WO2021020250A1 - 二次電池の劣化度判定装置及び組電池 - Google Patents

二次電池の劣化度判定装置及び組電池 Download PDF

Info

Publication number
WO2021020250A1
WO2021020250A1 PCT/JP2020/028354 JP2020028354W WO2021020250A1 WO 2021020250 A1 WO2021020250 A1 WO 2021020250A1 JP 2020028354 W JP2020028354 W JP 2020028354W WO 2021020250 A1 WO2021020250 A1 WO 2021020250A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
voltage
secondary battery
characteristic
deterioration
Prior art date
Application number
PCT/JP2020/028354
Other languages
English (en)
French (fr)
Inventor
知美 淺井
信雄 山本
広康 鈴木
克樹 林
雄也 三鍋
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020113169A external-priority patent/JP7147809B2/ja
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to EP20846918.9A priority Critical patent/EP4009413A4/en
Priority to CN202080056051.XA priority patent/CN114207457A/zh
Publication of WO2021020250A1 publication Critical patent/WO2021020250A1/ja
Priority to US17/585,936 priority patent/US12025676B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane

Definitions

  • the present disclosure relates to a deterioration degree determination device for a secondary battery and an assembled battery.
  • Patent Document 1 discloses a configuration for detecting the degree of deterioration of a secondary battery module in an assembled battery.
  • each secondary battery module is taken out and the remaining capacity of each is detected. Then, the capacity difference between the secondary battery modules is calculated and compared with the threshold value, and when the capacity difference is equal to or more than a predetermined value, the remaining life of the secondary battery module having a small capacity is assumed to be equal to or less than the predetermined value. Determine the degree of deterioration for each.
  • the present disclosure is intended to provide a secondary battery deterioration degree determination device capable of determining the deterioration degree of a secondary battery with high accuracy with a simple configuration.
  • One aspect of the present disclosure is a deterioration degree determination device for determining the deterioration degree of a secondary battery. It has a battery characteristic acquisition unit that acquires the battery characteristics related to the transition of the battery state in the predetermined voltage section of the secondary battery. A determination unit that determines the degree of deterioration of the secondary battery based on the battery characteristics acquired by the battery characteristic acquisition unit or the battery characteristic-related value calculated based on the battery characteristics. It is in the deterioration degree determination device of the secondary battery.
  • Another aspect of the present disclosure is an assembled battery comprising a plurality of secondary batteries.
  • the above-mentioned multiple secondary batteries include recycled products.
  • the assembled battery has a battery characteristic related to a voltage transition in a predetermined voltage section or a battery characteristic-related value calculated based on the battery characteristic within a predetermined range.
  • the deterioration degree of the secondary battery is determined based on the battery characteristics or the battery characteristic-related values related to the voltage transition in the predetermined voltage section acquired from the secondary battery. Therefore, the degree of deterioration can be determined by a simple process. Furthermore, by setting a voltage section that shows a high correlation between the voltage transition of the secondary battery and the degree of deterioration as the voltage section for acquiring the battery characteristics of the secondary battery, the degree of deterioration of the secondary battery can be determined with high accuracy. can do.
  • the individual battery characteristics or the battery characteristic-related values are combined so as to be within a predetermined range.
  • the variation in the battery characteristics of the secondary battery included in the assembled battery is reduced, so that the life of the assembled battery can be extended.
  • a deterioration degree determination device for a secondary battery capable of determining the deterioration degree with high accuracy with a simple configuration. Further, according to another aspect of the present disclosure, it is possible to provide an assembled battery having a long life.
  • FIG. 1 is a conceptual diagram showing the configuration of the deterioration degree determination device in the first embodiment.
  • FIG. 2 is a conceptual diagram showing the battery characteristics in the first embodiment.
  • FIG. 3 is a flow chart showing a method for determining the degree of deterioration of the secondary battery in the first embodiment.
  • FIG. 4 is a cross-sectional conceptual diagram showing the configuration of the assembled battery in the first embodiment.
  • FIG. 5 is a flow chart showing the manufacturing method of the assembled battery in the first embodiment.
  • FIG. 6 is a conceptual diagram showing the battery characteristics in the modified form 1.
  • FIG. 7 is a conceptual diagram showing the battery characteristics in the modified form 2.
  • FIG. 1 is a conceptual diagram showing the configuration of the deterioration degree determination device in the first embodiment.
  • FIG. 2 is a conceptual diagram showing the battery characteristics in the first embodiment.
  • FIG. 3 is a flow chart showing a method for determining the degree of deterioration of the secondary battery in the first embodiment.
  • FIG. 4 is a cross-section
  • FIG. 8 is a conceptual diagram showing the battery characteristics in the modified form 3.
  • FIG. 9 is a conceptual diagram showing the battery characteristics in the second embodiment.
  • FIG. 10 is a conceptual diagram showing the battery characteristics in the modified form 4.
  • FIG. 11 is a conceptual diagram showing the configuration of the deterioration degree determination device in the third embodiment.
  • FIG. 12 is a conceptual diagram showing the configuration of the deterioration degree determination device in the fourth embodiment.
  • FIG. 13 is a conceptual diagram showing the battery characteristics in the fourth embodiment.
  • FIG. 14 is a conceptual diagram showing the configuration of the deterioration degree determination device in the modified form 5.
  • FIG. 15 is a conceptual diagram showing the configuration of the deterioration degree determination device in the fifth embodiment.
  • FIG. 16 is a conceptual diagram showing the battery characteristics in the fifth embodiment.
  • FIG. 17 is a conceptual diagram showing the battery characteristics in the modified form 6.
  • FIG. 18 is a conceptual diagram showing the battery characteristics in the modified form 7.
  • FIG. 19 is a flow chart showing a method of determining the degree of deterioration of the secondary battery in the modified form 8.
  • FIG. 20 is a conceptual diagram showing the SOC-OCV curve of the secondary battery in the sixth embodiment.
  • FIG. 21 is a flow chart showing a method for determining the degree of deterioration of the secondary battery in the sixth embodiment.
  • FIG. 22 is a conceptual diagram showing (a) the discharge curve of the secondary battery and (b) the charge curve of the secondary battery in the sixth embodiment.
  • FIG. 23 is a flow chart showing a method for determining the degree of deterioration of the secondary battery in the seventh embodiment.
  • FIG. 24 is a conceptual diagram showing the SOC-OCV curve of the secondary battery in the eighth embodiment.
  • FIG. 25 is a flow chart showing a method for determining the degree of deterioration of the secondary battery in the ninth embodiment.
  • FIG. 26 is a conceptual diagram showing (a) the discharge curve of the secondary battery and (b) another discharge curve of the secondary battery in the ninth embodiment.
  • FIG. 27 is a conceptual diagram showing an example of the estimation result in the tenth embodiment.
  • FIG. 28 is a conceptual diagram showing the configuration of the deterioration degree determination device in the eleventh embodiment.
  • FIG. 29 is a flow chart showing a method of determining the degree of deterioration of the secondary battery in the eleventh embodiment.
  • the secondary battery deterioration degree determination device 1 of the present embodiment determines the deterioration degree of the secondary battery 2, and includes a battery characteristic acquisition unit 61 and a determination unit 63.
  • the battery characteristic acquisition unit 61 acquires the battery characteristics related to the voltage transition in the predetermined voltage section of the secondary battery 2.
  • the determination unit 63 determines the degree of deterioration of the secondary battery 2 based on the battery characteristics acquired by the battery characteristic acquisition unit 61 or the battery characteristic-related values calculated based on the battery characteristics.
  • the deterioration degree determination device 1 of the secondary battery of the present embodiment will be described in detail.
  • the type of the secondary battery 2 for which the deterioration degree is to be determined is not limited, and a known secondary battery such as a nickel hydrogen battery or a lithium ion secondary battery is targeted. be able to.
  • the secondary battery 2 to be determined may be a cell that is a single battery, or may be an assembled battery that is a combination of a plurality of single batteries. Further, the secondary battery 2 to be determined may be a secondary battery module including one or a plurality of cells such as a secondary battery having the smallest unit.
  • the secondary battery module can be composed of 2, 3, 4 or 6 cells, and may be a plurality of secondary battery modules 21 to 26 included in the assembled battery 20 as shown in FIG. ..
  • the used assembled battery 20 can be disassembled to take out a plurality of secondary battery modules 21 to 26, and the degree of deterioration of the secondary battery modules 21 to 26 can be determined by the deterioration degree determination device 1. Then, a plurality of secondary battery modules 21 to 26 can be selected based on the determination result.
  • the deterioration degree determination device 1 includes a detection unit 3, a storage unit 4, a storage unit 5, a calculation unit 6, and a control unit 7.
  • the control unit 7 includes a charge / discharge control unit 71 that controls the charge / discharge of the secondary battery 2.
  • the charge / discharge of the secondary battery 2 by the charge / discharge control unit 71 includes any of a case of only charging, a case of only discharging, a case of discharging and charging, and a case of charging and discharging.
  • the detection unit 3 includes a voltage value detection unit 31 and a current value detection unit 32.
  • the voltage value detecting unit 31 includes a predetermined voltmeter and is connected to the secondary battery 2 to detect the voltage value of the secondary battery 2.
  • the current value detection unit 32 includes a predetermined ammeter, is connected to the secondary battery 2, and acquires the current value flowing through the secondary battery 2.
  • the open circuit voltage of the secondary battery 2 is acquired based on the voltage value detected by the voltage value detecting unit 31.
  • the storage unit 4 shown in FIG. 1 is composed of a rewritable non-volatile memory, and includes a voltage value storage unit 41 and a current value storage unit 42.
  • the voltage value storage unit 41 stores the voltage value detected by the voltage value detection unit 31, and the current value storage unit 42 stores the current value detected by the current value detection unit 32.
  • the storage unit 5 shown in FIG. 1 is composed of a non-volatile memory, and includes a correspondence storage unit 51 and a reference value storage unit 52.
  • the correspondence storage unit 51 stores the correspondence between the battery characteristics and the total capacity.
  • the form of the correspondence is not particularly limited, and may be, for example, a calculation formula, a map, a graph, a table, or the like.
  • the correspondence relationship can be created by machine learning using the secondary battery 2 for measurement, or can be created based on the actual measured value obtained by performing an accelerated deterioration test using the secondary battery 2 for measurement. Using the model of the secondary battery 2, it can be created by a calculation formula that logically derives the correspondence between the battery characteristics and the total capacity in a predetermined voltage section.
  • the correspondence relationship stored in the correspondence relationship storage unit 51 is appropriately set according to the battery characteristics acquired by the battery characteristic acquisition unit 61 described later.
  • the above total capacity can be the capacity from the fully discharged state to the fully charged state at the time of charging.
  • the total capacity can be the capacity from the fully charged state to the fully discharged state at the time of discharging.
  • the completely discharged state may be an effective fully discharged state defined by a system such as a vehicle on which the secondary battery 2 is mounted, and has reached the lower limit voltage determined by the user who uses the deterioration degree determination device 1. It may be in a state.
  • the fully charged state may be an effective fully charged state defined by the system of the vehicle or the like, or may be a state in which the upper limit voltage specified by the user has been reached.
  • the reference value storage unit 52 shown in FIG. 1 stores in advance a reference value for determining the degree of deterioration used in the determination unit 63 described later.
  • the reference value is appropriately set according to the mode of determination by the determination unit 63, and in the present embodiment, a plurality of reference values are set so that the degree of deterioration can be determined in five stages.
  • the arithmetic unit 6 shown in FIG. 1 is composed of a predetermined arithmetic unit, and includes a battery characteristic acquisition unit 61, a capacity estimation unit 62 as an estimation unit, and a determination unit 63.
  • the battery characteristic acquisition unit 61 acquires the battery characteristics of the secondary battery 2.
  • the battery characteristics of the secondary battery 2 can be, for example, characteristics based on the voltage transition and temperature transition of the secondary battery 2 in a predetermined voltage section Vs.
  • the battery characteristic acquisition unit 61 may acquire the absolute value of the acquired value as the battery characteristic.
  • the discharge voltage characteristic is used as the battery characteristic. As shown in FIG. 2, the discharge voltage characteristic is calculated based on the voltage transition when the secondary battery 2 is discharged to the discharge target voltage VP.
  • the discharge target voltage VP is not particularly limited, but can be a voltage equal to or less than the lower limit value in the normal use range Vn for the voltage value of the secondary battery 2.
  • the voltage transition is, for example, the section capacity of the secondary battery 2 in the predetermined voltage section Vs, the ratio of the voltage change of the secondary battery 2 to the capacity change of the secondary battery 2 in the predetermined voltage section Vs, and the predetermined voltage section Vs. It can be calculated based on at least one of the ratios of the voltage change of the secondary battery 2 to the elapsed time in.
  • the predetermined voltage section Vs can be a voltage section in which the degree of deterioration of the secondary battery 2 and the transition of the battery state show a correlation.
  • the voltage section Vs can be set based on the type and configuration of the secondary battery 2 or can be derived by machine learning using the secondary battery 2.
  • the predetermined voltage section Vs is a section between the voltage values V1 and V2.
  • the voltage section Vs is a section in which the difference in discharge voltage characteristics is remarkable according to the degree of deterioration of the secondary battery 2.
  • the capacity estimation unit 62 shown in FIG. 1 estimates the total capacity of the secondary battery 2 based on the battery characteristics acquired by the battery characteristic acquisition unit 61.
  • a prediction model such as a regression equation can be used, and for example, linear regression, Lasso regression, Ridge regression, decision tree, support vector regression and the like can be used.
  • the determination unit 63 shown in FIG. 1 determines the degree of deterioration of the secondary battery 2 based on the battery characteristics or the battery characteristic-related values.
  • the battery characteristic-related value is a value calculated based on the battery characteristics, and in the first embodiment, the estimation result of the capacity estimation unit 62 is adopted as the battery characteristic-related value. Therefore, in the first embodiment, the determination unit 63 determines the degree of deterioration of the secondary battery 2 based on the estimation result of the capacity estimation unit 62.
  • the determination method can be performed by comparing the estimation result of the capacity estimation unit 62 with the reference value stored in advance in the reference value storage unit 52.
  • step S1 shown in FIG. 3 as a preparatory step, the secondary battery modules 21 to 26 are taken out from the used assembled battery 20 shown in FIG.
  • each of the secondary battery modules 21 to 26 is discharged until the open circuit voltage reaches the discharge target voltage VP. As a result, the remaining capacity of each of the secondary battery modules 21 to 26 is discharged.
  • the secondary battery modules 21 to 26 are nickel-metal hydride batteries, the memory effect is released as the remaining capacity is discharged.
  • the battery characteristics acquisition unit 61 acquires the battery characteristics of each of the secondary battery modules 21 to 26.
  • the above-mentioned discharge voltage characteristic is acquired as the battery characteristic.
  • the discharge voltage characteristic is based on the voltage transition in the predetermined voltage section Vs of each of the secondary battery modules 21 to 26 shown in FIG.
  • the battery characteristic acquisition unit 61 changes the voltage of the primary secondary battery module 21 with respect to the passage of time from the discharge start T 0 to the discharge end T P 1 . Obtain the voltage-time change that indicates the relationship. Then, the differential value at the voltage VA within the predetermined voltage section Vs, that is, the slope of the tangent line at the voltage VA indicated by the reference numeral 21A in the graph of the voltage-time change shown in FIG. 2 is calculated, and this is calculated by the primary secondary battery module 21. Discharge voltage characteristics of. Further, as shown in FIG.
  • the voltage-time change is similarly acquired as the voltage transition of the secondary secondary battery module 22, and the differential value at the voltage VA within the predetermined voltage section Vs indicated by the reference numeral 22A is calculated. This is the discharge voltage characteristic of the secondary battery module 22.
  • the voltage-time change is acquired as the voltage transition, and the differential value at the voltage VA is calculated to obtain the respective discharge voltage characteristics.
  • the voltage time change is acquired as the voltage transition and the differential value in the voltage VA within the predetermined voltage section Vs is used, but instead of this, the voltage time derived as the voltage transition is used.
  • the rate of voltage change between two points in the change that is, the slope of the straight line passing through the two points in the graph of voltage time change may be calculated and used as the discharge voltage characteristic.
  • the two points in the voltage time change of the first secondary battery module 21 shown in FIG. 2 while adopting the two points of the start time T A1 and the end time T A2 voltage sections Vs, other secondary battery module 22 The same two points can be adopted in ⁇ 26 as well.
  • the discharge voltage characteristic the voltage time change is acquired as the voltage transition and the differential value in the voltage VA within the predetermined voltage section Vs is used, but instead of this, the voltage transition at the start of discharge is used.
  • a voltage-capacity change indicating the relationship of the voltage change with respect to the capacity from the capacity Q 0 to the capacity Q P1 at the end of discharge may be acquired.
  • the differential value at the voltage VA within the predetermined voltage section Vs that is, the slope of the tangent line at the voltage VA in the graph of the voltage-capacity change may be calculated and used as the discharge voltage characteristic of the primary secondary battery module 21. ..
  • the capacity estimation unit 62 estimates the total capacity of the secondary battery modules 21 to 26, that is, the full charge capacity or the full discharge capacity, based on the battery characteristics acquired by the battery characteristic acquisition unit 61. To do.
  • the capacity estimation unit 62 discharges as the battery characteristics acquired by the battery characteristic acquisition unit 61 based on the correspondence between the discharge voltage characteristics based on the prediction model stored in the correspondence storage unit 51 and the total capacity.
  • the total capacity of the secondary battery modules 21 to 26 is estimated from the voltage characteristics.
  • step S5 shown in FIG. 3 the determination unit 63 determines the degree of deterioration of the secondary battery modules 21 to 26 based on the total capacity estimated by the capacity estimation unit 62.
  • step S10 a plurality of secondary battery modules 2 taken out from the assembled battery 20 are prepared.
  • step S11 the battery characteristics of each secondary battery module 2 are acquired.
  • the acquisition of the battery characteristics can be performed in the same manner as in the case of acquiring the battery characteristics in the deterioration degree determination device 1 of the first embodiment.
  • step S12 the secondary battery module 2 is ranked based on the battery characteristics or the battery characteristic-related values calculated based on the battery characteristics.
  • the total capacity of the secondary battery module 2 is estimated based on the battery characteristics as the battery characteristic-related value, and the absolute value of the deterioration degree of the secondary battery module 2 calculated from the total capacity is within a predetermined range.
  • the secondary battery module 2 shall be ranked based on whether or not it is. Then, in the present embodiment, the absolute value of the degree of deterioration is divided into a predetermined range of five stages, and the absolute value of the degree of deterioration is divided into A rank, B rank, C rank, D rank, and E rank in order from the smallest absolute value.
  • the ranking criteria can be set as appropriate.
  • step S13 shown in FIG. 5 the secondary battery module 2 is selected based on the rank.
  • sorting is performed for each rank.
  • the secondary battery modules 2 included in the same rank have the same degree of deterioration.
  • step S14 the secondary battery modules 2 of the same rank are combined to assemble the assembled battery 20 to create a rebuilt product.
  • the secondary battery module 2 included in the assembled battery 20 of the rebuilt product has the same absolute value of the degree of deterioration, and the difference in the degree of deterioration can be set to a predetermined reference value or less.
  • the reference value of the difference in the degree of deterioration can be appropriately set according to the ranking criteria.
  • the assembled battery 20 is created by the secondary battery modules 2 of the same rank, but the present invention is not limited to this, and the assembled battery 20 may be created within a predetermined range of ranks, for example, A rank and The assembled battery 20 may be created from the secondary battery module 2 included in the B rank.
  • the secondary battery module 2 ranked at the lowest rank E may be discarded as unusable, or may be disassembled and used for recycling of members.
  • step S15 shown in FIG. 5 supplementary charging is performed with 20 units of the assembled battery.
  • the secondary battery module 2 can be used as the assembled battery 20.
  • the secondary battery is based on the battery characteristics related to the voltage transition of the predetermined voltage section Vs acquired from the secondary battery module 2 or the battery characteristic-related value calculated based on the battery characteristics. Determine the degree of deterioration of module 2. Therefore, the degree of deterioration can be determined by a simple process. Further, by setting the voltage section Vs for acquiring the battery characteristics of the secondary battery module 2 as the voltage section Vs showing a high correlation between the voltage transition of the secondary battery module 2 and the degree of deterioration, the secondary battery module 2 The degree of deterioration of the battery can be determined with high accuracy.
  • the assembled battery includes a plurality of secondary battery modules 2 including recycled products, and the plurality of secondary battery modules 2 are the secondary battery modules 2. It is possible to provide an assembled battery in which the battery characteristic related to the transition of the battery state in the predetermined voltage section Vs or the battery characteristic relation value calculated based on the battery characteristic is within the predetermined range. As an assembled battery as such a rebuilt product, it is possible to provide an assembled battery 20 having a small variation in battery characteristics. Then, as the voltage section Vs for acquiring the battery characteristics of the secondary battery module 2, the voltage section Vs showing a high correlation between the voltage transition of the secondary battery module 2 and the degree of deterioration is set, and is included in the assembled battery 20. Since the variation in the degree of deterioration of the secondary battery module 2 is reduced, the life of the assembled battery 20 can be extended and the quality can be improved.
  • the capacity estimation unit 62 estimates the total capacity of the secondary battery module 2 from the battery characteristics acquired by the battery characteristic acquisition unit 61, and the determination unit 63 estimates the secondary battery module based on the estimation result.
  • the determination unit 63 may determine the degree of deterioration of the secondary battery module 2 based on the battery characteristics acquired by the battery characteristic acquisition unit 61. ..
  • the battery characteristic acquisition unit 61 may acquire the absolute value of the acquired value as the battery characteristic, and the determination unit 63 may determine the degree of deterioration based on the absolute value. Further, the determination unit 63 may determine the degree of deterioration of the secondary battery module 2 based on the difference in the battery characteristics acquired by the battery characteristic acquisition unit 61.
  • the secondary battery module 2 is classified into classes so that the degree of deterioration of the secondary battery module 2 is within a predetermined range, and the assembled battery 20 is assembled.
  • the deterioration of the secondary battery module 2 is determined.
  • the assembled battery 20 may be assembled by classifying the secondary battery module 2 so that the difference between the degree and the degree of deterioration is within a predetermined range.
  • the battery characteristics are the discharge voltage characteristics based on the voltage transition when the secondary battery module 2 is discharged to the predetermined discharge target voltage VP.
  • the secondary battery module 2 may be discharged for the purpose of canceling the memory effect or the like.
  • the discharge voltage characteristic is calculated based on the voltage transition during discharge of the secondary battery 2, but instead of or together with this, after the discharge reaches the discharge target voltage VP and the discharge is stopped.
  • the discharge voltage characteristic may be calculated based on the voltage transition at the time of voltage relaxation that returns to the open circuit voltage. For example, as in the first variation shown in FIG. 6, in the first secondary battery module 21, it is discharged to a discharge target voltage VP to discharge at a predetermined voltage interval Vs at time T P1 after the voltage relaxation stop Based on the voltage transition, the differential value at the predetermined voltage VA indicated by reference numeral 21A can be calculated and used as the discharge voltage characteristic.
  • the capacity estimation unit 62 for estimating the total capacity of the secondary battery using the battery characteristics acquired by the battery characteristic acquisition unit 61 is provided as the battery characteristic-related value
  • the determination unit 63 is the capacity estimation unit.
  • the degree of deterioration of the secondary battery module 2 is determined based on the estimation result of 62. As a result, the degree of deterioration of the secondary battery module 2 can be detected with high accuracy.
  • the assembled battery 20 including the plurality of secondary battery modules 2 including the recycled product, and the plurality of secondary battery modules 2 have a predetermined discharge target voltage.
  • the battery characteristics including the voltage transition when discharged to VP and the discharge voltage characteristic based on at least one of the voltage transitions after the secondary battery module 2 is discharged to the discharge target voltage VP and the discharge is stopped. It is possible to provide the assembled battery 20 in which the total capacity is estimated and the difference between the respective deterioration degrees determined based on the total capacity is within a predetermined range. In such an assembled battery 20, the variation in the degree of deterioration of the secondary battery module 2 included in the assembled battery 20 becomes smaller, so that the life of the assembled battery 20 as a rebuilt product can be extended and the quality can be improved.
  • the ratio of the voltage change of the secondary battery module 2 to the elapsed time in the predetermined voltage section Vs, that is, the differential value in the voltage time change is calculated, and this is used as the discharge voltage characteristic.
  • the degree of deterioration of the secondary battery module 2 can be determined with high accuracy and easily.
  • the battery characteristic acquisition unit 61 calculates the ratio of the voltage change of the secondary battery module 2 to the elapsed time in the predetermined voltage section Vs as the voltage transition, or together with this, the modified form 2 shown in FIG. 7.
  • the amount of change in capacity of each of the secondary battery modules 21 to 26 in a predetermined voltage section Vs may be calculated as the section capacity Qp, and this may be used as the discharge voltage characteristic.
  • the section capacitance Qp can be calculated from the current value flowing through the secondary battery modules 21 to 26 and the time during which the current flows in the voltage section Vs detected by the current value detecting unit 32. Also in this case, the degree of deterioration of the secondary battery module 2 can be easily and accurately determined based on the discharge voltage characteristics.
  • the capacity ratio which is the ratio of the section capacity Qp to the total charge / discharge capacity Qt shown in Table 1 below, may be calculated as the voltage transition, and this may be used as the discharge voltage characteristic.
  • the specific section capacity Qt' which is the capacity of the specific voltage section including the voltage section Vs for calculating the battery characteristics is calculated, and the section capacity Qp with respect to the specific section capacity Qt'is calculated.
  • the capacity ratio which is the ratio of, may be calculated and used as the discharge voltage characteristic. In these cases as well, the degree of deterioration of the secondary battery module 2 can be determined with high accuracy and easily based on the discharge voltage characteristics.
  • the ratio of the voltage change of the secondary battery module 2 to the capacity change in the predetermined voltage section Vs that is, the voltage capacity change in the voltage section Vs.
  • a differential value at a predetermined voltage VA may be calculated and used as a discharge voltage characteristic. Also in this case, the same effect as that of the present embodiment is obtained.
  • the assembled battery 20 including the plurality of secondary battery modules 2 including the recycled product, and the plurality of secondary battery modules 2 have a predetermined voltage section.
  • Amount of change in capacity of secondary battery module 2 in Vs, ratio of change in voltage of secondary battery module 2 to change in capacity of secondary battery module 2 in voltage section Vs, voltage of secondary battery module 2 with respect to elapsed time in voltage section Vs A set in which the total capacity is estimated using the battery characteristics based on the voltage transition calculated based on at least one of the rate of change, and the difference between the respective deterioration degrees determined based on the total capacity is within a predetermined range.
  • the battery 20 can be provided. In such an assembled battery 20, the variation in the degree of deterioration of the secondary battery module 2 included in the assembled battery 20 becomes smaller, so that the quality of the assembled battery 20 as a rebuilt product can be improved.
  • the battery characteristic acquisition unit 61 provided in the deterioration degree determination device 1 calculates the battery characteristics to acquire the battery characteristics, but instead of this, the deterioration degree determination device 1 is external.
  • a battery characteristic acquisition unit 61 is provided by having an input unit and calculating battery characteristics using an externally provided arithmetic device, and inputting the battery characteristics to the battery characteristic acquisition unit 61 via an external input unit. May acquire battery characteristics.
  • the secondary battery deterioration degree determination device 1 capable of determining the deterioration degree of the secondary battery with high accuracy with a simple configuration. it can.
  • the discharge voltage characteristic is adopted as the battery characteristic, but in the second embodiment shown in FIG. 9, the battery characteristic is also changed when the secondary battery module 2 is charged to a predetermined charging target voltage VQ.
  • the charging target voltage VQ is not particularly limited, but in the present embodiment, it is set to be larger than the lower limit value of the normal use range Vn and smaller than the upper limit value.
  • Other components are the same as in the case of the first embodiment, and the description thereof will be omitted in the present embodiment using the same reference numerals as in the case of the first embodiment.
  • the calculation of the voltage transition in charging can be performed in the same manner as the calculation of the voltage transition in the discharge voltage characteristics in the first embodiment and each modification, and the calculated result is used as the charging voltage characteristic. That is, as shown in FIG. 9, as a voltage transition, a voltage-time change showing the relationship of the voltage change with respect to the passage of time from the start of charging, which is the end of discharge T P1 and T P2 , to the end of charging T Q1 and T Q2 is acquired. .. Then, the differential value at the voltage VB within the predetermined voltage section VsB, that is, the slope of the tangent line at the voltage VB indicated by the reference numeral 21B in the graph of the voltage-time change shown in FIG.
  • the predetermined voltage section VsB is a section from the voltage values V3 to V4, and is a section in which the difference in charging voltage characteristics is remarkable according to the degree of deterioration of the secondary battery 2.
  • the charging voltage characteristics as in the case of calculating the discharge voltage characteristics in the first embodiment described above, between two points of the start time of the predetermined voltage interval VsB T B11, T B21 and end time T B12, T B22 It can be used as the rate of voltage change, the section capacity Qp in the voltage section VsB, or the capacity of all sections T P1 to T Q1 and T P2 to T Q2 during charging, that is, the total charge / discharge capacity when charging to the charging target voltage VQ.
  • Qt may be calculated and used as the capacity ratio of the section capacity Qp to the total charge / discharge capacity Qt.
  • the specific section capacity Qt' which is the capacity of the specific voltage section including the voltage section Vs for calculating the battery characteristics is calculated, and the section capacity Qp for the specific section capacity Qt'is calculated.
  • the capacity ratio which is the ratio of, may be calculated and used as the charging voltage characteristic. Further, in the second embodiment, the ratio of the section capacity for acquiring the discharge voltage characteristic and the section capacity for acquiring the charge voltage characteristic may be adopted as the battery characteristic.
  • the battery characteristic acquisition unit 61 acquires both the discharge voltage characteristic and the charge voltage characteristic, and the capacity estimation unit 62 estimates the total capacity of the secondary battery 2 based on these. As a result, the degree of deterioration of the secondary battery 2 can be determined with higher accuracy.
  • each secondary battery module 2 is charged before assembling the assembled battery 20. , The supplementary charging of the assembled battery 20 in step S15 in FIG. 5 becomes unnecessary.
  • the battery characteristic acquisition unit 61 acquires the charge voltage characteristic after acquiring the discharge voltage characteristic by charging the secondary battery module 2 after the discharge, but the present invention is not limited to this. By discharging after charging the secondary battery module 2, the discharge voltage characteristic may be acquired after the charge voltage characteristic is acquired.
  • the battery characteristic acquisition unit 61 acquires both the discharge voltage characteristic and the charge voltage characteristic, but instead of this, only the charge voltage characteristic may be acquired. In this case, the determination accuracy may be inferior to that in the case of acquiring both the discharge voltage characteristic and the charge voltage characteristic.
  • the discharge voltage characteristic may vary in voltage transition due to the influence of the memory effect and the improvement of the determination accuracy may be suppressed, but it is acquired after the remaining capacity is discharged.
  • the charging voltage characteristic is after the memory effect is canceled, so that the influence of the memory effect is small, and the determination accuracy can be expected to be improved.
  • the charging voltage characteristic in the second embodiment is the voltage at the time of voltage relaxation that returns to the open circuit voltage after being charged to a predetermined charging target voltage VQ and the charging is stopped, as in the case of the discharge voltage characteristic of the first embodiment. It may be calculated based on the transition.
  • the reference numeral 21B is based on the voltage transition in the predetermined voltage section VsB in the voltage relaxation after the time T Q1 when the charging is stopped in the primary secondary battery module 21.
  • the differential value at the predetermined voltage VB shown may be calculated and used as the charging voltage characteristic.
  • the differential value at the predetermined voltage VB indicated by reference numeral 22B is calculated based on the voltage transition in the predetermined voltage section VsB in the voltage relaxation after the time T Q2 when the charging is stopped in the secondary secondary battery module 22. It may be used as a charging voltage characteristic. Also in this case, the same effect as that of the present embodiment is obtained.
  • the assembled battery 20 including the plurality of secondary battery modules 2 including the recycled product, and the plurality of secondary battery modules 2 are the secondary batteries. Based on at least one of the voltage transition due to charging when the module 2 is charged to the predetermined charging target voltage VQ and the voltage transition after the secondary battery module 2 is charged to the charging target voltage VQ and charging is stopped. It is possible to provide an assembled battery 20 in which the total capacity is estimated using the battery characteristics including the charging voltage characteristic, and the difference between the respective deterioration degrees determined based on the total capacity is within a predetermined range. In such an assembled battery 20, the variation in the degree of deterioration of the secondary battery module 2 included in the assembled battery 20 becomes smaller, so that the life of the assembled battery 20 as a rebuilt product can be extended and the quality can be improved.
  • the determination unit 63 determines the degree of deterioration of the secondary battery module 2 based on the battery characteristics acquired by the battery characteristic acquisition unit 61, as in the modified embodiment of the first embodiment. May be. Further, the battery characteristic acquisition unit 61 may acquire the absolute value of the acquired value as the battery characteristic, and the determination unit 63 may determine the degree of deterioration based on the absolute value. Further, the determination unit 63 may determine the degree of deterioration of the secondary battery module 2 based on the difference in the battery characteristics acquired by the battery characteristic acquisition unit 61. Further, the assembled battery 20 may be assembled by classifying the secondary battery module 2 into classes so that the degree of deterioration of the secondary battery module 2 and the difference between the degrees of deterioration are within a predetermined range.
  • the calculation unit 6 includes an impedance characteristic acquisition unit 64.
  • the impedance characteristic acquisition unit 64 has a configuration for measuring complex impedance, and is configured to be able to measure the impedance of the secondary battery 2.
  • Other configurations are the same as those of the first embodiment, and the same reference numerals are given to the same configurations of the first embodiment, and the description thereof will be omitted.
  • the battery characteristic acquisition unit 61 acquires the discharge voltage characteristic in the predetermined voltage section Vs shown in FIG. 2, as in the case of the first embodiment. Then, the impedance characteristic acquisition unit 64 measures the complex impedance at T P1 and T P2 at the end of discharge shown in FIG. 2, acquires the impedance at a predetermined frequency, and obtains the values of the real axis and the imaginary axis on the complex plane. calculate.
  • an absolute value calculated from the values of the real axis and the imaginary axis of the impedance at a predetermined frequency f1 and the values of the real axis and the imaginary axis can be used.
  • the declination calculated from the value of the real axis and the value of the imaginary axis at a predetermined frequency f1 can also be used.
  • the difference between the real axis value, the imaginary axis value, the real axis value difference and the imaginary axis value difference between the predetermined frequency f1 and the predetermined frequency f2 the difference in the absolute value calculated from the difference, and the declination. Can also be used.
  • the correspondence relationship storage unit 51 stores in advance the correspondence relationship between the impedance characteristics and the total capacitance.
  • the correspondence can be created by machine learning using the secondary battery 2 for measurement, or created based on the actual measured values obtained by performing an accelerated deterioration test using the secondary battery 2 for measurement. Using the model of the secondary battery 2, it can be created by a calculation formula that logically derives the correspondence between the impedance characteristic at a predetermined voltage and the total capacity.
  • the capacity estimation unit 62 shown in FIG. 11 determines the total capacity of the secondary battery 2 based on the discharge voltage characteristics acquired by the battery characteristic acquisition unit 61 and the impedance characteristics acquired by the impedance characteristic acquisition unit 64. presume.
  • the determination unit 63 determines the degree of deterioration of the secondary battery 2 based on the estimation result of the capacity estimation unit 62 as in the case of the first embodiment. According to the third embodiment, since the total capacity is estimated based on the discharge voltage characteristic and the impedance characteristic, the determination accuracy can be further improved.
  • the timing at which the impedance characteristic acquisition unit 64 measures the complex impedance is set to T P1 and T P2 at the end of discharge, but the timing is not limited to this, and may be performed at other timings.
  • the impedance characteristic acquisition unit 64 performs complex impedance measurement at T Q1 and T Q2 at the end of charging shown in FIG. May be good.
  • the capacitance estimation unit 62 may use an impedance characteristic-related value calculated based on the impedance characteristic instead of the impedance characteristic.
  • the impedance characteristic-related value for example, the difference in impedance characteristics acquired by the impedance characteristic acquisition unit 64 can be adopted.
  • the assembled battery 20 including the plurality of secondary battery modules 2 including the recycled product, and the plurality of secondary battery modules 2 have the battery characteristics.
  • an assembled battery 20 in which the difference in the degree of deterioration determined based on the total capacity estimated using the impedance characteristics relating to the impedance when the secondary battery module 2 is discharged or charged is within a predetermined range. be able to.
  • the variation in the degree of deterioration of the secondary battery module 2 included in the assembled battery 20 becomes smaller, so that the life of the assembled battery 20 as a rebuilt product can be extended and the quality can be improved.
  • the determination unit 63 determines the degree of deterioration of the secondary battery module 2 based on the battery characteristics and impedance characteristics acquired by the battery characteristic acquisition unit 61. May be determined. Further, the battery characteristic acquisition unit 61 may acquire the absolute value of the acquired value as the battery characteristic, and the determination unit 63 may determine the degree of deterioration based on the absolute value. Further, the determination unit 63 may determine the degree of deterioration of the secondary battery module 2 based on the difference in the battery characteristics acquired by the battery characteristic acquisition unit 61. Further, the assembled battery 20 may be assembled by classifying the secondary battery module 2 into classes so that the degree of deterioration of the secondary battery module 2 and the difference between the degrees of deterioration are within a predetermined range.
  • an initial voltage acquisition unit 65 is provided in addition to the configuration of the first embodiment, as shown in FIG. 12, as shown in FIG. 12, an initial voltage acquisition unit 65 is provided.
  • Initial voltage acquisition unit 65 as shown in FIG. 13, to obtain the initial voltage VI1, VI2 is the open-circuit voltage of the secondary battery 2 at the discharge start time T 0.
  • the correspondence storage unit 51 stores in advance the correspondence between the initial voltage value, the battery characteristics, and the total capacity. The correspondence can be created in the same manner as in the case of the first embodiment.
  • Other configurations are the same as those of the first embodiment, and the same reference numerals are given to the same configurations of the first embodiment, and the description thereof will be omitted.
  • the deterioration degree of the secondary battery 2 is determined in consideration of the initial voltage in addition to the battery characteristics, so that the determination accuracy can be further improved with a simple configuration. it can.
  • the initial voltage-related value calculated based on the initial voltage may be used instead of the initial voltage.
  • the initial voltage-related value can be, for example, the absolute value of the initial voltage or the difference of the initial voltage acquired by the initial voltage acquisition unit 65.
  • the assembled battery 20 including the plurality of secondary battery modules 2 including the recycled product, and the plurality of secondary battery modules 2 have battery characteristics.
  • the assembled battery 20 in which the difference in the degree of deterioration determined based on the total capacity estimated using the initial voltage which is the open circuit voltage of the secondary battery module 2 at the start of acquisition and the battery characteristics is within a predetermined range. Can be provided.
  • the variation in the degree of deterioration of the secondary battery module 2 included in the assembled battery 20 becomes smaller, so that the life of the assembled battery 20 as a rebuilt product can be extended and the quality can be improved.
  • the determination unit 63 determines the degree of deterioration of the secondary battery module 2 based on the battery characteristics acquired by the battery characteristic acquisition unit 61 and the initial voltage. May be determined. Further, the battery characteristic acquisition unit 61 may acquire the absolute value of the acquired value as the battery characteristic, and the determination unit 63 may determine the degree of deterioration based on the absolute value. Further, the determination unit 63 may determine the degree of deterioration of the secondary battery module 2 based on the difference in the battery characteristics acquired by the battery characteristic acquisition unit 61. Further, the assembled battery 20 may be assembled by classifying the secondary battery module 2 into classes so that the degree of deterioration of the secondary battery module 2 and the difference between the degrees of deterioration are within a predetermined range.
  • the calculation unit 6 has an internal resistance acquisition unit 66 that acquires the internal resistance of the secondary battery 21, and the correspondence storage unit 51 has an internal resistance.
  • the correspondence between the battery characteristics and the total capacity may be stored in advance.
  • the internal resistance acquisition unit 66 the internal resistance is calculated from the measured voltage, which is the voltage value itself detected by the voltage value detection unit 31, the open circuit voltage of the secondary battery 2, and the current flowing through the secondary battery 2. Can be obtained.
  • the open circuit voltage of the secondary battery 2 can be estimated and acquired for each time using a map showing the correspondence between the residual discharge amount of the secondary battery 2 and the initial voltage.
  • the deterioration degree determination device 1 of the present modified form 5 the deterioration degree of the secondary battery 2 is determined in consideration of the internal resistance in addition to the battery characteristics, so that the determination accuracy can be further improved with a simple configuration. it can.
  • the deterioration degree determination device 1 of the fifth embodiment includes a temperature detection unit 33 in addition to the configuration of the first embodiment shown in FIG. Then, in the above-described first embodiment, the battery characteristic acquisition unit 61 is configured to acquire the discharge voltage characteristic based on the voltage transition of the secondary battery 2 in the predetermined voltage section Vs as the battery characteristic, but in the fifth embodiment, Instead of this, the battery characteristic acquisition unit 61 acquires the temperature characteristic based on the temperature transition of the secondary battery 2 in the predetermined voltage sections VsA and VsB as the battery characteristic.
  • Other configurations are the same as those of the first embodiment, and the same reference numerals are given to the same configurations of the first embodiment, and the description thereof will be omitted.
  • the voltage section VsA is a section in which the difference in discharge voltage characteristics is remarkable according to the degree of deterioration of the secondary battery 2
  • the voltage section VsB is a section in which the charging voltage characteristics are remarkable according to the degree of deterioration of the secondary battery 2. This is the section where the difference between the two is remarkable.
  • the temperature detection unit 33 acquires the temperature of the secondary battery 2 during charging / discharging.
  • the primary secondary battery module 21 taken out from the assembled battery 20 and the seventh secondary battery module 27 taken out from another assembled battery are adopted. doing.
  • the temperature transition of the secondary battery module 2 during charging / discharging may show different behavior depending on the measurement environment and soak state of the secondary battery module 2 when the built-in battery is different.
  • the temperature transitions in the primary secondary battery module 21 and the seventh secondary battery module 27 are within the measured room temperature setting range Tn, but are slightly different from each other. It behaves differently.
  • the battery characteristic acquisition unit 61 determines based on the battery temperature detected by the temperature detection unit 33 in both the predetermined voltage section sA in discharging and the predetermined voltage section VsB in charging after discharging. Obtain the temperature characteristics for discharging and the temperature characteristics for charging.
  • the capacity estimation unit 62 estimates the total capacity of each of the secondary battery modules 21 and 27 based on both temperature characteristics, and the determination unit 63 determines the degree of deterioration.
  • the temperature characteristics acquired by the battery characteristic acquisition unit 61 are the predetermined voltage sections VsA and VsB, as in the case of calculating the discharge voltage characteristics in the case of the first embodiment and the case of calculating the charge voltage characteristics in the case of the second embodiment. It is a differential value of the temperature change in the predetermined voltage VA and VB, the ratio of the temperature change between two points in the predetermined voltage sections VsA and VsB, and the second with respect to the capacity change of the secondary battery 2 in the voltage sections VsA and VsB. It can be the rate of temperature change of the next battery 2.
  • the same action and effect as in the case of the first embodiment can be obtained.
  • the temperature characteristics are acquired in both discharge and charge, but the temperature characteristic is not limited to this, and only one of discharge and charge may be used.
  • the assembled battery 20 including the plurality of secondary battery modules 2 including the recycled product, and the plurality of secondary battery modules 2 have a predetermined voltage.
  • the variation in the degree of deterioration of the secondary battery module 2 included in the assembled battery 20 becomes smaller, so that the quality of the assembled battery 20 as a rebuilt product can be improved.
  • the determination unit 63 determines the degree of deterioration of the secondary battery module 2 based on the temperature characteristics acquired by the battery characteristic acquisition unit 61, as in the modified embodiment of the first embodiment. May be. Further, the battery characteristic acquisition unit 61 may acquire the absolute value of the acquired value as the temperature characteristic, and the determination unit 63 may determine the degree of deterioration based on the absolute value. Further, the determination unit 63 may determine the degree of deterioration of the secondary battery module 2 based on the difference in the temperature characteristics acquired by the battery characteristic acquisition unit 61. Further, the assembled battery 20 may be assembled by classifying the secondary battery module 2 into classes so that the degree of deterioration of the secondary battery module 2 and the difference between the degrees of deterioration are within a predetermined range.
  • the charging target voltage VQ when the charging target voltage VQ is within the normal use range Vn and there is a predetermined voltage section VsA within the normal use range Vn as the temperature characteristic during charging. It was decided to acquire the temperature characteristics, but instead, as shown in the modified form 6 shown in FIG. 17A, the charging target voltage VQ exceeds the normal use range Vn as the temperature characteristics during charging, and the normal use is performed. It is also possible to acquire the temperature characteristic when there is a predetermined voltage section VsB in the region beyond the range Vn. In this case, as shown in FIG. 17B, the temperatures of the secondary battery modules 21 and 27 tend to rise, so that the degree of deterioration is easily reflected in the temperature transition. As a result, the determination accuracy can be improved. In the present modification 6, the secondary battery modules 21 and 27 are charged to the charging target voltage VQ and then discharged to return the voltages of the secondary battery modules 21 and 27 to the normal use range Vn.
  • the secondary battery 2 is discharged, then charged, and then discharged again.
  • the secondary battery 2 is first discharged. It is also possible to charge the battery first and then discharge the battery without performing the above.
  • the battery characteristic acquisition unit 61 may acquire the temperature characteristic at the time of charging at the time of charging and then acquire the temperature characteristic at the time of discharging at the time of discharging. In this case as well, the same effects as in the first embodiment are obtained.
  • the temperature may be adjusted to control the temperature of the secondary battery modules 21 to 26 to a predetermined temperature.
  • the temperature control can be performed by controlling the temperature of the room in which the vehicle is stored or by using the passenger compartment air conditioner mounted on the vehicle. It is possible to control the temperature of the vehicle including the secondary battery modules 21 to 26.
  • the temperature of the secondary battery modules 21 to 26 can be set to a preset set temperature. A plurality of temperatures may be set as the set temperature.
  • the temperature of the secondary battery modules 21 to 26 can be detected by a temperature sensor (not shown) provided in the secondary battery modules 21 to 26. If a temperature sensor is not provided for each of the secondary battery modules 21 to 26 and a temperature sensor is provided for the assembled battery composed of the secondary battery modules 21 to 26, the secondary battery in the assembled battery is provided.
  • the temperature of each of the secondary battery modules 21 to 26 may be estimated in consideration of the arrangement of the modules 21 to 26 and the like.
  • the temperature can be estimated by using an estimation formula that logically derives the temperature of the secondary battery module, a map of the detected temperature and the secondary battery temperature created based on the model of the assembled battery, and the like.
  • step S20 shown in FIG. 19 the same procedure as in S2 to S5 of FIG. 3 is performed. According to the determination method, the degree of deterioration can be determined by setting the temperature of the secondary battery modules 21 to 26 to a preset set temperature, so that the determination accuracy can be improved.
  • the capacity estimation unit 62 as the estimation unit estimates the total capacity of the secondary battery module 2 based on the battery characteristics acquired by the battery characteristic acquisition unit 61, but the present invention is limited to this.
  • the capacity estimation unit 62 includes the positive electrode capacity, the negative electrode capacity, the amount of deviation in the relative relationship between the negative electrode SOC and the positive electrode SOC, the total capacity variation among the plurality of cells constituting the secondary battery modules 21 to 26, and the above secondary battery. At least one of the battery resistance, the positive electrode resistance, and the negative electrode resistance of the modules 21 to 26 may be estimated. Then, in the sixth embodiment, the capacity estimation unit 62 estimates the positive electrode capacity Qc of each of the secondary battery modules 21 to 26.
  • the correspondence storage unit 51 stores the correspondence between the battery characteristics and the positive electrode capacity Qc.
  • the form and creation method of the correspondence are not particularly limited, and may be, for example, a calculation formula, a map, a graph, a table, or the like, as in the case of the first embodiment.
  • the correspondence relationship can be created by machine learning using the secondary battery 2 for measurement, or can be created based on the actual measured value obtained by performing an accelerated deterioration test using the secondary battery 2 for measurement. Using the model of the secondary battery 2, it can be created by a calculation formula that logically derives the correspondence between the battery characteristics and the total capacity in a predetermined voltage section.
  • the correspondence storage unit 51 stores the correspondence between the battery characteristics and the positive electrode capacity Qc, for example, based on the prediction models shown in FIGS. 20A to 20C.
  • the other configurations are the same as those in the first embodiment, and the same reference numerals as those in the first embodiment are assigned and the description thereof will be omitted.
  • steps S1 to S3 shown in FIG. 21 are performed in the same manner as in the case of the first embodiment shown in FIG.
  • the battery characteristic acquisition unit 61 acquires a discharge curve as the battery characteristics of each of the secondary battery modules 21 to 26 in a predetermined voltage section Vs.
  • the predetermined voltage section can be a section corresponding to a specific SOC range.
  • the battery characteristic acquisition unit 61 sets the battery characteristic acquisition unit 61 based on the correspondence relationship between the battery characteristic and the positive electrode capacity Qc based on the prediction model stored in the correspondence storage unit 51 by the capacity estimation unit 62. From the acquired discharge curve, the positive electrode capacity Qc of the secondary battery modules 21 to 26 is estimated. After that, in step S5 shown in FIG. 21, the determination unit 63 determines the degree of deterioration of the secondary battery modules 21 to 26 based on the positive electrode capacity Qc estimated by the capacity estimation unit 62.
  • the sixth embodiment also has the same effect as that of the first embodiment.
  • the battery characteristic acquisition unit 61 acquires the discharge curve shown in FIG. 22 (a), but instead of this, the charge curve shown in FIG. 22 (b) may be acquired. Also in this case, the same effect as that of the first embodiment is obtained.
  • the capacity estimation unit 62 estimates the positive electrode capacity Qc, but instead, in the seventh embodiment, the capacity estimation unit 62 estimates the negative electrode capacity QA. That is, in the seventh embodiment, as shown in FIG. 23, in step S41, the secondary battery is based on the correspondence between the battery characteristics and the negative electrode capacity QA based on the prediction models shown in FIGS. 20A to 20C. The negative electrode capacitance QA of modules 21 to 26 is estimated.
  • the seventh embodiment also has the same effect as that of the first embodiment.
  • the capacity estimation unit 62 estimates the amount of deviation in the relative relationship between the negative electrode SOCs and the positive electrode SOCs of the secondary battery modules 21 to 26. Further, the correspondence storage unit 51 stores the correspondence between the battery characteristics and the amount of deviation in the relative relationship between the negative electrode SOC and the positive electrode SOC.
  • the form of the correspondence and the method of creating the correspondence are not particularly limited, and can be the same as in the case of the first embodiment.
  • the secondary battery modules 21 to 26 are made of nickel-metal hydride batteries, as shown in FIG. 24, when hydrogen escapes from the reaction system in the battery case, the relative relationship between the negative electrode SOC and the positive electrode SOC shifts. , The OCV curve of the negative electrode will shift to the right side of the figure.
  • the secondary battery modules 21 to 26 are made of lithium ion batteries, as shown in FIG. 24, lithium in the electrolytic solution is consumed in the formation of the SEI (Solid Electrolyte Interface) film, so that the negative electrode SOC and the negative electrode SOC are generated. Since the relative relationship with the positive electrode SOC is deviated, the OCV curve of the negative electrode is deviated to the right side of the figure.
  • the correspondence relationship between the deviation amount Qx of the relative relationship between the negative electrode SOC and the positive electrode SOC and the battery characteristics is stored in the correspondence relationship storage unit 51.
  • the other configurations are the same as those in the first embodiment, and the same reference numerals as those in the first embodiment are assigned and the description thereof will be omitted.
  • step S3 the battery characteristic acquisition unit 61 determines the battery characteristics. Acquires a discharge curve of a predetermined voltage section Vs corresponding to a low SOC range as a battery. Then, in step S42, the secondary battery is based on the correspondence relationship between the negative electrode SOC and the positive electrode SOC stored in the storage unit 51 and the deviation amount Qx of the relative relationship with the battery characteristics calculated from the discharge curve. The amount of deviation Qx of modules 21 to 26 is estimated. After that, in step S5 shown in FIG.
  • the determination unit 63 determines the degree of deterioration of the secondary battery modules 21 to 26 based on the deviation amount Qx estimated by the capacity estimation unit 62. Also in this embodiment, the same effect as that of the first embodiment is obtained.
  • the battery characteristics are acquired from the low SOC range of the battery, but instead of this, the battery characteristics may be acquired from the high SOC range. Further, in the eighth embodiment, the discharge curve is acquired as the battery characteristic, but the charge curve may be acquired.
  • the correspondence storage unit 51 stores the correspondence between the battery characteristics and the amount of change in the discharge capacity in the charge / discharge curve for each of the secondary battery modules 21 to 26, and the capacity estimation unit 62 stores the correspondence relationship.
  • the amount of change in the discharge capacity in the charge / discharge curve in the predetermined voltage section Vs is estimated, and the determination unit 63 detects whether the amount of self-discharge of the cell is large based on the estimation result as the degree of deterioration.
  • the other configurations are the same as those in the first embodiment, and the same reference numerals as those in the first embodiment are assigned and the description thereof will be omitted.
  • the secondary battery modules 21 to 26 each have six cells. Then, for example, the discharge curve shown in FIG. 26 (a) is stored in the correspondence storage unit 51 as a discharge curve showing an initial state, and in the discharge curve shown in FIG. 26 (b), one of the cells has a self-discharge amount. It is stored in the correspondence storage unit 51 as a discharge curve indicating that the value is large.
  • the capacity estimation unit 62 estimates the discharge curve shown in FIG. 26 (a) based on the battery characteristics of the predetermined voltage section Vs
  • the determination unit 63 determines that there is no cell having a large self-discharge amount. Will be done.
  • the capacity estimation unit 62 estimates the discharge curve shown in FIG.
  • the determination unit 63 determines whether the self-discharge amount is large. Is determined.
  • the value is higher than the first lower limit Vmin1 when there is no cell in which the self-discharge amount is large in the secondary battery module. It can be set to the lower limit Vmin2. As a result, it is possible to prevent each cell from being excessively discharged.
  • each of the secondary battery modules 21 to 26 includes six cells.
  • the correspondence storage unit 51 stores the correspondence between the total capacity variation between cells in one secondary battery module 21 to 26 and the battery characteristics.
  • the total capacity variation between cells indicates the degree of variation in the total capacity of each cell in a plurality of cells included in one secondary battery module 21 to 26.
  • a difference Qmax-min obtained by subtracting the minimum Qmin from the maximum Qmax in the total capacity of a plurality of cells is adopted.
  • the other configurations are the same as those in the first embodiment, and the same reference numerals as those in the first embodiment are assigned and the description thereof will be omitted.
  • the capacity estimation unit 62 estimates the difference Qmax-min from the correspondence relationship stored in the correspondence relationship storage unit 51 based on the battery characteristics acquired by the battery characteristic acquisition unit 61. Then, the determination unit 63 detects the presence or absence of specific capacity deterioration of the cell based on the estimated difference Qmax-min. For example, when it is determined that the estimated difference Qmax-min is equal to or greater than a predetermined value, it is determined that a specific capacity deterioration has occurred in any of the cells of the secondary battery module.
  • the eleventh embodiment has a resistance estimation unit 621 as an estimation unit.
  • the resistance estimation unit 621 estimates the internal resistance of the secondary battery modules 21 to 26 based on the battery characteristics of the secondary battery modules 21 to 26.
  • the correspondence storage unit 51 stores the correspondence between the internal resistance of one secondary battery module 21 to 26 and the battery characteristics.
  • the battery characteristic acquisition unit 61 can acquire the battery characteristics by performing pulse charging / discharging in a stack state in which the secondary battery modules 21 to 26 are connected to each other.
  • the voltage section for acquiring the battery characteristics can be a predetermined voltage section corresponding to a specific SOC range.
  • Temperature and SOC can be estimated under the same conditions.
  • the correspondence storage unit 51 stores the correspondence between the internal resistance of one secondary battery module 21 to 26, the temperature, and the battery characteristics.
  • the secondary battery modules 21 to 26 may be individually charged and discharged to acquire the battery characteristics. In this case, it is not necessary to adjust the temperature and SOC to the same conditions, and the determination time can be shortened.
  • steps S1 to S3 shown in FIG. 29 are performed in the same manner as in the case of the first embodiment shown in FIG.
  • step S43 shown in FIG. 29 the internal resistance and battery characteristics of the secondary battery modules 21 to 26 stored in the correspondence storage unit 51 from the battery characteristics acquired by the battery characteristic acquisition unit 61 by the resistance estimation unit 621.
  • the internal resistances of the secondary battery modules 21 to 26 are acquired based on the correspondence with the above.
  • step S5 shown in FIG. 29 the determination unit 63 determines the degree of deterioration of the secondary battery modules 21 to 26 based on the internal resistance estimated by the resistance estimation unit 621.
  • the eleventh embodiment also has the same effect as that of the first embodiment.
  • the resistance estimation unit 621 estimates the negative electrode resistance of the secondary battery modules 21 to 26, and the determination unit 63 determines the deterioration degree of the secondary battery modules 21 to 26.
  • the resistance values of the positive electrode, the negative electrode, and other battery elements in the secondary battery modules 21 to 26 can be calculated.
  • the negative electrode resistance is remarkably reflected in the high frequency region and the positive electrode resistance is remarkably reflected in the low frequency region in the voltage curve.
  • nickel-metal hydride batteries are used as the secondary battery modules 21 to 26, and the battery characteristic acquisition unit 61 acquires a voltage curve in a predetermined voltage section in a high frequency region as the battery characteristics.
  • the correspondence relationship storage unit 51 stores in advance the correspondence relationship between the voltage curve and the negative electrode resistance in the high frequency region as a battery characteristic.
  • the other components are the same as those in the eleventh embodiment, and the same reference numerals are given and the description thereof will be omitted.
  • the dominant resistance element differs depending on the deterioration mode.
  • the internal resistance of the secondary battery module is determined by the relationship between the three resistance components of electronic resistance, reaction resistance, and internal substance transfer resistance, and the secondary battery module is considered to be a series equivalent circuit of these three resistance components. be able to.
  • electronic resistance is a resistance component that mainly occurs in the time domain immediately after a constant current is applied to a battery.
  • the reaction resistance is a resistance component mainly generated in the time domain after the time domain in which the electron resistance is generated.
  • the resistance of internal mass transfer occurs when a constant current is applied for a long time, and is a resistance component mainly generated in the time domain after the time domain of the reaction resistance.
  • the negative electrode reaction resistance dominant region is a temporal region in which the ratio of the negative electrode reaction resistance in the discharge period is the largest among the above three resistance components. In the negative electrode reaction resistance dominant region, the reaction resistance of the negative electrode dominates the internal resistance of the secondary battery 2.
  • the determination unit 63 determines the degree of deterioration of the secondary battery modules 21 to 26 based on the negative electrode resistance estimated by the resistance estimation unit 621 in the negative electrode reaction resistance control region.
  • steps S1 to S3 shown in FIG. 29 are performed as in the case of the embodiment 11.
  • step S43 the negative electrode resistance of the secondary battery modules 21 to 26 is based on the voltage curve acquired by the battery characteristic acquisition unit 61 by the resistance estimation unit 621 and the correspondence relationship stored in the correspondence storage unit 51.
  • the determination unit 63 determines the degree of deterioration of the secondary battery modules 21 to 26 from the estimated negative electrode resistance.
  • the eleventh embodiment also has the same effect as that of the first embodiment.
  • the resistance estimation unit 621 estimates the positive electrode resistance of the secondary battery modules 21 to 26, and the determination unit 63 determines the deterioration degree of the secondary battery modules 21 to 26.
  • nickel-metal hydride batteries are used as the secondary battery modules 21 to 26, and the battery characteristic acquisition unit 61 acquires a voltage curve in a predetermined voltage section in a low frequency region as the battery characteristics.
  • the correspondence relationship storage unit 51 stores in advance the correspondence relationship between the voltage curve as a battery characteristic and the positive electrode resistance.
  • the determination unit 63 determines the degree of deterioration of the secondary battery modules 21 to 26 based on the positive electrode resistance estimated by the resistance estimation unit 621 in the positive electrode reaction resistance control region.
  • the other components are the same as those in the twelfth embodiment, and the same reference numerals are given and the description thereof will be omitted.
  • steps S1 to S3 shown in FIG. 29 are performed as in the case of the twelfth embodiment.
  • step S43 the positive electrode resistance of the secondary battery modules 21 to 26 is based on the voltage curve acquired by the battery characteristic acquisition unit 61 by the resistance estimation unit 621 and the correspondence relationship stored in the correspondence storage unit 51.
  • the determination unit 63 determines the degree of deterioration of the secondary battery modules 21 to 26 from the estimated positive electrode resistance.
  • the 13th embodiment also has the same effect as that of the 1st embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

二次電池の劣化度判定装置(1)は、二次電池(2)の劣化度を判定するものであって、電池特性取得部(61)、容量推定部(62)及び判定部(63)を備える。電池特性取得部(61)は、二次電池(2)における所定の電圧区間の電圧推移に関する電池特性を取得する。判定部(63)は、電池特性取得部(61)が取得した電池特性又は該電池特性に基づいて算出された電池特性関係値に基づいて、二次電池(2)の劣化度を判定する。

Description

二次電池の劣化度判定装置及び組電池 関連出願の相互参照
 本出願は2019年8月1日に出願された日本出願番号2019-142579号、及び2020年6月30日に出願された日本出願番号2020-113169号に基づくもので、ここにその記載内容を援用する。
 本開示は、二次電池の劣化度判定装置及び組電池に関する。
 従来、複数の二次電池モジュールを組み合わせてなる組電池が広く用いられている。そして、組電池の使用に伴って二次電池モジュールは劣化するが、その劣化度には二次電池モジュールごとにバラツキがある。そのため、組電池内の一部の二次電池モジュールの劣化度が基準を超えた場合でも組電池全体として使用できなくなる。かかる場合に、当該組電池から劣化度の低い使用可能な二次電池モジュールを取り出して再利用することが行われている。特許文献1には、組電池における二次電池モジュールの劣化度を検出するための構成が開示されている。具体的には、組電池の充電状態(SOC)が通常使用範囲の下限値以下となるまで放電させた後、個々の二次電池モジュールを取り出し、それぞれの容量残存容量を検出する。そして、二次電池モジュール間の容量差を算出して閾値と比較し、容量差が所定値以上である場合に容量の小さい二次電池モジュールの余寿命が所定値以下であるとして二次電池モジュールごとの劣化度を判定する。
再表2012/137456号公報
 特許文献1に開示の構成では、組電池に含まれる二次電池モジュールにおいて劣化度のバラツキが小さい場合には、余寿命、すなわち劣化度を高精度に導き出すことができない。例えば、組電池に含まれるすべての二次電池モジュールの劣化度が高い場合や低い場合には、劣化度のバラツキが生じにくいため、劣化度の検出精度が劣ることとなる。一方、組電池から二次電池モジュールを取り出して個々の劣化度を個別に高精度に判定するにはその構成が煩雑になりやすい。
 本開示は、簡素な構成で高精度に二次電池の劣化度の判定が可能な二次電池の劣化度判定装置を提供しようとするものである。
 本開示の一態様は、二次電池の劣化度を判定する劣化度判定装置であって、
 上記二次電池における所定の電圧区間での電池状態の推移に関する電池特性を取得する電池特性取得部を有し、
 上記電池特性取得部が取得した電池特性又は該電池特性に基づいて算出された電池特性関係値に基づいて、上記二次電池の劣化度を判定する判定部と、
を備える、二次電池の劣化度判定装置にある。
 本開示の他の態様は、複数の二次電池を含む組電池であって、
 上記複数の二次電池は再利用品を含んでおり、
 上記複数の二次電池において、所定の電圧区間の電圧推移に関する電池特性又は該電池特性に基づいて算出された電池特性関係値が所定範囲内である、組電池にある。
 上記一態様の劣化度判定装置においては、二次電池から取得した所定の電圧区間の電圧推移に関する電池特性又は電池特性関係値に基づいて二次電池の劣化度を判定する。そのため、簡素な工程で劣化度の判定を行うことができる。さらに、二次電池の電池特性を取得する電圧区間として、二次電池の電圧推移と劣化度とが高い相関関係を示す電圧区間を設定することにより、二次電池の劣化度を高精度に判定することができる。
 また、上記他の態様の組電池においては、個々の電池特性又は電池特性関係値が所定範囲内となるように組み合われている。これにより、組電池に含まれる二次電池の電池特性のバラツキが小さくなるため、組電池の長寿命化を図ることができる。
 以上のごとく、本開示の一態様によれば、簡素な構成で高精度に劣化度の判定が可能な二次電池の劣化度判定装置を提供することができる。また、本開示の他の態様によれば、長寿命化された組電池を提供することができる。
 なお、請求の範囲に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであり、本開示の技術的範囲を限定するものではない。
 本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、実施形態1における、劣化度判定装置の構成を表す概念図であり、 図2は、実施形態1における、電池特性を表す概念図であり、 図3は、実施形態1における、二次電池の劣化度の判定方法を示すフロー図であり、 図4は、実施形態1における、組電池の構成を示す断面概念図であり、 図5は、実施形態1における、組電池の製造方法を示すフロー図であり、 図6は、変形形態1における、電池特性を表す概念図であり、 図7は、変形形態2における、電池特性を表す概念図であり、 図8は、変形形態3における、電池特性を表す概念図であり、 図9は、実施形態2における、電池特性を表す概念図であり、 図10は、変形形態4における、電池特性を表す概念図であり、 図11は、実施形態3における、劣化度判定装置の構成を表す概念図であり、 図12は、実施形態4における、劣化度判定装置の構成を表す概念図であり、 図13は、実施形態4における、電池特性を表す概念図であり、 図14は、変形形態5における、劣化度判定装置の構成を表す概念図であり、 図15は、実施形態5における、劣化度判定装置の構成を表す概念図であり、 図16は、実施形態5における、電池特性を表す概念図であり、 図17は、変形形態6における、電池特性を表す概念図であり、 図18は、変形形態7における、電池特性を表す概念図であり、 図19は、変形形態8における、二次電池の劣化度の判定方法を示すフロー図であり、 図20は、実施形態6における、二次電池のSOC-OCV曲線を表す概念図であり、 図21は、実施形態6における、二次電池の劣化度の判定方法を示すフロー図であり、 図22は、実施形態6における、(a)二次電池の放電カーブ、(b)二次電池の充電カーブを表す概念図であり、 図23は、実施形態7における、二次電池の劣化度の判定方法を示すフロー図であり、 図24は、実施形態8における、二次電池のSOC-OCV曲線を表す概念図であり、 図25は、実施形態9における、二次電池の劣化度の判定方法を示すフロー図であり、 図26は、実施形態9における、(a)二次電池の放電カーブ、(b)二次電池の他の放電カーブを表す概念図であり、 図27は、実施形態10における、推定結果の例を表す概念図であり、 図28は、実施形態11における、劣化度判定装置の構成を表す概念図であり、 図29は、実施形態11における、二次電池の劣化度の判定方法を示すフロー図である。
(実施形態1)
 上記二次電池の劣化度判定装置の実施形態について、図1~図4を用いて説明する。
 本実施形態の二次電池の劣化度判定装置1は、図1に示すように、二次電池2の劣化度を判定するものであって、電池特性取得部61及び判定部63を備える。
 電池特性取得部61は、二次電池2における所定の電圧区間の電圧推移に関する電池特性を取得する。
 判定部63は、電池特性取得部61が取得した電池特性又は該電池特性に基づいて算出された電池特性関係値に基づいて、二次電池2の劣化度を判定する。
 以下、本実施形態の二次電池の劣化度判定装置1について、詳述する。
 図1に示す劣化度判定装置1において、劣化度を判定する対象となる二次電池2の種類は限定されず、ニッケル水素電池、リチウムイオン二次電池などの公知の二次電池を対象とすることができる。判定対象とする二次電池2は、単電池であるセルであってもよいし、単電池を複数組み合わせてなる組電池であってもよい。また、判定対象とする二次電池2は、最小単位の二次電池等であるセルを一つ又は複数備えてなる二次電池モジュールであってもよい。当該二次電池モジュールは、2、3、4又は6セル等で構成することができ、図4に示すように、組電池20に含まれる複数の二次電池モジュール21~26であってもよい。例えば、使用済みの組電池20を分解して複数の二次電池モジュール21~26を取り出して、劣化度判定装置1によって二次電池モジュール21~26の劣化度を判定することができる。そして、当該判定結果に基づいて、複数の二次電池モジュール21~26を選別することができる。
 図1に示すように、劣化度判定装置1は、検出部3、格納部4、記憶部5、演算部6及び制御部7を備える。
 制御部7は、二次電池2の充放電を制御する充放電制御部71を備える。なお、充放電制御部71による二次電池2の充放電は、充電のみする場合、放電のみする場合、放電して充電する場合、及び充電して放電する場合のいずれの場合も含む。
 検出部3は、電圧値検出部31、電流値検出部32を備える。電圧値検出部31は所定の電圧計からなり、二次電池2に接続されて二次電池2の電圧値を検出する。電流値検出部32は所定の電流計からなり、二次電池2に接続されて二次電池2に流れた電流値を取得する。なお、電圧値検出部31により検出された電圧値に基づいて、二次電池2の開放電圧が取得されるように構成されている。
 図1に示す格納部4は書き換え可能な不揮発性メモリからなり、電圧値格納部41、電流値格納部42を備える。電圧値格納部41には電圧値検出部31が検出した電圧値が格納され、電流値格納部42には電流値検出部32が検出した電流値が格納される。
 図1に示す記憶部5は不揮発性のメモリからなり、対応関係記憶部51、基準値記憶部52を備える。本実施形態では、対応関係記憶部51には、電池特性と全容量との対応関係が記憶されている。当該対応関係の形態は特に限定されず、例えば、算出式、マップ、グラフ、表などの形態とすることができる。当該対応関係は、測定用の二次電池2を用いた機械学習により作成したり、測定用の二次電池2を用いて加速劣化試験を行って得られた実測定値を基に作成したり、二次電池2のモデルを用いて所定の電圧区間における電池特性と全容量との対応関係を論理的に導き出す算出式により作成したりすることができる。なお、対応関係記憶部51に記憶された対応関係は、後述の電池特性取得部61により取得される電池特性に応じて適宜設定される。
 上記全容量は充電時における完全放電状態から満充電状態までの容量とすることができる。若しくは、全容量は放電時における満充電状態から完全放電状態までの容量とすることもできる。ここで完全放電状態とは、二次電池2が搭載される車両等のシステムで規定される実効的な完全放電状態でも良く、劣化度判定装置1を使用する使用者が定める下限電圧に到達した状態でも良い。また、満充電状態とは、上記車両等のシステムで規定される実効的な満充電状態でも良く、上記使用者が定める上限電圧に到達した状態でも良い。
 また、図1に示す基準値記憶部52には、後述の判定部63において使用される劣化度を判定するための基準値が予め記憶されている。当該基準値は、判定部63において判定する態様に応じて適宜設定され、本実施形態では、劣化度を5段階に分けて判定できるように複数の基準値が設定されている。
 図1に示す演算部6は所定の演算装置からなり、電池特性取得部61、推定部としての容量推定部62、判定部63を有する。電池特性取得部61は、二次電池2の電池特性を取得する。二次電池2の電池特性は、例えば、所定の電圧区間Vsにおける二次電池2の電圧推移や温度推移に基づく特性とすることができる。なお、電池特性取得部61は、取得した値の絶対値を電池特性として取得することとしてもよい。
 本実施形態では、電池特性として放電電圧特性を用いる。放電電圧特性は、図2に示すように、二次電池2が放電目標電圧VPまで放電される際の電圧推移に基づいて算出される。放電目標電圧VPは特に限定されないが、二次電池2の電圧値についての通常使用範囲Vnにおける下限値以下の電圧とすることができる。
 上記電圧推移は、例えば、所定の電圧区間Vsにおける二次電池2の区間容量、所定の電圧区間Vsにおける二次電池2の容量変化に対する二次電池2の電圧変化の割合、所定の電圧区間Vsにおける経過時間に対する二次電池2の電圧変化の割合の少なくとも一つに基づいて算出することができる。
 所定の電圧区間Vsは、二次電池2の劣化度と電池状態の推移とが相関関係を示す電圧区間とすることができる。かかる電圧区間Vsは、二次電池2の種類や構成に基づいて設定したり、二次電池2を用いた機械学習により導き出したりすることができる。例えば、本実施形態では、図2に示すように、所定の電圧区間Vsを、電圧値V1からV2の区間としている。かかる電圧区間Vsは、二次電池2の劣化度に応じて、放電電圧特性の差異が顕著となっている区間である。
 そして、本実施形態1では、図1に示す容量推定部62は、電池特性取得部61が取得した電池特性に基づいて、二次電池2の全容量を推定する。全容量の推定は、回帰式などの予測モデルを利用することができ、例えば、線形回帰、LASSO回帰、Ridge回帰、決定木、サポートベクター回帰などを利用することができる。
 図1に示す判定部63は、電池特性又は電池特性関係値に基づいて、二次電池2の劣化度を判定する。電池特性関係値は電池特性に基づいて算出される値であって、本実施形態1では、電池特性関係値として容量推定部62の推定結果を採用している。従って、本実施形態1では、判定部63は容量推定部62の推定結果に基づいて、二次電池2の劣化度を判定する。判定方法は、容量推定部62の推定結果と、基準値記憶部52に予め記憶された基準値とを比較して行うことができる。
 本実施形態の劣化度判定装置1による劣化度の判定方法について、以下に説明する。
 まず、本実施形態では、まず、図3に示すステップS1において、準備工程として、図4に示す使用済みの組電池20から二次電池モジュール21~26を取り出す。
 次に、図3に示すステップS2において、各二次電池モジュール21~26を開放電圧が放電目標電圧VPとなるまで放電させる。これにより、各二次電池モジュール21~26の残容量の放電が行われる。また、二次電池モジュール21~26がニッケル水素電池である場合には、残容量の放電とともにメモリ効果の解除が行われる。
 ステップS2における残容量の放電とともに、図3に示すステップS3において、電池特性取得部61により各二次電池モジュール21~26の電池特性を取得する。本実施形態では、電池特性として上述の放電電圧特性を取得する。放電電圧特性は、上述の通り、図2に示す各二次電池モジュール21~26の所定の電圧区間Vsにおける電圧推移に基づく。
 本実施形態では、図2に示すように、電池特性取得部61は、第1二次電池モジュール21に対して、電圧推移として放電開始Tから放電終了TP1までの時間経過に対する電圧変化の関係を示す電圧時間変化を取得する。そして、所定の電圧区間Vs内の電圧VAにおける微分値、すなわち図2に示す電圧時間変化のグラフにおける符号21Aで示す電圧VAでの接線の傾きを算出し、これを第1二次電池モジュール21の放電電圧特性とする。また、図2に示すように、第2二次電池モジュール22についても同様に電圧推移として電圧時間変化を取得し、符号22Aで示す所定の電圧区間Vs内の電圧VAでの微分値を算出し、これを第2二次電池モジュール22の放電電圧特性とする。同様に、第3~第6二次電池モジュール23~26についても、電圧推移として電圧時間変化を取得して電圧VAでの微分値を算出してそれぞれの放電電圧特性とする。
 なお、本実施形態では放電電圧特性として、電圧推移として電圧時間変化を取得して所定の電圧区間Vs内の電圧VAにおける微分値を用いたが、これに替えて、電圧推移として導き出した電圧時間変化における2点間の電圧変化の割合、すなわち電圧時間変化のグラフにおける当該2点を通る直線の傾きを算出して、これを放電電圧特性として用いてもよい。例えば、図2に示す第1二次電池モジュール21の電圧時間変化における2点として、電圧区間Vsの開始時間TA1と終了時間TA2の2点を採用するとともに、他の二次電池モジュール22~26においても同様の2点を採用することができる。
 また、本実施形態では放電電圧特性として、電圧推移として電圧時間変化を取得して所定の電圧区間Vs内の電圧VAにおける微分値を用いたが、これに替えて、電圧推移として放電開始時の容量Qから放電終了時の容量QP1までの容量に対する電圧変化の関係を示す電圧-容量変化を取得してもよい。そして、所定の電圧区間Vs内の電圧VAにおける微分値、すなわち電圧-容量変化のグラフにおける電圧VAでの接線の傾きを算出し、これを第1二次電池モジュール21の放電電圧特性としてもよい。
 次いで、図3に示すステップS4において、容量推定部62により、電池特性取得部61が取得した電池特性に基づいて、二次電池モジュール21~26の全容量すなわち満充電容量又は満放電容量を推定する。本実施形態では、容量推定部62は対応関係記憶部51に記憶された予測モデルに基づく放電電圧特性と全容量との対応関係に基づいて、電池特性取得部61が取得した電池特性としての放電電圧特性から二次電池モジュール21~26の全容量を推定する。
 そして、図3に示すステップS5において、判定部63により、容量推定部62が推定した全容量に基づいて、二次電池モジュール21~26の劣化度を判定する。
 使用済みの組電池20から取り出された二次電池モジュール2を用いて、新たに組電池20に組み上げてリビルト品を製造する方法について以下に説明する。
 まず、図5に示すステップS10において、組電池20から取り出された複数の二次電池モジュール2を用意する。そして、ステップS11において、各二次電池モジュール2の電池特性を取得する。当該電池特性の取得は、本実施形態1の劣化度判定装置1において電池特性を取得する場合と同様にすることができる。その後、ステップS12において、当該電池特性又は当該電池特性に基づいて算出した電池特性関係値に基づいて二次電池モジュール2のランク付けを行う。本実施形態では、電池特性関係値として当該電池特性に基づいて二次電池モジュール2の全容量を推定し、当該全容量から算出された二次電池モジュール2の劣化度の絶対値が所定範囲内であるか否かに基づいて二次電池モジュール2のランク付けを行うものとする。そして、本実施形態では、劣化度の絶対値を5段階の所定範囲に分けて、劣化度の絶対値の小さいものから順にAランク、Bランク、Cランク、Dランク、Eランクとする。なお、ランク付けの基準は適宜設定することができる。
 次に、図5に示すステップS13において、ランクに基づいて二次電池モジュール2を選別する。本実施形態では、ランクごとに分別する。これにより、同一ランクに含まれる二次電池モジュール2は劣化度が同程度となる。そして、ステップS14において、同一ランクの二次電池モジュール2を組み合わせて、組電池20を組み上げてリビルト品を作成する。これにより、当該リビルト品の組電池20に含まれる二次電池モジュール2は劣化度の絶対値が同程度であって、劣化度の差分を所定の基準値以下とすることができる。なお、劣化度の差分の基準値はランク付けの基準に応じて適宜設定することができる。なお、本実施形態では、同一ランクの二次電池モジュール2で組電池20を作成したが、これに限らず、所定範囲のランク内で組電池20を作成してもよく、例えば、Aランク及びBランクに含まれる二次電池モジュール2から組電池20を作成するなどしてもよい。なお、最低ランクのEランクにランク付けされた二次電池モジュール2は、使用不可として破棄したり、分解して部材のリサイクルに供したりしてもよい。
 その後、本実施形態では、図5に示すステップS15において、組電池20単位で補充電を行う。これにより、二次電池モジュール2が組電池20として使用可能な状態となる。
 次に、本実施形態の劣化度判定装置1における作用効果について、詳述する。
 本実施形態の劣化度判定装置1においては、二次電池モジュール2から取得した所定の電圧区間Vsの電圧推移に関する電池特性又は電池特性に基づいて算出された電池特性関係値に基づいて二次電池モジュール2の劣化度を判定する。そのため、簡素な工程で劣化度の判定を行うことができる。さらに、二次電池モジュール2の電池特性を取得する電圧区間Vsとして、二次電池モジュール2の電圧推移と劣化度とが高い相関関係を示す電圧区間Vsを設定することにより、二次電池モジュール2の劣化度を高精度に判定することができる。
 そして、本実施形態の劣化度判定装置1によれば、再利用品を含んだ複数の二次電池モジュール2を含む組電池であって、複数の二次電池モジュール2が、二次電池モジュール2における所定の電圧区間Vsの電池状態の推移に関する電池特性又は電池特性に基づいて算出された電池特性関係値が所定範囲内となる組電池を提供することができる。かかるリビルト品としての組電池では、電池特性のバラツキが小さい組電池20が提供できる。そして、二次電池モジュール2の電池特性を取得する電圧区間Vsとして、二次電池モジュール2の電圧推移と劣化度とが高い相関関係を示す電圧区間Vsを設定することにより、組電池20に含まれる二次電池モジュール2の劣化度のバラツキが小さくなるため、組電池20の長寿命化や品質向上を図ることができる。
 なお、本実施形態では、電池特性取得部61が取得した電池特性から容量推定部62が二次電池モジュール2の全容量を推定して、判定部63が当該推定結果に基づいて二次電池モジュール2の劣化度を判定することとしたが、これに替えて、電池特性取得部61が取得した電池特性に基づいて、判定部63が二次電池モジュール2の劣化度を判定することとしてもよい。また、電池特性取得部61は取得した値の絶対値を電池特性として取得し、判定部63は当該絶対値に基づいて劣化度を判定することとしてもよい。また、判定部63は、電池特性取得部61が取得した電池特性の差分に基づいて、二次電池モジュール2の劣化度を判定することとしてもよい。
 そして、本実施形態では、二次電池モジュール2の劣化度が所定範囲内となるように二次電池モジュール2をクラス分けして組電池20を組み上げることとしたが、二次電池モジュール2の劣化度と劣化度の差分とが所定範囲内となるように二次電池モジュール2をクラス分けして組電池20を組み上げてもよい。
 また、本実施形態では、電池特性は、二次電池モジュール2が所定の放電目標電圧VPまで放電される際の電圧推移に基づく放電電圧特性としている。使用済みの二次電池モジュール2を再利用する場合において、二次電池モジュール2がニッケル水素電池である場合には、メモリ効果の解除などを目的として二次電池モジュール2を放電させることがあるが、当該放電の際に上記放電電圧特性を取得することにより、二次電池モジュール2の再利用のための作業工程を簡略化できる。
 なお、本実施形態では、二次電池2の放電中の電圧推移に基づいて放電電圧特性を算出したが、これに替えて又はこれとともに、放電目標電圧VPまで放電されて放電が停止された後に開放電圧まで戻る電圧緩和時の電圧推移に基づいて、放電電圧特性を算出することとしてもよい。例えば、図6に示す変形形態1のように、第1二次電池モジュール21において、放電目標電圧VPまで放電されて放電が停止された時間TP1以後の電圧緩和における所定の電圧区間Vsでの電圧推移に基づいて、符号21Aで示す所定電圧VAでの微分値を算出して放電電圧特性とすることができる。同様に第2二次電池モジュール22において放電停止された時間TP2以後の電圧緩和における所定の電圧区間Vsでの電圧推移に基づいて、符号22Aで示す所定電圧VAでの微分値を算出して放電電圧特性とすることができ、図示しない他の二次電池モジュール23~26についても同様に電圧緩和における所定の電圧区間Vsでの電圧推移に基づいた放電電圧特性を取得することができる。この場合も、本実施形態と同様の作用効果を奏する。
 また、本実施形態では、電池特性関係値として、電池特性取得部61が取得した電池特性を用いて二次電池の全容量を推定する容量推定部62を備え、判定部63は、容量推定部62の推定結果に基づいて、二次電池モジュール2の劣化度を判定する。これにより、二次電池モジュール2の劣化度を高精度に検出することができる。
 そして、本実施形態の劣化度判定装置1によれば、再利用品を含んだ複数の二次電池モジュール2を含む組電池20であって、複数の二次電池モジュール2が所定の放電目標電圧VPまで放電される際の電圧推移、及び二次電池モジュール2が放電目標電圧VPまで放電されて放電が停止された後の電圧推移の少なくとも一つに基づく放電電圧特性を含む電池特性を用いて全容量を推定して、該全容量に基づいて判定されたそれぞれの劣化度の差分が所定範囲内である組電池20を提供することができる。かかる組電池20では、組電池20に含まれる二次電池モジュール2の劣化度のバラツキがより小さくなるため、リビルト品としての組電池20の長寿命化や品質向上を図ることができる。
 本実施形態では、電圧推移として、所定の電圧区間Vsにおける経過時間に対する二次電池モジュール2の電圧変化の割合、すなわち電圧時間変化における微分値を算出し、これを放電電圧特性としている。これにより、二次電池モジュール2の劣化度を高精度かつ簡便に判定することができる。
 なお、電池特性取得部61は、電圧推移として、所定の電圧区間Vsにおける経過時間に対する二次電池モジュール2の電圧変化の割合を算出することに替えて又はこれとともに、図7に示す変形形態2のように、所定の電圧区間Vsにおける各二次電池モジュール21~26の容量変化量を区間容量Qpとして算出し、これを放電電圧特性としてもよい。区間容量Qpは、電流値検出部32により検出した電圧区間Vsにおける二次電池モジュール21~26に流れた電流値と電流が流れた時間とから算出できる。この場合も当該放電電圧特性に基づき、二次電池モジュール2の劣化度を高精度かつ簡便に判定することができる。
 また、図7に示すように、各二次電池モジュール21~26における放電時の全区間T~TP1、T~TP2の容量、すなわち放電目標電圧VPまで放電されたときの総充放電容量Qtを算出するとともに、電圧推移として下記表1に示す総充放電容量Qtに対する区間容量Qpの比である容量比を算出し、これを放電電圧特性としてもよい。また、総充放電容量Qtに替えて、電池特性を算出するための電圧区間Vsを含む特定の電圧区間の容量である特定区間容量Qt’を算出し、当該特定区間容量Qt’に対する区間容量Qpの比である容量比を算出し、これを放電電圧特性としてもよい。これらの場合も当該放電電圧特性に基づき、二次電池モジュール2の劣化度を高精度かつ簡便に判定することができる。
Figure JPOXMLDOC01-appb-T000001
 また、さらに、図8に示す変形形態3のように、電圧推移として、所定の電圧区間Vsにおける容量変化に対する二次電池モジュール2の電圧変化の割合、すなわち電圧容量変化において、電圧区間Vs内の所定電圧VAにおける微分値を算出し、これを放電電圧特性としてもよい。この場合も、本実施形態と同様の作用効果を奏する。
 そして、本実施形態の劣化度判定装置1によれば、再利用品を含んだ複数の二次電池モジュール2を含む組電池20であって、複数の二次電池モジュール2が、所定の電圧区間Vsにおける二次電池モジュール2の容量変化量、電圧区間Vsにおける二次電池モジュール2の容量変化に対する二次電池モジュール2の電圧変化の割合、電圧区間Vsにおける経過時間に対する二次電池モジュール2の電圧変化の割合の少なくとも一つに基づいて算出した電圧推移に基づく電池特性を用いて全容量を推定して、該全容量に基づいて判定されたそれぞれの劣化度の差分が所定範囲内である組電池20を提供することができる。かかる組電池20では、組電池20に含まれる二次電池モジュール2の劣化度のバラツキがより小さくなるため、リビルト品としての組電池20の品質向上を図ることができる。
 なお、本実施形態では、劣化度判定装置1に備えられた電池特性取得部61において電池特性を算出して電池特性を取得することとしたが、これに替えて、劣化度判定装置1が外部入力部を有するとともに、外部に設けられた演算装置を用いて電池特性を算出して、外部入力部を介して当該電池特性が電池特性取得部61に入力されることにより、電池特性取得部61が電池特性を取得することとしてもよい。
 以上のごとく、本実施形態1及び変形形態1~3によれば、簡素な構成で高精度に二次電池の劣化度の判定が可能な二次電池の劣化度判定装置1を提供することができる。
(実施形態2)
 上述の実施形態1では、電池特性として放電電圧特性を採用したが、図9に示す実施形態2ではこれとともに、電池特性が、二次電池モジュール2が所定の充電目標電圧VQまで充電される際の電圧推移に基づく充電電圧特性を含む。充電目標電圧VQは特に限定されないが、本実施形態では通常使用範囲Vnの下限値よりも大きく、上限値よりも小さい値としている。その他の構成要素は実施形態1の場合と同様であり、本実施形態においても実施形態1の場合と同一の符号を用いてその説明を省略する。
 本実施形態2において、充電における電圧推移の算出は、実施形態1及び各変形形態における放電電圧特性における電圧推移の算出と同様に行うことができ、算出した結果を充電電圧特性とする。すなわち、図9に示すように、電圧推移として、放電終了TP1、TP2である充電開始からから充電終了TQ1、TQ2までの時間経過に対する電圧変化の関係を示す電圧時間変化を取得する。そして、所定の電圧区間VsB内の電圧VBにおける微分値、すなわち図9に示す電圧時間変化のグラフにおける符号21Bで示す電圧VBでの接線の傾きを算出し、これを第1二次電池モジュール21の充電電圧特性とする。また、図8に示すように、第2二次電池モジュール22についても同様に電圧推移として電圧時間変化を取得し、符号22Bで示す所定の電圧区間Vs内の電圧VBでの微分値を算出し、これを第2二次電池モジュール22の放電電圧特性とする。同様に、第3~第6二次電池モジュール23~26についても同様に、電圧推移として電圧時間変化を取得して電圧VBでの微分値を算出してそれぞれの充電電圧特性とする。なお、所定の電圧区間VsBは、電圧値V3からV4の区間としており、二次電池2の劣化度に応じて充電電圧特性の差異が顕著となっている区間である。
 なお、充電電圧特性は、上述の実施形態1において放電電圧特性を算出する場合と同様に、所定の電圧区間VsBの開始時間TB11、TB21と終了時間TB12、TB22の2点間の電圧変化の割合としたり、電圧区間VsBにおける区間容量Qpとしたり、充電時の全区間TP1~TQ1、TP2~TQ2の容量、すなわち充電目標電圧VQまで充電したときの総充放電容量Qtを算出して総充放電容量Qtに対する区間容量Qpの容量比としたりしてもよい。また、総充放電容量Qtに替えて、電池特性を算出するための電圧区間Vsを含む特定の電圧区間の容量である特定区間容量Qt’を算出し、当該特定区間容量Qt’に対する区間容量Qpの比である容量比を算出し、これを充電電圧特性としてもよい。また、本実施形態2において、電池特性として、放電電圧特性を取得するための区間容量と充電電圧特性を取得するための区間容量との比を採用してもよい。
 そして、本実施形態2では、電池特性取得部61は、放電電圧特性と充電電圧特性の両方を取得し、容量推定部62はこれらに基づいて二次電池2の全容量を推定する。これにより、一層精度よく、二次電池2の劣化度を判定することができる。
 なお、本実施形態2の劣化度判定装置1を用いて、リビルト品の組電池20を製造する場合は、組電池20を組み上げる前に各二次電池モジュール2の充電がなされることとなるため、図5におけるステップS15の組電池20の補充電は不要となる。
 また、本実施形態2では、電池特性取得部61は、二次電池モジュール2の放電後に充電を行うことにより、放電電圧特性を取得した後に充電電圧特性を取得することとしたがこれに限らず、二次電池モジュール2の充電後に放電を行うことにより、充電電圧特性を取得した後に放電電圧特性を取得することとしてもよい。
 また、本実施形態2では、電池特性取得部61は、放電電圧特性と充電電圧特性の両方を取得することとしたが、これに替えて、充電電圧特性のみを取得することとしてもよい。この場合は、放電電圧特性と充電電圧特性の両方を取得する場合に比べて判定精度が劣るおそれがある。その一方で、放電電圧特性のみを取得する場合には、放電電圧特性はメモリ効果の影響により電圧推移にバラツキが生じて判定精度の向上が抑制されるおそれがあるが、残容量の放電後に取得する充電電圧特性のみを取得する場合には、充電電圧特性はメモリ効果の解除が図られた後となるため、メモリ効果の影響が少ないため、判定精度の向上が期待できる。
 また、本実施形態2における充電電圧特性は、実施形態1の放電電圧特性の場合と同様に、所定の充電目標電圧VQまで充電されて充電が停止された後に開放電圧まで戻る電圧緩和時の電圧推移に基づいて算出することとしてもよい。例えば、図10に示す変形形態4のように、第1二次電池モジュール21において充電が停止された時間TQ1以後の電圧緩和における所定の電圧区間VsBでの電圧推移に基づいて、符号21Bで示す所定電圧VBでの微分値を算出して充電電圧特性としてもよい。同様に第2二次電池モジュール22において充電が停止された時間TQ2以後の電圧緩和における所定の電圧区間VsBでの電圧推移に基づいて、符号22Bで示す所定電圧VBでの微分値を算出して充電電圧特性としてもよい。この場合も、本実施形態と同様の作用効果を奏する。
 そして、本実施形態2の劣化度判定装置1によれば、再利用品を含んだ複数の二次電池モジュール2を含む組電池20であって、複数の二次電池モジュール2が、二次電池モジュール2が所定の充電目標電圧VQまで充電される際の充電による電圧推移、及び二次電池モジュール2が充電目標電圧VQまで充電されて充電が停止された後の電圧推移の少なくとも一つに基づく充電電圧特性を含む電池特性を用いて全容量を推定して、該全容量に基づいて判定されたそれぞれの劣化度の差分が所定範囲内である組電池20を提供することができる。かかる組電池20では、組電池20に含まれる二次電池モジュール2の劣化度のバラツキがより小さくなるため、リビルト品としての組電池20の長寿命化や品質向上を図ることができる。
 なお、本実施形態2でも、実施形態1の場合の変形形態と同様に、電池特性取得部61が取得した電池特性に基づいて、判定部63が二次電池モジュール2の劣化度を判定することとしてもよい。また、電池特性取得部61は取得した値の絶対値を電池特性として取得し、判定部63は当該絶対値に基づいて劣化度を判定することとしてもよい。また、判定部63は、電池特性取得部61が取得した電池特性の差分に基づいて、二次電池モジュール2の劣化度を判定することとしてもよい。また、二次電池モジュール2の劣化度と劣化度の差分とが所定範囲内となるように二次電池モジュール2をクラス分けして組電池20を組み上げてもよい。
(実施形態3)
 本実施形態3の劣化度判定装置1では、実施形態1の構成に加えて、図11に示すように、演算部6がインピーダンス特性取得部64を備える。インピーダンス特性取得部64は、複素インピーダンス測定を行う構成を有しており、二次電池2のインピーダンスを測定可能に構成されている。その他の構成は実施形態1と同様であって、実施形態1の同様の構成には同一の符号を付してその説明を省略する。
 本実施形態3では、電池特性取得部61は実施形態1の場合と同様に、図2に示す所定の電圧区間Vsにおける放電電圧特性を取得する。そして、インピーダンス特性取得部64は、図2に示す放電終了時TP1、TP2において複素インピーダンス測定を行い、所定の周波数におけるインピーダンスを取得し、複素平面上にて実軸と虚軸の値を算出する。
 ここで、インピーダンス特性は、所定の周波数f1におけるインピーダンスの実軸と虚軸の値、実軸の値と虚軸の値から算出される絶対値を用いることができる。またそれに加えて、所定の周波数f1における実軸の値と虚軸の値から算出される偏角を用いることもできる。また、所定の周波数f1と所定の周波数f2における実軸の値の差分、虚軸の値の差分、実軸の値の差分と虚軸の値の差分から算出される絶対値の差分、偏角を用いることもできる。
 なお、対応関係記憶部51には、インピーダンス特性と全容量との対応関係が予め記憶されている。当該対応関係は、測定用の二次電池2を用いた機械学習により作成したり、測定用の二次電池2を用いて加速劣化試験を行って得られた実測定値を基に作成したり、二次電池2のモデルを用いて所定の電圧におけるインピーダンス特性と全容量との対応関係を論理的に導き出す算出式により作成したりすることができる。
 本実施形態3では、図11に示す容量推定部62は、電池特性取得部61が取得した放電電圧特性とインピーダンス特性取得部64が取得したインピーダンス特性とに基づき、二次電池2の全容量を推定する。判定部63は実施形態1の場合と同様に容量推定部62の推定結果に基づいて、二次電池2の劣化度を判定する。本実施形態3によれば、放電電圧特性とインピーダンス特性とに基づいて全容量を推定されるため、判定精度を一層向上することができる。
 なお、本実施形態では、インピーダンス特性取得部64が複素インピーダンス測定を行うタイミングを放電終了時TP1、TP2としたが、これに限らず、他のタイミングで行うこととしてもよい。例えば、実施形態2のように電池特性取得部61が充電電圧特性を取得する場合には、図9に示す充電終了時TQ1、TQ2でインピーダンス特性取得部64が複素インピーダンス測定を行うこととしてもよい。また、容量推定部62はインピーダンス特性と代わりに、インピーダンス特性に基づいて算出されたインピーダンス特性関係値を用いてもよい。インピーダンス特性関係値として、例えば、インピーダンス特性取得部64により取得されたインピーダンス特性の差分を採用することができる。
 そして、本実施形態3の劣化度判定装置1によれば、再利用品を含んだ複数の二次電池モジュール2を含む組電池20であって、複数の二次電池モジュール2が、電池特性と、二次電池モジュール2が放電又は充電されたときのインピーダンスに関するインピーダンス特性とを用いて推定した全容量に基づいて判定されたそれぞれの劣化度の差分が所定範囲内である組電池20を提供することができる。かかる組電池20では、組電池20に含まれる二次電池モジュール2の劣化度のバラツキがより小さくなるため、リビルト品としての組電池20の長寿命化や品質向上を図ることができる。
 なお、本実施形態3でも、実施形態1の場合の変形形態と同様に、電池特性取得部61が取得した電池特性とインピーダンス特性とに基づいて、判定部63が二次電池モジュール2の劣化度を判定することとしてもよい。また、電池特性取得部61は取得した値の絶対値を電池特性として取得し、判定部63は当該絶対値に基づいて劣化度を判定することとしてもよい。また、判定部63は電池特性取得部61が取得した電池特性の差分に基づいて、二次電池モジュール2の劣化度を判定することとしてもよい。また、二次電池モジュール2の劣化度と劣化度の差分とが所定範囲内となるように二次電池モジュール2をクラス分けして組電池20を組み上げてもよい。
(実施形態4)
 本実施形態4では、実施形態1の構成に加えて、図12に示すように、初期電圧取得部65を備える。初期電圧取得部65は、図13に示すように、放電開始時Tにおける二次電池2の開放電圧である初期電圧VI1、VI2を取得する。そして、対応関係記憶部51には、初期電圧の値と電池特性と全容量との対応関係が予め記憶されている。当該対応関係は実施形態1の場合と同様に作成することができる。その他の構成は実施形態1と同様であって、実施形態1の同様の構成には同一の符号を付してその説明を省略する。
 本実施形態4の劣化度判定装置1によれば、電池特性に加えて初期電圧も考慮されて二次電池2の劣化度が判定されるため、簡易な構成で判定精度を一層向上することができる。なお、初期電圧に替えて、初期電圧に基づいて算出された初期電圧関係値を用いてもよい。初期電圧関係値として例えば、初期電圧の絶対値としたり、初期電圧取得部65により取得された初期電圧の差分としたりすることができる。
 そして、本実施形態4の劣化度判定装置1によれば、再利用品を含んだ複数の二次電池モジュール2を含む組電池20であって、複数の二次電池モジュール2が、電池特性の取得を開始するときの二次電池モジュール2の開放電圧である初期電圧と電池特性とを用いて推定した全容量に基づいて判定されたそれぞれの劣化度の差分が所定範囲内である組電池20を提供することができる。かかる組電池20では、組電池20に含まれる二次電池モジュール2の劣化度のバラツキがより小さくなるため、リビルト品としての組電池20の長寿命化や品質向上を図ることができる。
 なお、本実施形態4でも、実施形態1の場合の変形形態と同様に、電池特性取得部61が取得した電池特性と初期電圧とに基づいて、判定部63が二次電池モジュール2の劣化度を判定することとしてもよい。また、電池特性取得部61は取得した値の絶対値を電池特性として取得し、判定部63は当該絶対値に基づいて劣化度を判定することとしてもよい。また、判定部63は電池特性取得部61が取得した電池特性の差分に基づいて、二次電池モジュール2の劣化度を判定することとしてもよい。また、二次電池モジュール2の劣化度と劣化度の差分とが所定範囲内となるように二次電池モジュール2をクラス分けして組電池20を組み上げてもよい。
 また、他の変形形態5として、図14に示すように、演算部6が二次電池21の内部抵抗を取得する内部抵抗取得部66を有しており、対応関係記憶部51に内部抵抗と電池特性と全容量との対応関係が予め記憶されていることとしてもよい。内部抵抗取得部66において、内部抵抗は、電圧値検出部31により検出された電圧値そのものである測定電圧と、二次電池2の開放電圧と、二次電池2に流れる電流とから算出して取得することができる。なお、二次電池2の開放電圧は、二次電池2の残放電量と初期電圧との対応関係を示すマップを用いて時間ごとに推定して取得することができる。本変形形態5の劣化度判定装置1によれば、電池特性に加えて内部抵抗も考慮されて二次電池2の劣化度が判定されるため、簡易な構成で判定精度を一層向上することができる。
(実施形態5)
 本実施形態5の劣化度判定装置1は、図15に示すように、図1に示す実施形態1の構成に加え、温度検出部33を備える。そして、上述の実施形態1では電池特性取得部61は、電池特性として所定の電圧区間Vsにおける二次電池2の電圧推移に基づく放電電圧特性を取得するように構成したが、本実施形態5では、これに替えて、電池特性取得部61は、電池特性として所定の電圧区間VsA、VsBにおける二次電池2の温度推移に基づく温度特性を取得する。その他の構成は実施形態1と同様であって、実施形態1の同様の構成には同一の符号を付してその説明を省略する。なお、電圧区間VsAは二次電池2の劣化度に応じて、放電電圧特性の差異が顕著となっている区間であり、電圧区間VsBは二次電池2の劣化度に応じて、充電電圧特性の差異が顕著となっている区間である。
 本実施形態5では、図16(a)、図16(b)に示すように、温度検出部33により、充放電中の二次電池2の温度を取得する。本実施形態では劣化度の判定の対象となる二次電池2として、組電池20から取り出した第1二次電池モジュール21と、別の組電池から取り出した第7二次電池モジュール27とを採用している。
 充放電における二次電池モジュール2の温度推移は、組み込まれていた組電池が異なる場合には、二次電池モジュール2の測定環境やソーク状態により異なった挙動を示すことがある。本実施形態では、図16(b)に示すように、第1二次電池モジュール21と第7二次電池モジュール27における温度推移は、測定した室温設定範囲Tn内に収まっているが、互いに若干異なる挙動を示している。そして、本実施形態5では、放電における所定の電圧区間sAと、放電後の充電における所定の電圧区間VsBとの両方において温度検出部33により検出した電池温度に基づいて、電池特性取得部61が放電における温度特性と充電における温度特性を取得する。そして、容量推定部62が両温度特性に基づいて各二次電池モジュール21、27の全容量を推定して、判定部63が劣化度を判定する。
 電池特性取得部61が取得する温度特性は、実施形態1の場合の放電電圧特性を算出する場合及び実施形態2の場合の充電電圧特性を算出する場合と同様に、所定の電圧区間VsA、VsBにおける所定電圧VA、VBでの温度変化の微分値としたり、所定の電圧区間VsA、VsBにおける2点間の温度変化の割合としたり、電圧区間VsA、VsBにおける二次電池2の容量変化に対する二次電池2の温度変化の割合としたりすることができる。
 本実施形態5においても、実施形態1の場合と同様の作用効果を奏することができる。なお、本実施形態5では、温度特性として、放電と充電の両方において取得することとしたが、これに限らず、放電と充電の一方のみとしてもよい。
 そして、本実施形態5の劣化度判定装置1によれば、再利用品を含んだ複数の二次電池モジュール2を含む組電池20であって、複数の二次電池モジュール2が、所定の電圧区間VsA、VsBにおける二次電池の温度推移に基づく温度特性を含む電池特性を用いて推定した全容量に基づいて判定されたそれぞれの劣化度の差分が所定範囲内である組電池20を提供することができる。かかる組電池20では、組電池20に含まれる二次電池モジュール2の劣化度のバラツキがより小さくなるため、リビルト品としての組電池20の品質向上を図ることができる。
 なお、本実施形態5でも、実施形態1の場合の変形形態と同様に、電池特性取得部61が取得した温度特性に基づいて、判定部63が二次電池モジュール2の劣化度を判定することとしてもよい。また、電池特性取得部61は取得した値の絶対値を温度特性として取得し、判定部63は当該絶対値に基づいて劣化度を判定することとしてもよい。また、判定部63は電池特性取得部61が取得した温度特性の差分に基づいて、二次電池モジュール2の劣化度を判定することとしてもよい。また、二次電池モジュール2の劣化度と劣化度の差分とが所定範囲内となるように二次電池モジュール2をクラス分けして組電池20を組み上げてもよい。
 本実施形態5では、図16(a)に示すように、充電時の温度特性として充電目標電圧VQが通常使用範囲Vn内であって通常使用範囲Vn内に所定の電圧区間VsAがあるときの温度特性を取得することとしたが、これ替えて、図17(a)に示す変形形態6のように、充電時の温度特性として、充電目標電圧VQが通常使用範囲Vnを超えており通常使用範囲Vnを超えた領域に所定の電圧区間VsBがあるときの温度特性を取得することとしてもよい。この場合、図17(b)に示すように二次電池モジュール21、27の温度は上昇しやすいため、温度推移に劣化度が反映されやすくなる。その結果、判定精度の向上を図ることができる。なお、本変形形態6では、二次電池モジュール21、27を充電目標電圧VQまで充電した後に放電を行って二次電池モジュール21、27の電圧を通常使用範囲Vn内に戻している。
 また、変形形態6では二次電池2の放電を行った後、充電を行ってその後再度放電を行うこととしたが、これに替えて、図18に示す変形形態7のように、最初に放電を行わずに、先に充電を行ってから放電を行うこととしてもよい。この場合、電池特性取得部61は、充電時に充電時の温度特性を取得した後、放電時に放電時の温度特性を取得することとしてもよい。この場合も実施形態1と同様の作用効果を奏する。
 なお、図19に示す変形形態8のように、上述の準備工程S1の後、ステップS20において、二次電池モジュール21~26の温度を所定の温度に制御する温度調整を行ってもよい。当該温度調整は、二次電池モジュール21~26が車両に搭載されている場合は、当該車両が格納された部屋の温度を制御したり、当該車両に搭載された車室用エアコンを利用して二次電池モジュール21~26を含む車両の温度を制御したりすることができる。当該温度調整により上記温度を調整して二次電池21~26をソークすることにより、二次電池モジュール21~26の温度を予め設定された設定温度とすることができる。なお、設定温度として複数の温度を設定してもよい。
 当該変形形態8において、二次電池モジュール21~26の温度は、二次電池モジュール21~26に設けられた図示しない温度センサにより検出することができる。なお、二次電池モジュール21~26毎に温度センサが設けられておらず、二次電池モジュール21~26が構成する組電池に温度センサが設けられている場合は、当該組電池における二次電池モジュール21~26の配置などを考慮して各二次電池モジュール21~26の温度を推定することとしてもよい。当該温度の推定は、二次電池モジュールの温度を論理的に導き出す推定式や、組電池のモデルに基づいて作成した検出温度と二次電池温度のマップ等を利用して行うことができる。図19に示すステップS20の後は、図3のS2~S5と同様に行う。当該判定方法によれば、二次電池モジュール21~26の温度を予め設定された設定温度にして劣化度の判定を行うことができるため、判定精度を向上することができる。
(実施形態6)
 上述の実施形態1では、推定部としての容量推定部62は、電池特性取得部61が取得した電池特性に基づいて、二次電池モジュール2の全容量を推定することとしたが、これに限らず、容量推定部62は、正極容量、負極容量、負極SOCと正極SOCとの相対関係のズレ量、二次電池モジュール21~26を構成する複数のセル間の全容量バラツキ、上記二次電池モジュール21~26の電池抵抗、正極抵抗、負極抵抗のうちの少なくともいずれか一つを推定することとしてもよい。そして、実施形態6では、容量推定部62は二次電池モジュール21~26のそれぞれの正極容量Qcを推定することとする。さらに、対応関係記憶部51には、電池特性と正極容量Qcとの対応関係が記憶されている。当該対応関係の形態及び作成方法は特に限定されず、実施形態1の場合と同様に、例えば、算出式、マップ、グラフ、表などの形態とすることができる。当該対応関係は、測定用の二次電池2を用いた機械学習により作成したり、測定用の二次電池2を用いて加速劣化試験を行って得られた実測定値を基に作成したり、二次電池2のモデルを用いて所定の電圧区間における電池特性と全容量との対応関係を論理的に導き出す算出式により作成したりすることができる。本実施形態では、対応関係記憶部51には、例えば、図20(a)~(c)に示す予測モデルに基づき、電池特性と正極容量Qcとの対応関係が記憶されている。その他の構成は、実施形態1の場合と同等であって、実施形態1の場合と同一の符号を付してその説明を省略する。
 次に、本実施形態6の劣化度判定装置1による劣化度の判定方法について、以下に説明する。なお、図3に示す実施形態1の場合と同様のステップについては、同一の符号を用いてその説明を省略する場合がある。
 まず、本実施形態6では、図3に示す実施形態1の場合と同様に、図21に示すステップS1~S3を行う。これにより、図22(a)に示すように、電池特性取得部61により各二次電池モジュール21~26の電池特性として放電カーブを、所定の電圧区間Vsにおいて取得する。なお、所定の電圧区間は、特定のSOC範囲に対応する区間とすることができる。
 次いで、図21に示すステップS40において、容量推定部62により、対応関係記憶部51に記憶された予測モデルに基づき、電池特性と正極容量Qcとの対応関係に基づいて、電池特性取得部61が取得した放電カーブから、二次電池モジュール21~26の正極容量Qcを推定する。その後、図21に示すステップS5において、判定部63により、容量推定部62が推定した正極容量Qcに基づいて、二次電池モジュール21~26の劣化度を判定する。
 本実施形態6においても実施形態1と同等の作用効果を奏する。なお、本実施形態6では、電池特性取得部61により図22(a)に示す放電カーブを取得したが、これに替えて、図22(b)に示す充電カーブを取得してもよい。この場合も実施形態1と同等の作用効果を奏する。
(実施形態7)
 上記実施形態6では、容量推定部62は、正極容量Qcを推定することとしたが、これに替えて、実施形態7では、容量推定部62は負極容量QAを推定する。すなわち、実施形態7では、図23に示すように、ステップS41において、図20(a)~(c)に示す予測モデルに基づき、電池特性と負極容量QAとの対応関係に基づいて二次電池モジュール21~26の負極容量QAを推定する。当該実施形態7においても実施形態1と同等の作用効果を奏する。
(実施形態8)
 本実施形態8では、容量推定部62は二次電池モジュール21~26のそれぞれの負極SOCと正極SOCとの相対関係のズレ量を推定する。さらに、対応関係記憶部51には、電池特性と負極SOCと正極SOCとの相対関係のズレ量との対応関係が記憶されている。当該対応関係の形態及び作成方法は特に限定されず、実施形態1の場合と同様とすることができる。
 例えば、二次電池モジュール21~26がニッケル水素電池からなる場合は、図24に示すように、電槽容器中から水素が反応系から抜け出ると、負極SOCと正極SOCとの相対関係がずれるため、負極のOCV曲線は図の右側にずれることとなる。例えば、二次電池モジュール21~26がリチウムイオン電池からなる場合は、図24に示すように、電解液中のリチウムがSEI(Solid Electrolyte Interface)被膜の形成で消費されることにより、負極SOCと正極SOCとの相対関係がずれるため、負極のOCV曲線は図の右側にずれることとなる。
 本実施形態8では、図24に示す予測モデルに基づき、負極SOCと正極SOCとの相対関係のズレ量Qxと、電池特性との対応関係が対応関係記憶部51に記憶されている。その他の構成は、実施形態1の場合と同等であって、実施形態1の場合と同一の符号を付してその説明を省略する。
 本実施形態8の劣化度判定装置1による劣化度の判定方法では、上述の実施形態6の場合と同様に行うが、図25に示すようにステップS3において、電池特性取得部61は電池特性として電池としての低SOC範囲に対応する所定の電圧区間Vsの放電カーブを取得する。その後、ステップS42において、当該放電カーブから算出される電池特性との対応関係記憶部51に記憶された負極SOCと正極SOCとの相対関係のズレ量Qxとの対応関係に基づいて、二次電池モジュール21~26のズレ量Qxを推定する。その後、図25に示すステップS5において、判定部63により、容量推定部62が推定したズレ量Qxに基づいて、二次電池モジュール21~26の劣化度を判定する。本実施形態においても実施形態1と同等の作用効果を奏する。なお、本実施形態8では電池特性を電池としての低SOC範囲から取得したが、これに替えて高SOC範囲から取得してもよい。また、本実施形態8では電池特性として放電カーブを取得したが充電カーブを取得してもよい。
(実施形態9)
 本実施形態9では、対応関係記憶部51には、二次電池モジュール21~26ごとに電池特性と充放電カーブにおける放電容量の変化量との対応関係が記憶されており、容量推定部62は、所定の電圧区間Vsにおける充放電カーブにおける放電容量の変化量を推定し、判定部63は、劣化度として推定結果に基づいてセルの自己放電量が大きくなっているかを検知する。本実施形態9では、その他の構成は、実施形態1の場合と同等であって、実施形態1の場合と同一の符号を付してその説明を省略する。
 本実施形態9では、二次電池モジュール21~26はそれぞれ6つのセルを有している。そして、例えば、図26(a)に示す放電カーブは初期状態を示す放電カーブとして対応関係記憶部51に記憶されており、図26(b)に示す放電カーブはセルの一つが自己放電量が大きくなっていることを示す放電カーブとして対応関係記憶部51に記憶されている。容量推定部62により所定の電圧区間Vsの電池特性に基づいて、図26(a)に示す放電カーブに推定された場合は、判定部63において自己放電量が大きくなっているセルがないと判定される。一方、容量推定部62により所定の電圧区間Vsの電池特性に基づいて、図26(b)に示す放電カーブに推定された場合は、判定部63において自己放電量が大きくなっているセルがあると判定される。なお、図26(b)に示す放電カーブに推定された場合は、二次電池モジュールにおいて自己放電量が大きくなっているセルがない場合の第1使用下限Vmin1よりも高い値である第2使用下限Vmin2に設定することができる。これにより、各セルが過剰に放電することを防止できる。
(実施形態10)
 本実施形態10では、二次電池モジュール21~26はそれぞれ、6個のセルを含む。そして、対応関係記憶部51には、一つの二次電池モジュール21~26内におけるセル間の全容量バラツキと電池特性との対応関係が記憶されている。セル間の全容量バラツキとは、一つの二次電池モジュール21~26に含まれた複数のセルにおいて、各セルの全容量のバラツキの程度を示す。本実施形態10では、セル間の全容量バラツキとして、図27に示すように、複数のセルの全容量における最大Qmaxから最小Qminを差し引いた差分Qmax-minを採用する。その他の構成は、実施形態1の場合と同等であって、実施形態1の場合と同一の符号を付してその説明を省略する。
 本実施形態10では、容量推定部62は、電池特性取得部61が取得した電池特性に基づいて、対応関係記憶部51に記憶された対応関係から差分Qmax-minを推定する。そして、判定部63は、推定した差分Qmax-minに基づいてセルの特異的な容量劣化の有無を検知する。例えば、推定した差分Qmax-minが所定値以上であると判定した場合は、当該二次電池モジュールのセルのいずれかに特異的な容量劣化が生じていると判定する。
(実施形態11)
 図28に示すように、実施形態11では、推定部として抵抗推定部621を有する。抵抗推定部621は、二次電池モジュール21~26の電池特性に基づいて、二次電池モジュール21~26の内部抵抗を推定する。対応関係記憶部51には、一つの二次電池モジュール21~26の内部抵抗と電池特性との対応関係が記憶されている。電池特性取得部61は、二次電池モジュール21~26が互いに接続されたスタックの状態で、パルス充放電を行って電池特性を取得することができる。電池特性を取得する電圧区間は、特定のSOC範囲に対応する所定の電圧区間とすることができる。
 また、二次電池モジュール21~26間で、温度やSOCが異なっている場合は、温度と充放電中の電圧変化又は充放電終了後の電圧緩和中の電圧変化とを電池特性として取得して、温度及びSOCが同条件となる場合の抵抗値を推定することができる。この場合は、対応関係記憶部51には、一つの二次電池モジュール21~26の内部抵抗と温度と電池特性との対応関係が記憶されているものとする。なお、二次電池モジュール21~26を個別に充放電して電池特性を取得することとしてもよい。この場合は、温度及びSOCを同条件に合わせる必要がなく、判定時間の短縮を図れる。
 次に、本実施形態11の劣化度判定装置1による劣化度の判定方法について、以下に説明する。まず、本実施形態11では、図3に示す実施形態1の場合と同様に、図29に示すステップS1~S3を行う。次いで、図29に示すステップS43において、抵抗推定部621により、電池特性取得部61が取得した電池特性から、対応関係記憶部51に記憶された二次電池モジュール21~26の内部抵抗と電池特性との対応関係に基づいて、二次電池モジュール21~26の内部抵抗を取得する。その後、図29に示すステップS5において、判定部63により、抵抗推定部621が推定した内部抵抗に基づいて、二次電池モジュール21~26の劣化度を判定する。本実施形態11においても実施形態1と同等の作用効果を奏する。
(実施形態12)
 実施形態12の劣化度判定装置1では、抵抗推定部621により、二次電池モジュール21~26の負極抵抗を推定し、判定部63により二次電池モジュール21~26の劣化度を判定する。
 二次電池モジュール21~26の電圧カーブにおける周波数特性から、二次電池モジュール21~26における正極や負極やその他の電池要素の抵抗値を算出することができる。そして、ニッケル水素電池やリチウムイオン電池では、電圧カーブにおいて高周波領域に負極抵抗が顕著に反映され、低周波領域に正極抵抗が顕著に反映される。本実施形態12では、二次電池モジュール21~26としてニッケル水素電池を用いることとし、電池特性取得部61は、電池特性として、高周波領域における所定電圧区間の電圧カーブを取得する。対応関係記憶部51には、電池特性としての高周波領域における電圧カーブと負極抵抗との対応関係が予め記憶されている。その他の構成要素は実施形態11の場合と同様であって、同一の符号を付してその説明を省略する。
 そして、二次電池モジュール21~26の劣化度と相関関係を有する内部抵抗において、劣化モードによって支配的となる抵抗要素が異なる。まず、二次電池モジュールの内部抵抗は、電子抵抗、反応抵抗、内部物質移動の抵抗の3つの抵抗成分の関係性から決まり、二次電池モジュールはこれらの3つの抵抗成分の直列等価回路と考えることができる。一般的に、電子抵抗は電池に定電流を付加した直後の時間領域で主に生じる抵抗成分である。また、反応抵抗は電子抵抗が生じる時間領域後の時間領域で主に生じる抵抗成分である。また、内部物質移動の抵抗は定電流を長時間付加した際に生じ、反応抵抗の時間領域後の時間領域に主に生じる抵抗成分である。そして、負極反応抵抗支配領域とは、上記3つの抵抗成分において、放電期間における負極の反応抵抗の占める割合が最も大きい時間的領域である。当該負極反応抵抗支配領域では、負極の反応抵抗が二次電池2の内部抵抗を支配的に決定する。本実施形態12では、判定部63は、当該負極反応抵抗支配領域において、抵抗推定部621により推定された負極抵抗に基づいて、二次電池モジュール21~26の劣化度を判定する。
 本実施形態12の劣化度判定装置1による劣化度の判定方法では、実施形態11の場合と同様に、図29に示すステップS1~S3を行う。そして、ステップS43において、抵抗推定部621により、電池特性取得部61が取得した電圧カーブと、対応関係記憶部51に記憶された対応関係とに基づいて、二次電池モジュール21~26の負極抵抗を推定する。そして、判定部63は、推定された負極抵抗から二次電池モジュール21~26の劣化度を判定する。本実施形態11においても実施形態1と同等の作用効果を奏する。
(実施形態13)
 実施形態13の劣化度判定装置1では、抵抗推定部621により、二次電池モジュール21~26の正極抵抗を推定し、判定部63により二次電池モジュール21~26の劣化度を判定する。本実施形態13では、二次電池モジュール21~26としてニッケル水素電池を用いることとし、電池特性取得部61は、電池特性として、低周波領域における所定電圧区間の電圧カーブを取得する。対応関係記憶部51には、電池特性としての電圧カーブと正極抵抗との対応関係が予め記憶されている。そして、判定部63は、正極反応抵抗支配領域において、抵抗推定部621により推定された正極抵抗に基づいて、二次電池モジュール21~26の劣化度を判定する。その他の構成要素は実施形態12の場合と同様であって、同一の符号を付してその説明を省略する。
 本実施形態13の劣化度判定装置1による劣化度の判定方法では、実施形態12の場合と同様に、図29に示すステップS1~S3を行う。そして、ステップS43において、抵抗推定部621により、電池特性取得部61が取得した電圧カーブと、対応関係記憶部51に記憶された対応関係とに基づいて、二次電池モジュール21~26の正極抵抗を推定する。そして、判定部63は、推定された正極抵抗から二次電池モジュール21~26の劣化度を判定する。本実施形態13においても実施形態1と同等の作用効果を奏する。
 本開示は上記各実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の実施形態に適用することが可能である。
 本開示は、実施形態に準拠して記述されたが、本開示は当該実施形態や構造に限定されるものではないと理解される。本開示は、様々な変形形態や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (16)

  1.  二次電池(2、21、22、23、24、25、26、27)の劣化度を判定する劣化度判定装置(1)であって、
     上記二次電池における所定の電圧区間での電池状態の推移に関する電池特性を取得する電池特性取得部(61)と、
     上記電池特性取得部が取得した電池特性又は該電池特性に基づいて算出された電池特性関係値に基づいて、上記二次電池の劣化度を判定する判定部(63)と、
    を備える、二次電池の劣化度判定装置。
  2.  上記電池特性は、上記二次電池が所定の放電目標電圧まで放電される際の電圧推移、及び上記二次電池が上記放電目標電圧まで放電されて放電が停止された後の電圧推移の少なくとも一つに基づく放電電圧特性を含む、請求項1に記載の二次電池の劣化度判定装置。
  3.  上記電池特性は、上記二次電池が所定の充電目標電圧まで充電される際の電圧推移、及び上記二次電池が上記充電目標電圧まで充電されて充電が停止された後の電圧推移の少なくとも一つに基づく充電電圧特性を含む、請求項1又は2に記載の二次電池の劣化度判定装置。
  4.  上記電圧推移は、上記電圧区間における上記二次電池の区間容量、上記電圧区間における上記二次電池の容量変化に対する上記二次電池の電圧変化の割合、上記電圧区間における経過時間に対する上記二次電池の電圧変化の割合、上記放電目標電圧又は上記充電目標電圧まで充放電されたときの総充放電容量に対する上記電圧区間の区間容量の容量比の少なくとも一つに基づいて算出される、請求項2又は3に記載の二次電池の劣化度判定装置。
  5.  上記二次電池が放電又は充電されたときのインピーダンスに関するインピーダンス特性を取得するインピーダンス特性取得部を有し、
     上記判定部は、上記インピーダンス特性取得部により取得された上記インピーダンス特性又は該インピーダンス特性から算出されたインピーダンス特性関係値と、上記電池特性又は上記電池特性関係値とに基づいて上記劣化度を判定する、請求項1~4のいずれか一項に記載の二次電池の劣化度判定装置。
  6.  上記電池特性取得部が上記電池特性の取得を開始するときの上記二次電池の開放電圧である初期電圧を取得する初期電圧取得部を有し、
     上記判定部は、上記初期電圧取得部により取得された上記初期電圧又は上記初期電圧に基づいて算出された初期電圧関係値と、上記電池特性又は上記電池特性関係値とに基づいて上記劣化度を判定する、請求項1~5のいずれか一項に記載の二次電池の劣化度判定装置。
  7.  上記電池特性取得部は、上記二次電池の温度を検出する温度検出部(33)を有し、上記電池特性は上記温度検出部により取得された上記所定の電圧区間における上記二次電池の温度推移に基づく温度特性を含む、請求項1~6のいずれか一項に記載の二次電池の劣化度判定装置。
  8.  上記電池特性関係値として、上記電池特性を用いて上記二次電池の全容量、正極容量、負極容量、負極SOCと正極SOCとの相対関係のズレ量、上記二次電池を構成する複数のセル間の全容量バラツキ、上記二次電池の電池抵抗、正極抵抗、負極抵抗のうちの少なくともいずれか一つを推定する推定部(62、621)を備え、
     上記判定部は、上記推定部の推定結果に基づいて、上記二次電池の劣化度を判定する、請求項1~7のいずれか一項に記載の二次電池の劣化度判定装置。
  9.  複数の二次電池(2、21、22、23、24、25、26、27)を含む組電池(20)であって、
     上記複数の二次電池は再利用品を含んでおり、
     上記複数の二次電池は、上記二次電池における所定の電圧区間の電池状態の推移に関する電池特性又は該電池特性に基づいて算出された電池特性関係値が所定範囲内である、組電池。
  10.  上記複数の二次電池は、上記二次電池が所定の放電目標電圧まで放電される際の電圧推移、及び上記二次電池が上記放電目標電圧まで放電されて放電が停止された後の電圧推移の少なくとも一つに基づく放電電圧特性を含む上記電池特性又は上記電池特性関係値が所定範囲内である、請求項9に記載の組電池。
  11.  上記複数の二次電池は、上記二次電池が所定の充電目標電圧まで充電される際の充電による電圧推移、及び上記二次電池が上記充電目標電圧まで充電されて充電が停止された後の電圧推移の少なくとも一つに基づく充電電圧特性を含む上記電池特性又は上記電池特性関係値が所定範囲内である、請求項9又は10に記載の組電池。
  12.  上記複数の二次電池は、上記電圧区間における上記二次電池の容量変化量、上記電圧区間における上記二次電池の容量変化に対する上記二次電池の電圧変化の割合、上記電圧区間における経過時間に対する上記二次電池の電圧変化の割合、上記放電目標電圧又は上記充電目標電圧まで充放電されたときの総充放電容量に対する上記電圧区間の区間容量の容量比の少なくとも一つに基づいて算出した上記電圧推移に基づく上記電池特性又は上記電池特性関係値が所定範囲内である、請求項10又は11に記載の組電池。
  13.  上記複数の二次電池は、上記二次電池が放電又は充電されたときのインピーダンスに関するインピーダンス特性又は該インピーダンス特性に基づいて算出されたインピーダンス特性関係値が所定範囲内である、請求項9~12のいずれか一項に記載の組電池。
  14.  上記複数の二次電池は、上記電池特性の取得を開始するときの上記二次電池の開放電圧である初期電圧又は該初期電圧に基づいて算出された初期電圧関係値が所定範囲内である、請求項9~13のいずれか一項に記載の組電池。
  15.  上記複数の二次電池は、上記所定の電圧区間における上記二次電池の温度推移に基づく温度特性を含む上記電池特性又は上記電池特性関係値が所定範囲内である、請求項9~14のいずれか一項に記載の組電池。
  16.  上記電池特性関係値は、上記電池特性を用いて推定した上記二次電池の全容量、正極容量、負極容量、負極SOCと正極SOCとの相対関係のズレ量、上記二次電池を構成する複数のセル間の全容量バラツキ、上記二次電池の電池抵抗、正極抵抗、負極抵抗のうちの少なくともいずれか一つに基づいて判定された劣化度である、請求項9~15のいずれか一項に記載の組電池。
PCT/JP2020/028354 2019-08-01 2020-07-22 二次電池の劣化度判定装置及び組電池 WO2021020250A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20846918.9A EP4009413A4 (en) 2019-08-01 2020-07-22 DEVICE FOR EVALUATING THE DEGRADATION OF A SECONDARY BATTERY, AND ASSEMBLED BATTERY
CN202080056051.XA CN114207457A (zh) 2019-08-01 2020-07-22 二次电池的劣化度判定装置及电池组
US17/585,936 US12025676B2 (en) 2019-08-01 2022-01-27 Device for assessing degree of degradation of secondary battery and assembled battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019142579 2019-08-01
JP2019-142579 2019-08-01
JP2020113169A JP7147809B2 (ja) 2019-08-01 2020-06-30 二次電池の劣化度判定装置及び組電池
JP2020-113169 2020-06-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/585,936 Continuation US12025676B2 (en) 2019-08-01 2022-01-27 Device for assessing degree of degradation of secondary battery and assembled battery

Publications (1)

Publication Number Publication Date
WO2021020250A1 true WO2021020250A1 (ja) 2021-02-04

Family

ID=74229045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028354 WO2021020250A1 (ja) 2019-08-01 2020-07-22 二次電池の劣化度判定装置及び組電池

Country Status (4)

Country Link
US (1) US12025676B2 (ja)
EP (1) EP4009413A4 (ja)
CN (1) CN114207457A (ja)
WO (1) WO2021020250A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022180732A1 (ja) * 2021-02-25 2022-09-01
WO2023013268A1 (ja) * 2021-08-06 2023-02-09 東洋システム株式会社 電池性能評価装置および電池性能評価方法
WO2023157373A1 (ja) * 2022-02-17 2023-08-24 株式会社日立ハイテク 電池管理装置、電池管理プログラム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230007864A (ko) * 2021-07-06 2023-01-13 현대자동차주식회사 배터리 수명 진단 시스템 및 그 방법
JP2023180752A (ja) * 2022-06-10 2023-12-21 株式会社トヨタシステムズ 二次電池劣化判定装置及び二次電池劣化判定方法
CN116381541B (zh) * 2023-06-05 2023-10-20 苏州时代华景新能源有限公司 一种储能锂电池***的健康评估方法及***

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012220199A (ja) * 2011-04-04 2012-11-12 Toyota Motor Corp 二次電池の劣化判定方法とその装置
US20150057957A1 (en) * 2013-08-23 2015-02-26 Kia Motors Corporation Degradation estimation method for high voltage battery
WO2015041091A1 (ja) * 2013-09-19 2015-03-26 株式会社 東芝 二次電池の劣化診断システム及び劣化診断方法
JP2016176924A (ja) * 2015-03-18 2016-10-06 積水化学工業株式会社 二次電池劣化検出システム、二次電池劣化検出方法
JP2016225306A (ja) * 2011-09-09 2016-12-28 株式会社Gsユアサ 蓄電素子の充放電システム
WO2018003210A1 (ja) * 2016-06-28 2018-01-04 株式会社日立製作所 二次電池制御システム、二次電池制御方法
JP2018022650A (ja) * 2016-08-05 2018-02-08 トヨタ自動車株式会社 二次電池の制御方法
JP2019022286A (ja) * 2017-07-13 2019-02-07 富士通コネクテッドテクノロジーズ株式会社 電子機器

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5220269B2 (ja) * 2005-09-16 2013-06-26 古河電気工業株式会社 蓄電池の劣化状態・充電状態の検知方法及びその装置
US8653793B2 (en) * 2009-09-25 2014-02-18 Toyota Jidosha Kabushiki Kaisha Secondary battery system
JP5341823B2 (ja) * 2010-06-07 2013-11-13 トヨタ自動車株式会社 リチウムイオン二次電池の劣化判定システムおよび劣化判定方法
CN103403565B (zh) 2011-04-01 2015-07-01 丰田自动车株式会社 剩余寿命判定方法
US9395418B2 (en) * 2011-06-13 2016-07-19 Methode Electronics, Inc. System and method for determining the state of health of electrochemical battery cells
JP6032473B2 (ja) 2011-09-09 2016-11-30 株式会社Gsユアサ 状態管理装置、蓄電素子の均等化方法
EP3032271B1 (en) 2012-01-31 2019-07-31 Primearth EV Energy Co., Ltd. Battery state detection device
JP2013247003A (ja) * 2012-05-28 2013-12-09 Sony Corp 二次電池の充電制御装置、二次電池の充電制御方法、二次電池の充電状態推定装置、二次電池の充電状態推定方法、二次電池の劣化度推定装置、二次電池の劣化度推定方法、及び、二次電池装置
JP6182588B2 (ja) * 2013-02-19 2017-08-16 古河電気工業株式会社 二次電池劣化判定方法及び二次電池劣化判定装置
US9500538B2 (en) * 2013-03-14 2016-11-22 Google Inc. Method and apparatus for determining a thermal state of a battery taking into account battery aging
EP3051305B1 (en) * 2013-09-25 2019-04-17 Hitachi, Ltd. Status determining method for secondary battery, status determining apparatus for secondary battery, secondary battery system, and charge/discharge control apparatus having status determining apparatus
EP2990818B1 (en) * 2014-09-01 2019-11-27 Yokogawa Electric Corporation Secondary battery capacity measurement system and secondary battery capacity measurement method
US20160105044A1 (en) * 2014-10-08 2016-04-14 Panasonic Intellectual Property Management Co., Ltd. Power-storage-system control method and power-storage-system control apparatus
US10459034B2 (en) * 2014-12-26 2019-10-29 Samsung Electronics Co., Ltd. Method and apparatus for estimating state of health (SOH) of battery
JP6504253B2 (ja) * 2015-08-10 2019-04-24 株式会社村田製作所 二次電池、その評価方法、製造方法、および充放電制御装置
DE102015016987A1 (de) * 2015-12-24 2016-08-11 Daimler Ag Verfahren zum Feststellen einer Degradation einer wiederaufladbaren Batteriezelle sowie Vorrichtung zur Durchführung des Verfahrens
JP6380417B2 (ja) * 2016-01-21 2018-08-29 横河電機株式会社 二次電池容量測定システム及び二次電池容量測定方法
JP6683144B2 (ja) * 2017-02-07 2020-04-15 トヨタ自動車株式会社 電池交換支援システムおよびそれに用いられるサーバ
KR102452548B1 (ko) * 2017-04-18 2022-10-07 현대자동차주식회사 배터리 열화 상태 추정장치, 그를 포함한 시스템 및 그 방법
US11226374B2 (en) * 2017-10-17 2022-01-18 The Board Of Trustees Of The Leland Stanford Junior University Data-driven model for lithium-ion battery capacity fade and lifetime prediction

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012220199A (ja) * 2011-04-04 2012-11-12 Toyota Motor Corp 二次電池の劣化判定方法とその装置
JP2016225306A (ja) * 2011-09-09 2016-12-28 株式会社Gsユアサ 蓄電素子の充放電システム
US20150057957A1 (en) * 2013-08-23 2015-02-26 Kia Motors Corporation Degradation estimation method for high voltage battery
WO2015041091A1 (ja) * 2013-09-19 2015-03-26 株式会社 東芝 二次電池の劣化診断システム及び劣化診断方法
JP2016176924A (ja) * 2015-03-18 2016-10-06 積水化学工業株式会社 二次電池劣化検出システム、二次電池劣化検出方法
WO2018003210A1 (ja) * 2016-06-28 2018-01-04 株式会社日立製作所 二次電池制御システム、二次電池制御方法
JP2018022650A (ja) * 2016-08-05 2018-02-08 トヨタ自動車株式会社 二次電池の制御方法
JP2019022286A (ja) * 2017-07-13 2019-02-07 富士通コネクテッドテクノロジーズ株式会社 電子機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4009413A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022180732A1 (ja) * 2021-02-25 2022-09-01
WO2022180732A1 (ja) * 2021-02-25 2022-09-01 三菱電機株式会社 蓄電池診断装置
JP7370491B2 (ja) 2021-02-25 2023-10-27 三菱電機株式会社 蓄電池診断装置
WO2023013268A1 (ja) * 2021-08-06 2023-02-09 東洋システム株式会社 電池性能評価装置および電池性能評価方法
JP2023024065A (ja) * 2021-08-06 2023-02-16 東洋システム株式会社 電池性能評価装置および電池性能評価方法
JP7266907B2 (ja) 2021-08-06 2023-05-01 東洋システム株式会社 電池性能評価装置および電池性能評価方法
WO2023157373A1 (ja) * 2022-02-17 2023-08-24 株式会社日立ハイテク 電池管理装置、電池管理プログラム

Also Published As

Publication number Publication date
US12025676B2 (en) 2024-07-02
CN114207457A (zh) 2022-03-18
US20220146590A1 (en) 2022-05-12
EP4009413A4 (en) 2022-10-19
EP4009413A1 (en) 2022-06-08

Similar Documents

Publication Publication Date Title
WO2021020250A1 (ja) 二次電池の劣化度判定装置及び組電池
JP7147809B2 (ja) 二次電池の劣化度判定装置及び組電池
US9537325B2 (en) Battery state estimation system, battery control system, battery system, and battery state estimation method
KR102177721B1 (ko) 배터리팩 열화 상태 추정 장치 및 방법
KR101983392B1 (ko) 배터리 충전 상태 추정 장치 및 그 방법
CN108291944B (zh) 电池管理装置
US10365331B2 (en) Method for determining the reliability of state of health parameter values
WO2022004356A1 (ja) 二次電池の劣化度判定装置
KR101972521B1 (ko) 배터리 셀의 성능 테스트 장치 및 방법
US20100036626A1 (en) Apparatus and method for estimating state of health of battery based on battery voltage variation pattern
JP6534746B2 (ja) 電池制御装置及び電池システム
KR20060097581A (ko) 전원장치용 상태검지장치, 전원장치 및 전원장치에사용되는 초기 특성 추출장치
US11029363B2 (en) Method and device for predicting battery life
US10845419B2 (en) Assembled battery circuit, capacitance coefficient detection method, and capacitance coefficient detection program
JPWO2019003377A1 (ja) 蓄電池残量推定装置、蓄電池残量推定方法、およびプログラム
US20230122626A1 (en) Server and external terminal for deterioration degree determination system for secondary battery, and deterioration degree determination system
JP2022044172A (ja) 複数の電池に関する判定装置、蓄電システム、判定方法及び判定プログラム
US20230118311A1 (en) Secondary battery deterioration degree determination device
JP2014176196A (ja) 電池制御装置及び電池制御方法
KR20160081249A (ko) 차량의 배터리 최대용량 측정 장치 및 방법
KR102005395B1 (ko) 배터리 셀 병렬 개수 확인 장치 및 방법
JP7516920B2 (ja) 二次電池の劣化度判定装置
CN115667961A (zh) 诊断电池的设备和方法
JP2018091701A (ja) 電圧推定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020846918

Country of ref document: EP

Effective date: 20220301