin layer 153 may be a circuit board on which the electronic component 163 is not mounted.
Further, the pedestal member 149 may have a disk shape having an inner diameter smaller than that of the lower opening 155B of the via hole 155 in a plan view. That is, the pedestal member 149 may be smaller in shape and size than the via hole 155.
Further, when connecting the plurality of wirings 151 shown in FIG. 12, the surface 149A of the pedestal member 149 does not have to be formed on a flat surface. For example, the surface 149A may be formed of a slope, a curved surface, an uneven surface, or the like.
Further, in the above embodiment, an ultraviolet curable resin that is cured by irradiation with ultraviolet rays is adopted, but various curable resins such as a thermosetting resin that is cured by heat can be adopted.
Further, the method of three-dimensional lamination modeling in the present disclosure is not limited to the inkjet method and the stereolithography method (SL: Stereolithography), and for example, other methods such as Fused Deposition Modeling (FDM) are adopted. can.
 149 台座部材、149A 表面、151 配線(第1配線)、153 樹脂層、153A 上面、155 ビア穴、155B 下側開口(開口)、157 傾斜面、159 配線(第2配線)、H1 高さ。 149 pedestal member, 149A surface, 151 wiring (first wiring), 153 resin layer, 153A upper surface, 155 via hole, 155B lower opening (opening), 157 inclined surface, 159 wiring (second wiring), H1 height.

Claims (5)

  1.  所定の高さを有する台座部材を樹脂材料により形成する台座部材形成工程と、
     金属粒子を含む流体によって前記台座部材の表面に配設される第1配線を形成する第1配線形成工程と、
     前記台座部材の位置に合せて形成された傾斜面を有する樹脂層を形成する樹脂層形成工程と、
     金属粒子を含む流体によって前記傾斜面の上に第2配線を形成し、且つ前記台座部材の上の前記第1配線と接続させるように前記第2配線を形成する第2配線形成工程と、
     を含む、配線形成方法。
    A pedestal member forming step of forming a pedestal member having a predetermined height from a resin material,
    A first wiring forming step of forming a first wiring arranged on the surface of the pedestal member by a fluid containing metal particles, and
    A resin layer forming step of forming a resin layer having an inclined surface formed according to the position of the pedestal member, and
    A second wiring forming step of forming the second wiring on the inclined surface by a fluid containing metal particles and forming the second wiring so as to be connected to the first wiring on the pedestal member.
    Wiring formation method including.
  2.  前記樹脂層形成工程において、
     前記樹脂層を貫通し、前記傾斜面を内壁に有するビア穴を前記樹脂層に形成する、請求項1に記載の配線形成方法。
    In the resin layer forming step,
    The wiring forming method according to claim 1, wherein a via hole having the inclined surface in the inner wall is formed in the resin layer so as to penetrate the resin layer.
  3.  前記台座部材は、
     前記ビア穴を平面視した場合に、前記ビア穴の底部側に形成された開口の大きさ以上の大きさで形成される、請求項2に記載の配線形成方法。
    The pedestal member
    The wiring forming method according to claim 2, wherein the via hole is formed in a size equal to or larger than the size of an opening formed on the bottom side of the via hole when viewed in a plan view.
  4.  前記台座部材形成工程において、
     一方向に長い前記台座部材を形成し、
     前記第1配線形成工程において、
     前記台座部材の長手方向において並んで配置される複数の前記第1配線を形成し、
     前記樹脂層形成工程において、
     前記台座部材の長手方向に長い前記傾斜面を形成し、
     前記第2配線形成工程において、
     前記台座部材の上に配設された複数の前記第1配線の各々と接続させる複数の前記第2配線を形成する、請求項1乃至請求項3の何れか1項に記載の配線形成方法。
    In the pedestal member forming step
    Forming the pedestal member long in one direction,
    In the first wiring forming step,
    A plurality of the first wirings arranged side by side in the longitudinal direction of the pedestal member are formed.
    In the resin layer forming step,
    The inclined surface long in the longitudinal direction of the pedestal member is formed.
    In the second wiring forming step,
    The wiring forming method according to any one of claims 1 to 3, wherein a plurality of the second wirings to be connected to each of the plurality of the first wirings arranged on the pedestal member are formed.
  5.  前記台座部材形成工程において、
     複数の前記第1配線の各々における前記第2配線側の端部が同一の高さとなるように、前記台座部材の表面を形成する、請求項4に記載の配線形成方法。
    In the pedestal member forming step
    The wiring forming method according to claim 4, wherein the surface of the pedestal member is formed so that the ends on the second wiring side of each of the plurality of first wirings have the same height.
PCT/JP2020/008621 2020-03-02 2020-03-02 Method for forming wiring line WO2021176499A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022504760A JP7358614B2 (en) 2020-03-02 2020-03-02 Wiring formation method
PCT/JP2020/008621 WO2021176499A1 (en) 2020-03-02 2020-03-02 Method for forming wiring line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/008621 WO2021176499A1 (en) 2020-03-02 2020-03-02 Method for forming wiring line

Publications (1)

Publication Number Publication Date
WO2021176499A1 true WO2021176499A1 (en) 2021-09-10

Family

ID=77613970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008621 WO2021176499A1 (en) 2020-03-02 2020-03-02 Method for forming wiring line

Country Status (2)

Country Link
JP (1) JP7358614B2 (en)
WO (1) WO2021176499A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011071417A (en) * 2009-09-28 2011-04-07 Murata Mfg Co Ltd Manufacturing method of wiring substrate
JP2017516295A (en) * 2014-03-25 2017-06-15 ストラタシス リミテッド Method and system for producing a layer crossing pattern

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011071417A (en) * 2009-09-28 2011-04-07 Murata Mfg Co Ltd Manufacturing method of wiring substrate
JP2017516295A (en) * 2014-03-25 2017-06-15 ストラタシス リミテッド Method and system for producing a layer crossing pattern

Also Published As

Publication number Publication date
JP7358614B2 (en) 2023-10-10
JPWO2021176499A1 (en) 2021-09-10

Similar Documents

Publication Publication Date Title
WO2021181561A1 (en) Manufacturing method for mounting substrate by three-dimensional laminate molding
JP6714109B2 (en) Circuit forming method and circuit forming apparatus
WO2020012626A1 (en) Circuit formation method and circuit formation device
JPWO2019193644A1 (en) Three-dimensional structure forming method and three-dimensional structure forming apparatus
JP6811770B2 (en) Circuit formation method
JP6554541B2 (en) Wiring formation method and wiring formation apparatus
WO2021176499A1 (en) Method for forming wiring line
WO2021176498A1 (en) Wiring formation method
JP7282906B2 (en) Component mounting method and component mounting device
WO2021214813A1 (en) Circuit forming method and circuit forming device
JP7238206B2 (en) Modeling method
JP6987972B2 (en) Circuit forming method and circuit forming device
JP7145334B2 (en) Electronic circuit manufacturing method by 3D additive manufacturing
WO2019123629A1 (en) Method and device for manufacturing additively manufactured electronic device
WO2022101965A1 (en) Circuit forming method
WO2019171531A1 (en) Information processing device
JP7284275B2 (en) Manufacturing method of three-dimensional layered electronic device by three-dimensional layered manufacturing
WO2023079607A1 (en) Circuit-forming method and circuit-forming apparatus
JP7055897B2 (en) Circuit formation method
WO2023223562A1 (en) Manufacturing method and manufacturing device
WO2023148888A1 (en) Electrical circuit forming method and electrical circuit forming apparatus
WO2021166139A1 (en) Circuit forming method
JP7083039B2 (en) Circuit formation method
WO2023157111A1 (en) Electrical circuit formation method, and electrical circuit formation device
WO2021199421A1 (en) Circuit formation method and circuit formation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922567

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022504760

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20922567

Country of ref document: EP

Kind code of ref document: A1