WO2021027237A1 - 一种致密油气藏开采用超临界二氧化碳稠化剂的制备方法 - Google Patents

一种致密油气藏开采用超临界二氧化碳稠化剂的制备方法 Download PDF

Info

Publication number
WO2021027237A1
WO2021027237A1 PCT/CN2019/130305 CN2019130305W WO2021027237A1 WO 2021027237 A1 WO2021027237 A1 WO 2021027237A1 CN 2019130305 W CN2019130305 W CN 2019130305W WO 2021027237 A1 WO2021027237 A1 WO 2021027237A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
hours
add
supercritical carbon
propyl ether
Prior art date
Application number
PCT/CN2019/130305
Other languages
English (en)
French (fr)
Inventor
周明
张劲风
郭肖
凃宏俊
补军成
彭鹏傲
韩宏昌
陈航
李林凯
廖茂
辜银花
易荣军
史永强
夏亮亮
Original Assignee
西南石油大学
成都赛璐石油科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西南石油大学, 成都赛璐石油科技有限公司 filed Critical 西南石油大学
Priority to US16/928,567 priority Critical patent/US11261373B2/en
Publication of WO2021027237A1 publication Critical patent/WO2021027237A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/06Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups by reactions not involving the formation of carbamate groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C273/00Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C273/18Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of substituted ureas
    • C07C273/1809Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of substituted ureas with formation of the N-C(O)-N moiety
    • C07C273/1836Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of substituted ureas with formation of the N-C(O)-N moiety from derivatives of carbamic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/26Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of esters of sulfonic acids
    • C07C303/28Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of esters of sulfonic acids by reaction of hydroxy compounds with sulfonic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/594Compositions used in combination with injected gas, e.g. CO2 orcarbonated gas
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/70Compositions for forming crevices or fractures characterised by their form or by the form of their components, e.g. foams
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the invention relates to a water-free fracturing fluid that does not use water for the development of tight oil and gas reservoirs and a technology for enhancing oil recovery, in particular to a preparation method of a supercritical carbon dioxide thickener containing fluorine, and belongs to the field of oilfield chemicals .
  • Tight oil and gas reservoirs have the characteristics of poor physical properties, low porosity and low permeability, and usually exhibit strong water sensitivity. Therefore, fracturing and later enhanced oil recovery is an effective way to develop tight oil and gas reservoir resources.
  • the use of conventional mining methods is easy to cause the formation of water lock in the reservoir, and the permeability of the reservoir is reduced, which causes damage to the reservoir and affects the effect of fracturing.
  • people have gradually shifted their focus to waterless fracturing, which basically does not require water during the fracturing process. Therefore, the development of waterless fracturing technology that does not use water has important economic and social effects.
  • the invention patents ZL201710416147.2 (a method for preparing supercritical carbon dioxide thickener) and ZL201710480823.2 (a method for preparing supercritical carbon dioxide thickener) can be used as fracturing fluid base fluid in tight oil and gas reservoirs and improve recovery Yield chemical oil-displacing agents are used, but the prepared carbon dioxide thickeners all have ester groups, which can only be used under lower temperature and less water conditions. When working in oil and gas reservoirs with higher temperature and active side and bottom water, the thermal stability of the two thickeners becomes poor and hydrolysis is prone to occur, resulting in a gradual decrease or even disappearance of thickening ability. Based on this, the present invention prepares a four-chain thickening agent containing ether bonds, which can not only ensure the increase of the viscosity of supercritical carbon dioxide, but also improve the thermal stability and hydrolysis stability of the thickener.
  • the purpose of the present invention is to provide a method for preparing tight oil and gas reservoirs using supercritical carbon dioxide thickening agent in view of the situation that conventional mining methods are likely to cause damage to oil and gas reservoirs.
  • the present invention provides a preparation method of a supercritical carbon dioxide thickening agent suitable for tight oil and gas reservoirs.
  • the preparation method includes the following steps:
  • the advantages and beneficial effects of the invention are that the introduction of fluorine-containing segments into the thickening agent can effectively reduce the pressure required for the thickening agent to dissolve in carbon dioxide and improve the dissolution of the thickening agent in carbon dioxide.
  • the hydrogen bonding between the molecules of the thickener and the entanglement between the molecular chains can effectively increase the viscosity of carbon dioxide.
  • the thickener connects the carbon dioxide-philic group and the hydrogen bond cross-linking associative group by an ether bond instead of an ester bond, which effectively improves the thermal stability and hydrolytic stability of the thickener, and can be applied to dense oil and gas with active edge water Vietnamese mining.
  • the testing method of the viscosity of the thickener first add the thickener according to the dosage to the high temperature and high pressure closed system of the rheometer HAAKE MARS, install the supporting devices of the high temperature and high pressure closed system, and use the vacuum pump to remove the air in the closed system. Then, supercritical carbon dioxide is introduced through the sampling valve of the high temperature and high pressure closed system. At the same time, the inner rotor in the system is adjusted to rotate so that the thickening agent carbon dioxide is fully mixed evenly. When the carbon dioxide is introduced to the metering, the system pressure and temperature are adjusted to make the system The carbon dioxide inside reaches the required state, stirs and mixes evenly, that is, the preparation of the mixed system is completed. Finally, the rheometer is turned on and the experimental parameters are set to test the viscosity of the mixed system.
  • the organic layer was dried with anhydrous Na 2 SO 4 , and 1,6 isodicyanate, 1,6-hexamethylene diisocyanate and 1,3-diisocyanate were added.
  • the molar ratio of fluorooctyl ethanol propyl ether-2-carbamic acid tert-butyl propane is 1:2.05, react at 50°C for 2 hours, wash the crude product 4 times with a mixed solvent of ethyl acetate and benzene, and filter, After vacuum drying, the final product [1,6-bis(1,3-diperfluorooctylethanol-2-ureido)]hexane is finally obtained.
  • the measured viscosity values of the mixed system are 4.12mPa ⁇ s, 4.73mPa ⁇ s and 5.24mPa ⁇ s; they are 106.0 times, 118.5 times and 161.0 times of the viscosity of unthickened supercritical carbon dioxide respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种致密油气藏开采用超临界二氧化碳稠化剂的制备方法。它能解决常规开采方式对油气储层造成伤害的问题。其技术方案:将瓶放入冰水浴中,向瓶中加入全氟辛基乙醇,再加入甲苯磺酰氯和吡啶,在0-20℃反应3小时,反应结束后加入滤纸,超声波分散1小时,然后去除滤纸,加入稀盐酸洗涤3-5次得中间产物(1);然后在另一瓶中加入(N-叔丁氧基羰基)丝氨醇和中间产物(1),再加入碳酸钾和N-N-二甲基甲酰胺,升温到40℃反应4小时制得中间产物(2);最后加入三氟乙酸和二氯甲烷和中间产物(2),在45℃反应2小时,萃取真空干燥后,加入1,6-已二异氰酸酯反应2小时得最终产物。该稠化剂能够增加二氧化碳粘度,可用于压裂改造和化学驱。

Description

一种致密油气藏开采用超临界二氧化碳稠化剂的制备方法 技术领域
本发明涉及一种用于致密油气藏储层开发不使用水的无水压裂液和提高采收率技术,特别涉及含有氟元素的超临界二氧化碳稠化剂的制备方法,属于油田化学品领域。
背景技术
致密油气藏储层具有物性差,低孔低渗等特点,通常还表现出很强的水敏性。因此,压裂改造和后期提高采收率是一种开发致密油气藏资源的有效方式。使用常规的开采方式容易使储层形成水锁,储层的渗透率降低,从而对储层造成伤害,影响到压裂增产的效果。为了解决常规开采方式对油气储层造成的伤害,人们逐渐将重点转向了无水压裂,无水压裂在压裂过程中基本不需要水。因此,开发出不使用水的无水压裂技术具有重要的经济和社会效应。发明专利ZL201710416147.2(一种超临界二氧化碳稠化剂的制备方法)和ZL201710480823.2(一种超临界二氧化碳稠化剂的制备方法)能在致密油气藏中作为压裂液基液和提高采收率化学驱油剂使用,但所制备的二氧化碳稠化剂都存在酯基,只能在较低温度及少水条件下使用。在较高温度和边底水活跃的油气藏作用时,两种稠化剂热稳定性变差,易发生水解,导致增稠能力逐渐下降甚至消失。基于此,本发明制备了一种含醚键的四链稠化剂,既能保证提高超临界二氧化碳粘度,同时能提高稠化剂的热稳定性和水解稳定性。
发明内容
本发明的目的是:针对常规开采方式对油气储层易造成伤害的情 况,特提供一种致密油气藏开采用超临界二氧化碳稠化剂的制备方法。
本发明提供一种适合致密油气藏超临界二氧化碳稠化剂的制备方法,所述制备方法包括以下步骤:
(1)对甲苯全氟辛基磺酸酯的制备:向三颈瓶中加入全氟辛基乙醇与对甲苯磺酰氯,全氟辛基乙醇与对甲苯磺酰氯的摩尔比1:1.1-1.2,最后加入吡啶并充分搅拌。保持温度在0-20℃,充分搅拌,反应3小时,反应结束后加入滤纸,超声波分散1小时,除掉未反应的对甲苯磺酰氯,然后去除滤纸,再用15%的稀盐酸多次洗涤除掉吡啶,得到白色固体,最后用蒸馏水多次洗涤,40℃真空干燥3小时,制得中间产物(1)对甲苯全氟辛基磺酸酯,如Ⅰ式所示;
Figure PCTCN2019130305-appb-000001
(2)(1,3-全氟辛基乙醇丙醚-2-氨基甲酸叔丁酯)丙烷的制备
(1,3-全氟辛基乙醇丙醚-2-氨基甲酸叔丁酯)丙烷的制备:向三颈瓶中加入(N-叔丁氧基羰基)丝氨醇和对甲苯全氟辛基磺酸酯,(N-叔丁氧基羰基)丝氨醇和对甲苯全氟辛基磺酸酯之比为2.1-2.2:1,再加入碳酸钾和N,N-二甲基甲酰胺,充分搅拌,升温至40℃反应4h,反应结束后,用蒸馏水多次洗涤,真空干燥得中间产物(2)即(1,3-全氟辛基乙醇丙醚-2-氨基甲酸叔丁酯)丙烷,其结构如Ⅱ式所示。
Figure PCTCN2019130305-appb-000002
(3)最终产物[1,6-二(1,3-二全氟辛基乙醇丙醚-2-脲基)]己烷的制备:向三颈瓶加入二氯甲烷和三氟乙酸的混合溶液,二氯甲烷与三氟乙酸体积比为2:1;将(1,3-全氟辛基乙醇丙醚-2-氨基甲酸叔丁酯)丙烷加入到上述混合溶液中,恒温45℃反应2小时,向其中加入二氯甲烷萃取3次,得到有机层,无水Na 2SO 4干燥有机层,加入1-6异二氰酸酯,1,6-己二异氰酸酯与1,3-全氟辛基乙醇丙醚-2-氨基甲酸叔丁酯)丙烷的摩尔比为1:2.05-2.10,在50℃条件下反应2小时,用乙酸乙酯和苯的混合溶剂多次洗涤粗产物,过滤,真空干燥,最后得到最终产物[1,6-二(1,3-二全氟辛基乙醇丙醚-2-脲基)]己烷,其结构如III式所示。
Figure PCTCN2019130305-appb-000003
本发明的优点和有益效果在于:向稠化剂中引入含氟链段,能够有效降低稠化剂在二氧化碳中溶解所需的压力,改善稠化剂在二氧化碳中的溶解情况。同时,稠化剂分子间存在的氢键作用,以及分子链之间的缠结作用,能够有效的起到增加二氧化碳粘度的作用。稠化剂由醚键而不是酯键连接亲二氧化碳基团和氢键交联缔合基团,有效提高了稠化剂的热稳定性和水解稳定性,可应用于边底水活跃的致密油气藏开采。
稠化剂粘度的测试方法:先将稠化剂按照加量加入到流变仪HAAKE MARS的高温高压的密闭***,安装好高温高压密闭***的 配套装置,利用真空泵将密闭***中空气排除。然后,通过高温高压密闭***的进样阀导入超临界二氧化碳,同时,调整***中内转子转动,使稠化剂二氧化碳充分混合均匀,待二氧化碳通入到计量时,调节***压力、温度,使***内的二氧化碳达到所需的状态,搅拌混合均匀,即完成混合体系的配制,最后,开启流变仪,设定实验参数后,即可测试混合体系的粘度。
具体实施方式
下面通过实例来说明本发明,但本发明的内容不仅仅局限于下面的实施例。
实施例1
(1)对甲苯全氟辛基磺酸酯的制备:向三颈瓶中加入全氟辛基乙醇与对甲苯磺酰氯,全氟辛基乙醇与对甲苯磺酰氯的摩尔比1:1.1,最后加入吡啶并充分搅拌。保持温度在0℃,充分搅拌,反应3小时,反应结束后加入滤纸,超声波分散1小时,除掉未反应的对甲苯磺酰氯,然后去除滤纸,再用15%的稀盐酸洗涤3次除掉吡啶,得到白色固体,最后用蒸馏水洗涤5次,40℃真空干燥3小时,制得中间产物(1)对甲苯全氟辛基磺酸酯。
(2)(1,3-全氟辛基乙醇丙醚-2-氨基甲酸叔丁酯)丙烷的制备:向三颈瓶中加入(N-叔丁氧基羰基)丝氨醇和对甲苯全氟辛基磺酸酯,(N-叔丁氧基羰基)丝氨醇和对甲苯全氟辛基磺酸酯之比为2.1:1,再加入碳酸钾和N,N-二甲基甲酰胺,充分搅拌,升温至40℃反应4h,反应结束后,用蒸馏水洗涤5次,真空干燥得中间产物(2)-(1,3-全氟辛基乙醇丙醚-2-氨基甲酸叔丁酯)丙烷。
(3)最终产物[1,6-二(1,3-二全氟辛基乙醇丙醚-2-脲基)]己烷的制备:向三颈瓶加入二氯甲烷和三氟乙酸的混合溶液,二氯甲烷与三氟乙酸体积比为2:1;将(1,3-全氟辛基乙醇丙醚-2-氨基甲酸叔丁酯)丙烷加入到上述混合溶液中,恒温45℃反应2小时,向其中加入二氯甲烷萃取3次,得到有机层,无水Na 2SO 4干燥有机层,加入1,6异二氰酸酯,1,6-己二异氰酸酯与1,3-全氟辛基乙醇丙醚-2-氨基甲酸叔丁酯)丙烷的摩尔比为1:2.05,在50℃条件下反应2小时,用乙酸乙酯和苯的混合溶剂洗涤粗产物4次,过滤,真空干燥,最后得到最终产物[1,6-二(1,3-二全氟辛基乙醇丙醚-2-脲基)]己烷。
分别取上述1wt%、2wt%、3wt%超临界二氧化碳稠化剂加入到安装好配套装置的高温高压密闭***中;通过进样阀向密闭***中分别导入99wt%、98wt%、97wt%超临界二氧化碳。转动转子,调节***压力和温度值,充分搅拌使稠化剂完全溶解,即完成混合体系的配制;再开启流变仪,设定压力值为29MPa,温度为60℃,实验中保持剪切速率为100s -1,测定混合体系的粘度值分别为4.12mPa·s、4.73mPa·s和5.24mPa·s;分别是未增稠超临界二氧化碳粘度的106.0倍、118.5倍和161.0倍。
实施例2
(1)对甲苯全氟辛基磺酸酯的制备:向三颈瓶中加入全氟辛基乙醇与对甲苯磺酰氯,全氟辛基乙醇与对甲苯磺酰氯的摩尔比1:1.2,最后加入吡啶并充分搅拌。保持温度在20℃,充分搅拌,反应3小时,反应结束后加入滤纸,超声波分散1小时,除掉未反应的对甲苯磺酰氯,然后去除滤纸,再用15%的稀盐酸洗涤4次除掉吡啶,得到白色 固体,最后用蒸馏水洗涤4次,40℃真空干燥3小时,制得中间产物(1)对甲苯全氟辛基磺酸酯。
(2)(1,3-全氟辛基乙醇丙醚-2-氨基甲酸叔丁酯)丙烷的制备:向三颈瓶中加入(N-叔丁氧基羰基)丝氨醇和对甲苯全氟辛基磺酸酯,(N-叔丁氧基羰基)丝氨醇和对甲苯全氟辛基磺酸酯之比为2.2:1,再加入碳酸钾和N,N-二甲基甲酰胺,充分搅拌,升温至40℃反应4h,反应结束后,用蒸馏水洗涤4次,真空干燥得中间产物(2)即(1,3-全氟辛基乙醇丙醚-2-氨基甲酸叔丁酯)丙烷。
(3)最终产物[1,6-二(1,3-二全氟辛基乙醇丙醚-2-脲基)]己烷的制备:向三颈瓶加入二氯甲烷和三氟乙酸的混合溶液,二氯甲烷与三氟乙酸体积比为2:1;将(1,3-全氟辛基乙醇丙醚-2-氨基甲酸叔丁酯)丙烷加入到上述混合溶液中,恒温45℃反应2小时,向其中加入二氯甲烷萃取3次,得到有机层,无水Na 2SO 4干燥有机层,加入1,6异二氰酸酯,1,6-己二异氰酸酯与1,3-全氟辛基乙醇丙醚-2-氨基甲酸叔丁酯)丙烷的摩尔比为1:2.10,在50℃条件下反应2小时,用乙酸乙酯和苯的混合溶剂洗涤粗产物4次,过滤,真空干燥,最后得到最终产物[1,6-二(1,3-二全氟辛基乙醇丙醚-2-脲基)]己烷。
分别取上述1wt%、2wt%、3wt%超临界二氧化碳稠化剂加入到安装好配套装置的高温高压密闭***中;通过进样阀向密闭***中分别导入99wt%、98wt%、97wt%超临界二氧化碳。转动转子,调节***压力和温度值,充分搅拌使稠化剂完全溶解,即完成混合体系的配制;再开启流变仪,设定压力值为29MPa,温度为60℃,,实验中保持剪切速率为100s -1,测定混合体系的粘度值分别为3.85mPa·s、4.16mPa·s 和4.76mPa·s;分别是未增稠超临界二氧化碳粘度的96.3倍、104.3倍和118.0倍。
实施例3
(1)对甲苯全氟辛基磺酸酯的制备:向三颈瓶中加入全氟辛基乙醇与对甲苯磺酰氯,全氟辛基乙醇与对甲苯磺酰氯的摩尔比1:1.15,最后加入吡啶并充分搅拌。保持温度在10℃,充分搅拌,反应3小时,反应结束后加入滤纸,超声波分散1小时,除掉未反应的对甲苯磺酰氯,然后去除滤纸,再用15%的稀盐酸洗涤5次除掉吡啶,得到白色固体,最后用蒸馏水洗涤5次,40℃真空干燥3小时,制得中间产物(1)对甲苯全氟辛基磺酸酯
(2)(1,3-全氟辛基乙醇丙醚-2-氨基甲酸叔丁酯)丙烷的制备:向三颈瓶中加入(N-叔丁氧基羰基)丝氨醇和对甲苯全氟辛基磺酸酯,(N-叔丁氧基羰基)丝氨醇和对甲苯全氟辛基磺酸酯之比为2.15:1,再加入碳酸钾和N,N-二甲基甲酰胺,充分搅拌,升温至40℃反应4h,反应结束后,用蒸馏水洗涤4次,真空干燥得中间产物(2)即(1,3-全氟辛基乙醇丙醚-2-氨基甲酸叔丁酯)丙烷。
(3)最终产物[1,6-二(1,3-二全氟辛基乙醇丙醚-2-脲基)]己烷的制备:向三颈瓶加入二氯甲烷和三氟乙酸的混合溶液,二氯甲烷与三氟乙酸体积比为2:1;将(1,3-全氟辛基乙醇丙醚-2-氨基甲酸叔丁酯)丙烷加入到上述混合溶液中,恒温45℃反应2小时,向其中加入二氯甲烷萃取3次,得到有机层,无水Na 2SO 4干燥有机层,加入1,6异二氰酸酯,1,6-己二异氰酸酯与1,3-全氟辛基乙醇丙醚-2-氨基甲酸叔丁酯)丙烷的摩尔比为1:2.1,在50℃条件下反应2小时,用乙酸乙酯 和苯的混合溶剂洗涤粗产物5次,过滤,真空干燥,最后得到最终产物[1,6-二(1,3-二全氟辛基乙醇丙醚-2-脲基)]己烷。
分别取上述1wt%、2wt%、3wt%超临界二氧化碳稠化剂加入到安装好配套装置的高温高压密闭***中;通过进样阀向密闭***中分别导入99wt%、98wt%、97wt%超临界二氧化碳。转动转子,调节***压力和温度值,充分搅拌使稠化剂完全溶解,即完成混合体系的配制;再开启流变仪,设定压力值为29MPa,温度为60℃,,实验中保持剪切速率为100s -1,测定混合体系的粘度值分别为4.25mPa·s、4.77mPa·s和5.36mPa·s;分别是未增稠超临界二氧化碳粘度的106.3倍、114.3倍和134.0倍。

Claims (2)

  1. 一种致密油气藏开采用超临界二氧化碳稠化剂的制备方法,其特征在于该制备方法包括以下步骤:
    (1)对甲苯全氟辛基磺酸酯的制备:向三颈瓶中加入全氟辛基乙醇与对甲苯磺酰氯,全氟辛基乙醇与对甲苯磺酰氯的摩尔比1∶1.1-1.2,最后加入吡啶并充分搅拌;保持温度在0-20℃,充分搅拌,反应3小时,反应结束后加入滤纸,超声波分散1小时,除掉未反应的对甲苯磺酰氯,然后去除滤纸,再用15%的稀盐酸多次洗涤除掉吡啶,得到白色固体,最后用蒸馏水多次洗涤,40℃真空干燥3小时,制得中间产物(1)对甲苯全氟辛基磺酸酯;
    (2)(1,3-全氟辛基乙醇丙醚-2-氨基甲酸叔丁酯)丙烷的制备:向三颈瓶中加入(N-叔丁氧基羰基)丝氨醇和对甲苯全氟辛基磺酸酯,(N-叔丁氧基羰基)丝氨醇和对甲苯全氟辛基磺酸酯摩尔比为2.1-2.2∶1,再加入碳酸钾和N,N-二甲基甲酰胺,充分搅拌,升温至40℃反应4h,反应结束后,用蒸馏水多次洗涤,真空干燥得中间产物(2)即(1,3-全氟辛基乙醇丙醚-2-氨基甲酸叔丁酯)丙烷;
    (3)最终产物[1,6-二(1,3-二全氟辛基乙醇丙醚-2-脲基)]己烷的制备:向三颈瓶加入二氯甲烷和三氟乙酸的混合溶液,二氯甲烷与三氟乙酸体积比为2∶1;将(1,3-全氟辛基乙醇丙醚-2-氨基甲酸叔丁酯)丙烷加入到上述混合溶液中,恒温45℃反应2小时,向其中加入二氯甲烷萃取3次,得到有机层,用无水Na 2SO 4干燥有机层,加入1-6异二氰酸酯,1,6-己二异氰酸酯与1,3-全氟辛基乙醇丙醚-2-氨基甲酸叔丁酯)丙烷的摩尔比为1∶2.05-2.10,在50℃条件下反应2小时,用乙酸乙酯和苯的混合溶剂多次洗涤粗产物,过滤,真空干燥,最后得到 最终产物[1,6-二(1,3-二全氟辛基乙醇丙醚-2-脲基)]己烷。
  2. 权利要求1中所述致密油气藏开采用超临界二氧化碳增稠剂的应用,其特征在于:分别取上述1wt%、2wt%、3wt%超临界二氧化碳增稠剂加入到安装好配套装置的高温高压密闭***中;通过进样阀向密闭***中分别导入99wt%、98wt%、97wt%超临界二氧化碳;转动转子,调节***压力和温度值,充分搅拌使稠化剂完全溶解,即完成混合体系的配制;开启流变仪,设定压力值为28MPa,温度为60℃,测定混合体系的粘度值与未增稠的超临界二氧化碳的粘度相比,增加96~163倍。
PCT/CN2019/130305 2019-08-11 2019-12-31 一种致密油气藏开采用超临界二氧化碳稠化剂的制备方法 WO2021027237A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/928,567 US11261373B2 (en) 2019-08-11 2020-07-14 Preparation method of supercritical carbon dioxide thickener for tight oil and gas reservoir

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910737149.0 2019-08-11
CN201910737149.0A CN110386883B (zh) 2019-08-11 2019-08-11 一种致密油气藏开采用超临界二氧化碳稠化剂的制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/928,567 Continuation US11261373B2 (en) 2019-08-11 2020-07-14 Preparation method of supercritical carbon dioxide thickener for tight oil and gas reservoir

Publications (1)

Publication Number Publication Date
WO2021027237A1 true WO2021027237A1 (zh) 2021-02-18

Family

ID=68288703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130305 WO2021027237A1 (zh) 2019-08-11 2019-12-31 一种致密油气藏开采用超临界二氧化碳稠化剂的制备方法

Country Status (3)

Country Link
US (1) US11261373B2 (zh)
CN (1) CN110386883B (zh)
WO (1) WO2021027237A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110386883B (zh) * 2019-08-11 2020-05-12 西南石油大学 一种致密油气藏开采用超临界二氧化碳稠化剂的制备方法
CN113755150A (zh) * 2021-08-31 2021-12-07 长江大学 含硅类超临界co2干法压裂液增稠剂及制备方法
CN113773438B (zh) * 2021-11-08 2022-03-08 德仕能源科技集团股份有限公司 一种用于中高渗透油藏的二氧化碳增稠剂及其制备方法技术
CN114920899A (zh) * 2022-06-06 2022-08-19 延安双丰集团有限公司 一种高效增粘性的液态二氧化碳增稠剂及其制备方法
CN116041651A (zh) * 2022-12-15 2023-05-02 中国石油大学(北京) 一种用于增稠二氧化碳的有机硅聚合物、其制备方法和应用
CN117309685B (zh) * 2023-11-30 2024-03-08 西安石油大学 一种超临界二氧化碳增稠剂性能检测装置及检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198322A (en) * 1989-01-12 1993-03-30 Hoechst Aktiengesellschaft Positively operating radiation-sensitive mixture containing a polyfunctional α-diazo-β-keto ester and radiation-sensitive recording material containing this mixture
CN101146873A (zh) * 2005-01-13 2008-03-19 纳幕尔杜邦公司 涂料组合物的流变控制剂
CN107043620A (zh) * 2017-06-06 2017-08-15 西南石油大学 一种液态二氧化碳稠化剂的制备方法
CN107253922A (zh) * 2017-06-22 2017-10-17 西南石油大学 一种超临界二氧化碳增稠剂的制备方法
CN110386883A (zh) * 2019-08-11 2019-10-29 西南石油大学 一种致密油气藏开采用超临界二氧化碳稠化剂的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2844100A (en) * 1998-12-15 2000-07-03 Yale University Association of compounds in carbon dioxide and the gels and/or foams formed therefrom

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198322A (en) * 1989-01-12 1993-03-30 Hoechst Aktiengesellschaft Positively operating radiation-sensitive mixture containing a polyfunctional α-diazo-β-keto ester and radiation-sensitive recording material containing this mixture
CN101146873A (zh) * 2005-01-13 2008-03-19 纳幕尔杜邦公司 涂料组合物的流变控制剂
CN107043620A (zh) * 2017-06-06 2017-08-15 西南石油大学 一种液态二氧化碳稠化剂的制备方法
CN107253922A (zh) * 2017-06-22 2017-10-17 西南石油大学 一种超临界二氧化碳增稠剂的制备方法
CN110386883A (zh) * 2019-08-11 2019-10-29 西南石油大学 一种致密油气藏开采用超临界二氧化碳稠化剂的制备方法

Also Published As

Publication number Publication date
CN110386883B (zh) 2020-05-12
CN110386883A (zh) 2019-10-29
US11261373B2 (en) 2022-03-01
US20200385631A1 (en) 2020-12-10

Similar Documents

Publication Publication Date Title
WO2021027237A1 (zh) 一种致密油气藏开采用超临界二氧化碳稠化剂的制备方法
CN110357794B (zh) 一种特低渗超低渗油气藏开采用超临界二氧化碳稠化剂的制备方法
CN107365576B (zh) 用于低渗或超低渗油藏co2驱油的流度控制体系及应用
RU2722804C1 (ru) Загуститель на основе катионного полимера, способ его получения и термостойкая жидкость для гидроразрыва пласта, получаемая с его использованием
CN104762077B (zh) 耐高温抗盐的聚合物驱油剂
WO2019024476A1 (zh) 一种稠油活化剂及其制备方法与应用
CN106085404A (zh) 一种低伤害、超低浓度瓜胶压裂液体系、制备方法及应用
US20230151218A1 (en) Reactive Disperse Yellow Dye for Supercritical CO2 Dyeing and Methods of Production and Use Thereof
CN111269335A (zh) 一种缓交联主客体包合凝胶深部调驱剂及其制备方法、应用
CN107253922A (zh) 一种超临界二氧化碳增稠剂的制备方法
CN114933560A (zh) 一种提高原油采收率用表面活性剂及其制备方法与应用
CN104312571A (zh) 一种改性黄原胶稠化剂及其在制备压裂液的中的应用
CN106084142B (zh) 适用于油田产出水的核-壳形聚合物及其制备方法
CN105419765B (zh) 一种糖基阴‑非型表面活性剂及其制备方法
CN107043620A (zh) 一种液态二氧化碳稠化剂的制备方法
CN116003701B (zh) 一种基于二氧化硅纳米微乳压裂液及其制备方法
WO2020215522A1 (zh) 一种用于煤层注水的清洁压裂液体系及其应用方法
CN116731693A (zh) 一种绒囊暂堵剂
CN115703862B (zh) 一种稠化二氧化碳驱油高效增稠剂及其制备方法
CN114426487B (zh) 一种水锁抑制剂及其制备方法与应用
CN113731297A (zh) 一种酰胺基磺酸盐双子表面活性剂及其制备方法和应用
CN111961451A (zh) 一种油气井缓释起泡剂及其制备方法
CN107268103A (zh) 一种水溶性pva纤维及其制备方法和用途
CN113292985B (zh) 一种醇基瓜尔胶压裂液及其制备方法和应用
CN103788220A (zh) 一种速溶型羟丙基瓜胶的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941599

Country of ref document: EP

Kind code of ref document: A1