WO2021024952A1 - Plating undercoating agent and laminate using same - Google Patents

Plating undercoating agent and laminate using same Download PDF

Info

Publication number
WO2021024952A1
WO2021024952A1 PCT/JP2020/029510 JP2020029510W WO2021024952A1 WO 2021024952 A1 WO2021024952 A1 WO 2021024952A1 JP 2020029510 W JP2020029510 W JP 2020029510W WO 2021024952 A1 WO2021024952 A1 WO 2021024952A1
Authority
WO
WIPO (PCT)
Prior art keywords
binder resin
mass
plating
resin
base material
Prior art date
Application number
PCT/JP2020/029510
Other languages
French (fr)
Japanese (ja)
Inventor
裕孝 竹田
亮平 森本
千夏子 山田
幸史朗 前田
Original Assignee
ユニチカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニチカ株式会社 filed Critical ユニチカ株式会社
Priority to CN202080055496.6A priority Critical patent/CN114207061A/en
Priority to JP2021537294A priority patent/JP7478447B2/en
Publication of WO2021024952A1 publication Critical patent/WO2021024952A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D123/04Homopolymers or copolymers of ethene
    • C09D123/08Copolymers of ethene
    • C09D123/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C09D123/0869Acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D169/00Coating compositions based on polycarbonates; Coating compositions based on derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the present invention relates to a plating base material and a laminate using the same.
  • Metal plating on a resin base material is, for example, imparting a sense of quality and aesthetics to a resin molded body such as an automobile part, electromagnetic shielding, a printed circuit board, or the like. It is widely used in wiring technology for large-scale integrated circuits.
  • the resin surface is degreased, fine irregularities are provided with chromic acid (etching), neutralized cleaning is performed, and tin-palladium colloid is adsorbed on the etching portion (catalyst).
  • etching chromic acid
  • tin-palladium colloid is adsorbed on the etching portion (catalyst).
  • Patent Documents 1 and 2 disclose a method of imparting unevenness to the surface of a base material without using chromic acid. Further, Patent Documents 3 and 4 disclose a method of coating a coating material as a starting point of plating instead of the accelerator step.
  • Non-Patent Document 1 discloses a method of modifying a polycarbonate resin base material to impart etching suitability and then plating
  • Patent Document 5 provides a specific molecular adhesive layer on the resin surface. A method of providing and plating is disclosed.
  • Japanese Unexamined Patent Publication No. 2010-270389 Japanese Unexamined Patent Publication No. 2016-113688 JP-A-2017-210630 JP-A-2017-197848 Japanese Unexamined Patent Publication No. 2008-05541
  • Non-Patent Document 1 since it is necessary to compound butadiene or the like with the polycarbonate resin base material, there is a problem that the inherent properties of the polycarbonate resin base material such as heat resistance and impact strength are deteriorated. Further, in the method of Patent Document 5, although the characteristics of the polycarbonate resin base material itself are not changed, the anchor effect is weak and the adhesion of the plating layer is insufficient because only the adhesive layer is provided on the surface.
  • the present invention solves the above-mentioned problems, and forms a base layer capable of providing a plating layer having high adhesion in a simple process without etching with chromic acid having a high environmental load. It is an object of the present invention to provide a plating base material for this purpose.
  • the present invention also solves the above-mentioned problems, and forms a base layer capable of providing a plating layer having high adhesion to the polycarbonate resin base material without modifying the polycarbonate resin base material. It is an object of the present invention to provide a plating base material for this purpose.
  • the present invention further provides a base layer capable of providing a plating layer having better uniformity and adhesion (for example, an electroless plating layer and an electrolytic plating layer) without etching with chromic acid having a high environmental load. It is an object of the present invention to provide a plating base material for forming the above.
  • the present inventors have found that the above object can be achieved by using a plating base agent containing nanowires and an ester bond-containing polymer, and have reached the present invention.
  • the gist of the present invention is as follows.
  • the ester bond-containing polymer is a resin selected from the following binder resins (A) to (C).
  • A Binder resin having a hydrophilic group component and a (meth) acrylic acid ester component
  • Binder resin (B) copolymerized polyester resin
  • the binder resin is a binder resin having a hydrophilic group component as the binder resin (A) and a (meth) acrylic acid ester component.
  • the binder resin is a copolymerized polyester resin as the binder resin (B).
  • the binder resin is a polycarbonate resin as the binder resin (C).
  • ⁇ 12> A laminate obtained by coating a resin base material with the plating base agent according to any one of ⁇ 1> to ⁇ 11>.
  • ⁇ 13> The laminate according to ⁇ 12>, wherein the resin base material is a polycarbonate resin base material.
  • ⁇ 14> A laminate obtained by subjecting the laminate according to ⁇ 12> or ⁇ 13> to electroless plating.
  • ⁇ 15> A laminate obtained by subjecting the laminate according to ⁇ 14> to electrolytic plating.
  • a plating base agent for forming a base layer capable of providing a plating layer having high adhesion in a simple process without etching with chromic acid having a high environmental load. be able to.
  • a plating base agent for forming a base layer capable of providing a plating layer having a high adhesion to the resin base material without modifying the resin base material. .. If the plating base material of the present invention is used, a plating layer can be provided simply by distilling off the solvent after coating the resin base material and immersing it in a plating solution. Therefore, the plating layer is provided by performing conventional etching or the like. Compared with the method, the plating layer can be formed simply and inexpensively.
  • the plating base material of the present invention when used, a part of the nanowire is exposed on the surface, and the other part can be provided with a base layer buried in the binder resin, so that it has a very strong anchoring effect.
  • a plating layer having high adhesion can be provided.
  • a plating layer having better uniformity and adhesion (for example, an electroless plating layer and an electrolytic plating layer) can be provided without etching with chromic acid having a high environmental load.
  • a plating base material for forming a formation can be provided.
  • the plating substrate of the present invention contains nanowires and a binder resin, and usually further contains a medium.
  • the nanowire means a wire having an aspect ratio of 5 or more expressed in length / diameter.
  • the nanowire used in the plating base material of the present invention is a fibrous material of a conductor having a diameter of 30 to 200 nm and a length of 1 to 50 ⁇ m.
  • the nanowires preferably have a diameter of 60 to 150 nm and a length of 10 to 40 ⁇ m in order to improve the dispersibility of the nanowires and facilitate handling as a plating base material.
  • the plating base material contains nanowires, a part of the nanowires is exposed on the surface, and the other part can be provided with a base layer embedded in a binder resin.
  • the plating base material contains nanowires having an aspect ratio of less than 5, or even if it contains a granular substance, the anchor effect cannot be sufficiently exhibited, so that the adhesion and uniformity of the plating layer are lowered.
  • the nanowire of the present invention preferably has a particle-connected shape in which a plurality of particles are unilaterally connected.
  • the particle connection shape is a linear (or fibrous) shape as a whole in which a plurality of particles having a substantially spherical shape are connected in series and continuously.
  • a concave portion is usually formed at the connecting portion (boundary portion of the particles), a convex portion is formed at the particle portion, and the concave portion and the convex portion are formed in the connecting direction of the particles (longitudinal direction of the nanowire). Is repeated continuously.
  • the present invention does not prevent nanowires from having a line shape (or fiber shape) with no irregularities on the surface.
  • the nanowire is preferably a nanowire made of a semiconductor, a metal, a metal oxide, or the like. Of these, metal nanowires are preferable because they tend to be the starting point of plating when performing electroless plating.
  • the type of metal is not particularly limited, and examples thereof include nickel, copper, and silver.
  • the nanowires are preferably nickel nanowires from the viewpoint of further improving the adhesion and uniformity of the plating layers (electroless plating layer and electrolytic plating layer; particularly electroless plating layer).
  • a noble metal having a high oxidation-reduction potential such as platinum or palladium is usually used as the catalyst metal that is the starting point of plating.
  • the plating since the plating grows starting from a part of the nanowires exposed on the surface, the plating can be grown even with a metal having a low redox potential. Specifically, the plating can be grown even with a metal having a standard redox potential of ⁇ 0.8 V or higher. Therefore, in the present invention, even a relatively inexpensive base metal can be used. Since nickel is often used in electroless plating, nickel is preferable as the metal constituting the nanowire.
  • the nanowire is a nanowire made of a metal oxide
  • electroless plating can be performed as in the case of using a nanowire made of a metal.
  • the plating solution usually contains a reducing agent, a part of the nanowires exposed on the surface of the plating base layer is reduced by the reducing agent, and the plating grows from that as a starting point.
  • the concentration of nanowires in the plating base material is not particularly limited as long as the nanowires can be dispersed, but is usually 0.01 to 40% by mass, preferably 0.01 to 20% by mass.
  • the concentration of nanowires is preferably 0.01 to 10% by mass, particularly 0.05 to 0.5% by mass. ..
  • the concentration of nanowires is the ratio to the total amount of plating base material.
  • the binder resin is an ester bond-containing polymer.
  • the ester bond-containing polymer is a polymer having an ester bond.
  • the ester bond-containing polymer may have an ester bond in the main chain of the polymer, in the side chain of the polymer, or in both the main and side chains of the polymer. May be good.
  • the ester bond-containing polymer is preferably contained in the side chain of the polymer from the viewpoint of further improving the adhesion and uniformity of the plating layers (electroless plating layer and electrolytic plating layer; particularly electroless plating layer).
  • the binder resin Since the binder resin has an ester bond, the wettability of the base layer is improved, the base layer is less likely to repel the plating solution, and the gas generated when the plating layer is formed does not stay on the surface of the base layer and easily escapes. Become. Therefore, it is considered that a plating layer (electroless plating layer and electrolytic plating layer; particularly electroless plating layer) having sufficiently excellent adhesion and uniformity can be formed.
  • the content of the ester bond in the binder resin is not particularly limited.
  • the content of the ester bond is such that the repeating unit of at least a part (preferably all) of the polymer contains an ester bond. It may be an amount.
  • the content of the ester bond is the total of the ester bond-containing monomer and the ester bond-free monomer constituting the binder resin as a monomer component.
  • the content of the ester bond-containing monomer is usually 1% by mass or more with respect to the amount, and the adhesion and uniformity of the plating layers (electroless plating layer and electrolytic plating layer; particularly electroless plating layer) are further improved. From the above viewpoint, it is preferably 3% by mass or more, more preferably 6% by mass or more, and further preferably 8% by mass or more.
  • the upper limit of the content of the ester bond in this case is not particularly limited, and may be usually 100% by mass.
  • the content of the ester bond is preferably 40% by mass or less, more preferably 30% by mass, from the viewpoint of further improving the adhesion and uniformity of the plating layers (electroless plating layer and electrolytic plating layer; particularly electroless plating layer). % Or less, more preferably 20% by mass or less, and particularly preferably 18% by mass or less. If the content of the ester bond is too small, the adhesion and / or uniformity (particularly adhesion) of the plating layer to the substrate is lowered.
  • the ester bond-free monomer is a monomer component having no ester bond in its molecular structure.
  • the ester bond-containing polymer may have any structure as long as it has an ester bond in the molecular structure.
  • the ester bond-containing polymer may be, for example, a resin selected from the following binder resins (A) to (C): (A) Binder resin having a hydrophilic group component and a (meth) acrylic acid ester component; (B) Copolymerized polyester resin; (C) Polycarbonate resin. These binder resins (A) to (C) will be described in detail later, but the binder resin may be another polymer as long as it has an ester bond in the molecular structure.
  • the concentration of the binder resin in the plating base material is not particularly limited, and a part of the nanowires can be easily exposed on the surface of the base layer, and a more uniform and higher adhesion plating layer can be obtained.
  • the mass ratio of the nanowire to the binder resin is 0.1 to 5.0, particularly 0.2 to 4.0.
  • the preferable mass ratio of the nanowire and the binder resin differs depending on the type of the binder resin, as will be described later.
  • the concentration of the binder resin in the plating base material is usually 50% by mass or less (particularly 0.01 to 50% by mass), preferably 0.01 to 20% by mass.
  • the concentration of the binder resin is a ratio to the total amount of the plating base material.
  • the molecular weight of the binder resin is not particularly limited, and usually, the number average molecular weight may be 1000 or more, particularly 1000 to 100,000. For the number average molecular weight, a value based on gel permeation chromatography (GPC) is used.
  • the melt flow rate of the binder resin is also not particularly limited, and may be usually 10 g / 10 minutes or less, particularly 0.1 to 10 g / 10 minutes. The melt flow rate uses a value based on JIS K 6730 (190 ° C., 2160 g load).
  • the binder resin may be dissolved in a medium in the plating base agent, or may be dispersed or emulsified from the viewpoint of exposing the nanowires in the plating base layer.
  • the binder resin (A) has a hydrophilic group component and a (meth) acrylic acid ester component.
  • the hydrophilic component and the (meth) acrylic acid ester component may be randomly copolymerized, block-copolymerized, or graft-polymerized. Therefore, a uniform plating layer having high adhesion (electroless plating layer and electrolytic plating layer; particularly electroless plating layer) can be obtained.
  • the hydrophilic group component means an atomic group that forms a bond with a water molecule by an electrostatic action, a hydrogen bond, or the like and becomes stable in water.
  • a hydrophilic group component By having a hydrophilic group component, the wettability is improved, it becomes difficult to repel the plating solution, and the gas generated when the plating layer is formed does not stay on the surface of the base layer and easily escapes, so that a uniform plating layer can be obtained. Can be formed.
  • the hydrophilic group component improves the dispersion stability of the resin in the plating base material, and when a cross-linking agent is blended, the hydrophilic group component can be used as a cross-linking point to form a three-dimensional network structure. Groups are preferred.
  • the acidic functional group examples include a carboxyl group, an anhydrous carboxylic acid group, a sulfonic acid group, a sulfinic acid group, a sulfenic acid group, a phosphoric acid group and a phosphonic acid group, and among them, from the viewpoint of adhesion to the plating layer.
  • Carboxyl groups are preferred.
  • the resin may have only one functional group or a plurality of functional groups.
  • the functional group may form a salt.
  • a hydrophilic group component (for example, an acidic functional group component) can be introduced into the binder resin (A) by using a monomer containing a hydrophilic group (for example, an acidic functional group) as a monomer component constituting the binder resin (A).
  • hydrophilic group-containing monomer examples include acrylic acid, methacrylic acid, maleic acid, maleic anhydride and the like.
  • the content of the hydrophilic group component (particularly the hydrophilic group-containing monomer) in the binder resin (A) is not particularly limited, and the adhesion and uniformity of the plating layers (electroless plating layer and electrolytic plating layer; particularly electroless plating layer) 0.1 to 15 mass from the viewpoint of further improvement, prevention of aggregation and precipitation of nanowires in the plating base material, improvement of coating operability, and improvement of appearance defects such as pinholes in the plating layer (for example, electroless plating film).
  • % More preferably 0.5 to 10% by mass, further preferably 1 to 7% by mass, and particularly preferably 1.5 to 5% by mass.
  • the content of the hydrophilic group component is the content ratio of the hydrophilic group-containing monomer to the total amount of all the monomer components constituting the binder resin.
  • the (meth) acrylic acid ester component can be introduced into the binder resin (A) by using the (meth) acrylic acid ester component-containing monomer as the monomer component constituting the binder resin (A).
  • Examples of the (meth) acrylic acid ester component include an esterified product of (meth) acrylic acid and an alcohol having 1 to 30 carbon atoms.
  • the (meth) acrylic acid ester component is a (meth) acrylic acid and an alcohol having 1 to 20 carbon atoms (particularly an alcohol having 1 to 6 carbon atoms (preferably 1 to 3)) from the viewpoint of adhesion to the resin substrate.
  • the esterified product with is preferable.
  • (meth) acrylic acid X means "acrylic acid X and / or methacrylic acid X”. X may be, for example, any alkyl group constituting the alcohol described above.
  • the content of the (meth) acrylic acid ester component (particularly the (meth) acrylic acid ester component-containing monomer) in the binder resin (A) is not particularly limited, and the plating layer (electrolytic plating layer and electrolytic plating layer; particularly electroless From the viewpoint of further improving the adhesion and uniformity of the plating layer) and improving the precipitation property of the plating layer (electrolytic plating layer and electrolytic plating layer; particularly the electrolytic plating layer), it is preferably 1 to 40% by mass. It is more preferably 3 to 30% by mass, further preferably 6 to 20% by mass, and particularly preferably 8 to 18% by mass.
  • the content of the (meth) acrylic acid ester component is the content ratio of the (meth) acrylic acid ester component-containing monomer to the total amount of all the monomer components constituting the binder resin.
  • the binder resin (A) may contain other monomers as monomer components in addition to the hydrophilic group-containing monomer and the (meth) acrylic acid ester monomer.
  • the other monomer is a polymerizable monomer containing neither a hydrophilic group component nor a (meth) acrylic acid ester component.
  • Other such monomers include any monomer having a polymerizable unsaturated double bond.
  • the polymerizable property is the polymerizable property related to addition polymerization. Specific examples of other monomers include ethylene, propylene, butylene, styrene and the like.
  • the content of other monomers in the binder resin (A) is not particularly limited, and from the viewpoint of further improving the adhesion and uniformity of the plating layers (electroless plating layer and electrolytic plating layer; particularly electroless plating layer), the content is not particularly limited. It is preferably 95% by mass or less (for example, 1 to 95% by mass), more preferably 10 to 90% by mass, further preferably 30 to 90% by mass, and 50 to 90% by mass. Is particularly preferable.
  • the content of the other monomer is the content ratio of the other monomer to the total amount of all the monomer components constituting the binder resin.
  • binder resin (A) having a hydrophilic group component and a (meth) acrylic acid ester component examples include (meth) acrylic acid- (meth) acrylic acid ester copolymer and (meth) acrylic acid ester-maleic anhydride.
  • Polymer, ethylene- (meth) acrylic acid ester-maleic anhydride copolymer, propylene- (meth) acrylic acid ester-maleic anhydride copolymer, styrene- (meth) acrylic acid ester-maleic anhydride copolymer Can be mentioned.
  • an ethylene-acrylic acid ester-maleic anhydride copolymer is preferable from the viewpoint of melting point, hardness, resin material, and adhesion to the plating layer.
  • the molecular weight of the binder resin (A) is not particularly limited. When a cross-linking agent is added to the plating base material, a molecular weight of about several thousand is sufficient.
  • the binder resin (A) may be dissolved in a medium, or dispersed or emulsified in the plating base agent from the viewpoint of exposing the nanowires in the plating base layer, but the plating layer (electroless electroless). From the viewpoint of further improving the adhesion and uniformity of the plating layer and the electroless plating layer (particularly the electroless plating layer), it is preferably dispersed or emulsified in the medium.
  • the concentration of the binder resin (A) in the plating base material is not particularly limited as long as it has a viscosity that allows coating.
  • the concentration of the binder resin (A) is preferably 50% by mass or less.
  • the concentration of the binder resin (A) is preferably 0.01 to 10% by mass, preferably 0.01 to 5% by mass. More preferably, it is more preferably 0.05 to 0.5% by mass.
  • the mass ratio (nanowire / binder resin) of the nanowire and the binder resin (A) in the plating base material makes it easy to expose a part of the nanowire on the surface of the base layer, and the plating layer has a more uniform and higher adhesion. It is preferably 0.2 to 3.0, more preferably 0.5 to 2.0, and even more preferably 0.5 to 1.5, because the above can be obtained.
  • the binder resin (A) can be obtained as a commercially available product, or can be produced by a known method.
  • the copolymerized polyester resin is used as the binder resin (B).
  • the copolymerized polyester resin means a resin composed of a divalent carboxylic acid component and a divalent alcohol component and having an ester bond.
  • divalent carboxylic acid examples include terephthalic acid, isophthalic acid, phthalic acid, naphthalenedicarboxylic acid, 4,4'-dicarboxybiphenyl, 5-sodium sulfoisophthalic acid, 5-hydroxyisophthalic acid, fumaric acid and adipic acid.
  • the divalent carboxylic acid component may be a derivative thereof or an anhydride thereof.
  • the divalent carboxylic acid component one of the above may be used alone, or two or more thereof may be used in combination. Of these, terephthalic acid is preferable because it improves heat resistance.
  • dihydric alcohol component examples include ethylene glycol, neopentyl glycol, 2-methyl-1,3-propanediol, 3-methyl-1,5-pentanediol, 2,2-butylethylpropanediol, diethylene glycol, and tri.
  • the divalent alcohol component one of the above may be used alone, or two or more thereof may be used in combination.
  • ethylene oxide of 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, tricyclodecanedimethanol, 2,2-bis (4-hydroxyphenyl) propane [BisA] and BisA because of their high heat resistance.
  • propylene oxide adducts of BisA, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane [BisTMC] are preferred.
  • 2,2-bis (4-hydroxyphenyl) propane [BisA] an ethylene oxide adduct of BisA, and a propylene oxide adduct of BisA are preferable because the adhesion to the polycarbonate resin base material is high.
  • the copolymerized polyester resin is a copolymerized component of BisA and / or its alkylene oxide adduct from the viewpoint of further improving the adhesion and uniformity of the plating layers (electroless plating layer and electrolytic plating layer; particularly electroless plating layer). It is preferable to include as.
  • the alkylene oxide adduct of BisA includes an ethylene oxide adduct of BisA, a propylene oxide adduct of BisA, and the like. At this time, the content of BisA and / or its alkylene oxide adduct is not particularly limited, and the adhesion and uniformity of the plating layers (electroless plating layer and electrolytic plating layer; particularly electroless plating layer) are further improved.
  • the content is the content ratio of BisA and / or its alkylene oxide adduct to the total amount of all the monomer components constituting the copolymerized polyester resin.
  • the copolymerized polyester resin may contain a monomer component other than the divalent carboxylic acid component and the dihydric alcohol component, if necessary, as long as the effects of the present invention are not impaired.
  • monomer components include trivalent or higher carboxylic acids, monocarboxylic acids, trihydric or higher alcohols, monoalcohols, hydroxycarboxylic acids, lactones, and oxylanes.
  • trivalent or higher carboxylic acid include 1,3,4-benzenetricarboxylic acid, 1,2,4,5-benzenetetracarboxylic acid, pyromellitic acid, trimellitic acid, and tetrahydrophthalic acid.
  • Examples of the monocarboxylic acid include lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, benzoic acid, p-tert-butylbenzoic acid, and cyclohexanoic acid.
  • Examples of trihydric or higher alcohols include trimethylpropane and glycerin.
  • Examples of the monoalcohol include octyl alcohol, decyl alcohol, lauryl alcohol, myristyl alcohol, cetyl alcohol, stearyl alcohol, and 2-phenoxyethanol.
  • Examples of the hydroxycarboxylic acid include lactic acid, glycolic acid, 2-hydroxybutyric acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 2-hydroxyisobutyric acid, 2-hydroxy-2-methylbutyric acid, 2-hydroxyvaleric acid, 3 Examples thereof include -hydroxyvaleric acid, 4-hydroxyvaleric acid, 5-hydroxyvaleric acid, 6-hydroxycaproic acid, 10-hydroxystearic acid, 4-hydroxyphenylstearic acid and 4- ( ⁇ -hydroxy) ethoxybenzoic acid.
  • Examples of the lactone include ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -butyrolactone, ⁇ -valerolactone, and ⁇ -caprolactone.
  • osikiran examples include ethylene oxide.
  • the content thereof may be less than 10 mol% with respect to 100 mol% of all the monomer components contained in the copolymerized polyester resin. preferable.
  • the molecular weight of the copolymerized polyester resin is not particularly limited, but the number average molecular weight is preferably 1000 to 50,000, more preferably 3000 to 30,000, from the viewpoint of improving workability at the time of dissolution. Even if the number average molecular weight is less than 3000, the effect as a base material is exhibited, but the plating base material may become brittle. Therefore, when a copolymerized polyester resin having such a number average molecular weight is used, a curing agent is used in combination. Is more preferable.
  • the copolymerized polyester resin may be dissolved in the medium in the plating base material, or may be dispersed or emulsified, but the plating layer (electroless plating). From the viewpoint of further improving the adhesion and uniformity of the layer and the electroplating layer (particularly the electroless plating layer), it is preferably dissolved in the medium.
  • the concentration of the binder resin (B) in the plating base material is not particularly limited as long as it has a viscosity that allows coating.
  • the concentration of the binder resin (B) is preferably 50% by mass or less.
  • the concentration of the binder resin (B) is preferably 0.01 to 10% by mass, preferably 0.01 to 5% by mass. More preferably, it is more preferably 0.05 to 0.5% by mass.
  • the mass ratio (nanowire / binder resin) of the nanowire and the binder resin (B) in the plating base material makes it easy to expose a part of the nanowire on the surface of the base layer, and the plating layer has a more uniform and higher adhesion. It is preferably 0.3 to 4.0, more preferably 0.8 to 3.2, further preferably 0.8 to 3.0, and 0. It is particularly preferably 8 to 2.2, and most preferably 1.0 to 2.0.
  • the copolymerized polyester resin can be obtained as a commercially available product, or can be produced by a known method as shown below.
  • the copolymerized polyester resin can be obtained by a method of polymerizing a divalent carboxylic acid component, a dihydric alcohol component, and if necessary, other monomer components by a known polymerization method.
  • Known methods include a method of polycondensing until a desired molecular weight is reached after an esterification reaction (method A), and a method of deacetic acid polymerization reaction after an acetylation reaction until a desired molecular weight is reached. (B method) can be mentioned.
  • the esterification reaction in the method A is a reaction in which a divalent carboxylic acid component, a dihydric alcohol component, and if necessary, other monomer components are used for esterification.
  • the reaction is carried out by heating and melting at a temperature of 180 ° C. or higher for 4 hours or longer in an inert gas atmosphere.
  • the polycondensation reaction is a reaction in which an esterified product obtained by an esterification reaction is polycondensed while distilling off a dihydric alcohol component until a desired molecular weight is reached.
  • the polycondensation reaction is carried out at a temperature of 220 to 280 ° C. for 30 minutes or more under a reduced pressure of 130 Pa or less.
  • a polymerization catalyst examples include titanium compounds such as tetrabutyl titanate, acetates of metals such as zinc acetate, magnesium acetate and zinc acetate, antimony trioxide, and organics such as hydroxybutyltin oxide and tin octylate. Examples include tin compounds. If the concentration of the polymerization catalyst is too small, the reaction will be slow, and if it is too high, the color tone of the obtained copolymerized polyester resin will be deteriorated. Therefore, 0.1 ⁇ 10 -4 to 20 ⁇ 10 -4 mol with respect to 1 mol of the acid component. Is preferable.
  • the acetylation reaction in Method B is a reaction that acetylates a divalent alcohol component.
  • the divalent carboxylic acid component, the dihydric alcohol component, and acetic anhydride are reacted.
  • the acetylation reaction is carried out under an inert gas atmosphere, under normal pressure or under pressure, at a temperature of 100 to 240 ° C. for 5 minutes to 8 hours.
  • the molar ratio of acetic anhydride to the hydroxy group of the dihydric alcohol component is preferably 1.00 to 1.20.
  • the deacetic acid polymerization reaction is a reaction of deacetic acid polymerization until a desired molecular weight is reached.
  • the deacetic acid polymerization reaction is carried out under a reduced pressure of 500 Pa or less at a temperature of 240 ° C. or higher for 30 minutes or longer.
  • a polymerization catalyst is preferably used for the acetylation reaction and the deacetic acid polymerization reaction.
  • the type and concentration of the polymerization catalyst are the same as the type and concentration of the polymerization catalyst exemplified in Method A.
  • the polycarbonate resin is used as the binder resin (C).
  • the polycarbonate resin means a resin having a carbonate bond.
  • the polycarbonate resin is not particularly limited, and may be, for example, a polycarbonate resin obtained by a transesterification reaction between an aromatic dihydroxy compound and a carbonic acid diester, or an aqueous sodium hydroxide solution and chloride of the aromatic dihydroxy compound and phosgene. It may be a polycarbonate resin obtained by a reaction in the presence of a methylene solvent.
  • the aromatic dihydroxy compound constituting the melt-polymerized polycarbonate resin is a compound represented by the general formula: HO-Ar-OH.
  • Ar is a divalent aromatic residue, for example, a phenylene group, a naphthylene group, a biphenylene group, a pyridylene group, or a divalent aromatic group represented by -Ar 1- Y-Ar 2-. ..
  • Ar 1 and Ar 2 each independently represent a divalent carbocyclic or heterocyclic aromatic group having 5 to 70 carbon atoms, and Y has 1 to 30 carbon atoms, particularly 1 to 5 2.
  • Preferred Ar is a phenylene group.
  • Preferred Ar 1 and Ar 2 are phenylene groups.
  • Preferred Y is an isopropylidene group.
  • aromatic dihydroxy compounds include bis (4-hydroxyphenyl) methane, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, and the like.
  • 2,2-bis (4-hydroxyphenyl) propane [bisphenol A] is particularly preferable.
  • the aromatic dihydroxy compound may be a single type or two or more types.
  • a typical example of the aromatic dihydroxy compound is bisphenol A, and it is preferable to use bisphenol A in a proportion of 85 mol% or more as the aromatic dihydroxy compound.
  • R 1 -Ar 3 -O-CO -O-Ar 4 -R 2 substituted or unsubstituted diaryl carbonates may be mentioned indicated in.
  • Ar 3 and Ar 4 are independently divalent aromatic residues, and examples thereof include a phenylene group and a naphthylene group.
  • R 1 and R 2 are independently hydrogen atoms or alkyl groups having 1 to 10 carbon atoms.
  • Preferred Ar 3 and Ar 4 are phenylene groups.
  • Preferred R 1 and R 2 are independently hydrogen atoms or alkyl groups having 1 to 5 carbon atoms, respectively. The more preferred R 1 and R 2 are the same group as each other.
  • diaryl carbonates such as unsubstituted diphenyl carbonate, ditril carbonate, and lower alkyl-substituted diphenyl carbonate such as di-t-butylphenyl carbonate are preferable.
  • diphenyl carbonate which is a diaryl carbonate having the simplest structure, is preferable.
  • the symmetric diaryl carbonate is a diaryl carbonate that can be represented by a chemical structural formula having line symmetry when represented by a chemical structural formula in which a hydrogen atom and a carbon atom are omitted.
  • the carbonic acid diester may be used alone or in combination of two or more.
  • the polycarbonate resin is not particularly limited and is preferably selected depending on the resin base material to be coated.
  • the resin base material is a polycarbonate resin base material
  • the resin base material to be coated is a general-purpose 2,2-bis (4-hydroxyphenyl) propane (BisA) type polycarbonate
  • the resin base material to be coated is a special grade such as for a lens application, it is preferable to use a special grade polycarbonate having the same skeleton as the base material.
  • the molecular weight of the polycarbonate resin is not particularly limited. When a cross-linking agent is added to the plating base material, a molecular weight of about several thousand is sufficient.
  • the polycarbonate resin may be dissolved in the medium, or dispersed or emulsified in the plating base agent, but the plating layer (electroless plating layer and From the viewpoint of further improving the adhesion and uniformity of the electrolytic plating layer (particularly the electroless plating layer), it is preferably dissolved in the medium.
  • the concentration of the binder resin (C) in the plating base material is not particularly limited as long as it has a viscosity that allows coating.
  • the concentration of the binder resin (C) is preferably 50% by mass or less.
  • the concentration of the binder resin (C) is preferably 0.01 to 10% by mass, preferably 0.01 to 5% by mass. More preferably, it is more preferably 0.05 to 0.5% by mass.
  • the mass ratio (nanowire / binder resin) of the nanowires and the binder resin (C) in the plating base material makes it easy to expose a part of the nanowires on the surface of the base layer to obtain a plating layer having higher adhesion. Therefore, it is preferably 0.3 to 4.0, more preferably 0.8 to 3.2, further preferably 0.8 to 3.0, and 0.8 to 2 It is particularly preferably set to .2, and most preferably 1.0 to 2.0. By setting the mass ratio to 0.8 or more, particularly 1.0 or more, an electroless plating layer having a more uniform and higher adhesion can be obtained. Further, by setting the mass ratio to 0.8 to 3.2, particularly 1.0 to 3.0, it is easier to form a more uniform and higher adhesion electrolytic plating layer on the electroless plating layer. Obtainable.
  • the polycarbonate resin can be obtained as a commercially available product, or can be produced by a known method such as a melt polymerization method and an interfacial polymerization method.
  • polycarbonate resin products examples include polycarbonate (manufactured by Teijin Limited, L-1225Y) and the like.
  • the plating base material of the present invention further contains a medium in order to improve handling.
  • the medium may be either a solvent or a dispersion medium.
  • the medium is not particularly limited as long as it does not agglomerate the nanowires and the binder resin.
  • monoalcohols such as methanol and ethanol (particularly aliphatic monoalcohols); glycols such as ethylene glycol and propylene glycol (particularly aliphatic glycols); ethers such as tetrahydrofuran (particularly cyclic ethers); ketones such as methyl ethyl ketone (especially cyclic ethers).
  • aliphatic ketones aromatic hydrocarbons such as benzene and toluene; halogenated hydrocarbons such as dichloromethane and chloroform (particularly aliphatic aliphatic hydrocarbons); water; or a mixed solvent thereof and the like can be mentioned.
  • the medium has high handling such as drying temperature at the time of coating, and a more uniform and higher adhesion plating layer can be obtained.
  • Monoalcohol; glycol; water; or a mixed solvent thereof is preferable, and a mixed solvent of water and glycol is more preferable.
  • the medium When the plating base material is a solution containing the binder resin (A) as the binder resin, the medium further improves the adhesion and uniformity of the plating layers (electroless plating layer and electrolytic plating layer; especially the electroless plating layer). From the viewpoint, ether (particularly tetrahydrofuran) is preferable.
  • the medium When the plating base material is a solution containing the binder resin (B) as the binder resin, the medium further improves the adhesion and uniformity of the plating layers (electroless plating layer and electrolytic plating layer; especially the electroless plating layer).
  • aromatic hydrocarbons, ketones or mixtures thereof are preferable, and among them, a mixed solvent of aromatic hydrocarbons and ketones is more preferable.
  • the medium further improves the adhesion and uniformity of the plating layers (electroless plating layer and electrolytic plating layer; especially the electroless plating layer).
  • halogenated hydrocarbons particularly dichloromethane
  • Dichloromethane has a low boiling point and can be easily removed. Therefore, the surface of the resin base material (particularly the polycarbonate resin base material) is not dissolved more than necessary, and the surface is only swollen. Therefore, the shape of the base material is not changed. It is possible to obtain a good adhesion.
  • the plating base agent may contain various additives such as a cross-linking agent, a curing agent, a defoaming agent, a rheology control agent, a wetting agent, and a leveling agent as long as the effects of the present invention are not impaired. ..
  • the plating base agent containing the binder resin (A) preferably contains a cross-linking agent in order to improve the chemical resistance and thermal resistance of the base layer.
  • the plating base material containing the binder resin (A) contains a cross-linking agent from the viewpoint of further improving the adhesion and uniformity of the plating layers (electroless plating layer and electrolytic plating layer; particularly electroless plating layer). Is preferable.
  • the cross-linking agent may be either a water-soluble cross-linking agent or a water-insoluble cross-linking agent. Even when a water-soluble cross-linking agent is used, the cross-linking reaction proceeds by drying after coating, and the underlying layer becomes insoluble in water.
  • the cross-linking agent may be used alone or in combination of two or more.
  • the cross-linking agent can be appropriately selected depending on the resin used. Examples of the cross-linking agent include oxazoline compounds, carbodiimide compounds, epoxy compounds, and isocyanate compounds, and oxazoline compounds are preferable from the viewpoint of reactivity and pot life.
  • the concentration of the cross-linking agent in the plating base material is not particularly limited, and is 0.001 from the viewpoint of further improving the adhesion and uniformity of the plating layers (electroless plating layer and electrolytic plating layer; particularly electroless plating layer). It is preferably ⁇ 1% by mass, more preferably 0.001 to 0.1% by mass, and even more preferably 0.008 to 0.025% by mass.
  • the concentration of the cross-linking agent is a ratio to the total amount of the plating base agent.
  • the curing agent may be contained in a plating base agent containing the binder resin (B).
  • the curing agent include formaldehyde adducts such as phenol resin, urea, melamine, benzoguanamine and acetguanamine, glioxal adducts such as urea and acrylamide, and alkyl compounds of these adducts using alcohols having 1 to 6 carbon atoms.
  • examples thereof include amino resins, epoxy resins, acid anhydrides, isocyanate compounds and their blocked isocyanate compounds, aziridine compounds, carbodiimide group-containing compounds, and oxazoline group-containing compounds.
  • isocyanate compounds, blocked isocyanate compounds thereof, epoxy resins, and oxazoline group-containing compounds are preferable because they are excellent in curing reactivity.
  • an isocyanate compound and a blocked isocyanate compound thereof are preferable because they have excellent curing reactivity at a relatively low temperature of 150 ° C. or lower and can minimize the thermal effect on the substrate.
  • isocyanate compound examples include aromatic diisocyanates such as 4,4'-diphenylmethane diisocyanate, tolylene diisocyanate, and xylylene diisocyanate, aliphatic diisocyanate monomers such as hexamethylene diisocyanate [HDI], isophorone diisocyanate, and dicyclohexylmethane diisocyanate, and them.
  • aromatic diisocyanates such as 4,4'-diphenylmethane diisocyanate, tolylene diisocyanate, and xylylene diisocyanate
  • aliphatic diisocyanate monomers such as hexamethylene diisocyanate [HDI], isophorone diisocyanate, and dicyclohexylmethane diisocyanate, and them.
  • HDI hexamethylene diisocyanate
  • isophorone diisocyanate dicyclohexylmethane diiso
  • hexamethylene diisocyanate [HDI], 4,4'-diphenylmethane diisocyanate, and tolylene diisocyanate are preferable, hexamethylene diisocyanate [HDI] is more preferable, and the curing reaction rate is fast, because performance such as adhesion is improved. Therefore, 4,4'-diphenylmethane diisocyanate is preferable. Further, an amino resin is preferable because it is possible to form a coating film having excellent solvent resistance and processability.
  • the concentration of the curing agent in the plating base material is not particularly limited, and is 0.001 from the viewpoint of further improving the adhesion and uniformity of the plating layers (electroless plating layer and electrolytic plating layer; particularly electroless plating layer). It is preferably ⁇ 1% by mass, more preferably 0.001 to 0.1% by mass, and even more preferably 0.008 to 0.025% by mass.
  • the concentration of the curing agent is a ratio to the total amount of the plating base material.
  • the method for producing the plating base material of the present invention is not particularly limited, and examples thereof include a method for producing a dispersion of nanowires and a dispersion or solution of a binder resin, and mixing them.
  • the mixing method is not particularly limited, and for example, a method of adding the nanowire dispersion to the binder resin dispersion or solution while stirring, or a method of stirring the binder resin dispersion or solution to the nanowire dispersion. There is a method of adding while adding.
  • the above-mentioned additives may be independently mixed with the nanowire dispersion or the binder resin dispersion or solution, or the nanowire dispersion and the binder resin dispersion or solution are mixed. May be mixed after.
  • the method for producing the nanowire dispersion used in the present invention is not particularly limited.
  • the nanowire dispersion can be produced by any known method.
  • a dispersion of nanowires can be produced by dispersing commercially available nanowires in water.
  • a wire dispersion may be produced.
  • nickel nanowires having a particle-connected shape suitable for the present invention can be produced in good yield.
  • the reduction reaction is preferably carried out in glycol, and more preferably carried out in ethylene glycol from the viewpoint of viscosity and boiling point.
  • the concentration of nickel ions is preferably 10 to 25 ⁇ mol / g, more preferably 15 to 20 ⁇ mol / g with respect to the total amount of the reaction solution.
  • the nickel citrate complex can be obtained by adding trisodium citrate to a glycol solution in which nickel ions are dissolved.
  • the concentration of trisodium citrate is preferably 0.5 to 2.0 ⁇ mol / g, more preferably 1.0 to 1.5 ⁇ mol / g, based on the total amount of the reaction solution.
  • the reaction solution is alkaline because it induces the reduction reaction of nickel ions.
  • sodium hydroxide, potassium hydroxide and the like may be added.
  • sodium hydroxide When sodium hydroxide is added, its concentration is preferably 10 to 40 ⁇ mol / g, more preferably 20 to 30 ⁇ mol / g, based on the total amount of the reaction solution.
  • ammonia may be easily available 28% aqueous ammonia.
  • the concentration thereof is preferably 0.1 to 0.8 mmol / g and preferably 0.3 to 0.6 mmol / g with respect to the total amount of the reaction solution.
  • a parallel magnetic field having a magnetic flux density of about 10 to 200 mT at the center of the reaction vessel by a magnetic circuit composed of a neodymium magnet or the like.
  • the reduction reaction is started by adding a reducing agent.
  • a reducing agent hydrazine monohydrate is preferable.
  • the concentration of hydrazine monohydrate is preferably 5 to 40 ⁇ mol / g, more preferably 15 to 25 ⁇ mol / g, based on the total amount of the reaction solution.
  • the reduction reaction is preferably carried out in a temperature range of 80 to 100 ° C., and more preferably carried out in a temperature range of 85 to 95 ° C. If the reduction reaction is carried out at a temperature exceeding 100 ° C., bumping of ammonia or the like may occur and nanowires may not be obtained. On the other hand, if the reduction reaction is carried out at a temperature of less than 80 ° C., the rate of the reduction reaction may be significantly reduced.
  • the reduction time of the reduction reaction is not particularly limited as long as nanowires can be produced, but it is usually 10 minutes to 1 hour, preferably 10 to 30 minutes.
  • Nanowires can be easily isolated by filtration such as suction filtration after the reduction reaction.
  • the isolated nanowires can be mixed with the medium to adjust the solid content to the desired concentration.
  • the method for producing the binder resin solution or dispersion used in the present invention is not particularly limited, and for example, the binder resin may be mixed and dissolved in a medium, or the binder resin may be mixed and dispersed in a medium. Can be done.
  • the dispersion liquid of the binder resin (particularly the binder resin (A)) can be produced by the following method.
  • the method for producing the dispersion liquid of the binder resin is not particularly limited, and for example, the binder resin, the basic compound, water, and if necessary, an organic solvent are produced by heating and stirring in a sealable container. Can be done. According to the above method, a dispersion liquid of a binder resin can be efficiently obtained without substantially adding a non-volatile water-forming aid such as an emulsifier component or a compound having a protective colloidal action.
  • the container is provided with a tank into which a liquid can be charged and can appropriately stir the mixture of the medium and the binder resin charged in the tank.
  • a liquid can be charged and can appropriately stir the mixture of the medium and the binder resin charged in the tank.
  • an apparatus widely known to those skilled in the art as a solid / liquid agitator or an emulsifier can be used, and it is preferable to use an apparatus capable of pressurizing 0.1 MPa or more.
  • the stirring method and the rotation speed of stirring are not particularly limited, but sufficient dispersion is achieved even with low-speed stirring such that the binder resin is suspended in the medium, and high-speed stirring (for example, 1000 rpm or more). Is not required. Therefore, the dispersion can be produced even with a simple device.
  • water, a binder resin, a basic compound, water, and if necessary, an organic solvent are put into the tank of this device, and the mixture is preferably stirred and mixed at a temperature of 40 ° C. or lower.
  • the binder resin is sufficiently dispersed by keeping the temperature in the tank at 70 to 210 ° C., preferably 80 to 180 ° C., more preferably 90 to 150 ° C., and continuing stirring for preferably 5 to 120 minutes.
  • a stable dispersion can be obtained by solubilizing and then cooling to 40 ° C. or lower, preferably under stirring. If the temperature in the tank is less than 70 ° C., the dispersion of the binder resin may not proceed sufficiently.
  • the molecular weight of the binder resin may decrease.
  • a heating method inside the tank heating from the outside of the tank is preferable, and for example, heating using oil or water or attaching a heater to the tank can be used for heating.
  • the cooling method in the tank include a method of allowing air to cool naturally at room temperature and a method of cooling using oil or water at 0 to 40 ° C.
  • the basic compound include dimethylaminoethanol and triethylamine.
  • the obtained dispersion liquid of the binder resin can be adjusted to a desired solid content concentration by, for example, distilling or diluting the dispersion medium.
  • the dispersion liquid of the binder resin is obtained by dispersing the binder resin in the dispersion medium and preparing it into a uniform liquid.
  • uniform liquid means that, in appearance, no part having a solid content concentration that is locally different from other parts, such as precipitation, phase separation, or skinning, is found in the dispersion. means.
  • the dispersed particle size of the binder resin is preferably a number average particle size of 1 ⁇ m or less, preferably 0.8 ⁇ m or less, from the viewpoint of stability when mixed with other components and storage stability after mixing. More preferred.
  • the number average particle size of the binder resin can be measured by a dynamic light scattering method.
  • the resin base material By coating the resin base material with the plating base material of the present invention, it is possible to obtain a laminate having a plating base layer on the surface.
  • the shape of the resin base material that can be coated is not particularly limited, and may be a three-dimensional molded product as well as a film or sheet.
  • the resin base material used in the present invention is not particularly limited as long as it is within the scope of the object of the present invention, and examples of the resin constituting the resin base material include a polycarbonate resin; a polyester resin such as a polyethylene terephthalate resin and a polybutylene terephthalate resin. ; Polyethylene resin, polypropylene resin and other polyolefin resins can be mentioned.
  • a polycarbonate resin base material is preferable, and a general-purpose BisA type polycarbonate resin base which is superior in heat resistance and impact strength. The material is more preferable.
  • the BisA type polycarbonate resin is a polycarbonate resin containing BisA and / or an alkylene oxide adduct thereof as a monomer component.
  • the binder resin (A) has a (meth) acrylic acid ester component, so that the obtained plating base layer has higher adhesion to the polycarbonate resin base material. ..
  • the coating method on the resin base material is not particularly limited, and can be appropriately selected according to the shape of the resin base material.
  • Examples of the coating method for a film or a sheet include die coating, and examples of a coating method for a three-dimensional molded product include dip coating and spray coating.
  • the film thickness of the plating base layer of the present invention is not particularly limited, but is preferably 0.5 to 5 ⁇ m, and preferably 1 to 3 ⁇ m. The thicker the film thickness, the stronger the adhesion, but the more difficult it is to adapt to a complicated shape.
  • a plating base layer can be provided on the resin base material by immersing it in the electroless plating solution as it is without requiring a complicated process such as etching.
  • the plating method include a method of performing electroless plating and a method of performing electrolytic plating, but the method of performing electroless plating is more general.
  • electroless plating can be suitably applied by using nickel nanowires as nanowires. From the viewpoint of further improving the adhesion and uniformity of the plating layers (electroless plating layer and electrolytic plating layer; especially electroless plating layer), electroless plating is performed on the laminate formed by coating the plating base material on the resin base material. After that, it is preferable to perform electrolytic plating.
  • the conditions for electroless plating are not particularly limited, but for example, the plating layer can be formed by immersing at 80 to 95 ° C., which is a general condition for electroless plating, for about 10 to 20 minutes.
  • an electroless plating layer can be provided simply by coating a resin base material, distilling off a solvent if necessary, and immersing the plating base material in a plating solution. Therefore, plating can be performed simply and inexpensively as compared with the conventional method of providing a plating layer by etching or the like. Further, by using the plating base agent of the present invention, a base layer in which a part of the nanowire is exposed on the surface and the other part is buried in the binder resin can be provided. As a result, a plating layer having a very strong anchoring effect and a high adhesive force can be provided on the resin base material.
  • Electroplating is preferably performed at a low voltage so that the binder resin does not decompose. Specifically, the voltage is about 1 to 3 V (particularly 1.5 V) at 30 to 50 ° C. (particularly 40 ° C.). It may be processed for about 10 to 20 minutes.
  • the plating base material was evaluated by the following method.
  • Ox Oxazoline group-containing polymer, Epocross WS700 manufactured by Nippon Shokubai Co., Ltd., solid content concentration 25% by mass
  • NiP Nickel particles, manufactured by Vale, nickel powder Type123
  • PC Polycarbonate (Made by Teijin, L-1225Y)
  • PVP Polyvinylpyrrolidone (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., K90), K value 90
  • Example 1A (Preparation of aqueous dispersion of nanowires) 4.00 parts by mass of nickel chloride hexahydrate and 0.375 parts by mass of trisodium citrate dihydrate were added to ethylene glycol to make a total of 500 parts by mass. The solution was heated to 90 ° C. to dissolve all. 1.00 parts by mass of sodium hydroxide was added to ethylene glycol to give a total of 475 parts by mass. The solution was heated to 90 ° C. to dissolve sodium hydroxide.
  • the heater was turned on and heated, and the temperature inside the system was maintained at 125 ° C. and the mixture was stirred for 60 minutes. Then, the mixture was immersed in a water bath and cooled to room temperature (about 25 ° C.) while stirring, and 80.0 parts by mass of distilled water was added. The obtained dispersion was placed in a container and depressurized while heating at 60 ° C., and 155.0 parts by mass of the medium was distilled off. After cooling, the liquid component is pressure-filtered (air pressure 0.2 MPa) with a 300-mesh stainless steel filter (wire diameter 0.035 mm, plain weave), and an aqueous dispersion of EAM with a uniform milky white solid content concentration of 20% by mass. Was prepared.
  • Example 2A (Preparation of ethylene glycol dispersion of nanowires) The nanowires obtained in Example 1A and ethylene glycol were mixed to prepare an ethylene glycol dispersion of NiNW having a solid content concentration of 1.0% by mass.
  • Example 3A (Preparation of ethanol dispersion of nanowires) The nanowires obtained in Example 1A and ethanol were mixed to prepare an ethanol dispersion of NiNW having a solid content concentration of 1.0% by mass.
  • Example 4A Preparation of tetrahydrofuran dispersion of nanowires
  • the nanowires obtained in Example 1A and tetrahydrofuran (THF) were mixed to prepare a THF dispersion of NiNW having a solid content concentration of 1.0% by mass.
  • a plating base agent was prepared by adding 10.0 parts by mass of a THF dispersion of NiNW to 90.0 parts by mass of a THF solution of EAM with stirring.
  • Examples 5A-8A The same operation as in Example 1A was performed for plating, except that the blending amounts of the NiNW dispersion and the EAM dispersion were changed so that the mass ratio of NiNW and EAM in the plating base material had the composition shown in Table 1. A base material was prepared.
  • Example 9A (Preparation of plating base material) After gradually diluting 0.2 parts by mass of the aqueous dispersion of EAM with 89.78 parts by mass of water, 0.02 parts by mass of Ox was gradually added and the mixture was sufficiently stirred. Then, 10.0 parts by mass of an aqueous dispersion of NiNW was added with stirring to prepare a plating base material.
  • Examples 10A to 13A The same operation as in Example 9A was performed except that the blending amounts of the NiNW dispersion, the EAM dispersion, and Ox were changed so that the mass ratio of NiNW, EAM, and Ox in the plating base material had the composition shown in Table 1. This was done to prepare a plating substrate.
  • Comparative Example 1A Preparation of plating base material After gradually diluting 0.9 parts by mass of the aqueous dispersion of EAM with 99.0 parts by mass of water, 0.10 parts by mass of NiP was added with stirring to prepare a plating base material.
  • Comparative Example 2A The same operation as in Comparative Example 1A was performed except that the blending amounts of the dispersion liquid of NiP and EAM and water were changed so that the mass ratio of NiP and EAM in the plating base agent had the composition shown in Table 1. The agent was prepared.
  • Comparative Example 3A After gradually diluting 0.2 parts by mass of the aqueous dispersion of EAM with 99.66 parts by mass of water, 0.04 parts by mass of Ox was gradually added and the mixture was sufficiently stirred. Then, 0.10 parts by mass of NiP was added with stirring to prepare a plating base agent.
  • reaction product was put into a large amount of acetone to precipitate a resin.
  • This resin was further washed with acetone several times to remove unreacted maleic anhydride, and then dried under reduced pressure to synthesize a polyolefin-based resin composed of an acid-modified propylene / butene / ethylene ternary copolymer.
  • a stirrer equipped with a hermetically sealed pressure-resistant glass container equipped with a heater, 45.0 parts by mass of the above-mentioned polyolefin resin, 105.0 parts by mass of tetrahydrofuran, 3.0 parts by mass of cyclohexane, and 9.0 parts by mass.
  • a portion of dimethylaminoethanol and 138.0 parts by mass of distilled water were charged in a glass container, and the stirring blade was stirred at a rotation speed of 300 rpm. While maintaining this state, the heater was turned on and heated, and the temperature inside the system was maintained at 125 ° C. and the mixture was stirred for 60 minutes. Then, the mixture was immersed in a water bath and cooled to room temperature (about 25 ° C.) while stirring, and 80.0 parts by mass of distilled water was added. The obtained dispersion was placed in a container and depressurized while heating at 60 ° C., and 155.0 parts by mass of the medium was distilled off.
  • the liquid component in the container is pressure-filtered (air pressure 0.2 MPa) with a 300 mesh stainless steel filter (wire diameter 0.035 mm, plain weave) to obtain a milky white uniform solid content of 20% by mass of PBE.
  • An aqueous dispersion was prepared.
  • Comparative Examples 5A-8A The same operation as in Comparative Example 4A was performed except that the blending amounts of the NiNW dispersion, the PBE dispersion, and water were changed so that the mass ratio of NiNW and PBE in the plating base material had the composition shown in Table 1. , A plating base material was prepared.
  • Comparative Example 9A The same operation as in Example 9A was carried out except that EAM was changed to PBE, and a plating base material was prepared.
  • Comparative Examples 10A to 13A Similar to Comparative Example 9A except that the blending amounts of the NiNW dispersion, the PBE dispersion, Ox, and water are changed so that the mass ratio of NiNW, PBE, and Ox in the plating base material has the composition shown in Table 1. The operation was performed to prepare a plating base material.
  • Table 1 shows the composition of the plating base agent and the evaluation results of the laminate obtained in the examples and comparative examples of this experimental example.
  • Examples 1A to 13A since a plating base agent containing nanowires and a binder resin having a hydrophilic group component and a (meth) acrylic acid ester component was used, the polycarbonate resin base material could be obtained by simply immersing the plating base material in an electroless plating solution. On the other hand, it was possible to provide a plating layer having high adhesion. In particular, in Examples 9A to 13A, since the oxazoline compound was contained, the chemical resistance of the base layer was improved, and even after electrolytic plating, high adhesion to the polycarbonate resin base material was maintained.
  • Examples 1A, 5A to 8A it is more uniform and higher adhesion when a plating base material having a mass ratio of nanowire and binder resin of 0.5 to 2.0 is used. It can be seen that the electroless plating layer having can be obtained.
  • Examples 10A and 11A are compared with other Examples and Comparative Examples, when the binder resin (A) is used, the mass ratio of the nanowire to the binder resin is 0.5 to 2.0, and the cross-linking agent. It can be seen that an electroless plating layer and an electrolytic plating layer having a more uniform and higher adhesive force can be obtained by using a plating base agent further containing (particularly an oxazoline compound).
  • Comparative Examples 1A to 3A since particles were used instead of nanowires, only a plating layer (particularly an electroless plating layer) having poor adhesion and prone to peeling could be obtained.
  • Comparative Examples 4A to 13A since a polymer containing no ester bond was used in the binder resin, only a plating layer having poor adhesion such as peeling during electrolytic plating after electrolytic plating could be obtained. Specifically, in Comparative Examples 4A to 13A, since the polymer containing no ester bond was used in the binder resin, the uniformity or adhesion of the electroless plating layer was inferior, and the electroless plating layer having excellent uniformity and adhesion was assumed. Even if the above was obtained, the uniformity and / or adhesion of the electroplating layer formed on the electroless plating layer was inferior.
  • Example 1B Preparation of nanowire dispersion 4.00 parts by mass of nickel chloride hexahydrate and 0.375 parts by mass of trisodium citrate dihydrate were added to ethylene glycol to make a total of 500 parts by mass. The solution was heated to 90 ° C. to dissolve all. 1.00 parts by mass of sodium hydroxide was added to ethylene glycol to give a total of 475 parts by mass. The solution was heated to 90 ° C. to dissolve sodium hydroxide.
  • the esterification reaction was allowed to proceed for 3 hours (esterification reaction). After 3 hours, the temperature in the system was adjusted to 240 ° C. and the pressure in the system was reduced. After the inside of the system reached a high vacuum (pressure: 0.1 to 10-5 Pa), a polymerization reaction was further carried out for 3.0 hours (polycondensation reaction). After the polymerization was completed, the copolymerized polyester resin A (PES-A) was dispensed from the reactor.
  • PES-A copolymerized polyester resin A
  • Examples 2B-6B The same operation as in Example 1B except that the blending amount of the NiNW dispersion and the copolymerized polyester resin A solution is changed so that the mass ratio of NiNW and the copolyester resin in the plating base material has the composition shown in Table 2. Was carried out to prepare a plating base material.
  • Example 7B (Preparation of copolymerized polyester resin B (PES-B) solution) 83 parts by mass (50 mol ratio) of terephthalic acid (TPA), 83 parts by mass (50 mol ratio) of isophthalic acid (IPA), 38 parts by mass (62 mol ratio) of ethylene glycol (EG), 66 parts by mass of neopentyl glycol (NPG) 50 parts by mass (5 mol ratio) of PTMG1000 (PTMG) and 0.1 part by mass of tetrabutyl titanate as a polymerization catalyst were charged into the reactor, and the inside of the system was replaced with nitrogen. Then, the reactor was heated at 245 ° C. and melted while stirring these raw materials at 1000 rpm.
  • PES-B terephthalic acid
  • IPA isophthalic acid
  • EG ethylene glycol
  • NPG neopentyl glycol
  • PTMG1000 PTMG1000
  • tetrabutyl titanate as
  • the esterification reaction was allowed to proceed for 3 hours (esterification reaction). After 3 hours, the temperature in the system was adjusted to 240 ° C. and the pressure in the system was reduced. After the inside of the system reached a high vacuum (pressure: 0.1 to 10-5 Pa), a polymerization reaction was further carried out for 3.0 hours (polycondensation reaction). After the polymerization was completed, the copolymerized polyester resin B (PES-B) was dispensed from the reactor.
  • PES-B copolymerized polyester resin B
  • Example 8B (Preparation of copolymerized polyester resin C solution) 83 parts by mass (50 mol ratio) of terephthalic acid (TPA), 83 parts by mass (50 mol ratio) of isophthalic acid (IPA), 42 parts by mass (67 mol ratio) of ethylene glycol (EG), 71 mass of neopentyl glycol (NPG) A part (63 mol ratio) and 0.1 part by mass of tetrabutyl titanate as a polymerization catalyst were charged into the reactor, and the inside of the system was replaced with nitrogen. Then, the reactor was heated at 245 ° C. and melted while stirring these raw materials at 1000 rpm.
  • TPA terephthalic acid
  • IPA isophthalic acid
  • EG ethylene glycol
  • NPG neopentyl glycol
  • the esterification reaction was allowed to proceed for 3 hours (esterification reaction). After 3 hours, the temperature in the system was adjusted to 240 ° C. and the pressure in the system was reduced. After the inside of the system reached a high vacuum (pressure: 0.1 to 10-5 Pa), a polymerization reaction was further carried out for 3.0 hours (polycondensation reaction). After the polymerization was completed, the copolymerized polyester resin C (PES-C) was dispensed from the reactor.
  • PES-C copolymerized polyester resin C
  • Example 9B (Preparation of total aromatic copolymerized polyester resin D solution) 83 parts by mass (50 mol ratio) of terephthalic acid (TPA), 83 parts by mass (50 mol ratio) of isophthalic acid (IPA), 114 parts by mass (50 mol ratio) of 2,2-bis (4-hydroxyphenyl) propane (BisA) ), 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane (BizTMC) 230 parts by mass (75 mol ratio), 255 parts by mass of anhydrous acetic acid (250 mol ratio), equipped with a stirrer The mixture was charged in a reaction vessel and reacted by stirring and mixing at normal pressure at 140 ° C.
  • TPA terephthalic acid
  • IPA isophthalic acid
  • BisA 2,2-bis (4-hydroxyphenyl) propane
  • BizTMC 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane
  • Comparative Example 1B (Preparation of plating base material) 1.0 part by mass of a 10.0% by mass copolymerized polyester resin A (PES-A) solution and 98.9 parts by mass of methyl ethyl ketone were mixed, and 0.1 part by mass of NiP was added with stirring. A plating base material was prepared.
  • Example 2B Preparation of NiNW aqueous dispersion
  • NiNW prepared in the same manner as in Example 1B was mixed with water to prepare an aqueous dispersion of NiNW having a solid content concentration of 1.0% by mass.
  • Table 2 shows the composition of the plating base agent and the evaluation results of the laminate obtained in the examples and comparative examples of this experimental example.
  • Examples 1B to 9B used a plating base agent containing nanowires and a copolymerized polyester resin, a plating layer having high adhesion to a polycarbonate resin base material could be obtained simply by immersing in an electroless plating solution. I was able to set it up.
  • a plating base agent containing a copolymerized polyester resin containing 2,2-bis (4-hydroxyphenyl) propane and / or an alkylene oxide adduct thereof as a copolymerization component was used. , The electroless plating layer having higher adhesion to the polycarbonate resin base material could be provided.
  • Comparative Example 1B since particles were used instead of nanowires, a plating layer could not be obtained.
  • Comparative Example 2B since a polymer containing no ester bond was used in the binder resin, the base material was non-uniform, and an electroless plating layer having excellent adhesion could not be obtained. Specifically, in Comparative Example 2B, since a polymer containing no ester bond was used in the binder resin, the uniformity or adhesion of the electroless plating layer was inferior.
  • Example 1C (Preparation of nanowire dispersion) 4.00 parts by mass of nickel chloride hexahydrate and 0.375 parts by mass of trisodium citrate dihydrate were added to ethylene glycol to make a total of 500 parts by mass. The solution was heated to 90 ° C. to dissolve all. 1.00 parts by mass of sodium hydroxide was added to ethylene glycol to give a total of 475 parts by mass. The solution was heated to 90 ° C. to dissolve sodium hydroxide.
  • PC polycarbonate resin
  • a plating base material was prepared by adding 90.0 parts by mass of a PC solution to 10.0 parts by mass of a dispersion of NiNW with stirring.
  • Example 2C to 6C The same operation as in Example 1C was performed except that the blending amounts of the NiNW dispersion and the polycarbonate resin (PC) solution were changed so that the mass ratio of NiNW and PC in the plating base material had the composition shown in Table 3. , A plating base material was prepared.
  • Comparative Example 1C Preparation of plating base material 0.1 part by mass of PC was dissolved in 99.8 parts by mass of dichloromethane, and 0.1 part by mass of NiP was added with stirring to prepare a plating base material.
  • Comparative Example 2C 0.1 part by mass of PVP was dissolved in 89.9 parts by mass of dichloromethane, and 10.0 parts by mass of a dichloromethane dispersion of NiNW was added with stirring to prepare a plating base material.
  • Table 3 shows the composition of the plating base agent and the evaluation results of the laminate obtained in the examples and comparative examples of this experimental example.
  • Examples 1C to 6C since the plating base agent containing nanowires and the polycarbonate resin was used, it is possible to provide a plating layer having high adhesion to the polycarbonate resin base material simply by immersing it in the electroless plating solution. did it.
  • Examples 1C to 4C since the plating base material having a mass ratio of nanowire and polycarbonate resin of 1.0 or more was used, an electroless plating layer having a more uniform and higher adhesion could be obtained.
  • Examples 1C, 3C, and 4C since the plating base material having a mass ratio of nanowire and polycarbonate resin of 1.0 to 3.0 was used, electroplating having more uniform and higher adhesion on the electroless plating layer. A plating layer could be obtained.
  • Examples 1C, 3C and 4C are compared with other Examples and Comparative Examples, when the binder resin (C) is used, the mass ratio of the nanowire to the binder resin is 0.8 to 3.2 (particularly 1. From 0 to 3.0), it can be seen that an electroless plating layer and an electrolytic plating layer having a more uniform and higher adhesion can be obtained.
  • Comparative Example 1C since particles were used instead of nanowires, a plating layer could not be obtained.
  • Comparative Example 2C since a polymer containing no ester bond was used as the binder resin, the base layer was non-uniform and the adhesion of the electroless plating layer was weak. Specifically, in Comparative Example 2C, since a polymer containing no ester bond was used in the binder resin, the uniformity or adhesion of the electroless plating layer was inferior.
  • the plating base material of the present invention is useful for forming a plating layer on a resin base material.
  • the plating base agent of the present invention is useful for forming a plating base layer formed between the resin base material and the plating layer for the purpose of improving the adhesion between them.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemically Coating (AREA)

Abstract

The present invention provides a plating undercoating agent for forming an undercoating layer which makes it possible to provide a plating layer having a high adhesion force by a simple process without requiring the etching with chromic acid that has high environmental load. The present invention relates to a plating undercoating agent comprising a nanowire and a binder resin, wherein the binder resin is a polymer containing an ester bond.

Description

めっき下地剤およびそれを用いた積層体Plating base material and laminate using it
 本発明は、めっき下地剤およびそれを用いた積層体に関するものである。 The present invention relates to a plating base material and a laminate using the same.
 樹脂基材への金属めっき(以下、単に「めっき」と略称する場合がある。)は、例えば、自動車部品等の樹脂成形体への高級感や美観の付与や、電磁遮蔽や、プリント基板や大規模集積回路等の配線技術等に幅広く用いられている。 Metal plating on a resin base material (hereinafter, may be simply abbreviated as "plating") is, for example, imparting a sense of quality and aesthetics to a resin molded body such as an automobile part, electromagnetic shielding, a printed circuit board, or the like. It is widely used in wiring technology for large-scale integrated circuits.
 めっきを施すためには、その前処理として、樹脂表面を脱脂し、クロム酸で微細な凹凸を設けて(エッチング)、中和洗浄し、スズ-パラジウムコロイドをエッチング部に吸着させ(キャタリスト)、酸で処理することでスズを溶出させ、金属パラジウムを生成させる(アクセレーター)ことが通常である。しかしながら、前記方法は、脱脂からアクセレーターに至るまでの前処理が非常に煩雑であるという問題があり、用いるクロム酸は環境負荷が高いという問題がある。 In order to perform plating, as a pretreatment, the resin surface is degreased, fine irregularities are provided with chromic acid (etching), neutralized cleaning is performed, and tin-palladium colloid is adsorbed on the etching portion (catalyst). , It is usual to elute tin by treating with an acid to produce metallic palladium (accelerator). However, the above method has a problem that the pretreatment from degreasing to the accelerator is very complicated, and the chromic acid used has a problem that the environmental load is high.
 上記問題を解決する方法としては、例えば、特許文献1および2に、クロム酸を用いずに基材表面に凹凸を付与する方法が開示されている。また、特許文献3および4には、アクセレーターの工程の代わりに、めっきの起点となる塗料をコーティングする方法が開示されている。 As a method for solving the above problem, for example, Patent Documents 1 and 2 disclose a method of imparting unevenness to the surface of a base material without using chromic acid. Further, Patent Documents 3 and 4 disclose a method of coating a coating material as a starting point of plating instead of the accelerator step.
 また近年では、自動車用途を中心に耐熱および衝撃強度に優れるポリカーボネート樹脂基材へのめっきが検討されている。例えば、非特許文献1には、ポリカーボネート樹脂基材を改質し、エッチング適性を付与した後、めっきを施す方法が開示され、特許文献5には、樹脂表面に、特定の分子接着剤層を設けてめっきを施す方法が開示されている。 In recent years, plating on a polycarbonate resin base material having excellent heat resistance and impact strength has been studied mainly for automobile applications. For example, Non-Patent Document 1 discloses a method of modifying a polycarbonate resin base material to impart etching suitability and then plating, and Patent Document 5 provides a specific molecular adhesive layer on the resin surface. A method of providing and plating is disclosed.
特開2010-270389号公報Japanese Unexamined Patent Publication No. 2010-270389 特開2016-113688号公報Japanese Unexamined Patent Publication No. 2016-113688 特開2017-210630号公報JP-A-2017-210630 特開2017-197848号公報JP-A-2017-197848 特開2008-050541号公報Japanese Unexamined Patent Publication No. 2008-05541
 しかしながら、特許文献1のオゾンを用いて基材表面に凹凸を付与する方法や、特許文献2のレーザーを用いて基材表面に凹凸を付与する方法は、環境負荷が大きいクロム酸を用いる必要がないものの、ピット状のアンカー孔を形成させるのが難しく、アンカー効果が弱く、密着性が劣るという問題があった。 However, it is necessary to use chromic acid, which has a large environmental load, in the method of imparting irregularities on the surface of the base material using ozone of Patent Document 1 and the method of imparting irregularities on the surface of the substrate using the laser of Patent Document 2. However, there are problems that it is difficult to form a pit-shaped anchor hole, the anchor effect is weak, and the adhesion is poor.
 特許文献3や4における、バインダーを含む下地剤を塗布しめっきの起点となる塗料をコーティングする方法では、めっき触媒のパラジウム粒子自体またはパラジウムを表面に露出させるため表面をエッチングする必要があるが、これらの方法では、アンカー効果といえるほどの効果を得ることができず、密着性が劣るという問題があった。 In the method of applying a base material containing a binder and coating a paint which is a starting point of plating in Patent Documents 3 and 4, it is necessary to etch the surface in order to expose the palladium particles of the plating catalyst itself or palladium to the surface. With these methods, it is not possible to obtain an effect that can be said to be an anchor effect, and there is a problem that the adhesion is inferior.
 非特許文献1の方法では、ポリカーボネート樹脂基材にブタジエン等をコンパウンドする必要があるため、ポリカーボネート樹脂基材が本来有する耐熱性や衝撃強度等の特性が低下するという問題があった。また、特許文献5の方法では、ポリカーボネート樹脂基材自身の特性を変化させないものの、表面に接着層を設けただけのため、アンカー効果が弱く、めっき層の密着力が不十分であった。 In the method of Non-Patent Document 1, since it is necessary to compound butadiene or the like with the polycarbonate resin base material, there is a problem that the inherent properties of the polycarbonate resin base material such as heat resistance and impact strength are deteriorated. Further, in the method of Patent Document 5, although the characteristics of the polycarbonate resin base material itself are not changed, the anchor effect is weak and the adhesion of the plating layer is insufficient because only the adhesive layer is provided on the surface.
 本発明は、上記課題を解決するものであって、環境負荷が高いクロム酸を用いてエッチングしなくても、高い密着力を有するめっき層を簡略な工程で設けることができる下地層を形成するためのめっき下地剤を提供することを目的とするものである。 The present invention solves the above-mentioned problems, and forms a base layer capable of providing a plating layer having high adhesion in a simple process without etching with chromic acid having a high environmental load. It is an object of the present invention to provide a plating base material for this purpose.
 本発明はまた、上記課題を解決するものであって、ポリカーボネート樹脂基材を改質することなく、ポリカーボネート樹脂基材に対して高い密着力を有するめっき層を設けることができる下地層を形成するためのめっき下地剤を提供することを目的とするものである。 The present invention also solves the above-mentioned problems, and forms a base layer capable of providing a plating layer having high adhesion to the polycarbonate resin base material without modifying the polycarbonate resin base material. It is an object of the present invention to provide a plating base material for this purpose.
 本発明はさらに、環境負荷が高いクロム酸を用いてエッチングしなくても、より優れた均一性および密着性を有するめっき層(例えば無電解めっき層および電解めっき層)を設けることができる下地層を形成するためのめっき下地剤を提供することを目的とするものである。 The present invention further provides a base layer capable of providing a plating layer having better uniformity and adhesion (for example, an electroless plating layer and an electrolytic plating layer) without etching with chromic acid having a high environmental load. It is an object of the present invention to provide a plating base material for forming the above.
 本発明者らは、ナノワイヤーとエステル結合含有ポリマーを含有するめっき下地剤を用いることにより、上記目的が達成できることを見出し、本発明に到達した。 The present inventors have found that the above object can be achieved by using a plating base agent containing nanowires and an ester bond-containing polymer, and have reached the present invention.
 すなわち、本発明の要旨は、以下の通りである。
<1> ナノワイヤーおよびバインダー樹脂を含有するめっき下地剤であって、
 前記バインダー樹脂がエステル結合含有ポリマーである、めっき下地剤。
<2> 前記エステル結合含有ポリマーが下記のバインダー樹脂(A)~(C)から選択される樹脂である、<1>に記載のめっき下地剤:
バインダー樹脂(A):親水基成分かつ(メタ)アクリル酸エステル成分を有するバインダー樹脂;
バインダー樹脂(B):共重合ポリエステル樹脂;
バインダー樹脂(C):ポリカーボネート樹脂。
<3> さらに媒体を含有する、<1>または<2>に記載のめっき下地剤。
<4> 前記ナノワイヤーがニッケルナノワイヤーである、<1>~<3>のいずれかに記載のめっき下地剤。
<5> 前記バインダー樹脂がバインダー樹脂(A)としての親水基成分かつ(メタ)アクリル酸エステル成分を有するバインダー樹脂であり、
 前記ナノワイヤーと前記バインダー樹脂(A)の質量比率(ナノワイヤー/バインダー樹脂(A))が0.5~2.0である、<1>~<4>のいずれかに記載のめっき下地剤。
<6> 前記バインダー樹脂が、(メタ)アクリル酸エステルと(無水)マレイン酸を共重合成分として含む樹脂である、<5>に記載のめっき下地剤。
<7> さらにオキサゾリン化合物を含有する、<5>または<6>に記載のめっき下地剤。
<8> 前記バインダー樹脂がバインダー樹脂(B)としての共重合ポリエステル樹脂であり、
 前記ナノワイヤーと前記バインダー樹脂(B)の質量比率(ナノワイヤー/バインダー樹脂(B))が1.0~3.0である、<1>~<4>のいずれかに記載のめっき下地剤。
<9> バインダー樹脂(B)が2,2-ビス(4-ヒドロキシフェニル)プロパンおよび/またはそのアルキレンオキサイド付加体を共重合成分として含有する、<8>に記載のめっき下地剤。
<10> 前記バインダー樹脂がバインダー樹脂(C)としてのポリカーボネート樹脂であり、
 前記ナノワイヤーと前記バインダー樹脂(C)の質量比率(ナノワイヤー/バインダー樹脂(C))が1.0~3.0である、<1>~<4>のいずれかに記載のめっき下地剤。
<11> 媒体として、水、トルエンとメチルエチルケトンの混合溶媒、またはジクロロメタンをさらに含有する、<1>~<10>のいずれかに記載のめっき下地剤。
<12> <1>~<11>のいずれかに記載のめっき下地剤を樹脂基材上にコーティングしてなる積層体。
<13> 前記樹脂基材がポリカーボネート樹脂基材である、<12>に記載の積層体。
<14> <12>または<13>に記載の積層体に無電解めっきを施した積層体。
<15> <14>に記載の積層体に電解めっきを施した積層体。
That is, the gist of the present invention is as follows.
<1> A plating base agent containing nanowires and a binder resin.
A plating base agent in which the binder resin is an ester bond-containing polymer.
<2> The plating base agent according to <1>, wherein the ester bond-containing polymer is a resin selected from the following binder resins (A) to (C).
Binder resin (A): Binder resin having a hydrophilic group component and a (meth) acrylic acid ester component;
Binder resin (B): copolymerized polyester resin;
Binder resin (C): Polycarbonate resin.
<3> The plating base agent according to <1> or <2>, which further contains a medium.
<4> The plating base agent according to any one of <1> to <3>, wherein the nanowire is a nickel nanowire.
<5> The binder resin is a binder resin having a hydrophilic group component as the binder resin (A) and a (meth) acrylic acid ester component.
The plating base agent according to any one of <1> to <4>, wherein the mass ratio (nanowire / binder resin (A)) of the nanowire to the binder resin (A) is 0.5 to 2.0. ..
<6> The plating base agent according to <5>, wherein the binder resin is a resin containing (meth) acrylic acid ester and (maleic anhydride) as copolymerization components.
<7> The plating base agent according to <5> or <6>, which further contains an oxazoline compound.
<8> The binder resin is a copolymerized polyester resin as the binder resin (B).
The plating base agent according to any one of <1> to <4>, wherein the mass ratio (nanowire / binder resin (B)) of the nanowire to the binder resin (B) is 1.0 to 3.0. ..
<9> The plating base agent according to <8>, wherein the binder resin (B) contains 2,2-bis (4-hydroxyphenyl) propane and / or an alkylene oxide adduct thereof as a copolymerization component.
<10> The binder resin is a polycarbonate resin as the binder resin (C).
The plating base agent according to any one of <1> to <4>, wherein the mass ratio (nanowire / binder resin (C)) of the nanowire to the binder resin (C) is 1.0 to 3.0. ..
<11> The plating base agent according to any one of <1> to <10>, which further contains water, a mixed solvent of toluene and methyl ethyl ketone, or dichloromethane as a medium.
<12> A laminate obtained by coating a resin base material with the plating base agent according to any one of <1> to <11>.
<13> The laminate according to <12>, wherein the resin base material is a polycarbonate resin base material.
<14> A laminate obtained by subjecting the laminate according to <12> or <13> to electroless plating.
<15> A laminate obtained by subjecting the laminate according to <14> to electrolytic plating.
 本発明によれば、環境負荷が高いクロム酸を用いてエッチングしなくても、高い密着力を有するめっき層を簡略な工程で設けることができる下地層を形成するためのめっき下地剤を提供することができる。 According to the present invention, there is provided a plating base agent for forming a base layer capable of providing a plating layer having high adhesion in a simple process without etching with chromic acid having a high environmental load. be able to.
 本発明によれば、樹脂基材を改質することなく、樹脂基材に対して高い密着力を有するめっき層を設けることができる下地層を形成するためのめっき下地剤を提供することができる。
 本発明のめっき下地剤を用いれば、樹脂基材にコーティング後、溶媒を留去させ、めっき液に浸漬するだけで、めっき層を設けることができるため、従来のエッチング等をおこないめっき層を設ける方法に比べて、簡略かつ安価にめっき層の形成をおこなうことができる。
 また、本発明のめっき下地剤を用いれば、ナノワイヤーの一部が表面に露出し、その他の部分はバインダー樹脂に埋もれた下地層を設けることができるため、非常に強いアンカー効果を有し、高い密着力を有するめっき層を設けることができる。
According to the present invention, it is possible to provide a plating base agent for forming a base layer capable of providing a plating layer having a high adhesion to the resin base material without modifying the resin base material. ..
If the plating base material of the present invention is used, a plating layer can be provided simply by distilling off the solvent after coating the resin base material and immersing it in a plating solution. Therefore, the plating layer is provided by performing conventional etching or the like. Compared with the method, the plating layer can be formed simply and inexpensively.
Further, when the plating base material of the present invention is used, a part of the nanowire is exposed on the surface, and the other part can be provided with a base layer buried in the binder resin, so that it has a very strong anchoring effect. A plating layer having high adhesion can be provided.
 本発明によれば、環境負荷が高いクロム酸を用いてエッチングしなくても、より優れた均一性および密着性を有するめっき層(例えば無電解めっき層および電解めっき層)を設けることができる下地層を形成するためのめっき下地剤を提供することができる。 According to the present invention, a plating layer having better uniformity and adhesion (for example, an electroless plating layer and an electrolytic plating layer) can be provided without etching with chromic acid having a high environmental load. A plating base material for forming a formation can be provided.
<めっき下地剤>
 本発明のめっき下地剤は、ナノワイヤーおよびバインダー樹脂を含有し、通常は媒体をさらに含有する。
<Plating base material>
The plating substrate of the present invention contains nanowires and a binder resin, and usually further contains a medium.
[ナノワイヤー]
 本発明において、ナノワイヤーとは、長さ/直径で示されるアスペクト比が5以上のものを意味する。本発明のめっき下地剤に用いるナノワイヤーは、直径が30~200nmであって、長さが1~50μmの導電体の繊維状物質である。本発明においては、ナノワイヤーの分散性が向上し、めっき下地剤としてハンドリングが容易になるため、ナノワイヤーは、直径が60~150nmであって、長さが10~40μmであることが好ましい。本発明において、めっき下地剤はナノワイヤーを含むため、当該ナノワイヤーの一部が表面に露出し、その他の部分はバインダー樹脂に埋もれた下地層を設けることができる。このため、当該下地層上に形成されるめっき層に対して、非常に強いアンカー効果を発揮し、めっき層の密着性および均一性が十分に向上する。めっき下地剤がアスペクト比5未満のナノワイヤーを含有したり、または粒状の物質を含有したりしても、アンカー効果を十分に発揮できないため、めっき層の密着性および均一性は低下する。
[Nanowire]
In the present invention, the nanowire means a wire having an aspect ratio of 5 or more expressed in length / diameter. The nanowire used in the plating base material of the present invention is a fibrous material of a conductor having a diameter of 30 to 200 nm and a length of 1 to 50 μm. In the present invention, the nanowires preferably have a diameter of 60 to 150 nm and a length of 10 to 40 μm in order to improve the dispersibility of the nanowires and facilitate handling as a plating base material. In the present invention, since the plating base material contains nanowires, a part of the nanowires is exposed on the surface, and the other part can be provided with a base layer embedded in a binder resin. Therefore, it exerts a very strong anchoring effect on the plating layer formed on the base layer, and the adhesion and uniformity of the plating layer are sufficiently improved. Even if the plating base material contains nanowires having an aspect ratio of less than 5, or even if it contains a granular substance, the anchor effect cannot be sufficiently exhibited, so that the adhesion and uniformity of the plating layer are lowered.
 本発明のナノワイヤーは複数の粒子が一次元的に繋がった粒子連結形状を有するものが好ましい。粒子連結形状のナノワイヤーを用いることにより、ナノワイヤー表面に凹凸ができ、バインダー樹脂に埋もれた箇所のアンカー効果がより向上し、より強い密着力を有するめっき層を得ることができる。粒子連結形状は、略球形状を有する複数の粒子が直列かつ連続的に連結されてなる、全体として線状(または繊維状)の形状のことである。このような粒子連結形状においては通常、連結部分(粒子の境界部分)で凹部を形成し、粒子部分で凸部を形成し、粒子の連結方向(ナノワイヤーの長手方向)において凹部と凸部とが連続的に繰り返されている。本発明は、ナノワイヤーが表面に凹凸のない線形状(または繊維形状)を有することを妨げるものではない。 The nanowire of the present invention preferably has a particle-connected shape in which a plurality of particles are unilaterally connected. By using the nanowire having a particle-connected shape, the surface of the nanowire is uneven, the anchoring effect of the portion buried in the binder resin is further improved, and a plating layer having stronger adhesion can be obtained. The particle connection shape is a linear (or fibrous) shape as a whole in which a plurality of particles having a substantially spherical shape are connected in series and continuously. In such a particle connecting shape, a concave portion is usually formed at the connecting portion (boundary portion of the particles), a convex portion is formed at the particle portion, and the concave portion and the convex portion are formed in the connecting direction of the particles (longitudinal direction of the nanowire). Is repeated continuously. The present invention does not prevent nanowires from having a line shape (or fiber shape) with no irregularities on the surface.
 ナノワイヤーは、半導体または金属、もしくは金属酸化物等からなるナノワイヤーが好ましい。中でも、無電解めっきを施す際に、めっきの起点となりやすいことから、金属のナノワイヤーが好ましい。金属の種類は特に限定されないが、例えば、ニッケル、銅、銀が挙げられる。ナノワイヤーは、めっき層(無電解めっき層および電解めっき層;特に無電解めっき層)の密着性および均一性のさらなる向上の観点から、ニッケルナノワイヤーであることが好ましい。 The nanowire is preferably a nanowire made of a semiconductor, a metal, a metal oxide, or the like. Of these, metal nanowires are preferable because they tend to be the starting point of plating when performing electroless plating. The type of metal is not particularly limited, and examples thereof include nickel, copper, and silver. The nanowires are preferably nickel nanowires from the viewpoint of further improving the adhesion and uniformity of the plating layers (electroless plating layer and electrolytic plating layer; particularly electroless plating layer).
 下地層上に無電解めっきを施す場合には、通常、めっきの起点となる触媒金属としては白金、パラジウム等の酸化還元電位の高い貴金属が用いられる。それに対して、本発明では、表面に露出したナノワイヤーの一部を起点としてめっきが成長するため、酸化還元電位が低い金属であってもめっきを成長させることができる。具体的には、標準酸化還元電位が-0.8V以上の金属であってもめっきを成長させることができる。このため、本発明においては、比較的安価な卑金属であっても用いることができる。無電解めっきでは、ニッケルを用いることが多いことから、ナノワイヤーを構成する金属はニッケルが好ましい。 When electroless plating is performed on the base layer, a noble metal having a high oxidation-reduction potential such as platinum or palladium is usually used as the catalyst metal that is the starting point of plating. On the other hand, in the present invention, since the plating grows starting from a part of the nanowires exposed on the surface, the plating can be grown even with a metal having a low redox potential. Specifically, the plating can be grown even with a metal having a standard redox potential of −0.8 V or higher. Therefore, in the present invention, even a relatively inexpensive base metal can be used. Since nickel is often used in electroless plating, nickel is preferable as the metal constituting the nanowire.
 本発明においては、ナノワイヤーが金属酸化物からなるナノワイヤーであっても、金属からなるナノワイヤーを用いる場合と同様、無電解めっきを施すことができる。通常、めっき液には還元剤が含まれているので、その還元剤によって、めっき下地層の表面に露出したナノワイヤーの一部が還元され、それを起点としてめっきが成長する。 In the present invention, even if the nanowire is a nanowire made of a metal oxide, electroless plating can be performed as in the case of using a nanowire made of a metal. Since the plating solution usually contains a reducing agent, a part of the nanowires exposed on the surface of the plating base layer is reduced by the reducing agent, and the plating grows from that as a starting point.
 めっき下地剤中のナノワイヤーの濃度は、ナノワイヤーが分散できれば特に限定されないが、通常は0.01~40質量%であり、0.01~20質量%とすることが好ましい。特に、立体的な成形物に用いる場合は、スプレーでコーティングする場合が多いため、ナノワイヤーの濃度は、0.01~10質量%、特に0.05~0.5質量%とすることが好ましい。ナノワイヤーの濃度はめっき下地剤全量に対する割合である。 The concentration of nanowires in the plating base material is not particularly limited as long as the nanowires can be dispersed, but is usually 0.01 to 40% by mass, preferably 0.01 to 20% by mass. In particular, when used for a three-dimensional molded product, it is often coated with a spray, so the concentration of nanowires is preferably 0.01 to 10% by mass, particularly 0.05 to 0.5% by mass. .. The concentration of nanowires is the ratio to the total amount of plating base material.
[バインダー樹脂]
 バインダー樹脂はエステル結合含有ポリマーである。エステル結合含有ポリマーは、エステル結合を有するポリマーのことである。エステル結合含有ポリマーは、エステル結合をポリマーの主鎖に有していてもよいし、ポリマーの側鎖に有していてもよいし、またはポリマーの主鎖および側鎖の両方に有していてもよい。エステル結合含有ポリマーは、めっき層(無電解めっき層および電解めっき層;特に無電解めっき層)の密着性および均一性のさらなる向上の観点から、ポリマーの側鎖に有することが好ましい。バインダー樹脂がエステル結合を有することで、下地層の濡れ性が向上し、下地層がめっき液をはじきにくくなり、めっき層が形成される際に発生するガスが下地層表面に滞留せず抜けやすくなる。このため、密着性および均一性に十分に優れためっき層(無電解めっき層および電解めっき層;特に無電解めっき層)を形成することができるものと考えられる。
[Binder resin]
The binder resin is an ester bond-containing polymer. The ester bond-containing polymer is a polymer having an ester bond. The ester bond-containing polymer may have an ester bond in the main chain of the polymer, in the side chain of the polymer, or in both the main and side chains of the polymer. May be good. The ester bond-containing polymer is preferably contained in the side chain of the polymer from the viewpoint of further improving the adhesion and uniformity of the plating layers (electroless plating layer and electrolytic plating layer; particularly electroless plating layer). Since the binder resin has an ester bond, the wettability of the base layer is improved, the base layer is less likely to repel the plating solution, and the gas generated when the plating layer is formed does not stay on the surface of the base layer and easily escapes. Become. Therefore, it is considered that a plating layer (electroless plating layer and electrolytic plating layer; particularly electroless plating layer) having sufficiently excellent adhesion and uniformity can be formed.
 バインダー樹脂におけるエステル結合の含有量は特に限定されない。
 例えば、バインダー樹脂がポリマーの主鎖(特に主鎖のみ)にエステル結合を有する場合、エステル結合の含有量は、ポリマーの少なくとも一部(好ましくは全て)の繰り返し単位にエステル結合を含むような含有量であってもよい。
The content of the ester bond in the binder resin is not particularly limited.
For example, when the binder resin has an ester bond in the main chain of the polymer (particularly only the main chain), the content of the ester bond is such that the repeating unit of at least a part (preferably all) of the polymer contains an ester bond. It may be an amount.
 また例えば、バインダー樹脂がポリマーの側鎖(特に側鎖のみ)にエステル結合を有する場合、エステル結合の含有量は、バインダー樹脂をモノマー成分として構成するエステル結合含有モノマーとエステル結合フリーモノマーとの合計量に対して、エステル結合含有モノマーの含有量として、通常は1質量%以上であり、めっき層(無電解めっき層および電解めっき層;特に無電解めっき層)の密着性および均一性のさらなる向上の観点から、好ましくは3質量%以上、より好ましくは6質量%以上、さらに好ましくは8質量%以上である。この場合におけるエステル結合の含有量の上限値は特に限定されず、通常は100質量%であってもよい。エステル結合の含有量は、めっき層(無電解めっき層および電解めっき層;特に無電解めっき層)の密着性および均一性のさらなる向上の観点から、好ましくは40質量%以下、より好ましくは30質量%以下、さらに好ましくは20質量%以下、特に好ましくは18質量%以下である。エステル結合の含有量が少なすぎると、めっき層の基材に対する密着性および/または均一性(特に密着性)が低下する。エステル結合フリーモノマーとは、その分子構造中にエステル結合を有さないモノマー成分のことである。 Further, for example, when the binder resin has an ester bond in the side chain (particularly only the side chain) of the polymer, the content of the ester bond is the total of the ester bond-containing monomer and the ester bond-free monomer constituting the binder resin as a monomer component. The content of the ester bond-containing monomer is usually 1% by mass or more with respect to the amount, and the adhesion and uniformity of the plating layers (electroless plating layer and electrolytic plating layer; particularly electroless plating layer) are further improved. From the above viewpoint, it is preferably 3% by mass or more, more preferably 6% by mass or more, and further preferably 8% by mass or more. The upper limit of the content of the ester bond in this case is not particularly limited, and may be usually 100% by mass. The content of the ester bond is preferably 40% by mass or less, more preferably 30% by mass, from the viewpoint of further improving the adhesion and uniformity of the plating layers (electroless plating layer and electrolytic plating layer; particularly electroless plating layer). % Or less, more preferably 20% by mass or less, and particularly preferably 18% by mass or less. If the content of the ester bond is too small, the adhesion and / or uniformity (particularly adhesion) of the plating layer to the substrate is lowered. The ester bond-free monomer is a monomer component having no ester bond in its molecular structure.
 エステル結合含有ポリマーは、分子構造中、エステル結合を有する限り、いかなる構造を有していてもよい。エステル結合含有ポリマーは、例えば、以下のバインダー樹脂(A)~(C)から選択される樹脂であってもよい:
(A)親水基成分かつ(メタ)アクリル酸エステル成分を有するバインダー樹脂;
(B)共重合ポリエステル樹脂;
(C)ポリカーボネート樹脂。
 これらのバインダー樹脂(A)~(C)については後で詳しく説明するが、バインダー樹脂は分子構造中、エステル結合を有する限り、他のポリマーであってもよい。
The ester bond-containing polymer may have any structure as long as it has an ester bond in the molecular structure. The ester bond-containing polymer may be, for example, a resin selected from the following binder resins (A) to (C):
(A) Binder resin having a hydrophilic group component and a (meth) acrylic acid ester component;
(B) Copolymerized polyester resin;
(C) Polycarbonate resin.
These binder resins (A) to (C) will be described in detail later, but the binder resin may be another polymer as long as it has an ester bond in the molecular structure.
 めっき下地剤中のバインダー樹脂の濃度は特に限定されず、下地層表面にナノワイヤーの一部を露出させやすく、より均一でより高い密着力を有するめっき層を得ることができることから、通常は、ナノワイヤーとバインダー樹脂の質量比率(ナノワイヤー/バインダー樹脂)が0.1~5.0、特に0.2~4.0となるような量である。ナノワイヤーとバインダー樹脂の好ましい質量比率は、後述するように、バインダー樹脂の種類に応じて異なる。めっき下地剤中のバインダー樹脂の濃度は通常、50質量%以下(特に0.01~50質量%)であり、好ましくは0.01~20質量%である。バインダー樹脂の濃度はめっき下地剤全量に対する割合である。 The concentration of the binder resin in the plating base material is not particularly limited, and a part of the nanowires can be easily exposed on the surface of the base layer, and a more uniform and higher adhesion plating layer can be obtained. The mass ratio of the nanowire to the binder resin (nanowire / binder resin) is 0.1 to 5.0, particularly 0.2 to 4.0. The preferable mass ratio of the nanowire and the binder resin differs depending on the type of the binder resin, as will be described later. The concentration of the binder resin in the plating base material is usually 50% by mass or less (particularly 0.01 to 50% by mass), preferably 0.01 to 20% by mass. The concentration of the binder resin is a ratio to the total amount of the plating base material.
 バインダー樹脂の分子量は特に限定されず、通常は数平均分子量が1000以上、特に1000~10万であってもよい。数平均分子量はゲルパーミエーションクロマトグラフィー(GPC)に基づく値を用いている。
 バインダー樹脂のメルトフローレートもまた特に限定されず、通常は10g/10分以下、特に0.1~10g/10分であってもよい。メルトフローレートはJIS K 6730(190℃、2160g荷重)に準拠した値を用いている。
The molecular weight of the binder resin is not particularly limited, and usually, the number average molecular weight may be 1000 or more, particularly 1000 to 100,000. For the number average molecular weight, a value based on gel permeation chromatography (GPC) is used.
The melt flow rate of the binder resin is also not particularly limited, and may be usually 10 g / 10 minutes or less, particularly 0.1 to 10 g / 10 minutes. The melt flow rate uses a value based on JIS K 6730 (190 ° C., 2160 g load).
 本発明においては、バインダー樹脂は、めっき下地層においてナノワイヤーを露出させる観点から、めっき下地剤中、媒体に溶解していてもよいし、もしくは分散または乳化していてもよい。 In the present invention, the binder resin may be dissolved in a medium in the plating base agent, or may be dispersed or emulsified from the viewpoint of exposing the nanowires in the plating base layer.
(親水基成分かつ(メタ)アクリル酸エステル成分を有するバインダー樹脂)
 バインダー樹脂(A)は、親水基成分かつ(メタ)アクリル酸エステル成分を有する。親水性成分と(メタ)アクリル酸エステル成分は、ランダム共重合されていてもよいし、ブロック共重合していてもよいし、グラフト重合していてもよい。このため、均一で高い密着力を有するめっき層(無電解めっき層および電解めっき層;特に無電解めっき層)を得ることができる。
(Binder resin having a hydrophilic group component and a (meth) acrylic acid ester component)
The binder resin (A) has a hydrophilic group component and a (meth) acrylic acid ester component. The hydrophilic component and the (meth) acrylic acid ester component may be randomly copolymerized, block-copolymerized, or graft-polymerized. Therefore, a uniform plating layer having high adhesion (electroless plating layer and electrolytic plating layer; particularly electroless plating layer) can be obtained.
 親水基成分とは、静電的作用や水素結合等によって、水分子と結合をつくり、水中で安定になる原子団を意味する。親水基成分を有することで、濡れ性が向上し、めっき液をはじきにくくなり、めっき層が形成される際に発生するガスが下地層表面に滞留せず抜けやすくなるため、均一なめっき層を形成することができる。親水基成分は、めっき下地剤中の樹脂の分散安定性を向上させ、架橋剤を配合した際には、親水基成分を架橋点として三次元的網目構造を形成することができることから、酸性官能基が好ましい。 The hydrophilic group component means an atomic group that forms a bond with a water molecule by an electrostatic action, a hydrogen bond, or the like and becomes stable in water. By having a hydrophilic group component, the wettability is improved, it becomes difficult to repel the plating solution, and the gas generated when the plating layer is formed does not stay on the surface of the base layer and easily escapes, so that a uniform plating layer can be obtained. Can be formed. The hydrophilic group component improves the dispersion stability of the resin in the plating base material, and when a cross-linking agent is blended, the hydrophilic group component can be used as a cross-linking point to form a three-dimensional network structure. Groups are preferred.
 酸性官能基としては、例えば、カルボキシル基、無水カルボン酸基、スルホン酸基、スルフィン酸基、スルフェン酸基、リン酸基、ホスホン酸基が挙げられ、中でも、めっき層との密着性の観点から、カルボキシル基が好ましい。前記官能基は、樹脂中に1つのみ有してもよいし、複数有していてもよい。また、前記官能基は、塩を形成していてもよい。 Examples of the acidic functional group include a carboxyl group, an anhydrous carboxylic acid group, a sulfonic acid group, a sulfinic acid group, a sulfenic acid group, a phosphoric acid group and a phosphonic acid group, and among them, from the viewpoint of adhesion to the plating layer. , Carboxyl groups are preferred. The resin may have only one functional group or a plurality of functional groups. Moreover, the functional group may form a salt.
 親水基成分(例えば酸性官能基成分)は、バインダー樹脂(A)を構成するモノマー成分として親水基(例えば酸性官能基)含有モノマーを用いることにより、バインダー樹脂(A)に導入され得る。 A hydrophilic group component (for example, an acidic functional group component) can be introduced into the binder resin (A) by using a monomer containing a hydrophilic group (for example, an acidic functional group) as a monomer component constituting the binder resin (A).
 親水基含有モノマー(例えば酸性官能基含有モノマー)としては、例えば、アクリル酸、メタアクリル酸、マレイン酸、無水マレイン酸等が挙げられる。 Examples of the hydrophilic group-containing monomer (for example, an acidic functional group-containing monomer) include acrylic acid, methacrylic acid, maleic acid, maleic anhydride and the like.
 バインダー樹脂(A)における親水基成分(特に親水基含有モノマー)の含有量は特に限定されず、めっき層(無電解めっき層および電解めっき層;特に無電解めっき層)の密着性および均一性のさらなる向上、めっき下地剤中のナノワイヤーの凝集および沈澱防止、コーティング操業性の向上、めっき層(例えば無電解めっき被膜)におけるピンホール等の外観不良の向上の観点から、0.1~15質量%とすることが好ましく、0.5~10質量%とすることがより好ましく、1~7質量%とすることがさらに好ましく、1.5~5質量%とすることが特に好ましい。親水基成分の含有量は、バインダー樹脂を構成する全モノマー成分の合計量に対する親水基含有モノマーの含有割合である。 The content of the hydrophilic group component (particularly the hydrophilic group-containing monomer) in the binder resin (A) is not particularly limited, and the adhesion and uniformity of the plating layers (electroless plating layer and electrolytic plating layer; particularly electroless plating layer) 0.1 to 15 mass from the viewpoint of further improvement, prevention of aggregation and precipitation of nanowires in the plating base material, improvement of coating operability, and improvement of appearance defects such as pinholes in the plating layer (for example, electroless plating film). %, More preferably 0.5 to 10% by mass, further preferably 1 to 7% by mass, and particularly preferably 1.5 to 5% by mass. The content of the hydrophilic group component is the content ratio of the hydrophilic group-containing monomer to the total amount of all the monomer components constituting the binder resin.
 (メタ)アクリル酸エステル成分は、バインダー樹脂(A)を構成するモノマー成分として(メタ)アクリル酸エステル成分含有モノマーを用いることにより、バインダー樹脂(A)に導入され得る。 The (meth) acrylic acid ester component can be introduced into the binder resin (A) by using the (meth) acrylic acid ester component-containing monomer as the monomer component constituting the binder resin (A).
 (メタ)アクリル酸エステル成分(特に(メタ)アクリル酸エステル成分含有モノマー)としては、例えば、(メタ)アクリル酸と炭素数1~30のアルコールとのエステル化物が挙げられる。(メタ)アクリル酸エステル成分は、樹脂基材との密着性の観点から、(メタ)アクリル酸と炭素数1~20のアルコール(特に炭素数1~6(好ましくは1~3)のアルコール)とのエステル化物が好ましい。そのような化合物の具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸デシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリル、およびこれらの混合物が挙げられる。なお、「(メタ)アクリル酸X」とは、「アクリル酸Xおよび/またはメタクリル酸X」を意味する。Xは、例えば、上記したアルコールを構成する、あらゆるアルキル基であってもよい。 Examples of the (meth) acrylic acid ester component (particularly the (meth) acrylic acid ester component-containing monomer) include an esterified product of (meth) acrylic acid and an alcohol having 1 to 30 carbon atoms. The (meth) acrylic acid ester component is a (meth) acrylic acid and an alcohol having 1 to 20 carbon atoms (particularly an alcohol having 1 to 6 carbon atoms (preferably 1 to 3)) from the viewpoint of adhesion to the resin substrate. The esterified product with is preferable. Specific examples of such compounds include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, and (meth) acrylic acid. Includes octyl, decyl (meth) acrylate, lauryl (meth) acrylate, dodecyl (meth) acrylate, stearyl (meth) acrylate, and mixtures thereof. In addition, "(meth) acrylic acid X" means "acrylic acid X and / or methacrylic acid X". X may be, for example, any alkyl group constituting the alcohol described above.
 バインダー樹脂(A)における(メタ)アクリル酸エステル成分(特に(メタ)アクリル酸エステル成分含有モノマー)の含有量は、特に限定されず、めっき層(無電解めっき層および電解めっき層;特に無電解めっき層)の密着性および均一性のさらなる向上、めっき層(無電解めっき層および電解めっき層;特に無電解めっき層)の析出性向上の観点から、1~40質量%とすることが好ましく、3~30質量%とすることがより好ましく、6~20質量%とすることがさらに好ましく、8~18質量%とすることが特に好ましい。(メタ)アクリル酸エステル成分の含有量は、バインダー樹脂を構成する全モノマー成分の合計量に対する(メタ)アクリル酸エステル成分含有モノマーの含有割合である。 The content of the (meth) acrylic acid ester component (particularly the (meth) acrylic acid ester component-containing monomer) in the binder resin (A) is not particularly limited, and the plating layer (electrolytic plating layer and electrolytic plating layer; particularly electroless From the viewpoint of further improving the adhesion and uniformity of the plating layer) and improving the precipitation property of the plating layer (electrolytic plating layer and electrolytic plating layer; particularly the electrolytic plating layer), it is preferably 1 to 40% by mass. It is more preferably 3 to 30% by mass, further preferably 6 to 20% by mass, and particularly preferably 8 to 18% by mass. The content of the (meth) acrylic acid ester component is the content ratio of the (meth) acrylic acid ester component-containing monomer to the total amount of all the monomer components constituting the binder resin.
 バインダー樹脂(A)は、親水基含有モノマーおよび(メタ)アクリル酸エステルモノマー以外に、他のモノマーをモノマー成分として含んでいてもよい。他のモノマーは、親水基成分も(メタ)アクリル酸エステル成分も含有しない重合性モノマーのことである。このような他のモノマーとして、重合性不飽和二重結合を有するあらゆるモノマーが挙げられる。重合性とは付加重合に関する重合性のことである。他のモノマーの具体例として、例えば、エチレン、プロピレン、ブチレン、スチレン等が挙げられる。 The binder resin (A) may contain other monomers as monomer components in addition to the hydrophilic group-containing monomer and the (meth) acrylic acid ester monomer. The other monomer is a polymerizable monomer containing neither a hydrophilic group component nor a (meth) acrylic acid ester component. Other such monomers include any monomer having a polymerizable unsaturated double bond. The polymerizable property is the polymerizable property related to addition polymerization. Specific examples of other monomers include ethylene, propylene, butylene, styrene and the like.
 バインダー樹脂(A)における他のモノマーの含有量は、特に限定されず、めっき層(無電解めっき層および電解めっき層;特に無電解めっき層)の密着性および均一性のさらなる向上の観点から、95質量%以下(例えば1~95質量%)とすることが好ましく、10~90質量%とすることがより好ましく、30~90質量%とすることがさらに好ましく、50~90質量%とすることが特に好ましい。他のモノマーの含有量は、バインダー樹脂を構成する全モノマー成分の合計量に対する他のモノマーの含有割合である。 The content of other monomers in the binder resin (A) is not particularly limited, and from the viewpoint of further improving the adhesion and uniformity of the plating layers (electroless plating layer and electrolytic plating layer; particularly electroless plating layer), the content is not particularly limited. It is preferably 95% by mass or less (for example, 1 to 95% by mass), more preferably 10 to 90% by mass, further preferably 30 to 90% by mass, and 50 to 90% by mass. Is particularly preferable. The content of the other monomer is the content ratio of the other monomer to the total amount of all the monomer components constituting the binder resin.
 親水基成分かつ(メタ)アクリル酸エステル成分を有するバインダー樹脂(A)としては、例えば、(メタ)アクリル酸-(メタ)アクリル酸エステル共重合体、(メタ)アクリル酸エステル-無水マレイン酸共重合体、エチレン-(メタ)アクリル酸エステル-無水マレイン酸共重合体、プロピレン-(メタ)アクリル酸エステル-無水マレイン酸共重合体、スチレン-(メタ)アクリル酸エステル-無水マレイン酸共重合体が挙げられる。中でも、融点や硬さ、樹脂材料およびめっき層との密着性の観点から、エチレン-アクリル酸エステル-無水マレイン酸共重合体が好ましい。 Examples of the binder resin (A) having a hydrophilic group component and a (meth) acrylic acid ester component include (meth) acrylic acid- (meth) acrylic acid ester copolymer and (meth) acrylic acid ester-maleic anhydride. Polymer, ethylene- (meth) acrylic acid ester-maleic anhydride copolymer, propylene- (meth) acrylic acid ester-maleic anhydride copolymer, styrene- (meth) acrylic acid ester-maleic anhydride copolymer Can be mentioned. Of these, an ethylene-acrylic acid ester-maleic anhydride copolymer is preferable from the viewpoint of melting point, hardness, resin material, and adhesion to the plating layer.
 バインダー樹脂(A)の分子量は特に限定されない。めっき下地剤に架橋剤を添加する場合であれば、分子量が数千程度でも十分である。 The molecular weight of the binder resin (A) is not particularly limited. When a cross-linking agent is added to the plating base material, a molecular weight of about several thousand is sufficient.
 バインダー樹脂(A)は、めっき下地層においてナノワイヤーを露出させる観点から、めっき下地剤中、媒体に溶解していてもよいし、もしくは分散または乳化していてもよいが、めっき層(無電解めっき層および電解めっき層;特に無電解めっき層)の密着性および均一性のさらなる向上の観点から、媒体に分散または乳化していることが好ましい。 The binder resin (A) may be dissolved in a medium, or dispersed or emulsified in the plating base agent from the viewpoint of exposing the nanowires in the plating base layer, but the plating layer (electroless electroless). From the viewpoint of further improving the adhesion and uniformity of the plating layer and the electroless plating layer (particularly the electroless plating layer), it is preferably dispersed or emulsified in the medium.
 めっき下地剤中のバインダー樹脂(A)の濃度は、コーティング可能な粘度であれば、特に限定されない。通常、コーティングに適切な粘度とするためには、バインダー樹脂(A)の濃度を50質量%以下とすることが好ましい。特に、立体的な成形物に用いる場合は、スプレーでコーティングする場合が多いため、バインダー樹脂(A)の濃度は、0.01~10質量%とすることが好ましく、0.01~5質量%とすることがより好ましく、0.05~0.5質量%とすることがさらに好ましい。 The concentration of the binder resin (A) in the plating base material is not particularly limited as long as it has a viscosity that allows coating. Usually, in order to obtain an appropriate viscosity for coating, the concentration of the binder resin (A) is preferably 50% by mass or less. In particular, when used for a three-dimensional molded product, it is often coated with a spray, so the concentration of the binder resin (A) is preferably 0.01 to 10% by mass, preferably 0.01 to 5% by mass. More preferably, it is more preferably 0.05 to 0.5% by mass.
 めっき下地剤中のナノワイヤーとバインダー樹脂(A)の質量比率(ナノワイヤー/バインダー樹脂)は、下地層表面にナノワイヤーの一部を露出させやすく、より均一でより高い密着力を有するめっき層を得ることができることから、0.2~3.0とすることが好ましく、0.5~2.0とすることがより好ましく、0.5~1.5とすることがさらに好ましい。 The mass ratio (nanowire / binder resin) of the nanowire and the binder resin (A) in the plating base material makes it easy to expose a part of the nanowire on the surface of the base layer, and the plating layer has a more uniform and higher adhesion. It is preferably 0.2 to 3.0, more preferably 0.5 to 2.0, and even more preferably 0.5 to 1.5, because the above can be obtained.
 バインダー樹脂(A)は、市販品として入手することもできるし、または公知の方法により製造することもできる。 The binder resin (A) can be obtained as a commercially available product, or can be produced by a known method.
(共重合ポリエステル樹脂)
 共重合ポリエステル樹脂は、バインダー樹脂(B)として用いられる。本発明において、共重合ポリエステル樹脂とは、二価カルボン酸成分と二価アルコール成分とから構成され、エステル結合を有する樹脂を意味する。
(Copolymerized polyester resin)
The copolymerized polyester resin is used as the binder resin (B). In the present invention, the copolymerized polyester resin means a resin composed of a divalent carboxylic acid component and a divalent alcohol component and having an ester bond.
 二価カルボン酸としては、例えば、テレフタル酸、イソフタル酸、フタル酸、ナフタレンジカルボン酸、4,4’-ジカルボキシビフェニル、5-ナトリウムスルホイソフタル酸、5-ヒドロキシイソフタル酸、フマル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、トリデカン二酸、テトラデカン二酸、ペンタデカン二酸、ヘキサデカン二酸、ヘプタデカン二酸、オクタデカン二酸、ノナデカン二酸、エイコサン二酸、ドコサン二酸、シュウ酸、マロン酸、コハク酸、グルタル酸、メサコン酸、マレイン酸、イタコン酸、グルタコン酸、シトラコン酸、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、2,5-ノルボルネンジカルボン酸、ダイマー酸、水添ダイマー酸が挙げられる。二価カルボン酸成分は、その誘導体やその無水物であってもよい。二価カルボン酸成分は、上記のうち1種を単独で用いてもよいし、2種以上を併用してもよい。中でも、耐熱性が向上することから、テレフタル酸が好ましい。 Examples of the divalent carboxylic acid include terephthalic acid, isophthalic acid, phthalic acid, naphthalenedicarboxylic acid, 4,4'-dicarboxybiphenyl, 5-sodium sulfoisophthalic acid, 5-hydroxyisophthalic acid, fumaric acid and adipic acid. Pimeric acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, tetradecanedioic acid, pentadecanedioic acid, hexadecanedioic acid, heptadecanedioic acid, octadecanedioic acid, nonadecandioic acid, eikosanni Acid, docosandic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, mesaconic acid, maleic acid, itaconic acid, glutaconic acid, citraconic acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1 , 2-Cyclohexanedicarboxylic acid, 2,5-norbornenedicarboxylic acid, dimeric acid, hydrogenated dimeric acid. The divalent carboxylic acid component may be a derivative thereof or an anhydride thereof. As the divalent carboxylic acid component, one of the above may be used alone, or two or more thereof may be used in combination. Of these, terephthalic acid is preferable because it improves heat resistance.
 二価アルコール成分としては、例えば、エチレングリコール、ネオペンチルグリコール、2-メチル-1,3-プロパンジオール、3-メチル-1,5-ペンタンジオール、2,2-ブチルエチルプロパンジオール、ジエチレングリコール、トリエチレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,4-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、トリシクロデカンジメタノール、スピログリコール、ダイマージオール、1,2-プロパンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-ドデカンジオール、ポリエチレングリコール、ポリテトラメチレングリコール、2,2-ビス(4-ヒドロキシフェニル)プロパン〔BisA〕、BisAのエチレンオキシド付加体〔BisAEO〕、BisAのプロピレンオキシド付加体、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(3,5-ジメチル-4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン〔BisTMC〕、1,1-ビス-(4-ヒドロキシフェニル)-3,3,5,5-テトラメチル-シクロヘキサン、1,1-ビス-(4-ヒドロキシフェニル)-3,3,4-トリメチル-シクロヘキサン、1,1-ビス-(4-ヒドロキシフェニル)-3,3-ジメチル-5-エチル-シクロヘキサン、1,1-ビス-(3,5-ジメチル-4-ヒドロキシフェニル)-3,3,5-トリメチル-シクロヘキサン、1,1-ビス-(3,5-ジフェニル-4-ヒドロキシフェニル)-3,3,5-トリメチル-シクロヘキサン、1,1-ビス-(3-メチル-4-ヒドロキシフェニル)-3,3,5-トリメチル-シクロヘキサン、1,1-ビス-(3-フェニル-4-ヒドロキシフェニル)-3,3,5-トリメチル-シクロヘキサン、1,1-ビス-(3,5-ジクロロ-4-ヒドロキシフェニル)-3,3,5-トリメチル-シクロヘキサン、1,1-ビス-(3,5-ジブロモ-4-ヒドロキシフェニル)-3,3,5-トリメチル-シクロヘキサン、1,1-ビス-(4-ヒドロキシフェニル)-3,3,5-トリメチル-シクロペンタンが挙げられる。二価アルコール成分は、上記のうち1種を単独で用いてもよいし、2種以上を併用してもよい。中でも、耐熱性が高いことから、1,4-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、トリシクロデカンジメタノール、2,2-ビス(4-ヒドロキシフェニル)プロパン〔BisA〕およびBisAのエチレンオキシド付加体、BisAのプロピレンオキシド付加体、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン〔BisTMC〕が好ましい。また、ポリカーボネート樹脂基材との密着性が高くなることから、2,2-ビス(4-ヒドロキシフェニル)プロパン〔BisA〕、BisAのエチレンオキシド付加体、BisAのプロピレンオキシド付加体が好ましい。また、耐湿熱性が高くなることから、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-ドデカンジオール、ポリエチレングリコール、ポリテトラメチレングリコール等の炭素数が6以上のジオールが好ましい。 Examples of the dihydric alcohol component include ethylene glycol, neopentyl glycol, 2-methyl-1,3-propanediol, 3-methyl-1,5-pentanediol, 2,2-butylethylpropanediol, diethylene glycol, and tri. Ethylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, tricyclodecanedimethanol, spiroglycol, dimerdiol, 1,2-propane Diol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-dodecanediol, polyethylene glycol, polytetramethylene Glycol, 2,2-bis (4-hydroxyphenyl) propane [BisA], BisA ethylene oxide adduct [BisAEO], BisA propylene oxide adduct, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1 -Bis (3,5-dimethyl-4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane [BisTMC], 1,1-bis- (4-hydroxy) Diol) -3,3,5,5-tetramethyl-cyclohexane, 1,1-bis- (4-hydroxyphenyl) -3,3,4-trimethyl-cyclohexane, 1,1-bis- (4-hydroxyphenyl) ) -3,3-Diol-5-ethyl-cyclohexane, 1,1-bis- (3,5-dimethyl-4-hydroxyphenyl) -3,3,5-trimethyl-cyclohexane, 1,1-bis- ( 3,5-Diphenyl-4-hydroxyphenyl) -3,3,5-trimethyl-cyclohexane, 1,1-bis- (3-methyl-4-hydroxyphenyl) -3,3,5-trimethyl-cyclohexane, 1 , 1-bis- (3-phenyl-4-hydroxyphenyl) -3,3,5-trimethyl-cyclohexane, 1,1-bis- (3,5-dichloro-4-hydroxyphenyl) -3,3,5 -Trimethyl-Cyclohexane, 1,1-bis- (3,5-dibromo-4-hydroxyphenyl) -3,3,5-trimethyl-cyclohexane, 1,1-bis- (4-hydroxyphenyl) -3,3 , 5-trimethyl-cyclopentane. As the divalent alcohol component, one of the above may be used alone, or two or more thereof may be used in combination. Among them, ethylene oxide of 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, tricyclodecanedimethanol, 2,2-bis (4-hydroxyphenyl) propane [BisA] and BisA because of their high heat resistance. Additives, propylene oxide adducts of BisA, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane [BisTMC] are preferred. Further, 2,2-bis (4-hydroxyphenyl) propane [BisA], an ethylene oxide adduct of BisA, and a propylene oxide adduct of BisA are preferable because the adhesion to the polycarbonate resin base material is high. In addition, since the moisture and heat resistance is high, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, and 1,12-dodecane Diols having 6 or more carbon atoms, such as diols, polyethylene glycols, and polytetramethylene glycols, are preferable.
 共重合ポリエステル樹脂は、めっき層(無電解めっき層および電解めっき層;特に無電解めっき層)の密着性および均一性のさらなる向上の観点から、BisAおよび/またはそのアルキレンオキサイド付加体を共重合成分として含むことが好ましい。BisAのアルキレンオキサイド付加体は、BisAのエチレンオキシド付加体、BisAのプロピレンオキシド付加体等を包含する。このとき、BisAおよび/またはそのアルキレンオキサイド付加体の含有量は、特に限定されず、めっき層(無電解めっき層および電解めっき層;特に無電解めっき層)の密着性および均一性のさらなる向上の観点から、好ましくは10~50質量%、より好ましくは15~40質量%、さらに好ましくは20~30質量%である。当該含有量は、共重合ポリエステル樹脂を構成する全モノマー成分の合計量に対するBisAおよび/またはそのアルキレンオキサイド付加体の含有割合である。 The copolymerized polyester resin is a copolymerized component of BisA and / or its alkylene oxide adduct from the viewpoint of further improving the adhesion and uniformity of the plating layers (electroless plating layer and electrolytic plating layer; particularly electroless plating layer). It is preferable to include as. The alkylene oxide adduct of BisA includes an ethylene oxide adduct of BisA, a propylene oxide adduct of BisA, and the like. At this time, the content of BisA and / or its alkylene oxide adduct is not particularly limited, and the adhesion and uniformity of the plating layers (electroless plating layer and electrolytic plating layer; particularly electroless plating layer) are further improved. From the viewpoint, it is preferably 10 to 50% by mass, more preferably 15 to 40% by mass, and further preferably 20 to 30% by mass. The content is the content ratio of BisA and / or its alkylene oxide adduct to the total amount of all the monomer components constituting the copolymerized polyester resin.
 共重合ポリエステル樹脂には、本発明の効果を損なわない範囲において、必要に応じて、二価カルボン酸成分や二価アルコール成分以外の他のモノマー成分を含有させてもよい。他のモノマー成分としては、3価以上のカルボン酸、モノカルボン酸、3価以上のアルコール、モノアルコール、ヒドロキシカルボン酸、ラクトン、オキシランが挙げられる。3価以上のカルボン酸としては、例えば、1,3,4-ベンゼントリカルボン酸、1,2,4,5-ベンゼンテトラカルボン酸、ピロメリット酸、トリメリット酸、テトラヒドロフタル酸が挙げられる。モノカルボン酸としては、例えば、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、安息香酸、p-tert-ブチル安息香酸、シクロヘキサン酸が挙げられる。3価以上のアルコールとしては、例えば、トリメチルプロパン、グリセリンが挙げられる。モノアルコールとしては、例えば、オクチルアルコール、デシルアルコール、ラウリルアルコール、ミリスチルアルコール、セチルアルコール、ステアリルアルコール、2-フェノキシエタノールが挙げられる。ヒドロキシカルボン酸としては、例えば、乳酸、グリコール酸、2-ヒドロキシ酪酸、3-ヒドロキシ酪酸、4-ヒドロキシ酪酸、2-ヒドロキシイソ酪酸、2-ヒドロキシ-2-メチル酪酸、2-ヒドロキシ吉草酸、3-ヒドロキシ吉草酸、4-ヒドロキシ吉草酸、5-ヒドロキシ吉草酸、6-ヒドロキシカプロン酸、10-ヒドロキシステアリン酸、4-ヒドロキシフェニルステアリン酸、4-(β-ヒドロキシ)エトキシ安息香酸が挙げられる。ラクトンとしては、例えば、β-プロピオラクトン、β-ブチロラクトン、γ-ブチロラクトン、δ-バレロラクトン、ε-カプロラクトンが挙げられる。オシキランとしては、例えば、エチレンオキシドが挙げられる。二価カルボン酸成分や二価アルコール成分以外の他のモノマー成分を含有させる場合、その含有量は、共重合ポリエステル樹脂に含まれる全モノマー成分100モル%に対して10モル%未満であることが好ましい。 The copolymerized polyester resin may contain a monomer component other than the divalent carboxylic acid component and the dihydric alcohol component, if necessary, as long as the effects of the present invention are not impaired. Examples of other monomer components include trivalent or higher carboxylic acids, monocarboxylic acids, trihydric or higher alcohols, monoalcohols, hydroxycarboxylic acids, lactones, and oxylanes. Examples of the trivalent or higher carboxylic acid include 1,3,4-benzenetricarboxylic acid, 1,2,4,5-benzenetetracarboxylic acid, pyromellitic acid, trimellitic acid, and tetrahydrophthalic acid. Examples of the monocarboxylic acid include lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, benzoic acid, p-tert-butylbenzoic acid, and cyclohexanoic acid. Examples of trihydric or higher alcohols include trimethylpropane and glycerin. Examples of the monoalcohol include octyl alcohol, decyl alcohol, lauryl alcohol, myristyl alcohol, cetyl alcohol, stearyl alcohol, and 2-phenoxyethanol. Examples of the hydroxycarboxylic acid include lactic acid, glycolic acid, 2-hydroxybutyric acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 2-hydroxyisobutyric acid, 2-hydroxy-2-methylbutyric acid, 2-hydroxyvaleric acid, 3 Examples thereof include -hydroxyvaleric acid, 4-hydroxyvaleric acid, 5-hydroxyvaleric acid, 6-hydroxycaproic acid, 10-hydroxystearic acid, 4-hydroxyphenylstearic acid and 4- (β-hydroxy) ethoxybenzoic acid. Examples of the lactone include β-propiolactone, β-butyrolactone, γ-butyrolactone, δ-valerolactone, and ε-caprolactone. Examples of osikiran include ethylene oxide. When a monomer component other than the divalent carboxylic acid component and the dihydric alcohol component is contained, the content thereof may be less than 10 mol% with respect to 100 mol% of all the monomer components contained in the copolymerized polyester resin. preferable.
 共重合ポリエステル樹脂の分子量は特に限定されないが、数平均分子量は、溶解時の作業性向上の観点から、1000~50000が好ましく、3000~30000がより好ましい。数平均分子量が3000未満でも下地剤としての効果は発現するが、めっき下地剤が脆くなる場合もあるため、そのような数平均分子量の共重合ポリエステル樹脂を用いる場合には、硬化剤を併用することがより好ましい。 The molecular weight of the copolymerized polyester resin is not particularly limited, but the number average molecular weight is preferably 1000 to 50,000, more preferably 3000 to 30,000, from the viewpoint of improving workability at the time of dissolution. Even if the number average molecular weight is less than 3000, the effect as a base material is exhibited, but the plating base material may become brittle. Therefore, when a copolymerized polyester resin having such a number average molecular weight is used, a curing agent is used in combination. Is more preferable.
 共重合ポリエステル樹脂は、めっき下地層においてナノワイヤーを露出させる観点から、めっき下地剤中、媒体に溶解していてもよいし、もしくは分散または乳化していてもよいが、めっき層(無電解めっき層および電解めっき層;特に無電解めっき層)の密着性および均一性のさらなる向上の観点から、媒体に溶解していることが好ましい。 From the viewpoint of exposing the nanowires in the plating base layer, the copolymerized polyester resin may be dissolved in the medium in the plating base material, or may be dispersed or emulsified, but the plating layer (electroless plating). From the viewpoint of further improving the adhesion and uniformity of the layer and the electroplating layer (particularly the electroless plating layer), it is preferably dissolved in the medium.
 めっき下地剤中のバインダー樹脂(B)の濃度は、コーティング可能な粘度であれば、特に限定されない。通常、コーティングに適切な粘度とするためには、バインダー樹脂(B)の濃度を50質量%以下とすることが好ましい。特に、立体的な成形物に用いる場合は、スプレーでコーティングする場合が多いため、バインダー樹脂(B)の濃度は、0.01~10質量%とすることが好ましく、0.01~5質量%とすることがより好ましく、0.05~0.5質量%とすることがさらに好ましい。 The concentration of the binder resin (B) in the plating base material is not particularly limited as long as it has a viscosity that allows coating. Usually, in order to obtain an appropriate viscosity for coating, the concentration of the binder resin (B) is preferably 50% by mass or less. In particular, when used for a three-dimensional molded product, it is often coated with a spray, so the concentration of the binder resin (B) is preferably 0.01 to 10% by mass, preferably 0.01 to 5% by mass. More preferably, it is more preferably 0.05 to 0.5% by mass.
 めっき下地剤中のナノワイヤーとバインダー樹脂(B)の質量比率(ナノワイヤー/バインダー樹脂)は、下地層表面にナノワイヤーの一部を露出させやすく、より均一でより高い密着力を有するめっき層を得ることができることから、0.3~4.0とすることが好ましく、0.8~3.2とすることがより好ましく、0.8~3.0とすることがさらに好ましく、0.8~2.2とすることが特に好ましく、1.0~2.0とすることが最も好ましい。 The mass ratio (nanowire / binder resin) of the nanowire and the binder resin (B) in the plating base material makes it easy to expose a part of the nanowire on the surface of the base layer, and the plating layer has a more uniform and higher adhesion. It is preferably 0.3 to 4.0, more preferably 0.8 to 3.2, further preferably 0.8 to 3.0, and 0. It is particularly preferably 8 to 2.2, and most preferably 1.0 to 2.0.
 共重合ポリエステル樹脂は、市販品として入手することもできるし、または以下に示すような公知の方法により製造することもできる。 The copolymerized polyester resin can be obtained as a commercially available product, or can be produced by a known method as shown below.
 共重合ポリエステル樹脂は、二価カルボン酸成分、二価アルコール成分、必要応じてその他のモノマー成分を公知の重合法で重合する方法で得ることができる。公知の方法としては、エステル化反応をおこなった後、所望の分子量に達するまで重縮合する方法(A法)や、アセチル化反応をおこなった後、所望の分子量に達するまで脱酢酸重合反応する方法(B法)が挙げられる。 The copolymerized polyester resin can be obtained by a method of polymerizing a divalent carboxylic acid component, a dihydric alcohol component, and if necessary, other monomer components by a known polymerization method. Known methods include a method of polycondensing until a desired molecular weight is reached after an esterification reaction (method A), and a method of deacetic acid polymerization reaction after an acetylation reaction until a desired molecular weight is reached. (B method) can be mentioned.
 A法におけるエステル化反応とは、二価カルボン酸成分、二価アルコール成分、必要に応じてその他のモノマー成分を用いてエステル化する反応のことである。エステル化反応においては、不活性ガス雰囲気下、180℃以上の温度で4時間以上、加熱溶融して反応させる。重縮合反応とは、エステル化反応で得られたエステル化物を、所望の分子量に達するまで、二価アルコール成分を留去させながら重縮合する反応のことである。重縮合反応においては、130Pa以下の減圧下、220~280℃の温度で、30分以上おこなう。エステル化反応、重縮合反応においては、重合触媒を用いることが好ましい。重合触媒としては、例えば、テトラブチルチタネ-ト等のチタン化合物や、酢酸亜鉛、酢酸マグネシウム、酢酸亜鉛等の金属の酢酸塩や、三酸化アンチモンや、ヒドロキシブチルスズオキサイド、オクチル酸スズ等の有機スズ化合物が挙げられる。重合触媒の濃度は、少量では反応が遅くなり、多すぎると得られる共重合ポリエステル樹脂の色調が低下するため、酸成分1モルに対し、0.1×10-4~20×10-4モルであることが好ましい。 The esterification reaction in the method A is a reaction in which a divalent carboxylic acid component, a dihydric alcohol component, and if necessary, other monomer components are used for esterification. In the esterification reaction, the reaction is carried out by heating and melting at a temperature of 180 ° C. or higher for 4 hours or longer in an inert gas atmosphere. The polycondensation reaction is a reaction in which an esterified product obtained by an esterification reaction is polycondensed while distilling off a dihydric alcohol component until a desired molecular weight is reached. The polycondensation reaction is carried out at a temperature of 220 to 280 ° C. for 30 minutes or more under a reduced pressure of 130 Pa or less. In the esterification reaction and the polycondensation reaction, it is preferable to use a polymerization catalyst. Examples of the polymerization catalyst include titanium compounds such as tetrabutyl titanate, acetates of metals such as zinc acetate, magnesium acetate and zinc acetate, antimony trioxide, and organics such as hydroxybutyltin oxide and tin octylate. Examples include tin compounds. If the concentration of the polymerization catalyst is too small, the reaction will be slow, and if it is too high, the color tone of the obtained copolymerized polyester resin will be deteriorated. Therefore, 0.1 × 10 -4 to 20 × 10 -4 mol with respect to 1 mol of the acid component. Is preferable.
 B法におけるアセチル化反応とは、二価アルコール成分をアセチル化する反応のことである。アセチル化反応においては、二価カルボン酸成分と二価アルコール成分と無水酢酸を反応させる。アセチル化反応は、不活性ガス雰囲気下、常圧下または加圧下、100~240℃の温度において、5分~8時間おこなう。二価アルコール成分のヒドロキシ基に対する無水酢酸のモル比は、1.00~1.20とすることが好ましい。脱酢酸重合反応とは、所望の分子量に達するまで脱酢酸重合する反応のことである。脱酢酸重合反応においては、500Pa以下の減圧下、240℃以上の温度で、30分以上おこなう。アセチル化反応、脱酢酸重合反応は、重合触媒を用いることが好ましい。重合触媒の種類やその濃度は、A法で例示した重合触媒の種類とその濃度と同じである。 The acetylation reaction in Method B is a reaction that acetylates a divalent alcohol component. In the acetylation reaction, the divalent carboxylic acid component, the dihydric alcohol component, and acetic anhydride are reacted. The acetylation reaction is carried out under an inert gas atmosphere, under normal pressure or under pressure, at a temperature of 100 to 240 ° C. for 5 minutes to 8 hours. The molar ratio of acetic anhydride to the hydroxy group of the dihydric alcohol component is preferably 1.00 to 1.20. The deacetic acid polymerization reaction is a reaction of deacetic acid polymerization until a desired molecular weight is reached. The deacetic acid polymerization reaction is carried out under a reduced pressure of 500 Pa or less at a temperature of 240 ° C. or higher for 30 minutes or longer. A polymerization catalyst is preferably used for the acetylation reaction and the deacetic acid polymerization reaction. The type and concentration of the polymerization catalyst are the same as the type and concentration of the polymerization catalyst exemplified in Method A.
(ポリカーボネート樹脂)
 ポリカーボネート樹脂は、バインダー樹脂(C)として用いられる。本発明において、ポリカーボネート樹脂とは、カーボネート結合を有する樹脂を意味する。
(Polycarbonate resin)
The polycarbonate resin is used as the binder resin (C). In the present invention, the polycarbonate resin means a resin having a carbonate bond.
 ポリカーボネート樹脂は、特に限定されず、例えば、芳香族ジヒドロキシ化合物と炭酸ジエステルとのエステル交換反応により得られるポリカーボネート樹脂であってもよいし、または芳香族ジヒドロキシ化合物とホスゲンとの水酸化ナトリウム水溶液および塩化メチレン溶媒の存在下での反応により得られるポリカーボネート樹脂であってもよい。 The polycarbonate resin is not particularly limited, and may be, for example, a polycarbonate resin obtained by a transesterification reaction between an aromatic dihydroxy compound and a carbonic acid diester, or an aqueous sodium hydroxide solution and chloride of the aromatic dihydroxy compound and phosgene. It may be a polycarbonate resin obtained by a reaction in the presence of a methylene solvent.
 溶融重合ポリカーボネート樹脂を構成する芳香族ジヒドロキシ化合物は、一般式:HO-Ar-OHで示される化合物である。式中、Arは二価の芳香族残基であり、例えば、フェニレン基、ナフチレン基、ビフェニレン基、ピリジレン基、-Ar-Y-Ar-で表される2価の芳香族基である。ArおよびArは、各々独立にそれぞれ炭素原子数5~70を有する2価の炭素環式又は複素環式芳香族基を表し、Yは炭素原子数1~30特に1~5を有する2価のアルカン基(すなわちアルキレン基)を表す。好ましいArはフェニレン基である。好ましいArおよびArはフェニレン基である。好ましいYはイソプロピリデン基である。 The aromatic dihydroxy compound constituting the melt-polymerized polycarbonate resin is a compound represented by the general formula: HO-Ar-OH. In the formula, Ar is a divalent aromatic residue, for example, a phenylene group, a naphthylene group, a biphenylene group, a pyridylene group, or a divalent aromatic group represented by -Ar 1- Y-Ar 2-. .. Ar 1 and Ar 2 each independently represent a divalent carbocyclic or heterocyclic aromatic group having 5 to 70 carbon atoms, and Y has 1 to 30 carbon atoms, particularly 1 to 5 2. Represents a valent alkane group (ie, an alkylene group). Preferred Ar is a phenylene group. Preferred Ar 1 and Ar 2 are phenylene groups. Preferred Y is an isopropylidene group.
 芳香族ジヒドロキシ化合物の具体例として、例えば、ビス(4-ヒドロキシフェニル)メタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、4,4’-〔1,3-フェニレンビス(1-メチルエチリデン)〕ビスフェノール、4,4’-〔1,4-フェニレンビス(1-メチルエチリデン)〕ビスフェノール、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレンなどのビス(4-ヒドロキシアリール)アルカン)等が挙げられる。中でも2,2-ビス(4-ヒドロキシフェニル)プロパン[ビスフェノールA]が特に好ましい。 Specific examples of aromatic dihydroxy compounds include bis (4-hydroxyphenyl) methane, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, and the like. 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 4,4'-[1,3-phenylenebis (1-Methylethylidene)] bisphenol, 4,4'-[1,4-phenylenebis (1-methylethylidene)] bisphenol, 9,9-bis (4-hydroxyphenyl) fluorene, 9,9-bis (4) -Hydroxy-3-methylphenyl) bis (4-hydroxyaryl) alkane such as fluorene) and the like can be mentioned. Of these, 2,2-bis (4-hydroxyphenyl) propane [bisphenol A] is particularly preferable.
 芳香族ジヒドロキシ化合物は、単一種類でも2種類以上でもかまわない。芳香族ジヒドロキシ化合物の代表的な例としてはビスフェノールAが挙げられ、芳香族ジヒドロキシ化合物として85モル%以上の割合でビスフェノールAを使用することが好ましい。 The aromatic dihydroxy compound may be a single type or two or more types. A typical example of the aromatic dihydroxy compound is bisphenol A, and it is preferable to use bisphenol A in a proportion of 85 mol% or more as the aromatic dihydroxy compound.
 炭酸ジエステルの代表的な例としては、一般式:R-Ar-O-CO-O-Ar-Rで示される置換または非置換のジアリールカーボネート類を挙げる事ができる。ArおよびArはそれぞれ独立して二価の芳香族残基であり、例えば、フェニレン基、ナフチレン基が挙げられる。RおよびRはそれぞれ独立して水素原子または炭素原子数1~10のアルキル基である。好ましいArおよびArはフェニレン基である。好ましいRおよびRはそれぞれ独立して水素原子または炭素原子数1~5のアルキル基である。より好ましいRおよびRは相互に同じ基である。 Representative examples of carbonic diesters of the general formula: R 1 -Ar 3 -O-CO -O-Ar 4 -R 2 substituted or unsubstituted diaryl carbonates may be mentioned indicated in. Ar 3 and Ar 4 are independently divalent aromatic residues, and examples thereof include a phenylene group and a naphthylene group. R 1 and R 2 are independently hydrogen atoms or alkyl groups having 1 to 10 carbon atoms. Preferred Ar 3 and Ar 4 are phenylene groups. Preferred R 1 and R 2 are independently hydrogen atoms or alkyl groups having 1 to 5 carbon atoms, respectively. The more preferred R 1 and R 2 are the same group as each other.
 ジアリールカーボネート類の中でも、非置換のジフェニルカーボネート、ジトリルカーボネート、ジ-t-ブチルフェニルカーボネートのような低級アルキル置換ジフェニルカーボネートなどの対称型ジアリールカーボネートが好ましい。特に最も簡単な構造のジアリールカーボネートであるジフェニルカーボネートが好適である。対称型ジアリールカーボネートとは、水素原子および炭素原子を省略した化学構造式で表したとき、線対称性を有する化学構造式で表し得るジアリールカーボネートのことである。 Among the diaryl carbonates, symmetric diaryl carbonates such as unsubstituted diphenyl carbonate, ditril carbonate, and lower alkyl-substituted diphenyl carbonate such as di-t-butylphenyl carbonate are preferable. In particular, diphenyl carbonate, which is a diaryl carbonate having the simplest structure, is preferable. The symmetric diaryl carbonate is a diaryl carbonate that can be represented by a chemical structural formula having line symmetry when represented by a chemical structural formula in which a hydrogen atom and a carbon atom are omitted.
 炭酸ジエステルは単独で用いても良いし、2種以上を組み合わせて用いても良い。 The carbonic acid diester may be used alone or in combination of two or more.
 ポリカーボネート樹脂は、特に限定されず、コーティングする樹脂基材によって選択されることが好ましい。例えば、樹脂基材がポリカーボネート樹脂基材である場合、めっき下地剤のポリカーボネート樹脂は、ポリカーボネート樹脂基材と同一の骨格のポリカーボネート樹脂を用いることが好ましい。詳しくは、コーティングする樹脂基材が汎用の2,2-ビス(4-ヒドロキシフェニル)プロパン(BisA)型ポリカーボネートであれば、下地剤には、同じ骨格のBisA型のポリカーボネートを用いることが好ましく、コーティングする樹脂基材がレンズ用途のような特殊グレードの場合であれば、下地剤には、同じ骨格の特殊グレードのポリカーボネートを用いることが好ましい。 The polycarbonate resin is not particularly limited and is preferably selected depending on the resin base material to be coated. For example, when the resin base material is a polycarbonate resin base material, it is preferable to use a polycarbonate resin having the same skeleton as the polycarbonate resin base material as the polycarbonate resin as the plating base material. Specifically, if the resin base material to be coated is a general-purpose 2,2-bis (4-hydroxyphenyl) propane (BisA) type polycarbonate, it is preferable to use a BisA type polycarbonate having the same skeleton as the base material. When the resin base material to be coated is a special grade such as for a lens application, it is preferable to use a special grade polycarbonate having the same skeleton as the base material.
 ポリカーボネート樹脂の分子量は特に限定されない。めっき下地剤に架橋剤を添加する場合であれば、分子量が数千程度でも十分である。 The molecular weight of the polycarbonate resin is not particularly limited. When a cross-linking agent is added to the plating base material, a molecular weight of about several thousand is sufficient.
 ポリカーボネート樹脂は、めっき下地層においてナノワイヤーを露出させる観点から、めっき下地剤中、媒体に溶解していてもよいし、もしくは分散または乳化していてもよいが、めっき層(無電解めっき層および電解めっき層;特に無電解めっき層)の密着性および均一性のさらなる向上の観点から、媒体に溶解していることが好ましい。 From the viewpoint of exposing the nanowires in the plating base layer, the polycarbonate resin may be dissolved in the medium, or dispersed or emulsified in the plating base agent, but the plating layer (electroless plating layer and From the viewpoint of further improving the adhesion and uniformity of the electrolytic plating layer (particularly the electroless plating layer), it is preferably dissolved in the medium.
 めっき下地剤中のバインダー樹脂(C)の濃度は、コーティング可能な粘度であれば、特に限定されない。通常、コーティングに適切な粘度とするためには、バインダー樹脂(C)の濃度を50質量%以下とすることが好ましい。特に、立体的な成形物に用いる場合は、スプレーでコーティングする場合が多いため、バインダー樹脂(C)の濃度は、0.01~10質量%とすることが好ましく、0.01~5質量%とすることがより好ましく、0.05~0.5質量%とすることがさらに好ましい。 The concentration of the binder resin (C) in the plating base material is not particularly limited as long as it has a viscosity that allows coating. Usually, in order to obtain an appropriate viscosity for coating, the concentration of the binder resin (C) is preferably 50% by mass or less. In particular, when used for a three-dimensional molded product, it is often coated with a spray, so the concentration of the binder resin (C) is preferably 0.01 to 10% by mass, preferably 0.01 to 5% by mass. More preferably, it is more preferably 0.05 to 0.5% by mass.
 めっき下地剤中のナノワイヤーとバインダー樹脂(C)の質量比率(ナノワイヤー/バインダー樹脂)は、下地層表面にナノワイヤーの一部を露出させやすく、より高い密着力を有するめっき層を得ることができることから、0.3~4.0とすることが好ましく、0.8~3.2とすることがより好ましく、0.8~3.0とすることがさらに好ましく、0.8~2.2とすることが特に好ましく、1.0~2.0とすることが最も好ましい。前記質量比率を0.8以上、特に1.0以上とすることで、より均一でより高い密着力を有する無電解めっき層を得ることができる。また、前記質量比率を0.8~3.2、特に1.0~3.0とすることで、無電解めっき層上に、より均一でより高い密着力を有する電解めっき層をより容易に得ることができる。 The mass ratio (nanowire / binder resin) of the nanowires and the binder resin (C) in the plating base material makes it easy to expose a part of the nanowires on the surface of the base layer to obtain a plating layer having higher adhesion. Therefore, it is preferably 0.3 to 4.0, more preferably 0.8 to 3.2, further preferably 0.8 to 3.0, and 0.8 to 2 It is particularly preferably set to .2, and most preferably 1.0 to 2.0. By setting the mass ratio to 0.8 or more, particularly 1.0 or more, an electroless plating layer having a more uniform and higher adhesion can be obtained. Further, by setting the mass ratio to 0.8 to 3.2, particularly 1.0 to 3.0, it is easier to form a more uniform and higher adhesion electrolytic plating layer on the electroless plating layer. Obtainable.
 ポリカーボネート樹脂は、市販品として入手することもできるし、または溶融重合法および界面重合法等の公知の方法により製造することもできる。 The polycarbonate resin can be obtained as a commercially available product, or can be produced by a known method such as a melt polymerization method and an interfacial polymerization method.
 ポリカーボネート樹脂の市販品として、例えば、ポリカーボネート(帝人社製、L-1225Y)等が挙げられる。 Examples of commercially available polycarbonate resin products include polycarbonate (manufactured by Teijin Limited, L-1225Y) and the like.
[媒体]
 本発明のめっき下地剤には、ハンドリングを向上させるため、さらに媒体を含有させることが好ましい。媒体を用いる場合、媒体は、溶媒、分散媒いずれであってもよい。媒体としては、ナノワイヤーとバインダー樹脂を凝集させないものであれば特に限定されない。媒体として、例えば、メタノール、エタノール等のモノアルコール(特に脂肪族モノアルコール);エチレングリコール、プロピレングリコール等のグリコール(特に脂肪族グリコール);テトラヒドロフラン等のエーテル(特に環状エーテル);メチルエチルケトン等のケトン(特に脂肪族ケトン);ベンゼン、トルエン等の芳香族炭化水素;ジクロロメタン、クロロホルム等のハロゲン化炭化水素(特にハロゲン化脂肪族炭化水素);水;またはこれらの混合溶媒等が挙げられる。
[Medium]
It is preferable that the plating base material of the present invention further contains a medium in order to improve handling. When a medium is used, the medium may be either a solvent or a dispersion medium. The medium is not particularly limited as long as it does not agglomerate the nanowires and the binder resin. As a medium, for example, monoalcohols such as methanol and ethanol (particularly aliphatic monoalcohols); glycols such as ethylene glycol and propylene glycol (particularly aliphatic glycols); ethers such as tetrahydrofuran (particularly cyclic ethers); ketones such as methyl ethyl ketone (especially cyclic ethers). In particular, aliphatic ketones); aromatic hydrocarbons such as benzene and toluene; halogenated hydrocarbons such as dichloromethane and chloroform (particularly aliphatic aliphatic hydrocarbons); water; or a mixed solvent thereof and the like can be mentioned.
 めっき下地剤がバインダー樹脂としてバインダー樹脂(A)を含むエマルションである場合、媒体は、コーティング時の乾燥温度等のハンドリングが高く、より均一でより高い密着力を有するめっき層を得ることができることから、モノアルコール;グリコール;水;またはこれらの混合溶媒が好ましく、中でも、水とグリコールの混合溶媒がより好ましい。 When the plating base material is an emulsion containing the binder resin (A) as the binder resin, the medium has high handling such as drying temperature at the time of coating, and a more uniform and higher adhesion plating layer can be obtained. , Monoalcohol; glycol; water; or a mixed solvent thereof is preferable, and a mixed solvent of water and glycol is more preferable.
 めっき下地剤がバインダー樹脂としてバインダー樹脂(A)を含む溶液である場合、媒体は、めっき層(無電解めっき層および電解めっき層;特に無電解めっき層)の密着性および均一性のさらなる向上の観点から、エーテル(特にテトラヒドロフラン)が好ましい。 When the plating base material is a solution containing the binder resin (A) as the binder resin, the medium further improves the adhesion and uniformity of the plating layers (electroless plating layer and electrolytic plating layer; especially the electroless plating layer). From the viewpoint, ether (particularly tetrahydrofuran) is preferable.
 めっき下地剤がバインダー樹脂としてバインダー樹脂(B)を含む溶液である場合、媒体は、めっき層(無電解めっき層および電解めっき層;特に無電解めっき層)の密着性および均一性のさらなる向上の観点から、芳香族炭化水素、ケトンまたはこれらの混合物が好ましく、中でも、芳香族炭化水素とケトンとの混合溶媒がより好ましい。 When the plating base material is a solution containing the binder resin (B) as the binder resin, the medium further improves the adhesion and uniformity of the plating layers (electroless plating layer and electrolytic plating layer; especially the electroless plating layer). From the viewpoint, aromatic hydrocarbons, ketones or mixtures thereof are preferable, and among them, a mixed solvent of aromatic hydrocarbons and ketones is more preferable.
 めっき下地剤がバインダー樹脂としてバインダー樹脂(C)を含む溶液である場合、媒体は、めっき層(無電解めっき層および電解めっき層;特に無電解めっき層)の密着性および均一性のさらなる向上の観点から、ハロゲン化炭化水素(特にジクロロメタン)が好ましい。ジクロロメタンは沸点が低く、容易に除去可能であるため、樹脂基材(特にポリカーボネート樹脂基材)を必要以上溶解させることなく、表面を膨潤させるだけのため、基材の形状を変化させずに強固な密着力を得ることができる。 When the plating base material is a solution containing the binder resin (C) as the binder resin, the medium further improves the adhesion and uniformity of the plating layers (electroless plating layer and electrolytic plating layer; especially the electroless plating layer). From the viewpoint, halogenated hydrocarbons (particularly dichloromethane) are preferable. Dichloromethane has a low boiling point and can be easily removed. Therefore, the surface of the resin base material (particularly the polycarbonate resin base material) is not dissolved more than necessary, and the surface is only swollen. Therefore, the shape of the base material is not changed. It is possible to obtain a good adhesion.
[添加剤]
 めっき下地剤(特にその媒体)は、本発明の効果を損なわない範囲で、架橋剤、硬化剤、消泡剤、レオロジーコントロール剤、濡れ剤、レベリング剤等の各種添加剤を含有させてもよい。
[Additive]
The plating base agent (particularly the medium thereof) may contain various additives such as a cross-linking agent, a curing agent, a defoaming agent, a rheology control agent, a wetting agent, and a leveling agent as long as the effects of the present invention are not impaired. ..
(架橋剤)
 バインダー樹脂(A)を含むめっき下地剤は、下地層の化学的耐性、熱的耐性を向上させるため、架橋剤を含有することが好ましい。バインダー樹脂(A)を含むめっき下地剤は、めっき層(無電解めっき層および電解めっき層;特に無電解めっき層)の密着性および均一性のさらなる向上の観点からも、架橋剤を含有することが好ましい。
(Crosslinking agent)
The plating base agent containing the binder resin (A) preferably contains a cross-linking agent in order to improve the chemical resistance and thermal resistance of the base layer. The plating base material containing the binder resin (A) contains a cross-linking agent from the viewpoint of further improving the adhesion and uniformity of the plating layers (electroless plating layer and electrolytic plating layer; particularly electroless plating layer). Is preferable.
 架橋剤は、水溶性の架橋剤であっても、非水溶性の架橋剤いずれであってもよい。水溶性の架橋剤を用いた場合であっても、コーティング後、乾燥することにより架橋反応が進行し、下地層は水に不溶となる。架橋剤は単独で用いてもよいし、2種以上を併用してもよい。架橋剤は、用いる樹脂に応じて適宜選択することができる。架橋剤としては、例えば、オキサゾリン化合物、カルボジイミド化合物、エポキシ化合物、イソシアネート化合物が挙げられ、反応性やポットライフの観点から、オキサゾリン化合物が好ましい。 The cross-linking agent may be either a water-soluble cross-linking agent or a water-insoluble cross-linking agent. Even when a water-soluble cross-linking agent is used, the cross-linking reaction proceeds by drying after coating, and the underlying layer becomes insoluble in water. The cross-linking agent may be used alone or in combination of two or more. The cross-linking agent can be appropriately selected depending on the resin used. Examples of the cross-linking agent include oxazoline compounds, carbodiimide compounds, epoxy compounds, and isocyanate compounds, and oxazoline compounds are preferable from the viewpoint of reactivity and pot life.
 めっき下地剤中の架橋剤の濃度は、特に限定されず、めっき層(無電解めっき層および電解めっき層;特に無電解めっき層)の密着性および均一性のさらなる向上の観点から、0.001~1質量%とすることが好ましく、0.001~0.1質量%とすることがより好ましく、0.008~0.025質量%とすることがさらに好ましい。架橋剤の濃度はめっき下地剤全量に対する割合である。 The concentration of the cross-linking agent in the plating base material is not particularly limited, and is 0.001 from the viewpoint of further improving the adhesion and uniformity of the plating layers (electroless plating layer and electrolytic plating layer; particularly electroless plating layer). It is preferably ~ 1% by mass, more preferably 0.001 to 0.1% by mass, and even more preferably 0.008 to 0.025% by mass. The concentration of the cross-linking agent is a ratio to the total amount of the plating base agent.
(硬化剤)
 硬化剤は、バインダー樹脂(B)を含むめっき下地剤に含有されてもよい。硬化剤としては、例えば、フェノール樹脂、尿素、メラミン、ベンゾグアナミン、アセトグアナミン等のホルムアルデヒド付加物や、尿素、アクリルアミド等のグリオキザール付加物や、炭素数1~6のアルコールによるそれら付加物のアルキル化合物等のアミノ樹脂や、エポキシ樹脂や、酸無水物や、イソシアネート化合物およびそのブロックイソシアネート化合物や、アジリジン化合物や、カルボジイミド基含有化合物や、オキサゾリン基含有化合物が挙げられる。中でも、硬化反応性に優れることから、イソシアネート化合物およびそのブロックイソシアネート化合物、エポキシ樹脂、オキサゾリン基含有化合物が好ましい。また、150℃以下という比較的低温における硬化反応性に優れ、基材に与える熱的影響を最小限とすることができることから、イソシアネート化合物およびそのブロックイソシアネート化合物が好ましい。
(Hardener)
The curing agent may be contained in a plating base agent containing the binder resin (B). Examples of the curing agent include formaldehyde adducts such as phenol resin, urea, melamine, benzoguanamine and acetguanamine, glioxal adducts such as urea and acrylamide, and alkyl compounds of these adducts using alcohols having 1 to 6 carbon atoms. Examples thereof include amino resins, epoxy resins, acid anhydrides, isocyanate compounds and their blocked isocyanate compounds, aziridine compounds, carbodiimide group-containing compounds, and oxazoline group-containing compounds. Of these, isocyanate compounds, blocked isocyanate compounds thereof, epoxy resins, and oxazoline group-containing compounds are preferable because they are excellent in curing reactivity. Further, an isocyanate compound and a blocked isocyanate compound thereof are preferable because they have excellent curing reactivity at a relatively low temperature of 150 ° C. or lower and can minimize the thermal effect on the substrate.
 イソシアネート化合物としては、4,4’-ジフェニルメタンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート等の芳香族ジイソシアネートや、ヘキサメチレンジイソシアネート〔HDI〕、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート等の脂肪族ジイソシアネート単量体およびそれらの三量体が挙げられる。中でも、密着性等の性能が向上することから、ヘキサメチレンジイソシアネート〔HDI〕、4,4’-ジフェニルメタンジイソシアネート、トリレンジイソシアネートが好ましく、ヘキサメチレンジイソシアネート〔HDI〕がより好ましく、硬化反応速度が速いことから、4,4’-ジフェニルメタンジイソシアネートが好ましい。また、耐溶剤性、加工性に優れる塗膜形成が可能なことから、アミノ樹脂が好ましい。 Examples of the isocyanate compound include aromatic diisocyanates such as 4,4'-diphenylmethane diisocyanate, tolylene diisocyanate, and xylylene diisocyanate, aliphatic diisocyanate monomers such as hexamethylene diisocyanate [HDI], isophorone diisocyanate, and dicyclohexylmethane diisocyanate, and them. The trimer of. Among them, hexamethylene diisocyanate [HDI], 4,4'-diphenylmethane diisocyanate, and tolylene diisocyanate are preferable, hexamethylene diisocyanate [HDI] is more preferable, and the curing reaction rate is fast, because performance such as adhesion is improved. Therefore, 4,4'-diphenylmethane diisocyanate is preferable. Further, an amino resin is preferable because it is possible to form a coating film having excellent solvent resistance and processability.
 めっき下地剤中の硬化剤の濃度は、特に限定されず、めっき層(無電解めっき層および電解めっき層;特に無電解めっき層)の密着性および均一性のさらなる向上の観点から、0.001~1質量%とすることが好ましく、0.001~0.1質量%とすることがより好ましく、0.008~0.025質量%とすることがさらに好ましい。硬化剤の濃度はめっき下地剤全量に対する割合である。 The concentration of the curing agent in the plating base material is not particularly limited, and is 0.001 from the viewpoint of further improving the adhesion and uniformity of the plating layers (electroless plating layer and electrolytic plating layer; particularly electroless plating layer). It is preferably ~ 1% by mass, more preferably 0.001 to 0.1% by mass, and even more preferably 0.008 to 0.025% by mass. The concentration of the curing agent is a ratio to the total amount of the plating base material.
<めっき下地剤の製造方法>
 本発明のめっき下地剤の製造方法は特に限定されないが、例えば、ナノワイヤーの分散液と、バインダー樹脂の分散液または溶液をそれぞれ製造し、それらを混合する方法が挙げられる。混合する方法としては特に限定されないが、例えば、バインダー樹脂の分散液または溶液にナノワイヤーの分散液を攪拌しながら添加する方法や、ナノワイヤーの分散液にバインダー樹脂の分散液または溶液を攪拌しながら添加する方法が挙げられる。
<Manufacturing method of plating base material>
The method for producing the plating base material of the present invention is not particularly limited, and examples thereof include a method for producing a dispersion of nanowires and a dispersion or solution of a binder resin, and mixing them. The mixing method is not particularly limited, and for example, a method of adding the nanowire dispersion to the binder resin dispersion or solution while stirring, or a method of stirring the binder resin dispersion or solution to the nanowire dispersion. There is a method of adding while adding.
 上記した添加剤は、それぞれ独立して、ナノワイヤーの分散液またはバインダー樹脂の分散液または溶液に予め混合されてもよいし、またはナノワイヤーの分散液とバインダー樹脂の分散液または溶液とを混合した後で混合されてもよい。 The above-mentioned additives may be independently mixed with the nanowire dispersion or the binder resin dispersion or solution, or the nanowire dispersion and the binder resin dispersion or solution are mixed. May be mixed after.
[ナノワイヤーの分散液の製造方法]
 本発明に用いるナノワイヤーの分散液の製造方法は特に限定されない。ナノワイヤーの分散液は公知のあらゆる方法により製造することができる。例えば、ナノワイヤーの分散液は市販のナノワイヤーを水に分散させることにより製造することができる。
[Manufacturing method of nanowire dispersion]
The method for producing the nanowire dispersion used in the present invention is not particularly limited. The nanowire dispersion can be produced by any known method. For example, a dispersion of nanowires can be produced by dispersing commercially available nanowires in water.
 以下、金属ナノワイヤー(特にニッケルナノワイヤー)を製造しつつ、その分散液を製造する方法を詳しく説明するが、公知のあらゆる方法により、他の金属ナノワイヤー、半導体ナノワイヤー、および金属酸化物ナノワイヤーの分散液を製造してもよい。
 例えば、ニッケルイオンを磁気回路内で以下のように還元反応をおこなうことにより、本発明に好適な粒子連結形状のニッケルナノワイヤーを収率よく製造することができる。
Hereinafter, a method for producing a dispersion liquid thereof while producing metal nanowires (particularly nickel nanowires) will be described in detail, but other metal nanowires, semiconductor nanowires, and metal oxide nanowires can be produced by any known method. A wire dispersion may be produced.
For example, by carrying out a reduction reaction of nickel ions in a magnetic circuit as follows, nickel nanowires having a particle-connected shape suitable for the present invention can be produced in good yield.
 還元反応は、グリコール中でおこなうことが好ましく、粘度、沸点の観点からエチレングリコール中でおこなうことがより好ましい。 The reduction reaction is preferably carried out in glycol, and more preferably carried out in ethylene glycol from the viewpoint of viscosity and boiling point.
 ニッケルイオンの供給源としては、塩化ニッケル等のニッケル塩を用いることが好ましい。ニッケルイオンの濃度は、ナノワイヤーの形状制御の観点から、反応溶液全量に対して10~25μmol/gとすることが好ましく、15~20μmol/gとすることがより好ましい。 It is preferable to use a nickel salt such as nickel chloride as a source of nickel ions. From the viewpoint of controlling the shape of the nanowire, the concentration of nickel ions is preferably 10 to 25 μmol / g, more preferably 15 to 20 μmol / g with respect to the total amount of the reaction solution.
 ニッケルイオンの一部は、還元前にクエン酸ニッケル錯体となる。クエン酸ニッケル錯体は、ニッケルイオンの溶けたグリコール溶液にクエン酸三ナトリウムを添加することにより得ることができる。前記錯体を還元反応前に予め形成させておくことにより、ナノワイヤーの形状を制御しやすく、凝集を抑制することができる。クエン酸三ナトリウムの濃度は、反応用液全量に対して0.5~2.0μmol/gとすることが好ましく、1.0~1.5μmol/gとすることがより好ましい。 Part of the nickel ions becomes a nickel citrate complex before reduction. The nickel citrate complex can be obtained by adding trisodium citrate to a glycol solution in which nickel ions are dissolved. By forming the complex in advance before the reduction reaction, the shape of the nanowire can be easily controlled and aggregation can be suppressed. The concentration of trisodium citrate is preferably 0.5 to 2.0 μmol / g, more preferably 1.0 to 1.5 μmol / g, based on the total amount of the reaction solution.
 ニッケルイオンの還元反応を誘発するため、反応溶液はアルカリ性とすることが好まししい。反応溶液をアルカリ性とするためには、水酸化ナトリウム、水酸化カリウム等を添加すればよい。水酸化ナトリウムを添加する場合、その濃度は、反応溶液全量に対して10~40μmol/gとすることが好ましく、20~30μmol/gとすることがより好ましい。 It is preferable that the reaction solution is alkaline because it induces the reduction reaction of nickel ions. In order to make the reaction solution alkaline, sodium hydroxide, potassium hydroxide and the like may be added. When sodium hydroxide is added, its concentration is preferably 10 to 40 μmol / g, more preferably 20 to 30 μmol / g, based on the total amount of the reaction solution.
 副生成により発生する水酸化ニッケル等の不溶物を抑制するため、アンモニアを添加することが好ましい。アンモニアは入手容易な28%アンモニア水でよい。アンモニアを添加する場合、その濃度は、反応溶液全量に対して、0.1~0.8mmol/gとすることが好ましく、0.3~0.6mmol/gとすることが好ましい。 It is preferable to add ammonia in order to suppress insoluble matter such as nickel hydroxide generated by by-production. Ammonia may be easily available 28% aqueous ammonia. When ammonia is added, the concentration thereof is preferably 0.1 to 0.8 mmol / g and preferably 0.3 to 0.6 mmol / g with respect to the total amount of the reaction solution.
 還元反応を開始する前にネオジム磁石等で構成する磁気回路により、反応容器にかかる中心の磁束密度が10~200mT程度の平行磁場を印加することが好ましい。 Before starting the reduction reaction, it is preferable to apply a parallel magnetic field having a magnetic flux density of about 10 to 200 mT at the center of the reaction vessel by a magnetic circuit composed of a neodymium magnet or the like.
 還元反応は還元剤を添加することにより開始させる。還元剤としては、ヒドラジン一水和物が好ましい。ヒドラジン一水和物の濃度は、反応溶液全量に対して、5~40μmol/gとすることが好ましく、15~25μmol/gとすることがより好ましい。ヒドラジン一水物の添加量を5~40μmol/gとすることで、生成するナノワイヤーの収率を低下させず、ナノワイヤーの凝集を抑制することができる。 The reduction reaction is started by adding a reducing agent. As the reducing agent, hydrazine monohydrate is preferable. The concentration of hydrazine monohydrate is preferably 5 to 40 μmol / g, more preferably 15 to 25 μmol / g, based on the total amount of the reaction solution. By setting the addition amount of the hydrazine monohydrate to 5 to 40 μmol / g, it is possible to suppress the aggregation of the nanowires without lowering the yield of the produced nanowires.
 還元反応は、80~100℃の温度範囲でおこなうことが好ましく、85~95℃の温度範囲でおこなうことがより好ましい。還元反応を100℃超える温度でおこなうと、アンモニアの突沸等が生じ、ナノワイヤーが得られない場合がある。一方、還元反応を80℃未満の温度でおこなうと、還元反応の速度が著しく低下する場合がある。 The reduction reaction is preferably carried out in a temperature range of 80 to 100 ° C., and more preferably carried out in a temperature range of 85 to 95 ° C. If the reduction reaction is carried out at a temperature exceeding 100 ° C., bumping of ammonia or the like may occur and nanowires may not be obtained. On the other hand, if the reduction reaction is carried out at a temperature of less than 80 ° C., the rate of the reduction reaction may be significantly reduced.
 還元反応の還元時間は、ナノワイヤーが作製できれば特に限定されないが、通常10分~1時間であり、10~30分とすることが好ましい。 The reduction time of the reduction reaction is not particularly limited as long as nanowires can be produced, but it is usually 10 minutes to 1 hour, preferably 10 to 30 minutes.
 ナノワイヤーは、還元反応後、吸引ろ過等のフィルタレーションにより容易に単離することができる。単離したナノワイヤーは、媒体と混合し、固形分を所望の濃度に調製することができる。 Nanowires can be easily isolated by filtration such as suction filtration after the reduction reaction. The isolated nanowires can be mixed with the medium to adjust the solid content to the desired concentration.
[バインダー樹脂の溶液または分散液の製造方法]
 本発明に用いるバインダー樹脂の溶液または分散液の製造方法は特に限定されず、例えば、バインダー樹脂を媒体に混合および溶解したり、またはバインダー樹脂を媒体に混合および分散させたりすることにより製造することができる。
[Manufacturing method of binder resin solution or dispersion]
The method for producing the binder resin solution or dispersion used in the present invention is not particularly limited, and for example, the binder resin may be mixed and dissolved in a medium, or the binder resin may be mixed and dispersed in a medium. Can be done.
 例えば、バインダー樹脂(特にバインダー樹脂(A))の分散液は以下の方法により製造することができる。
 バインダー樹脂の分散液の製造方法は特に限定されないが、例えば、バインダー樹脂と塩基性化合物と水、さらに必要に応じて有機溶剤とを、密閉可能な容器中で加熱、攪拌する方法により製造することができる。前記方法によれば、乳化剤成分や保護コロイド作用を有する化合物等の不揮発性水性化助剤を実質的に添加しなくとも、バインダー樹脂の分散液を効率よく得ることができる。
For example, the dispersion liquid of the binder resin (particularly the binder resin (A)) can be produced by the following method.
The method for producing the dispersion liquid of the binder resin is not particularly limited, and for example, the binder resin, the basic compound, water, and if necessary, an organic solvent are produced by heating and stirring in a sealable container. Can be done. According to the above method, a dispersion liquid of a binder resin can be efficiently obtained without substantially adding a non-volatile water-forming aid such as an emulsifier component or a compound having a protective colloidal action.
 容器としては、液体を投入できる槽を備え、槽内に投入された媒体とバインダー樹脂との混合物を適度に攪拌できるものが好ましい。このような装置としては、固/液攪拌装置や乳化機として広く当業者に知られている装置を用いることができ、0.1MPa以上の加圧が可能な装置を用いることが好ましい。本発明においては、攪拌の方法、攪拌の回転速度は特に限定されないが、バインダー樹脂が媒体中で浮遊状態となる程度の低速の攪拌でも十分分散化が達成され、高速攪拌(例えば、1000rpm以上)は必須ではない。このため、簡便な装置でも分散液の製造が可能である。 It is preferable that the container is provided with a tank into which a liquid can be charged and can appropriately stir the mixture of the medium and the binder resin charged in the tank. As such an apparatus, an apparatus widely known to those skilled in the art as a solid / liquid agitator or an emulsifier can be used, and it is preferable to use an apparatus capable of pressurizing 0.1 MPa or more. In the present invention, the stirring method and the rotation speed of stirring are not particularly limited, but sufficient dispersion is achieved even with low-speed stirring such that the binder resin is suspended in the medium, and high-speed stirring (for example, 1000 rpm or more). Is not required. Therefore, the dispersion can be produced even with a simple device.
 具体的には、この装置の槽内に水、バインダー樹脂と塩基性化合物と水、さらに必要に応じて有機溶剤とを投入し、好ましくは40℃以下の温度で攪拌混合しておく。次いで、槽内の温度を70~210℃、好ましくは80~180℃ 、さらに好ましくは90~150℃の温度に保ちつつ、好ましくは5~120分間攪拌を続けることにより、バインダー樹脂を十分に分散化させ、その後、好ましくは攪拌下で40℃以下に冷却することにより、安定な分散液を得ることができる。槽内の温度が70℃未満の場合は、バインダー樹脂の分散化が十分に進行しない場合がある。槽内の温度が210℃を超える場合は、バインダー樹脂の分子量が低下する場合がある。槽内の加熱方法としては槽外部からの加熱が好ましく、例えば、オイルや水を用いた加熱や、またはヒーターを槽に取り付けて加熱をおこなうことができる。槽内の冷却方法としては、例えば、室温で自然放冷する方法や0~40℃のオイルまたは水を用いて冷却する方法が挙げられる。塩基性化合物としては、ジメチルアミノエタノール、トリエチルアミン等が挙げられる。 Specifically, water, a binder resin, a basic compound, water, and if necessary, an organic solvent are put into the tank of this device, and the mixture is preferably stirred and mixed at a temperature of 40 ° C. or lower. Next, the binder resin is sufficiently dispersed by keeping the temperature in the tank at 70 to 210 ° C., preferably 80 to 180 ° C., more preferably 90 to 150 ° C., and continuing stirring for preferably 5 to 120 minutes. A stable dispersion can be obtained by solubilizing and then cooling to 40 ° C. or lower, preferably under stirring. If the temperature in the tank is less than 70 ° C., the dispersion of the binder resin may not proceed sufficiently. If the temperature in the tank exceeds 210 ° C., the molecular weight of the binder resin may decrease. As a heating method inside the tank, heating from the outside of the tank is preferable, and for example, heating using oil or water or attaching a heater to the tank can be used for heating. Examples of the cooling method in the tank include a method of allowing air to cool naturally at room temperature and a method of cooling using oil or water at 0 to 40 ° C. Examples of the basic compound include dimethylaminoethanol and triethylamine.
 得られたバインダー樹脂の分散液は、例えば、分散媒の留去や希釈により、所望の固形分濃度に調整することができる。 The obtained dispersion liquid of the binder resin can be adjusted to a desired solid content concentration by, for example, distilling or diluting the dispersion medium.
 上記の方法により、バインダー樹脂の分散液は、バインダー樹脂が分散媒中に分散され、均一な液状に調製されて得られる。ここで、均一な液状であるとは、外観上、分散液中に沈殿、相分離または皮張りといった、固形分濃度が局部的に他の部分と相違する部分が見いだされない状態にあることを意味する。 By the above method, the dispersion liquid of the binder resin is obtained by dispersing the binder resin in the dispersion medium and preparing it into a uniform liquid. Here, the term "uniform liquid" means that, in appearance, no part having a solid content concentration that is locally different from other parts, such as precipitation, phase separation, or skinning, is found in the dispersion. means.
 バインダー樹脂の分散粒子径は、他の成分との混合時の安定性および混合後の保存安定性の観点から、数平均粒子径が1μm以下であることが好ましく、0.8μm以下であることがより好ましい。なお、バインダー樹脂の数平均粒子径は動的光散乱法によって測定することができる。 The dispersed particle size of the binder resin is preferably a number average particle size of 1 μm or less, preferably 0.8 μm or less, from the viewpoint of stability when mixed with other components and storage stability after mixing. More preferred. The number average particle size of the binder resin can be measured by a dynamic light scattering method.
<積層体>
 本発明のめっき下地剤を、樹脂基材にコーティングすることにより、表面にめっき下地層を設けた積層体を得ることができる。コーティング可能な樹脂基材の形状は特に限定されず、フィルムやシートだけでなく、立体的な成形物であってもよい。
<Laminated body>
By coating the resin base material with the plating base material of the present invention, it is possible to obtain a laminate having a plating base layer on the surface. The shape of the resin base material that can be coated is not particularly limited, and may be a three-dimensional molded product as well as a film or sheet.
 本発明に用いる樹脂基材は、本発明の目的の範囲内であれば特に限定されず、樹脂基材を構成する樹脂として、例えば、ポリカーボネート樹脂;ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂等のポリエステル樹脂;ポリエチレン樹脂、ポリプロピレン樹脂等のポリオレフィン樹脂が挙げられる。近年自動車用途を中心に、従来用いられていたABSより耐熱性や衝撃強度に優れるものが求められていることから、ポリカーボネート樹脂基材が好ましく、耐熱、衝撃強度により優れる汎用のBisA型ポリカーボネート樹脂基材がより好ましい。BisA型ポリカーボネート樹脂とは、モノマー成分としてBisAおよび/またはそのアルキレンオキサイド付加体を含むポリカーボネート樹脂のことである。 The resin base material used in the present invention is not particularly limited as long as it is within the scope of the object of the present invention, and examples of the resin constituting the resin base material include a polycarbonate resin; a polyester resin such as a polyethylene terephthalate resin and a polybutylene terephthalate resin. ; Polyethylene resin, polypropylene resin and other polyolefin resins can be mentioned. In recent years, mainly for automobile applications, there is a demand for a material having better heat resistance and impact strength than ABS which has been conventionally used. Therefore, a polycarbonate resin base material is preferable, and a general-purpose BisA type polycarbonate resin base which is superior in heat resistance and impact strength. The material is more preferable. The BisA type polycarbonate resin is a polycarbonate resin containing BisA and / or an alkylene oxide adduct thereof as a monomer component.
 本発明のめっき下地剤がバインダー樹脂(A)を含む場合、バインダー樹脂(A)は(メタ)アクリル酸エステル成分を有するため、得られるめっき下地層はポリカーボネート樹脂基材への密着性がより高い。 When the plating base material of the present invention contains the binder resin (A), the binder resin (A) has a (meth) acrylic acid ester component, so that the obtained plating base layer has higher adhesion to the polycarbonate resin base material. ..
 樹脂基材へのコーティング方法は特に限定されず、樹脂基材の形状に応じて適宜選択することができる。フィルムやシートへのコーティング方法としては、例えば、ダイコーティングが挙げられ、立体的な成形物へのコーティング方法としては、例えば、ディップコーティングやスプレーコーティングが挙げられる。 The coating method on the resin base material is not particularly limited, and can be appropriately selected according to the shape of the resin base material. Examples of the coating method for a film or a sheet include die coating, and examples of a coating method for a three-dimensional molded product include dip coating and spray coating.
 本発明のめっき下地層の膜厚は特に限定されないが、0.5~5μmとすることが好ましく、1~3μmとすることが好ましい。膜厚は、厚い方がより強い密着力を有する一方、複雑な形状への適応が難しくなる傾向がある。 The film thickness of the plating base layer of the present invention is not particularly limited, but is preferably 0.5 to 5 μm, and preferably 1 to 3 μm. The thicker the film thickness, the stronger the adhesion, but the more difficult it is to adapt to a complicated shape.
 本発明のおいては、エッチング等の煩雑な工程を必要とせず、そのまま無電解めっき液に浸漬することで、樹脂基材にめっき下地層を設けることができる。めっきを施す方法としては無電解めっきを施す方法や、電解めっきを施す方法が挙げられるが、無電解めっきを施す方法の方が一般的である。本発明においては、ナノワイヤーとしてニッケルナノワイヤーを用いることにより、無電解めっきを好適に施すことができる。めっき層(無電解めっき層および電解めっき層;特に無電解めっき層)の密着性および均一性のさらなる向上の観点から、めっき下地剤を樹脂基材上にコーティングしてなる積層体に無電解めっきを施した後、電解めっきを施すことが好ましい。 In the present invention, a plating base layer can be provided on the resin base material by immersing it in the electroless plating solution as it is without requiring a complicated process such as etching. Examples of the plating method include a method of performing electroless plating and a method of performing electrolytic plating, but the method of performing electroless plating is more general. In the present invention, electroless plating can be suitably applied by using nickel nanowires as nanowires. From the viewpoint of further improving the adhesion and uniformity of the plating layers (electroless plating layer and electrolytic plating layer; especially electroless plating layer), electroless plating is performed on the laminate formed by coating the plating base material on the resin base material. After that, it is preferable to perform electrolytic plating.
 無電解めっきの条件は特に限定されないが、例えば、一般的な無電解めっきの条件である80~95℃で10~20分程度の浸漬をおこなうことで、めっき層を形成することができる。 The conditions for electroless plating are not particularly limited, but for example, the plating layer can be formed by immersing at 80 to 95 ° C., which is a general condition for electroless plating, for about 10 to 20 minutes.
 本発明のめっき下地剤を用いれば、樹脂基材にコーティング後、必要に応じて溶媒を留去させ、めっき液に浸漬するだけで、無電解めっき層を設けることができる。このため、従来のエッチング等をおこないめっき層を設ける方法に比べて、簡略かつ安価にめっきをおこなうことができる。また、本発明のめっき下地剤を用いれば、ナノワイヤーの一部が表面に露出し、その他の部分はバインダー樹脂に埋もれた下地層を設けることができる。この結果、樹脂基材上に、非常に強いアンカー効果を有し、高い密着力を有するめっき層を設けることができる。 By using the plating base material of the present invention, an electroless plating layer can be provided simply by coating a resin base material, distilling off a solvent if necessary, and immersing the plating base material in a plating solution. Therefore, plating can be performed simply and inexpensively as compared with the conventional method of providing a plating layer by etching or the like. Further, by using the plating base agent of the present invention, a base layer in which a part of the nanowire is exposed on the surface and the other part is buried in the binder resin can be provided. As a result, a plating layer having a very strong anchoring effect and a high adhesive force can be provided on the resin base material.
 本発明では、無電解めっきを施した後、低コストで緻密かつ金属光沢に優れる電解めっきを施すことができる。電解めっきはバインダー樹脂が分解しないように低電圧に抑えて処理することが好ましく、具体的には、30~50℃(特に40℃)にて、1~3V(特に1.5V)程度の電圧で10~20分程度処理すればよい。 In the present invention, after electroless plating, it is possible to perform electroplating that is dense and has excellent metallic luster at low cost. Electroplating is preferably performed at a low voltage so that the binder resin does not decompose. Specifically, the voltage is about 1 to 3 V (particularly 1.5 V) at 30 to 50 ° C. (particularly 40 ° C.). It may be processed for about 10 to 20 minutes.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれらによって限定されるものではない。なお、めっき下地剤の評価は、以下の方法によりおこなった。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited thereto. The plating base material was evaluated by the following method.
[評価方法]
(1)無電解めっきの評価
 実施例および比較例の各々で調製しためっき下地剤を、2.5mm×7mm×2mmのポリカーボネート樹脂基材にスプレーコーティングし、室温で15分、乾燥し、下地層を設けた基材を作製した。
 得られた下地層を設けた基材を、90℃に加熱した無電解ニッケルめっき液(奥野製薬工業社製トップニコロンXT-LF)に15分間浸漬した。
[Evaluation methods]
(1) Evaluation of electroless plating The plating base agent prepared in each of Examples and Comparative Examples was spray-coated on a 2.5 mm × 7 mm × 2 mm polycarbonate resin base material, dried at room temperature for 15 minutes, and the base layer was formed. A base material provided with the above was prepared.
The base material provided with the obtained base layer was immersed in an electroless nickel plating solution (Top Nicolon XT-LF manufactured by Okuno Pharmaceutical Industry Co., Ltd.) heated to 90 ° C. for 15 minutes.
(1A)無電解めっき層の均一性
 得られた無電解めっき層処理を施した基材について、下記式により、析出率を求め、無電解めっき層が均一に形成されているかどうかを、以下の基準で評価した。
(析出割合)=(めっき析出部の面積)/(めっき液に浸漬した面積)×100
 ◎:99%以上;
 ○:90%以上99%未満;
 △:20%以上90%未満;
 ×:20%未満。
 本発明においては、「△」以上の場合、合格とした。
(1A) Uniformity of Electroless Plating Layer With respect to the obtained base material subjected to the electroless plating layer treatment, the precipitation rate is determined by the following formula, and whether or not the electroless plating layer is uniformly formed is as follows. Evaluated by criteria.
(Precipitation ratio) = (Area of plating precipitation part) / (Area immersed in plating solution) x 100
⊚: 99% or more;
◯: 90% or more and less than 99%;
Δ: 20% or more and less than 90%;
X: Less than 20%.
In the present invention, if it is "Δ" or more, it is regarded as acceptable.
(1B)無電解めっきの密着性
 (1A)での評価が「△」以上の無電解めっき処理を施した基材について、めっき面に1cm角の切込みを入れ、該当部にセロテープ(登録商標)を貼り、瞬間的に剥離し、密着性を以下の基準で評価した。
 ◎:剥離なし。
 ○:ポリカーボネート樹脂基材と下地層の界面または下地層とめっき層の界面で、一部剥離した。
 ×:ポリカーボネート樹脂基材と下地層の界面ですべて剥離した。
 ××:下地層とめっき層の界面ですべて剥離した。
 本発明においては、「○」以上の場合、合格とした。
(1B) Adhesion of electroless plating For a base material that has undergone electroless plating with an evaluation of "△" or higher in (1A), a 1 cm square notch is made in the plated surface, and cellophane tape (registered trademark) is applied to the relevant part. Was affixed and peeled off instantaneously, and the adhesion was evaluated according to the following criteria.
⊚: No peeling.
◯: Partially peeled off at the interface between the polycarbonate resin base material and the base layer or the interface between the base layer and the plating layer.
X: All peeled off at the interface between the polycarbonate resin base material and the base layer.
XX: All peeled off at the interface between the base layer and the plating layer.
In the present invention, if it is "○" or more, it is regarded as acceptable.
(2)電解めっきの評価
 無電解めっき処理を施した基材を直流電源の(-)側に接続し、(+)側にニッケル板を接続した。接続したサンプルとニッケル板を3cmの間隔を空け、40℃に加熱した電解ニッケルめっき液(清川メッキ工業社製M-2)に浸漬し、1.5Vの電圧を15分間印加した。
(2) Evaluation of electrolytic plating The base material subjected to the electroless plating treatment was connected to the (-) side of the DC power supply, and the nickel plate was connected to the (+) side. The connected sample and the nickel plate were immersed in an electrolytic nickel plating solution (M-2 manufactured by Kiyokawa Plating Industry Co., Ltd.) heated to 40 ° C. at a distance of 3 cm, and a voltage of 1.5 V was applied for 15 minutes.
(2A)電解めっき層の均一性
 得られた電解めっき処理を施した基材に、電解めっき層が均一に形成されているかどうかを、以下の基準で評価した。
 ◎:電解めっき層が形成され(金属光沢の向上があった)、ピンホールや膨れも発生しなかった。
 ○:電解めっき層が形成されたものの(金属光沢の向上があった)、ピンホールが発生した。
 ●:電解めっき層が形成されたものの(金属光沢の向上があった)、めっき面に膨れが発生した。
 ×:電解めっき層が形成されたものの(金属光沢の向上があった)、めっき面に一部剥がれが発生した。
 ××:電解めっき層が形成されなかった(金属光沢が向上しなかった)。
 本発明においては、「●」以上の場合、合格とした。
(2A) Uniformity of Electroplating Layer Whether or not the electroplating layer was uniformly formed on the obtained base material subjected to the electroplating treatment was evaluated according to the following criteria.
⊚: An electrolytic plating layer was formed (the metallic luster was improved), and no pinholes or swelling occurred.
◯: Although the electrolytic plating layer was formed (the metallic luster was improved), pinholes were generated.
●: Although an electrolytic plating layer was formed (the metallic luster was improved), swelling occurred on the plated surface.
X: Although the electrolytic plating layer was formed (the metallic luster was improved), some peeling occurred on the plated surface.
XX: The electroplating layer was not formed (metal luster was not improved).
In the present invention, if it is "●" or more, it is regarded as acceptable.
(2B)電解めっき層の密着性
 得られた電解めっき処理を施した基材にセロテープ(登録商標)を貼り、瞬間的に剥離し、密着性を以下の基準で評価した。
 ◎:剥離なし。
 ○:一部剥離した。
 ×:すべて剥離した。
 本発明においては、「○」以上の場合、合格とした。
(2B) Adhesion of Electroplating Layer A cellophane tape (registered trademark) was attached to the obtained base material subjected to the electroplating treatment, and the adhesive was momentarily peeled off, and the adhesion was evaluated according to the following criteria.
⊚: No peeling.
◯: Partially peeled off.
X: All peeled off.
In the present invention, if it is "○" or more, it is regarded as acceptable.
[材料]
(1)Ox:オキサゾリン基含有ポリマー、日本触媒社製 エポクロスWS700、固形分濃度25質量%
(2)NiP:ニッケル粒子、ヴァーレ社製、ニッケルパウダーType123
(3)PC:ポリカーボネート(帝人社製、L-1225Y)
(4)PVP:ポリビニルピロリドン(富士フイルム和光純薬製、K90)、K値90
[material]
(1) Ox: Oxazoline group-containing polymer, Epocross WS700 manufactured by Nippon Shokubai Co., Ltd., solid content concentration 25% by mass
(2) NiP: Nickel particles, manufactured by Vale, nickel powder Type123
(3) PC: Polycarbonate (Made by Teijin, L-1225Y)
(4) PVP: Polyvinylpyrrolidone (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., K90), K value 90
[実験例A]
実施例1A
(ナノワイヤーの水分散液の調製)
 塩化ニッケル六水和物4.00質量部、クエン酸三ナトリウム二水和物0.375質量部をエチレングリコールに添加し、全量で500質量部とした。この溶液を90℃に加熱し、すべて溶解させた。
 水酸化ナトリウム1.00質量部をエチレングリコールに添加し、全量で475質量部にした。この溶液を90℃に加熱し、水酸化ナトリウムを溶解させた。
 上記2つの溶液を混合し、28%アンモニア水25質量部、ヒドラジン一水和物1.00質量部の順で添加し、すぐに、中心に150mTの磁場が印加できる磁気回路に入れ、当該磁場を印加し、90~95℃に維持したまま15分間静置して還元反応をおこなった。
 還元反応後、吸引ろ過によりナノワイヤーを回収した。得られたナノワイヤー(NiNW)の平均長は23μm、平均径は93nm、粒子連結形状であった。
 得られたナノワイヤーとジクロロメタンを混合し、固形分濃度が1.0質量%のNiNWの水分散液を調製した。
[Experimental Example A]
Example 1A
(Preparation of aqueous dispersion of nanowires)
4.00 parts by mass of nickel chloride hexahydrate and 0.375 parts by mass of trisodium citrate dihydrate were added to ethylene glycol to make a total of 500 parts by mass. The solution was heated to 90 ° C. to dissolve all.
1.00 parts by mass of sodium hydroxide was added to ethylene glycol to give a total of 475 parts by mass. The solution was heated to 90 ° C. to dissolve sodium hydroxide.
The above two solutions are mixed, 25 parts by mass of 28% aqueous ammonia and 1.00 parts by mass of hydrazine monohydrate are added in this order, and immediately placed in a magnetic circuit to which a magnetic field of 150 mT can be applied to the center, and the magnetic field is applied. Was applied, and the mixture was allowed to stand for 15 minutes while being maintained at 90 to 95 ° C. to carry out a reduction reaction.
After the reduction reaction, nanowires were collected by suction filtration. The obtained nanowire (NiNW) had an average length of 23 μm, an average diameter of 93 nm, and a particle-connected shape.
The obtained nanowires and dichloromethane were mixed to prepare an aqueous dispersion of NiNW having a solid content concentration of 1.0% by mass.
(バインダー樹脂の分散液の調製)
 エチレン-アクリル酸エチル-無水マレイン酸共重合体(EAM、質量比:エチレン/アクリル酸エチル/無水マレイン酸=84.2/13/2.8、メルトフローレート(JIS K 6730準拠、190℃、2160g荷重)10g/10分以下)45.0質量部、105.0質量部のテトラヒドロフラン、3.0質量部のシクロヘキサン、9.0質量部のジメチルアミノエタノールおよび138.0質量部の蒸留水をガラス容器内に仕込み、攪拌翼の回転速度を300rpmとして攪拌した。この状態を保ちつつ、ヒーターの電源を入れ加熱し、系内温度を125℃に保って60分間攪拌した。その後、水浴につけて攪拌しつつ室温(約25℃)迄冷却し、80.0質量部の蒸留水を追加した。得られた分散液を容器に入れ、60℃に加熱しながら減圧し、155.0質量部の媒体を留去した。冷却後、液状成分を300メッシュのステンレス製フィルター(線径0.035mm、平織)で加圧濾過(空気圧0.2MPa)し、乳白色の均一な固形分濃度が20質量%のEAMの水分散液を調製した。
(Preparation of dispersion of binder resin)
Ethylene-ethyl acrylate-maleic anhydride copolymer (EAM, mass ratio: ethylene / ethyl acrylate / maleic anhydride = 84.2 / 13 / 2.8, melt flow rate (JIS K 6730 compliant, 190 ° C., 2160 g load) 10 g / 10 minutes or less) 45.0 parts by mass, 105.0 parts by mass of tetrahydrofuran, 3.0 parts by mass of cyclohexane, 9.0 parts by mass of dimethylaminoethanol and 138.0 parts by mass of distilled water. It was charged in a glass container and stirred with the rotation speed of the stirring blade set to 300 rpm. While maintaining this state, the heater was turned on and heated, and the temperature inside the system was maintained at 125 ° C. and the mixture was stirred for 60 minutes. Then, the mixture was immersed in a water bath and cooled to room temperature (about 25 ° C.) while stirring, and 80.0 parts by mass of distilled water was added. The obtained dispersion was placed in a container and depressurized while heating at 60 ° C., and 155.0 parts by mass of the medium was distilled off. After cooling, the liquid component is pressure-filtered (air pressure 0.2 MPa) with a 300-mesh stainless steel filter (wire diameter 0.035 mm, plain weave), and an aqueous dispersion of EAM with a uniform milky white solid content concentration of 20% by mass. Was prepared.
(めっき下地剤の調製)
 EAMの水分散液0.9質量部を水89.1質量部で徐々に希釈した後、NiNWの水分散液10.0質量部を撹拌しながら添加して、めっき下地剤を調製した。
(Preparation of plating base material)
After gradually diluting 0.9 parts by mass of the aqueous dispersion of EAM with 89.1 parts by mass of water, 10.0 parts by mass of the aqueous dispersion of NiNW was added with stirring to prepare a plating base material.
実施例2A
(ナノワイヤーのエチレングリコール分散液の調製)
 実施例1Aで得られたナノワイヤーとエチレングリコールを混合し、固形分濃度が1.0質量%のNiNWのエチレングリコール分散液を調製した。
Example 2A
(Preparation of ethylene glycol dispersion of nanowires)
The nanowires obtained in Example 1A and ethylene glycol were mixed to prepare an ethylene glycol dispersion of NiNW having a solid content concentration of 1.0% by mass.
(めっき下地剤の調製)
 EAMの水分散液0.9質量部をエチレングリコール89.1質量部で徐々に希釈した後、NiNWのエチレングリコール分散液10.0質量部を撹拌しながら添加して、めっき下地剤を調製した。
(Preparation of plating base material)
After gradually diluting 0.9 parts by mass of the aqueous dispersion of EAM with 89.1 parts by mass of ethylene glycol, 10.0 parts by mass of the ethylene glycol dispersion of NiNW was added with stirring to prepare a plating base material. ..
実施例3A
(ナノワイヤーのエタノール分散液の調製)
 実施例1Aで得られたナノワイヤーとエタノールを混合し、固形分濃度が1.0質量%のNiNWのエタノール分散液を調製した。
Example 3A
(Preparation of ethanol dispersion of nanowires)
The nanowires obtained in Example 1A and ethanol were mixed to prepare an ethanol dispersion of NiNW having a solid content concentration of 1.0% by mass.
(めっき下地剤の調製)
 EAMの水分散液0.9質量部をエタノール89.1質量部で徐々に希釈した後、NiNWのエタノール分散液10.0質量部を撹拌しながら添加して、めっき下地剤を調製した。
(Preparation of plating base material)
After gradually diluting 0.9 parts by mass of the aqueous dispersion of EAM with 89.1 parts by mass of ethanol, 10.0 parts by mass of the ethanol dispersion of NiNW was added with stirring to prepare a plating base material.
実施例4A
(ナノワイヤーのテトラヒドロフラン分散液の調製)
 実施例1Aで得られたナノワイヤーとテトラヒドロフラン(THF)を混合し、固形分濃度が1.0質量%のNiNWのTHF分散液を調製した。
Example 4A
(Preparation of tetrahydrofuran dispersion of nanowires)
The nanowires obtained in Example 1A and tetrahydrofuran (THF) were mixed to prepare a THF dispersion of NiNW having a solid content concentration of 1.0% by mass.
(バインダー樹脂溶液の調製)
 EAM0.18質量部をTHF89.82質量部で希釈して、固形分濃度1.0質量%のEAMのTHF溶液を調製した。
(めっき下地剤の調製)
 EAMのTHF溶液90.0質量部に、NiNWのTHF分散液10.0質量部を撹拌しながら添加して、めっき下地剤を調製した。
(Preparation of binder resin solution)
0.18 parts by mass of EAM was diluted with 89.82 parts by mass of THF to prepare a THF solution of EAM having a solid content concentration of 1.0% by mass.
(Preparation of plating base material)
A plating base agent was prepared by adding 10.0 parts by mass of a THF dispersion of NiNW to 90.0 parts by mass of a THF solution of EAM with stirring.
実施例5A~8A
 めっき下地剤においてNiNWとEAMの質量比率が表1の組成になるように、NiNWの分散液とEAMの分散液の配合量を変更する以外は、実施例1Aと同様の操作をおこなって、めっき下地剤を調製した。
Examples 5A-8A
The same operation as in Example 1A was performed for plating, except that the blending amounts of the NiNW dispersion and the EAM dispersion were changed so that the mass ratio of NiNW and EAM in the plating base material had the composition shown in Table 1. A base material was prepared.
実施例9A
(めっき下地剤の調製)
 EAMの水分散液0.2質量部を水89.78質量部で徐々に希釈した後、Ox0.02質量部を徐々に添加して十分に撹拌した。その後、NiNWの水分散液10.0質量部を撹拌しながら添加して、めっき下地剤を調製した。
Example 9A
(Preparation of plating base material)
After gradually diluting 0.2 parts by mass of the aqueous dispersion of EAM with 89.78 parts by mass of water, 0.02 parts by mass of Ox was gradually added and the mixture was sufficiently stirred. Then, 10.0 parts by mass of an aqueous dispersion of NiNW was added with stirring to prepare a plating base material.
実施例10A~13A
 めっき下地剤においてNiNWとEAMとOxの質量比率が表1の組成になるように、NiNWの分散液とEAMの分散液とOxの配合量を変更する以外は、実施例9Aと同様の操作をおこなって、めっき下地剤を調製した。
Examples 10A to 13A
The same operation as in Example 9A was performed except that the blending amounts of the NiNW dispersion, the EAM dispersion, and Ox were changed so that the mass ratio of NiNW, EAM, and Ox in the plating base material had the composition shown in Table 1. This was done to prepare a plating substrate.
比較例1A
(めっき下地剤の調製)
 EAMの水分散液0.9質量部を水99.0質量部で徐々に希釈した後、NiP0.10質量部を攪拌しながら添加して、めっき下地剤を調製した。
Comparative Example 1A
(Preparation of plating base material)
After gradually diluting 0.9 parts by mass of the aqueous dispersion of EAM with 99.0 parts by mass of water, 0.10 parts by mass of NiP was added with stirring to prepare a plating base material.
比較例2A
 めっき下地剤においてNiPとEAMの質量比率が表1の組成になるように、NiPとEAMの分散液と水の配合量を変更する以外は、比較例1Aと同様の操作をおこなって、めっき下地剤を調製した。
Comparative Example 2A
The same operation as in Comparative Example 1A was performed except that the blending amounts of the dispersion liquid of NiP and EAM and water were changed so that the mass ratio of NiP and EAM in the plating base agent had the composition shown in Table 1. The agent was prepared.
比較例3A
 EAMの水分散液0.2質量部を水99.66質量部で徐々に希釈した後、Ox0.04質量部を徐々に添加して十分に撹拌した。その後、NiP0.10質量部を撹拌しながら添加して、めっき下地剤を調製した。
Comparative Example 3A
After gradually diluting 0.2 parts by mass of the aqueous dispersion of EAM with 99.66 parts by mass of water, 0.04 parts by mass of Ox was gradually added and the mixture was sufficiently stirred. Then, 0.10 parts by mass of NiP was added with stirring to prepare a plating base agent.
比較例4A
(バインダー樹脂の分散液の調製)
 プロピレン/ブテン/エチレン共重合体(PBE、質量比:プロピレン/1-ブテン/エチレン=64.8/23.9/11.3、メルトフローレート(JIS K 6730準拠、190℃、2160g荷重)10g/10分以下)280質量部を、容器中において、窒素雰囲気下で加熱溶融させた。その後、系内温度を170℃に保って、攪拌下、無水マレイン酸32質量部とジクミルパーオキサイド6質量部とをそれぞれ1時間かけて加え、その後1時間反応させた。反応終了後、得られた反応物を多量のアセトン中に投入し、樹脂を析出させた。この樹脂をさらにアセトンで数回洗浄し、未反応の無水マレイン酸を除去した後、減圧乾燥して、酸変性プロピレン/ブテン/エチレン三元共重合体からなるポリオレフィン系樹脂を合成した。続いて、ヒーター付きの密閉できる耐圧ガラス容器を備えた攪拌機を用いて、45.0質量部の上記ポリオレフィン系樹脂、105.0質量部のテトラヒドロフラン、3.0質量部のシクロヘキサン、9.0質量部のジメチルアミノエタノールおよび138.0質量部の蒸留水をガラス容器内に仕込み、攪拌翼の回転速度を300rpmとして攪拌した。この状態を保ちつつ、ヒーターの電源を入れ加熱し、系内温度を125℃に保って60分間攪拌した。その後、水浴につけて攪拌しつつ室温(約25℃)迄冷却し、80.0質量部の蒸留水を追加した。得られた分散液を容器に入れ、60℃に加熱しながら減圧し、155.0質量部の媒体を留去した。冷却後、容器内の液状成分を300メッシュのステンレス製フィルター(線径0.035mm、平織)で加圧濾過(空気圧0.2MPa)し、乳白色の均一な固形分濃度が20質量%のPBEの水分散液を調製した。
Comparative Example 4A
(Preparation of dispersion of binder resin)
Propylene / butene / ethylene copolymer (PBE, mass ratio: propylene / 1-butene / ethylene = 64.8 / 23.9 / 11.3, melt flow rate (JIS K 6730 compliant, 190 ° C., 2160 g load) 10 g (/10 minutes or less) 280 parts by mass was heated and melted in a container under a nitrogen atmosphere. Then, while keeping the temperature in the system at 170 ° C., 32 parts by mass of maleic anhydride and 6 parts by mass of dicumyl peroxide were added over 1 hour with stirring, and then the reaction was carried out for 1 hour. After completion of the reaction, the obtained reaction product was put into a large amount of acetone to precipitate a resin. This resin was further washed with acetone several times to remove unreacted maleic anhydride, and then dried under reduced pressure to synthesize a polyolefin-based resin composed of an acid-modified propylene / butene / ethylene ternary copolymer. Subsequently, using a stirrer equipped with a hermetically sealed pressure-resistant glass container equipped with a heater, 45.0 parts by mass of the above-mentioned polyolefin resin, 105.0 parts by mass of tetrahydrofuran, 3.0 parts by mass of cyclohexane, and 9.0 parts by mass. A portion of dimethylaminoethanol and 138.0 parts by mass of distilled water were charged in a glass container, and the stirring blade was stirred at a rotation speed of 300 rpm. While maintaining this state, the heater was turned on and heated, and the temperature inside the system was maintained at 125 ° C. and the mixture was stirred for 60 minutes. Then, the mixture was immersed in a water bath and cooled to room temperature (about 25 ° C.) while stirring, and 80.0 parts by mass of distilled water was added. The obtained dispersion was placed in a container and depressurized while heating at 60 ° C., and 155.0 parts by mass of the medium was distilled off. After cooling, the liquid component in the container is pressure-filtered (air pressure 0.2 MPa) with a 300 mesh stainless steel filter (wire diameter 0.035 mm, plain weave) to obtain a milky white uniform solid content of 20% by mass of PBE. An aqueous dispersion was prepared.
(めっき下地剤の調製)
 PBEの水分散液0.2質量部を水89.8質量部で徐々に希釈した後、NiNWの水分散液10.0質量部を撹拌しながら添加して、めっき下地剤を調製した。
(Preparation of plating base material)
After gradually diluting 0.2 parts by mass of the aqueous dispersion of PBE with 89.8 parts by mass of water, 10.0 parts by mass of the aqueous dispersion of NiNW was added with stirring to prepare a plating base material.
比較例5A~8A
 めっき下地剤においてNiNWとPBEの質量比率が表1の組成になるように、NiNWの分散液とPBEの分散液と水の配合量を変更する以外は、比較例4Aと同様の操作をおこなって、めっき下地剤を調製した。
Comparative Examples 5A-8A
The same operation as in Comparative Example 4A was performed except that the blending amounts of the NiNW dispersion, the PBE dispersion, and water were changed so that the mass ratio of NiNW and PBE in the plating base material had the composition shown in Table 1. , A plating base material was prepared.
比較例9A
 EAMをPBEに変更する以外は、実施例9Aと同様の操作をおこなって、めっき下地剤を調製した。
Comparative Example 9A
The same operation as in Example 9A was carried out except that EAM was changed to PBE, and a plating base material was prepared.
比較例10A~13A
 めっき下地剤においてNiNWとPBEとOxの質量比率が表1の組成になるように、NiNWの分散液とPBEの分散液とOxと水の配合量を変更する以外は、比較例9Aと同様の操作をおこなって、めっき下地剤を調製した。
Comparative Examples 10A to 13A
Similar to Comparative Example 9A except that the blending amounts of the NiNW dispersion, the PBE dispersion, Ox, and water are changed so that the mass ratio of NiNW, PBE, and Ox in the plating base material has the composition shown in Table 1. The operation was performed to prepare a plating base material.
 本実験例の実施例および比較例で得られためっき下地剤の配合組成および積層体の評価結果を表1に示す。 Table 1 shows the composition of the plating base agent and the evaluation results of the laminate obtained in the examples and comparative examples of this experimental example.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1A~13Aでは、ナノワイヤーおよび親水基成分と(メタ)アクリル酸エステル成分を有するバインダー樹脂を含有するめっき下地剤を用いたため、無電解めっき液に浸漬するだけで、ポリカーボネート樹脂基材に対して高い密着力を有するめっき層を設けることができた。特に、実施例9A~13Aでは、オキサゾリン化合物を含有することから下地層の化学的耐性が向上し、電解めっき後も、ポリカーボネート樹脂基材に対して高い密着力を保持していた。 In Examples 1A to 13A, since a plating base agent containing nanowires and a binder resin having a hydrophilic group component and a (meth) acrylic acid ester component was used, the polycarbonate resin base material could be obtained by simply immersing the plating base material in an electroless plating solution. On the other hand, it was possible to provide a plating layer having high adhesion. In particular, in Examples 9A to 13A, since the oxazoline compound was contained, the chemical resistance of the base layer was improved, and even after electrolytic plating, high adhesion to the polycarbonate resin base material was maintained.
 実施例1A~4Aを対比することにより、分散媒として、アルコール、グリコール、または水を用いためっき下地剤を用いたほうが、より均一でより高い密着力を有する無電解めっき層を得ることができることがわかる。 By comparing Examples 1A to 4A, it is possible to obtain an electroless plating layer that is more uniform and has higher adhesion by using a plating base agent using alcohol, glycol, or water as a dispersion medium. I understand.
 また、実施例1A、5A~8Aを対比することにより、ナノワイヤーとバインダー樹脂の質量比率が0.5~2.0であるめっき下地剤を用いた方が、より均一でより高い密着力を有する無電解めっき層を得ることができることがわかる。 Further, by comparing Examples 1A, 5A to 8A, it is more uniform and higher adhesion when a plating base material having a mass ratio of nanowire and binder resin of 0.5 to 2.0 is used. It can be seen that the electroless plating layer having can be obtained.
 さらに、実施例10Aおよび11Aを他の実施例および比較例と対比すると、バインダー樹脂(A)を用いる場合、ナノワイヤーとバインダー樹脂の質量比率が0.5~2.0であり、かつ架橋剤(特にオキサゾリン化合物)をさらに含むめっき下地剤を用いることにより、より均一で、より高い密着力を有する無電解めっき層および電解めっき層を得ることができることがわかる。 Furthermore, when Examples 10A and 11A are compared with other Examples and Comparative Examples, when the binder resin (A) is used, the mass ratio of the nanowire to the binder resin is 0.5 to 2.0, and the cross-linking agent. It can be seen that an electroless plating layer and an electrolytic plating layer having a more uniform and higher adhesive force can be obtained by using a plating base agent further containing (particularly an oxazoline compound).
 比較例1A~3Aでは、ナノワイヤーではなく粒子を用いたため、密着性に劣り、剥離が発生しやすいめっき層(特に無電解めっき層)しか得られなかった。
 比較例4A~13Aでは、バインダー樹脂にエステル結合を含有しないポリマーを用いたため、電解めっき後、電解めっき中に剥離が生じる等の密着性に劣るめっき層しか得られなかった。詳しくは、比較例4A~13Aでは、バインダー樹脂にエステル結合を含有しないポリマーを用いたため、無電解めっき層の均一性または密着性が劣り、仮に、均一性および密着性に優れた無電解めっき層が得られたとしても、当該無電解めっき層上に形成される電解めっき層の均一性および/または密着性が劣った。
In Comparative Examples 1A to 3A, since particles were used instead of nanowires, only a plating layer (particularly an electroless plating layer) having poor adhesion and prone to peeling could be obtained.
In Comparative Examples 4A to 13A, since a polymer containing no ester bond was used in the binder resin, only a plating layer having poor adhesion such as peeling during electrolytic plating after electrolytic plating could be obtained. Specifically, in Comparative Examples 4A to 13A, since the polymer containing no ester bond was used in the binder resin, the uniformity or adhesion of the electroless plating layer was inferior, and the electroless plating layer having excellent uniformity and adhesion was assumed. Even if the above was obtained, the uniformity and / or adhesion of the electroplating layer formed on the electroless plating layer was inferior.
[実験例B]
実施例1B
(ナノワイヤーの分散液の調製)
 塩化ニッケル六水和物4.00質量部、クエン酸三ナトリウム二水和物0.375質量部をエチレングリコールに添加し、全量で500質量部とした。この溶液を90℃に加熱し、すべて溶解させた。
 水酸化ナトリウム1.00質量部をエチレングリコールに添加し、全量で475質量部にした。この溶液を90℃に加熱し、水酸化ナトリウムを溶解させた。
 上記2つの溶液を混合し、28%アンモニア水25質量部、ヒドラジン一水和物1.00質量部の順で添加し、すぐに、中心に150mTの磁場が印加できる磁気回路に入れ、当該磁場を印加し、90~95℃に維持したまま15分間静置して還元反応をおこなった。
 還元反応後、吸引ろ過によりナノワイヤーを回収した。得られたナノワイヤー(NiNW)の平均長は23μm、平均径は93nm、粒子連結形状であった。
 得られたナノワイヤーとメチルエチルケトンを混合し、固形分濃度が1.0質量%のNiNWの分散液を調製した。
[Experimental Example B]
Example 1B
(Preparation of nanowire dispersion)
4.00 parts by mass of nickel chloride hexahydrate and 0.375 parts by mass of trisodium citrate dihydrate were added to ethylene glycol to make a total of 500 parts by mass. The solution was heated to 90 ° C. to dissolve all.
1.00 parts by mass of sodium hydroxide was added to ethylene glycol to give a total of 475 parts by mass. The solution was heated to 90 ° C. to dissolve sodium hydroxide.
The above two solutions are mixed, 25 parts by mass of 28% aqueous ammonia and 1.00 parts by mass of hydrazine monohydrate are added in this order, and immediately placed in a magnetic circuit to which a magnetic field of 150 mT can be applied to the center, and the magnetic field is applied. Was applied, and the mixture was allowed to stand for 15 minutes while being maintained at 90 to 95 ° C. to carry out a reduction reaction.
After the reduction reaction, nanowires were collected by suction filtration. The obtained nanowire (NiNW) had an average length of 23 μm, an average diameter of 93 nm, and a particle-connected shape.
The obtained nanowires and methyl ethyl ketone were mixed to prepare a dispersion of NiNW having a solid content concentration of 1.0% by mass.
(共重合ポリエステル樹脂A(PES-A)溶液の調製)
 テレフタル酸(TPA)83質量部(50モル比)、イソフタル酸(IPA)83質量部(50モル比)、エチレングリコール(EG)50質量部(80モル比)、2,2-ビス(4-ヒドロキシフェニル)プロパンのエチレンオキサイド付加体(BisAEO)158質量部(50モル比)および重合触媒としてテトラブチルチタネート0.1質量部を反応器に仕込み、系内を窒素に置換した。そして、これらの原料を1000rpmで撹拌しながら、反応器を245℃で加熱し、溶融させた。反応器内温度が245℃に到達してから、3時間エステル化反応を進行させた(エステル化反応)。3時間経過後、系内の温度を240℃にし、系内を減圧した。系内が高真空(圧力:0.1~10-5Pa)に到達してから、さらに3.0時間重合反応をおこなった(重縮合反応)。
 重合完了後反応器より共重合ポリエステル樹脂A(PES-A)を払い出した。
 得られた共重合ポリエステル樹脂A(PES-A)の樹脂組成をH-NMR、数平均分子量をゲルパーミエーションクロマトグラフィー(GPC)で測定したところ、樹脂組成(モル比率)はTPA/IPA/EG/BisAEO=50/50/50/50、数平均分子量は18000であった。
 共重合ポリエステル樹脂A(PES-A) 1.0質量部をトルエン/メチルエチルケトン混合溶媒(トルエン/メチルエチルケトン=4/1(質量比率))9.0質量部に溶解し、固形分濃度が10.0質量%の共重合ポリエステル樹脂A(PES-A)溶液を調製した。
(Preparation of copolymerized polyester resin A (PES-A) solution)
83 parts by mass (50 mol ratio) of terephthalic acid (TPA), 83 parts by mass (50 mol ratio) of isophthalic acid (IPA), 50 parts by mass (80 mol ratio) of ethylene glycol (EG), 2,2-bis (4-) 158 parts by mass (50 mol ratio) of ethylene oxide adduct (BisAEO) of hydroxyphenyl) propane and 0.1 parts by mass of tetrabutyl titanate as a polymerization catalyst were charged into the reactor, and the inside of the system was replaced with nitrogen. Then, the reactor was heated at 245 ° C. and melted while stirring these raw materials at 1000 rpm. After the temperature in the reactor reached 245 ° C., the esterification reaction was allowed to proceed for 3 hours (esterification reaction). After 3 hours, the temperature in the system was adjusted to 240 ° C. and the pressure in the system was reduced. After the inside of the system reached a high vacuum (pressure: 0.1 to 10-5 Pa), a polymerization reaction was further carried out for 3.0 hours (polycondensation reaction).
After the polymerization was completed, the copolymerized polyester resin A (PES-A) was dispensed from the reactor.
When the resin composition of the obtained copolymerized polyester resin A (PES-A) was measured by 1 H-NMR and the number average molecular weight was measured by gel permeation chromatography (GPC), the resin composition (molar ratio) was TPA / IPA /. EG / BisAEO = 50/50/50/50, and the number average molecular weight was 18,000.
1.0 part by mass of copolymerized polyester resin A (PES-A) was dissolved in 9.0 parts by mass of a mixed solvent of toluene / methyl ethyl ketone (toluene / methyl ethyl ketone = 4/1 (mass ratio)), and the solid content concentration was 10.0. A mass% copolymerized polyester resin A (PES-A) solution was prepared.
(めっき下地剤の調製)
 1.0質量%のNiNWの分散液10.0質量部と、10.0質量%の共重合ポリエステル樹脂A(PES-A)溶液1.0質量部と、メチルエチルケトン89.0質量部とを混合して、めっき下地剤を調製した。
(Preparation of plating base material)
10.0 parts by mass of a 1.0% by mass NiNW dispersion, 1.0 part by mass of a 10.0% by mass copolymerized polyester resin A (PES-A) solution, and 89.0 parts by mass of methyl ethyl ketone are mixed. Then, a plating base material was prepared.
実施例2B~6B
 めっき下地剤においてNiNWと共重合ポリエステル樹脂の質量比率が表2の組成になるように、NiNWの分散液と共重合ポリエステル樹脂A溶液の配合量を変更する以外は、実施例1Bと同様の操作をおこなって、めっき下地剤を調製した。
Examples 2B-6B
The same operation as in Example 1B except that the blending amount of the NiNW dispersion and the copolymerized polyester resin A solution is changed so that the mass ratio of NiNW and the copolyester resin in the plating base material has the composition shown in Table 2. Was carried out to prepare a plating base material.
実施例7B
(共重合ポリエステル樹脂B(PES-B)溶液の調製)
 テレフタル酸(TPA)83質量部(50モル比)、イソフタル酸(IPA)83質量部(50モル比)、エチレングリコール(EG)38質量部(62モル比)、ネオペンチルグリコール(NPG)66質量部(63モル比)、PTMG1000(PTMG)50質量部(5モル比)および重合触媒としてテトラブチルチタネート0.1質量部を反応器に仕込み、系内を窒素に置換した。そして、これらの原料を1000rpmで撹拌しながら、反応器を245℃で加熱し、溶融させた。反応器内温度が245℃に到達してから、3時間エステル化反応を進行させた(エステル化反応)。3時間経過後、系内の温度を240℃にし、系内を減圧した。系内が高真空(圧力:0.1~10-5Pa)に到達してから、さらに3.0時間重合反応をおこなった(重縮合反応)。
 重合完了後反応器より共重合ポリエステル樹脂B(PES-B)を払い出した。
 得られた共重合ポリエステル樹脂B(PES-B)の樹脂組成をH-NMR、数平均分子量をゲルパーミエーションクロマトグラフィー(GPC)で測定したところ、樹脂組成(モル比率)はTPA/IPA/EG/NPG/PTMG=50/50/47.5/47.5/5、数平均分子量は28000であった。
 共重合ポリエステル樹脂B(PES-B) 1.0質量部をトルエン/メチルエチルケトン混合溶媒(トルエン/メチルエチルケトン=4/1(質量比率))9.0質量部に溶解し、固形分濃度が10.0質量%の共重合ポリエステル樹脂B(PES-B)溶液を調製した。
Example 7B
(Preparation of copolymerized polyester resin B (PES-B) solution)
83 parts by mass (50 mol ratio) of terephthalic acid (TPA), 83 parts by mass (50 mol ratio) of isophthalic acid (IPA), 38 parts by mass (62 mol ratio) of ethylene glycol (EG), 66 parts by mass of neopentyl glycol (NPG) 50 parts by mass (5 mol ratio) of PTMG1000 (PTMG) and 0.1 part by mass of tetrabutyl titanate as a polymerization catalyst were charged into the reactor, and the inside of the system was replaced with nitrogen. Then, the reactor was heated at 245 ° C. and melted while stirring these raw materials at 1000 rpm. After the temperature in the reactor reached 245 ° C., the esterification reaction was allowed to proceed for 3 hours (esterification reaction). After 3 hours, the temperature in the system was adjusted to 240 ° C. and the pressure in the system was reduced. After the inside of the system reached a high vacuum (pressure: 0.1 to 10-5 Pa), a polymerization reaction was further carried out for 3.0 hours (polycondensation reaction).
After the polymerization was completed, the copolymerized polyester resin B (PES-B) was dispensed from the reactor.
When the resin composition of the obtained copolymerized polyester resin B (PES-B) was measured by 1 H-NMR and the number average molecular weight was measured by gel permeation chromatography (GPC), the resin composition (molar ratio) was TPA / IPA /. EG / NPG / PTMG = 50/50/47.5 / 47.5 / 5, and the number average molecular weight was 28,000.
1.0 part by mass of copolymerized polyester resin B (PES-B) was dissolved in 9.0 parts by mass of a mixed solvent of toluene / methyl ethyl ketone (toluene / methyl ethyl ketone = 4/1 (mass ratio)), and the solid content concentration was 10.0. A mass% copolymerized polyester resin B (PES-B) solution was prepared.
(めっき下地剤の調製)
 1.0質量%のNiNWの分散液10.0質量部と、10.0質量%の共重合ポリエステル樹脂B(PES-B)溶液1.0質量部と、メチルエチルケトン89.0質量部とを混合して、めっき下地剤を調製した。
(Preparation of plating base material)
A mixture of 10.0 parts by mass of a 1.0% by mass NiNW dispersion, 1.0 part by mass of a 10.0% by mass copolymerized polyester resin B (PES-B) solution, and 89.0 parts by mass of methyl ethyl ketone. Then, a plating base material was prepared.
実施例8B
(共重合ポリエステル樹脂C溶液の調製)
 テレフタル酸(TPA)83質量部(50モル比)、イソフタル酸(IPA)83質量部(50モル比)、エチレングリコール(EG)42質量部(67モル比)、ネオペンチルグリコール(NPG)71質量部(63モル比)および重合触媒としてテトラブチルチタネート0.1質量部を反応器に仕込み、系内を窒素に置換した。そして、これらの原料を1000rpmで撹拌しながら、反応器を245℃で加熱し、溶融させた。反応器内温度が245℃に到達してから、3時間エステル化反応を進行させた(エステル化反応)。3時間経過後、系内の温度を240℃にし、系内を減圧した。系内が高真空(圧力:0.1~10-5Pa)に到達してから、さらに3.0時間重合反応をおこなった(重縮合反応)。
 重合完了後反応器より共重合ポリエステル樹脂C(PES-C)を払い出した。
 得られた共重合ポリエステル樹脂C(PES-C)の樹脂組成をH-NMR、数平均分子量をゲルパーミエーションクロマトグラフィー(GPC)で測定したところ、樹脂組成(モル比率)はTPA/IPA/EG/NPG=50/50/50/50、数平均分子量は22000であった。
 共重合ポリエステル樹脂C(PES-C) 1.0質量部をトルエン/メチルエチルケトン混合溶媒(トルエン/メチルエチルケトン=4/1(質量比率))9.0質量部に溶解し、固形分濃度が10.0質量%の共重合ポリエステル樹脂C(PES-C)溶液を調製した。
Example 8B
(Preparation of copolymerized polyester resin C solution)
83 parts by mass (50 mol ratio) of terephthalic acid (TPA), 83 parts by mass (50 mol ratio) of isophthalic acid (IPA), 42 parts by mass (67 mol ratio) of ethylene glycol (EG), 71 mass of neopentyl glycol (NPG) A part (63 mol ratio) and 0.1 part by mass of tetrabutyl titanate as a polymerization catalyst were charged into the reactor, and the inside of the system was replaced with nitrogen. Then, the reactor was heated at 245 ° C. and melted while stirring these raw materials at 1000 rpm. After the temperature in the reactor reached 245 ° C., the esterification reaction was allowed to proceed for 3 hours (esterification reaction). After 3 hours, the temperature in the system was adjusted to 240 ° C. and the pressure in the system was reduced. After the inside of the system reached a high vacuum (pressure: 0.1 to 10-5 Pa), a polymerization reaction was further carried out for 3.0 hours (polycondensation reaction).
After the polymerization was completed, the copolymerized polyester resin C (PES-C) was dispensed from the reactor.
When the resin composition of the obtained copolymerized polyester resin C (PES-C) was measured by 1 H-NMR and the number average molecular weight was measured by gel permeation chromatography (GPC), the resin composition (molar ratio) was TPA / IPA /. EG / NPG = 50/50/50/50, and the number average molecular weight was 22000.
1.0 part by mass of copolymerized polyester resin C (PES-C) was dissolved in 9.0 parts by mass of a mixed solvent of toluene / methyl ethyl ketone (toluene / methyl ethyl ketone = 4/1 (mass ratio)), and the solid content concentration was 10.0. A mass% copolymerized polyester resin C (PES-C) solution was prepared.
(めっき下地剤の調製)
 1.0質量%のNiNWの分散液10.0質量部と、10.0質量%の共重合ポリエステル樹脂C(PES-C)溶液1.0質量部と、メチルエチルケトン89.0質量部とを混合して、めっき下地剤を調製した。
(Preparation of plating base material)
10.0 parts by mass of a 1.0% by mass NiNW dispersion, 1.0 part by mass of a 10.0% by mass copolymerized polyester resin C (PES-C) solution, and 89.0 parts by mass of methyl ethyl ketone are mixed. Then, a plating base material was prepared.
実施例9B
(全芳香族共重合ポリエステル樹脂D溶液の調製)
 テレフタル酸(TPA)83質量部(50モル比)、イソフタル酸(IPA)83質量部(50モル比)、2,2-ビス(4-ヒドロキシフェニル)プロパン(BisA)114質量部(50モル比)、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン(BisTMC)230質量部(75モル比)、無水酢酸255質量部(250モル比)を、撹拌装置を備えた反応容器に仕込み、窒素雰囲気下で、常圧、140℃で2時間撹拌混合させて反応させた(アセチル化反応)。続いて、140℃で4-(β-ヒドロキシ)エトキシ安息香酸(POB)69質量部(50モル比)を投入した後、280℃まで3時間かけて昇温し、280℃で1時間保持した。その後280℃で90分かけて130Paまで減圧し、2時間重合反応をおこなった(脱酢酸重合反応)。
 重合完了後反応器より共重合ポリエステル樹脂D(PES-D)を払い出した。
 得られた共重合ポリエステル樹脂D(PES-D)の樹脂組成をH-NMR、数平均分子量をゲルパーミエーションクロマトグラフィー(GPC)で測定したところ、樹脂組成(モル比率)はTPA/IPA/BisA/BisTMC/POB=50/50/50/50/50、数平均分子量は4000であった。
 全芳香族共重合ポリエステル樹脂D(PES-D) 1.0質量部をトルエン/メチルエチルケトン混合溶媒(トルエン/メチルエチルケトン=4/1(質量比率))9.0質量部に溶解し、固形分濃度が10.0質量%の共重合ポリエステル樹脂D(PES-D)溶液を調製した。
Example 9B
(Preparation of total aromatic copolymerized polyester resin D solution)
83 parts by mass (50 mol ratio) of terephthalic acid (TPA), 83 parts by mass (50 mol ratio) of isophthalic acid (IPA), 114 parts by mass (50 mol ratio) of 2,2-bis (4-hydroxyphenyl) propane (BisA) ), 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane (BizTMC) 230 parts by mass (75 mol ratio), 255 parts by mass of anhydrous acetic acid (250 mol ratio), equipped with a stirrer The mixture was charged in a reaction vessel and reacted by stirring and mixing at normal pressure at 140 ° C. for 2 hours under a nitrogen atmosphere (acetylation reaction). Subsequently, 69 parts by mass (50 molar ratio) of 4- (β-hydroxy) ethoxybenzoic acid (POB) was added at 140 ° C., the temperature was raised to 280 ° C. over 3 hours, and the temperature was maintained at 280 ° C. for 1 hour. .. Then, the pressure was reduced to 130 Pa at 280 ° C. over 90 minutes, and a polymerization reaction was carried out for 2 hours (deacetic acid polymerization reaction).
After the completion of the polymerization, the copolymerized polyester resin D (PES-D) was dispensed from the reactor.
When the resin composition of the obtained copolymerized polyester resin D (PES-D) was measured by 1 H-NMR and the number average molecular weight was measured by gel permeation chromatography (GPC), the resin composition (molar ratio) was TPA / IPA /. BisA / BisTMC / POB = 50/50/50/50/50, and the number average molecular weight was 4000.
1.0 part by mass of total aromatic copolymerized polyester resin D (PES-D) is dissolved in 9.0 parts by mass of a mixed solvent of toluene / methyl ethyl ketone (toluene / methyl ethyl ketone = 4/1 (mass ratio)) to increase the solid content concentration. A 10.0% by mass copolymerized polyester resin D (PES-D) solution was prepared.
(めっき下地剤の調製)
 1.0質量%のNiNWの分散液10.0質量部と、10.0質量%の共重合ポリエステル樹脂D(PES-D)溶液1.0質量部と、メチルエチルケトン89.0質量部とを混合して、めっき下地剤を調製した。
(Preparation of plating base material)
A mixture of 10.0 parts by mass of a 1.0% by mass NiNW dispersion, 1.0 part by mass of a 10.0% by mass copolymerized polyester resin D (PES-D) solution, and 89.0 parts by mass of methyl ethyl ketone. Then, a plating base material was prepared.
比較例1B
(めっき下地剤の調製)
 10.0質量%の共重合ポリエステル樹脂A(PES-A)溶液1.0質量部と、メチルエチルケトン98.9質量部とを混合し、さらにNiP 0.1質量部を撹拌しながら添加して、めっき下地剤を調製した。
Comparative Example 1B
(Preparation of plating base material)
1.0 part by mass of a 10.0% by mass copolymerized polyester resin A (PES-A) solution and 98.9 parts by mass of methyl ethyl ketone were mixed, and 0.1 part by mass of NiP was added with stirring. A plating base material was prepared.
比較例2B
(NiNWの水分散液の調製)
 実施例1Bと同様の方法で調製したNiNWを水と混合し、固形分濃度が1.0質量%のNiNWの水分散液を調製した。
Comparative Example 2B
(Preparation of NiNW aqueous dispersion)
NiNW prepared in the same manner as in Example 1B was mixed with water to prepare an aqueous dispersion of NiNW having a solid content concentration of 1.0% by mass.
(めっき下地剤の調製)
 PVP 0.1質量部を水89.9質量部に溶解し、さらに1.0質量%のNiNWの水分散液10.0質量部を攪拌しながら添加して、めっき下地剤を調製した。
(Preparation of plating base material)
0.1 part by mass of PVP was dissolved in 89.9 parts by mass of water, and 10.0 parts by mass of an aqueous dispersion of 1.0% by mass of NiNW was added with stirring to prepare a plating base material.
 本実験例の実施例および比較例で得られためっき下地剤の配合組成および積層体の評価結果を表2に示す。 Table 2 shows the composition of the plating base agent and the evaluation results of the laminate obtained in the examples and comparative examples of this experimental example.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1B~9Bは、ナノワイヤーと共重合ポリエステル樹脂とを含有するめっき下地剤を用いたため、無電解めっき液に浸漬するだけで、ポリカーボネート樹脂基材に対して高い密着力を有するめっき層を設けることができた。中でも、実施例1B~6B、9Bでは、2,2-ビス(4-ヒドロキシフェニル)プロパンおよび/またはそのアルキレンオキサイド付加体を共重合成分として含む共重合ポリエステル樹脂を含有するめっき下地剤を用いたため、ポリカーボネート樹脂基材に対してより高い密着力を有する無電解めっき層を設けることができた。
 実施例1B~6Bおよび9Bを対比することにより、ナノワイヤーと共重合ポリエステル樹脂の質量比率が1.0~3.0のめっき下地剤を用いた方が、より均一でより高い密着力を有する無電解めっき層を得ることができることがわかる。
Since Examples 1B to 9B used a plating base agent containing nanowires and a copolymerized polyester resin, a plating layer having high adhesion to a polycarbonate resin base material could be obtained simply by immersing in an electroless plating solution. I was able to set it up. Among them, in Examples 1B to 6B and 9B, a plating base agent containing a copolymerized polyester resin containing 2,2-bis (4-hydroxyphenyl) propane and / or an alkylene oxide adduct thereof as a copolymerization component was used. , The electroless plating layer having higher adhesion to the polycarbonate resin base material could be provided.
By comparing Examples 1B to 6B and 9B, it is more uniform and have higher adhesion when a plating base material having a mass ratio of nanowire and copolymerized polyester resin of 1.0 to 3.0 is used. It can be seen that an electroless plating layer can be obtained.
 さらに、実施例1B、3B、4Bおよび9Bを他の実施例および比較例と対比すると、バインダー樹脂(B)を用いる場合、ナノワイヤーとバインダー樹脂の質量比率が0.8~3.2(特に1.0~3.0)であり、かつ共重合ポリエステル樹脂が2,2-ビス(4-ヒドロキシフェニル)プロパンおよび/またはそのアルキレンオキサイド付加体を共重合成分として含むことにより、より均一で、より高い密着力を有する無電解めっき層および電解めっき層を得ることができることがわかる。 Furthermore, comparing Examples 1B, 3B, 4B and 9B with other Examples and Comparative Examples, when the binder resin (B) is used, the mass ratio of the nanowire to the binder resin is 0.8 to 3.2 (particularly). 1.0 to 3.0), and the copolymerized polyester resin is more uniform by containing 2,2-bis (4-hydroxyphenyl) propane and / or an alkylene oxide adduct thereof as a copolymerization component. It can be seen that an electroless plating layer and an electrolytic plating layer having higher adhesion can be obtained.
 比較例1Bでは、ナノワイヤーではなく粒子を用いたため、めっき層を得ることができなかった。
 比較例2Bでは、バインダー樹脂にエステル結合を含有しないポリマーを用いたため、下地剤が不均一で、密着力に優れる無電解めっき層を得ることができなかった。詳しくは、比較例2Bでは、バインダー樹脂にエステル結合を含有しないポリマーを用いたため、無電解めっき層の均一性または密着性が劣った。
In Comparative Example 1B, since particles were used instead of nanowires, a plating layer could not be obtained.
In Comparative Example 2B, since a polymer containing no ester bond was used in the binder resin, the base material was non-uniform, and an electroless plating layer having excellent adhesion could not be obtained. Specifically, in Comparative Example 2B, since a polymer containing no ester bond was used in the binder resin, the uniformity or adhesion of the electroless plating layer was inferior.
[実験例C]
実施例1C
(ナノワイヤーの分散液の調製)
 塩化ニッケル六水和物4.00質量部、クエン酸三ナトリウム二水和物0.375質量部をエチレングリコールに添加し、全量で500質量部とした。この溶液を90℃に加熱し、すべて溶解させた。
 水酸化ナトリウム1.00質量部をエチレングリコールに添加し、全量で475質量部にした。この溶液を90℃に加熱し、水酸化ナトリウムを溶解させた。
 上記2つの溶液を混合し、28%アンモニア水25質量部、ヒドラジン一水和物1.00質量部の順で添加し、すぐに、中心に150mTの磁場が印加できる磁気回路に入れ、当該磁場を印加し、90~95℃に維持したまま15分間静置して還元反応をおこなった。
 還元反応後、吸引ろ過によりナノワイヤーを回収した。得られたナノワイヤー(NiNW)の平均長は23μm、平均径は93nm、粒子連結形状であった。
 得られたナノワイヤーとジクロロメタンを混合し、固形分濃度が1.0質量%のNiNWの分散液を調製した。
[Experimental Example C]
Example 1C
(Preparation of nanowire dispersion)
4.00 parts by mass of nickel chloride hexahydrate and 0.375 parts by mass of trisodium citrate dihydrate were added to ethylene glycol to make a total of 500 parts by mass. The solution was heated to 90 ° C. to dissolve all.
1.00 parts by mass of sodium hydroxide was added to ethylene glycol to give a total of 475 parts by mass. The solution was heated to 90 ° C. to dissolve sodium hydroxide.
The above two solutions are mixed, 25 parts by mass of 28% aqueous ammonia and 1.00 parts by mass of hydrazine monohydrate are added in this order, and immediately placed in a magnetic circuit to which a magnetic field of 150 mT can be applied to the center, and the magnetic field is applied. Was applied, and the mixture was allowed to stand for 15 minutes while being maintained at 90 to 95 ° C. to carry out a reduction reaction.
After the reduction reaction, nanowires were collected by suction filtration. The obtained nanowire (NiNW) had an average length of 23 μm, an average diameter of 93 nm, and a particle-connected shape.
The obtained nanowires and dichloromethane were mixed to prepare a dispersion of NiNW having a solid content concentration of 1.0% by mass.
(ポリカーボネート樹脂(PC)溶液の調製)
 PC 0.1質量部をジクロロメタン89.9質量部に溶解し、固形分濃度が0.11質量%のPCの溶液を得た。
(Preparation of polycarbonate resin (PC) solution)
0.1 part by mass of PC was dissolved in 89.9 parts by mass of dichloromethane to obtain a solution of PC having a solid content concentration of 0.11% by mass.
(めっき下地剤の作製)
 NiNWの分散液10.0質量部に、PCの溶液90.0質量部を撹拌しながら添加して、めっき下地剤を作製した。
(Preparation of plating base material)
A plating base material was prepared by adding 90.0 parts by mass of a PC solution to 10.0 parts by mass of a dispersion of NiNW with stirring.
実施例2C~6C
 めっき下地剤においてNiNWとPCの質量比率が表3の組成になるように、NiNWの分散液とポリカーボネート樹脂(PC)溶液の配合量を変更する以外は、実施例1Cと同様の操作をおこなって、めっき下地剤を調製した。
Examples 2C to 6C
The same operation as in Example 1C was performed except that the blending amounts of the NiNW dispersion and the polycarbonate resin (PC) solution were changed so that the mass ratio of NiNW and PC in the plating base material had the composition shown in Table 3. , A plating base material was prepared.
比較例1C
(めっき下地剤の作製)
 PC 0.1質量部をジクロロメタン99.8質量部に溶解し、さらにNiP0.1質量部を撹拌しながら添加して、めっき下地剤を調製した。
Comparative Example 1C
(Preparation of plating base material)
0.1 part by mass of PC was dissolved in 99.8 parts by mass of dichloromethane, and 0.1 part by mass of NiP was added with stirring to prepare a plating base material.
比較例2C
 PVP 0.1質量部をジクロロメタン89.9質量部に溶解し、さらにNiNWのジクロロメタン分散液10.0質量部を撹拌しながら添加して、めっき下地剤を調製した。
Comparative Example 2C
0.1 part by mass of PVP was dissolved in 89.9 parts by mass of dichloromethane, and 10.0 parts by mass of a dichloromethane dispersion of NiNW was added with stirring to prepare a plating base material.
 本実験例の実施例および比較例で得られためっき下地剤の配合組成および積層体の評価結果を表3に示す。 Table 3 shows the composition of the plating base agent and the evaluation results of the laminate obtained in the examples and comparative examples of this experimental example.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1C~6Cでは、ナノワイヤーおよびポリカーボネート樹脂を含有するめっき下地剤を用いたため、無電解めっき液に浸漬するだけで、ポリカーボネート樹脂基材に対して高い密着力を有するめっき層を設けることができた。
 実施例1C~4Cでは、ナノワイヤーとポリカーボネート樹脂の質量比率が1.0以上であるめっき下地剤を用いたため、より均一でより高い密着力を有する無電解めっき層を得ることができた。
 実施例1C、3C、4Cでは、ナノワイヤーとポリカーボネート樹脂の質量比率が1.0~3.0のめっき下地剤を用いたため、無電解めっき層上に、より均一でより高い密着力を有する電解めっき層を得ることができた。
In Examples 1C to 6C, since the plating base agent containing nanowires and the polycarbonate resin was used, it is possible to provide a plating layer having high adhesion to the polycarbonate resin base material simply by immersing it in the electroless plating solution. did it.
In Examples 1C to 4C, since the plating base material having a mass ratio of nanowire and polycarbonate resin of 1.0 or more was used, an electroless plating layer having a more uniform and higher adhesion could be obtained.
In Examples 1C, 3C, and 4C, since the plating base material having a mass ratio of nanowire and polycarbonate resin of 1.0 to 3.0 was used, electroplating having more uniform and higher adhesion on the electroless plating layer. A plating layer could be obtained.
 さらに、実施例1C、3Cおよび4Cを他の実施例および比較例と対比すると、バインダー樹脂(C)を用いる場合、ナノワイヤーとバインダー樹脂の質量比率が0.8~3.2(特に1.0~3.0)であることにより、より均一で、より高い密着力を有する無電解めっき層および電解めっき層を得ることができることがわかる。 Furthermore, when Examples 1C, 3C and 4C are compared with other Examples and Comparative Examples, when the binder resin (C) is used, the mass ratio of the nanowire to the binder resin is 0.8 to 3.2 (particularly 1. From 0 to 3.0), it can be seen that an electroless plating layer and an electrolytic plating layer having a more uniform and higher adhesion can be obtained.
 比較例1Cでは、ナノワイヤーではなく粒子を用いたため、めっき層を得ることができなかった。
 比較例2Cでは、バインダー樹脂としてエステル結合を含有しないポリマーを用いたため、下地層が不均一で、無電解めっき層の密着力が弱かった。詳しくは、比較例2Cでは、バインダー樹脂にエステル結合を含有しないポリマーを用いたため、無電解めっき層の均一性または密着性が劣った。
In Comparative Example 1C, since particles were used instead of nanowires, a plating layer could not be obtained.
In Comparative Example 2C, since a polymer containing no ester bond was used as the binder resin, the base layer was non-uniform and the adhesion of the electroless plating layer was weak. Specifically, in Comparative Example 2C, since a polymer containing no ester bond was used in the binder resin, the uniformity or adhesion of the electroless plating layer was inferior.
 本発明のめっき下地剤は、樹脂基材へのめっき層の形成に有用である。詳しくは、本発明のめっき下地剤は、樹脂基材とめっき層との密着性向上を目的としてそれらの間に形成されるめっき下地層の形成に有用である。 The plating base material of the present invention is useful for forming a plating layer on a resin base material. Specifically, the plating base agent of the present invention is useful for forming a plating base layer formed between the resin base material and the plating layer for the purpose of improving the adhesion between them.

Claims (15)

  1.  ナノワイヤーおよびバインダー樹脂を含有するめっき下地剤であって、
     前記バインダー樹脂がエステル結合含有ポリマーである、めっき下地剤。
    A plating base agent containing nanowires and a binder resin.
    A plating base agent in which the binder resin is an ester bond-containing polymer.
  2.  前記エステル結合含有ポリマーが下記のバインダー樹脂(A)~(C)から選択される樹脂である、請求項1に記載のめっき下地剤:
    バインダー樹脂(A):親水基成分かつ(メタ)アクリル酸エステル成分を有するバインダー樹脂;
    バインダー樹脂(B):共重合ポリエステル樹脂;
    バインダー樹脂(C):ポリカーボネート樹脂。
    The plating base material according to claim 1, wherein the ester bond-containing polymer is a resin selected from the following binder resins (A) to (C).
    Binder resin (A): Binder resin having a hydrophilic group component and a (meth) acrylic acid ester component;
    Binder resin (B): copolymerized polyester resin;
    Binder resin (C): Polycarbonate resin.
  3.  さらに媒体を含有する、請求項1または2に記載のめっき下地剤。 The plating base agent according to claim 1 or 2, which further contains a medium.
  4.  前記ナノワイヤーがニッケルナノワイヤーである、請求項1~3のいずれかに記載のめっき下地剤。 The plating base agent according to any one of claims 1 to 3, wherein the nanowire is a nickel nanowire.
  5.  前記バインダー樹脂がバインダー樹脂(A)としての親水基成分かつ(メタ)アクリル酸エステル成分を有するバインダー樹脂であり、
     前記ナノワイヤーと前記バインダー樹脂(A)の質量比率(ナノワイヤー/バインダー樹脂(A))が0.5~2.0である、請求項1~4のいずれかに記載のめっき下地剤。
    The binder resin is a binder resin having a hydrophilic group component as the binder resin (A) and a (meth) acrylic acid ester component.
    The plating base agent according to any one of claims 1 to 4, wherein the mass ratio of the nanowire to the binder resin (A) (nanowire / binder resin (A)) is 0.5 to 2.0.
  6.  前記バインダー樹脂が、(メタ)アクリル酸エステルと(無水)マレイン酸を共重合成分として含む樹脂である、請求項5に記載のめっき下地剤。 The plating base material according to claim 5, wherein the binder resin is a resin containing (meth) acrylic acid ester and (maleic anhydride) as copolymerization components.
  7.  さらにオキサゾリン化合物を含有する、請求項5または6に記載のめっき下地剤。 The plating base agent according to claim 5 or 6, further containing an oxazoline compound.
  8.  前記バインダー樹脂がバインダー樹脂(B)としての共重合ポリエステル樹脂であり、
     前記ナノワイヤーと前記バインダー樹脂(B)の質量比率(ナノワイヤー/バインダー樹脂(B))が1.0~3.0である、請求項1~4のいずれかに記載のめっき下地剤。
    The binder resin is a copolymerized polyester resin as the binder resin (B).
    The plating base agent according to any one of claims 1 to 4, wherein the mass ratio (nanowire / binder resin (B)) of the nanowire to the binder resin (B) is 1.0 to 3.0.
  9.  バインダー樹脂(B)が2,2-ビス(4-ヒドロキシフェニル)プロパンおよび/またはそのアルキレンオキサイド付加体を共重合成分として含有する、請求項8に記載のめっき下地剤。 The plating base agent according to claim 8, wherein the binder resin (B) contains 2,2-bis (4-hydroxyphenyl) propane and / or an alkylene oxide adduct thereof as a copolymerization component.
  10.  前記バインダー樹脂がバインダー樹脂(C)としてのポリカーボネート樹脂であり、
     前記ナノワイヤーと前記バインダー樹脂(C)の質量比率(ナノワイヤー/バインダー樹脂(C))が1.0~3.0である、請求項1~4のいずれかに記載のめっき下地剤。
    The binder resin is a polycarbonate resin as the binder resin (C).
    The plating base agent according to any one of claims 1 to 4, wherein the mass ratio of the nanowire to the binder resin (C) (nanowire / binder resin (C)) is 1.0 to 3.0.
  11.  媒体として、水、トルエンとメチルエチルケトンの混合溶媒、またはジクロロメタンをさらに含有する、請求項1~10のいずれかに記載のめっき下地剤。 The plating base agent according to any one of claims 1 to 10, further containing water, a mixed solvent of toluene and methyl ethyl ketone, or dichloromethane as a medium.
  12.  請求項1~11のいずれかに記載のめっき下地剤を樹脂基材上にコーティングしてなる積層体。 A laminate obtained by coating a resin base material with the plating base material according to any one of claims 1 to 11.
  13.  前記樹脂基材がポリカーボネート樹脂基材である、請求項12に記載の積層体。 The laminate according to claim 12, wherein the resin base material is a polycarbonate resin base material.
  14.  請求項12または13に記載の積層体に無電解めっきを施した積層体。 A laminate obtained by subjecting the laminate according to claim 12 or 13 to electroless plating.
  15.  請求項14に記載の積層体に電解めっきを施した積層体。 A laminate obtained by subjecting the laminate according to claim 14 to electrolytic plating.
PCT/JP2020/029510 2019-08-06 2020-07-31 Plating undercoating agent and laminate using same WO2021024952A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080055496.6A CN114207061A (en) 2019-08-06 2020-07-31 Plating base agent and laminate using the same
JP2021537294A JP7478447B2 (en) 2019-08-06 2020-07-31 Plating undercoat and laminate using same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2019144586 2019-08-06
JP2019-144840 2019-08-06
JP2019144840 2019-08-06
JP2019144587 2019-08-06
JP2019-144586 2019-08-06
JP2019-144587 2019-08-06

Publications (1)

Publication Number Publication Date
WO2021024952A1 true WO2021024952A1 (en) 2021-02-11

Family

ID=74503823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029510 WO2021024952A1 (en) 2019-08-06 2020-07-31 Plating undercoating agent and laminate using same

Country Status (4)

Country Link
JP (1) JP7478447B2 (en)
CN (1) CN114207061A (en)
TW (1) TW202111158A (en)
WO (1) WO2021024952A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013000924A (en) * 2011-06-14 2013-01-07 Toray Ind Inc Electrically-conductive film, and method for manufacturing the same
WO2015163258A1 (en) * 2014-04-21 2015-10-29 ユニチカ株式会社 Ferromagnetic metal nanowire dispersion and method for manufacturing same
JP2016011431A (en) * 2014-06-27 2016-01-21 ユニチカ株式会社 Method of manufacturing nickel nanowire fluid dispersion
JP2017210630A (en) * 2014-10-02 2017-11-30 日本板硝子株式会社 Electroless plating substrate agent, production method thereof, and plated laminate using electroless plating substrate agent
JP2019108503A (en) * 2017-12-20 2019-07-04 Aca株式会社 Dispersion liquid for ink and production method thereof, ink containing the dispersion liquid for ink, and printed wiring board and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013000924A (en) * 2011-06-14 2013-01-07 Toray Ind Inc Electrically-conductive film, and method for manufacturing the same
WO2015163258A1 (en) * 2014-04-21 2015-10-29 ユニチカ株式会社 Ferromagnetic metal nanowire dispersion and method for manufacturing same
JP2016011431A (en) * 2014-06-27 2016-01-21 ユニチカ株式会社 Method of manufacturing nickel nanowire fluid dispersion
JP2017210630A (en) * 2014-10-02 2017-11-30 日本板硝子株式会社 Electroless plating substrate agent, production method thereof, and plated laminate using electroless plating substrate agent
JP2019108503A (en) * 2017-12-20 2019-07-04 Aca株式会社 Dispersion liquid for ink and production method thereof, ink containing the dispersion liquid for ink, and printed wiring board and manufacturing method thereof

Also Published As

Publication number Publication date
CN114207061A (en) 2022-03-18
TW202111158A (en) 2021-03-16
JP7478447B2 (en) 2024-05-07
JPWO2021024952A1 (en) 2021-02-11

Similar Documents

Publication Publication Date Title
JP5361338B2 (en) adhesive
KR20050075757A (en) Aqueous polyester resin dispersion and method for production thereof
JPH0127090B2 (en)
JP6673465B2 (en) Polyester resin composition
JP2011074188A (en) Polyester resin composition, adhesive including the same, and laminate using the adhesive
CN1269585A (en) Conductive paste
JP2008171828A (en) Conductive paste, and printed circuit using it
WO2012036699A1 (en) Partially hydrogenated bisphenol-a-based polymers as substitutes for bisphenol-a-based polymers
JP2010235647A (en) Polyether-ester block copolymer, and adhesive and laminate comprising the same
KR101774069B1 (en) Electrically conductive paste and metal thin film
WO2021024952A1 (en) Plating undercoating agent and laminate using same
JP3778592B2 (en) Conductive paste for metal plating
JP5398456B2 (en) Polyester resin composition, adhesive comprising the polyester resin composition, and laminate using the adhesive
JP4514390B2 (en) Conductive paste and printed circuit using the same
KR20110124228A (en) Polyester resin aqueous dispersion and method for producing same
JP2018044094A (en) Resin composition, and coated film and laminate using the same
JP5339519B2 (en) Polyester block copolymer and method for producing the same
JPWO2018199038A1 (en) Polyarylate resin and polyarylate resin composition
JP2010159331A (en) Polyester resin for adhesive material and method for producing adhesive using the same
JP2007270050A (en) Heat and pressure-sensitive adhesive, heat and pressure-sensitive adhesive sheet and application method thereof
JP2008124238A (en) Laminated body for electromagnetic shield
JP3790869B2 (en) Conductive paste for metal plating
JP2005259546A (en) Conductive paste for rotary screen printing apparatus and conductor circuit using the same
JP2006252807A (en) Conductive paste and laminate using this
JPWO2017179645A1 (en) Adhesive composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20850121

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021537294

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20850121

Country of ref document: EP

Kind code of ref document: A1