WO2021020226A1 - 非水電解質二次電池用負極材料および非水電解質二次電池 - Google Patents

非水電解質二次電池用負極材料および非水電解質二次電池 Download PDF

Info

Publication number
WO2021020226A1
WO2021020226A1 PCT/JP2020/028211 JP2020028211W WO2021020226A1 WO 2021020226 A1 WO2021020226 A1 WO 2021020226A1 JP 2020028211 W JP2020028211 W JP 2020028211W WO 2021020226 A1 WO2021020226 A1 WO 2021020226A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
electrolyte secondary
aqueous electrolyte
secondary battery
silicate
Prior art date
Application number
PCT/JP2020/028211
Other languages
English (en)
French (fr)
Inventor
泰介 朝野
洋平 内山
陽祐 佐藤
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2021536970A priority Critical patent/JPWO2021020226A1/ja
Priority to CN202080054372.6A priority patent/CN114175315A/zh
Priority to US17/630,656 priority patent/US20220263066A1/en
Priority to EP20846399.2A priority patent/EP4007013A4/en
Publication of WO2021020226A1 publication Critical patent/WO2021020226A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention mainly relates to the improvement of the negative electrode of a non-aqueous electrolyte secondary battery.
  • Non-aqueous electrolyte secondary batteries especially lithium ion secondary batteries, have high voltage and high energy density, and are therefore expected as power sources for small consumer applications, power storage devices, and electric vehicles.
  • the use of materials containing silicon that alloys with lithium is expected as a negative electrode active material with a high theoretical capacity density.
  • Patent Document 1 in a non-aqueous electrolyte secondary battery, a negative electrode activity including a lithium silicate phase represented by Li 2z SiO 2 + z (0 ⁇ z ⁇ 2) and silicon particles dispersed in the lithium silicate phase. It has been proposed to use a substance.
  • the negative electrode active material described in Patent Document 1 has a smaller irreversible capacity due to charge / discharge than a composite (SiO x ) in which fine silicon is dispersed in the SiO 2 phase, and improves the initial charge / discharge efficiency. It is advantageous.
  • one aspect of the present invention includes a silicate phase, silicon particles dispersed in the silicate phase, and a crystal phase dispersed in the silicate phase, and the silicate phase is alkaline.
  • Another aspect of the present invention relates to a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, and the negative electrode includes the negative electrode material for the non-aqueous electrolyte secondary battery described above.
  • the initial charge / discharge efficiency of the non-aqueous electrolyte secondary battery can be increased.
  • the negative electrode material for a non-aqueous electrolyte secondary battery (hereinafter, also referred to as a composite material) according to the embodiment of the present invention is dispersed in a silicate phase containing the element E1 (also simply referred to as a silicate phase). With silicon particles.
  • the element E1 is at least one selected from the group consisting of alkali metal elements and Group 2 elements.
  • a crystal phase (also simply referred to as a crystal phase) containing a rare earth element, silicon (Si), and oxygen (O) is further dispersed in the silicate phase.
  • Dispersing a crystal phase with low reactivity with lithium ions in the matrix of the silicate phase reduces the number of sites that can react with lithium ions in the silicate phase, reduces the irreversible capacitance, and reduces the initial charge / discharge efficiency. Can be enhanced.
  • the crystal phase may be generated in the silicate phase in the manufacturing process of the negative electrode material. In this case, the sites that can react with lithium ions can be reduced more efficiently.
  • the initial charge / discharge efficiency is significantly improved.
  • the crystal phase containing rare earth elements, silicon, and oxygen has particularly low reactivity with lithium ions and is difficult to occlude lithium ions, so side reactions are greatly reduced in the early stages of charging and discharging. It is presumed that the initial charge / discharge efficiency will be significantly improved.
  • the crystalline phase is formed by silicate of a rare earth element with high crystallinity.
  • the improvement of lithium ion conductivity reduces the resistance at the time of discharge and improves the initial charge / discharge efficiency. Cheap.
  • the full width at half maximum means the full width at half maximum (FWHM). Further, in the present specification, with respect to the position where the diffraction peak is observed, the vicinity of D ° means that it is within the range of more than D ⁇ 0.5 ° and less than D + 0.5 °.
  • the content of the rare earth element is preferably 0.2% by mass or more and 21% by mass or less, more preferably 2.4% by mass or more and 15% by mass, based on the total amount of elements other than oxygen. It is less than or equal to, more preferably 5.5% by mass or more and 14% by mass or less.
  • the content of rare earth elements in the composite material is 0.2% by mass or more with respect to the total amount of elements other than oxygen, the effect of improving the initial charge / discharge efficiency can be easily obtained.
  • the silicate phase of the element E1 is likely to be secured in the composite material.
  • the silicate phase of the element E1 having low crystallinity is sufficiently present in the composite material, the lithium ion conductivity is likely to be improved in the composite material, and the stress generated by the expansion and contraction of the silicon particles is likely to be relaxed.
  • the content of rare earth elements in the composite material can be determined by, for example, the following method.
  • the battery is disassembled, the negative electrode is taken out, washed with a non-aqueous solvent such as ethylene carbonate, dried, and then the negative electrode mixture layer is cross-sectioned with a cross section polisher (CP) to obtain a sample.
  • a field emission scanning electron microscope FE-SEM
  • FE-SEM field emission scanning electron microscope
  • FE-SEM field emission scanning electron microscope
  • JAMP-9510F Auger electron spectroscopy
  • the content of the rare earth element in the composite material particles (the ratio of the mass of the rare earth element to the total mass of the elements other than oxygen contained in the composite material particles) is determined.
  • the 10 composite material particles observed are analyzed to determine the average value of the rare earth element content.
  • the rare earth element preferably contains at least one selected from the group consisting of lanthanum (La), cerium (Ce), praseodymium (Pr) and neodymium (Nd). From the viewpoint of improving lithium ion conductivity, it is more preferable that the rare earth element contains La.
  • the ratio of La to the total rare earth elements is preferably 90 atomic% or more and 100 atomic% or less.
  • the crystalline phase may have, for example, a composition represented by the general formula: M 2 O 3 ⁇ ySiO 2 .
  • y is, for example, 1.0 to 2.0.
  • M is a rare earth element.
  • the crystal phase preferably contains compound A represented by the general formula: M 2 Si 2 O 7 (M is a rare earth element) because the structure is highly stable and it is difficult to elute into the electrolytic solution. La 2 Si 2 O 7 is more preferable because the structure does not change during charging and discharging and it exists stably.
  • the crystal structure of the crystal phase is at least selected from the group consisting of monoclinic, tetragonal and triclinic. Including one type.
  • the dispersion of a crystal phase containing a rare earth element, silicon and oxygen in the matrix of the silicate phase of element E1 is a composite material obtained by using a scanning electron microscope (SEM) or a transmission electron microscope (TEM). It can be confirmed by observing the cross-sectional image (reflected electron image) of.
  • the equivalent circle diameter of the crystal phase dispersed in the silicate phase is, for example, 10 nm or more and 1 ⁇ m or less.
  • the equivalent circle diameter of the crystal phase is determined by using a cross-sectional image (reflected electron image) of the composite material obtained by SEM or TEM. Specifically, it is obtained by converting the area of 100 crystal phases into the diameter of a corresponding circle and averaging them.
  • the crystal phase containing rare earth elements, silicon and oxygen can be confirmed by X-ray diffraction measurement using Cu-K ⁇ rays.
  • the crystal phase containing rare earth elements, silicon, and oxygen may be confirmed by electron diffraction measurement using a field emission transmission electron microscope (JEM2100F, JEM2100F, acceleration voltage 200 kV, acceleration current 110 ⁇ A). .. Based on the diffraction point data (distance from the center point) obtained by the electron diffraction measurement, the plane spacing and crystal structure attributed to compound A can be obtained. The composition of the crystal phase can be specified based on the obtained interplanar spacing and crystal structure and the elements contained in the crystal phase obtained by energy dispersive X-ray analysis (EDX).
  • EDX energy dispersive X-ray analysis
  • a diffraction peak and a second diffraction peak attributed to the silicon particles are observed.
  • the second diffraction peak is the diffraction peak of the (111) plane of Si.
  • the ratio of the intensity I1 of the first diffraction peak to the intensity I2 of the second diffraction peak: I1 / I2 is preferably 0.25 or less.
  • the silicon particles and the crystal phase of the compound A are dispersed in the silicate phase in a well-balanced manner, so that the capacity of the negative electrode can be easily increased and the initial charge / discharge efficiency can be easily increased.
  • the diffraction peak attributed to compound A depends on the crystal structure of compound A, and in the case of monoclinic crystals, the (20-2) plane, (122) plane, (113) plane, (03-2) plane or (03-2) plane or ( 11-5) Includes surface diffraction peaks. In the case of tetragonal crystals, the diffraction peaks of the (124) plane or the (026) plane are included. In the case of triclinic crystal, the diffraction peak of the (203) plane is included.
  • the crystalline phase of compound A has a plane spacing of at least 2.6 ⁇ to 2.75 ⁇ , 3.6 ⁇ to 3.7 ⁇ , 5.2 ⁇ to 5.3 ⁇ and 7.3 ⁇ to 7.4 ⁇ .
  • the composite material will be described in detail below.
  • the silicate phase containing the element E1 has fewer sites capable of reacting with lithium than the SiO 2 phase of SiO x . Therefore, the composite material is less likely to generate an irreversible capacity due to charging / discharging as compared with SiO x, and the initial charging / discharging efficiency is high. Further, since the content of silicon particles can be arbitrarily changed, a high-capacity negative electrode can be designed.
  • the silicate phase of element E1 can form an amorphous or near-amorphous phase by the method for producing a negative electrode material described later. From the viewpoint of improving the lithium ion conductivity of the composite particles, relaxing the stress caused by the expansion and contraction of the silicon particles during charging and discharging, and suppressing the particle cracking of the composite material, it is preferable that the matrix of the silicate phase has low crystallinity.
  • the half width of the diffraction peak of the (111) plane of the silicate of the element E1 is, for example, 0.05 ° or more, which is 0. It may be 5.5 ° or more.
  • the silicate phase contains the silicate of the element E1.
  • the element E1 contains at least one of an alkali metal element (a group 1 element other than hydrogen in the long periodic table) and a group 2 element in the long periodic table.
  • Alkali metal elements include lithium (Li), potassium (K), sodium (Na) and the like.
  • Group 2 elements include magnesium (Mg), calcium (Ca), barium (Ba) and the like.
  • the element E1 may be used alone or in combination of two or more.
  • the silicate phase may further contain the element E2.
  • the element E2 is zirconium (Zr), niobium (Nb), tantalum (Ta), vanadium (V), titanium (Ti), phosphorus (P), bismuth (Bi), zinc (Zn), tin (Sn), lead. (Pb), antimony (Sb), cobalt (Co), fluorine (F), tungsten (W), aluminum (Al), boron (B) and the like can be contained.
  • the element E2 may be used alone or in combination of two or more. When the silicate phase contains the element E2, the chemical stability and lithium ion conductivity of the composite material are improved.
  • the element E2 is preferably at least one selected from the group consisting of Zr, Ti, P, Al and B.
  • the element E2 may form a compound.
  • the compound may be, for example, a silicate of the element E2 or an oxide of the element E2, depending on the type of the element E2.
  • the silicate phase may further contain a trace amount of other elements such as iron (Fe), chromium (Cr), nickel (Ni), manganese (Mn), copper (Cu) and molybdenum (Mo).
  • iron Fe
  • Cr chromium
  • Ni nickel
  • Mo manganese
  • Cu copper
  • Mo molybdenum
  • the silicate phase includes, for example, a lithium silicate phase containing lithium (Li), silicon (Si), and oxygen (O).
  • the atomic ratio of O to Si in the lithium silicate phase: O / Si is, for example, more than 2 and less than 4.
  • O / Si is more than 2 and less than 4 (z in the formula described later is 0 ⁇ z ⁇ 2), it is advantageous in terms of stability and lithium ion conductivity.
  • O / Si is more than 2 and less than 3 (z in the formula described later is 0 ⁇ z ⁇ 1).
  • the atomic ratio of Li to Si in the lithium silicate phase: Li / Si is, for example, greater than 0 and less than 4.
  • composition of the silicate phase of the composite material can be analyzed by, for example, the following method.
  • the battery is disassembled, the negative electrode is taken out, washed with a non-aqueous solvent such as ethylene carbonate, dried, and then the negative electrode mixture layer is cross-sectioned with a cross section polisher (CP) to obtain a sample.
  • a field emission scanning electron microscope FE-SEM
  • FE-SEM field emission scanning electron microscope
  • FE-SEM field emission scanning electron microscope
  • FE-SEM Auger electron spectroscopy
  • JAMP-9510F Auger electron spectroscopy
  • JAMP-9510F Auger electron spectroscopy
  • the composition of the silicate phase is determined based on the contents of the obtained element E1 (Li or the like), silicon (Si), oxygen (O), and other elements.
  • the quantification of each element in the composite material in the discharged state is performed by energy dispersive X-ray analysis (EDX), electron microanalyzer (EPMA), laser ablation ICP mass analysis (LA-ICP-MS), and X-ray photoelectron spectroscopy. This can be done using (XPS) or the like.
  • a carbon sample table may be used for fixing the sample in order to prevent the diffusion of Li.
  • a transfer vessel that holds and transports the sample without exposing it to the atmosphere may be used.
  • the silicon particles dispersed in the silicate phase have a particulate phase of silicon (Si) alone, and are usually composed of a plurality of crystallites.
  • the crystallite size of the silicon particles is preferably 30 nm or less.
  • the amount of volume change due to expansion and contraction of the silicon particles due to charge and discharge can be reduced, and the cycle characteristics can be further improved.
  • the silicon particles shrink, voids are formed around the silicon particles to reduce the contact points with the surroundings of the particles, so that the isolation of the particles is suppressed, and the decrease in charge / discharge efficiency due to the isolation of the particles is suppressed.
  • the lower limit of the crystallite size of the silicon particles is not particularly limited, but the crystallite size of the silicon particles is, for example, 1 nm or more.
  • the crystallite size of the silicon particles is more preferably 10 nm or more and 30 nm or less, and further preferably 15 nm or more and 25 nm or less.
  • the crystallite size of the silicon particles is 10 nm or more, the surface area of the silicon particles can be kept small, so that the deterioration of the silicon particles accompanied by the generation of irreversible capacitance is unlikely to occur.
  • the crystallite size of the silicon particle is calculated by Scheller's formula from the half width of the diffraction peak attributed to the (111) plane of the silicon particle (single Si) of the X-ray diffraction pattern.
  • the composite material is also excellent in structural stability. Since the silicon particles are dispersed in the silicate phase, the expansion and contraction of the composite material due to charge and discharge is suppressed. From the viewpoint of suppressing cracks in the silicon particles themselves, the average particle size of the silicon particles is preferably 500 nm or less, more preferably 200 nm or less, still more preferably 50 nm or less before the initial charging. After the initial charging, the average particle size of the silicon particles is preferably 400 nm or less, more preferably 100 nm or less. By making the silicon particles finer, the volume change during charging and discharging is reduced, and the structural stability of the composite material is further improved.
  • the average particle size of the silicon particles is measured using a cross-sectional image of the composite material obtained by SEM. Specifically, the average particle size of the silicon particles is obtained by averaging the maximum diameters of any 100 silicon particles.
  • the content of the silicon particles in the composite material is preferably 30% by mass or more, more preferably 35% by mass or more, and further preferably 55% by mass or more.
  • the diffusivity of lithium ions is good, and it becomes easy to obtain excellent load characteristics.
  • the content of the silicon particles in the composite material is preferably 95% by mass or less, more preferably 75% by mass or less, and further preferably 70% by mass or less. .. In this case, the surface of the silicon particles exposed without being covered with the silicate phase is reduced, and the reaction between the non-aqueous electrolyte and the silicon particles is likely to be suppressed.
  • the composite material is preferably in the form of particles.
  • the average particle size of the composite material particles is, for example, 1 ⁇ m or more and 25 ⁇ m or less, and may be 4 ⁇ m or more and 15 ⁇ m or less. In the above particle size range, stress due to volume change of the composite material due to charge / discharge can be easily relaxed, and good cycle characteristics can be easily obtained.
  • the surface area of the composite material particles is also moderate, and the volume decrease due to the side reaction with the non-aqueous electrolyte is suppressed.
  • the average particle size of the composite material particles means the particle size (volume average particle size) at which the volume integration value is 50% in the particle size distribution measured by the laser diffraction scattering method.
  • the measuring device for example, "LA-750" manufactured by HORIBA, Ltd. (HORIBA) can be used.
  • At least a part of the surface of the composite material may be covered with a conductive layer. This enhances the conductivity of the composite material. It is preferable that the conductive layer is thin enough not to affect the average particle size of the composite material particles.
  • the thickness of the conductive layer is preferably 1 nm or more and 200 nm or less, more preferably 5 nm or more and 100 nm or less, in consideration of ensuring conductivity and diffusivity of lithium ions.
  • the thickness of the conductive layer can be measured by observing the cross section of the composite material using SEM or TEM.
  • the method for producing the negative electrode material is, for example, a first step of obtaining a raw material silicate containing an element E1 and a rare earth element, and combining the raw material silicate and the raw material silicon, and containing silicon particles and a rare earth element in the silicate phase containing the element E1.
  • the composite intermediate is heat-treated to increase the crystallinity of the silicate containing a rare earth element, and silicon particles and rare earth elements are contained in the silicate phase containing the element E1.
  • a third step of obtaining a composite material in which the crystal phase of the silicate is dispersed is included.
  • the first step is, for example, step 1a of mixing silicon dioxide, a compound containing the element E1 and a compound containing a rare earth element to obtain a mixture, and firing the mixture to prepare a raw material silicate containing the element E1 and a rare earth element.
  • the step 1b of obtaining is included.
  • the firing of step 1b is performed, for example, in an oxidizing atmosphere.
  • the firing temperature in step 1b is preferably 400 ° C. or higher and 1200 ° C. or lower, and more preferably 800 ° C. or higher and 1100 ° C. or lower.
  • a silicate containing the element E1 and a silicate containing a rare earth element may be obtained individually.
  • Examples of the compound containing the element E1 include carbonates, oxides, hydroxides, and hydrides of the element E1.
  • examples of the lithium compound include lithium carbonate, lithium oxide, lithium hydroxide, lithium hydride and the like.
  • the compound containing the element E1 one type may be used alone, or two or more types may be used in combination.
  • Examples of compounds containing rare earth elements include oxides, oxalates, nitrates, sulfates, halides, carbonates, etc. of rare earth elements.
  • examples of the lanthanum compound include lanthanum oxide and the like.
  • the compound containing a rare earth element one kind may be used alone, or two or more kinds may be used in combination.
  • a composite intermediate containing a silicate phase containing the element E1, silicon particles dispersed in the silicate phase, and silicates of a rare earth element dispersed in the silicate phase is obtained.
  • the silicate of the rare earth element is dispersed together with the silicon particles in the matrix of the silicate containing the element E1 in the composite intermediate.
  • silicates containing the element E1 having low crystallinity and silicates of rare earth elements can be formed in the composite intermediate.
  • the silicate containing the element E1 and the rare earth element and the raw material silicon may be combined, or the silicate containing the element E1 and the silicate containing the rare earth element and the raw material silicon may be combined. ..
  • the raw material silicon coarse particles of silicon having an average particle size of several ⁇ m to several tens of ⁇ m may be used.
  • the finally obtained silicon particles should be controlled so that the crystallite size calculated by Scheller's equation from the half width of the diffraction peak attributed to the Si (111) plane of the X-ray diffraction pattern is 10 nm or more. Is preferable.
  • the second step is, for example, step 2a of crushing the mixture while applying a shearing force to the mixture of the raw material silicate and the raw material silicon to obtain a finely divided mixture, and firing the finely divided mixture to form a composite intermediate. 2b, and the like.
  • the crystallinity of the element E1 silicate and the rare earth element silicate is low.
  • the raw material silicate and the raw material silicon may be mixed at a predetermined mass ratio, and the mixture may be stirred while being made into fine particles using a pulverizer such as a ball mill.
  • a pulverizer such as a ball mill.
  • the step 2a is not limited to this.
  • silicon nanoparticles and raw material silicate nanoparticles may be synthesized and mixed without using a pulverizer.
  • the mixture may be fired while applying pressure to the mixture by hot pressing or the like to prepare a sintered body (composite intermediate) of the mixture.
  • the sintered body may then be pulverized to granules to form particles of the composite intermediate.
  • the pulverization conditions for example, particles of a composite intermediate having an average particle size of 1 to 25 ⁇ m can be obtained.
  • step 2b is performed, for example, in an inert atmosphere (for example, an atmosphere of argon, nitrogen, etc.).
  • the firing temperature in step 2b is preferably 450 ° C. or higher and 1000 ° C. or lower.
  • fine silicon particles are easily dispersed in the silicate phase having low crystallinity. Further, since the raw material silicate is stable in the above temperature range and hardly reacts with silicon, the capacity decrease is slight even if it occurs.
  • a compound containing the element E2 may be further added in the first step or the second step.
  • the compound containing the element E2 include oxides, oxalates, nitrates, sulfates, halides and carbonates of the element E2. Above all, the oxide is preferable in that it is stable and has good ionic conductivity.
  • the compound containing the element E2 one type may be used alone, or two or more types may be used in combination.
  • the third step In the third step, a predetermined heat treatment is applied to the composite intermediate. At this time, the crystallinity of the silicate of the rare earth element dispersed in the silicate phase is improved, and the crystal phase of the silicate of the rare earth element is formed. Since the rare earth element cuts the silicate skeleton to form an ionic bond, it easily becomes a stable crystalline rare earth silicate by heat treatment.
  • the heat treatment temperature is preferably 550 ° C. or higher and 900 ° C. or lower, and more preferably 650 ° C. or higher and 850 ° C. or lower.
  • a silicate crystal phase of a rare earth element is likely to be formed.
  • the heat treatment temperature is 900 ° C. or lower, the crystallinity of the silicate phase of the element E1 is likely to be maintained in a low state, and the silicon particles dispersed in the silicate phase are likely to be maintained in a minute size.
  • the heat treatment time is, for example, 1 hour or more and 10 hours or less.
  • the heat treatment may be carried out in an oxidizing atmosphere or in an inert atmosphere.
  • the method for producing the negative electrode material may further include a fourth step of forming a conductive layer containing the conductive material on at least a part of the surface of the composite material.
  • the conductive material is preferably electrochemically stable, and preferably a carbon material.
  • Examples of the method of forming the conductive layer on the surface of the composite material include a method of mixing coal pitch, petroleum pitch, phenol resin and the like with composite material particles and heating and carbonizing them. The heating performed for the purpose of carbonization may also serve as the heat treatment in the third step.
  • a conductive layer containing a carbon material may be formed on the surface of the composite material particles by a CVD method using a hydrocarbon gas such as acetylene or methane as a raw material. Carbon black may be attached to the surface of the composite particles.
  • the method for producing the negative electrode material may further include a fifth step of cleaning the composite material with an acid.
  • a fifth step of cleaning the composite material with an acid For example, by washing a composite material containing lithium silicate with an acidic aqueous solution, it is possible to dissolve and remove a trace amount of a component such as Li 2 SiO 3 that may occur when the raw material silicon and lithium silicate are composited. it can.
  • an aqueous solution of an inorganic acid such as hydrochloric acid, hydrofluoric acid, sulfuric acid, nitric acid, phosphoric acid or carbonic acid, or an aqueous solution of an organic acid such as citric acid or acetic acid can be used.
  • FIG. 1 is a diagram schematically showing a cross section of a negative electrode material (composite material 11).
  • the composite material 11 is in the form of particles, and is composed of the silicate phase 12 of the element E1, the silicon (elemental Si) particles 13 dispersed in the silicate phase 12, and the silicate of the rare earth element dispersed in the silicate phase 12. It includes a crystal phase 14. As shown in FIG. 1, at least a part of the surface of the particulate composite material 11 may be covered with the conductive layer 15 containing the conductive material.
  • the composite material 11 has, for example, a sea-island structure, and in an arbitrary cross section, the fine silicon particles 13 and the crystal phase 14 are substantially uniformly pointed in the matrix of the silicate phase 12 without being unevenly distributed in a part of the region. Exists. Many of the crystal phases 14 are larger in size than the silicon particles 13.
  • the silicate phase 12 is preferably composed of finer particles than the silicon particles 13.
  • the intensity of the diffraction peak attributed to the (111) plane of the elemental Si is larger than the intensity of the diffraction peak attributed to the (111) plane of the silicate of the element E1. ..
  • the silicate phase 12 may further contain the element E2. Further, the silicate phase 12 may contain SiO 2 as much as a natural oxide film formed on the surface of the silicon particles.
  • the non-aqueous electrolyte secondary battery includes a positive electrode, a negative electrode, and a non-aqueous electrolyte, and the negative electrode includes the above-mentioned negative electrode material for a non-aqueous electrolyte secondary battery.
  • the non-aqueous electrolyte secondary battery will be described in detail below.
  • the negative electrode may include a negative electrode current collector and a negative electrode mixture layer supported on the surface of the negative electrode current collector.
  • the negative electrode mixture layer can be formed by applying a negative electrode slurry in which the negative electrode mixture is dispersed in a dispersion medium to the surface of the negative electrode current collector and drying it. The dried coating film may be rolled if necessary.
  • the negative electrode mixture layer may be formed on one surface of the negative electrode current collector, or may be formed on both surfaces.
  • the negative electrode mixture contains a negative electrode active material as an essential component, and can include a binder, a conductive agent, a thickener, and the like as optional components.
  • a negative electrode active material as an essential component, and can include a binder, a conductive agent, a thickener, and the like as optional components.
  • the above-mentioned negative electrode material (composite material) is used as the negative electrode active material.
  • the negative electrode active material preferably further contains a carbon material that electrochemically occludes and releases lithium ions. Since the volume of the composite material expands and contracts with charging and discharging, if the ratio of the composite material to the negative electrode active material increases, poor contact between the negative electrode active material and the negative electrode current collector tends to occur with charging and discharging. On the other hand, by using the composite material and the carbon material in combination, it is possible to achieve excellent cycle characteristics while imparting a high capacity of silicon particles to the negative electrode. From the viewpoint of increasing the capacity and improving the cycle characteristics, the ratio of the carbon material to the total of the silicon-containing material and the carbon material is preferably 98% by mass or less, more preferably 70% by mass or more and 98% by mass or less. Yes, more preferably 75% by mass or more and 95% by mass or less.
  • Examples of the carbon material include graphite, easily graphitized carbon (soft carbon), and non-graphitized carbon (hard carbon). Of these, graphite, which has excellent charge / discharge stability and a small irreversible capacity, is preferable.
  • Graphite means a material having a graphite-type crystal structure, and includes, for example, natural graphite, artificial graphite, graphitized mesophase carbon particles, and the like. As the carbon material, one type may be used alone, or two or more types may be used in combination.
  • the negative electrode current collector a non-perforated conductive substrate (metal foil, etc.) and a porous conductive substrate (mesh body, net body, punching sheet, etc.) are used.
  • the material of the negative electrode current collector include stainless steel, nickel, nickel alloy, copper, and copper alloy.
  • the thickness of the negative electrode current collector is not particularly limited, but is preferably 1 to 50 ⁇ m, more preferably 5 to 20 ⁇ m, from the viewpoint of balancing the strength and weight reduction of the negative electrode.
  • resin materials such as fluororesins such as polytetrafluoroethylene and polyvinylidene fluoride (PVDF); polyolefin resins such as polyethylene and polypropylene; polyamide resins such as aramid resin; polyimide resins such as polyimide and polyamideimide Acrylic resin such as polyacrylic acid, methyl polyacrylic acid, ethylene-acrylic acid copolymer; vinyl resin such as polyacrylonitrile and polyvinyl acetate; polyvinylpyrrolidone; polyether sulfone; styrene-butadiene copolymer rubber (SBR) Such as rubber-like material can be exemplified.
  • the binder one type may be used alone, or two or more types may be used in combination.
  • the conductive agent examples include carbons such as acetylene black; conductive fibers such as carbon fibers and metal fibers; carbon fluoride; metal powders such as aluminum; conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; organic conductive materials such as phenylene derivatives can be exemplified.
  • carbons such as acetylene black
  • conductive fibers such as carbon fibers and metal fibers
  • carbon fluoride metal powders such as aluminum
  • conductive whiskers such as zinc oxide and potassium titanate
  • Conductive metal oxides such as titanium oxide
  • organic conductive materials such as phenylene derivatives can be exemplified.
  • the conductive agent one type may be used alone, or two or more types may be used in combination.
  • the thickener examples include carboxymethyl cellulose (CMC) and its modified product (including salts such as Na salt), cellulose derivatives such as methyl cellulose (cellulose ether and the like); and ken, which is a polymer having a vinyl acetate unit such as polyvinyl alcohol.
  • CMC carboxymethyl cellulose
  • cellulose ether and the like examples include ken, which is a polymer having a vinyl acetate unit such as polyvinyl alcohol.
  • Compounds; Examples thereof include polyethers (polyalkylene oxides such as polyethylene oxide) and the like.
  • One type of thickener may be used alone, or two or more types may be used in combination.
  • the dispersion medium is not particularly limited, and examples thereof include water, alcohols such as ethanol, ethers such as tetrahydrofuran, amides such as dimethylformamide, N-methyl-2-pyrrolidone (NMP), and mixed solvents thereof. ..
  • the positive electrode may include a positive electrode current collector and a positive electrode mixture layer supported on the surface of the positive electrode current collector.
  • the positive electrode mixture layer can be formed by applying a positive electrode slurry in which a positive electrode mixture is dispersed in a dispersion medium to the surface of a positive electrode current collector and drying it. The dried coating film may be rolled if necessary.
  • the positive electrode mixture layer may be formed on one surface of the positive electrode current collector, or may be formed on both surfaces.
  • the positive electrode mixture contains a positive electrode active material as an essential component, and may contain a binder, a conductive agent, and the like as optional components. NMP or the like is used as the dispersion medium for the positive electrode slurry.
  • a lithium-containing composite oxide can be used as the positive electrode active material.
  • a lithium-containing composite oxide can be used as the positive electrode active material.
  • Me is Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, It is at least one selected from the group consisting of Al, Cr, Pb, Sb, and B).
  • a 0 to 1.2
  • b 0 to 0.9
  • c 2.0 to 2.3.
  • the value a which indicates the molar ratio of lithium, increases or decreases with charge and discharge.
  • Li a Ni b Me 1-b O 2 (Me is at least one selected from the group consisting of Mn, Co and Al, 0 ⁇ a ⁇ 1.2, 0.3 ⁇ b ⁇
  • the binder and the conductive agent the same ones as those exemplified for the negative electrode can be used.
  • the conductive agent graphite such as natural graphite or artificial graphite may be used.
  • the shape and thickness of the positive electrode current collector can be selected from the shape and range according to the negative electrode current collector.
  • Examples of the material of the positive electrode current collector include stainless steel, aluminum, aluminum alloy, and titanium.
  • the non-aqueous electrolyte contains a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent.
  • the concentration of the lithium salt in the non-aqueous electrolyte is preferably, for example, 0.5 mol / L or more and 2 mol / L or less. By setting the lithium salt concentration in the above range, a non-aqueous electrolyte having excellent ionic conductivity and an appropriate viscosity can be obtained.
  • the lithium salt concentration is not limited to the above.
  • cyclic carbonate ester for example, cyclic carbonate ester, chain carbonate ester, cyclic carboxylic acid ester, chain carboxylic acid ester and the like are used.
  • cyclic carbonate examples include propylene carbonate (PC) and ethylene carbonate (EC).
  • chain carbonic acid ester examples include diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC).
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • examples of the cyclic carboxylic acid ester include ⁇ -butyrolactone (GBL) and ⁇ -valerolactone (GVL).
  • chain carboxylic acid ester examples include methyl formate, ethyl formate, propyl formate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate and the like.
  • the non-aqueous solvent one type may be used alone, or two or more types may be used in combination.
  • lithium salt examples include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiB 10 Cl 10 , LiB 10 Cl 10 , LiCl. , LiBr, LiI, borates, imide salts and the like.
  • borates include bis (1,2-benzenediorate (2-) -O, O') lithium borate and bis (2,3-naphthalenedioleate (2-) -O, O') boric acid.
  • imide salts include bisfluorosulfonylimide lithium (LiN (FSO 2 ) 2 ), imidelithium bistrifluoromethanesulfonate (LiN (CF 3 SO 2 ) 2 ), and imidelithium nonafluorobutanesulfonate trifluoromethanesulfonate (LiN).
  • LiPF 6 is preferable. LiPF 6 tends to form a passivation film on the surface of a battery component such as a positive electrode current collector.
  • the passivation membrane can protect the member.
  • One type of lithium salt may be used alone, or two or more types may be used in combination.
  • Separator usually, it is desirable to interpose a separator between the positive electrode and the negative electrode.
  • the separator has high ion permeability and has appropriate mechanical strength and insulating property.
  • a microporous thin film, a woven fabric, a non-woven fabric or the like can be used.
  • polyolefins such as polypropylene and polyethylene are preferable.
  • Non-aqueous electrolyte secondary battery is a group of electrodes in which a positive electrode and a negative electrode are wound around a separator, and a structure in which a non-aqueous electrolyte is housed in an exterior body.
  • a winding type electrode group instead of the winding type electrode group, another form of electrode group such as a laminated type electrode group in which a positive electrode and a negative electrode are laminated via a separator may be applied.
  • the non-aqueous electrolyte secondary battery may be in any form such as a cylindrical type, a square type, a coin type, a button type, and a laminated type.
  • FIG. 2 is a schematic perspective view in which a part of the non-aqueous electrolyte secondary battery according to the embodiment of the present invention is cut out.
  • the battery includes a bottomed square battery case 4, an electrode group 1 housed in the battery case 4, and a non-aqueous electrolyte (not shown).
  • the electrode group 1 has a long strip-shaped negative electrode, a long strip-shaped positive electrode, and a separator that is interposed between them and prevents direct contact.
  • the electrode group 1 is formed by winding a negative electrode, a positive electrode, and a separator around a flat plate-shaped winding core and pulling out the winding core.
  • One end of the negative electrode lead 3 is attached to the negative electrode current collector of the negative electrode by welding or the like.
  • the other end of the negative electrode lead 3 is electrically connected to the negative electrode terminal 6 provided on the sealing plate 5 via a resin insulating plate (not shown).
  • the negative electrode terminal 6 is insulated from the sealing plate 5 by a resin gasket 7.
  • One end of the positive electrode lead 2 is attached to the positive electrode current collector of the positive electrode by welding or the like.
  • the other end of the positive electrode lead 2 is connected to the back surface of the sealing plate 5 via an insulating plate. That is, the positive electrode lead 2 is electrically connected to the battery case 4 that also serves as the positive electrode terminal.
  • the insulating plate separates the electrode group 1 and the sealing plate 5, and also separates the negative electrode lead 3 and the battery case 4.
  • the peripheral edge of the sealing plate 5 is fitted to the open end portion of the battery case 4, and the fitting portion is laser welded. In this way, the opening of the battery case 4 is sealed with the sealing plate 5.
  • the non-aqueous electrolyte injection hole provided in the sealing plate 5 is closed by the sealing 8.
  • the elements shown in Table 1 were used as the element X.
  • the elements X were Li, Na, and K, Li 2 CO 3 , Na 2 CO 3 , and K 2 CO 3 were used as the compounds containing the element X.
  • the element X was Ca and Mg, CaCO 3 and MgCO 3 were used as the compound containing the element X.
  • the element X was P, B, Al, and La, P 2 O 5 , B 2 O 3 , Al 2 O 3 , and La 2 O 3 were used as the compounds containing the element X.
  • the amount of the compound containing the element X was adjusted so that the content of the element X in the negative electrode material obtained in the third step would be the value shown in Table 1.
  • the content of element X in the negative electrode material in Table 1 indicates the mass ratio to the total amount of elements other than oxygen.
  • the powdery mixture was taken out in the inert atmosphere and fired at 600 ° C. for 4 hours in the inert atmosphere under the pressure of a hot press to obtain a sintered body (composite intermediate) of the mixture.
  • a sintered body composite intermediate
  • Got The obtained composite intermediate was pulverized and passed through a 40 ⁇ m mesh to obtain particles of the composite intermediate.
  • Comparative Example 1 the particles of the composite intermediate were not subjected to the above heat treatment (third step), and particles of the composite intermediate having an average particle size of 5 ⁇ m were obtained using a sieve and used as the negative electrode material b1.
  • the crystallite size of the silicon particles in the composite material obtained by the above-mentioned method was 15 nm.
  • the silicon content (total of silicon particles and silicon contained in the silicate phase) in the composite material obtained by the above-mentioned method was 93.3% by mass.
  • the negative electrode materials a1 to a4 it was confirmed by X-ray diffraction measurement and electron diffraction measurement that a crystal phase of La 2 Si 2 O 7 was formed.
  • the surface spacing determined based on the diffraction point data obtained from the electron diffraction measurement is 2.6 ⁇ to 2.75 ⁇ , 3.6 ⁇ to 3.7 ⁇ , 5.2 ⁇ to 5.3 ⁇ and 7.3 ⁇ . It was ⁇ 7.4 ⁇ .
  • the equivalent circle diameter of the crystal phase of La 2 Si 2 O 7 determined by the method described above was within the range of 10 nm or more and 1.0 ⁇ m or less.
  • the ratio of the intensity I1 of the first diffraction peak to the intensity I2 of the second diffraction peak: I1 / I2 was 0.25 or less.
  • the negative electrode material and graphite were mixed at a mass ratio of 5:95 and used as the negative electrode active material.
  • the negative electrode active material, sodium carboxymethyl cellulose (CMC-Na), and styrene-butadiene rubber (SBR) are mixed at a mass ratio of 97.5: 1: 1.5, water is added, and then the mixer (
  • a negative electrode slurry was prepared by stirring using a TK hibis mix manufactured by Primix Corporation.
  • a negative electrode slurry is applied to the surface of the copper foil so that the mass of the negative electrode mixture per 1 m 2 is 190 g, the coating film is dried, and then rolled to obtain a density of 1.
  • a negative electrode having a negative electrode mixture layer of 5 g / cm 3 formed was produced.
  • Lithium cobalt oxide, acetylene black, and polyvinylidene fluoride are mixed in a mass ratio of 95: 2.5: 2.5, N-methyl-2-pyrrolidone (NMP) is added, and then a mixer (Primix) is added.
  • NMP N-methyl-2-pyrrolidone
  • a positive positive slurry was prepared by stirring using a TK hibismix manufactured by KK.
  • a positive electrode slurry is applied to the surface of the aluminum foil, the coating film is dried, and then rolled to obtain a positive electrode having a positive electrode mixture layer having a density of 3.6 g / cm 3 formed on both sides of the aluminum foil. Made.
  • a non-aqueous electrolyte was prepared by dissolving LiPF 6 at a concentration of 1.0 mol / L in a mixed solvent containing ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 3: 7.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • a tab was attached to each electrode, and the positive electrode and the negative electrode were spirally wound via a separator so that the tab was located at the outermost peripheral portion to prepare an electrode group.
  • the electrode group was inserted into an aluminum laminate film outer body, vacuum dried at 105 ° C. for 2 hours, then a non-aqueous electrolyte was injected, and the opening of the outer body was sealed to obtain a battery.
  • the negative electrode materials a1 to a4 and b1 to b5 were used to obtain batteries A1 to A4 of Examples 1 to 4 and batteries B1 to B5 of Comparative Examples 1 to 5, respectively.
  • the following cycle test was performed on each of the obtained batteries.
  • the pause period between charging and discharging was set to 10 minutes. Charging and discharging was performed in an environment of 25 ° C.
  • the ratio of the discharge capacity of the first cycle to the charge capacity of the first cycle was calculated as the initial charge / discharge efficiency.
  • the initial charge / discharge efficiency is shown as a relative value with the value of the initial charge / discharge efficiency obtained in the battery B1 of Comparative Example 1 as 100.
  • the ratio of the discharge capacity at the 100th cycle to the discharge capacity at the first cycle was calculated as the cycle capacity retention rate.
  • the cycle capacity retention rate is shown as a relative value with the value of the cycle capacity retention rate obtained from the battery B1 of Comparative Example 1 as 100.
  • the crystallinity of La 2 Si 2 O 7 dispersed in the silicate phase was low, so that the initial charge / discharge efficiency was lowered.
  • the initial charge / discharge efficiency was lowered.
  • the non-aqueous electrolyte secondary battery according to the present invention is useful as a main power source for mobile communication devices, portable electronic devices, and the like.
  • Electrode group 2 Positive electrode lead 3 Negative electrode lead 4 Battery case 5 Seal plate 6 Negative terminal 7 Gasket 8 Sealing 11
  • Composite material 12 Element E1 silicate phase 13 Silicon particles 14 Rare earth element silicate crystal phase 15 Conductive layer

Abstract

非水電解質二次電池用負極材料は、シリケート相と、シリケート相内に分散しているシリコン粒子と、シリケート相内に分散している結晶相と、を備える。シリケート相は、アルカリ金属元素および第2族元素からなる群より選択される少なくとも1種の元素E1を含む。結晶相は、希土類元素と、ケイ素と、酸素と、を含む。

Description

非水電解質二次電池用負極材料および非水電解質二次電池
 本発明は、主として、非水電解質二次電池の負極の改良に関する。
 非水電解質二次電池、特にリチウムイオン二次電池は、高電圧かつ高エネルギー密度を有するため、小型民生用途、電力貯蔵装置および電気自動車の電源として期待されている。電池の高エネルギー密度化が求められる中、理論容量密度の高い負極活物質として、リチウムと合金化するケイ素(シリコン)を含む材料の利用が期待されている。
 特許文献1では、非水電解質二次電池において、Li2zSiO2+z(0<z<2)で表されるリチウムシリケート相と、リチウムシリケート相内に分散しているシリコン粒子と、を備える負極活物質を用いることが提案されている。
国際公開第2016/35290号
 特許文献1に記載の負極活物質は、SiO相内に微小シリコンが分散している複合物(SiO)に比べて、充放電に伴う不可逆容量が小さく、初期の充放電効率の向上に有利である。
 しかし、携帯電子機器等の性能の向上に伴い、初期の充放電効率の更なる向上が求められている。
 以上に鑑み、本発明の一側面は、シリケート相と、前記シリケート相内に分散しているシリコン粒子と、前記シリケート相内に分散している結晶相と、を備え、前記シリケート相は、アルカリ金属元素および第2族元素からなる群より選択される少なくとも1種の元素E1を含み、前記結晶相は、希土類元素と、ケイ素と、酸素と、を含む、非水電解質二次電池用負極材料に関する。
 本発明の別の側面は、正極と、負極と、非水電解質と、を備え、前記負極は、上記の非水電解質二次電池用負極材料を含む、非水電解質二次電池に関する。
 本発明によれば、非水電解質二次電池の初期の充放電効率を高めることができる。
本発明の一実施形態に係る負極材料の断面を模式的に示す図である。 本発明の一実施形態に係る非水電解質二次電池の一部を切欠いた概略斜視図である。
 [非水電解質二次電池用負極材料]
 本発明の実施形態に係る非水電解質二次電池用負極材料(以下、複合材料とも称する。)は、元素E1を含むシリケート相(単にシリケート相とも称する。)と、シリケート相内に分散しているシリコン粒子と、を備える。元素E1は、アルカリ金属元素および第2族元素からなる群より選択される少なくとも1種である。シリケート相内には、更に、希土類元素と、ケイ素(Si)と、酸素(O)と、を含む結晶相(単に結晶相とも称する。)が分散している。
 シリケート相のマトリックス中に、リチウムイオンとの反応性が低い結晶相を分散させることで、シリケート相内においてリチウムイオンと反応し得るサイトが減少し、不可逆容量が減少し、初期の充放電効率が高められる。結晶相をシリケート相のマトリックス中に分散させるために、負極材料の製造過程でシリケート相中に結晶相を生成させてもよい。この場合、リチウムイオンと反応し得るサイトをより効率的に減少させ得る。
 元素E1を含むシリケート相のマトリックス中に希土類元素とケイ素と酸素とを含む結晶相が分散している場合、初期の充放電効率が大幅に向上する。その詳細な理由は明らかでないが、希土類元素とケイ素と酸素とを含む結晶相は、特にリチウムイオンとの反応性が低くリチウムイオンを吸蔵しにくいため、充放電の初期において副反応を大幅に軽減でき、初期の充放電効率が大幅に向上するものと推測される。
 結晶相は、結晶性の高い希土類元素のシリケートにより形成される。希土類元素のシリケートの結晶性が高い場合、Cu-Kα線を用いたX線回折測定により得られる複合材料のX線回折パターンにおいて、例えば回折角2θ=33°付近に半値幅が0.75°以下の回折ピークが観測される。
 希土類元素のシリケートの結晶性は高いほど望ましい。この場合、結晶相のリチウムイオン等のイオンとの反応性がより低減されることに加え、リチウムイオン伝導性が向上することにより、放電時の抵抗が軽減され、初期の充放電効率が向上しやすい。
 本明細書中、半値幅とは、半値全幅(FWHM)を意味する。また、本明細書中、回折ピークが観測される位置について、D°付近とは、D-0.5°超、D+0.5°未満の範囲内であることを意味する。
 複合材料において、希土類元素の含有量は、酸素以外の元素の総量に対して、好ましくは0.2質量%以上、21質量%以下であり、より好ましくは2.4質量%以上、15質量%以下であり、更に好ましくは5.5質量%以上、14質量%以下である。複合材料中の希土類元素の含有量が、酸素以外の元素の総量に対して0.2質量%以上である場合、初期の充放電効率の向上効果が得られ易い。複合材料中の希土類元素の含有量が、酸素以外の元素の総量に対して21質量%以下である場合、複合材料において元素E1のシリケート相が確保され易い。複合材料中に結晶性の低い元素E1のシリケート相が十分に存在する場合、複合材料内において、リチウムイオン伝導性が向上し易く、シリコン粒子の膨張および収縮に伴い生じる応力が緩和され易い。
 複合材料中の希土類元素の含有量は、例えば、以下の方法により求めることができる。
 電池を分解し、負極を取り出し、エチレンカーボネート等の非水溶媒で洗浄し、乾燥した後、クロスセクションポリッシャー(CP)により負極合剤層の断面加工を行い、試料を得る。電界放射型走査型電子顕微鏡(FE-SEM)を用いて、試料断面の反射電子像を得、複合材料粒子の断面を観察する。オージェ電子分光(AES)分析装置(日本電子社製、JAMP-9510F)を用いて、観察された複合材料粒子の断面中央部の一定の領域について元素の定性定量分析を行う(加速電圧10kV、ビーム電流10nA、分析領域20μmφ)。上記分析の結果に基づいて、複合材料粒子中の希土類元素の含有量(複合材料粒子に含まれる酸素以外の元素の総質量に占める希土類元素の質量の割合)を求める。観察した10個の複合材料粒子に対して分析を行い、希土類元素の含有量の平均値を求める。
 希土類元素は、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)およびネオジム(Nd)からなる群より選択される少なくとも1種を含むことが好ましい。リチウムイオン伝導性の向上の観点から、中でも、希土類元素はLaを含むことがより好ましい。希土類元素全体に占めるLaの割合は、90原子%以上、100原子%以下が好ましい。
 結晶相は、例えば、一般式:M・ySiOで表される組成を有し得る。yは、例えば、1.0~2.0である。Mは、希土類元素である。構造の安定性が高く、電解液に溶出しにくいことから、結晶相は、一般式:MSi(Mは希土類元素)で表される化合物Aを含むことが好ましい。充放電時も構造が変化せず安定に存在することから、中でも、LaSiがより好ましい。結晶相がMSi(Mは希土類元素)で表される化合物Aを含む場合、結晶相の結晶構造は、単斜晶、正方晶および三斜晶からなる群より選択される少なくとも一種を含む。
 元素E1のシリケート相のマトリックス中に希土類元素とケイ素と酸素とを含む結晶相が分散していることは、走査型電子顕微鏡(SEM)または透過型電子顕微鏡(TEM)を用いて得られる複合材料の断面画像(反射電子像)を観察することにより確認することができる。シリケート相内に分散している結晶相の円相当径は、例えば、10nm以上、1μm以下である。結晶相の円相当径は、SEMまたはTEMにより得られる複合材料の断面画像(反射電子像)を用いて求められる。具体的には、100個の結晶相の面積を相当円の直径に変換し、平均することで求められる。
 希土類元素とケイ素と酸素とを含む結晶相は、Cu-Kα線を用いたX線回折測定により確認することができる。例えば、シリケート相に化合物Aの結晶相が分散している場合、複合材料のX線回折パターンにおいて、回折角2θ=26°、27°、28°および33°付近に、化合物Aに帰属される回折ピークが観測される。
 また、希土類元素とケイ素と酸素とを含む結晶相は、フィールドエミッション透過型電子顕微鏡(日本電子社製、JEM2100F、加速電圧200kV、加速電流110μA)を用いて電子線回折測定により確認してもよい。電子線回折測定により得られる回折点のデータ(中心点からの距離)に基づいて、化合物Aに帰属される面間隔および結晶構造を求めることができる。得られた面間隔および結晶構造と、エネルギー分散型X線分析(EDX)により得られる結晶相に含まれる元素に基づいて結晶相の組成を特定することができる。
 また、シリケート相にシリコン粒子および化合物Aの結晶相が分散している場合、複合材料のX線回折パターンにおいて、回折角2θ=33°および29°付近に、それぞれ化合物Aに帰属される第1回折ピークおよびシリコン粒子に帰属される第2回折ピークが観測される。第2回折ピークは、Siの(111)面の回折ピークである。
 第2回折ピークの強度I2に対する第1回折ピークの強度I1の比:I1/I2は、0.25以下であることが好ましい。この場合、シリケート相内にシリコン粒子および化合物Aの結晶相がバランス良く分散しており、負極を高容量化し易いとともに初期の充放電効率を高め易い。
 化合物Aに帰属される回折ピークは、化合物Aの結晶構造に依存し、単斜晶の場合、(20-2)面、(122)面、(113)面、(03-2)面または(11-5)面の回折ピークを含む。正方晶の場合、(124)面または(026)面の回折ピークを含む。三斜晶の場合、(203)面の回折ピークを含む。
 化合物Aの結晶相は、少なくとも2.6Å~2.75Å、3.6Å~3.7Å、5.2Å~5.3Åおよび7.3Å~7.4Åの面間隔を有する。
 以下、複合材料について詳述する。
 元素E1を含むシリケート相は、SiOのSiO相に比べ、リチウムと反応し得るサイトが少ない。よって、複合材料はSiOと比べて充放電に伴う不可逆容量を生じ難く、初期の充放電効率が高い。また、シリコン粒子の含有量を任意に変化させることができるため、高容量の負極を設計することができる。
 元素E1のシリケート相は、後述する負極材料の作製方法により、非晶質または非晶質に近い相を形成し得る。複合粒子のリチウムイオン伝導性の向上、充放電時のシリコン粒子の膨張収縮により生じる応力の緩和、および複合材料の粒子割れ抑制の観点から、シリケート相のマトリックスの結晶性は低いことが好ましい。Cu-Kα線を用いたX線回折測定により得られる複合材料のX線回折パターンにおいて、元素E1のシリケートの(111)面の回折ピークの半値幅は、例えば0.05°以上であり、0.5°以上でもよい。
 シリケート相は、元素E1のシリケートを含む。元素E1は、アルカリ金属元素(長周期型周期表の水素以外の第1族元素)および長周期型周期表の第2族元素の少なくとも一方を含む。アルカリ金属元素は、リチウム(Li)、カリウム(K)、ナトリウム(Na)等を含む。第2族元素は、マグネシウム(Mg)、カルシウム(Ca)、バリウム(Ba)等を含む。元素E1は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 シリケート相は、更に、元素E2を含んでもよい。元素E2は、ジルコニウム(Zr)、ニオブ(Nb)、タンタル(Ta)、バナジウム(V)、チタン(Ti)、リン(P)、ビスマス(Bi)、亜鉛(Zn)、スズ(Sn)、鉛(Pb)、アンチモン(Sb)、コバルト(Co)、フッ素(F)、タングステン(W)、アルミニウム(Al)、ホウ素(B)等を含むことができる。元素E2は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。シリケート相が元素E2を含むことにより、複合材料の化学的安定性やリチウムイオン伝導性等が向上する。シリケート相と非水電解質との接触による副反応が抑制される。耐電解液性および構造安定性の観点より、元素E2は、Zr、Ti、P、AlおよびBからなる群より選択される少なくとも1種であることが好ましい。元素E2は、化合物を形成していてもよい。当該化合物は、元素E2の種類に応じて、例えば、元素E2のシリケートでもよく、元素E2の酸化物でもよい。
 また、シリケート相は、更に、鉄(Fe)、クロム(Cr)、ニッケル(Ni)、マンガン(Mn)、銅(Cu)、モリブデン(Mo)等の他の元素を微量含んでもよい。
 シリケート相は、例えば、リチウム(Li)と、ケイ素(Si)と、酸素(O)とを含むリチウムシリケート相を含む。リチウムシリケート相におけるSiに対するOの原子比:O/Siは、例えば、2超4未満である。O/Siが2超4未満(後述の式中のzが0<z<2)の場合、安定性やリチウムイオン伝導性の面で有利である。好ましくは、O/Siが2超3未満(後述の式中のzが0<z<1)である。リチウムシリケート相におけるSiに対するLiの原子比:Li/Siは、例えば、0超4未満である。
 リチウムシリケート相は、式:Li2zSiO2+z(0<z<2)で表される組成を有し得る。安定性、作製容易性、リチウムイオン伝導性等の観点から、zは、0<z<1の関係を満たすことが好ましく、z=1/2がより好ましい。
 複合材料のシリケート相の組成は、例えば、以下の方法により分析することができる。
 電池を分解し、負極を取り出し、エチレンカーボネート等の非水溶媒で洗浄し、乾燥した後、クロスセクションポリッシャー(CP)により負極合剤層の断面加工を行い、試料を得る。電界放射型走査型電子顕微鏡(FE-SEM)を用いて、試料断面の反射電子像を得、複合材料粒子の断面を観察する。オージェ電子分光(AES)分析装置(日本電子社製、JAMP-9510F)を用いて、観察された複合材料粒子のシリケート相について元素の定性定量分析を行う(加速電圧10kV、ビーム電流10nA、分析領域20μmφ)。例えば、得られた元素E1(Li等)、シリコン(Si)、酸素(O)、他の元素の含有量に基づいて、シリケート相の組成を求める。また、放電状態における複合材料中の各元素の定量は、エネルギー分散型X線分析(EDX)、電子マイクロアナライザー(EPMA)、レーザアブレーションICP質量分析(LA-ICP-MS)、X線光電子分光分析(XPS)等を用いて行うことができる。
 上記の試料の断面観察や分析では、Liの拡散を防ぐため、試料の固定にはカーボン試料台を用いればよい。試料断面を変質させないため、試料を大気に曝すことなく保持搬送するトランスファーベッセルを使用すればよい。
 シリケート相内に分散しているシリコン粒子は、ケイ素(Si)単体の粒子状の相を有し、通常は、複数の結晶子で構成される。シリコン粒子の結晶子サイズは、30nm以下であることが好ましい。シリコン粒子の結晶子サイズが30nm以下である場合、充放電に伴うシリコン粒子の膨張収縮による体積変化量を小さくでき、サイクル特性が更に高められる。例えば、シリコン粒子の収縮時にシリコン粒子の周囲に空隙が形成されて当該粒子の周囲との接点が減少することによる当該粒子の孤立が抑制され、当該粒子の孤立による充放電効率の低下が抑制される。シリコン粒子の結晶子サイズの下限値は、特に限定されないが、シリコン粒子の結晶子サイズは、例えば1nm以上である。
 また、シリコン粒子の結晶子サイズは、より好ましくは10nm以上、30nm以下であり、更に好ましくは15nm以上、25nm以下である。シリコン粒子の結晶子サイズが10nm以上である場合、シリコン粒子の表面積を小さく抑えることができるため、不可逆容量の生成を伴うシリコン粒子の劣化を生じ難い。
 シリコン粒子の結晶子サイズは、X線回折パターンのシリコン粒子(単体Si)の(111)面に帰属される回析ピークの半値幅からシェラーの式により算出される。
 複合材料は、構造安定性にも優れている。シリコン粒子はシリケート相内に分散しているため、充放電に伴う複合材料の膨張収縮が抑制される。シリコン粒子自身の亀裂を抑制する観点から、シリコン粒子の平均粒径は、初回充電前において、500nm以下が好ましく、200nm以下がより好ましく、50nm以下が更に好ましい。初回充電後においては、シリコン粒子の平均粒径は、400nm以下が好ましく、100nm以下がより好ましい。シリコン粒子を微細化することにより、充放電時の体積変化が小さくなり、複合材料の構造安定性が更に向上する。
 シリコン粒子の平均粒径は、SEMにより得られる複合材料の断面画像を用いて測定される。具体的には、シリコン粒子の平均粒径は、任意の100個のシリコン粒子の最大径を平均して求められる。
 高容量化の観点から、複合材料中のシリコン粒子の含有量は、好ましくは30質量%以上であり、より好ましくは35質量%以上であり、更に好ましくは55質量%以上である。この場合、リチウムイオンの拡散性が良好であり、優れた負荷特性を得易くなる。一方、サイクル特性の向上の観点からは、複合材料中のシリコン粒子の含有量は、好ましくは95質量%以下であり、より好ましくは75質量%以下であり、更に好ましくは70質量%以下である。この場合、シリケート相で覆われずに露出するシリコン粒子の表面が減少し、非水電解質とシリコン粒子との反応が抑制され易い。
 複合材料は粒子状であることが好ましい。複合材料粒子の平均粒径は、例えば1μm以上、25μm以下であり、4μm以上、15μm以下でもよい。上記粒径範囲では、充放電に伴う複合材料の体積変化による応力を緩和し易く、良好なサイクル特性を得易くなる。複合材料粒子の表面積も適度になり、非水電解質との副反応による容量低下も抑制される。
 複合材料粒子の平均粒径とは、レーザー回折散乱法で測定される粒度分布において、体積積算値が50%となる粒径(体積平均粒径)を意味する。測定装置には、例えば、株式会社堀場製作所(HORIBA)製「LA-750」を用いることができる。
 複合材料の表面の少なくとも一部は導電層で被覆されていてもよい。これにより、複合材料の導電性が高められる。導電層は、実質上、複合材料粒子の平均粒径に影響しない程度に薄いことが好ましい。導電層の厚さは、導電性の確保とリチウムイオンの拡散性を考慮すると、1nm以上、200nm以下が好ましく、5nm以上、100nm以下がより好ましい。導電層の厚さは、SEMまたはTEMを用いた複合材料の断面観察により計測できる。
 [負極材料の作製方法]
 負極材料の作製方法は、例えば、元素E1および希土類元素を含む原料シリケートを得る第1工程と、原料シリケートと原料シリコンとを複合化し、元素E1を含むシリケート相内にシリコン粒子および希土類元素を含むシリケートが分散している複合中間体を得る第2工程と、複合中間体に熱処理を施して希土類元素を含むシリケートの結晶性を高め、元素E1を含むシリケート相内にシリコン粒子および希土類元素を含むシリケートの結晶相が分散している複合材料を得る第3工程を含む。
 [第1工程]
 第1工程は、例えば、二酸化ケイ素と、元素E1を含む化合物と、希土類元素を含む化合物とを混合し、混合物を得る工程1aと、混合物を焼成し、元素E1および希土類元素を含む原料シリケートを得る工程1bとを含む。工程1bの焼成は、例えば、酸化雰囲気中で行われる。工程1bの焼成温度は、好ましくは400℃以上、1200℃以下であり、より好ましくは800℃以上、1100℃以下である。第1工程では、原料シリケートとして、元素E1を含むシリケートと、希土類元素を含むシリケートとを、それぞれ個別に得てもよい。
 元素E1を含む化合物としては、元素E1の炭酸塩、酸化物、水酸化物、水素化物等が挙げられる。例えば、リチウム化合物としては、炭酸リチウム、酸化リチウム、水酸化リチウム、水素化リチウム等が挙げられる。元素E1を含む化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 希土類元素を含む化合物としては、希土類元素の酸化物、シュウ酸塩、硝酸塩、硫酸塩、ハロゲン化物、炭酸塩等が挙げられる。例えば、ランタン化合物としては、酸化ランタン等が挙げられる。希土類元素を含む化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 [第2工程]
 第2工程では、元素E1を含むシリケート相と、当該シリケート相内に分散しているシリコン粒子と、当該シリケート相内に分散している希土類元素のシリケートと、を含む複合中間体が得られる。第1工程で元素E1を含む化合物と希土類元素を含む化合物の配合比を適宜調整することにより、複合中間体において、元素E1を含むシリケートのマトリックス中にシリコン粒子とともに希土類元素のシリケートを分散させることができる。第2工程では、複合中間体において、結晶性が低い元素E1を含むシリケートおよび希土類元素のシリケートを形成し得る。
 第2工程では、元素E1および希土類元素を含むシリケートと、原料シリコンと、を複合化してもよく、元素E1を含むシリケートと、希土類元素を含むシリケートと、原料シリコンと、を複合化してもよい。
 原料シリコンには、平均粒径が数μm~数十μm程度のシリコンの粗粒子を用いればよい。最終的に得られるシリコン粒子は、X線回折パターンのSi(111)面に帰属される回析ピークの半値幅からシェラーの式により算出される結晶子サイズが10nm以上になるように制御することが好ましい。
 第2工程は、例えば、原料シリケートと原料シリコンとの混合物にせん断力を付与しながら混合物を粉砕し、微粒子化された混合物を得る工程2aと、微粒子化された混合物を焼成し、複合中間体を得る工程2bと、を含む。これにより得られる複合中間体において、元素E1のシリケートおよび希土類元素のシリケートの結晶性は低い。
 工程2aでは、例えば、原料シリケートと原料シリコンとを、所定の質量比で混合し、ボールミルのような粉砕装置を用いて、混合物を微粒子化しながら攪拌すればよい。ただし、工程2aは、これに限定されない。例えば、粉砕装置を使用せず、シリコンナノ粒子と、原料シリケートナノ粒子とを合成し、これらを混合してもよい。
 工程2bでは、ホットプレス等で混合物に圧力を印加しながら焼成して、混合物の焼結体(複合中間体)を作製してもよい。焼結体は、その後、粒状物になるまで粉砕して、複合中間体の粒子とすればよい。このとき、粉砕条件を適宜選択することにより、例えば、平均粒径1~25μmの複合中間体の粒子を得ることができる。
 工程2bの焼成は、例えば、不活性雰囲気(例えば、アルゴン、窒素等の雰囲気)中で行われる。工程2bの焼成温度は、450℃以上、1000℃以下であることが好ましい。上記の温度範囲である場合、結晶性が低いシリケート相内に微小なシリコン粒子を分散させ易い。また、原料シリケートは、上記の温度範囲では安定で、シリコンとほとんど反応しないため、容量低下は生じても軽微である。
 第1工程または第2工程で、元素E2を含む化合物を更に添加してもよい。元素E2を含む化合物としては、元素E2の酸化物、シュウ酸塩、硝酸塩、硫酸塩、ハロゲン化物、炭酸塩等が挙げられる。中でも、酸化物が安定であり、かつ良好なイオン伝導性を有する点で好ましい。元素E2を含む化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 [第3工程]
 第3工程では、複合中間体に所定の熱処理を施す。このとき、シリケート相内に分散している希土類元素のシリケートの結晶性が向上し、希土類元素のシリケートの結晶相が形成される。希土類元素は、シリケート骨格を切断してイオン結合を形成しているため、熱処理により容易に安定な結晶性の希土類シリケートとなる。
 熱処理温度は、好ましくは550℃以上、900℃以下であり、より好ましくは650℃以上、850℃以下である。熱処理温度が550℃以上である場合、希土類元素のシリケートの結晶相が形成され易い。熱処理温度が900℃以下である場合、元素E1のシリケート相の結晶性は低い状態に維持され易く、シリケート相内に分散しているシリコン粒子は微小なサイズに維持され易い。熱処理時間は、例えば、1時間以上、10時間以下である。熱処理は、酸化性雰囲気中で行ってもよく、不活性雰囲気中で行ってもよい。
 [第4工程]
 負極材料の作製方法は、更に、複合材料の表面の少なくとも一部に、導電性材料を含む導電層を形成する第4工程を含んでもよい。導電性材料は、電気化学的に安定であることが好ましく、炭素材料が好ましい。複合材料の表面に導電層を形成する方法としては、例えば、石炭ピッチ、石油ピッチ、フェノール樹脂等を複合材料粒子と混合し、加熱して炭化させる方法が挙げられる。上記の炭化させる目的で行う加熱は、第3工程の熱処理を兼ねてもよい。また、アセチレン、メタン等の炭化水素ガスを原料に用いてCVD法により、複合材料粒子の表面に炭素材料を含む導電層を形成してもよい。カーボンブラックを複合材料粒子の表面に付着させてもよい。
 [第5工程]
 負極材料の作製方法は、更に、複合材料を酸で洗浄する第5工程を含んでもよい。例えば、酸性水溶液でリチウムシリケートを含む複合材料を洗浄することで、原料シリコンとリチウムシリケートとを複合化させる際に生じ得る、微量のLiSiOのような成分を溶解させ、除去することができる。酸性水溶液としては、塩酸、フッ化水素酸、硫酸、硝酸、リン酸、炭酸等の無機酸の水溶液や、クエン酸、酢酸等の有機酸の水溶液を用いることができる。
 以下、本発明の一実施形態に係る非水電解質二次電池用負極材料の一例を、図1を参照しながら説明する。図1は、負極材料(複合材料11)の断面を模式的に示す図である。
 複合材料11は、粒子状であり、元素E1のシリケート相12と、シリケート相12内に分散しているシリコン(単体Si)粒子13と、シリケート相12内に分散している希土類元素のシリケートの結晶相14と、を備える。図1に示すように、粒子状の複合材料11の表面の少なくとも一部は、導電性材料を含む導電層15で被覆されていてもよい。
 複合材料11は、例えば海島構造を有し、任意の断面において、シリケート相12のマトリックス中に、一部の領域に偏在することなく、微細なシリコン粒子13と結晶相14とが略均一に点在している。結晶相14の多くは、シリコン粒子13よりもサイズが大きい。
 シリケート相12は、シリコン粒子13よりも微細な粒子から構成されることが好ましい。この場合、負極材料のX線回折パターンにおいて、単体Siの(111)面に帰属される回折ピークの強度は、元素E1のシリケートの(111)面に帰属される回折ピークの強度よりも大きくなる。
 シリケート相12は、元素E2を更に含んでもよい。また、シリケート相12は、シリコン粒子の表面に形成される自然酸化膜程度のSiOを含んでもよい。
 [非水電解質二次電池]
 本発明の実施形態に係る非水電解質二次電池は、正極と、負極と、非水電解質と、を備え、負極は、上記の非水電解質二次電池用負極材料を含む。
 以下、非水電解質二次電池について詳細に説明する。
 [負極]
 負極は、負極集電体と、負極集電体の表面に担持された負極合剤層とを備えてもよい。負極合剤層は、負極合剤を分散媒に分散させた負極スラリーを、負極集電体の表面に塗布し、乾燥させることにより形成できる。乾燥後の塗膜を、必要により圧延してもよい。負極合剤層は、負極集電体の一方の表面に形成してもよく、両方の表面に形成してもよい。
 負極合剤は、負極活物質を必須成分として含み、任意成分として、結着剤、導電剤、増粘剤等を含むことができる。負極活物質には、上記の負極材料(複合材料)が用いられる。
 負極活物質は、更に、電気化学的にリチウムイオンを吸蔵および放出する炭素材料を含むことが好ましい。複合材料は、充放電に伴って体積が膨張収縮するため、負極活物質に占めるその比率が大きくなると、充放電に伴って負極活物質と負極集電体との接触不良が生じ易い。一方、複合材料と炭素材料とを併用することで、シリコン粒子の高容量を負極に付与しながら優れたサイクル特性を達成することが可能になる。高容量化およびサイクル特性向上の観点から、シリコン含有材料と炭素材料との合計に占める炭素材料の割合は、好ましくは98質量%以下であり、より好ましくは70質量%以上、98質量%以下であり、更に好ましくは75質量%以上、95質量%以下である。
 炭素材料としては、例えば、黒鉛、易黒鉛化炭素(ソフトカーボン)、難黒鉛化炭素(ハードカーボン)等が例示できる。中でも、充放電の安定性に優れ、不可逆容量も少ない黒鉛が好ましい。黒鉛とは、黒鉛型結晶構造を有する材料を意味し、例えば、天然黒鉛、人造黒鉛、黒鉛化メソフェーズカーボン粒子等が含まれる。炭素材料は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 負極集電体としては、無孔の導電性基板(金属箔等)、多孔性の導電性基板(メッシュ体、ネット体、パンチングシート等)が使用される。負極集電体の材質としては、ステンレス鋼、ニッケル、ニッケル合金、銅、銅合金等が例示できる。負極集電体の厚さは、特に限定されないが、負極の強度と軽量化とのバランスの観点から、1~50μmが好ましく、5~20μmがより望ましい。
 結着剤としては、樹脂材料、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン(PVDF)等のフッ素樹脂;ポリエチレン、ポリプロピレン等のポリオレフィン樹脂;アラミド樹脂等のポリアミド樹脂;ポリイミド、ポリアミドイミド等のポリイミド樹脂;ポリアクリル酸、ポリアクリル酸メチル、エチレン-アクリル酸共重合体等のアクリル樹脂;ポリアクリロニトリル、ポリ酢酸ビニル等のビニル樹脂;ポリビニルピロリドン;ポリエーテルサルフォン;スチレン-ブタジエン共重合ゴム(SBR)等のゴム状材料等が例示できる。結着剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 導電剤としては、例えば、アセチレンブラック等のカーボン類;炭素繊維や金属繊維等の導電性繊維類;フッ化カーボン;アルミニウム等の金属粉末類;酸化亜鉛やチタン酸カリウム等の導電性ウィスカー類;酸化チタン等の導電性金属酸化物;フェニレン誘導体等の有機導電性材料等が例示できる。導電剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 増粘剤としては、例えば、カルボキシメチルセルロース(CMC)およびその変性体(Na塩等の塩も含む)、メチルセルロース等のセルロース誘導体(セルロースエーテル等);ポリビニルアルコール等の酢酸ビニルユニットを有するポリマーのケン化物;ポリエーテル(ポリエチレンオキシド等のポリアルキレンオキサイド等)等が挙げられる。増粘剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 分散媒としては、特に制限されないが、例えば、水、エタノール等のアルコール、テトラヒドロフラン等のエーテル、ジメチルホルムアミド等のアミド、N-メチル-2-ピロリドン(NMP)、またはこれらの混合溶媒等が例示できる。
 [正極]
 正極は、正極集電体と、正極集電体の表面に担持された正極合剤層とを備えてもよい。正極合剤層は、正極合剤を分散媒に分散させた正極スラリーを、正極集電体の表面に塗布し、乾燥させることにより形成できる。乾燥後の塗膜を、必要により圧延してもよい。正極合剤層は、正極集電体の一方の表面に形成してもよく、両方の表面に形成してもよい。正極合剤は、必須成分として、正極活物質を含み、任意成分として、結着剤、導電剤等を含むことができる。正極スラリーの分散媒としては、NMP等が用いられる。
 正極活物質としては、例えば、リチウム含有複合酸化物を用いることができる。例えば、LiCoO、LiNiO、LiMnO、LiCoNi1-b、LiCoMe1-b、LiNi1-bMe、LiMn、LiMn2-bMe4、LiMePO4、LiMePOF(Meは、Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bからなる群より選択される少なくとも1種である。)が挙げられる。ここで、a=0~1.2、b=0~0.9、c=2.0~2.3である。なお、リチウムのモル比を示すa値は、充放電により増減する。
 中でも、LiNiMe1-b(Meは、Mn、CoおよびAlからなる群より選択された少なくとも1種であり、0<a≦1.2であり、0.3≦b≦1である。)で表されるリチウムニッケル複合酸化物が好ましい。高容量化の観点から、0.85≦b≦1を満たすことがより好ましい。結晶構造の安定性の観点からは、MeとしてCoおよびAlを含むLiNiCoAl(0<a≦1.2、0.85≦b<1、0<c<0.15、0<d≦0.1、b+c+d=1)が更に好ましい。
 結着剤および導電剤としては、負極について例示したものと同様のものが使用できる。導電剤としては、天然黒鉛、人造黒鉛等の黒鉛を用いてもよい。
 正極集電体の形状および厚みは、負極集電体に準じた形状および範囲からそれぞれ選択できる。正極集電体の材質としては、例えば、ステンレス鋼、アルミニウム、アルミニウム合金、チタン等が例示できる。
 [非水電解質]
 非水電解質は、非水溶媒と、非水溶媒に溶解したリチウム塩と、を含む。非水電解質中のリチウム塩の濃度は、例えば、0.5mol/L以上、2mol/L以下が好ましい。リチウム塩濃度を上記範囲とすることで、イオン伝導性に優れ、適度の粘性を有する非水電解質を得ることができる。ただし、リチウム塩濃度は上記に限定されない。
 非水溶媒としては、例えば、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステル、鎖状カルボン酸エステル等が用いられる。環状炭酸エステルとしては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)等が挙げられる。鎖状炭酸エステルとしては、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)等が挙げられる。環状カルボン酸エステルとしては、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)等が挙げられる。鎖状カルボン酸エステルとしては、ギ酸メチル、ギ酸エチル、ギ酸プロピル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル等が挙げられる。非水溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 リチウム塩としては、例えば、LiClO、LiBF、LiPF、LiAlCl、LiSbF、LiSCN、LiCFSO、LiCFCO、LiAsF、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiCl、LiBr、LiI、ホウ酸塩類、イミド塩類等が挙げられる。ホウ酸塩類としては、ビス(1,2-ベンゼンジオレート(2-)-O,O’)ホウ酸リチウム、ビス(2,3-ナフタレンジオレート(2-)-O,O’)ホウ酸リチウム、ビス(2,2’-ビフェニルジオレート(2-)-O,O’)ホウ酸リチウム、ビス(5-フルオロ-2-オレート-1-ベンゼンスルホン酸-O,O’)ホウ酸リチウム等が挙げられる。イミド塩類としては、ビスフルオロスルホニルイミドリチウム(LiN(FSO)、ビストリフルオロメタンスルホン酸イミドリチウム(LiN(CFSO)、トリフルオロメタンスルホン酸ノナフルオロブタンスルホン酸イミドリチウム(LiN(CFSO)(CSO))、ビスペンタフルオロエタンスルホン酸イミドリチウム(LiN(CSO)等が挙げられる。これらの中でも、LiPFが好ましい。LiPFは、正極集電体等の電池の構成部材の表面に不働態膜を形成し易い。不働態膜により上記部材が保護され得る。リチウム塩は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 [セパレータ]
 通常、正極と負極との間には、セパレータを介在させることが望ましい。セパレータは、イオン透過度が高く、適度な機械的強度および絶縁性を備えている。セパレータとしては、微多孔薄膜、織布、不織布等を用いることができる。セパレータの材質としては、ポリプロピレン、ポリエチレン等のポリオレフィンが好ましい。
 非水電解質二次電池の構造の一例としては、正極および負極がセパレータを介して巻回されてなる電極群と、非水電解質とが外装体に収容された構造が挙げられる。或いは、巻回型の電極群の代わりに、正極および負極がセパレータを介して積層されてなる積層型の電極群等、他の形態の電極群が適用されてもよい。非水電解質二次電池は、例えば円筒型、角型、コイン型、ボタン型、ラミネート型等、いずれの形態であってもよい。
 以下、本発明に係る非水電解質二次電池の一例として角形の非水電解質二次電池の構造を、図2を参照しながら説明する。図2は、本発明の一実施形態に係る非水電解質二次電池の一部を切欠いた概略斜視図である。
 電池は、有底角形の電池ケース4と、電池ケース4内に収容された電極群1および非水電解質(図示せず)とを備えている。電極群1は、長尺帯状の負極と、長尺帯状の正極と、これらの間に介在し、かつ直接接触を防ぐセパレータとを有する。電極群1は、負極、正極、およびセパレータを、平板状の巻芯を中心にして捲回し、巻芯を抜き取ることにより形成される。
 負極の負極集電体には、負極リード3の一端が溶接等により取り付けられている。負極リード3の他端は、樹脂製の絶縁板(図示せず)を介して、封口板5に設けられた負極端子6に電気的に接続されている。負極端子6は、樹脂製のガスケット7により、封口板5から絶縁されている。正極の正極集電体には、正極リード2の一端が溶接等により取り付けられている。正極リード2の他端は、絶縁板を介して、封口板5の裏面に接続されている。すなわち、正極リード2は、正極端子を兼ねる電池ケース4に電気的に接続されている。絶縁板は、電極群1と封口板5とを隔離するとともに負極リード3と電池ケース4とを隔離している。封口板5の周縁は、電池ケース4の開口端部に嵌合しており、嵌合部はレーザー溶接されている。このようにして、電池ケース4の開口部は、封口板5で封口される。封口板5に設けられている非水電解質の注入孔は、封栓8により塞がれている。
 以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 <実施例1~4および比較例1~5>
 [負極材料の調製]
 [第1工程]
 二酸化ケイ素と、元素Xを含む化合物とを混合し、空気中、混合物を950℃で10時間焼成した。このようにして、元素Xを含むシリケートを得た。得られたシリケートは平均粒径10μmになるように粉砕した。
 元素Xには、表1に示す元素を用いた。元素XがLi、Na、およびKの場合、元素Xを含む化合物には、LiCO、NaCO、およびKCOを用いた。元素XがCaおよびMgの場合、元素Xを含む化合物には、CaCOおよびMgCOを用いた。元素XがP、B、Al、およびLaの場合、元素Xを含む化合物には、P、B、Al、およびLaを用いた。
 元素Xを含む化合物の量は、第3工程で得られる負極材料中の元素Xの含有量が表1に示す値となるように調整した。なお、表1中の負極材料中の元素Xの含有量は、酸素以外の元素の総量に対する質量割合を示す。
 [第2工程]
 元素Xを含むシリケートと、原料シリコン(3N、平均粒径10μm)とを混合した。混合物において、シリケートと原料シリコンとの質量比は、40:60とした。
 混合物を遊星ボールミル(フリッチュ社製、P-5)のポット(SUS製、容積:500mL)に充填し、ポットにSUS製ボール(直径20mm)を24個入れて蓋を閉め、不活性雰囲気中で、200rpmで混合物を50時間粉砕処理した。
 次に、不活性雰囲気中で粉末状の混合物を取り出し、不活性雰囲気中、ホットプレス機による圧力を印加した状態で、600℃で4時間焼成して、混合物の焼結体(複合中間体)を得た。得られた複合中間体を粉砕し、40μmのメッシュに通し、複合中間体の粒子を得た。
 [第3工程]
 実施例1~4および比較例2~5では、不活性雰囲気中、複合中間体の粒子に所定の熱処理を施して、複合中間体の粒子中に分散しているLaSiの結晶性を高め、複合材料粒子を得た。その後、篩を用いて、平均粒径5μmの複合材料粒子を得、負極材料a1~a4、b2~b5とした。
 比較例1では、複合中間体の粒子に上記の熱処理(第3工程)は行わず、篩を用いて平均粒径5μmの複合中間体の粒子を得、負極材料b1とした。
 [負極材料の分析]
 いずれの負極材料についても、既述の方法により求められた複合材料中のシリコン粒子の結晶子サイズは15nmであった。例えば、負極材料a1では、既述の方法により求められた複合材料中のシリコンの含有量(シリコン粒子とシリケート相に含まれるシリコンの合計)は93.3質量%であった。
 負極材料a1~a4では、X線回折測定および電子線回折測定によりLaSiの結晶相が形成されていることが確認された。負極材料a1~a4では、Cu-Kα線を用いたX線回折測定により得られるX線回折パターン(以下、XRDパターンと称する。)において、回折角2θ=26°、27°、28°および33°付近に、回折ピークが確認された。回折角2θ=33°付近の回折ピークの半値幅は0.75°以下であった。また、電子線回折測定より得られる回折点のデータに基づいて求められた面間隔は、2.6Å~2.75Å、3.6Å~3.7Å、5.2Å~5.3Åおよび7.3Å~7.4Åであった。
 負極材料a1~a4の断面のSEM画像(反射電子像)により、シリケート相のマトリックス中にLaSiの結晶相が分散していることが確認された。既述の方法により求められたLaSiの結晶相の円相当径は、10nm以上、1.0μm以下の範囲内であった。
 負極材料a1~a4では、XRDパターンにおいて、回折角2θ=33°および29°付近に、それぞれLaSiに帰属される第1回折ピークおよびシリコン粒子に帰属される第2回折ピークが確認された。第2回折ピークの強度I2に対する第1回折ピークの強度I1の比:I1/I2は、0.25以下であった。
 負極材料b1では、XRDパターンにおいて、回折角2θ=26°、27°、28°および33°付近に、LaSiに帰属される回折ピークが確認された。しかし、負極材料b1では、回折角2θ=33°付近の回折ピークの半値幅は1.0°と大きく、LaSi相の結晶性が低いことが確認された。
 負極材料b2~b5では、XRDパターンにおいて、LaSiに帰属される回折ピークは観測されなかった。
 [負極の作製]
 負極材料と黒鉛とを5:95の質量比で混合し、負極活物質として用いた。負極活物質と、カルボキシメチルセルロースナトリウム(CMC-Na)と、スチレン-ブタジエンゴム(SBR)とを、97.5:1:1.5の質量比で混合し、水を添加した後、混合機(プライミクス社製、T.K.ハイビスミックス)を用いて攪拌し、負極スラリーを調製した。次に、銅箔の表面に1m当りの負極合剤の質量が190gとなるように負極スラリーを塗布し、塗膜を乾燥させた後、圧延して、銅箔の両面に、密度1.5g/cmの負極合剤層が形成された負極を作製した。
 [正極の作製]
 コバルト酸リチウムと、アセチレンブラックと、ポリフッ化ビニリデンとを、95:2.5:2.5の質量比で混合し、N-メチル-2-ピロリドン(NMP)を添加した後、混合機(プライミクス社製、T.K.ハイビスミックス)を用いて攪拌し、正極スラリーを調製した。次に、アルミニウム箔の表面に正極スラリーを塗布し、塗膜を乾燥させた後、圧延して、アルミニウム箔の両面に、密度3.6g/cmの正極合剤層が形成された正極を作製した。
 [非水電解質の調製]
 エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを3:7の体積比で含む混合溶媒にLiPFを1.0mol/L濃度で溶解して非水電解質を調製した。
 [非水電解質二次電池の作製]
 各電極にタブをそれぞれ取り付け、タブが最外周部に位置するように、セパレータを介して正極および負極を渦巻き状に巻回することにより電極群を作製した。電極群をアルミニウムラミネートフィルム製の外装体内に挿入し、105℃で2時間真空乾燥した後、非水電解質を注入し、外装体の開口部を封止して、電池を得た。
 上記の負極の作製において、負極材料a1~a4、b1~b5を用いて、それぞれ実施例1~4の電池A1~A4および比較例1~5の電池B1~B5を得た。得られた各電池について、以下のサイクル試験を行った。
 [サイクル試験]
 <充電>
 1It(800mA)の電流で電圧が4.2Vになるまで定電流充電を行い、その後、4.2Vの定電圧で電流が1/20It(40mA)になるまで定電圧充電した。
 <放電>
 1It(800mA)の電流で電圧が2.75Vになるまで定電流放電を行った。
 充電と放電との間の休止期間は10分とした。充放電は、25℃の環境下で行った。
 各電池について、1サイクル目の充電容量に対する1サイクル目の放電容量の割合を初回充放電効率として求めた。初回充放電効率は、比較例1の電池B1で得られた初回充放電効率の値を100として相対値で示した。
 また、各電池について、1サイクル目の放電容量に対する100サイクル目の放電容量の割合をサイクル容量維持率として求めた。サイクル容量維持率は、比較例1の電池B1で得られたサイクル容量維持率の値を100として相対値で示した。
 評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~4の電池A1~A4では、比較例1~5の電池B1~B5と比べて、高い初回充放電効率が得られた。電池A1~A4では、サイクル容量維持率も高い値が得られた。
 電池B1では、シリケート相内に分散しているLaSiの結晶性が低いため、初回充放電効率が低下した。LaSiの結晶相を含まない負極材料b2~b5を用いた電池B2~B5では、初回充放電効率が低下した。
 本発明に係る非水電解質二次電池は、移動体通信機器、携帯電子機器等の主電源に有用である。
 1 電極群
 2 正極リード
 3 負極リード
 4 電池ケース
 5 封口板
 6 負極端子
 7 ガスケット
 8 封栓
 11 複合材料
 12 元素E1のシリケート相
 13 シリコン粒子
 14 希土類元素のシリケートの結晶相
 15 導電層

Claims (11)

  1.  シリケート相と、前記シリケート相内に分散しているシリコン粒子と、前記シリケート相内に分散している結晶相と、を備え、
     前記シリケート相は、アルカリ金属元素および第2族元素からなる群より選択される少なくとも1種の元素E1を含み、
     前記結晶相は、希土類元素と、ケイ素と、酸素と、を含む、非水電解質二次電池用負極材料。
  2.  前記希土類元素の含有量は、酸素以外の元素の総量に対して、0.2質量%以上、21質量%以下である、請求項1に記載の非水電解質二次電池用負極材料。
  3.  前記希土類元素は、ランタン、セリウム、プラセオジムおよびネオジムからなる群より選択される少なくとも1種を含む、請求項1または2に記載の非水電解質二次電池用負極材料。
  4.  前記結晶相は、一般式:MSiで表される化合物Aを含み、
     Mは、前記希土類元素である、請求項1~3のいずれか1項に記載の非水電解質二次電池用負極材料。
  5.  Cu-Kα線を用いたX線回折測定により得られるX線回折パターンは、回折角2θ=26°、27°、28°および33°付近に、前記化合物Aに帰属される回折ピークを有する、請求項4に記載の非水電解質二次電池用負極材料。
  6.  Cu-Kα線を用いたX線回折測定により得られるX線回折パターンは、回折角2θ=33°および29°付近に、それぞれ前記化合物Aに帰属される第1回折ピークおよび前記シリコン粒子に帰属される第2回折ピークを有し、
     前記第2回折ピークの強度I2に対する前記第1回折ピークの強度I1の比:I1/I2は、0.25以下である、請求項4に記載の非水電解質二次電池用負極材料。
  7.  前記結晶相の結晶構造は、単斜晶、正方晶および三斜晶からなる群より選択される少なくとも一種を含む、請求項4に記載の非水電解質二次電池用負極材料。
  8.  前記結晶相は、少なくとも2.6Å~2.75Å、3.6Å~3.7Å、5.2Å~5.3Åおよび7.3Å~7.4Åの面間隔を有する、請求項4に記載の非水電解質二次電池用負極材料。
  9.  前記元素E1は、リチウム、ナトリウム、カリウム、マグネシウム、カルシウムおよびバリウムからなる群より選択される少なくとも1種を含む、請求項1~8のいずれか1項に記載の非水電解質二次電池用負極材料。
  10.  前記シリケート相は、更に、元素E2を含み、
     前記元素E2は、ジルコニウム、ニオブ、タンタル、バナジウム、チタン、リン、ビスマス、亜鉛、スズ、鉛、アンチモン、コバルト、フッ素、タングステン、アルミニウムおよびホウ素からなる群より選択される少なくとも1種を含む、請求項1~9のいずれか1項に記載の非水電解質二次電池用負極材料。
  11.  正極と、負極と、非水電解質と、を備え、
     前記負極は、請求項1~10のいずれか1項に記載の負極材料を含む、非水電解質二次電池。
PCT/JP2020/028211 2019-07-31 2020-07-21 非水電解質二次電池用負極材料および非水電解質二次電池 WO2021020226A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021536970A JPWO2021020226A1 (ja) 2019-07-31 2020-07-21
CN202080054372.6A CN114175315A (zh) 2019-07-31 2020-07-21 非水电解质二次电池用负极材料和非水电解质二次电池
US17/630,656 US20220263066A1 (en) 2019-07-31 2020-07-21 Negative electrode material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
EP20846399.2A EP4007013A4 (en) 2019-07-31 2020-07-21 NEGATIVE ELECTRODE MATERIAL FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERIES, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019141664 2019-07-31
JP2019-141664 2019-07-31

Publications (1)

Publication Number Publication Date
WO2021020226A1 true WO2021020226A1 (ja) 2021-02-04

Family

ID=74229656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028211 WO2021020226A1 (ja) 2019-07-31 2020-07-21 非水電解質二次電池用負極材料および非水電解質二次電池

Country Status (5)

Country Link
US (1) US20220263066A1 (ja)
EP (1) EP4007013A4 (ja)
JP (1) JPWO2021020226A1 (ja)
CN (1) CN114175315A (ja)
WO (1) WO2021020226A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241388A1 (ja) * 2020-05-29 2021-12-02 パナソニックIpマネジメント株式会社 二次電池用負極活物質および二次電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021241618A1 (ja) * 2020-05-29 2021-12-02

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08208333A (ja) * 1995-02-06 1996-08-13 Shinagawa Refract Co Ltd 酸素イオン導電体及びその製造方法
JP2007059213A (ja) * 2005-08-24 2007-03-08 Toshiba Corp 非水電解質電池および負極活物質
JP2014199753A (ja) * 2013-03-29 2014-10-23 日本電気株式会社 二次電池および負極活物質
JP2014220216A (ja) * 2013-05-10 2014-11-20 帝人株式会社 非水電解質二次電池用の複合粒子
JP2015069753A (ja) * 2013-09-27 2015-04-13 大阪瓦斯株式会社 固体酸化物形燃料電池システム
WO2016035290A1 (ja) * 2014-09-03 2016-03-10 三洋電機株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5566723B2 (ja) * 2010-03-01 2014-08-06 古河電気工業株式会社 微粒子混合物、活物質凝集体、正極活物質材料、正極、2次電池及びこれらの製造方法
JP5877093B2 (ja) * 2012-03-08 2016-03-02 国立大学法人 名古屋工業大学 アパタイト型シリコゲルマン酸ランタン多結晶体及びその製造方法、並びに酸化物イオン伝導体、固体電解質
KR20160101932A (ko) * 2013-12-25 2016-08-26 신에쓰 가가꾸 고교 가부시끼가이샤 비수 전해질 2차 전지용 부극 활물질 및 그의 제조 방법
US10516153B2 (en) * 2015-01-28 2019-12-24 Sanyo Electric Co., Ltd. Negative-electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US10312507B2 (en) * 2015-01-28 2019-06-04 Sanyo Electric Co., Ltd. Negative-electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP6786474B2 (ja) * 2015-02-23 2020-11-18 三洋電機株式会社 非水電解質二次電池用負極活物質、非水電解質二次電池用負極、及び非水電解質二次電池
JP2017024931A (ja) * 2015-07-17 2017-02-02 株式会社豊田中央研究所 アパタイト型ランタンシリケート前駆体薄膜、その製造方法、並びに、アパタイト型ランタンシリケート薄膜
US11196040B2 (en) * 2016-11-30 2021-12-07 Panasonic Intellectual Property Management Co., Ltd. Negative electrode material and non-aqueous electrolyte secondary battery
WO2019065766A1 (ja) * 2017-09-29 2019-04-04 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池
CN111566856B (zh) * 2017-12-27 2023-06-16 松下知识产权经营株式会社 二次电池用负极活性物质和二次电池
EP3734723A4 (en) * 2017-12-28 2021-03-03 Panasonic Intellectual Property Management Co., Ltd. NEGATIVE ELECTRODE ACTIVE MATERIAL FOR SECONDARY BATTERIES WITH ANHYDROUS ELECTROLYTE

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08208333A (ja) * 1995-02-06 1996-08-13 Shinagawa Refract Co Ltd 酸素イオン導電体及びその製造方法
JP2007059213A (ja) * 2005-08-24 2007-03-08 Toshiba Corp 非水電解質電池および負極活物質
JP2014199753A (ja) * 2013-03-29 2014-10-23 日本電気株式会社 二次電池および負極活物質
JP2014220216A (ja) * 2013-05-10 2014-11-20 帝人株式会社 非水電解質二次電池用の複合粒子
JP2015069753A (ja) * 2013-09-27 2015-04-13 大阪瓦斯株式会社 固体酸化物形燃料電池システム
WO2016035290A1 (ja) * 2014-09-03 2016-03-10 三洋電機株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4007013A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241388A1 (ja) * 2020-05-29 2021-12-02 パナソニックIpマネジメント株式会社 二次電池用負極活物質および二次電池

Also Published As

Publication number Publication date
EP4007013A4 (en) 2022-09-14
CN114175315A (zh) 2022-03-11
EP4007013A1 (en) 2022-06-01
JPWO2021020226A1 (ja) 2021-02-04
US20220263066A1 (en) 2022-08-18

Similar Documents

Publication Publication Date Title
CN110024188B (zh) 负极材料及非水电解质二次电池
CN110521034B (zh) 非水电解质二次电池用负极材料和非水电解质二次电池
JP7029680B2 (ja) 負極材料および非水電解質二次電池
WO2020195335A1 (ja) 非水電解質二次電池用負極および非水電解質二次電池
WO2021020226A1 (ja) 非水電解質二次電池用負極材料および非水電解質二次電池
WO2021241618A1 (ja) 二次電池用負極活物質および二次電池
WO2021199587A1 (ja) 二次電池用負極活物質およびこれを用いた二次電池
WO2020202843A1 (ja) 非水電解質二次電池
WO2024004520A1 (ja) 二次電池用負極材料、および、二次電池
CN111033854B (zh) 非水电解质二次电池
WO2021241388A1 (ja) 二次電池用負極活物質および二次電池
WO2022113499A1 (ja) 非水電解質二次電池用負極活物質および非水電解質二次電池
WO2022044454A1 (ja) 非水電解質二次電池用負極材料および非水電解質二次電池
WO2020195575A1 (ja) 非水電解質二次電池
JP2020107602A (ja) 二次電池用正極活物質及びその製造方法
WO2022137732A1 (ja) 非水電解質二次電池用の複合粒子および非水電解質二次電池
WO2022113500A1 (ja) 非水電解質二次電池用負極材料および非水電解質二次電池
WO2023171580A1 (ja) 二次電池用負極活物質および二次電池
WO2023008098A1 (ja) 二次電池用負極活物質および二次電池
WO2021039217A1 (ja) 二次電池用負極および非水電解質二次電池
WO2022138861A1 (ja) 二次電池用負極材料および二次電池
WO2023190239A1 (ja) 二次電池用負極材料および二次電池
CN117999671A (zh) 二次电池用负极活性物质及其制造方法、以及二次电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846399

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021536970

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020846399

Country of ref document: EP

Effective date: 20220228