WO2021020241A1 - ガラスフィルム及びこれを用いたガラスロール - Google Patents

ガラスフィルム及びこれを用いたガラスロール Download PDF

Info

Publication number
WO2021020241A1
WO2021020241A1 PCT/JP2020/028302 JP2020028302W WO2021020241A1 WO 2021020241 A1 WO2021020241 A1 WO 2021020241A1 JP 2020028302 W JP2020028302 W JP 2020028302W WO 2021020241 A1 WO2021020241 A1 WO 2021020241A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
glass film
glass
film according
sro
Prior art date
Application number
PCT/JP2020/028302
Other languages
English (en)
French (fr)
Inventor
鈴木 良太
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN202080043588.2A priority Critical patent/CN113950870A/zh
Priority to US17/628,740 priority patent/US20220274863A1/en
Priority to JP2021536977A priority patent/JPWO2021020241A1/ja
Publication of WO2021020241A1 publication Critical patent/WO2021020241A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/0025Other surface treatment of glass not in the form of fibres or filaments by irradiation by a laser beam
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a glass film and a glass roll using the same, and specifically to a glass film suitable for high frequency device applications and a glass roll using the same.
  • Patent Document 1 discloses that a through hole for providing an electric signal path in the thickness direction of a glass plate is formed. Specifically, after irradiating the glass plate with a laser to form an etching path, a plurality of penetrations extending from the main surface of the glass plate along the etching path using a hydroxide-based etching material are used. It is disclosed to form a hole.
  • the glass plate described in Patent Document 1 can also be used for a high frequency device for 5G communication.
  • Patent Document 2 discloses a laminate mainly composed of an organic compound composed of a thermosetting resin layer and a polyimide layer for the purpose of using it as a high-frequency flexible printed circuit board.
  • 5G communication uses radio waves with a frequency of several GHz or higher.
  • the material used for the high frequency device of 5G communication is required to have low dielectric characteristics in order to reduce the loss of the transmission signal.
  • the glass plate described in Patent Document 1 does not have low dielectric properties and flexibility, and cannot satisfy the above needs.
  • the laminate of Patent Document 2 has low dielectric properties and flexibility, but has insufficient heat resistance and weather resistance, and can ensure the reliability of high-frequency devices for a long period of time. is not it.
  • the present invention has been made in view of the above circumstances, and a technical problem thereof is to provide a material having low dielectric properties and flexibility, and excellent heat resistance and weather resistance.
  • the present inventor has found that the above technical problems can be solved by using a predetermined glass film, and proposes the present invention. That is, the glass film of the present invention has a relative permittivity of 5 or less at 25 ° C. and a frequency of 2.45 GHz, and a dielectric loss tangent at 25 ° C. and a frequency of 2.45 GHz in a glass film having a film thickness of 100 ⁇ m or less. It is characterized by being 0.01 or less. When a glass film having a film thickness of 100 ⁇ m or less is used, heat resistance and weather resistance can be improved while having flexibility.
  • the transmission loss can be reduced when the electric signal is transmitted to the high frequency device.
  • the relative permittivity at 25 ° C. and a frequency of 2.45 GHz and “the dielectric loss tangent at 25 ° C. and a frequency of 2.45 GHz” can be measured by, for example, a well-known cavity resonator method.
  • the glass film of the present invention is a glass film having a film thickness of 100 ⁇ m or less, having a relative permittivity of 5 or less at 25 ° C. and a frequency of 10 GHz, and a dielectric loss tangent of 0.01 or less at 25 ° C. and a frequency of 10 GHz. It is characterized by being.
  • the glass film of the present invention preferably has a film thickness of less than 50 ⁇ m.
  • the glass film of the present invention has a glass composition of SiO 2 50 to 72%, Al 2 O 30 to 22%, B 2 O 3 15 to 38%, Li 2 O + Na 2 O + K 2 O 0 in mass%. It preferably contains ⁇ 3% and MgO + CaO + SrO + BaO 0-12%. If the content of B 2 O 3 in the glass composition is regulated to 15% by mass or more, the relative permittivity and the dielectric loss tangent can be reduced.
  • the content of Li 2 O + Na 2 O + K 2 O in the glass composition is regulated to 3% by mass or less and the content of MgO + CaO + SrO + BaO is regulated to 12% by mass or less, the density tends to decrease, so that the weight of the high frequency device can be easily reduced. Become.
  • the glass film of the present invention has a glass composition of SiO 2 50 to 72%, Al 2 O 3 0.3 to 10.9%, B 2 O 3 18.1 to 38%, Li 2 in mass%. It is preferable to contain O + Na 2 O + K 2 O 0.001 to 3% and MgO + CaO + SrO + BaO 0 to 12%.
  • a + B + C refers to the total amount of the A component, the B component, and the C component.
  • Li 2 O + Na 2 O + K 2 O refers to the total amount of Li 2 O, Na 2 O and K 2 O.
  • MgO + CaO + SrO + BaO refers to the total amount of MgO, CaO, SrO and BaO.
  • the glass film of the present invention preferably has a mass ratio (MgO + CaO + SrO + BaO) / (SiO 2 + Al 2 O 3 + B 2 O 3 ) of 0.001 to 0.4.
  • (MgO + CaO + SrO + BaO) / (SiO 2 + Al 2 O 3 + B 2 O 3 ) refers to a value obtained by dividing the content of MgO + CaO + SrO + BaO by the content of SiO 2 + Al 2 O 3 + B 2 O 3 .
  • the glass film of the present invention has a plurality of through holes formed in the thickness direction. In this way, a wiring structure for establishing conduction between both surfaces of the glass film can be formed, so that it can be easily applied to a high frequency device.
  • the glass film of the present invention preferably has an average inner diameter of through holes of 300 ⁇ m or less. In this way, it becomes easy to increase the density of the wiring structure for establishing continuity between both surfaces of the glass film.
  • the difference between the maximum value and the minimum value of the inner diameter of the through hole is 50 ⁇ m or less.
  • the maximum length of cracks in the surface direction extending from the through hole is preferably 100 ⁇ m or less. By doing so, it becomes easy to avoid a situation in which the crack is extended and the glass film is broken when a tensile stress is applied around the through hole when the high frequency device is manufactured.
  • the "maximum length of cracks extending from the through holes in the surface direction" is a value measured along the shape of the cracks when the through holes are observed from the front and back surfaces of the glass film with an optical microscope. , It is not the value obtained by measuring the distance between two points connecting the start point and the end point of the crack, nor is it the value obtained by measuring the length of the crack in the thickness direction.
  • the glass film of the present invention preferably has a Young's modulus of 70 GPa or less. In this way, since the glass film is easily bent, it is easy to wind it into a roll shape, and it is easy to apply it to a flexible printed circuit board.
  • Young's modulus can be measured by, for example, a well-known resonance method.
  • the glass film of the present invention preferably has a heat shrinkage rate of 30 ppm or less when the temperature is raised at a rate of 5 ° C./min, held at 500 ° C. for 1 hour, and lowered at a rate of 5 ° C./min. ..
  • a heat shrinkage rate of 30 ppm or less when the temperature is raised at a rate of 5 ° C./min, held at 500 ° C. for 1 hour, and lowered at a rate of 5 ° C./min.
  • the "heat shrinkage rate when the temperature is raised at a rate of 5 ° C./min, held at 500 ° C. for 1 hour, and lowered at a rate of 5 ° C./min” refers to a value measured by the following method.
  • a linear marking is drawn at a predetermined position on the measurement sample, and then the measurement sample is folded perpendicular to the marking and divided into two glass pieces.
  • only one piece of glass is subjected to a predetermined heat treatment (the temperature is raised from room temperature at a rate of 5 ° C./min, held at 500 ° C. for 1 hour, and the temperature is lowered at a rate of 5 ° C./min).
  • the heat-treated glass pieces and the unheat-treated glass pieces are arranged side by side, fixed with adhesive tape, and then the marking deviation is measured. Marking the deviation ⁇ L, when the length of the sample before heat treatment was L 0, ⁇ L / L 0 ( Unit: ppm) by the equation of calculating the thermal shrinkage.
  • the glass film of the present invention preferably has a coefficient of thermal expansion of 20 ⁇ 10 -7 to 50 ⁇ 10 -7 / ° C. in the temperature range of 30 to 380 ° C.
  • the "coefficient of thermal expansion" can be measured with, for example, a dilatometer.
  • the value obtained by subtracting the coefficient of thermal expansion in the temperature range of 20 to 200 ° C. from the coefficient of thermal expansion in the temperature range of 20 to 300 ° C. is 1.0 ⁇ 10 -7 / ° C. or less. Is preferable.
  • the change in the coefficient of thermal expansion of the glass film in each temperature range can be reduced.
  • the warp of the high-frequency device due to the difference in the coefficient of thermal expansion from the low-expansion member such as silicon bonded to the glass film can be reduced, so that the yield of the high-frequency device can be increased.
  • the glass film of the present invention preferably has an external transmittance of 80% or more at a thickness of 1.0 mm and a wavelength of 355 nm.
  • the "external transmittance at a wavelength of 355 nm" can be measured with a commercially available spectrophotometer (for example, V-670 manufactured by JASCO Corporation) using a sample obtained by polishing both sides to an optically polished surface (mirror surface). is there.
  • the glass film of the present invention preferably has an external transmittance of 15% or more at a thickness of 1.0 mm and a wavelength of 265 nm.
  • the "external transmittance at a wavelength of 265 nm” can be measured with a commercially available spectrophotometer (for example, V-670 manufactured by JASCO Corporation) using a sample obtained by polishing both sides to an optically polished surface (mirror surface). is there.
  • liquidus viscosity 10 4.0 dPa ⁇ s or more.
  • the glass is less likely to be devitrified during molding, so that the manufacturing cost of the glass film can be easily reduced.
  • liquid phase viscosity refers to a value obtained by measuring the viscosity of glass at the liquid phase temperature by the platinum ball pulling method.
  • the “liquid phase temperature” is the temperature at which crystals precipitate by passing the standard sieve 30 mesh (500 ⁇ m) and putting the glass powder remaining in 50 mesh (300 ⁇ m) into a platinum boat and holding it in a temperature gradient furnace for 24 hours. Refers to the measured value.
  • the glass film of the present invention is preferably formed by an overflow down draw method. In this way, the surface accuracy of the glass film can be improved. In addition, the manufacturing cost of the glass film can be easily reduced.
  • the glass film of the present invention is preferably used as a substrate for a high frequency device.
  • the glass roll of the present invention is a glass roll obtained by winding a glass film into a roll shape, and the glass film is the above-mentioned glass film.
  • the glass film of the present invention preferably has the following characteristics.
  • the film thickness is 100 ⁇ m or less, preferably 90 ⁇ m or less, 80 ⁇ m or less, 70 ⁇ m or less, 60 ⁇ m or less, 50 ⁇ m or less, less than 50 ⁇ m, 45 ⁇ m or less, 40 ⁇ m or less, 35 ⁇ m or less, particularly 30 ⁇ m or less. If the film thickness is too thick, flexibility cannot be guaranteed.
  • the film thickness is preferably 0.1 ⁇ m or more, 0.5 ⁇ m or more, 1 ⁇ m or more, 2 ⁇ m or more, and particularly 3 ⁇ m or more. If the film thickness is too thin, the glass film is easily broken and difficult to handle.
  • the relative permittivity at 25 ° C. and a frequency of 2.45 GHz is preferably 5.0 or less, 4.9 or less, 4.8 or less, 4.7 or less, 4.6 or less, and particularly 4.5 or less. If the relative permittivity at 25 ° C. and a frequency of 2.45 GHz is too high, the transmission loss when an electric signal is transmitted to the high frequency device tends to increase.
  • the dielectric loss tangent at 25 ° C. and a frequency of 2.45 GHz is preferably 0.01 or less, 0.009 or less, 0.008 or less, 0.007 or less, 0.006 or less, 0.005 or less, 0.004 or less, especially. It is 0.003 or less. If the dielectric loss tangent at 25 ° C. and a frequency of 2.45 GHz is too high, the transmission loss when an electric signal is transmitted to the high frequency device tends to increase.
  • the relative permittivity at 25 ° C. and a frequency of 10 GHz is preferably 5.0 or less, 4.9 or less, 4.8 or less, 4.7 or less, 4.6 or less, and particularly 4.5 or less. If the relative permittivity at 25 ° C. and a frequency of 10 GHz is too high, the transmission loss when an electric signal is transmitted to the high frequency device tends to increase.
  • the dielectric loss tangent at 25 ° C. and a frequency of 10 GHz is preferably 0.01 or less, 0.009 or less, 0.008 or less, 0.007 or less, 0.006 or less, 0.005 or less, 0.004 or less, and particularly 0. It is 003 or less. If the dielectric loss tangent at 25 ° C. and a frequency of 10 GHz is too high, the transmission loss when an electric signal is transmitted to the high frequency device tends to increase.
  • Glass film of the present invention has a glass composition, in mass%, SiO 2 from about 50 to about 72%, Al 2 O 3 from about 0 to about 22%, B 2 O 3 from about 15 to about 38%, Li 2 O + Na 2 It is characterized by containing about 0 to about 3% of O + K 2 O and about 0 to about 12% of MgO + CaO + SrO + BaO.
  • the reasons for limiting the content of each component as described above are shown below.
  • the following% display indicates mass% unless otherwise specified.
  • A% means that it is about A%.
  • “5%” means about 5%.
  • the content of SiO 2 is preferably 50 to 72%, 53 to 71%, 55 to 70%, 57 to 69.5%, 58 to 69%, 59 to 70%, 60 to 69%, and particularly 62 to 67. %. If the content of SiO 2 is too small, the relative permittivity and the dielectric loss tangent tend to increase, and the density tends to increase. On the other hand, if the content of SiO 2 is too large, the high-temperature viscosity becomes high, the meltability decreases, and devitrified crystals such as cristobalite are likely to precipitate during molding.
  • Al 2 O 3 is a component that enhances Young's modulus and also is a component that suppresses phase separation and maintains weather resistance. Therefore, the lower limit range of Al 2 O 3 is preferably 0% or more, 0.1% or more, 0.2% or more, 0.3% or more, 0.4% or more, 0.5% or more, 1% or more. 2, 2% or more, 3% or more, 4% or more, 5% or more, especially 6% or more. On the other hand, if the content of Al 2 O 3 is too large, the liquidus temperature rises and the devitrification resistance tends to decrease.
  • the upper limit range of Al 2 O 3 is preferably 22% or less, 20% or less, 19% or less, 18% or less, 17% or less, 15% or less, 13% or less, 12% or less, 11% or less, 10 9.9% or less, 10.8% or less, 10.7% or less, 10.6% or less, 10.5% or less, 10% or less, 9.9% or less, 9.8% or less, 9.7% or less , 9.6% or less, 9.5% or less, 9.4% or less, 9.3% or less, 9.2% or less, 9.1% or less, 9.0% or less, 8.9% or less, 8 7.7% or less, 8.5% or less, 8.3% or less, 8.1% or less, 8.0% or less, 7.9% or less, 7.8% or less, 7.7% or less, 7.6 % Or less, 7.5% or less, 7.3% or less, 7.1% or less, especially 7.0% or less.
  • B 2 O 3 is a component that lowers the relative permittivity and the dielectric loss tangent. Therefore, the lower limit range of B 2 O 3 is preferably 15% or more, 18% or more, 18.1% or more, 18.2% or more, 18.3% or more, 18.4% or more, 18.5% or more. , 19% or more, 19.4% or more, 19.5% or more, 19.6% or more, 20% or more, more than 20%, 22% or more, 24% or more, 25% or more, 25.1% or more, 25 It is 3.3% or more, 25.5% or more, and particularly 25.6% or more. On the other hand, if the content of B 2 O 3 is too large, the heat resistance and chemical durability are lowered, and the weather resistance is likely to be lowered due to the phase separation.
  • the upper limit range of B 2 O 3 is preferably 38% or less, 35% or less, 33% or less, 32% or less, 31% or less, 30% or less, 28% or less, and particularly 27% or less.
  • the content of B 2 O 3- Al 2 O 3 is preferably -5% or more, -4% or more, -3% or more, -2% or more, -1% or more, 0% or more, 1% or more, 2 % Or more, 3% or more, 4% or more, 5% or more, 6% or more, 7% or more, 8% or more, 9% or more, especially 10% or more. If the content of B 2 O 3 ⁇ Al 2 O 3 is too small, it becomes difficult to secure the low dielectric property.
  • "B 2 O 3 -Al 2 O 3 " is an amount obtained by subtracting the content of Al 2 O 3 from the content of B 2 O 3 .
  • Alkali metal oxide is a component that enhances meltability and moldability, but if its content is too large, the density will increase, the water resistance will decrease, and the coefficient of thermal expansion will become unreasonably high, resulting in heat resistance. The impact resistance is reduced, and it becomes difficult to match the coefficient of thermal expansion of the surrounding materials. Moreover, it becomes difficult to secure low dielectric properties. Therefore, the content of Li 2 O + Na 2 O + K 2 O is preferably 0 to 3%, 0 to 2%, 0 to 1%, 0 to 0.5%, 0 to 0.2%, 0 to 0.1. %, Especially 0.001 to less than 0.05%. The respective contents of Li 2 O, Na 2 O and K 2 O are preferably 0 to 3%, 0 to 2%, 0-1%, 0 to 0.5%, 0 to 0.2% and 0. ⁇ 0.1%, especially less than 0.001 to 0.01%.
  • Alkaline earth metal oxide is a component that lowers the liquidus temperature and makes it difficult to generate devitrified crystals in glass, and is also a component that enhances meltability and moldability.
  • the content of MgO + CaO + SrO + BaO is preferably 0-12%, 0-10%, 0-8%, 0-7%, 1-7%, 2-7%, 3-9%, particularly 3-6%. .. If the content of MgO + CaO + SrO + BaO is too small, the devitrification resistance tends to decrease, and the function as a flux cannot be sufficiently exhibited, so that the meltability tends to decrease.
  • MgO is a component that lowers high-temperature viscosity and enhances meltability without lowering the strain point, and is the most difficult component to increase the density among alkaline earth metal oxides.
  • the MgO content is preferably 0-12%, 0-10%, 0.01-8%, 0.1-6%, 0.2-5%, 0.3-4%, 0.5- 3%, especially 1-2%.
  • the content of MgO is too large, the liquidus temperature rises and the devitrification resistance tends to decrease.
  • the glass is phase-separated, and the transparency tends to decrease.
  • CaO is a component that lowers high-temperature viscosity and remarkably enhances meltability without lowering the strain point, and is a component that has a great effect of increasing devitrification resistance in the glass composition system of the present invention. Therefore, suitable lower limit ranges of CaO are 0% or more, 0.05% or more, 0.1% or more, 1% or more, 1.1% or more, 1.2% or more, 1.3% or more, 1.4. % Or more, 1.5% or more, especially 2% or more. On the other hand, if the CaO content is too large, the coefficient of thermal expansion and the density are unreasonably increased, and the component balance of the glass composition is impaired, so that the devitrification resistance tends to decrease.
  • the preferred upper limit range of CaO is 12% or less, 10% or less, 8% or less, 7% or less, 6% or less, 5% or less, 4.6% or less, 4.5% or less, 4.4% or less. 4% or less, especially 3% or less.
  • SrO is a component that lowers the high-temperature viscosity and enhances the meltability without lowering the strain point, but if the content of SrO is too large, the liquidus viscosity tends to decrease. Therefore, the content of SrO is preferably 0 to 10%, 0 to 8%, 0 to 7%, 0 to 6%, 0 to 5.1%, 0 to 5%, 0 to 4.9%, 0. It is ⁇ 4%, 0 ⁇ 3%, 0 ⁇ 2%, 0 ⁇ 1.5%, 0 ⁇ 1%, 0 ⁇ 0.5%, particularly 0.01 ⁇ 0.1%.
  • BaO is a component that lowers the high-temperature viscosity and enhances the meltability without lowering the strain point, but if the BaO content is too large, the liquidus viscosity tends to decrease. Therefore, the content of BaO is preferably 0 to 10%, 0 to 8%, 0 to 7%, 0 to 6%, 0 to 5%, 0 to 4%, 0 to 3%, 0 to 2%, It is 0 to 1.5%, 0 to 1%, 0 to 0.5%, and particularly 0 to less than 0.1%.
  • the mass ratio (MgO + CaO + SrO + BaO) / (SiO 2 + Al 2 O 3 + B 2 O 3 ) is preferably 0.001 to 0.4, 0.005 to 0.35, 0.010 to 0.30, 0. It is 020 to 0.25, 0.030 to 0.20, 0.035 to 0.15, 0.040 to 0.14, 0.045 to 0.13, and particularly 0.050 to 0.10.
  • the mass ratio (MgO + CaO + SrO + BaO) / Al 2 O 3 is preferably 0.1 to 1.5, 0.1 to 1.2, 0.2 to 1.2, 0.3 to 1.2, 0. 4 to 1.1, especially 0.5 to 1.0.
  • “(MgO + CaO + SrO + BaO) / Al 2 O 3 refers to a value obtained by dividing the content of MgO + CaO + SrO + BaO by the content of Al 2 O 3 .
  • the mass ratio (SrO + BaO) / B 2 O 3 is preferably 0.5 or less, 0.4 or less, 0.3 or less, 0.2 or less, 0.1 or less, 0.05 or less, 0.03 or less, in particular. It is 0.02 or less. If the mass ratio (SrO + BaO) / B 2 O 3 is too large, it becomes difficult to secure low dielectric properties and it becomes difficult to increase the liquidus viscosity.
  • SrO + BaO is the total amount of SrO and BaO.
  • (SrO + BaO) / B 2 O 3 refers to a value obtained by dividing the content of SrO + BaO by the content of B 2 O 3 .
  • the mass ratio B 2 O 3 / (SrO + BaO) is preferably 2 or more, 5 or more, 10 or more, 20 or more, 30 or more, 40 or more, and particularly 50 or more. If the mass ratio (SrO + BaO) / B 2 O 3 is too small, it becomes difficult to secure low dielectric properties and it becomes difficult to increase the liquidus viscosity.
  • B 2 O 3 / (SrO + BaO) refers to a value obtained by dividing the content of B 2 O 3 by the content of SrO + BaO.
  • B 2 O 3 / (SrO + BaO) refers to a value obtained by dividing the content of B 2 O 3 by the content of SrO + BaO.
  • B 2 O 3- (MgO + CaO + SrO + BaO) is preferably 5% or more, 6% or more, 7% or more, 8% or more, 9% or more, 10% or more, 11% or more, particularly 12% or more. If the content of B 2 O 3- (MgO + CaO + SrO + BaO) is too small, it becomes difficult to secure low dielectric properties, the density tends to increase, and Young's modulus tends to decrease.
  • “B 2 O 3- (MgO + CaO + SrO + BaO)" refers to the amount obtained by subtracting the content of MgO + CaO + SrO + BaO from the content of B 2 O 3 .
  • the mass ratio (SrO + BaO) / (MgO + CaO) is preferably 400 or less, 300 or less, 100 or less, 50 or less, 10 or less, 5 or less, 2 or less, 1 or less, 0.8 or less, 0.5 or less, particularly 0. It is 3 or less. If the mass ratio (SrO + BaO) / (MgO + CaO) is too large, it becomes difficult to secure low dielectric properties and the density tends to increase.
  • “(SrO + BaO) / (MgO + CaO)” refers to a value obtained by dividing the content of SrO + BaO by the content of MgO + CaO.
  • the following components may be introduced into the glass composition.
  • the ZnO is a component that enhances meltability, but if it is contained in a large amount in the glass composition, the glass tends to be devitrified and the density also tends to increase. Therefore, the ZnO content is preferably 0 to 5%, 0 to 3%, 0 to 0.5%, 0 to 0.3%, and particularly 0 to 0.1%.
  • ZrO 2 is a component that enhances weather resistance.
  • the content of ZrO 2 is preferably 0 to 5%, 0 to 3%, 0 to 0.5%, 0 to 0.2%, 0 to 0.16%, 0 to 0.1%, and particularly 0 to 0 to. It is 0.02%. If the content of ZrO 2 is too large, the liquidus temperature rises and devitrified crystals of zircon are likely to precipitate.
  • TiO 2 is a component that lowers high-temperature viscosity and enhances meltability, but if it is contained in a large amount in the glass composition, the glass is colored and the transmittance tends to decrease. Therefore, the content of TiO 2 is preferably 0 to 5%, 0 to 3%, 0 to 1%, 0 to 0.1%, and particularly 0 to 0.02%.
  • P 2 O 5 is a component that enhances devitrification resistance, but if it is contained in a large amount in the glass composition, the glass may be phase-separated, easily emulsified, and the water resistance may be significantly reduced. .. Therefore, the content of P 2 O 5 is preferably 0 to 5%, 0 to 1%, 0 to 0.5%, and particularly 0 to 0.1%.
  • SnO 2 is a component having a good clarifying action in a high temperature range and a component that lowers high temperature viscosity.
  • the content of SnO 2 is preferably 0 to 1%, 0.01 to 0.5%, 0.05 to 0.3, and particularly 0.1 to 0.3%. If the content of SnO 2 is too large, devitrified crystals of SnO 2 are likely to precipitate.
  • Fe 2 O 3 is a component that can be introduced as an impurity component or a fining agent component. However, if the content of Fe 2 O 3 is too large, the ultraviolet transmittance may decrease. Therefore, the content of Fe 2 O 3 is preferably 0.05% or less, 0.03% or less, and particularly 0.02% or less.
  • “Fe 2 O 3 " in the present invention contains divalent iron oxide and trivalent iron oxide, and the divalent iron oxide is treated by converting it into Fe 2 O 3 . Other polyvalent oxides shall be handled in the same manner based on the indicated oxides.
  • SnO 2 As a fining agent, even if CeO 2 , SO 3 , C and a metal powder (for example, Al, Si, etc.) are added as a fining agent up to 1% as long as the glass characteristics are not impaired. Good.
  • Sb 2 O 3 , F, and Cl also act effectively as fining agents, and the present invention does not exclude the content of these components, but from an environmental point of view, the content of these components. Is less than 0.1%, particularly preferably less than 0.05%, respectively.
  • the glass film of the present invention preferably has the following characteristics.
  • Young's modulus is preferably 70 GPa or less, 69 GPa or less, 68 GPa or less, 67 GPa or less, 66 GPa or less, 65 GPa or less, 64 GPa or less, 63 GPa or less, 62 GPa or less, 61 GPa or less, particularly 60 GPa or less. If the Young's modulus is too high, the glass film is difficult to bend, so that it is difficult to wind it into a roll, and it is difficult to apply it to a flexible printed circuit board.
  • the heat shrinkage when the temperature is raised at a rate of 5 ° C./min, held at 500 ° C. for 1 hour, and lowered at a rate of 5 ° C./min is preferably 30 ppm or less, 25 ppm or less, 20 ppm or less, and particularly 18 ppm or less. is there. If the heat shrinkage rate is too high, the glass film is likely to be heat-shrinked in the heat treatment step during the manufacture of the high-frequency device, so that wiring defects are likely to occur during the manufacture of the high-frequency device.
  • the coefficient of thermal expansion in the temperature range of 30 to 380 ° C. is preferably 20 ⁇ 10 -7 to 50 ⁇ 10 -7 / ° C., 22 ⁇ 10 -7 to 48 ⁇ 10 -7 / ° C., 23 ⁇ 10 -7 to 47. ⁇ 10 -7 / °C, 28 ⁇ 10 -7 to 45 ⁇ 10 -7 / °C, 30 ⁇ 10 -7 to 43 ⁇ 10 -7 / °C, 32 ⁇ 10 -7 to 41 ⁇ 10 -7 / °C, especially It is 35 ⁇ 10 -7 to 39 ⁇ 10 -7 / ° C. If the coefficient of thermal expansion in the temperature range of 30 to 380 ° C. is too high, warpage or peeling is likely to occur when a low expansion member such as silicon is attached to the glass film, which makes it difficult to apply to high frequency devices.
  • the coefficient of thermal expansion in the temperature range of 20 to 200 ° C. is preferably 21 ⁇ 10 -7 to 51 ⁇ 10 -7 / ° C., 22 ⁇ 10 -7 to 48 ⁇ 10 -7 / ° C., 23 ⁇ 10 -7 to 47. ⁇ 10 -7 / °C, 25 ⁇ 10 -7 to 46 ⁇ 10 -7 / °C, 28 ⁇ 10 -7 to 45 ⁇ 10 -7 / °C, 30 ⁇ 10 -7 to 43 ⁇ 10 -7 / °C, 32 ⁇ 10 -7 to 41 ⁇ 10 -7 / ° C, especially 35 ⁇ 10 -7 to 39 ⁇ 10 -7 / ° C.
  • a low expansion member such as silicon
  • the coefficient of thermal expansion in the temperature range of 20 to 220 ° C. is preferably 21 ⁇ 10 -7 to 51 ⁇ 10 -7 / ° C., 22 ⁇ 10 -7 to 48 ⁇ 10 -7 / ° C., 23 ⁇ 10 -7 to 47. ⁇ 10 -7 / °C, 25 ⁇ 10 -7 to 46 ⁇ 10 -7 / °C, 28 ⁇ 10 -7 to 45 ⁇ 10 -7 / °C, 30 ⁇ 10 -7 to 43 ⁇ 10 -7 / °C, 32 ⁇ 10 -7 to 41 ⁇ 10 -7 / ° C, especially 35 ⁇ 10 -7 to 39 ⁇ 10 -7 / ° C.
  • a low expansion member such as silicon
  • the coefficient of thermal expansion in the temperature range of 20 to 260 ° C. is preferably 21 ⁇ 10 -7 to 51 ⁇ 10 -7 / ° C., 22 ⁇ 10 -7 to 48 ⁇ 10 -7 / ° C., 23 ⁇ 10 -7 to 47. ⁇ 10 -7 / °C, 25 ⁇ 10 -7 to 46 ⁇ 10 -7 / °C, 28 ⁇ 10 -7 to 45 ⁇ 10 -7 / °C, 30 ⁇ 10 -7 to 43 ⁇ 10 -7 / °C, 32 ⁇ 10 -7 to 41 ⁇ 10 -7 / ° C, especially 35 ⁇ 10 -7 to 39 ⁇ 10 -7 / ° C.
  • a low expansion member such as silicon
  • the coefficient of thermal expansion in the temperature range of 20 to 300 ° C. is preferably 20 ⁇ 10 -7 to 50 ⁇ 10 -7 / ° C., 22 ⁇ 10 -7 to 48 ⁇ 10 -7 / ° C., 23 ⁇ 10 -7 to 47. ⁇ 10 -7 / °C, 25 ⁇ 10 -7 to 46 ⁇ 10 -7 / °C, 28 ⁇ 10 -7 to 45 ⁇ 10 -7 / °C, 30 ⁇ 10 -7 to 43 ⁇ 10 -7 / °C, 32 ⁇ 10 -7 to 41 ⁇ 10 -7 / ° C, especially 35 ⁇ 10 -7 to 39 ⁇ 10 -7 / ° C.
  • a low expansion member such as silicon
  • the value obtained by subtracting the coefficient of thermal expansion in the temperature range of 20 to 200 ° C. from the coefficient of thermal expansion in the temperature range of 20 to 300 ° C. is preferably 1.0 ⁇ 10 -7 / ° C. or less, preferably 0.9 ⁇ 10 -7 / ° C or lower to -1.0 x 10 -7 / ° C or higher, -0.8 x 10 -7 / ° C or higher 0.7 x 10 -7 / ° C or lower, -0.6 x 10 -7 / °C or more 0.5 ⁇ 10 -7 / °C or less, -0.4 ⁇ 10 -7 / °C or more 0.3 ⁇ 10 -7 / °C or less, especially -0.3 ⁇ 10 -7 / °C or more 0.2 It is preferably ⁇ 10 -7 / ° C.
  • the external transmittance at a thickness of 1.0 mm and a wavelength of 1100 nm is preferably 85% or more, 86% or more, 87% or more, 88% or more, 89% or more, 90% or more, and particularly 91% or more.
  • an infrared laser or the like is used from the back surface side of the glass film.
  • the external transmittance at a thickness of 1.0 mm and a wavelength of 355 nm is preferably 80% or more, 81% or more, 82% or more, 83% or more, 84% or more, 85% or more, and particularly 86% or more.
  • an infrared laser or the like is used from the back surface side of the glass film.
  • the external transmittance at a thickness of 1.0 mm and a wavelength of 265 nm is preferably 15% or more, 16% or more, 17% or more, 18% or more, 20% or more, 22% or more, and particularly 23% or more.
  • an infrared laser or the like is used from the back surface side of the glass film.
  • Liquidus viscosity is preferably 10 3.9 dPa ⁇ s or more, 10 4.0 dPa ⁇ s or more, 10 4.2 dPa ⁇ s or more, 10 4.6 dPa ⁇ s or more, 10 4.8 dPa ⁇ s
  • the above is 10 5.0 dPa ⁇ s or more, particularly 10 5.2 dPa ⁇ s or more. If the liquidus viscosity is too low, the glass tends to devitrify during molding.
  • the strain point is preferably 480 ° C or higher, 500 ° C or higher, 520 ° C or higher, 530 ° C or higher, 540 ° C or higher, 550 ° C or higher, 560 ° C or higher, 570 ° C or higher, 580 ° C or higher, and particularly 590 ° C or higher. If the strain point is too low, the glass film is likely to be thermally shrunk in the heat treatment step when the high frequency device is manufactured, so that wiring defects are likely to occur when the high frequency device is manufactured.
  • beta-OH value is preferably 1.1 mm -1 or less, 0.6 mm -1 or less, 0.55 mm -1 or less, 0.5 mm -1 or less, 0.45 mm -1 or less, 0.4 mm -1 or less, 0.35 mm -1 or less, 0.3 mm -1 or less, 0.25 mm -1 or less, 0.2 mm -1 or less, 0.15 mm -1 or less, especially 0.1 mm -1 or less. If the ⁇ -OH value is too large, it becomes difficult to secure low dielectric properties.
  • the " ⁇ -OH value” is a value calculated by the following mathematical formula using FT-IR.
  • ⁇ -OH value (1 / X) log (T 1 / T 2 ) X: Thickness (mm) T 1 : Transmittance (%) at reference wavelength 3846 cm -1 T 2 : Minimum transmittance (%) near hydroxyl group absorption wavelength 3600 cm -1
  • Fracture toughness K 1C is preferably 0.6 MPa ⁇ m 0.5 or more, 0.62 MPa ⁇ m 0.5 or more, 0.65 MPa ⁇ m 0.5 or more, 0.67 MPa ⁇ m 0.5 or more, 0. 69 MPa ⁇ m 0.5 or more, especially 0.7 MPa ⁇ m 0.5 or more. If the fracture toughness K 1C is too low, cracks are elongated when tensile stress is applied around the through holes during fabrication of a high-frequency device, and the glass film is likely to break.
  • the "fracture toughness K 1C" was measured by using the pre-cracking fracture test method (SEPB method: Single-Edge-Precracked-Beam method) based on JIS R1607 "Fracture toughness test method for fine ceramics". Is.
  • SEBP method measures the maximum load until the test piece breaks by a three-point bending fracture test of the pre-crack introduction test piece, and plane strain fracture occurs from the maximum load, pre-crack length, test piece size, and distance between bending fulcrums. This is a method for determining toughness K 1C .
  • the measurement values of fracture toughness K 1C of each glass is an average value of five measurements.
  • the volume resistivity Log ⁇ at 25 ° C. is preferably 16 ⁇ ⁇ cm or more, 16.5 ⁇ ⁇ cm or more, 17 ⁇ ⁇ cm or more, and particularly 17.5 ⁇ ⁇ cm or more. If the volume resistivity Log ⁇ at 25 ° C. is too low, the transmission signal tends to flow to the glass film side, and the transmission loss when the electric signal is transmitted to the high frequency device tends to increase.
  • the "volume resistivity Log ⁇ at 25 ° C.” refers to a value measured based on ASTM C657-78.
  • the thermal conductivity at 25 ° C. is preferably 0.7 W / (m ⁇ K) or more, 0.75 W / (m ⁇ K) or more, 0.8 W / (m ⁇ K) or more, 0.85 W / (m ⁇ K) or more. K) or higher, especially 0.9 W / (m ⁇ K) or higher. If the thermal conductivity at 25 ° C. is too low, the heat dissipation of the glass film will be low, and the temperature of the glass film may rise excessively during operation of the high frequency device.
  • the "thermal conductivity at 25 ° C.” refers to a value measured based on JIS R2616.
  • Water vapor permeability is preferably 1 ⁇ 10 -1 g / (m 2 ⁇ 24h) or less, 1 ⁇ 10 -2 g / ( m 2 ⁇ 24h) or less, 1 ⁇ 10 -3 g / ( m 2 ⁇ 24h) hereinafter, 1 ⁇ 10 -4 g / ( m 2 ⁇ 24h) or less, in particular 1 ⁇ 10 -5 g / (m 2 ⁇ 24h) or less. If the water vapor permeability is too high, water vapor is easily taken into the glass film, and it becomes difficult to maintain the low dielectric property.
  • the "water vapor permeability" can be measured by a known calcium method.
  • the glass film of the present invention preferably has a plurality of through holes formed in the thickness direction.
  • the average inner diameter of the through hole is preferably 300 ⁇ m or less, 280 ⁇ m or less, 250 ⁇ m or less, 230 ⁇ m or less, 200 ⁇ m or less, 180 ⁇ m or less, 150 ⁇ m or less, 130 ⁇ m or less, 120 ⁇ m or less, 110 ⁇ m or less, 100 ⁇ m or less, from the viewpoint of increasing the wiring density. In particular, it is 90 ⁇ m or less.
  • the average inner diameter of the through hole is preferably 10 ⁇ m or more, 20 ⁇ m or more, 30 ⁇ m or more, 40 ⁇ m or more, and particularly 50 ⁇ m or more.
  • the difference between the maximum value and the minimum value of the inner diameter of the through hole is preferably 50 ⁇ m or less, 45 ⁇ m or less, 40 ⁇ m or less, 35 ⁇ m or less, 30 ⁇ m or less, and particularly 25 ⁇ m or less. If the difference between the maximum value and the minimum value of the inner diameter of the through hole is too large, the length of the wiring for establishing continuity between both surfaces of the glass film becomes unnecessarily long, and it becomes difficult to reduce the transmission loss.
  • the maximum length of cracks extending from the through hole in the surface direction is preferably 100 ⁇ m or less, 50 ⁇ m or less, 30 ⁇ m or less, 10 ⁇ m or less, 5 ⁇ m or less, 3 ⁇ m or less, 1 ⁇ m or less, and particularly 0.5 ⁇ m or less. If the maximum length of the crack in the surface direction extending from the through hole is too large, the crack will be extended when a tensile stress is applied around the through hole when manufacturing a high-frequency device, and the glass film will be easily broken.
  • the shape of the glass film is preferably rectangular. In this way, it becomes easy to apply to the flexible printed wiring board manufacturing process.
  • the dimensions of the glass film of the present invention are preferably 0.5 ⁇ 0.5 mm or more, 1 ⁇ 1 mm or more, 5 ⁇ 5 mm or more, 10 ⁇ 10 mm or more, 20 ⁇ 20 mm or more, 25 ⁇ 25 mm or more, 30 ⁇ 30 mm or more, It is 50 ⁇ 50 mm or more, 100 ⁇ 100 mm or more, 200 ⁇ 200 mm or more, 300 ⁇ 300 mm or more, and particularly 400 ⁇ 400 mm or more. If the size of the glass film is too small, it becomes difficult to perform multi-chamfering in the manufacturing process of the high frequency device, and the manufacturing cost of the high frequency device tends to rise.
  • the glass film of the present invention is given individual identification information.
  • the manufacturing history of each glass film can be identified, so that it becomes easy to investigate the cause of the product defect.
  • the method for imparting individual identification information to the glass film include a known laser ablation method (evaporation of glass by irradiation with a pulse laser), printing of a barcode, printing of a QR code (registered trademark), and the like.
  • the glass film of the present invention is preferably molded by the overflow down draw method. By doing so, it is possible to efficiently obtain an unpolished glass film having a good surface quality.
  • various molding methods can be adopted. For example, a molding method such as a slot-down method, a float method, a roll-out method, or a redraw method can be adopted.
  • the glass film of the present invention is preferably used as a substrate for a high-frequency device, and can be used, for example, as a substrate for a high-frequency flexible printed circuit board.
  • the arithmetic mean roughness Ra of the surface of the glass film is preferably 100 nm or less, 50 nm or less, 20 nm or less, 10 nm or less, 5 nm or less, 2 nm or less, 1 nm or less, particularly 0.5 nm. It is as follows. If the arithmetic mean roughness Ra on the surface of the glass film is too large, the arithmetic average roughness Ra of the metal wiring formed on the surface of the glass film becomes large, which is generated when a current is passed through the metal wiring of the high frequency device. The resistance loss due to the so-called skin effect becomes excessive. In addition, the strength of the glass film is reduced, and the glass film is easily damaged.
  • the arithmetic mean roughness Ra of the surface of the glass film is preferably 1 nm or more, 1.3 nm or more, 1.4 nm or more, 1.5 nm or more, 1.6 nm or more, 1 .8 nm or more, 2 nm or more, 4 nm or more, 8 nm or more, 11 nm or more, 15 nm or more, 25 nm or more, 40 nm or more, 60 nm or more, 90 nm or more, 110 nm or more, 200 nm or more, 300 nm or more, particularly 400 to 3000 nm.
  • the "arithmetic mean roughness Ra" can be measured by a stylus type surface roughness meter or an atomic force microscope (AFM).
  • the glass film of the present invention is preferably subjected to a manufacturing process of a high frequency device, and more preferably to a semi-additive process.
  • the wiring width of the high frequency device can be adjusted to the width required for the device.
  • the glass film of the present invention is preferably subjected to a process of forming a passive component on the surface of the glass film.
  • the passive component preferably includes at least one of a capacitor, a coil, and a resistor, and for example, an RF front-end module for a smartphone is preferable.
  • the maximum processing temperature is preferably 350 ° C. or lower, 345 ° C. or lower, 340 ° C. or lower, 335 ° C. or lower, 330 ° C. or lower, particularly 325 ° C. or lower. If the maximum processing temperature is too high, the reliability of the high frequency device tends to decrease.
  • the glass film of the present invention is preferably in the form of a glass roll wound into a roll, and the outer diameter of the glass roll is preferably 50 mm or more, 60 mm or more, 70 mm or more, 80 mm or more, 90 mm or more, 100 mm or more. It is 200 mm or more and 300 mm or more.
  • the width of the glass roll is preferably 5 mm or more, 10 mm or more, 20 mm or more, 30 mm or more, 40 mm or more, 50 mm or more, 100 mm or more, 300 mm or more, 500 mm or more, 1000 mm or more. In this way, it becomes easy to apply to the roll-to-roll process, and it becomes easy to reduce the manufacturing cost of the high frequency device.
  • the minimum radius of curvature of the glass roll is preferably 500 mm or less, 300 mm or less, 150 mm or less, 100 mm or less, 70 mm or less, 50 mm or less, particularly 30 mm or less. Winding with a small minimum radius of curvature improves the packing efficiency and transport efficiency of the glass film.
  • the glass roll is preferably wound around the core.
  • the glass film can be fixed to the winding core. Therefore, even if an external pressure is applied to the glass roll, the winding core suppresses the deformation of the glass film and the glass film is damaged. Can be prevented.
  • the winding core is preferably longer than the width of the glass film in order to prevent a situation in which the end face of the glass film is damaged due to an external factor.
  • the material of the winding core is not particularly limited, and a thermoplastic resin, a paper tube, or the like can be used.
  • the glass roll may have a resin or paper cushioning film (interlace) inserted between the glass films to increase impact resistance, and a resin may be inserted on the end face of the glass film to increase mechanical strength. May be coated, or the end face of the glass film may be etched to smooth it.
  • a resin or paper cushioning film interlace
  • the glass roll When winding the glass roll after scribing the edge (ear) in the width direction of the glass film, it is preferable that the glass roll is wound so that the scribing line is on the inside. In this way, cracks are less likely to occur from the end face of the glass film.
  • the scribe line when the scribe line is wound so as to be on the outside, the glass film is liable to be damaged due to the tensile stress with the fine scratches generated in the groove of the scribe line as the origin. Such fine scratches can be reduced by chemical polish or fire polish.
  • the edge of the glass film of the glass roll is cut and separated by a laser.
  • the edge portion of the glass film can be continuously cut and separated, so that the production efficiency of the glass roll is improved and cracks are less likely to occur from the end face of the glass film.
  • the laser a carbon dioxide gas laser, a YAG laser, or the like can be used. It is preferable that the output of the laser is adjusted so that the growth rate of cracks promoted by the laser and the plate pulling speed of the glass film match.
  • the value of velocity ratio (rate of cracks propagated by laser-plate pulling speed) / (plate pulling speed) x 100 is ⁇ 10% or less, ⁇ 5% or less, ⁇ 1% or less, ⁇ 0.5. % Or less, preferably ⁇ 0.1% or less.
  • Tables 1 to 13 show examples (samples No. 1 to 104) of the present invention. In addition, [not] in the table indicates that it has not been measured.
  • Sample No. as follows. 1 to 104 were prepared. First, a glass raw material prepared to have the glass composition shown in the table was placed in a platinum crucible, melted at 1600 ° C. for 24 hours, and then poured onto a carbon plate to form a flat plate. The obtained 0.5 mm-thick glass plate was processed into various measurement samples, and the surface was ground and polished to obtain a 0.045 mm-thick glass film. The arithmetic average roughness Ra of the surface of the obtained glass film was measured with a stylus type surface roughness meter and found to be 400 nm.
  • the external transmittance in terms of thickness of 1.0 mm at various wavelengths, and the processing accuracy of the through hole were evaluated.
  • SnO 2 was used as the fining agent, but a fining agent other than SnO 2 may be used. Further, if the foam breakage is good by adjusting the melting conditions and the glass batch, it is not necessary to add the fining agent.
  • Density ⁇ is a value measured by the well-known Archimedes method.
  • the coefficient of thermal expansion ⁇ in various temperature ranges is a value measured by a dilatometer.
  • strain point Ps, the slow cooling point Ta, and the softening point Ts are values measured based on the methods of ASTM C336 and C338.
  • the temperature at 10 4.0 dPa ⁇ s, the temperature at 10 3.0 dPa ⁇ s, and the temperature at 10 2.5 dPa ⁇ s are the values measured by the platinum ball pulling method.
  • Young's modulus E is a value measured by the resonance method.
  • the liquidus temperature TL passes through a standard sieve of 30 mesh (500 ⁇ m), puts the glass powder remaining in 50 mesh (300 ⁇ m) in a platinum boat, holds it in a temperature gradient furnace for 24 hours, and measures the temperature at which crystals precipitate. It is the value that was set.
  • the liquidus viscosity log ⁇ TL is a value obtained by measuring the viscosity of glass at the liquidus temperature TL by the platinum ball pulling method.
  • the relative permittivity and dielectric loss tangent at 25 ° C. and frequency 2.45 GHz and the relative permittivity and dielectric loss tangent at 25 ° C. and frequency 10 GHz refer to the values measured by the well-known cavity resonator method.
  • the external transmittance in terms of thickness of 1.0 mm at various wavelengths is measured with a commercially available spectrophotometer (for example, V-670 manufactured by JASCO Corporation) using a sample obtained by polishing both sides to an optically polished surface (mirror surface). Refers to the value
  • the processing accuracy of the through hole is " ⁇ " when the difference between the maximum value and the minimum value of the inner diameter is less than 50 ⁇ m when the through hole is formed under the same processing conditions of the sample (0.5 mm thickness).
  • the case where the difference between the maximum value and the minimum value of the inner diameter is 50 ⁇ m or more is evaluated as “x”.
  • the sample No. shown in Table 3 A glass batch prepared to have a glass composition of 19 was melted in a test melting furnace to obtain molten glass, and then a glass film having a film thickness of 0.045 mm was formed by an overflow down draw method.
  • the speed of the pulling roller, the speed of the cooling roller, the temperature distribution of the heating device, the temperature of the molten glass, the flow rate of the molten glass, the plate pulling speed, the rotation speed of the stirring stirrer, etc. are appropriately adjusted.
  • the heat shrinkage of the glass film, the overall thickness deviation (TTV) and the warpage were adjusted.
  • the obtained glass film was cut to obtain a rectangular glass film having a size of 200 ⁇ 200 mm.
  • the arithmetic mean roughness Ra of the surface of the obtained glass film was measured with an atomic force microscope (AFM) and found to be 0.2 nm.
  • AFM atomic force microscope
  • a glass batch prepared to have a glass composition of 72 was melted in a test melting furnace to obtain molten glass, and then glass films having a thickness of 0.03 mm were formed by an overflow down draw method.
  • the arithmetic mean roughness Ra of the surface of the obtained glass film was measured with an atomic force microscope (AFM) and found to be 0.3 nm.
  • the obtained glass film was cut to obtain a rectangular glass film having a size of 300 mm ⁇ 400 mm.
  • a plurality of through holes were formed in the rectangular glass film.
  • the through hole was created by irradiating the surface of a glass film with a commercially available picosecond laser to form a modified layer, and then removing the modified layer by etching.
  • Sample No. When the inner diameters of the through holes according to 19 and 91 were measured, the maximum value was 85 ⁇ m, the minimum value was 62 ⁇ m, and the difference between the maximum value and the minimum value of the inner diameter was 23 ⁇ m. The maximum length of cracks extending from the through holes in the surface direction was 2 ⁇ m.
  • sample No. High-frequency devices were produced for each of the glass films 19 and 72.
  • a conductor circuit layer was formed in the through holes of the glass film by a semi-additive method. Specifically, a seed metal layer was produced by a sputtering method, a metal layer was formed by an electroless plating method, a resist pattern was formed, and copper plating for wiring was formed in this order to form a conductor circuit layer.
  • an insulating resin layer was formed to prepare via holes. Then, desmear treatment and electroless copper plating treatment were performed to further form a dry film resist layer. After forming a resist pattern by photolithography, a conductor circuit layer was formed by an electrolytic copper plating method. After that, the formation of the multilayer circuit was repeated to form the build-up multilayer circuit on both surfaces of the glass film (glass core).
  • solder resist layer was formed on the outermost layer of the multilayer circuit, the external connection terminal portion was exposed by photolithography, plating was performed, and then a solder ball was formed.
  • the heat treatment temperature was the highest in a series of steps, which was about 320 ° C.
  • the glass film on which the solder balls were formed was diced to obtain a high-frequency device.
  • the sample No. shown in Table 3 A glass batch prepared to have a glass composition of 19 was melted in a test melting furnace to obtain molten glass, and then a glass film having a plate thickness of 0.045 mm was formed by an overflow down draw method.
  • the speed of the pulling roller, the speed of the cooling roller, the temperature distribution of the heating device, the temperature of the molten glass, the flow rate of the molten glass, the plate pulling speed, the rotation speed of the stirring stirrer, etc. are appropriately adjusted.
  • the heat shrinkage of the glass film, the overall thickness deviation (TTV) and the warpage were adjusted.
  • the obtained glass film was wound into a roll to obtain a glass roll having a radius of curvature of 60 mm, a roll outer diameter of 500 mm, and a roll width of 700 mm.
  • the obtained glass plate was cut to obtain a rectangular glass plate having a size of 350 mm ⁇ 450 mm.
  • This glass plate was polished to a thickness of 0.09 mm to obtain a glass film.
  • the arithmetic average roughness Ra of the glass film after the polishing process was measured with a stylus type surface roughness meter and found to be 500 nm.
  • a plurality of through holes were formed in the rectangular glass film. The through hole was created by irradiating the surface of a glass film with a commercially available picosecond laser to form a modified layer, and then removing the modified layer by etching.
  • sample No. High-frequency devices were produced for each of the glass films 19 and 72.
  • a conductor circuit layer was formed in the through holes of the glass film by a semi-additive method. Specifically, a seed metal layer was produced by a sputtering method, a metal layer was formed by an electroless plating method, a resist pattern was formed, and copper plating for wiring was formed in this order to form a conductor circuit layer.
  • an insulating resin layer was formed to prepare via holes. Then, desmear treatment and electroless copper plating treatment were performed to further form a dry film resist layer. After forming a resist pattern by photolithography, a conductor circuit layer was formed by an electrolytic copper plating method. After that, the formation of the multilayer circuit was repeated to form the build-up multilayer circuit on both surfaces of the glass film (glass core). The circuit layer was not peeled off in the above step.
  • solder resist layer was formed on the outermost layer of the multilayer circuit, the external connection terminal portion was exposed by photolithography, plating was performed, and then a solder ball was formed.
  • the heat treatment temperature was the highest in a series of steps, which was about 320 ° C.
  • the glass film on which the solder balls were formed was diced to obtain a high-frequency device.
  • the glass film of the present invention and a glass roll using the same are suitable for substrates of high-frequency devices, but in addition to these, substrates for printed wiring boards, substrates for flexible printed wiring boards, and glass antennas that require low dielectric properties. It is also suitable as a substrate for a micro LED, a substrate for a glass interposer, and a substrate for a glass interposer. Further, the glass film of the present invention and a glass roll using the same can also be used as a member constituting a resonator of a dielectric filter such as a duplexer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

低誘電特性や可撓性を有しつつ、耐熱性や耐候性に優れる材料を提供する。 本発明のガラスフィルムは、フィルム厚が100μm以下であるガラスフィルムにおいて、25℃、周波数2.45GHzにおける比誘電率が5以下であり、且つ25℃、周波数2.45GHzにおける誘電正接が0.01以下であることを特徴とする。

Description

ガラスフィルム及びこれを用いたガラスロール
 本発明はガラスフィルム及びこれを用いたガラスロールに関し、具体的には高周波デバイス用途に好適なガラスフィルム及びこれを用いたガラスロールに関する。
 現在、第五世代移動通信システム(5G)への対応に向けた開発が進められており、システムの高速化、高伝送容量化、低遅延化のための技術検討がなされている。
 例えば、特許文献1には、ガラス板の厚み方向に電気信号経路を設けるための貫通孔を形成することが開示されている。具体的には、ガラス板にレーザーを照射して、エッチング経路を形成した後、水酸化物系のエッチング材を使用して、該エッチング経路に沿ってガラス板の主表面から延伸する複数の貫通孔を形成することが開示されている。そして、特許文献1に記載のガラス板は、5G通信の高周波デバイスに使用することも可能である。
 また、特許文献2には、高周波フレキシブルプリント回路基板としての使用を目的として、熱硬化性樹脂層とポリイミド層からなる有機化合物を主体とした積層体が開示されている。
特表2018-531205号公報 特開2019-014062号公報
 ところで、5G通信は、数GHz以上の周波数の電波が使用される。そして、5G通信の高周波デバイスに用いる材料には、伝送信号の低損失化のため、低誘電特性が求められる。
 しかし、特許文献1に記載のガラス板は、低誘電特性や可撓性を有しておらず、上記ニーズを満たすことができない。
 また、特許文献2の積層体は、低誘電特性や可撓性を有しているが、耐熱性や耐候性が不十分であり、長期に亘って、高周波デバイスの信頼性を確保し得るものではない。
 本発明は、上記事情に鑑み成されたものであり、その技術的課題は、低誘電特性や可撓性を有しつつ、耐熱性や耐候性に優れる材料を提供することである。
 本発明者は、種々の実験を繰り返した結果、所定のガラスフィルムを用いることにより、上記技術的課題を解決できることを見出し、本発明として提案するものである。すなわち、本発明のガラスフィルムは、フィルム厚が100μm以下であるガラスフィルムにおいて、25℃、周波数2.45GHzにおける比誘電率が5以下であり、且つ25℃、周波数2.45GHzにおける誘電正接が0.01以下であることを特徴とする。フィルム厚が100μm以下であるガラスフィルムを用いると、可撓性を有しつつ、耐熱性や耐候性を高めることができる。そして、上記のように誘電特性を規制すると、高周波デバイスに電気信号が伝わった際に伝送損失を低減することができる。ここで、「25℃、周波数2.45GHzにおける比誘電率」と「25℃、周波数2.45GHzにおける誘電正接」は、例えば、周知の空洞共振器法で測定可能である。
 また、本発明のガラスフィルムは、フィルム厚が100μm以下であるガラスフィルムにおいて、25℃、周波数10GHzにおける比誘電率が5以下であり、且つ25℃、周波数10GHzにおける誘電正接が0.01以下であることを特徴とする。
 また、本発明のガラスフィルムは、フィルム厚が50μm未満であることが好ましい。
 また、本発明のガラスフィルムは、ガラス組成として、質量%で、SiO 50~72%、Al 0~22%、B 15~38%、LiO+NaO+KO 0~3%、MgO+CaO+SrO+BaO 0~12%を含有することが好ましい。ガラス組成中のBの含有量を15質量%以上に規制すれば、比誘電率や誘電正接を低下させることができる。更にガラス組成中のLiO+NaO+KOの含有量を3質量%以下、且つMgO+CaO+SrO+BaOの含有量を12質量%以下に規制すれば、密度が低下し易くなるため、高周波デバイスを軽量化し易くなる。
 また、本発明のガラスフィルムは、ガラス組成として、質量%で、SiO 50~72%、Al 0.3~10.9%、B 18.1~38%、LiO+NaO+KO 0.001~3%、MgO+CaO+SrO+BaO 0~12%を含有することが好ましい。なお、ガラス組成において、「A+B+C」とは、A成分,B成分及びC成分の合量を指す。例えば、「LiO+NaO+KO」は、LiO、NaO及びKOの合量を指す。「MgO+CaO+SrO+BaO」は、MgO、CaO、SrO及びBaOの合量を指す。
 また、本発明のガラスフィルムは、質量比(MgO+CaO+SrO+BaO)/(SiO+Al+B)が0.001~0.4であることが好ましい。ここで、「(MgO+CaO+SrO+BaO)/(SiO+Al+B)」は、MgO+CaO+SrO+BaOの含有量をSiO+Al+Bの含有量で除した値を指す。
 また、本発明のガラスフィルムは、厚み方向に複数の貫通孔が形成されていることが好ましい。このようにすれば、ガラスフィルムの両表面間に導通を取るための配線構造を形成し得るため、高周波デバイスに適用し易くなる。
 また、本発明のガラスフィルムは、貫通孔の平均内径が300μm以下であることが好ましい。このようにすれば、ガラスフィルムの両表面間に導通を取るための配線構造を高密度化し易くなる。
 また、本発明のガラスフィルムは、貫通孔の内径の最大値と最小値の差が50μm以下であることが好ましい。このようにすれば、ガラスフィルムの両表面間に導通を取るための配線が不当に長くなる事態を防止し得るため、伝送損失を低減することができる。
 また、本発明のガラスフィルムは、貫通孔から伸張した表面方向のクラックの最大長さが100μm以下であることが好ましい。このようにすれば、高周波デバイスの作製時に、貫通孔の周囲に引っ張り応力がかかった際にクラックが伸長してガラスフィルムが破断する事態を回避し易くなる。ここで、「貫通孔から伸張した表面方向のクラックの最大長さ」とは、貫通孔をガラスフィルムの表裏面方向から光学顕微鏡で観察した時に、クラックの形状に沿って測長した値であり、クラックの始点と終点を結んだ二点間距離を測長した値ではなく、また厚み方向のクラックを測長した値でもない。
 また、本発明のガラスフィルムは、ヤング率が70GPa以下であることが好ましい。このようにすれば、ガラスフィルムが曲がり易くなるため、ロール状に巻き取り易くなり、またフレキシブルプリント回路基板に適用し易くなる。ここで、「ヤング率」は、例えば、周知の共振法で測定可能である。
 また、本発明のガラスフィルムは、5℃/分の速度で昇温し、500℃で1時間保持し、5℃/分の速度で降温した時の熱収縮率が30ppm以下であることが好ましい。このようにすれば、高周波デバイスの作製時の熱処理工程において、ガラスフィルムが熱収縮し難くなるため、高周波デバイスの作製時に配線不良を低減し易くなる。なお、「5℃/分の速度で昇温し、500℃で1時間保持し、5℃/分の速度で降温した時の熱収縮率」は、以下の方法で測定した値を指す。まず測定試料の所定箇所に直線状のマーキングを記入した後、この測定試料をマーキングに対して垂直に折り、2つのガラス片に分割する。次に、一方のガラス片のみに所定の熱処理(常温から5℃/分の速度で昇温し、500℃で1時間保持し、5℃/分の速度で降温)する。その後、熱処理を施したガラス片と、未熱処理のガラス片を並べて、接着テープで両者を固定してから、マーキングのずれを測定する。マーキングのずれを△L、熱処理前の試料の長さをLとした時に、△L/L(単位:ppm)の式により熱収縮率を算出する。
 また、本発明のガラスフィルムは、30~380℃の温度範囲における熱膨張係数が20×10-7~50×10-7/℃であることが好ましい。このようにすれば、ガラスフィルムにシリコン等の低膨張部材を貼り合わる際に、反りや剥離が発生し難くなるため、高周波デバイスに適用し易くなる。ここで、「熱膨張係数」は、例えば、ディラトメーターで測定可能である。
 また、本発明のガラスフィルムは、20~300℃の温度範囲における熱膨張係数から、20~200℃の温度範囲における熱膨張係数を減じた値が1.0×10-7/℃以下であることが好ましい。これにより、高周波デバイスの製造プロセス中で熱処理温度が変化しても、各温度範囲におけるガラスフィルムの熱膨張係数の変化を小さくすることができる。結果として、ガラスフィルムに貼り合わせたシリコン等の低膨張部材との熱膨張係数差による高周波デバイスの反りを低減し得るため、高周波デバイスの歩留まりを高めることができる。
 また、本発明のガラスフィルムは、厚み1.0mm換算、波長355nmにおける外部透過率が、80%以上であることが好ましい。ここで、「波長355nmにおける外部透過率」は、両面を光学研磨面(鏡面)に研磨したものを測定試料として、市販の分光光度計(例えば、日本分光社製V―670)で測定可能である。
 また、本発明のガラスフィルムは、厚み1.0mm換算、波長265nmにおける外部透過率が、15%以上であることが好ましい。ここで、「波長265nmにおける外部透過率」は、両面を光学研磨面(鏡面)に研磨したものを測定試料として、市販の分光光度計(例えば、日本分光社製V―670)で測定可能である。
 また、本発明のガラスフィルムは、液相粘度が104.0dPa・s以上であることが好ましい。このようにすれば、成形時にガラスが失透し難くなるため、ガラスフィルムの製造コストを低廉化し易くなる。ここで、「液相粘度」は、液相温度におけるガラスの粘度を白金球引き上げ法で測定した値を指す。「液相温度」は、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れ、温度勾配炉中に24時間保持して、結晶の析出する温度を測定した値を指す。
 また、本発明のガラスフィルムは、オーバーフローダウンドロー法で成形されてなることが好ましい。このようにすれば、ガラスフィルムの表面精度を高めることができる。またガラスフィルムの製造コストを低廉化し易くなる。
 また、本発明のガラスフィルムは、高周波デバイスの基板に用いることが好ましい。
 また、本発明のガラスロールは、ガラスフィルムをロール状に巻き取ったガラスロールにおいて、該ガラスフィルムが上記のガラスフィルムであることを特徴とする。
 本発明のガラスフィルムは、以下の特性を有することが好ましい。
 フィルム厚は100μm以下であり、好ましくは90μm以下、80μm以下、70μm以下、60μm以下、50μm以下、50μm未満、45μm以下、40μm以下、35μm以下、特に30μm以下である。フィルム厚が厚過ぎると、可撓性を担保できなくなる。また、フィルム厚は、好ましくは0.1μm以上、0.5μm以上、1μm以上、2μm以上、特に3μm以上である。フィルム厚が薄過ぎると、ガラスフィルムが割れ易くなり、取り扱いが困難になる。
 25℃、周波数2.45GHzにおける比誘電率は、好ましくは5.0以下、4.9以下、4.8以下、4.7以下、4.6以下、特に4.5以下である。25℃、周波数2.45GHzにおける比誘電率が高過ぎると、高周波デバイスに電気信号が伝わった時の伝送損失が大きくなり易い。
 25℃、周波数2.45GHzにおける誘電正接は、好ましくは0.01以下、0.009以下、0.008以下、0.007以下、0.006以下、0.005以下、0.004以下、特に0.003以下である。25℃、周波数2.45GHzにおける誘電正接が高過ぎると、高周波デバイスに電気信号が伝わった時の伝送損失が大きくなり易い。
 25℃、周波数10GHzにおける比誘電率は、好ましくは5.0以下、4.9以下、4.8以下、4.7以下、4.6以下、特に4.5以下である。25℃、周波数10GHzにおける比誘電率が高過ぎると、高周波デバイスに電気信号が伝わった時の伝送損失が大きくなり易い。
 25℃、周波数10GHzにおける誘電正接は、好ましくは0.01以下、0.009以下、0.008以下、0.007以下、0.006以下、0.005以下、0.004以下、特に0.003以下である。25℃、周波数10GHzにおける誘電正接が高過ぎると、高周波デバイスに電気信号が伝わった時の伝送損失が大きくなり易い。
 本発明のガラスフィルムは、ガラス組成として、質量%で、SiO 約50~約72%、Al 約0~約22%、B 約15~約38%、LiO+NaO+KO 約0~約3%、MgO+CaO+SrO+BaO 約0~約12%を含有することを特徴とする。上記のように、各成分の含有量を限定した理由を以下に示す。なお、以下の%表示は、特に断りがある場合を除き、質量%を指す。そして、以下の「A%」は、約A%であることを意味する。例えば、「5%」は、約5%であることを意味する。
 SiOの含有量は、好ましくは50~72%、53~71%、55~70%、57~69.5%、58~69%、59~70%、60~69%、特に62~67%である。SiOの含有量が少な過ぎると、比誘電率や誘電正接が上昇し易くなり、また密度が高くなり易い。一方、SiOの含有量が多過ぎると、高温粘度が高くなって、溶融性が低下することに加えて、成形時にクリストバライト等の失透結晶が析出し易くなる。
 Alは、ヤング率を高める成分であり、また分相を抑制して、耐候性を維持するための成分である。よって、Alの下限範囲は、好ましくは0%以上、0.1%以上、0.2%以上、0.3%以上、0.4%以上、0.5%以上、1%以上、2%以上、3%以上、4%以上、5%以上、特に6%以上である。一方、Alの含有量が多過ぎると、液相温度が高くなって、耐失透性が低下し易くなる。よって、Alの上限範囲は、好ましくは22%以下、20%以下、19%以下、18%以下、17%以下、15%以下、13%以下、12%以下、11%以下、10.9%以下、10.8%以下、10.7%以下、10.6%以下、10.5%以下、10%以下、9.9%以下、9.8%以下、9.7%以下、9.6%以下、9.5%以下、9.4%以下、9.3%以下、9.2%以下、9.1%以下、9.0%以下、8.9%以下、8.7%以下、8.5%以下、8.3%以下、8.1%以下、8.0%以下、7.9%以下、7.8%以下、7.7%以下、7.6%以下、7.5%以下、7.3%以下、7.1%以下、特に7.0%以下である。
 Bは、比誘電率や誘電正接を低下させる成分である。よって、Bの下限範囲は、好ましくは15%以上、18%以上、18.1%以上、18.2%以上、18.3%以上、18.4%以上、18.5%以上、19%以上、19.4%以上、19.5%以上、19.6%以上、20%以上、20%超、22%以上、24%以上、25%以上、25.1%以上、25.3%以上、25.5%以上、特に25.6%以上である。一方、Bの含有量が多過ぎると、耐熱性や化学的耐久性が低下し、また分相により耐候性が低下し易くなる。また密度や高温粘性が上昇し易くなる。よって、Bの上限範囲は、好ましくは38%以下、35%以下、33%以下、32%以下、31%以下、30%以下、28%以下、特に27%以下である。
 B-Alの含有量は、好ましくは-5%以上、-4%以上、-3%以上、-2%以上、-1%以上、0%以上、1%以上、2%以上、3%以上、4%以上、5%以上、6%以上、7%以上、8%以上、9%以上、特に10%以上である。B-Alの含有量が少な過ぎると、低誘電特性を確保し難くなる。なお、「B-Al」は、Bの含有量からAlの含有量を減じた量である。
 アルカリ金属酸化物は、溶融性や成形性を高める成分であるが、その含有量が多過ぎると、密度が高くなったり、耐水性が低下したり、熱膨張係数が不当に高くなって、耐熱衝撃性が低下したり、周辺材料の熱膨張係数に整合させ難くなったりする。また低誘電特性を確保し難くなる。よって、LiO+NaO+KOの含有量は、好ましくは0~3%、0~2%、0~1%、0~0.5%、0~0.2%、0~0.1%、特に0.001~0.05%未満である。LiO、NaO及びKOのそれぞれの含有量は、好ましくは0~3%、0~2%、0~1%、0~0.5%、0~0.2%、0~0.1%、特に0.001~0.01%未満である。
 アルカリ土類金属酸化物は、液相温度を下げて、ガラス中に失透結晶を発生させ難くする成分であり、また溶融性や成形性を高める成分である。MgO+CaO+SrO+BaOの含有量は、好ましくは0~12%、0~10%、0~8%、0~7%、1~7%、2~7%、3~9%、特に3~6%である。MgO+CaO+SrO+BaOの含有量が少な過ぎると、耐失透性が低下し易くなることに加えて、融剤としての働きを十分に発揮できず、溶融性が低下し易くなる。一方、MgO+CaO+SrO+BaOの含有量が多過ぎると、密度が上昇して、ガラスの軽量化を図り難くなることに加えて、熱膨張係数が不当に高くなって、耐熱衝撃性が低下し易くなる。また低誘電特性を確保し難くなる。
 MgOは、歪点を低下させずに、高温粘性を下げ、溶融性を高める成分であり、またアルカリ土類金属酸化物の中では最も密度を上昇させ難い成分である。MgOの含有量は、好ましくは0~12%、0~10%、0.01~8%、0.1~6%、0.2~5%、0.3~4%、0.5~3%、特に1~2%である。しかし、MgOの含有量が多過ぎると、液相温度が上昇して、耐失透性が低下し易くなる。またガラスが分相して、透明性が低下し易くなる。
 CaOは、歪点を低下させずに、高温粘性を下げて、溶融性を顕著に高める成分であると共に、本発明のガラス組成系において、耐失透性を高める効果が大きい成分である。よって、CaOの好適な下限範囲は0%以上、0.05%以上、0.1%以上、1%以上、1.1%以上、1.2%以上、1.3%以上、1.4%以上、1.5%以上、特に2%以上である。一方、CaOの含有量が多過ぎると、熱膨張係数、密度が不当に上昇し、またガラス組成の成分バランスが損なわれて、かえって耐失透性が低下し易くなる。よって、CaOの好適な上限範囲は12%以下、10%以下、8%以下、7%以下、6%以下、5%以下、4.6%以下、4.5%以下、4.4%以下、4%以下、特に3%以下である。
 SrOは、歪点を低下させずに、高温粘性を下げて、溶融性を高める成分であるが、SrOの含有量が多過ぎると、液相粘度が低下し易くなる。よって、SrOの含有量は、好ましくは0~10%、0~8%、0~7%、0~6%、0~5.1%、0~5%、0~4.9%、0~4%、0~3%、0~2%、0~1.5%、0~1%、0~0.5%、特に0.01~0.1%である。
 BaOは、歪点を低下させずに、高温粘性を下げて、溶融性を高める成分であるが、BaOの含有量が多過ぎると、液相粘度が低下し易くなる。よって、BaOの含有量は、好ましくは0~10%、0~8%、0~7%、0~6%、0~5%、0~4%、0~3%、0~2%、0~1.5%、0~1%、0~0.5%、特に0~0.1%未満である。
 質量比(MgO+CaO+SrO+BaO)/(SiO+Al+B)が大き過ぎると、低融点特性を確保し難くなることに加えて、貫通孔をエッチングで形成する際に、エッチング速度が速くなり、貫通孔の形状が歪(いびつ)になる傾向がある。更に貫通孔をレーザー照射で形成する際にも、孔開け精度が低下する傾向がある。一方、質量比(MgO+CaO+SrO+BaO)/(SiO+Al+B)が小さ過ぎると、高温粘度が上昇して、溶融温度が高くなるため、ガラスフィルムの製造コストが高騰し易くなる。よって、質量比(MgO+CaO+SrO+BaO)/(SiO+Al+B)は、好ましくは0.001~0.4、0.005~0.35、0.010~0.30、0.020~0.25、0.030~0.20、0.035~0.15、0.040~0.14、0.045~0.13、特に0.050~0.10である。
 質量比(MgO+CaO+SrO+BaO)/Alが小さ過ぎると、耐失透性が低下して、オーバーフローダウンドロー法でフィルム状に成形し難くなる。一方、質量比(MgO+CaO+SrO+BaO)/Alが大き過ぎると、密度、熱膨張係数が不当に上昇する虞がある。よって、質量比(MgO+CaO+SrO+BaO)/Alは、好ましくは0.1~1.5、0.1~1.2、0.2~1.2、0.3~1.2、0.4~1.1、特に0.5~1.0である。なお、「(MgO+CaO+SrO+BaO)/Al」は、MgO+CaO+SrO+BaOの含有量をAlの含有量で除した値を指す。
 質量比(SrO+BaO)/Bは、好ましくは0.5以下、0.4以下、0.3以下、0.2以下、0.1以下、0.05以下、0.03以下、特に0.02以下である。質量比(SrO+BaO)/Bが大き過ぎると、低誘電特性を確保し難くなると共に、液相粘度を高め難くなる。なお、「SrO+BaO」は、SrOとBaOの合量である。また、「(SrO+BaO)/B」は、SrO+BaOの含有量をBの含有量で除した値を指す。
 質量比B/(SrO+BaO)は、好ましくは2以上、5以上、10以上、20以上、30以上、40以上、特に50以上である。質量比(SrO+BaO)/Bが小さ過ぎると、低誘電特性を確保し難くなると共に、液相粘度を高め難くなる。なお、「B/(SrO+BaO)」は、Bの含有量をSrO+BaOの含有量で除した値を指す。なお、「B/(SrO+BaO)」は、Bの含有量をSrO+BaOの含有量で除した値を指す。
 B-(MgO+CaO+SrO+BaO)は、好ましくは5%以上、6%以上、7%以上、8%以上、9%以上、10%以上、11%以上、特に12%以上である。B-(MgO+CaO+SrO+BaO)の含有量が少な過ぎると、低誘電特性を確保し難くなると共に、密度が上昇し易くなり、またヤング率が低下し易くなる。なお、「B-(MgO+CaO+SrO+BaO)」は、Bの含有量からMgO+CaO+SrO+BaOの含有量を減じた量を指す。
 質量比(SrO+BaO)/(MgO+CaO)は、好ましくは400以下、300以下、100以下、50以下、10以下、5以下、2以下、1以下、0.8以下、0.5以下、特に0.3以下である。質量比(SrO+BaO)/(MgO+CaO)が大き過ぎると、低誘電特性を確保し難くなると共に、密度が上昇し易くなる。なお、「(SrO+BaO)/(MgO+CaO)」は、SrO+BaOの含有量をMgO+CaOの含有量で除した値を指す。
 上記成分以外にも、以下の成分をガラス組成中に導入してもよい。
 ZnOは、溶融性を高める成分であるが、ガラス組成中に多量に含有させると、ガラスが失透し易くなり、また密度も上昇し易くなる。よって、ZnOの含有量は、好ましくは0~5%、0~3%、0~0.5%、0~0.3%、特に0~0.1%である。
 ZrOは、耐候性を高める成分である。ZrOの含有量は、好ましくは0~5%、0~3%、0~0.5%、0~0.2%、0~0.16%、0~0.1%、特に0~0.02%である。ZrOの含有量が多過ぎると、液相温度が上昇して、ジルコンの失透結晶が析出し易くなる。
 TiOは、高温粘性を下げて、溶融性を高める成分であるが、ガラス組成中に多く含有させると、ガラスが着色して、透過率が低下し易くなる。よって、TiOの含有量は、好ましくは0~5%、0~3%、0~1%、0~0.1%、特に0~0.02%である。
 Pは、耐失透性を高める成分であるが、ガラス組成中に多量に含有させると、ガラスが分相して、乳白化し易くなり、また耐水性が顕著に低下する虞がある。よって、Pの含有量は、好ましくは0~5%、0~1%、0~0.5%、特に0~0.1%である。
 SnOは、高温域で良好な清澄作用を有する成分であると共に、高温粘性を低下させる成分である。SnOの含有量は、好ましくは0~1%、0.01~0.5%、0.05~0.3、特に0.1~0.3%である。SnOの含有量が多過ぎると、SnOの失透結晶が析出し易くなる。
 Feは、不純物成分、或いは清澄剤成分として導入し得る成分である。しかし、Feの含有量が多過ぎると、紫外線透過率が低下する虞がある。よって、Feの含有量は、好ましくは0.05%以下、0.03%以下、特に0.02%以下である。なお、本発明でいう「Fe」は、2価の酸化鉄と3価の酸化鉄を含み、2価の酸化鉄は、Feに換算して、取り扱うものとする。他の多価酸化物についても、同様にして、表記の酸化物を基準にして取り扱うものとする。
 清澄剤として、SnOの添加が好適であるが、ガラス特性を損なわない限り、清澄剤として、CeO、SO、C、金属粉末(例えばAl、Si等)を1%まで添加してもよい。
 As、Sb、F、Clも清澄剤として有効に作用し、本発明では、これらの成分の含有を排除するものではないが、環境的観点から、これらの成分の含有量はそれぞれ0.1%未満、特に0.05%未満が好ましい。
 本発明のガラスフィルムは、以下の特性を有することが好ましい。
 ヤング率は、好ましくは70GPa以下、69GPa以下、68GPa以下、67GPa以下、66GPa以下、65GPa以下、64GPa以下、63GPa以下、62GPa以下、61GPa以下、特に60GPa以下である。ヤング率が高過ぎると、ガラスフィルムが曲がり難くなるため、ロール状に巻き取り難くなり、またフレキシブルプリント回路基板に適用し難くなる。
 5℃/分の速度で昇温し、500℃で1時間保持し、5℃/分の速度で降温した時の熱収縮率は、好ましくは30ppm以下、25ppm以下、20ppm以下、特に18ppm以下である。上記熱収縮率が高過ぎると、高周波デバイスの作製時の熱処理工程において、ガラスフィルムが熱収縮し易くなるため、高周波デバイスの作製時に配線不良が発生し易くなる。
 30~380℃の温度範囲における熱膨張係数は、好ましくは20×10-7~50×10-7/℃、22×10-7~48×10-7/℃、23×10-7~47×10-7/℃、28×10-7~45×10-7/℃、30×10-7~43×10-7/℃、32×10-7~41×10-7/℃、特に35×10-7~39×10-7/℃である。30~380℃の温度範囲における熱膨張係数が高過ぎると、ガラスフィルムにシリコン等の低膨張部材を貼り合わる際に、反りや剥離が発生し易くなるため、高周波デバイスに適用し難くなる。
 20~200℃の温度範囲における熱膨張係数は、好ましくは21×10-7~51×10-7/℃、22×10-7~48×10-7/℃、23×10-7~47×10-7/℃、25×10-7~46×10-7/℃、28×10-7~45×10-7/℃、30×10-7~43×10-7/℃、32×10-7~41×10-7/℃、特に35×10-7~39×10-7/℃である。20~200℃の温度範囲における熱膨張係数が上記範囲外になると、ガラスフィルムにシリコン等の低膨張部材を貼り合わせ難くなる。
 20~220℃の温度範囲における熱膨張係数は、好ましくは21×10-7~51×10-7/℃、22×10-7~48×10-7/℃、23×10-7~47×10-7/℃、25×10-7~46×10-7/℃、28×10-7~45×10-7/℃、30×10-7~43×10-7/℃、32×10-7~41×10-7/℃、特に35×10-7~39×10-7/℃である。20~220℃の温度範囲における熱膨張係数が上記範囲外になると、ガラスフィルムにシリコン等の低膨張部材を貼り合わせ難くなる。
 20~260℃の温度範囲における熱膨張係数は、好ましくは21×10-7~51×10-7/℃、22×10-7~48×10-7/℃、23×10-7~47×10-7/℃、25×10-7~46×10-7/℃、28×10-7~45×10-7/℃、30×10-7~43×10-7/℃、32×10-7~41×10-7/℃、特に35×10-7~39×10-7/℃である。20~260℃の温度範囲における熱膨張係数が上記範囲外になると、ガラスフィルムにシリコン等の低膨張部材を貼り合わせ難くなる。
 20~300℃の温度範囲における熱膨張係数は、好ましくは20×10-7~50×10-7/℃、22×10-7~48×10-7/℃、23×10-7~47×10-7/℃、25×10-7~46×10-7/℃、28×10-7~45×10-7/℃、30×10-7~43×10-7/℃、32×10-7~41×10-7/℃、特に35×10-7~39×10-7/℃である。20~300℃の温度範囲における熱膨張係数が上記範囲外になると、ガラスフィルムにシリコン等の低膨張部材を貼り合わせ難くなる。
 20~300℃の温度範囲における熱膨張係数から、20~200℃の温度範囲における熱膨張係数を減じた値は、1.0×10-7/℃以下であることが好ましく、0.9×10-7/℃以下~-1.0×10-7/℃以上、-0.8×10-7/℃以上0.7×10-7/℃以下、-0.6×10-7/℃以上0.5×10-7/℃以下、-0.4×10-7/℃以上0.3×10-7/℃以下、特に-0.3×10-7/℃以上0.2×10-7/℃以下が好ましい。これにより、高周波デバイスの製造プロセス中で熱処理温度が変化しても、各温度範囲におけるガラスフィルムの熱膨張係数の変化を小さくすることができる。結果として、ガラスフィルムに貼り合わせたシリコン等の低膨張部材との熱膨張係数差による高周波デバイスの反りを低減し得るため、高周波デバイスの歩留まりを高めることができる。
 厚み1.0mm換算、波長1100nmにおける外部透過率は、好ましくは85%以上、86%以上、87%以上、88%以上、89%以上、90%以上、特に91%以上である。厚み1.0mm、波長1100nmにおける外部透過率が上記範囲外になると、例えばガラスフィルムの表面に接着した樹脂層や高周波デバイスを剥離、硬化する際、ガラスフィルムの裏面側から赤外線レーザーなどを用いて照射する場合に、その剥離、硬化がうまくいかず、製品不良が発生する可能性が高くなる。
 厚み1.0mm換算、波長355nmにおける外部透過率は、好ましくは80%以上、81%以上、82%以上、83%以上、84%以上、85%以上、特に86%以上である。厚み1.0mm、波長355nmにおける外部透過率が上記範囲外になると、例えばガラスフィルムの表面に接着した樹脂層や高周波デバイスを剥離、硬化する際、ガラスフィルムの裏面側から赤外線レーザーなどを用いて照射する場合に、その剥離、硬化がうまくいかず、製品不良が発生する可能性が高くなる。
 厚み1.0mm換算、波長265nmにおける外部透過率は、好ましくは15%以上、16%以上、17%以上、18%以上、20%以上、22%以上、特に23%以上である。厚み1.0mm、波長265nmにおける外部透過率が上記範囲外になると、例えばガラスフィルムの表面に接着した樹脂層や高周波デバイスを剥離、硬化する際、ガラスフィルムの裏面側から赤外線レーザーなどを用いて照射する場合に、その剥離、硬化がうまくいかず、製品不良が発生する可能性が高くなる。
 液相粘度は、好ましくは103.9dPa・s以上、104.0dPa・s以上、104.2dPa・s以上、104.6dPa・s以上、104.8dPa・s以上、105.0dPa・s以上、特に105.2dPa・s以上である。液相粘度が低過ぎると、成形時にガラスが失透し易くなる。
 歪点は、好ましくは480℃以上、500℃以上、520℃以上、530℃以上、540℃以上、550℃以上、560℃以上、570℃以上、580℃以上、特に590℃以上である。歪点が低過ぎると、高周波デバイスの作製時の熱処理工程において、ガラスフィルムが熱収縮し易くなるため、高周波デバイスの作製時に配線不良が発生し易くなる。
 β-OH値は、好ましくは1.1mm-1以下、0.6mm-1以下、0.55mm-1以下、0.5mm-1以下、0.45mm-1以下、0.4mm-1以下、0.35mm-1以下、0.3mm-1以下、0.25mm-1以下、0.2mm-1以下、0.15mm-1以下、特に0.1mm-1以下である。β-OH値が大き過ぎると、低誘電特性を確保し難くなる。なお、「β-OH値」は、FT-IRを用いて下記数式により算出した値である。
 β-OH値 = (1/X)log(T/T
 X:厚み(mm)
 T:参照波長3846cm-1における透過率(%)
 T:水酸基吸収波長3600cm-1付近における最小透過率(%)
 破壊靭性K1Cは、好ましくは0.6MPa・m0.5以上、0.62MPa・m0.5以上、0.65MPa・m0.5以上、0.67MPa・m0.5以上、0.69MPa・m0.5以上、特に0.7MPa・m0.5以上である。破壊靭性K1Cが低過ぎると、高周波デバイスの作製時に、貫通孔の周囲に引っ張り応力がかかった際にクラックが伸長してガラスフィルムが破断し易くなる。なお、「破壊靱性K1C」は、JIS R1607「ファインセラミックスの破壊靱性試験方法」に基づき、予き裂導入破壊試験法(SEPB法:Single-Edge-Precracked-Beam method)を用いて測定したものである。SEPB法は、予き裂導入試験片の3点曲げ破壊試験によって試験片が破壊するまでの最大荷重を測定し、最大荷重、予き裂長さ、試験片寸法及び曲げ支点間距離から平面歪み破壊靱性K1Cを求める方法である。なお、各ガラスの破壊靱性K1Cの測定値は測定5回の平均値とする。
 25℃における体積抵抗率Logρは、好ましくは16Ω・cm以上、16.5Ω・cm以上、17Ω・cm以上、特に17.5Ω・cm以上である。25℃における体積抵抗率Logρが低過ぎると、ガラスフィルム側に伝送信号が流れ易くなり、高周波デバイスに電気信号が伝わった時の伝送損失が大きくなり易い。なお、「25℃における体積抵抗率Logρ」は、ASTM C657-78に基づいて測定した値を指す。
 25℃における熱伝導率は、好ましくは0.7W/(m・K)以上、0.75W/(m・K)以上、0.8W/(m・K)以上、0.85W/(m・K)以上、特に0.9W/(m・K)以上である。25℃における熱伝導率が低過ぎると、ガラスフィルムの放熱性が低くなるため、高周波デバイスの動作時にガラスフィルムが過度に温度上昇する虞がある。なお、「25℃における熱伝導率」は、JIS R2616に基づいて測定した値を指す。
 水蒸気透過度は、好ましくは1×10-1g/(m・24h)以下、1×10-2g/(m・24h)以下、1×10-3g/(m・24h)以下、1×10-4g/(m・24h)以下、特に1×10-5g/(m・24h)以下である。水蒸気透過度が高過ぎると、ガラスフィルムに水蒸気が取り込まれ易くなり、低誘電特性を維持し難くなる。なお、「水蒸気透過度」は、既知のカルシウム法で測定可能である。
 本発明のガラスフィルムは、厚み方向に複数の貫通孔が形成されていることが好ましい。また貫通孔の平均内径は、配線密度を高める観点から、好ましくは300μm以下、280μm以下、250μm以下、230μm以下、200μm以下、180μm以下、150μm以下、130μm以下、120μm以下、110μm以下、100μm以下、特に90μm以下である。しかし、貫通孔の平均内径が小さ過ぎると、ガラスフィルムの両表面間に導通を取るための配線構造を形成し難くなる。よって、貫通孔の平均内径は、好ましくは10μm以上、20μm以上、30μm以上、40μm以上、特に50μm以上である。
 貫通孔の内径の最大値と最小値の差は、好ましくは50μm以下、45μm以下、40μm以下、35μm以下、30μm以下、特に25μm以下である。貫通孔の内径の最大値と最小値の差が大き過ぎると、ガラスフィルムの両表面間に導通を取るための配線の長さが不必要に長くなり、伝送損失を低減し難くなる。
 貫通孔から伸張した表面方向のクラックの最大長さは、好ましくは100μm以下、50μm以下、30μm以下、10μm以下、5μm以下、3μm以下、1μm以下、特に0.5μm以下である。貫通孔から伸張した表面方向のクラックの最大長さが大き過ぎると、高周波デバイスの作製時に、貫通孔の周囲に引っ張り応力がかかった際にクラックが伸長して、ガラスフィルムが破断し易くなる。
 ガラスフィルムの形状は、矩形状であることが好ましい。このようにすれば、フレキシブルプリント配線基板製造プロセスに適用し易くなる。本発明のガラスフィルムの寸法は、好ましくは0.5×0.5mm以上、1×1mm以上、5×5mm以上、10×10mm以上、20×20mm以上、25×25mm以上、30×30mm以上、50×50mm以上、100×100mm以上、200×200mm以上、300×300mm以上、特に400×400mm以上である。ガラスフィルムの寸法が小さ過ぎると、高周波デバイスの製造工程において、多面取りが困難になり、高周波デバイスの製造コストが高騰し易くなる。
 本発明のガラスフィルムには、個体識別情報が付与されていることが好ましい。このようにすれば、高周波デバイスの製造工程において、個々のガラスフィルムの製造履歴等を識別可能になるため、製品不良の原因調査を行い易くなる。なお、ガラスフィルムに個体識別情報を付与する方法として、例えば、既知のレーザーアブレーション法(パルスレーザーの照射によるガラスの蒸発)、バーコードの印刷、QRコード(登録商標)の印刷等が挙げられる。
 本発明のガラスフィルムは、オーバーフローダウンドロー法で成形されてなることが好ましい。このようにすれば、未研磨で表面品位が良好なガラスフィルムを効率良く得ることができる。オーバーフローダウンドロー法以外にも、種々の成形方法を採択することができる。例えば、スロットダウン法、フロート法、ロールアウト法、リドロー法等の成形方法を採択することができる。
 また、本発明のガラスフィルムは、高周波デバイス用の基板として使用されることが好ましく、例えば高周波フレキシブルプリント回路基板用の基材などに使用することができる。
 高周波デバイスの抵抗損失を低下させる観点では、ガラスフィルムの表面の算術平均粗さRaは、好ましくは100nm以下、50nm以下、20nm以下、10nm以下、5nm以下、2nm以下、1nm以下、特に0.5nm以下である。ガラスフィルムの表面の算術平均粗さRaが大き過ぎると、ガラスフィルムの表面に形成される金属配線の算術平均粗さRaが大きくなるため、高周波デバイスの金属配線に電流を流した時に発生する、所謂、表皮効果による抵抗損失が過剰になる。またガラスフィルムの強度が低下して、破損し易くなる。
 また、高周波デバイスの製造歩留まりを高める観点から、ガラスフィルムの表面の算術平均粗さRaは、好ましくは1nm以上、1.3nm以上、1.4nm以上、1.5nm以上、1.6nm以上、1.8nm以上、2nm以上、4nm以上、8nm以上、11nm以上、15nm以上、25nm以上、40nm以上、60nm以上、90nm以上、110nm以上、200nm以上、300nm以上、特に400~3000nmである。ガラスフィルムの表面の算術平均粗さRaが小さ過ぎると、ガラスフィルムの表面に形成される金属配線やガラスフィルムの表面を被覆するコーティング層が剥がれ易くなる。結果として、高周波デバイスの製造歩留まりが低下し易くなる。なお、「算術平均粗さRa」は、触針式表面粗さ計又は原子間力顕微鏡(AFM)により測定可能である。
 本発明のガラスフィルムは、高周波デバイスの製造工程に供されることが好ましく、セミアディティブプロセスに供されることが更に好ましい。セミアディティブプロセスを採択すると、高周波デバイスの配線幅をデバイスに必要な幅に調整することができる。
 また、本発明のガラスフィルムは、ガラスフィルムの表面上に受動部品を形成するプロセスに供されることが好ましい。そして、その受動部品は、少なくともキャパシタ、コイル、抵抗の一種以上を含むことが好ましく、例えば、スマートフォン用のRFフロントエンド用モジュール等が好ましい。
 高周波デバイスの製造工程において、最高処理温度は、好ましくは350℃以下、345℃以下、340℃以下、335℃以下、330℃以下、特に325℃以下である。最高処理温度が高過ぎると、高周波デバイスの信頼性が低下し易くなる。
 本発明のガラスフィルムは、ロール状に巻き取ったガラスロールの形態とすることが好ましく、ガラスロールの外径は、好ましくは50mm以上、60mm以上、70mm以上、80mm以上、90mm以上、100mm以上、200mm以上、300mm以上である。またガラスロールの幅は、好ましくは5mm以上、10mm以上、20mm以上、30mm以上、40mm以上、50mm以上、100mm以上、300mm以上、500mm以上、1000mm以上である。このようにすれば、ロールツーロールプロセスに適用し易くなり、高周波デバイスの製造コストを低廉化し易くなる。
 ガラスロールの最小曲率半径は、好ましくは500mm以下、300mm以下、150mm以下、100mm以下、70mm以下、50mm以下、特に30mm以下の状態で巻き取られていることである。最小曲率半径が小さい状態で巻き取れば、ガラスフィルムの梱包効率や搬送効率が向上する。
 ガラスロールは、巻芯に巻き取られていることが好ましい。このようにすれば、ガラスフィルムを巻き取る際に、ガラスフィルムを巻芯に固定できるため、ガラスロールに外圧が加わったとしても、巻芯によりガラスフィルムの変形が抑制されて、ガラスフィルムの破損を防止することができる。また、巻芯は、外的要因によりガラスフィルムの端面から破損に至る事態を防止するため、ガラスフィルムの幅より長いことが好ましい。なお、巻芯の材質は、特に限定されず、熱可塑性樹脂、紙管等が使用可能である。
 ガラスロールは、耐衝撃性を高めるためにガラスフィルム-ガラスフィルム間に樹脂製または紙製の緩衝フィルム(合紙)を挿入してもよく、機械的強度を高めるためにガラスフィルムの端面に樹脂を被覆してもよく、ガラスフィルムの端面をエッチングして、円滑化してもよい。
 ガラスロールは、ガラスフィルムの幅方向の端部(耳部)をスクライブした後に巻き取る場合、スクライブラインが内側になるように巻き取られていることが好ましい。このようにすれば、ガラスフィルムの端面からクラックが発生し難くなる。逆に、スクライブラインが外側になるように巻き取ると、引っ張り応力により、スクライブラインの溝に生じている微細な傷をオリジンとして、ガラスフィルムが破損し易くなる。なお、このような微細な傷は、ケミカルポリッシュやファイアポリッシュで低減することができる。
 ガラスロールは、ガラスフィルムの端部がレーザーで切断分離されてなることが好ましい。このようにすれば、ガラスフィルムの成形後に、ガラスフィルムの端部を連続的に切断分離し得るため、ガラスロールの生産効率が向上すると共に、ガラスフィルムの端面からクラックが発生し難くなる。レーザーとして、炭酸ガスレーザー、YAGレーザー等が使用可能である。レーザーの出力は、レーザーによって進行するクラックの進展速度と、ガラスフィルムの板引き速度が整合するように調整することが好ましい。この場合、速度比=(レーザーによって進展するクラックの速度-板引き速度)/(板引き速度)×100の値は、±10%以下、±5%以下、±1%以下、±0.5%以下、±0.1%以下が好ましい。
 以下、実施例に基づいて、本発明を詳細に説明する。なお、以下の実施例は、単なる例示である。本発明は、以下の実施例に何ら限定されない。
 表1~13は、本発明の実施例(試料No.1~104)を示している。なお、表中の[未]は、未測定であることを示している。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000010
 
Figure JPOXMLDOC01-appb-T000011
 
Figure JPOXMLDOC01-appb-T000012
 
Figure JPOXMLDOC01-appb-T000013
 
 次のようにして、試料No.1~104を作製した。まず表中のガラス組成になるように調合したガラス原料を白金坩堝に入れ、1600℃で24時間溶融した後、カーボン板上に流し出して平形板状に成形した。得られた0.5mm厚のガラス板を各種測定試料に加工すると共に、表面を研削、研磨することにより0.045mm厚のガラスフィルムを得た。得られたガラスフィルムの表面の算術平均粗さRaを触針式表面粗さ計で測定したところ、400nmであった。次に、得られた試料について、密度ρ、各種温度範囲における熱膨張係数α、歪点Ps、徐冷点Ta、軟化点Ts、104.0dPa・sにおける温度、103.0dPa・sにおける温度、102.5dPa・sにおける温度、ヤング率E、液相温度TL、液相粘度logηTL、25℃、周波数2.45GHzにおける比誘電率、25℃、周波数2.45GHzにおける誘電正接、25℃、周波数10GHzにおける比誘電率、25℃、周波数10GHzにおける誘電正接、各種波長における厚み1.0mm換算での外部透過率、及び貫通孔の加工精度を評価した。なお、本実施例では、清澄剤としてSnOを使用したが、SnO以外の清澄剤を使用してもよい。また溶融条件やガラスバッチの調整により泡切れが良好であれば、清澄剤を添加しなくてもよい。
 密度ρは、周知のアルキメデス法で測定した値である。
 各種温度範囲における熱膨張係数αは、ディラトメーターで測定した値である。
 歪点Ps、徐冷点Ta及び軟化点Tsは、ASTM C336、C338の方法に基づいて測定した値である。
 104.0dPa・sにおける温度、103.0dPa・sにおける温度及び102.5dPa・sにおける温度は、白金球引き上げ法で測定した値である。
 ヤング率Eは、共振法で測定した値である。
 液相温度TLは、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れ、温度勾配炉中に24時間保持して、結晶の析出する温度を測定した値である。
 液相粘度logηTLは、液相温度TLにおけるガラスの粘度を白金球引き上げ法で測定した値である。
 25℃、周波数2.45GHzにおける比誘電率、誘電正接及び25℃、周波数10GHzにおける比誘電率、誘電正接は、周知の空洞共振器法で測定した値を指す。
 各種波長における厚み1.0mm換算での外部透過率は、両面を光学研磨面(鏡面)に研磨したものを測定試料として、市販の分光光度計(例えば、日本分光社製V―670)で測定した値を指す。
 貫通孔の加工精度は、試料(0.5mm厚)の加工条件を同一にして、貫通孔を形成した際に、内径の最大値と最小値の差が50μm未満であった場合を「○」、内径の最大値と最小値の差が50μm以上であった場合を「×」として評価したものである。
 表3に記載の試料No.19のガラス組成になるように調合したガラスバッチを試験溶融炉で溶融して、溶融ガラスを得た後、オーバーフローダウンドロー法でフィルム厚0.045mmのガラスフィルムを成形した。なお、ガラスフィルムの成形に際し、引っ張りローラーの速度、冷却ローラーの速度、加熱装置の温度分布、溶融ガラスの温度、溶融ガラスの流量、板引き速度、攪拌スターラーの回転数等を適宜調整することで、ガラスフィルムの熱収縮率、全体板厚偏差(TTV)及び反りを調節した。次に、得られたガラスフィルムを切断して、200×200mmの矩形状のガラスフィルムを得た。次に、得られたガラスフィルムの表面の算術平均粗さRaを、原子間力顕微鏡(AFM)で測定したところ、0.2nmであった。
 表3に記載の試料No.19、表9の試料No.72のガラス組成になるように調合したガラスバッチを試験溶融炉で溶融して、溶融ガラスを得た後、オーバーフローダウンドロー法で板厚0.03mmのガラスフィルムをそれぞれ成形した。次に、得られたガラスフィルムの表面の算術平均粗さRaを原子間力顕微鏡(AFM)で測定したところ、0.3nmであった。次に、得られたガラスフィルムを切断して、300mm×400mmの矩形状のガラスフィルムを得た。次に、矩形状のガラスフィルムに複数の貫通孔を形成した。貫通孔は、市販のピコ秒レーザーをガラスフィルムの表面に照射して、改質層を形成した後、その改質層をエッチングで除去することにより作製した。試料No.19、91に係る貫通孔の内径をそれぞれ測定したところ、何れも最大値が85μm、最小値が62μm、内径の最大値と最小値の差が23μmであった。また貫通孔から伸長した表面方向のクラックの最大長さは何れも2μmであった。
 次に、試料No.19、72に係るガラスフィルムについて、それぞれ高周波デバイスを作製した。まずガラスフィルムの貫通孔に対して、セミアディティブ法により、導体回路層を形成した。具体的には、スパッタ法によるシード金属層の作製、無電解めっき法による金属層の形成、レジストパターンの形成、配線のための銅めっきの形成を順次行い、導体回路層を形成した。
 続いて、ガラスフィルムの両表面上にキャパシタ、コイル等を設けた後、絶縁樹脂層を形成し、ビアホールを作製した。その後、デスミア処理、無電解銅めっき処理を行い、更にドライフィルムレジスト層を形成した。フォトリソグラフィーでレジストパターンを形成した後、電解銅めっき法で導体回路層を形成した。その後、多層回路の形成を繰り返して、ビルドアップ多層回路をガラスフィルム(ガラスコア)の両表面に形成した。
 更に、多層回路の最外層に対して、ソルダーレジスト層を形成し、フォトリソグラフィーで外部接続端子部を露出させて、めっきをした後、はんだボールを形成した。はんだボールを設ける工程は、一連の工程で熱処理温度が最も高く、約320℃であった。最後に、はんだボールを形成したガラスフィルムをダイシング加工し、高周波デバイスを得た。
 表3に記載の試料No.19のガラス組成になるように調合したガラスバッチを試験溶融炉で溶融して、溶融ガラスを得た後、オーバーフローダウンドロー法で板厚0.045mmのガラスフィルムを成形した。なお、ガラスフィルムの成形に際し、引っ張りローラーの速度、冷却ローラーの速度、加熱装置の温度分布、溶融ガラスの温度、溶融ガラスの流量、板引き速度、攪拌スターラーの回転数等を適宜調整することで、ガラスフィルムの熱収縮率、全体板厚偏差(TTV)及び反りを調節した。次に、得られたガラスフィルムを、ロール状に巻き取り、曲率半径が60mm、ロール外径が500mm、ロール幅が700mmのガラスロールとした。
 表3に記載の試料No.19、表9の試料No.72のガラス組成になるガラスバッチを試験溶融炉で溶融して、溶融ガラスを得た後、オーバーフローダウンドロー法で板厚0.3mmのガラス板を成形した。
次に、得られたガラス板を切断して、350mm×450mmの矩形状のガラス板を得た。このガラス板を0.09mmの厚さになるまで研磨加工して、ガラスフィルムを得た。研磨加工後のガラスフィルムの算術平均粗さRaを触針式表面粗さ計で測定したところ、500nmであった。次に、矩形状のガラスフィルムに複数の貫通孔を形成した。貫通孔は、市販のピコ秒レーザーをガラスフィルムの表面に照射して、改質層を形成した後、その改質層をエッチングで除去することにより作製した。
 次に、試料No.19、72に係るガラスフィルムについて、それぞれ高周波デバイスを作製した。まずガラスフィルムの貫通孔に対して、セミアディティブ法により、導体回路層を形成した。具体的には、スパッタ法によるシード金属層の作製、無電解めっき法による金属層の形成、レジストパターンの形成、配線のための銅めっきの形成を順次行い、導体回路層を形成した。
 続いて、ガラスフィルムの両表面上にキャパシタ、コイル等を設けた後、絶縁樹脂層を形成し、ビアホールを作製した。その後、デスミア処理、無電解銅めっき処理を行い、更にドライフィルムレジスト層を形成した。フォトリソグラフィーでレジストパターンを形成した後、電解銅めっき法で導体回路層を形成した。その後、多層回路の形成を繰り返して、ビルドアップ多層回路をガラスフィルム(ガラスコア)の両表面に形成した。なお、上記工程で回路層の剥離は発生しなかった。
 更に、多層回路の最外層に対して、ソルダーレジスト層を形成し、フォトリソグラフィーで外部接続端子部を露出させて、めっきをした後、はんだボールを形成した。はんだボールを設ける工程は、一連の工程で熱処理温度が最も高く、約320℃であった。最後に、はんだボールを形成したガラスフィルムをダイシング加工し、高周波デバイスを得た。
 本発明のガラスフィルム及びこれを用いたガラスロールは、高周波デバイスの基板に好適であるが、それ以外にも、低誘電特性が求められるプリント配線板用基板、フレキシブルプリント配線板用基板、ガラスアンテナ用基板、マイクロLED用基板、ガラスインターポーザー用基板としても好適である。また、本発明のガラスフィルム及びこれを用いたガラスロールは、デュプレクサーなどの誘電体フィルターの共振器を構成する部材としても使用可能である。

Claims (20)

  1.  フィルム厚が100μm以下であるガラスフィルムにおいて、25℃、周波数2.45GHzにおける比誘電率が5以下であり、且つ25℃、周波数2.45GHzにおける誘電正接が0.01以下であることを特徴とするガラスフィルム。
  2.  フィルム厚が100μm以下であるガラスフィルムにおいて、25℃、周波数10GHzにおける比誘電率が5以下であり、且つ25℃、周波数10GHzにおける誘電正接が0.01以下であることを特徴とするガラスフィルム。
  3.  フィルム厚が50μm未満であることを特徴とする請求項1又は2に記載のガラスフィルム。
  4.  ガラス組成として、質量%で、SiO 50~72%、Al 0~22%、B 15~38%、LiO+NaO+KO 0~3%、MgO+CaO+SrO+BaO 0~12%を含有することを特徴とする請求項1~3の何れか一項に記載のガラスフィルム。
  5.  ガラス組成として、質量%で、SiO 50~72%、Al 0.3~10.9%、B 18.1~38%、LiO+NaO+KO 0.001~3%、MgO+CaO+SrO+BaO 0~12%を含有することを特徴とする請求項4に記載のガラスフィルム。
  6.  質量比(MgO+CaO+SrO+BaO)/(SiO+Al+B)が0.001~0.4であることを特徴とする請求項1~5の何れか一項に記載のガラスフィルム。
  7.  厚み方向に複数の貫通孔が形成されていることを特徴とする請求項1~6の何れか一項に記載のガラスフィルム。
  8.  貫通孔の平均内径が300μm以下であることを特徴とする請求項7に記載のガラスフィルム。
  9.  貫通孔の内径の最大値と最小値の差が50μm以下であることを特徴とする請求項7又は8に記載のガラスフィルム。
  10.  貫通孔から伸張した表面方向のクラックの最大長さが100μm以下であることを特徴とする請求項7~9の何れか一項に記載のガラスフィルム。
  11.  ヤング率が70GPa以下であることを特徴とする請求項1~10の何れかに記載のガラスフィルム。
  12.  5℃/分の速度で昇温し、500℃で1時間保持し、5℃/分の速度で降温した時の熱収縮率が30ppm以下であることを特徴とする請求項1~11の何れかに記載のガラスフィルム。
  13.  30~380℃の温度範囲における熱膨張係数が20×10-7~50×10-7/℃であることを特徴とする請求項1~12の何れかに記載のガラスフィルム。
  14.  20~300℃の温度範囲における熱膨張係数から、20~200℃の温度範囲における熱膨張係数を減じた値が1.0×10-7/℃以下であることを特徴とする請求項1~13の何れかに記載のガラスフィルム。
  15.  厚み1.0mm換算、波長355nmにおける外部透過率が、80%以上であることを特徴とする請求項1~14の何れかに記載のガラスフィルム。
  16.  厚み1.0mm換算、波長265nmにおける外部透過率が、15%以上であることを特徴とする請求項1~15の何れかに記載のガラスフィルム。
  17.  液相粘度が104.0dPa・s以上であることを特徴とする請求項1~16の何れかに記載のガラスフィルム。
  18.  オーバーフローダウンドロー法で成形されてなることを特徴とする請求項1~17の何れか一項に記載のガラスフィルム。
  19.  高周波デバイスの基板に用いることを特徴とする請求項1~18の何れか一項に記載のガラスフィルム。
  20.  ガラスフィルムをロール状に巻き取ったガラスロールにおいて、
     該ガラスフィルムが請求項1~19の何れか一項に記載のガラスフィルムであることを特徴とするガラスロール。
PCT/JP2020/028302 2019-08-01 2020-07-21 ガラスフィルム及びこれを用いたガラスロール WO2021020241A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080043588.2A CN113950870A (zh) 2019-08-01 2020-07-21 玻璃膜以及使用其的玻璃卷
US17/628,740 US20220274863A1 (en) 2019-08-01 2020-07-21 Glass film and glass roll using same
JP2021536977A JPWO2021020241A1 (ja) 2019-08-01 2020-07-21

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019142181 2019-08-01
JP2019-142181 2019-08-01
JP2019167014 2019-09-13
JP2019-167014 2019-09-13

Publications (1)

Publication Number Publication Date
WO2021020241A1 true WO2021020241A1 (ja) 2021-02-04

Family

ID=74230341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028302 WO2021020241A1 (ja) 2019-08-01 2020-07-21 ガラスフィルム及びこれを用いたガラスロール

Country Status (4)

Country Link
US (1) US20220274863A1 (ja)
JP (1) JPWO2021020241A1 (ja)
CN (1) CN113950870A (ja)
WO (1) WO2021020241A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011042508A (ja) * 2009-08-19 2011-03-03 Nippon Electric Glass Co Ltd ガラスロール
WO2012014628A1 (ja) * 2010-07-30 2012-02-02 株式会社日立製作所 酸化物半導体装置
WO2018051793A1 (ja) * 2016-09-13 2018-03-22 旭硝子株式会社 高周波デバイス用ガラス基板と高周波デバイス用回路基板
JP2018531205A (ja) * 2015-10-09 2018-10-25 コーニング インコーポレイテッド ビアを有するガラス系基板およびそれを形成するプロセス

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101033114A (zh) * 2007-02-12 2007-09-12 洛玻集团洛阳晶纬玻璃纤维有限公司 低介电常数玻璃
JP5435267B2 (ja) * 2008-10-01 2014-03-05 日本電気硝子株式会社 ガラスロール、ガラスロールの製造装置、及びガラスロールの製造方法
CN102448901B (zh) * 2009-03-19 2015-11-25 日本电气硝子株式会社 无碱玻璃
JP5582446B2 (ja) * 2009-07-10 2014-09-03 日本電気硝子株式会社 フィルム状ガラスの製造方法及び製造装置
JP2018525840A (ja) * 2015-08-21 2018-09-06 コーニング インコーポレイテッド 低誘電特性を有するガラス基板アセンブリ
US20170240368A1 (en) * 2016-02-22 2017-08-24 Schott Ag Method for winding a glass ribbon, apparatus therefor, and the glass roll produced thereby
RU2701611C1 (ru) * 2017-11-07 2019-09-30 Ферро Корпорэйшн Композиции диэлектрика с низкой к для применений при высоких частотах

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011042508A (ja) * 2009-08-19 2011-03-03 Nippon Electric Glass Co Ltd ガラスロール
WO2012014628A1 (ja) * 2010-07-30 2012-02-02 株式会社日立製作所 酸化物半導体装置
JP2018531205A (ja) * 2015-10-09 2018-10-25 コーニング インコーポレイテッド ビアを有するガラス系基板およびそれを形成するプロセス
WO2018051793A1 (ja) * 2016-09-13 2018-03-22 旭硝子株式会社 高周波デバイス用ガラス基板と高周波デバイス用回路基板

Also Published As

Publication number Publication date
US20220274863A1 (en) 2022-09-01
JPWO2021020241A1 (ja) 2021-02-04
CN113950870A (zh) 2022-01-18

Similar Documents

Publication Publication Date Title
KR102430746B1 (ko) 지지 유리 기판 및 그 제조 방법
KR102436789B1 (ko) 적층체, 반도체 패키지 제조 방법, 반도체 패키지 및 전자기기
TWI644881B (zh) 搬送體以及半導體封裝體的製造方法
KR102402822B1 (ko) 지지 유리 기판 및 이것을 사용한 적층체
JP7268718B2 (ja) 支持ガラス基板の製造方法
WO2020184175A1 (ja) ガラス板
TWI832957B (zh) 用於電子裝置的低介電損耗玻璃
KR102509782B1 (ko) 지지 유리 기판 및 이것을 사용한 적층체
WO2017104514A1 (ja) 支持結晶化ガラス基板及びこれを用いた積層体
US11117828B2 (en) Low dielectric loss glasses for electronic devices
JP2016169141A (ja) 支持ガラス基板及びこれを用いた積層体
JP2016160135A (ja) 支持ガラス基板及びこれを用いた積層体
JP2016155735A (ja) 支持ガラス基板及びこれを用いた積層体
WO2021020241A1 (ja) ガラスフィルム及びこれを用いたガラスロール
US20230265011A1 (en) Laminate
EP4393892A1 (en) Support glass substrate, multi-layer body, method for producing multi-layer body, and method for producing semiconductor package
WO2022054694A1 (ja) ガラス及びそれを用いた誘電特性の測定方法
JP2018095544A (ja) 支持ガラス基板及びこれを用いた積層体
JP2022045302A (ja) 積層板
KR102630404B1 (ko) 지지 유리 기판 및 이것을 사용한 적층체
JP2023031216A (ja) 支持ガラス基板、積層体、積層体の製造方法及び半導体パッケージの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20848208

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021536977

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20848208

Country of ref document: EP

Kind code of ref document: A1