WO2021022877A1 - 一种高温尘硝一体净化陶瓷滤芯的法兰及其制备工艺 - Google Patents

一种高温尘硝一体净化陶瓷滤芯的法兰及其制备工艺 Download PDF

Info

Publication number
WO2021022877A1
WO2021022877A1 PCT/CN2020/093237 CN2020093237W WO2021022877A1 WO 2021022877 A1 WO2021022877 A1 WO 2021022877A1 CN 2020093237 W CN2020093237 W CN 2020093237W WO 2021022877 A1 WO2021022877 A1 WO 2021022877A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
filter element
flange
ceramic filter
temperature
Prior art date
Application number
PCT/CN2020/093237
Other languages
English (en)
French (fr)
Inventor
徐鹏
吴汉阳
Original Assignee
江西博鑫精陶环保科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西博鑫精陶环保科技有限公司 filed Critical 江西博鑫精陶环保科技有限公司
Publication of WO2021022877A1 publication Critical patent/WO2021022877A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0001Making filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/2448Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the adhesive layers, i.e. joints between segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/4272Special valve constructions adapted to filters or filter elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8603Removing sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8631Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8637Simultaneously removing sulfur oxides and nitrogen oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L23/00Flanged joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/10Filtering material manufacturing

Definitions

  • the invention belongs to the technical field of ceramic filter elements, and particularly relates to a flange of a ceramic filter element for integrated purification of high-temperature dust and nitrate and a preparation process thereof.
  • the high temperature dust and nitrate integrated ceramic filter element has a large number of fine pore structure, large specific surface area, high temperature resistance, corrosion resistance, high mechanical strength, stable structure and non-deformation. It is used in the purification of high temperature dusty gas and has the characteristics of high temperature resistance and high filtration accuracy. It can not only achieve ultra-low dust emission, but also load specific catalysts to achieve desulfurization and denitration flue gas purification while removing dust.
  • the ceramic filter element has some problems in the application and installation process: in order to firmly fix the filter element inside the dust removal equipment without losing the effective filter area, the traditional method is to use a stainless steel hoisting basket or use a metal device to fix it. If the metal device is too strong, it is easy to cause damage to the filter element, and it is difficult to withstand the vibration generated during the operation of the equipment when the force is insufficient, and it is easy to slip off. In addition, some literature mentions the use of ceramic fiber cotton to fix the filter element by repeatedly brushing glue at one end of the filter element and winding the flange. This method can effectively install and fix the filter element, and at the same time make the filter element have a certain buffering performance and is not easy to be damaged.
  • the use of this process to make flanges is complicated in processing technology, requires multiple brushing and winding, and the processing cost is relatively high.
  • the fiber cotton is easy to pulverize under high temperature conditions, which will reduce the strength of the flange, which is difficult to meet the long-term high-strength use conditions.
  • the ceramic fiber layer flange processed by this method has low dimensional accuracy. During the installation and fixation process, there are problems such as differences in assembly dimensions and poor sealing.
  • the present invention provides a flange for the integrated purification of high-temperature dust and nitrate and a preparation process thereof.
  • the ceramic filter element flange is resistant to high temperature, corrosion resistance, high strength, simple processing technology, and the selection of flange processing is cheap and easy to obtain, which facilitates the installation and use of the ceramic filter element to the greatest extent and saves production costs.
  • the first aspect of the present application provides a flange of a ceramic filter element for integrated high-temperature dust and nitrate purification, including: a ceramic fiber board structure, a ceramic fiber felt structure, and a single-layer structure formed by a ceramic module from any of the ceramic structure ;or,
  • Ceramic fiber board structure, ceramic fiber cotton felt structure, ceramic structure, any two or three types of ceramic modules are superimposed to form a multi-layer ( ⁇ 2 layer) structure;
  • the flange is provided with an inner hole for fixing the ceramic filter element, and the diameter of the inner hole is larger than the outer diameter of the ceramic filter element, and a gap filled with inorganic high-temperature binder is left between the inner hole of the flange and the outer diameter of the ceramic filter element ;
  • the cured inorganic high-temperature adhesive is filled in the gap.
  • the flange of the ceramic filter element for high temperature dust and nitrate integrated purification described in this application is prepared by the method described in the second aspect of this application.
  • the second aspect of the present application provides a process for preparing a flange of a ceramic filter element for integrated high-temperature dust and nitrate purification, including:
  • the multilayer structure formed by superimposing any two or three of the ceramic modules is used as a flange, the flange is provided with an inner hole for fixing the ceramic filter element, and the inner diameter of the inner hole is larger than the outer diameter of the ceramic filter element;
  • the inorganic high-temperature binder After the inorganic high-temperature binder is naturally dried at room temperature, it is then transferred to a hot oven for drying or transferred to a kiln for firing, so that the inorganic high-temperature binder is fully cured and the flange of the ceramic filter element is produced.
  • the hardener is sprayed into the bonding interface between the ceramic filter element and the flange to increase the bonding ability of the inorganic high-temperature adhesive.
  • the flange at least includes a ceramic structure.
  • one or more of the ceramic fiber board structure and the ceramic fiber felt structure are superimposed on one or more sides of the ceramic structure. For example, it may be superimposed on the ceramic structure. Above, below, or superimposed on the top and bottom of the ceramic structure at the same time.
  • the ceramic fiber board structure and the ceramic fiber felt structure may be commercially available ceramic module materials, and the ceramic structure may be formed by molding and sintering ceramic powder with the same formula as the ceramic filter element.
  • the dimensions of the ceramic fiber board structural member, the ceramic fiber felt structural member, and the ceramic structural member constituting the flange are the same, and the molding method may be integrally formed into an annular body, or may be separately formed and then processed The combination forms a ring.
  • the ceramic fiber board structural member is made of ceramic fiber board, and the molding method may be integrally formed into a ring body, or it may be formed by separate molding and then combined to form a ring body.
  • the ceramic fiber cotton felt structural member is made of ceramic fiber cotton felt, and the molding method may be integrally formed into an annular body, or it may be formed by separate forming and then combined to form an annular body.
  • the ceramic structural member is made of the ceramic powder, and the molding method may be integrally formed into an annular body, or it may be formed by separate forming and then combined to form an annular body.
  • the shape of the ceramic fiber board structure, the ceramic fiber felt structure, and the ceramic structure constituting the flange includes, but is not limited to, one of a box body, a circular ring body, a hexagonal ring body or other ring bodies.
  • a box body a circular ring body, a hexagonal ring body or other ring bodies.
  • the hardener is one or more of water glass, silica sol, aluminum sol, and aluminum phosphate glue.
  • the inorganic high-temperature binder can be commercially available high-temperature refractory cement, kiln repair glue, high-temperature ceramic glue, inorganic potting glue, or one of silica sol, aluminum sol or aluminum phosphate glue.
  • kiln repair glue high-temperature ceramic glue
  • inorganic potting glue high-temperature ceramic glue
  • silica sol aluminum sol or aluminum phosphate glue.
  • ceramic powders with the same formula as the ceramic filter element are mixed at a weight ratio of 1:1 to 1:10.
  • the gap between the flange and the outer diameter of the ceramic filter element is 1 mm to 5 mm.
  • the flange and the outer surface of the ceramic filter element are integrally covered with inorganic fiber cloth.
  • the inorganic fiber cloth includes, but is not limited to, one or more of glass fiber cloth, ceramic fiber cloth, and carbon fiber cloth.
  • the thickness of the single layer of the inorganic fiber cloth is 0.5mm-10mm; preferably, the thickness is 0.5mm-5mm; more preferably, the thickness is 0.5mm-2mm.
  • the ceramic filter element is provided with honeycomb-shaped filter holes, and the two ends of the filter holes are alternately blocked with plugs.
  • the other end is open; if one end of the filter hole is open, the other end is blocked with a plug.
  • the time for the inorganic high-temperature binder to naturally dry at room temperature is 12h to 72h.
  • the inorganic high-temperature binder is naturally dried at room temperature and then transferred to a hot oven for drying at a drying temperature of 50°C to 250°C, and a drying time of 2h to 72h.
  • the inorganic high-temperature binder is naturally dried at room temperature and then transferred to a kiln for firing at a firing temperature of 100°C to 1000°C, and a holding time of 1 h to 24 h.
  • Inorganic ceramic modules ie, ceramic fiber board structural parts, ceramic fiber felt structural parts and ceramic structural parts
  • the ceramic filter element and the structural parts constituting the flange are filled with high temperature resistant inorganic binder. It is used for dust removal and denitrification under high temperature conditions, and has the advantages of high temperature resistance, corrosion resistance and stable chemical properties. Under high temperature conditions, because the ceramic module and high temperature binder either have a certain buffer capacity or have a thermal expansion coefficient close to that of the ceramic filter element, they can withstand a greater degree of thermal expansion and contraction without damaging the flange of the ceramic filter element Structure.
  • the flange structure manufactured by the ceramic module has high dimensional accuracy, which effectively solves the problems of assembly size difference and poor sealing when the ceramic filter element is installed and fixed.
  • the high temperature resistant inorganic fiber cloth to cover the ceramic filter element and flange as a whole.
  • the high temperature resistant inorganic fiber cloth has excellent tensile strength.
  • the The inorganic fiber cloth coated on the outer surface can better ensure the bonding strength of the flange and the ceramic filter element while increasing the outer strength of the ceramic filter element, preventing the ceramic filter element from breaking and falling, eliminating the need for the traditional stainless steel hoisting basket.
  • Figure 1 is a schematic diagram of a ceramic module prepared by integral molding
  • Figure 2 is a schematic diagram of a ceramic module prepared by separate molding and assembly
  • Fig. 3 is a schematic diagram of another ceramic module prepared by separate molding and combining
  • Figure 4 is a front view of the bonding assembly of a multi-layered flange and a ceramic filter element prepared by stacking a variety of ceramic modules;
  • Fig. 5 is a schematic cross-sectional view of A-A in Fig. 4.
  • Ceramic filter element 1. Ceramic filter element; 2. Flange; 3. Inorganic high temperature binder; 4. Inorganic fiber cloth; 5. Ceramic fiber board combined ceramic module; 6. Ceramic structure integral ceramic module; 7. Ceramic fiber cotton felt integral ceramic module 8. Adhesive layer; 9. Plug; 10. Filter hole; b. Width of ceramic module; h. Height of ceramic module.
  • the following ceramic fiber board structures, ceramic fiber felt structures, and ceramic fiber structures are collectively referred to as ceramic modules.
  • they are called single-layer ceramic modules, and when any two of them are combined, they are called two Multilayer ceramic module, when two or more of them are combined, it is called multilayer ceramic module.
  • the molding method can adopt integral molding, or it can adopt separate molding and then combine to form a whole.
  • the ceramic structure prepared by the integral molding method is called the ceramic structural integral ceramic module 6, and the ceramic fiber felt structure prepared by the integral molding method is called the ceramic fiber felt integral ceramic module 7.
  • the ceramic fiber board structure that is formed and prepared by the combination method is called the ceramic fiber board combined ceramic module 5.
  • the width of the ceramic module described in the following embodiments 1 to 3 is specifically shown in b in Figure 6, that is, the width of a single side of the ring body of the ceramic module, and the height of the ceramic module is specifically shown in Figure 6.
  • the h indicates the thickness of the annular body of the ceramic module.
  • the single-layer structure formed by any one of ceramic fiber board structural parts, ceramic fiber cotton felt structural parts, and ceramic structural parts is used as the flange, or ceramic fiber board structural parts, ceramic fiber cotton felt structural parts, ceramics
  • the multilayer structure formed by superimposing any two or three ceramic modules in the structural parts is used as a flange.
  • the inner hole shape of the flange matches the ceramic filter element 1, and the diameter of the inner hole of the flange is larger than the outer diameter of the ceramic filter element 1. ;
  • the molding method of any ceramic module can adopt integral molding, or it can adopt separate molding and then combine to form a whole;
  • the inorganic high-temperature binder 3 is filled into the bonding interface between the ceramic filter element 1 and the flange 2 by applying glue or glue injection;
  • the inorganic high-temperature adhesive 3 is naturally dried at room temperature and then transferred to a hot oven for drying. In order to ensure that the inorganic high-temperature adhesive 3 is fully cured, thereby obtaining higher bonding strength, the flange ceramic after drying at room temperature can also be used.
  • the filter element assembly is transferred into the kiln for firing;
  • inorganic fiber cloth 4 to cover the ceramic filter element 1 and the flange 2 of the ceramic filter element as a whole to ensure the bonding strength of the flange 2 and the ceramic filter element 1 while increasing the outer strength of the ceramic filter element 1 to prevent the ceramic filter element 1 Falling or breaking.
  • the hardening agent is one or more of water glass, silica sol, aluminum sol, and aluminum phosphate glue.
  • Surface treatment of the bonding interface refers to spraying a hardening agent into the bonding interface to increase the connection capacity of the inorganic high-temperature adhesive, so as to better connect the ceramic filter element 1 and the flange 2 and improve the connection strength.
  • the ceramic fiber board structure, the ceramic fiber cotton felt structure and the ceramic structure are ceramic modules with different materials
  • the ceramic fiber board for the ceramic fiber board structure is made
  • the ceramic fiber cotton felt for the ceramic fiber cotton felt structure is made It can be a commercially available ceramic module material
  • the ceramic structure can be made of ceramic powder with the same formula as the ceramic filter element through molding and sintering.
  • the inorganic fiber cloth 4 includes, but is not limited to, one or more of glass fiber cloth, ceramic fiber cloth, and carbon fiber cloth.
  • the inorganic high-temperature adhesive 3 can be commercially available high-temperature refractory mortar, kiln repair glue, high-temperature ceramic glue, inorganic potting glue, or one of silica sol, aluminum sol, or aluminum phosphate glue.
  • kiln repair glue high-temperature ceramic glue
  • inorganic potting glue one of silica sol, aluminum sol, or aluminum phosphate glue.
  • ceramic powders with the same formula as the ceramic filter element are mixed at a weight ratio of 1:1 to 1:10.
  • the ceramic powder of the same formula as the ceramic filter element 1 is molded and sintered to form a square ceramic structure with a width of 20mm and a height of 50mm.
  • the overall ceramic module 6 (as shown in Figure 1) is used as a single-layer ceramic module.
  • the inner hole diameter of the ceramic module should be slightly larger than the outer diameter of the square ceramic filter element 1, and the gap between the two should be controlled at 1.5mm.
  • the high-temperature refractory mortar is naturally dried at room temperature for 12 hours, and then transferred to a drying oven at 200°C for 12 hours to ensure that the high-temperature refractory mortar is fully solidified, thereby fabricating the flange 2 of the ceramic filter element 1.
  • the ceramic filter element 1 has a honeycomb-shaped filter hole 10, and both ends of the filter hole 10 are interlaced with plugs 9 to block.
  • the ceramic fiber board is processed into narrow strips, and the high temperature refractory cement is used as the bonding layer 8 to combine the narrow strips into a box-shaped ceramic fiber board composite ceramic module 5 with a width of 20mm and a height of 25mm (as shown in Figure 2 or Figure 3) ,
  • the ceramic fiber board combined ceramic module 5 is superimposed on the same size ceramic structure integral ceramic module 6 to form a two-layer ceramic module; the gap between the inner surface of the two-layer ceramic module and the outer surface of the ceramic filter element 1 is controlled to be 3mm.
  • silica sol to perform surface treatment on the bonding surface of the ceramic filter element 1 and the two-layer ceramic module.
  • the high-temperature refractory mortar is naturally dried at room temperature for 4 hours, and then transferred to a drying oven at 200°C for 12 hours to ensure that the high-temperature refractory mortar is fully solidified, thereby making the flange of the ceramic filter element.
  • a. Process the ceramic fiber board into narrow strips, and use high-temperature refractory cement as the adhesive layer 8 to combine the narrow strips into a box-shaped ceramic fiber board combination ceramic module 5 with a width of 20mm and a height of 20mm (as shown in Figure 2 or Figure 3) ), the ceramic fiber felt is processed into a ceramic fiber felt integral ceramic module 7 with a width of 20mm and a height of 10mm.
  • the ceramic fiber board combined ceramic module 5 and the ceramic fiber felt integral ceramic module 7 are respectively superimposed on the ceramic with a width of 20mm and a height of 20mm.
  • a three-layer ceramic module (as shown in Figs. 4 and 5) is formed on the structural integral ceramic module 6, and the gap between the inner surface of the three-layer ceramic module and the outer surface of the ceramic filter element 1 is controlled to be 5 mm.
  • the ceramic powder and aluminum phosphate with the same formula as the ceramic filter element 1 and mix them in a 2:1 ratio to obtain a high temperature resistant binder, and use the glue injection process to fill the self-made high temperature resistant binder into the ceramic filter elements 1 and 3 Between the three-layer ceramic modules, the amount of the high-temperature-resistant binder is to fully fill the gap between the three-layer ceramic module and the ceramic filter element 1.
  • the integral ceramic module 6 and the ceramic fiber felt integral ceramic module 7 together form a multi-layer flange, in which the ceramic structure integral ceramic module 6 acts as the middle layer of the flange to bear the load, and the ceramic fiber board combines the ceramic module 5 and the ceramic fiber felt
  • the monolithic ceramic module 7 serves as the top and bottom layers of the flange to serve as a buffer and seal.
  • the self-made high temperature resistant adhesive is naturally dried at room temperature for 24 hours, and then transferred to the firing equipment to be fired at 500°C for 4 hours to ensure that the high temperature resistant adhesive is fully cured, and the method of making a multi-layer ceramic filter element 1 Blue 2
  • the embodiment also includes any one of ceramic structural parts prepared by split molding and then combined, ceramic fiber felt structural parts prepared by split molding and combined, and ceramic fiber board structural parts prepared by integral molding.
  • a ceramic module is used as a flange, and a two-layer ceramic module composed of any two of the ceramic modules in the above molding method as a flange, or a multilayer ceramic module composed of three ceramic modules in the above molding method As a flange.
  • the method of combining the flange 2 and the ceramic filter element 1 is similar to the above-mentioned embodiment, and will not be repeated here.
  • the sizes of the various ceramic modules constituting the flange 2 are the same, and the molding method can be integrally formed into an annular body, or can be formed separately and combined to form an annular body.
  • the overall ceramic module for example, ceramic structure monolithic ceramic module 6, ceramic fiber felt monolithic ceramic module 7) and combined ceramic module (for example, ceramic fiber board combined ceramic module 5) can be shaped according to the shape of the ceramic filter element 1. It is a box body, a circular ring body, a hexagonal ring body or other shaped ring bodies.
  • the inner hole diameter of the integral ceramic module for example, ceramic structure integral ceramic module 6, ceramic fiber felt integral ceramic module 7) and combined ceramic module (for example, ceramic fiber board combined ceramic module 5) and the ceramic filter element 1
  • the outer diameter should have a clearance of 1mm ⁇ 5mm (single side).
  • the strength loss of ceramic structural parts and solidified high-temperature binder is less than 0.3% after corrosion by 20% H2SO4 solution, and the mass loss is less than 0.2%; After 5% NaOH solution is corroded, the strength loss is less than 0.15%, and the mass loss is less than 0.1%. It has the advantages of corrosion resistance and stable chemical properties. Among them, the corrosion resistance of the cured high-temperature adhesive ensures the anti-corrosion effect of the flange connection part, especially the flange gap.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Ceramic Engineering (AREA)
  • Geometry (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Filtering Materials (AREA)

Abstract

一种高温尘硝一体净化陶瓷滤芯的法兰及其制备工艺,该法兰为陶瓷纤维板、陶瓷纤维棉毡、陶瓷结构件中的任意一种形成的单层结构;或者为上述材料中的任意两种或三种叠加形成的多层结构;法兰的内孔与陶瓷滤芯的外径之间留有填充无机高温粘结剂的间隙。采用涂胶将无机高温粘结剂填充到陶瓷滤芯和法兰之间的粘结界面内,室温下干燥后再进行干燥或烧成,制得陶瓷滤芯的法兰,最后用无机纤维布对陶瓷滤芯和法兰进行整体包覆。

Description

一种高温尘硝一体净化陶瓷滤芯的法兰及其制备工艺
本申请请求 20190805日申请的申请号为 201910718153.2(发明名称: 一种高温尘硝一体净化陶瓷滤芯的法兰及其制备工艺)的中国专利申请的优先权。
技术领域
本发明属于陶瓷滤芯技术领域,特别涉及一种高温尘硝一体净化陶瓷滤芯的法兰及其制备工艺。
背景技术
冶金、建材、电力及煤化工等行业每年产生大量的高温烟气,这些烟气含尘量高,尘粒易附着,烟气中高温段含有大量的高品位余热,由于工艺、能量回收抑或满足环保排放标准的需要,必须对这些高温含尘烟气进行处理。高温尘硝一体陶瓷滤芯具有大量的微细孔隙结构,比表面积大,耐高温、耐腐蚀、机械强度高且结构稳定不易变形,应用于高温含尘气体的净化具有耐高温、过滤精度高的特点,不仅可以实现粉尘的超低排放,还可以负载特定的催化剂,在除尘的同时,实现脱硫、脱硝烟气净化。
陶瓷滤芯在应用安装过程中存在一些问题:为了将滤芯牢牢固定在除尘设备内部,同时不损失有效过滤面积,传统的方法是使用不锈钢吊装兜篮或者利用金属器件卡住固定,这种方法在金属器件用力过大时容易造成滤芯破损,用力不足时难以承受设备运行过程中产生的震动,容易滑落。除此之外,有文献提到使用陶瓷纤维棉在滤芯一端进行反复刷胶缠绕设置法兰的办法对滤芯进行固定。这种方法可以有效地对滤芯进行安装固定,同时使滤芯具备一定的缓冲性能而不易被破坏,但是使用这种工艺制作法兰一方面加工工艺复杂,需要多次刷胶缠绕,加工成本也较高;另一方面,纤维棉在高温条件下易粉化导致法兰强度降低,难以 满足长期高强度的使用条件;此外,利用这种方法加工的陶瓷纤维层法兰尺寸精度不高,在滤芯的安装固定过程中存在装配尺寸差异和密封不良等问题。
发明内容
本发明针对目前陶瓷滤芯在安装使用过程中存在的诸多问题以及现有法兰加工制作工艺的不足,提供一种高温尘硝一体净化陶瓷滤芯的法兰及其制备工艺,使用该工艺加工制作的陶瓷滤芯法兰耐高温、耐腐蚀、强度高、加工工艺简单,法兰加工的选材廉价易得,最大程度地方便了陶瓷滤芯的安装及使用,且节约了生产成本。
为实现上述目的,本发明采用以下技术方案:
本申请第一个方面提供了一种高温尘硝一体净化陶瓷滤芯的法兰,包括:陶瓷纤维板结构件、陶瓷纤维棉毡结构件、陶瓷结构件中的任意一种陶瓷模块形成的单层结构;或者,
陶瓷纤维板结构件、陶瓷纤维棉毡结构件、陶瓷结构件中的任意两种或三种陶瓷模块叠加形成的多层(≥2层)结构;
所述法兰设有固定陶瓷滤芯的内孔,且内孔的孔径大于陶瓷滤芯的外径,所述法兰的内孔与陶瓷滤芯的外径之间留有填充无机高温粘结剂的间隙;固化的无机高温粘接剂填充在所述间隙中。
优选地,本申请所述高温尘硝一体净化陶瓷滤芯的法兰采用本申请第二个方面所述方法制备。
本申请第二个方面提供了一种高温尘硝一体净化陶瓷滤芯的法兰的制备工艺,包括:
将陶瓷纤维板结构件、陶瓷纤维棉毡结构件、陶瓷结构件中的任意一种陶瓷模块形成的单层结构作为法兰,或者,将陶瓷纤维板结构件、陶瓷纤维棉毡结构件、陶瓷结构件中的任意两种或三种陶瓷模块叠加后形成的多层结构作为法兰,所述法兰设有固定陶瓷滤芯的内孔,且内孔的内径大于陶瓷滤芯的外径;
将硬化剂喷入到陶瓷滤芯和法兰的粘结界面;
采用涂胶或者注胶工艺将无机高温粘结剂填充到陶瓷滤芯和法兰之间的粘结界面内;
无机高温粘结剂在室温下自然干燥后,再转入热烘箱进行干燥或转入窑炉烧成,使得无机高温粘结剂充分固化,制得陶瓷滤芯的法兰。
上述制备工艺中,用硬化剂喷入到陶瓷滤芯和法兰的粘结界面,用于增加无机高温粘结剂的粘接能力。
优选地,所述法兰至少包括陶瓷结构件。
更优选地,所述陶瓷纤维板结构件、陶瓷纤维棉毡结构件中的一种或更多种,叠加于陶瓷结构件的一侧、或更多侧,例如,可以是叠加于陶瓷结构件的上方、下方,或者同时叠加于陶瓷结构件的上下方。
优选地,所述陶瓷纤维板结构件、陶瓷纤维棉毡结构件可以是市售的陶瓷模块材料,所述陶瓷结构件可以是与陶瓷滤芯同配方的陶瓷粉料经成型烧结制成的。
优选地,构成所述法兰的陶瓷纤维板结构件、陶瓷纤维棉毡结构件、陶瓷结构件的尺寸相同,其成型方式可以采用整体成型成一个环状体,也可以采用分体成型、再经组合构成一个环状体。
优选地,陶瓷纤维板结构件由陶瓷纤维板制成,成型方式可以采用整体成型成一个环状体,也可以采用分体成型、再经组合构成一个环状体。
优选地,陶瓷纤维棉毡结构件由陶瓷纤维棉毡制成,成型方式可以采用整体成型成一个环状体,也可以采用分体成型、再经组合构成一个环状体。
优选地,陶瓷结构件由所述陶瓷粉料制成,成型方式可以采用整体成型成一个环状体,也可以采用分体成型、再经组合构成一个环状体。
优选地,构成所述法兰的陶瓷纤维板结构件、陶瓷纤维棉毡结构件、陶瓷结构件的形状包括、但不限于方框体、圆环体、六角环体或其它环状体中的一种。
优选地,所述硬化剂为水玻璃、硅溶胶、铝溶胶、磷酸铝胶中的一种或几种。
优选地,所述无机高温粘结剂可以是市售的高温耐火胶泥、窑炉修补胶、高温陶瓷胶、无机灌封胶,也可以由硅溶胶、铝溶胶或磷酸铝胶中的一种或几种与陶瓷滤芯同配方的陶瓷粉料按1:1~1:10的重量比例混合制得。
优选地,所述法兰与陶瓷滤芯的外径之间的间隙为1mm~5mm。
优选地,所述法兰与陶瓷滤芯的外表面整体包覆有无机纤维布。
更优选地,所述无机纤维布包括、但不限于玻璃纤维布、陶瓷纤维布、碳纤 维布中的一种或几种。
更优选地,所述无机纤维布的单层的厚度为0.5mm~10mm;优选地,厚度为0.5mm~5mm;更优选地,厚度为0.5mm~2mm。
优选地,所述陶瓷滤芯上设有蜂窝形滤孔,滤孔的两端交错用堵头进行封堵。
更优选地,所述滤孔的一端用堵头封堵,则其另一端敞开;所述滤孔的一端敞开,则其另一端用堵头封堵。
优选地,所述制备工艺中,无机高温粘结剂在室温下自然干燥的时间为12h~72h。
优选地,所述制备工艺中,无机高温粘结剂在室温下自然干燥后再转入热烘箱进行干燥的干燥温度为50℃~250℃,干燥时间为2h~72h。
优选地,所述制备工艺中,无机高温粘结剂在室温下自然干燥后再转入窑炉烧成的烧制温度为100℃~1000℃,保温时间为1h~24h。
本发明的有益效果是:
1)选用无机的陶瓷模块(即陶瓷纤维板结构件、陶瓷纤维棉毡结构件和陶瓷结构件)作为法兰材料,陶瓷滤芯与构成法兰的结构件之间用耐高温无机粘结剂填充,应用于高温工况条件下的除尘脱硝,具有耐高温、耐腐蚀、化学性质稳定的优点。高温条件下,由于陶瓷模块和高温粘结剂或者具有一定的缓冲能力,或者具有与陶瓷滤芯相接近的热膨胀系数,因而可以承受较大程度的热胀冷缩而不至于破坏陶瓷滤芯的法兰结构件。
2)使用无机高温粘结剂(如高温耐火胶泥或北京志盛威华公司的ZS-1071高温无机粘结剂)配合涂胶或者注胶工艺一次性将法兰与陶瓷滤芯粘结在一起,在适宜温度下干燥烧制成陶瓷滤芯法兰,加工工艺简单,选材廉价易得,最大程度地方便了陶瓷滤芯的安装及使用,且节约了生产成本。
3)利用陶瓷模块加工制作的法兰结构件尺寸精度高,有效地解决了陶瓷滤芯在安装固定时的装配尺寸差异和密封不良等问题。
4)使用耐高温的无机纤维布对陶瓷滤芯和法兰进行整体包覆,与传统陶瓷纤维棉相比,耐高温的无机纤维布具有优良的抗张强度,当陶瓷滤芯长度较长时,其外表面包覆的无机纤维布能更好地保证法兰与陶瓷滤芯的结合强度同时提高陶瓷滤芯的外层强度,防止陶瓷滤芯断裂掉落,省去了传统的不锈钢吊装兜篮。
附图说明
构成本申请的一部分附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是整体成型制备的陶瓷模块示意图;
图2是一种分体成型再经组合制备的陶瓷模块示意图;
图3是另一种分体成型再经组合制备的陶瓷模块示意图;
图4是由多种陶瓷模块叠加制备的多层结构的法兰与陶瓷滤芯粘结装配的主视图;
图5是图4的A-A剖视结构示意图。
图例说明:
1、陶瓷滤芯;2、法兰;3、无机高温粘结剂;4、无机纤维布;5、陶瓷纤维板组合陶瓷模块;6、陶瓷结构件整体陶瓷模块;7、陶瓷纤维棉毡整体陶瓷模块;8、粘合层;9、堵头;10、滤孔;b、陶瓷模块的宽度;h、陶瓷模块的高度。
具体实施方式
为了使本领域技术人员更好地理解本发明的技术方案,下面结合附图对本发明进一步说明。其中,以下所述的陶瓷纤维板结构件、陶瓷纤维棉毡结构件、陶瓷纤维结构件统一称为陶瓷模块,当它们单一使用时称为单层陶瓷模块,当它们任意两种组合时称为两层陶瓷模块,当它们任意两种以上组合时称为多层陶瓷模块。无论使用上述哪种陶瓷模块,其成型方式都可以采用整体成型,也可以采用分体成型、再经组合构成一个整体。以下描述中,将采用整体成型方式制备的陶瓷结构件称为陶瓷结构件整体陶瓷模块6,将采用整体成型方式制备的陶瓷纤维毡结构件称为陶瓷纤维毡整体陶瓷模块7,将采用分体成型、再经组合方式制备的陶瓷纤维板结构件称为陶瓷纤维板组合陶瓷模块5。
下述实施例1~3中所述的陶瓷模块的宽度具体如图6中的b所示,即陶瓷模块的环状体的单个边的宽度,所述的陶瓷模块的高度具体如图6中的h所示,即陶瓷模块的环状体的厚度。
本申请所提供的一种高温尘硝一体净化陶瓷滤芯的法兰的制备工艺步骤是:
a、将陶瓷纤维板结构件、陶瓷纤维棉毡结构件、陶瓷结构件中的任意一种陶瓷模块形成的单层结构作为法兰,或者,将陶瓷纤维板结构件、陶瓷纤维棉毡结构件、陶瓷结构件中的任意两种或三种陶瓷模块叠加后形成的多层结构作为法兰,所述法兰的内孔形状与陶瓷滤芯1相配,法兰内孔的孔径大于陶瓷滤芯1的外径;其中,任意一种陶瓷模块的成型方式可以采用整体成型,也可以采用分体成型、再经组合构成一个整体;
b、利用硬化剂对陶瓷滤芯1和法兰2的粘结界面进行表面处理;
c、采用涂胶或者注胶工艺将无机高温粘结剂3填充到陶瓷滤芯1和法兰2之间的粘结界面内;
d、无机高温粘结剂3在室温下自然干燥后转入热烘箱干燥,为确保无机高温粘结剂3充分固化,从而获得更高的粘结强度,也可以将室温干燥后的法兰陶瓷滤芯装配件转入窑炉中烧制;
e、用无机纤维布4对陶瓷滤芯1和陶瓷滤芯的法兰2进行整体包覆,在保证法兰2与陶瓷滤芯1的结合强度的同时提高陶瓷滤芯1的外层强度,防止陶瓷滤芯1掉落或断裂。
其中,所述的硬化剂为水玻璃、硅溶胶、铝溶胶、磷酸铝胶中的一种或几种。对粘结界面进行表面处理是指用硬化剂喷入到粘结界面,增加无机高温粘结剂的连接能力,以便能更好地连接陶瓷滤芯1与法兰2,提高连接强度。
其中,所述的陶瓷纤维板结构件、陶瓷纤维棉毡结构件以及陶瓷结构件为材料不同的陶瓷模块,制作所述陶瓷纤维板结构件的陶瓷纤维板、制作陶瓷纤维棉毡结构件的陶瓷纤维棉毡可以是市售的陶瓷模块材料,所述陶瓷结构件可以是与陶瓷滤芯同配方的陶瓷粉料经成型烧结制成的。
其中,所述的无机纤维布4包括、但不限于玻璃纤维布、陶瓷纤维布、碳纤维布中的一种或几种。
其中,所述的无机高温粘结剂3可以是市售高温耐火胶泥、窑炉修补胶、高温陶瓷胶、无机灌封胶,也可以由硅溶胶、铝溶胶或磷酸铝胶中的一种或几种与陶瓷滤芯同配方的陶瓷粉料按1:1~1:10的重量比例混合制得。
实施例1
a、用与陶瓷滤芯1同配方的陶瓷粉料经成型烧结制成宽度为20mm,高度为50mm的方框形的陶瓷结构件整体陶瓷模块6(如图1所示)作为单层陶瓷模块,陶瓷模块的内孔孔径应略大于方形陶瓷滤芯1的外径,两者间的间隙控制在1.5mm。
b、使用水玻璃对陶瓷滤芯1和单层陶瓷模块的粘结界面件进行表面处理。
c、采用注胶工艺将高温耐火胶泥填充到陶瓷滤芯1和单层陶瓷模块之间,胶泥用量以充分填充单层陶瓷模块与陶瓷滤芯1间的间隙为准。
d、高温耐火胶泥在室温下自然干燥12h,之后转入干燥箱中200℃干燥12h,保证高温耐火胶泥充分固化,由此制得陶瓷滤芯1的法兰2。
e、使用高温耐火胶泥将1mm厚度的耐高温玻璃纤维布对陶瓷滤芯1和法兰2进行整体包覆,保证陶瓷滤芯1及法兰2的强度。
其中,所述陶瓷滤芯1上具有蜂窝形滤孔10,滤孔10的两端交错用堵头9进行封堵。
实施例2
a、将陶瓷纤维板加工成窄条,用高温耐火胶泥作粘合层8将窄条组合成宽度20mm,高度25mm的方框体形的陶瓷纤维板组合陶瓷模块5(如图2或图3所示),将该陶瓷纤维板组合陶瓷模块5叠加在同尺寸的陶瓷结构件整体陶瓷模块6上形成两层陶瓷模块;两层陶瓷模块的内表面与陶瓷滤芯1的外表面之间的间隙控制在3mm。
b、使用硅溶胶对陶瓷滤芯1和两层陶瓷模块的粘结面进行表面处理。
c、采用涂胶工艺在陶瓷滤芯1的外表面和两层陶瓷模块的内表面刷涂高温耐火胶泥,将陶瓷滤芯1和两层结构件装配在一起,用刮刀将多余的胶泥刮除;
d、高温耐火胶泥在室温下自然干燥4h,之后转入干燥箱中200℃干燥12h,保证高温耐火胶泥充分固化,由此制得陶瓷滤芯的法兰。
e、使用高温耐火胶泥将1mm厚度的耐高温玻璃纤维布对陶瓷滤芯1和法兰2进行整体包覆,保证陶瓷滤芯1及法兰2的强度。
实施例3
a、将陶瓷纤维板加工成窄条,用高温耐火胶泥作粘合层8将窄条组合成宽度20mm,高度20mm的的方框体形的陶瓷纤维板组合陶瓷模块5(如图2或 图3所示),将陶瓷纤维棉毡加工成宽度20mm,高度10mm的陶瓷纤维棉毡整体陶瓷模块7,将陶瓷纤维板组合陶瓷模块5和陶瓷纤维棉毡整体陶瓷模块7分别叠加在宽度20mm,高度20mm的陶瓷结构件整体陶瓷模块6上形成三层陶瓷模块(如图4和图5所示),三层陶瓷模块的内表面与陶瓷滤芯1外表面之间的间隙控制在5mm。
b、使用磷酸铝胶对陶瓷滤芯1和三层陶瓷模块的结合界面进行表面处理。
c、选用与陶瓷滤芯1同配方的陶瓷粉料和磷酸铝胶按2:1比例混合制得耐高温粘结剂,采用注胶工艺将自制的耐高温粘结剂填充到陶瓷滤芯1和三层陶瓷模块之间,耐高温粘结剂的用量以充分填充三层陶瓷模块与陶瓷滤芯1间的间隙为准。使用涂胶工艺在陶瓷滤芯1和三层陶瓷模块之间刷涂自制的耐高温粘结剂,将陶瓷滤芯1和三层陶瓷模块装配在一起,构成由陶瓷纤维板组合陶瓷模块5、陶瓷结构件整体陶瓷模块6和陶瓷纤维棉毡整体陶瓷模块7一起形成的多层式法兰,其中陶瓷结构件整体陶瓷模块6作为法兰中间层起承重作用,陶瓷纤维板组合陶瓷模块5和陶瓷纤维棉毡整体陶瓷模块7分别作为法兰的顶层和底层起缓冲密封作用。
d、自制的耐高温粘结剂在室温下自然干燥24h,之后转入烧成设备中500℃烧制4h,保证耐高温粘结剂充分固化,由此制得多层式陶瓷滤芯1的法兰2;
e、使用自制的耐高温粘结剂将1mm厚度的耐高温玻璃纤维布对陶瓷滤芯1和多层式法兰进行整体包覆,保证陶瓷滤芯1及法兰2的强度。
另外,实施例还包括采用分体成型再经组合方式制备的陶瓷结构件、采用分体成型再经组合方式制备的陶瓷纤维毡结构件、采用整体成型方式制备的陶瓷纤维板结构件中的任意一种陶瓷模块作为法兰,以及用上述成型方式中的陶瓷模块中的任意两种叠加组成的两层陶瓷模块作为法兰,或者用上述成型方式中的三种陶瓷模块叠加组成的多层陶瓷模块作为法兰。其中,法兰2与陶瓷滤芯1的结合方法与上述实施例相类似,在此不再赘述。
上述内容中,构成所述法兰2的各种陶瓷模块的尺寸相同,其成型方式可以采用整体成型成一个环状体,也可以采用分体成型、再经组合构成一个环状体。
上述内容中,整体陶瓷模块(例如,陶瓷结构件整体陶瓷模块6、陶瓷纤维棉毡整体陶瓷模块7)和组合陶瓷模块(例如,陶瓷纤维板组合陶瓷模块5)的 外形根据陶瓷滤芯1的形状可以是方框体、圆环体、六角环体或者其他形环状体。
上述内容中,整体陶瓷模块(例如,陶瓷结构件整体陶瓷模块6、陶瓷纤维棉毡整体陶瓷模块7)和组合陶瓷模块(例如,陶瓷纤维板组合陶瓷模块5)的内孔孔径与陶瓷滤芯1的外径应保证有1mm~5mm的间隙(单边)。
法兰高温尺寸稳定性测试:
按QB/T1321-2012《陶瓷材料平均线热膨胀系数测定方法》测量并对比陶瓷滤芯、固化高温粘结剂以及构成法兰的陶瓷机构件的热膨胀系数,热膨胀系数越小,高温尺寸稳定性越好。
  陶瓷滤芯 固化高温粘结剂 陶瓷结构件
热膨胀系数 2.36×10 -6 2.52×10 -6 2.21×10 -6
从上表可知,陶瓷结构件、固化高温粘结剂与陶瓷滤芯的热膨胀系数相近,且热膨胀系数小,可以保证法兰在高温工况条件下不会因出现明显的热胀冷缩差异而存在可靠性问题,高温条件下的尺寸稳定性好。
法兰耐腐蚀性测试:
按GB/T1970-1996《多孔陶瓷耐酸、碱腐蚀性能试验方法》测量固化高温粘结剂以及构成陶瓷法兰的陶瓷结构件经酸碱腐蚀后的抗折强度及质量变化,腐蚀前后材料的抗折强度和质量变化越小,材料的耐腐蚀性能越好。
Figure PCTCN2020093237-appb-000001
从上表可知,陶瓷结构件、固化高温粘结剂经20%的H2SO4溶液腐蚀后,其强度损失均小于0.3%,其质量损失均小于0.2%;陶瓷结构件、固化高温粘结剂经1%的NaOH溶液腐蚀后,其强度损失均小于0.15%,其质量损失均小于0.1%,具有耐腐蚀、化学性质稳定的优点。其中,固化高温粘结剂的耐腐蚀性能又保证了法兰的连接部位、特别是法兰的间隙处的防腐蚀效果。
以上对本发明的具体实施例进行了详细描述,但其只是作为范例,本发明并不限制于以上描述的具体实施例。对于本领域技术人员而言,任何对本发明进行 的等同修改和替代也都在本发明的范畴之中。因此,在不脱离本发明的精神和范围下所作的均等变换和修改,都应涵盖在本发明的范围内。

Claims (15)

  1. 一种高温尘硝一体净化陶瓷滤芯的法兰,其特征在于,包括:
    陶瓷纤维板结构件、陶瓷纤维棉毡结构件、陶瓷结构件中的任意一种陶瓷模块形成的单层结构;或者,
    陶瓷纤维板结构件、陶瓷纤维棉毡结构件、陶瓷结构件中的任意两种或三种陶瓷模块叠加形成的多层结构;
    所述法兰设有固定陶瓷滤芯的内孔,且内孔的孔径大于陶瓷滤芯的外径,所述法兰的内孔与陶瓷滤芯的外径之间留有填充无机高温粘结剂的间隙;固化的无机高温粘接剂填充在所述间隙中。
  2. 根据权利要求1所述的一种高温尘硝一体净化陶瓷滤芯的法兰,其特征在于:所述陶瓷纤维板结构件由市售的陶瓷纤维板制成;所述陶瓷纤维棉毡结构件由市售的陶瓷纤维棉毡制成;所述陶瓷结构件由与陶瓷滤芯同配方的陶瓷粉料经成型烧结制成。
  3. 根据权利要求1所述的一种高温尘硝一体净化陶瓷滤芯的法兰,其特征在于:构成所述法兰的陶瓷纤维板结构件、陶瓷纤维棉毡结构件、陶瓷结构件的形状包括方框体、圆环体、六角环体中的任意一种。
  4. 根据权利要求1所述的一种高温尘硝一体净化陶瓷滤芯的法兰,其特征在于:所述无机高温粘结剂为市售的高温耐火胶泥、窑炉修补胶、高温陶瓷胶、无机灌封胶中的任意一种或几种;或者,所述无机高温粘结剂是由硅溶胶、铝溶胶或磷酸铝胶中的一种或几种与陶瓷滤芯同配方的陶瓷粉料按1:1~1:10的重量比例混合制得。
  5. 根据权利要求1所述的一种高温尘硝一体净化陶瓷滤芯的法兰,其特征在于:所述法兰与所述陶瓷滤芯的外径之间的间隙为1mm~5mm。
  6. 根据权利要求1所述的一种高温尘硝一体净化陶瓷滤芯的法兰,其特征在于:所述法兰与所述陶瓷滤芯的外表面整体包覆有无机纤维布。
  7. 根据权利要求6所述的一种高温尘硝一体净化陶瓷滤芯的法兰,其特征在于:所述无机纤维布包括玻璃纤维布、陶瓷纤维布、碳纤维布中的任意一种或更多种。
  8. 根据权利要求6所述的一种高温尘硝一体净化陶瓷滤芯的法兰,其特征在于:所述无机纤维布的单层的厚度为0.5mm~10mm。
  9. 根据权利要求1所述的一种高温尘硝一体净化陶瓷滤芯的法兰,其特征在于:所述陶瓷滤芯上设有蜂窝形的滤孔,滤孔的两端交错用堵头进行封堵。
  10. 一种如权利要求1所述的高温尘硝一体净化陶瓷滤芯的法兰的制备工艺,其特征在于,包括:
    将陶瓷纤维板结构件、陶瓷纤维棉毡结构件、陶瓷结构件中的任意一种陶瓷模块形成的单层结构作为法兰,或者,将陶瓷纤维板结构件、陶瓷纤维棉毡结构件、陶瓷结构件中的任意两种或三种陶瓷模块叠加后形成的多层结构作为法兰,所述法兰设有固定陶瓷滤芯的内孔,且内孔的内径大于陶瓷滤芯的外径;
    将硬化剂喷入到陶瓷滤芯和法兰的粘结界面;
    采用涂胶或者注胶工艺将无机高温粘结剂填充到陶瓷滤芯和法兰之间的粘结界面内;
    无机高温粘结剂在室温下自然干燥后,再转入热烘箱进行干燥或转入窑炉烧成,使得无机高温粘结剂充分固化,制得陶瓷滤芯的法兰。
  11. 根据权利要求10所述的一种高温尘硝一体净化陶瓷滤芯的法兰的制备工艺,其特征在于:所述硬化剂包括水玻璃、硅溶胶、铝溶胶、磷酸铝胶中的任意一种或几种。
  12. 根据权利要求10所述的一种高温尘硝一体净化陶瓷滤芯的法兰的制备工艺,其特征在于:所制得的陶瓷滤芯的法兰用无机纤维布对陶瓷滤芯和法兰进行整体包覆。
  13. 根据权利要求10所述的一种高温尘硝一体净化陶瓷滤芯的法兰的制备工艺,其特征在于:所述无机高温粘结剂在室温下自然干燥的时间为12h~72h。
  14. 根据权利要求10所述的一种高温尘硝一体净化陶瓷滤芯的法兰的制备工艺,其特征在于:所述无机高温粘结剂在室温下自然干燥后再转入热烘箱进行干燥的干燥温度为50℃~250℃,干燥时间为2h~72h。
  15. 根据权利要求10所述的一种高温尘硝一体净化陶瓷滤芯的法兰的制备工艺,其特征在于:所述无机高温粘结剂在室温下自然干燥后再转入窑炉烧成的烧制温度为100℃~1000℃,保温时间为1h~24h。
PCT/CN2020/093237 2019-08-05 2020-05-29 一种高温尘硝一体净化陶瓷滤芯的法兰及其制备工艺 WO2021022877A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910718153.2A CN110465137A (zh) 2019-08-05 2019-08-05 一种高温尘硝一体净化陶瓷滤芯的法兰及其制备工艺
CN201910718153.2 2019-08-05

Publications (1)

Publication Number Publication Date
WO2021022877A1 true WO2021022877A1 (zh) 2021-02-11

Family

ID=68510013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093237 WO2021022877A1 (zh) 2019-08-05 2020-05-29 一种高温尘硝一体净化陶瓷滤芯的法兰及其制备工艺

Country Status (2)

Country Link
CN (1) CN110465137A (zh)
WO (1) WO2021022877A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113350893A (zh) * 2021-07-05 2021-09-07 段金宇 一种具有催化降解功能的玻璃体微孔气、液滤材制造方法
CN113877415A (zh) * 2021-10-27 2022-01-04 盐城工学院 一种多孔陶瓷滤管脱硫除尘脱硝一体化装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110465137A (zh) * 2019-08-05 2019-11-19 江西博鑫精陶环保科技有限公司 一种高温尘硝一体净化陶瓷滤芯的法兰及其制备工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060101747A1 (en) * 2003-11-12 2006-05-18 Ngk Insulators, Ltd. Honeycomb structure
CN101309883A (zh) * 2006-01-27 2008-11-19 揖斐电株式会社 蜂窝结构体及其制造方法
CN108854323A (zh) * 2018-07-06 2018-11-23 江西博鑫精陶环保科技有限公司 一种蜂窝壁流式高温尘硝一体净化器的制备方法
CN110465137A (zh) * 2019-08-05 2019-11-19 江西博鑫精陶环保科技有限公司 一种高温尘硝一体净化陶瓷滤芯的法兰及其制备工艺

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4713174A (en) * 1986-07-22 1987-12-15 Industrial Filter & Pump Mfg. Co. Mounting arrangement for a tube-type filter element
CN206681457U (zh) * 2017-03-01 2017-11-28 国网浙江平湖市供电公司 加固型防锈电杆

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060101747A1 (en) * 2003-11-12 2006-05-18 Ngk Insulators, Ltd. Honeycomb structure
CN101309883A (zh) * 2006-01-27 2008-11-19 揖斐电株式会社 蜂窝结构体及其制造方法
CN108854323A (zh) * 2018-07-06 2018-11-23 江西博鑫精陶环保科技有限公司 一种蜂窝壁流式高温尘硝一体净化器的制备方法
CN110465137A (zh) * 2019-08-05 2019-11-19 江西博鑫精陶环保科技有限公司 一种高温尘硝一体净化陶瓷滤芯的法兰及其制备工艺

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113350893A (zh) * 2021-07-05 2021-09-07 段金宇 一种具有催化降解功能的玻璃体微孔气、液滤材制造方法
CN113877415A (zh) * 2021-10-27 2022-01-04 盐城工学院 一种多孔陶瓷滤管脱硫除尘脱硝一体化装置

Also Published As

Publication number Publication date
CN110465137A (zh) 2019-11-19

Similar Documents

Publication Publication Date Title
WO2021022877A1 (zh) 一种高温尘硝一体净化陶瓷滤芯的法兰及其制备工艺
JP5252916B2 (ja) ハニカム構造体
KR100712002B1 (ko) 허니컴 구조체
US7396576B2 (en) Honeycomb structure
US20070039298A1 (en) Ceramic honeycomb filter, its production method, and plugging material for ceramic honeycomb filter
JP5324228B2 (ja) ハニカムセグメント接合体の作製方法
JP4997068B2 (ja) 接合体及びその製造方法
JP2009255048A (ja) ハニカム構造体
JP5478243B2 (ja) 接合材組成物及びその製造方法並びに接合体及びその製造方法
PL206346B1 (pl) Bryła o strukturze plastra miodu i sposób wytwarzania bryły o strukturze plastra miodu
CN102010187A (zh) 一种多孔陶瓷过滤管用的陶瓷膜及其改性制备方法
JP5478072B2 (ja) ハニカムセグメント接合体の製造方法
KR20110114542A (ko) 상이한 플러깅 재료와 입구 및 출구 표면을 갖는 여과 구조체
JP6521683B2 (ja) ハニカム構造体
JP5478896B2 (ja) ハニカムセグメント接合体の製造方法
JP4616752B2 (ja) ハニカム構造体
JP6086294B2 (ja) セラミックハニカムフィルタ
JP5318753B2 (ja) 接合体及びその製造方法並びに接合材組成物及びその製造方法
JP5313878B2 (ja) ハニカムセグメントを用いたハニカム構造体
JP5324423B2 (ja) ハニカム構造体
JP6595194B2 (ja) ハニカム構造体
CN106642174B (zh) 一种火电厂烟囱内筒或内衬用耐腐蚀砖及其制备方法
US7972406B2 (en) Diesel particulate filter and method of making
JPWO2008096569A1 (ja) Dpf用ハニカムセグメント接合体及び該接合体用接合材組成物
CN202648409U (zh) 高温窑炉炉衬结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20849137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20849137

Country of ref document: EP

Kind code of ref document: A1