WO2021031484A1 - 一种大容量皮囊式恒压蓄能器及其应用 - Google Patents

一种大容量皮囊式恒压蓄能器及其应用 Download PDF

Info

Publication number
WO2021031484A1
WO2021031484A1 PCT/CN2019/127732 CN2019127732W WO2021031484A1 WO 2021031484 A1 WO2021031484 A1 WO 2021031484A1 CN 2019127732 W CN2019127732 W CN 2019127732W WO 2021031484 A1 WO2021031484 A1 WO 2021031484A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
bladder
variable
constant pressure
capacity
Prior art date
Application number
PCT/CN2019/127732
Other languages
English (en)
French (fr)
Inventor
万丽荣
于正苗
曾庆良
刘文婷
戴汉政
孙志远
田明倩
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US17/273,399 priority Critical patent/US20220178388A1/en
Application filed by 山东科技大学 filed Critical 山东科技大学
Priority to CA3113459A priority patent/CA3113459C/en
Priority to AU2019462665A priority patent/AU2019462665B2/en
Publication of WO2021031484A1 publication Critical patent/WO2021031484A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/04Accumulators
    • F15B1/08Accumulators using a gas cushion; Gas charging devices; Indicators or floats therefor
    • F15B1/24Accumulators using a gas cushion; Gas charging devices; Indicators or floats therefor with rigid separating means, e.g. pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/04Accumulators
    • F15B1/08Accumulators using a gas cushion; Gas charging devices; Indicators or floats therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/04Accumulators
    • F15B1/08Accumulators using a gas cushion; Gas charging devices; Indicators or floats therefor
    • F15B1/10Accumulators using a gas cushion; Gas charging devices; Indicators or floats therefor with flexible separating means
    • F15B1/16Accumulators using a gas cushion; Gas charging devices; Indicators or floats therefor with flexible separating means in the form of a tube
    • F15B1/165Accumulators using a gas cushion; Gas charging devices; Indicators or floats therefor with flexible separating means in the form of a tube in the form of a bladder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/20Accumulator cushioning means
    • F15B2201/205Accumulator cushioning means using gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/30Accumulator separating means
    • F15B2201/31Accumulator separating means having rigid separating means, e.g. pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/30Accumulator separating means
    • F15B2201/31Accumulator separating means having rigid separating means, e.g. pistons
    • F15B2201/312Sealings therefor, e.g. piston rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/30Accumulator separating means
    • F15B2201/315Accumulator separating means having flexible separating means
    • F15B2201/3152Accumulator separating means having flexible separating means the flexible separating means being bladders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/30Accumulator separating means
    • F15B2201/32Accumulator separating means having multiple separating means, e.g. with an auxiliary piston sliding within a main piston, multiple membranes or combinations thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/40Constructional details of accumulators not otherwise provided for
    • F15B2201/415Gas ports
    • F15B2201/4155Gas ports having valve means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Definitions

  • the invention relates to a large-capacity bladder type constant pressure accumulator and its application, in particular to a large-capacity bladder constant pressure hydraulic accumulator, which is suitable for hydraulic systems of various machines and belongs to the technical field of accumulators.
  • the hydraulic accumulator is a very common device in the hydraulic system. It has the functions of storing pressure energy, eliminating pressure pulsation, reducing noise, absorbing hydraulic shock, compensating for leakage, and acting as an auxiliary (or emergency) power source. Most of the existing hydraulic accumulators cannot realize the output of constant pressure oil. If the accumulator outputs constant pressure oil, it can reduce the hydraulic impact on the hydraulic pipeline and various accessories when the hydraulic accumulator releases energy, and reduce the circuit The impact, vibration and noise in the system can extend the life of related components and simplify the hydraulic pipeline to a certain extent.
  • the diaphragm type constant pressure accumulator can only slightly reduce the "dead volume” problem; (2) The diaphragm type constant pressure accumulator adopts Diaphragm structure, the volume is too small to be suitable for construction machinery with large flow; (3) The gravity-loaded accumulator is bulky and slow in response, so it is currently used less; (4) The constant pressure accumulator system has many components , The structure is more complicated.
  • the present invention provides a large-capacity bladder-type constant pressure accumulator.
  • the accumulator adopts a large-capacity bladder, which can realize energy storage and constant pressure buffering in the working process of the hydraulic system, and is suitable for engineering machinery Large capacity requirements.
  • the invention also provides a working method of the above-mentioned large-capacity bladder type constant pressure accumulator.
  • a large-capacity bladder type constant pressure accumulator includes a shell and a bladder placed in the shell, a variable area piston, a floating piston, a piston, and a flange; wherein the floating piston is sleeved on the piston rod of the variable area piston, The bottom end of the piston rod of the area piston is connected with the piston, and the center axis of the variable area piston and the piston is provided with a through hole, an inflation valve is connected between the through hole and the bladder, the bottom of the through hole is connected with a cover plate, and the piston is provided with a single To valve I and check valve II, the flange is connected with the inner wall of the bottom of the shell.
  • variable area piston has an arc structure.
  • the advantage of this design is that the variable-area piston is designed in an arc shape. During the process of extruding the skin, the arc structure is easier to fit the skin, avoiding sharp edges and corners from piercing the skin.
  • the bottom end of the piston rod of the variable area piston is threadedly connected with the piston.
  • the surface of the piston is provided with multiple grooves, and O-rings are placed in the grooves.
  • O-rings are placed in the grooves.
  • the inflation valve is threadedly connected with the through hole.
  • a threaded column is provided on the cover plate, and the threaded column is inserted into the bottom of the through hole to be threadedly connected with the through hole.
  • a sponge gasket is provided between the cover plate and the piston.
  • a small hole is provided on the cover plate.
  • the advantage of this design is that when the variable-area piston is removed, the small hole can be hooked with a hook to facilitate the pulling out of the variable-area piston.
  • the flange is threadedly connected with the inner wall of the housing and fixed by a set screw.
  • the piston is provided with two one-way valves I and two one-way valves II, the two one-way valves I and two one-way valves II are evenly spaced on the same circumference, and the one-way valves I and The opening direction of check valve II is opposite.
  • a working method of a large-capacity bladder type constant pressure accumulator includes the following steps:
  • variable area piston squeezes the bladder.
  • the gas in the bladder is compressed and the pressure increases.
  • the variable area piston is effective during compression.
  • the force area gradually decreases; during this action, the one-way valve I opens, the one-way valve II closes, and the oil enters the floating piston chamber through the one-way valve I, increasing the capacity of the accumulator while reducing the bladder compression Speed, reduce heat;
  • variable-area piston transfers pressure and pushes the output of hydraulic oil.
  • gas in the bladder expands, the gas pressure gradually decreases and the effective force-receiving area of the variable-area piston gradually increases; during this action,
  • the check valve I is closed.
  • the check valve II is opened, and the oil is output to the piston chamber through the check valve II to reduce the energy released by the accumulator
  • the pressure pulsation maintains the constant pressure effect.
  • the invention adopts a bladder structure, which has a larger capacity than a diaphragm constant pressure accumulator.
  • the specifications of the bladder and the inflation pressure can be selected according to the size of the hydraulic system, which can be adapted to large, medium and small hydraulic systems; it adopts a bladder structure and is loaded by gravity. Compared with the type accumulator, the response is more sensitive; it adopts a bladder structure, and the lower part of the bladder (that is, the connection with the inflation valve) is a flat structure to ensure that the deformation of the bladder meets the design requirements.
  • the cup-shaped variable-area piston in the present invention is made of hard aluminum alloy, and the weight is reduced as much as possible on the premise of meeting the strength requirements, so as to ensure that the accumulator has higher sensitivity; the cup-shaped variable-area piston is used to release energy As the bladder expands, the gas pressure decreases and the effective area of the piston increases, it can ensure that the output hydraulic oil pressure is basically constant, and reduce the pressure pulsation when the accumulator outputs the oil, so that the system pressure fluctuation is small; the upper part of the cup-shaped variable area piston and the bladder The contact part adopts an arc structure, and the corners are rounded to reduce stress concentration, so that the deformation of the bladder is more relaxed, and the requirements for the bladder material are reduced; reasonable design for the specific system can make the "dead volume" small or even reduce To zero.
  • each set has two, on the one hand, the space in the accumulator is effectively used to increase the oil storage capacity of the accumulator; on the other hand, it has a buffering effect.
  • the bladder inflation valve of the present invention is connected with the variable area piston by thread; the shell adopts an integral structure to facilitate sealing, and the end flange is easy to disassemble, repair, and inflate.
  • Figure 1 is a schematic diagram of the structure of the accumulator of the present invention.
  • Figure 2 is a schematic diagram of the charging and discharging process of the accumulator of the present invention
  • FIG. 3 is a schematic diagram of the energy recovery system of the hydraulic excavating boom
  • Figure 4a is a front view of the floating piston
  • Figure 4b is a cross-sectional view of the floating piston in the A-A direction
  • Figure 4c is a top view of the floating piston
  • Figure 5a is a front view of a variable area piston
  • Figure 5b is a sectional view of the B-B direction of the variable area piston
  • Figure 5c is a top view of the variable area piston
  • Figure 6a is a front view of the cover
  • Figure 6b is a left view of the cover
  • Figure 7a is a schematic diagram of the structure of the one-way valve I;
  • Figure 7b is a schematic diagram of the structure of the one-way valve II.
  • Figure 7c is a three-dimensional schematic diagram of the spool in the one-way valve II.
  • this embodiment provides a large-capacity bladder type constant pressure accumulator, which includes a casing 1 and a bladder 2 placed in the casing 1, a variable area piston 4, a floating piston 5, a piston 8, a method Lan 11;
  • the floating piston 5 is sleeved on the piston rod of the variable area piston 4, the bottom end of the piston rod of the variable area piston 4 is connected with the piston 8, and the central axis of the variable area piston 4 and the piston 8 is provided with a through hole,
  • An inflation valve 3 is connected between the through hole and the bladder 2, and the inflation valve 3 is threadedly connected with the through hole.
  • the bottom of the through hole is connected with a cover plate 10.
  • the piston 8 is provided with a one-way valve I6 and a one-way valve II7.
  • the flange 11 and The inner wall of the bottom of the housing 1 is connected.
  • variable-area piston 4 has an arc-shaped structure, and a piston rod is connected below the variable-area piston 4, and the entire variable-area piston is cup-shaped in appearance.
  • the variable area piston 4 is designed into an arc shape.
  • the arc structure is easier to fit the skin bladder, avoiding sharp edges and corners from piercing the skin bladder, while reducing stress concentration and making the bladder deformation more relaxed. Reduce the requirements for bladder materials.
  • the bottom end of the piston rod of the variable area piston 4 is threadedly connected with the piston 8.
  • the floating piston 5 is sleeved on the piston rod of the variable-area piston 4.
  • the floating piston 5 has high sealing performance with the piston rod and the inner wall of the housing 1, which can effectively isolate gas and oil and avoid mutual flow.
  • the surface of the piston 8 is provided with multiple grooves, and an O-shaped sealing ring is placed in the groove to play a sealing role and prevent oil leakage.
  • the cover plate 10 is provided with a threaded column, which is inserted into the bottom of the through hole and connected with the through hole.
  • a sponge gasket 9 is arranged between the cover plate 10 and the piston 8 to play a sealing role.
  • a small hole is provided in the center of the cover plate 10 to facilitate the removal of the variable area piston.
  • An inflation valve 3 is arranged in the through hole to inflate the bladder 2. If the gas in the bladder leaks, the hydraulic joint connected to the flange 11 needs to be removed, and the bladder 2 needs to be inflated or replaced. When it is necessary to inflate, remove the hydraulic connector, unscrew the cover plate 10, remove the sponge gasket 9, and the inflation device cooperates with the inflation valve 3 to complete inflation.
  • the flange 11 is threadedly connected with the inner wall of the casing 1 and fixed by a set screw 12 on the casing. When subsequently applied to a specific working environment, the hydraulic joint is connected through the flange 11.
  • Two one-way valves I6 and two one-way valves II7 are arranged on the piston 8.
  • the two one-way valves I6 and two one-way valves II7 are evenly spaced on the same circumference, and the one-way valve I6 and the one-way valve II7
  • the opening direction is opposite.
  • the structure of the check valve I6 and the check valve II7 is different.
  • the structure of the check valve I6 is shown in Figure 7a. The valve body is blocked by a spring against the steel ball, and its opening pressure is small, so it is accumulating energy.
  • the valve body When the high-pressure oil is easy to push the steel ball, it is easy to enter the floating piston cavity; and the structure of the one-way valve II7 is shown in Figures 7b and 7c, the valve body is blocked by the spring against the spool, and it opens The pressure is relatively high (it can be designed to have a certain opening pressure value through structural design). When discharging, the oil in the floating piston cavity needs to reach a certain pressure value before the check valve II7 can be opened. Output in the floating piston chamber.
  • the one-way valve I6 and the one-way valve II7 are designed to have different opening pressures, so that oil can easily enter the floating piston chamber when accumulating energy, and when the energy is released, the floating piston chamber pressure must be higher than a certain value in the piston chamber to output oil. Liquid, maintain the constant pressure output effect to a certain extent.
  • the new large-capacity bladder-type constant pressure accumulator of the present invention has the advantages of not easy to leak, long life, small inertia, sensitive response, large applicable volume range, etc., and can be widely applied to various hydraulic systems.
  • the working principle of the hydraulic excavating boom energy recovery system is: when the boom is lowered, the high pressure oil from the rodless cavity of the boom cylinder enters the accumulator and temporarily stores it, completing the energy recovery and storage process; when needed, it is stored in the accumulator The oil is output to other circuits in a constant pressure mode to complete the reuse of the recovered energy. In this way, the reciprocating cycle can achieve the purpose of energy saving.
  • the specific process is as follows:
  • the rodless cavity of the boom cylinder 14 supplies oil to the accumulator, and the accumulator stores energy: the high-pressure oil pushes the variable-area piston 4 to move, and then squeezes the bladder 2, and the gas in the bladder 2 is compressed. As the pressure increases, the effective force-receiving area of the variable-area piston 4 gradually decreases during the compression process;
  • the gas in the accumulator bladder 2 expands, transfers pressure through the piston, outputs hydraulic oil to the system, and assists the system to perform work, reducing the load on the engine and oil pump, saving energy and extending the service life of the whole machine.
  • the floating piston chamber can store part of the oil, which increases the oil storage capacity, and reduces the repeated compression and expansion of the accumulator bladder when the system pressure pulses; in the process of releasing energy, it has a stabilizing effect, and further Reduce the pressure pulsation of the output oil, and better realize the effect of constant pressure output.
  • variable-area piston 4 When the gas in the bladder 2 expands, the gas pressure gradually decreases and the effective force-receiving area of the variable-area piston 4 gradually increases.
  • floating piston 5 Play a sealing role, so that the bladder 2 does not contact the hydraulic oil under normal conditions, and prolong the service life of the bladder.
  • the bladder ruptures, the gas and liquid are still separated due to the sealing effect of the floating piston 5, which ensures that a large amount of gas does not enter the hydraulic system and greatly improves the safety factor of the accumulator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)

Abstract

一种大容量皮囊式恒压蓄能器及其应用,包括壳体(1)及置于壳体(1)内的皮囊(2)、变面积活塞(4)、浮动活塞(5)、活塞(8)、法兰(11);其中,浮动活塞(5)套在变面积活塞(4)的活塞杆上,变面积活塞(4)的活塞杆底端与活塞(8)连接,且变面积活塞(4)与活塞(8)的中轴线上开设有通孔,通孔与皮囊(2)之间连接有充气阀(3),通孔底部连接有盖板(10),活塞(8)上设置有单向阀Ⅰ(6)和单向阀Ⅱ(7),法兰(11)与壳体(1)底部内壁连接,具有储油量大、释能时压力恒定的优点。

Description

一种大容量皮囊式恒压蓄能器及其应用 技术领域
本发明涉及一种大容量皮囊式恒压蓄能器及其应用,特别涉及一种大容量皮囊恒压液压蓄能器,适用于各类机械的液压***,属于蓄能器技术领域。
背景技术
随着工程机械液压***的不断发展,液压***中的冲击、压力脉动等问题越来越严重,同时,出于环保和节能要求,对液压***也提出了能量回收的要求。为了适应液压***的发展,各种类型的蓄能器的应用越来越广泛,蓄能器已经成为液压***中十分重要的能量储存元件,在吸收压力脉动、能量回收等方面起着重要的作用。
目前,除重力加载式蓄能器外,现有的蓄能器在向外释放液压能时,大都压力不断下降,从而又会在管路中产生压力和流量脉动;在蓄能器内部压力降低到***压力之后,蓄能器就无法向外继续输出油液,其有效容积不高,即存在“死容积”问题。
液压蓄能器是液压***中非常常见的一种装置,有储存压力能、消除压力脉动、降低噪声、吸收液压冲击、补偿泄露、作辅助(或紧急)动力源等作用。现有的液压蓄能器大多无法实现输出恒压油液,如果蓄能器输出恒压油液,就可以减少液压蓄能器释放能量时对液压管路及各种附件的液压冲击,降低回路中的冲击振动和噪声,延长相关部件寿命,也可以一定程度上简化液压管路。
为了解决蓄能器输出压力不断降低的问题,美国范德比尔特大学的爱立克巴斯教授提出了恒压蓄能器的新概念。上海大学张国贤教授也曾对其进行研究,表明该结构改变了传统蓄能器排油过程中压力不断降低的问题,并且提高了容积能量密度。
但目前的各恒压蓄能器(***)方案仍存在以下问题:(1)隔膜式恒压蓄能器只能略微减小“死容积”问题;(2)隔膜式恒压蓄能器采用隔膜式结构,容积太小,无法适用于流量较大的工程机械;(3)重力加载式蓄能器体积庞大,反应迟钝,目前应用较少;(4)恒压蓄能器***组成元件多,结构较为复杂。
发明内容
针对现有技术的不足,本发明提供一种大容量皮囊式恒压蓄能器,该蓄能器采用大容量皮囊,能够实现液压***工作过程中的蓄能及恒压缓冲,可适应工程机械大容量的 要求。
本发明还提供了上述一种大容量皮囊式恒压蓄能器的工作方法。
本发明的技术方案如下:
一种大容量皮囊式恒压蓄能器,包括壳体及置于壳体内的皮囊、变面积活塞、浮动活塞、活塞、法兰;其中,浮动活塞套在变面积活塞的活塞杆上,变面积活塞的活塞杆底端与活塞连接,且变面积活塞与活塞的中轴线上开设有通孔,通孔与皮囊之间连接有充气阀,通孔底部连接有盖板,活塞上设置有单向阀Ⅰ和单向阀Ⅱ,法兰与壳体底部内壁连接。
优选的,所述变面积活塞为弧形结构。此设计的好处是,变面积活塞设计成弧形形状,在挤压皮囊过程中,弧形结构更容易与皮囊贴合,避免尖锐的棱角刺破皮囊。
优选的,所述变面积活塞的活塞杆底端与活塞螺纹连接。
优选的,所述活塞表面开设有多圈凹槽,凹槽内放置有O型密封圈。此设计的好处是,活塞套装上O型密封圈,能起到密封作用,防止油液泄漏。
优选的,所述充气阀与通孔螺纹连接。
优选的,所述盖板上设置有螺纹柱,螺纹柱***通孔底部与通孔螺纹连接。
优选的,所述盖板与活塞之间设置有海绵垫片。
优选的,所述盖板上设置有一小孔。此设计的好处是,在拆下变面积活塞时可以用钩子钩住小孔,便于将变面积活塞拉出。
优选的,所述法兰与壳体内壁螺纹连接,并通过紧定螺钉固定。
优选的,所述活塞上设置两个单向阀Ⅰ和两个单向阀Ⅱ,两个单向阀Ⅰ和两个单向阀Ⅱ间隔均布设置在同一圆周上,且单向阀Ⅰ和单向阀Ⅱ的开启方向相反。
一种大容量皮囊式恒压蓄能器的工作方法,包括以下步骤:
当蓄能器储存能量时,液压油一侧为高压,高压油液推动变面积活塞运动,变面积活塞挤压皮囊,皮囊内的气体被压缩而压强增大,在压缩过程中变面积活塞有效受力面积逐渐减小;在此动作过程中,单向阀Ⅰ开启,单向阀Ⅱ关闭,油液通过单向阀Ⅰ进入浮动活塞腔,在增大蓄能器容量的同时降低皮囊被压缩速度,减少发热;
当蓄能器释放能量时,变面积活塞传递压力,推动液压油输出,在皮囊中的气体膨胀时,气体压力逐渐减小而变面积活塞有效受力面积逐渐增大;在此动作过程中,单向阀Ⅰ关闭,当浮动活塞腔油液压力大于活塞腔油液压力设定值时,单向阀Ⅱ才开启,油 液通过单向阀Ⅱ向活塞腔输出,降低蓄能器释放能量时的压力脉动,维持恒压效果。
本发明的有益效果在于:
1)本发明采用皮囊式结构,容量比隔膜式恒压蓄能器大,可根据液压***大小选择皮囊规格以及充气压力等参数,能适应大中小型液压***;采用皮囊式结构,与重力加载式蓄能器相比反应更加灵敏;采用皮囊式结构,且所用皮囊下部(即与充气阀相连接处)为平面状结构,以保证皮囊形变符合设计要求。
2)本发明中的杯状变面积活塞使用硬质铝合金材料制造,满足强度要求的前提下尽量减轻重量,从而保证蓄能器有较高的灵敏度;采用杯状变面积活塞,释放能量时随着皮囊膨胀、气体压强减小而活塞有效面积增大,能保证输出液压油压力基本恒定,降低蓄能器输出油液时压力脉动,使得***压力波动小;杯状变面积活塞上部与皮囊接触部分采用弧形结构,各棱角处均倒圆角,减小应力集中,使皮囊变形较为缓和,降低对皮囊材料的要求;针对具体***合理设计可以使得“死容积”很小,甚至减小到零。
3)本发明中活塞上布置有两组单向阀式油孔,每组两个,一方面有效利用了蓄能器内空间,增大蓄能器储油量;另一方面起缓冲作用,平衡变面积活塞腔和浮动活塞腔的油液压力,使得蓄能器在储存、释放能量过程中皮囊内压力变化不至于太快,一定程度上延长皮囊寿命,使释放能量过程中油压更加稳定;皮囊与液压油不直接接触,一定程度上延长了皮囊的寿命;即使皮囊破裂也有浮动活塞起密封作用,隔开气腔与液腔,保证了在蓄能器使用过程中不会有气体进入油液之中,从而避免造成冲击震动和气穴等问题。
4)本发明中的皮囊充气阀与变面积活塞以螺纹相连;壳体采用整体式结构便于密封,端部法兰易于拆装、检修、充气。
附图说明
图1为本发明蓄能器的结构示意图;
图2为本发明蓄能器充、放能过程状态示意图;
图3为液压挖掘机动臂能量回收***原理图;
图4a为浮动活塞的主视图;
图4b为浮动活塞A-A方向的剖面图;
图4c为浮动活塞的俯视图;
图5a为变面积活塞的主视图;
图5b为变面积活塞B-B方向的剖面图;
图5c为变面积活塞的俯视图;
图6a为盖板的的主视图;
图6b为盖板的左视图;
图7a为单向阀Ⅰ的结构示意图;
图7b为单向阀Ⅱ的结构示意图;
图7c为单向阀Ⅱ中阀芯的三维示意图;
其中:1-壳体,2-皮囊,3-充气阀,4-变面积活塞,5-浮动活塞,6-单向阀Ⅰ,7-单向阀Ⅱ,8-活塞,9-垫片,10-盖板,11-法兰,12-紧定螺钉,14-动臂油缸,15-换向阀,16-蓄能器溢流阀,17-截止阀,18-三位四通电磁换向阀,19-溢流阀,20-液压泵,21-单向阀,22-油箱,A-气腔,B-变面积活塞腔,C-浮动活塞腔,D-活塞腔。
具体实施方式
下面通过实施例并结合附图对本发明做进一步说明,但不限于此。
实施例1:
如图1所示,本实施例提供一种大容量皮囊式恒压蓄能器,包括壳体1及置于壳体1内的皮囊2、变面积活塞4、浮动活塞5、活塞8、法兰11;其中,浮动活塞5套在变面积活塞4的活塞杆上,变面积活塞4的活塞杆底端与活塞8连接,且变面积活塞4与活塞8的中轴线上开设有通孔,通孔与皮囊2之间连接有充气阀3,充气阀3与通孔螺纹连接,通孔底部连接有盖板10,活塞8上设置有单向阀Ⅰ6和单向阀Ⅱ7,法兰11与壳体1底部内壁连接。
具体而言,变面积活塞4为弧形结构,变面积活塞4下面连着活塞杆,整个变面积活塞外形如同杯状。将变面积活塞4设计成弧形形状,在挤压皮囊2过程中,弧形结构更容易与皮囊贴合,避免尖锐的棱角刺破皮囊,同时可减小应力集中,使皮囊形变较为缓和,降低对皮囊材料的要求。
变面积活塞4的活塞杆底端与活塞8螺纹连接。浮动活塞5套在变面积活塞4的活塞杆上,浮动活塞5与活塞杆、壳体1内壁具有较高的密封性,可有效隔绝气体和油液,避免相互串流。活塞8表面开设有多圈凹槽,凹槽内放置有O型密封圈,起到密封作用,防止油液泄漏。
通孔内加工有两段螺纹,上端螺纹与皮囊2连接,下端螺纹与盖板10连接,盖板10 上设置有螺纹柱,螺纹柱***通孔底部与通孔螺纹连接。盖板10与活塞8之间设置有海绵垫片9,起到密封作用。盖板10中心设有一小孔,用来拆卸变面积活塞时方便。
通孔内布置有充气阀3,用来给皮囊2充气。如皮囊内气体泄漏,需要将与法兰11连接的液压接头拆下,充气或更换皮囊2。当需要充气时,拆下液压接头,旋下盖板10,取下海绵垫片9,充气装置与充气阀3配合完成充气。
法兰11与壳体1内壁螺纹连接,并通过壳体上的紧定螺钉12固定。后续在应用到具体工作环境中时,通过法兰11连接液压接头。
活塞8上设置两个单向阀Ⅰ6和两个单向阀Ⅱ7,两个单向阀Ⅰ6和两个单向阀Ⅱ7间隔均布设置在同一圆周上,且单向阀Ⅰ6和单向阀Ⅱ7的开启方向相反。单向阀Ⅰ6和单向阀Ⅱ7的结构有所不同,单向阀Ⅰ6结构如图7a所示,阀体内通过弹簧顶住钢球进行封堵阀口,其开启压力较小,在进行蓄能时,高压油液很容易顶开钢球,从而很容易进入浮动活塞腔;而单向阀Ⅱ7结构如图7b、7c所示,阀体内通过弹簧顶住阀芯进行封堵阀口,其开启压力较大(可通过结构设计,使其具有一定的开启压力值),在进行放能时,浮动活塞腔内的油液需要达到一定的压力值才能顶开单向阀Ⅱ7,油液才能从浮动活塞腔内输出。将单向阀Ⅰ6和单向阀Ⅱ7设计成不同的开启压力,使得浮动活塞腔中在蓄能时容易进油,而在释放能量时需要浮动活塞腔压力高于活塞腔一定值时才能输出油液,一定程度上维持恒压输出效果。
本发明新型大容量皮囊式恒压蓄能器具有不易泄漏、寿命长,惯性小、反应灵敏,适用容积范围大等优点,可广泛适用于各类液压***。
实施例2:
如图3所示,一种如实施例1所述的大容量皮囊式恒压蓄能器的工作方法,以液压挖掘机动臂能量回收***为例展示所述新型大容量皮囊式恒压蓄能器的应用。
该液压挖掘机动臂能量回收***工作原理为:动臂下降时,动臂油缸无杆腔高压油液进入蓄能器并暂存,完成能量回收、储存过程;需要时,蓄能器中储存的油液以恒压方式向其他回路输出,完成所回收能量的再利用,如此往复循环,以达到节能目的,具体过程如下:
当动臂下降时,动臂油缸14无杆腔向蓄能器供油,蓄能器储存能量:高压油液推动变面积活塞4运动,进而挤压皮囊2,皮囊2内的气体被压缩而压强增大,在压缩过程中变面积活塞4有效受力面积逐渐减小;
当动臂上升时,蓄能器皮囊2中的气体膨胀,通过活塞传递压力,向***输出液压油,辅助***做功,减少了发动机和油泵的负荷,在节能同时使得整机使用寿命得以延长。
在储存能量过程中,浮动活塞腔可储存部分油液,增大了储油量,同时减少***压力脉动时蓄能器皮囊的反复压缩、膨胀;在释放能量过程中,起稳压作用,进一步减小输出油液的压力脉动,更好的实现恒压输出的效果。
在皮囊2中的气体膨胀时,气体压力逐渐减小而变面积活塞4有效受力面积逐渐增大,通过科学设计变面积活塞使二者乘积不变,达到恒压力输出的目的;浮动活塞5起密封作用,使正常情况下皮囊2与液压油不接触,延长皮囊使用寿命。极端情况下皮囊破裂时,由于浮动活塞5的密封作用,气体和液体仍处于分离状态,保证液压***中不会进入大量气体,使得蓄能器安全系数大大提高。
如图5a所示,在活塞面积、皮囊充气压力不变情况下,将杯状变面积活塞加大,可以使得排油更加充分,增大有效容积,很大程度上减小“死容积”。变面积活塞增大同时,皮囊需要增大,当变面积活塞最大横截面积较大时,为容纳变面积活塞以及皮囊形变,壳体上部直径需大于下部(即梨形外壳),此时为防止活塞过度上移时密封失效,可以增加限位装置。

Claims (10)

  1. 一种大容量皮囊式恒压蓄能器,其特征在于,包括壳体及置于壳体内的皮囊、变面积活塞、浮动活塞、活塞、法兰;其中,浮动活塞套在变面积活塞的活塞杆上,变面积活塞的活塞杆底端与活塞连接,且变面积活塞与活塞的中轴线上开设有通孔,通孔与皮囊之间连接有充气阀,通孔底部连接有盖板,活塞上设置有单向阀Ⅰ和单向阀Ⅱ,法兰与壳体底部内壁连接。
  2. 如权利要求1所述的大容量皮囊式恒压蓄能器,其特征在于,所述变面积活塞为弧形结构。
  3. 如权利要求1所述的大容量皮囊式恒压蓄能器,其特征在于,所述变面积活塞的活塞杆底端与活塞螺纹连接。
  4. 如权利要求1所述的大容量皮囊式恒压蓄能器,其特征在于,所述活塞表面开设有多圈凹槽,凹槽内放置有O型密封圈。
  5. 如权利要求1所述的大容量皮囊式恒压蓄能器,其特征在于,所述充气阀与通孔螺纹连接。
  6. 如权利要求1所述的大容量皮囊式恒压蓄能器,其特征在于,所述盖板上设置有螺纹柱,螺纹柱***通孔底部与通孔螺纹连接。
  7. 如权利要求1所述的大容量皮囊式恒压蓄能器,其特征在于,所述盖板与活塞之间设置有海绵垫片;所述盖板上设置有一小孔。
  8. 如权利要求1所述的大容量皮囊式恒压蓄能器,其特征在于,所述法兰与壳体内壁螺纹连接,并通过紧定螺钉固定。
  9. 如权利要求1所述的大容量皮囊式恒压蓄能器,其特征在于,所述活塞上设置两个单向阀Ⅰ和两个单向阀Ⅱ,两个单向阀Ⅰ和两个单向阀Ⅱ间隔均布设置在同一圆周上,且单向阀Ⅰ和单向阀Ⅱ的开启方向相反。
  10. 一种如权利要求1-9任一项所述的大容量皮囊式恒压蓄能器的工作方法,包括以下步骤:
    当蓄能器储存能量时,液压油一侧为高压,高压油液推动变面积活塞运动,变面积活塞挤压皮囊,皮囊内的气体被压缩而压强增大,在压缩过程中变面积活塞有效受力面积逐渐减小;在此动作过程中,单向阀Ⅰ开启,单向阀Ⅱ关闭,油液通过单向阀Ⅰ进入 浮动活塞腔,在增大蓄能器容量的同时降低皮囊被压缩速度,减少发热;
    当蓄能器释放能量时,变面积活塞传递压力,推动液压油输出,在皮囊中的气体膨胀时,气体压力逐渐减小而变面积活塞有效受力面积逐渐增大;在此动作过程中,单向阀Ⅰ关闭,当浮动活塞腔油液压力大于活塞腔油液压力设定值时,单向阀Ⅱ才开启,油液通过单向阀Ⅱ向活塞腔输出,降低蓄能器释放能量时的压力脉动,维持恒压效果。
PCT/CN2019/127732 2019-08-29 2019-12-24 一种大容量皮囊式恒压蓄能器及其应用 WO2021031484A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/273,399 US20220178388A1 (en) 2019-08-29 2019-12-23 High-capacity bladder type constant pressure accumulator and application thereof
CA3113459A CA3113459C (en) 2019-08-29 2019-12-24 High-capacity bladder type constant pressure accumulator and application thereof
AU2019462665A AU2019462665B2 (en) 2019-08-29 2019-12-24 High-capacity bladder type constant pressure accumulator and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910805386.6 2019-08-29
CN201910805386.6A CN110374942B (zh) 2019-08-29 2019-08-29 一种大容量皮囊式恒压蓄能器及其应用

Publications (1)

Publication Number Publication Date
WO2021031484A1 true WO2021031484A1 (zh) 2021-02-25

Family

ID=68260975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127732 WO2021031484A1 (zh) 2019-08-29 2019-12-24 一种大容量皮囊式恒压蓄能器及其应用

Country Status (5)

Country Link
US (1) US20220178388A1 (zh)
CN (1) CN110374942B (zh)
AU (1) AU2019462665B2 (zh)
CA (1) CA3113459C (zh)
WO (1) WO2021031484A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110374942B (zh) * 2019-08-29 2023-09-12 山东科技大学 一种大容量皮囊式恒压蓄能器及其应用
CN111632753B (zh) * 2019-12-04 2022-03-11 石家庄金垦科技有限公司 淘洗磁选机
CN111765224A (zh) * 2020-06-03 2020-10-13 成都天高机电设备有限公司 平衡缸机构隔膜压缩机、泵、液压柱塞泵
CN111734693B (zh) * 2020-06-29 2022-04-08 大连海事大学 一种气动应变能蓄能器及其控制方法
CN112497187B (zh) * 2020-10-21 2021-12-28 西安交通大学 一种行走过程背部负重能量可回收的液压助力外骨骼机构
CN113733157B (zh) * 2021-09-15 2023-02-17 哈尔滨工业大学 一种用于液压足式机器人的液压作动器
CN114876915B (zh) * 2022-04-08 2023-03-17 北京航空航天大学 一种自调压的气液耦合式流体脉动消振装置
CN116066428B (zh) * 2023-04-06 2023-07-21 浙江大学 一种输出功率可调的液压机器人储能装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1221676A (en) * 1967-02-24 1971-02-03 Mercier Jacques H Pressure vessel
DE10224675A1 (de) * 2002-06-03 2003-12-18 Freudenberg Carl Kg Hydropneumatischer Druckspeicher
DE102011112277A1 (de) * 2011-09-05 2013-03-07 Daimler Ag Speichern von Hydraulikenergie mittels eines Kolbenspeichers mit einer Wellbalgvorrichtung
CN202827027U (zh) * 2011-12-02 2013-03-27 朱洪纲 液压同步制冷减振器
CN203297171U (zh) * 2013-05-09 2013-11-20 吉林大学 一种恒压力变截面气腔活塞混合式柔性液压蓄能器
CN203516232U (zh) * 2013-10-06 2014-04-02 伍光怀 抽油机蓄能设备
CN106090103A (zh) * 2016-06-16 2016-11-09 江苏大学 一种用于减震器的微型皮囊蓄能器
CN109058351A (zh) * 2018-10-15 2018-12-21 江西巨晟实业有限公司 一种双缓冲气囊减震器
CN110374942A (zh) * 2019-08-29 2019-10-25 山东科技大学 一种大容量皮囊式恒压蓄能器及其应用
CN210371397U (zh) * 2019-08-29 2020-04-21 山东科技大学 一种大容量皮囊式恒压蓄能器

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2101265A (en) * 1934-01-09 1937-12-07 Mercier Jean Shock absorber
US2583215A (en) * 1948-02-07 1952-01-22 Mid Continent Supply Company I Fluid pressure surge device
FR968231A (fr) * 1948-06-18 1950-11-22 Perfectionnements aux amortisseurs de suspension hydrauliques ou pneumatiques et auxsuspensions oléo-pneumatiques ou pneumatiques amorties
US2720378A (en) * 1951-03-29 1955-10-11 Johnson Service Co Fluid pressure operated dampers
GB821697A (en) * 1956-05-31 1959-10-14 Loewy Eng Co Ltd Hydraulic accumulator
US3064687A (en) * 1958-08-07 1962-11-20 Acf Ind Inc Combined accumulator-relief valve
US3136340A (en) * 1960-06-17 1964-06-09 Mc Graw Edison Co Accumulator for hydraulic systems
US3115897A (en) * 1961-12-13 1963-12-31 Mitchell Camera Corp Pressure controller
US3454050A (en) * 1967-01-31 1969-07-08 Pressure Products Ind Inc Accumulators
DE1751917A1 (de) * 1968-08-17 1971-08-19 Langen & Co Hydro-pneumatischer Druckspeicher
US3647239A (en) * 1969-07-17 1972-03-07 Tokico Ltd Vehicle suspension mechanism
GB1372090A (en) * 1971-12-31 1974-10-30 Dewandre Co Ltd C Hydraulic accumulators
US4178965A (en) * 1978-12-04 1979-12-18 Greer Hydraulics, Inc. Pulsation dampener device
SE420436B (sv) * 1980-02-04 1981-10-05 Gustav Weqscheider Hydropneumatisk ackumulator med i en cylinder fritt forskjutbar kolv
DE3207754A1 (de) * 1982-03-04 1983-09-15 Alfred Teves Gmbh, 6000 Frankfurt Hydropneumatischer druckspeicher
FR2601097B1 (fr) * 1986-07-07 1990-07-06 Messier Hispano Bugatti Sa Amortisseur a adaptation de course residuelle
DE4008831C2 (de) * 1990-03-20 1993-11-25 Hemscheidt Maschf Hermann Hydropneumatisches Federungssystem
FR2751713B1 (fr) * 1996-07-24 1998-09-18 Donerre Amortisseur Soc Systeme amortisseur a huile
AU2003232466A1 (en) * 2002-05-29 2003-12-19 Progressive Suspension, Inc. Hydraulic dampers with pressure regulated control valve and secondary piston
US8403115B2 (en) * 2008-01-11 2013-03-26 Penske Racing Shocks Dual rate gas spring shock absorber
US8424657B2 (en) * 2010-12-27 2013-04-23 Jung Yu Hsu Cylinder assembly
JP5827871B2 (ja) * 2011-10-31 2015-12-02 株式会社ショーワ 油圧緩衝器
DE102013011115A1 (de) * 2013-07-03 2015-01-08 Hydac Technology Gmbh Vorrichtung zum Einstellen eines Mediendruckes gegenüber einem Umgebungsdruck
DE102016003153A1 (de) * 2016-03-15 2017-09-21 Hydac Technology Gmbh Speichervorrichtung und hydropneumatische Federung

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1221676A (en) * 1967-02-24 1971-02-03 Mercier Jacques H Pressure vessel
DE10224675A1 (de) * 2002-06-03 2003-12-18 Freudenberg Carl Kg Hydropneumatischer Druckspeicher
DE102011112277A1 (de) * 2011-09-05 2013-03-07 Daimler Ag Speichern von Hydraulikenergie mittels eines Kolbenspeichers mit einer Wellbalgvorrichtung
CN202827027U (zh) * 2011-12-02 2013-03-27 朱洪纲 液压同步制冷减振器
CN203297171U (zh) * 2013-05-09 2013-11-20 吉林大学 一种恒压力变截面气腔活塞混合式柔性液压蓄能器
CN203516232U (zh) * 2013-10-06 2014-04-02 伍光怀 抽油机蓄能设备
CN106090103A (zh) * 2016-06-16 2016-11-09 江苏大学 一种用于减震器的微型皮囊蓄能器
CN109058351A (zh) * 2018-10-15 2018-12-21 江西巨晟实业有限公司 一种双缓冲气囊减震器
CN110374942A (zh) * 2019-08-29 2019-10-25 山东科技大学 一种大容量皮囊式恒压蓄能器及其应用
CN210371397U (zh) * 2019-08-29 2020-04-21 山东科技大学 一种大容量皮囊式恒压蓄能器

Also Published As

Publication number Publication date
AU2019462665A1 (en) 2021-04-08
CN110374942A (zh) 2019-10-25
CA3113459A1 (en) 2021-02-25
CA3113459C (en) 2021-11-09
US20220178388A1 (en) 2022-06-09
CN110374942B (zh) 2023-09-12
AU2019462665B2 (en) 2022-11-17

Similar Documents

Publication Publication Date Title
WO2021031484A1 (zh) 一种大容量皮囊式恒压蓄能器及其应用
US2604118A (en) Hydraulic accumulator
CN209146008U (zh) 一种双气囊进阶式蓄能器
CN111577676B (zh) 双皮囊恒压蓄能***
CN210371397U (zh) 一种大容量皮囊式恒压蓄能器
CN111379749B (zh) 一种适用于皮囊式蓄能器稳定运行的方法
CN208831352U (zh) 低温活塞式蓄能器
CN204327607U (zh) 一种活塞式蓄能器
CN103362878A (zh) 容积可调隔膜式脉动吸收蓄能器
CN110332156B (zh) 隔膜式蓄能器
CN208565091U (zh) 一种活塞隔膜式蓄能器
CN207935184U (zh) 一种气液复合自增压油箱
CN208845441U (zh) 高压活塞式蓄能器缸体
CN206510028U (zh) 用于工业机器人的平衡***及工业机器人
CN109306975A (zh) 一种新型缠绕式蓄能器
CN105570204A (zh) 复合结构焊接蓄能器
CN209444634U (zh) 一种弹簧-波纹管式蓄能器
CN204921499U (zh) 金属橡胶复合弹簧隔离式蓄能器
CN108895066B (zh) 基于负泊松比结构的流体传动***蓄能装置及其使用方法
CN208364499U (zh) 网筛式油阀体低压囊式蓄能器
CN102720731A (zh) 一种工作装置的节能***
CN202628687U (zh) 一种工作装置的节能***
CN111350847A (zh) 用于降低压力钢管外壁水压力的装置、压力管道及方法
CN106704272B (zh) 金属橡胶复合弹簧隔离式蓄能器
CN215153767U (zh) 油气悬挂***及车辆

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3113459

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941926

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019462665

Country of ref document: AU

Date of ref document: 20191224

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941926

Country of ref document: EP

Kind code of ref document: A1