WO2020215522A1 - 一种用于煤层注水的清洁压裂液体系及其应用方法 - Google Patents

一种用于煤层注水的清洁压裂液体系及其应用方法 Download PDF

Info

Publication number
WO2020215522A1
WO2020215522A1 PCT/CN2019/098774 CN2019098774W WO2020215522A1 WO 2020215522 A1 WO2020215522 A1 WO 2020215522A1 CN 2019098774 W CN2019098774 W CN 2019098774W WO 2020215522 A1 WO2020215522 A1 WO 2020215522A1
Authority
WO
WIPO (PCT)
Prior art keywords
fracturing fluid
coal seam
fracturing
water injection
clean
Prior art date
Application number
PCT/CN2019/098774
Other languages
English (en)
French (fr)
Inventor
王刚
陈建强
倪冠华
刘昆轮
黄腾瑶
郑三龙
蒋小龙
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Publication of WO2020215522A1 publication Critical patent/WO2020215522A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/602Compositions for stimulating production by acting on the underground formation containing surfactants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/26Gel breakers other than bacteria or enzymes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/30Viscoelastic surfactants [VES]

Definitions

  • the invention belongs to the technical field of coal seam gas pressure fracturing, and in particular relates to a clean fracturing fluid system for coal seam water injection and its application.
  • Coal seam water injection is an effective means to prevent coal and gas outbursts, rock bursts, dust explosions and other coal mine disasters.
  • the coal seams in many mining areas in China are coal seams with high ground pressure and low porosity.
  • the joints and cracks of the coal body are not developed and the permeability is low, so It is difficult to inject water into the coal seam and cannot achieve the expected disaster prevention effect.
  • Practice has proved that fracturing is a quick and effective measure to solve this problem.
  • Fracturing is by injecting fracturing fluid into the coal seam under high-pressure conditions, using pressure to fracturing, scouring, and wedging on weak surfaces, as well as the physical and chemical effects of fracturing fluid and coal, to promote the generation of new fractures and the original
  • the expansion of the cracks increases the porosity of the coal seam and improves the water injection efficiency.
  • most of the domestic coal seam water injection fracturing technologies use clean water for fracturing, but due to the extremely low viscosity of water and the hydrophobic nature of most coal surfaces, the fracturing and wetting effects are not good.
  • the fracturing fluid of traditional hydraulic fracturing in the field of coalbed methane mining can be roughly divided into two types: thickened water fracturing fluid and water-based jelly fracturing fluid.
  • the fracturing effect of thickened water fracturing fluid is not good due to low viscosity and poor sand carrying performance.
  • application number 201410142368.1 discloses a water-based jelly fracturing fluid, which contains a thickening agent and a cross-linking agent, and the thickening agent is a hydroxyalkylated microbial gum.
  • the water-based jelly fracturing fluid is composed of high molecular polymers.
  • the purpose of the present invention is to provide a clean fracturing fluid system for water injection into coal seams and its application.
  • the coal seam can be directly wetted after fracturing and hydraulically fracturing the coal seam.
  • the moisturizing effect makes it really suitable for the field of coal seam water injection.
  • One of the tasks of the present invention is to provide a clean fracturing fluid system for coal seam water injection, which adopts the following technical solutions:
  • a clean fracturing fluid system which includes a fracturing fluid base fluid, a stabilizer and a gel breaker, wherein:
  • the fracturing fluid base fluid is a worm-like micelle formed by mixing cetyltrimethylammonium bromide and sodium salicylate, and the cetyltrimethylammonium bromide and the The mass percentage ratio of sodium salicylate is 2:1;
  • the stabilizer is potassium chloride, and the mass percentage ratio of the cetyltrimethylammonium bromide to the potassium chloride is 2:1;
  • the aforementioned gel breaker is a mixture of water and lubricating oil, and the main component of the aforementioned lubricating oil is a mixture of hydrocarbons.
  • the above-mentioned hydrocarbons are alkanes, cycloalkanes or aromatic hydrocarbons.
  • the volume ratio of the aforementioned water to lubricating oil is 25:1.
  • preparation steps of the aforementioned fracturing fluid base fluid are:
  • Another task of the present invention is to provide the application of the above-mentioned clean fracturing fluid system in coal seam water injection, which sequentially includes the following steps:
  • the gel breaker is injected into the coal seam to break the gel. After the fracturing fluid is completely broken, the coal seam will be directly wetted.
  • volume ratio of the fracturing fluid and the gel breaker is 1:1.
  • the fracturing fluid suitable for coal seam water injection technology needs to ensure high fracturing viscosity, clean gel breaking method and strong wetting properties.
  • the clean fracturing fluid system of the present invention can basically meet the above requirements.
  • viscoelastic surfactant fracturing fluids can not only overcome the low viscosity of clean water fracturing fluids, but also effectively reduce the fracture of fracturing fluids due to its simple gel forming and clean gel breaking principles.
  • the damage to the coal seam after gelatinization, and the moisturizing effect of the surfactant molecules in the solution on the coal seam make it have broad application prospects in coal seam water injection technology.
  • the invention fully considers the fracturing properties, clean gel breaking properties and wettability of the fracturing fluid during coal seam water injection in terms of viscosity, cleanliness, wettability, etc., forming a fracturing fluid system suitable for the field of coal seam water injection , Has the following characteristics:
  • the fracturing fluid has a high viscosity, the highest viscosity can reach more than 300mPa ⁇ S, the viscosity is still stable after 2 hours of shearing, and large gaps can be formed by fracturing.
  • the fracturing fluid has no obvious filter cake produced during the fracturing process, and there is no solid residue after gel breaking, and the amount of residue is less than 50mg/L.
  • the gel breaking fluid can directly wet the coal seam without backflow.
  • Surfactant molecules in fracturing fluid have a moisturizing effect on coal seams.
  • the contact angle of the breaker liquid on the coal sample is on average 20° smaller than that of water.
  • the viscoelastic surfactant fracturing fluid of the invention has positive significance for improving the effect of coal seam water injection.
  • the viscoelastic surfactant fracturing fluid proposed in the present invention is based on re-optimizing the traditional clean fracturing fluid ratio in the field of coalbed methane mining.
  • a new gel breaking method is proposed, which makes it completely suitable for coal seam fracturing and water injection technology.
  • the viscoelastic surfactant fracturing fluid of the present invention can directly wet the coal seam in a clean and residue-free gel breaking mode, and can achieve a certain moisturizing effect, which is a low permeability coal seam
  • the integrated fracturing-wetting mechanism of the enhanced injection technology provides a reference for the plan.
  • Figure 1 is a comparison diagram of viscosity curves of Example 1 and Comparative Example 1;
  • Fig. 2 is a comparison diagram of rheological curves of Example 1 and Comparative Example 1.
  • the present invention proposes a clean fracturing fluid system for coal seam water injection and its application.
  • the present invention will be described in detail below with reference to specific embodiments.
  • the raw materials selected in the present invention can be purchased through commercial channels.
  • Selected raw materials for fracturing fluid base fluid cationic surfactants cetyltrimethylammonium bromide and sodium salicylate, the mass percentages of the two are 4% and 2% respectively;
  • Stabilizer potassium chloride, 2% by mass
  • Breaker a mixture of water and lubricating oil, the main component of lubricating oil is a mixture of alkanes and naphthenes, the volume ratio of water and lubricating oil is 25:1.
  • the first step is to add clear water to the liquid preparation container, keep the temperature above 20°C, and add cetyltrimethylammonium bromide under stirring conditions;
  • the third step is to add potassium chloride, stir and mix until the concentration and viscosity of the fracturing fluid are uniform;
  • the fourth step is to perform fracturing construction with the configured fracturing fluid according to the coal mine fracturing construction method
  • the mixed solution of water and lubricating oil (alkanes, naphthenes, aromatics and other hydrocarbon mixtures) with a volume ratio of 25:1 is injected into the coal seam for gel breaking operation.
  • the volume of the mixed solution is the same as the previously injected
  • the fracturing fluid has the same volume;
  • the coal seam will be directly wetted after the fracturing fluid is completely broken.
  • the selected raw materials for fracturing fluid base fluid cationic surfactants cetyltrimethylammonium bromide and sodium salicylate, the mass percentages of the two are 8% and 2% respectively. The rest of the steps are the same.
  • Example 1 The clean fracturing fluid systems of Example 1 and Comparative Example 1 were tested and compared, and the results were as follows:
  • Fig. 1 is a graph showing the comparison of the shear viscosity and stability of the fracturing fluid of Example 1 and the fracturing fluid of Comparative Example 1.
  • the shear viscosity of the fracturing fluid of Example 1 is up to 300 mPa ⁇ S, while the viscosity of the fracturing fluid of Comparative Example 1 is only about 140 mPa ⁇ S.
  • the shearing time progressed, the viscosity of the fracturing fluid of Example 1 remained stable, and there was no downward trend within 2h, while the viscosity of the fracturing fluid of Comparative Example 1 gradually decreased after 20min, and the viscosity fell to 50mPa ⁇ after 2h of shearing.
  • the fracturing fluid of implementation 1 can better meet the requirements for viscosity stability during fracturing construction.
  • Fig. 2 is a rheological curve diagram of fracturing fluids with two ratios of Example 1 and Comparative Example 1.
  • the figure shows the behavioral flow index and consistency coefficient of the two fracturing fluids with varying shear times.
  • the figure shows that both fracturing fluids are pseudoplastic fluids, and both have shear thinning characteristics.
  • the fracturing fluid in Example 1 has a higher consistency coefficient, so it is easier for the fracturing fluid to produce larger fractures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Lubricants (AREA)

Abstract

一种用于煤层注水的清洁压裂液体系及其应用方法,包括压裂液基液、稳定剂及破胶剂,压裂液基液是由十六烷基三甲基溴化铵与水杨酸钠混合形成的蠕虫状胶束,十六烷基三甲基溴化铵与水杨酸钠的质量百分配比为2∶1;稳定剂为氯化钾;破胶剂为水和润滑油的混合物,润滑油的主要成分为烃类的混合物。所述压裂液体系使用方法是制备压裂液、将制备的压裂液进行压裂施工、施工完成进行破胶作业。从粘度、清洁性、润湿性等方面,充分考虑了压裂液在煤层注水时的压裂性、清洁破胶性、润湿性,形成了适用于煤层注水领域的压裂液体系,通过选择合适的组分及其配比,使得压裂液压裂煤层后可直接润湿煤层,实现对煤层的增润作用,使其真正适用于煤层注水领域。

Description

一种用于煤层注水的清洁压裂液体系及其应用 技术领域
本发明属于煤层气压裂技术领域,具体涉及一种用于煤层注水的清洁压裂液体系及其应用。
背景技术
煤层注水是用于防止煤与瓦斯突出、冲击地压、粉尘产生***等煤矿灾害的有效手段,中国较多矿区的煤层为高地压低孔隙率煤层,煤体节理裂隙不发育,渗透率低,因此煤层注水困难,不能达到预期的灾害防治效果。实践证明,压裂是解决这一问题的一项快速而有效的措施。压裂是通过在高压条件下向煤层中注入压裂液,利用压力对弱面的压裂、冲刷、楔入作用以及压裂液与煤体的物理、化学作用,促进新裂隙的产生和原生裂隙的扩展,从而增大煤层孔隙率,提高注水效率。目前,国内煤层注水的压裂技术中大多以清水压裂,但因水的粘度极低,以及大多煤质表面的疏水特性,压裂和润湿效果均不佳。而国内外对压裂效果明显的高粘度压裂液的研究大多集中在天然气开采领域,对将高粘度压裂液应用于煤层注水技术中的研究较少。
煤层气开采领域中传统水力压裂的压裂液大致可分为稠化水压裂液和水基冻胶压裂液两类。其中稠化水压裂液由于粘度低、携砂性能较差等原因压裂效果不佳。如申请号201410142368.1公开了一种水基冻胶压裂液,该压裂液含有增稠剂和交联剂,增稠剂为羟烷基化的微生物胶。然而,水基冻胶压裂液成分为高分子聚合物,尽管粘度较大,压裂效果明显,但由于聚合物分子量大,在水中分散溶解性差,压裂结束后,有相当一部分水不溶物和未彻底破胶的聚合物交联结构驻留在煤层裂缝中,使煤层渗透率下降,地层污染严重。这一缺点使得水基冻胶压裂液应用于煤层注水技术时,在压裂破胶后直接润湿煤层这一环节受到限制。
发明概述
技术问题
问题的解决方案
技术解决方案
本发明的目的在于提供一种用于煤层注水的清洁压裂液体系及其应用,通过选择合适的组分及其配比,使得压裂液压裂煤层后可直接润湿煤层,实现对煤层的增润作用,使其真正适用于煤层注水领域。
本发明的任务之一在于提供一种用于煤层注水的清洁压裂液体系,其采用了如下技术方案:
一种清洁压裂液体系,其包括压裂液基液、稳定剂及破胶剂,其中:
所述的压裂液基液是由十六烷基三甲基溴化铵与水杨酸钠混合形成的蠕虫状胶束,所述的十六烷基三甲基溴化铵与所述的水杨酸钠的质量百分配比为2∶1;
所述的稳定剂为氯化钾,所述的十六烷基三甲基溴化铵与所述的氯化钾的质量百分配比为2∶1;
上述的破胶剂为水和润滑油的混合物,上述的润滑油的主要成分为烃类的混合物。
作为本发明的一个优选方案,上述的烃类为烷烃、环烷烃或芳烃。
作为本发明的另一个优选方案,上述的水与润滑油的体积比为25∶1。
进一步的,上述的压裂液基液的制备步骤为:
在容器中加入一定量的水,搅拌条件下加入上述的十六烷基三甲基溴化铵,搅拌充分使其溶解;向搅拌溶解所得十六烷基三甲基溴化铵溶液中加入水杨酸钠,继续搅拌10-20min,得压裂液基液。
本发明的另一任务在于提供上述的清洁压裂液体系在煤层注水中的应用,依次包括以下步骤:
a、向压裂液基液中加入氯化钾充分搅拌混合形成压裂液,并使得压裂液的粘度均匀一致;
b、将混合后的压裂液进行压裂施工;
c、压裂施工完毕后,将破胶剂注入煤层进行破胶作业,待压裂液完全破胶后对煤层直接实现润湿作用。
进一步的,上述的压裂液与所述的破胶剂的体积配比为1∶1。
适用于煤层注水技术的压裂液,需确保较高的压裂粘度、清洁的破胶方式及强效的润湿特性三者缺一不可。经分析比较,本发明清洁压裂液体系可基本满足以上要求。相比于传统的压裂液,粘弹性表面活性剂压裂液因其简单的成胶及清洁的破胶原理,既能克服清水压裂液粘度低的不足,又能有效减轻压裂液破胶后对煤层带来的损害,且溶液中的表面活性剂分子对煤层的增润作用,使其在煤层注水技术中具有广阔的应用前景。
发明的有益效果
有益效果
本发明从粘度、清洁性、润湿性等方面,充分考虑了压裂液在煤层注水时的压裂性、清洁破胶性、润湿性,形成了适用于煤层注水领域的压裂液体系,具有以下特点:
(1)压裂液具有较高粘度,最高粘度可达300mPa·S以上,剪切2小时粘度仍然稳定,可压裂出较大缝隙。
(2)压裂液因其压裂过程无明显滤饼产生,破胶后无固相残渣,残渣量小于50mg/L,破胶液无需返排可以直接对煤层实现润湿作用。
(3)压裂液中的表面活性剂分子对煤层具有增润效果。破胶液在煤试样的接触角比水的接触角平均小20°。
本发明粘弹性表面活性剂压裂液对改善煤层注水效果具有积极意义。
与申请号201410497570.6公开的一种煤层气清洁压裂液相比较,本发明提出的粘弹性表面活性剂压裂液是在重新优化了煤层气开采领域的传统清洁压裂液配比的基础上,又提出了新的破胶方式,使其完全另适用于煤层压裂注水技术。相较于传统的煤层气压裂液,本发明的粘弹性表面活性剂压裂液在清洁无残渣的破胶方式下可以直接润湿煤层,并能达到一定的增润作用,为低渗煤层增注技术的压裂-润湿一体化作用机制提供了方案参考。
对附图的简要说明
附图说明
下面结合附图对本发明做进一步说明:
图1为实施例1与对比例1粘度曲线对比图;
图2为实施例1与对比例1流变曲线对比图。
发明实施例
本发明的实施方式
本发明提出了一种用于煤层注水的清洁压裂液体系及其应用,为了使本发明的优点、技术方案更加清楚、明确,下面结合具体实施例对本发明做详细说明。
本发明所选原料均可通过商业渠道购买获得。
实施例1:
压裂液基液所选原料:阳离子表面活性剂十六烷基三甲基溴化铵、水杨酸钠,二者质量百分数分别为4%、2%;
稳定剂:氯化钾,质量百分数2%;
破胶剂:水和润滑油的混合物,润滑油的主要成分烷烃、环烷烃的混合物,水和润滑油的体积比为25∶1。
针对上述清洁压裂液体系的粘度、清洁性及润湿性等有益技术效果的具体测定方法及测定结果为:
(1)将上述清洁压裂液利用十二速旋转粘度计以170s-1的剪切速率剪切2小时,体系粘度仍然保持在300mPa·S以上;
(2)使用高温高压滤失仪在6MPa、35℃条件下使上述清洁压裂液通过滤纸,1小时内无明显滤饼产生;将上述清洁压裂液破胶后的溶液利用离心机在3000r/min的转速下离心30分钟,使用针管将分层的清液抽出以便与残渣液分离,随后将残渣液放入恒温电热干燥箱烘烤,在温度105℃±1℃的条件下烘干至恒量,结果显示残渣量小于50mg/L;
(3)使用光学接触角测量仪测试上述清洁压裂液破胶后的溶液在煤试样上的接触角,并与水的接触角进行比较,结果显示破胶溶液在煤试样的接触角比水的接触角平均小20°。
上述清洁压裂液体系在煤层注水中的应用,具体步骤为:
第一步、在配液容器中加入清水,温度保持在20℃以上,在搅拌条件下加入十六烷基三甲基溴化铵;
第二步、待十六烷基三甲基溴化铵完全溶解后,加入水杨酸钠,搅拌10~20分 钟,使二者完全混合形成高粘弹性压裂液;
第三步、加入氯化钾,充分搅拌混合至压裂液浓度及粘度均匀一致;
第四步、将配置的压裂液按照煤矿压裂施工方法进行压裂施工;
第五步、压裂完毕后,将水和润滑油(烷烃、环烷烃、芳烃等烃类混合物)体积比为25∶1的混合溶液注入煤层进行破胶作业,混合溶液的体积与先前注入的压裂液体积相同;
第六步、2~3小时后,待压裂液完全破胶后对煤层直接实现润湿作用。
对比例1:
与实施例1不同之处在于:
压裂液基液所选原料:阳离子表面活性剂十六烷基三甲基溴化铵、水杨酸钠,二者质量百分数分别为8%、2%。其余步骤相同。
对实施例1与对比例1的清洁压裂液体系进行检测、对比,其结果如下:
图1为实施例1的压裂液与对比例1的压裂液剪切粘度及稳定性对比曲线图。图中实施例1的压裂液剪切粘度最高可达300mPa·S,而对比例1的压裂液粘度最高仅为140mPa·S左右。随着剪切时间的进行,实施例1的压裂液粘度始终保持稳定,2h内没有下降趋势,而对比例1的压裂液粘度在20min之后逐渐降低,剪切2h后粘度下降到50mPa·S以下,因此实施1的压裂液更能满足压裂施工时对粘度稳定性的要求。
图2为实施例1与对比例1两种配比的压裂液的流变曲线图,图中显示了两种压裂液的行为流动指数与稠度系数随着变剪切次数的变化情况。图中显示两种压裂液均属于假塑性流体,且均具有剪切变稀特性。但明显实施例1中的压裂液具有更高的稠度系数,因此更易压裂液出较大裂缝。
本发明中未述及的部分借鉴现有技术即可实现。
需要说明的是,在本说明书的教导下本领域技术人员所做出的任何等同方式,或明显变型方式均应在本发明的保护范围内。

Claims (6)

  1. 一种清洁压裂液体系,其特征在于:其包括压裂液基液、稳定剂及破胶剂,其中:
    所述的压裂液基液是由十六烷基三甲基溴化铵与水杨酸钠混合形成的蠕虫状胶束,所述的十六烷基三甲基溴化铵与所述的水杨酸钠的质量百分配比为2∶1;
    所述的稳定剂为氯化钾,所述的十六烷基三甲基溴化铵与所述的氯化钾的质量百分配比为2∶1;
    所述的破胶剂为水和润滑油的混合物,所述的润滑油的主要成分为烃类的混合物。
  2. 根据权利要求1所述的一种清洁压裂液体系,其特征在于:所述的烃类为烷烃、环烷烃或芳烃。
  3. 根据权利要求2所述的一种清洁压裂液体系,其特征在于:所述的水与润滑油的体积比为25∶1。
  4. 根据权利要求3所述的一种清洁压裂液体系,其特征在于,所述的压裂液基液的制备步骤为:
    在容器中加入一定量的水,搅拌条件下加入所述的十六烷基三甲基溴化铵,搅拌充分使其溶解;向搅拌溶解所得十六烷基三甲基溴化铵溶液中加入水杨酸钠,继续搅拌10-20min,得压裂液基液。
  5. 根据权利要求1-4任一项所述的清洁压裂液体系在煤层注水中的应用,其特征在于,依次包括以下步骤:
    a、向所述的压裂液基液中加入氯化钾充分搅拌混合形成压裂液,并使得所述的压裂液的粘度均匀一致;
    b、将所述的混合后的压裂液进行压裂施工;
    c、压裂施工完毕后,将所述的破胶剂注入煤层进行破胶作业,待压裂液完全破胶后对煤层直接实现润湿作用。
  6. 根据权利要求5所述的清洁压裂液体系在煤层注水中的应用,其特 征在于:所述的压裂液与所述的破胶剂的体积配比为1∶1。
PCT/CN2019/098774 2019-04-24 2019-08-01 一种用于煤层注水的清洁压裂液体系及其应用方法 WO2020215522A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910331288 2019-04-24
CN201910331288.3 2019-04-24

Publications (1)

Publication Number Publication Date
WO2020215522A1 true WO2020215522A1 (zh) 2020-10-29

Family

ID=67917444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098774 WO2020215522A1 (zh) 2019-04-24 2019-08-01 一种用于煤层注水的清洁压裂液体系及其应用方法

Country Status (2)

Country Link
CN (1) CN110257040A (zh)
WO (1) WO2020215522A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111876141B (zh) * 2020-07-09 2023-04-07 山东科技大学 一种清洁压裂液、制备方法及煤层注水中的应用
CN113499732B (zh) * 2021-07-09 2022-07-26 山东科技大学 一种压裂液及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5979555A (en) * 1997-12-02 1999-11-09 Akzo Nobel Nv Surfactants for hydraulic fractoring compositions
WO2001083946A1 (en) * 2000-05-03 2001-11-08 Trican Well Service Ltd. Fracturing fluid
CN101362943A (zh) * 2008-09-15 2009-02-11 青岛生物能源与过程所 以含碳数在18~40的长链季铵盐制备耐温抗剪切新型清洁压裂液稠化剂
CN102977876A (zh) * 2012-11-29 2013-03-20 北京九尊能源技术股份有限公司 一种超低浓度瓜尔胶压裂液及低温煤层气井压裂方法
CN108531160A (zh) * 2018-06-06 2018-09-14 西安石油大学 一种自生能型清洁压裂液及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102994068A (zh) * 2011-09-14 2013-03-27 刘高昌 显著提高体系粘数的清洁压裂液制备工艺
CN102994064A (zh) * 2011-09-14 2013-03-27 孙斌 一种用于水力压裂的新型清洁压裂液
CN104629709A (zh) * 2013-11-13 2015-05-20 中国石油天然气股份有限公司 一种低温煤层气储层的清洁压裂液及其应用
CN103881688A (zh) * 2014-03-12 2014-06-25 中国石油天然气股份有限公司 一种油田油井低伤害清洁压裂液及其应用
CN104927827A (zh) * 2014-03-17 2015-09-23 中国石油化工股份有限公司 水基压裂液减阻剂组合物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5979555A (en) * 1997-12-02 1999-11-09 Akzo Nobel Nv Surfactants for hydraulic fractoring compositions
WO2001083946A1 (en) * 2000-05-03 2001-11-08 Trican Well Service Ltd. Fracturing fluid
CN101362943A (zh) * 2008-09-15 2009-02-11 青岛生物能源与过程所 以含碳数在18~40的长链季铵盐制备耐温抗剪切新型清洁压裂液稠化剂
CN102977876A (zh) * 2012-11-29 2013-03-20 北京九尊能源技术股份有限公司 一种超低浓度瓜尔胶压裂液及低温煤层气井压裂方法
CN108531160A (zh) * 2018-06-06 2018-09-14 西安石油大学 一种自生能型清洁压裂液及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, YONG , CHEN JINHU , WANG CHENGLONG , LUO ZHI , WANG YIWEN: "Preparation and Evaluation of Viscoelastic Surfactant Fracturing Fluid", ADVANCES IN FINE PETROCHEMICALS, vol. 14, no. 5, 30 September 2013 (2013-09-30), pages 4 - 7, XP055747469, ISSN: 1009-8348 *

Also Published As

Publication number Publication date
CN110257040A (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
CN104178102B (zh) 一种可交联的抗高温无残渣多元共聚型压裂液及其制备方法
WO2015109917A1 (zh) 页岩气压裂液用稠化剂、压裂液及其制备方法与应用
WO2020215522A1 (zh) 一种用于煤层注水的清洁压裂液体系及其应用方法
CN110386883B (zh) 一种致密油气藏开采用超临界二氧化碳稠化剂的制备方法
Almubarak et al. Dual-polymer hydraulic-fracturing fluids: A synergy between polysaccharides and polyacrylamides
WO2014086068A1 (zh) 一种基于液体聚合物在线连续配制的压裂方法
CN103911136B (zh) 一种油基型液态化压裂液增稠剂及其制备方法
EA006482B1 (ru) Водная текучая среда для гидроразрыва пласта
CN109233784B (zh) 一种混合气体泡沫压裂液体系及其制备
CN108753272A (zh) 一种致密油藏高效渗吸不返排压裂液及其渗吸吞吐采油方法
CN105778882A (zh) 一种低温破胶剂及其制备方法
CN106085404A (zh) 一种低伤害、超低浓度瓜胶压裂液体系、制备方法及应用
CN106244131B (zh) 一种压裂用高温微乳液助排剂及其制备方法
Jing et al. Preparation and rheological properties of a stable aqueous foam system
CN110577827B (zh) 深水固井用隔离液及其制备方法
CN100398623C (zh) 水基泥浆冲洗液
CN110872507A (zh) 非交联压裂液及其制备方法、应用与非交联压裂液稠化剂
CN104311719A (zh) 一种适用于高矿化度油藏的化学键合型相渗调节剂及其制备方法
CN113512414B (zh) 延缓交联型抗高温低摩阻加重胍胶压裂液及其应用方法
Almubarak et al. Development of a mixed polymer hydraulic fracturing fluid for high temperature applications
CN102093872A (zh) 一种应用于油气井的水力压裂增产技术中的清洁压裂液
CN107090287B (zh) 低粘度混合型压裂液、其应用和油气储层改造方法
Hao Cleaning functional spacer for improving sealing integrity and zonal isolation of cement sheath in shale gas wells: laboratory study and field application
CN111718704A (zh) 一种多功能流动促进剂及抗高温聚合物压裂液体系
Bu et al. A novel hydrophobically associating water-soluble polymer used as constant rheology agent for cement slurry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926650

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926650

Country of ref document: EP

Kind code of ref document: A1