WO2021017683A1 - 一种光学防抖装置及控制方法 - Google Patents

一种光学防抖装置及控制方法 Download PDF

Info

Publication number
WO2021017683A1
WO2021017683A1 PCT/CN2020/097284 CN2020097284W WO2021017683A1 WO 2021017683 A1 WO2021017683 A1 WO 2021017683A1 CN 2020097284 W CN2020097284 W CN 2020097284W WO 2021017683 A1 WO2021017683 A1 WO 2021017683A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
coil
lens
optical
reflector
Prior art date
Application number
PCT/CN2020/097284
Other languages
English (en)
French (fr)
Inventor
李明
廖文哲
冯军
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2022506065A priority Critical patent/JP2022542307A/ja
Priority to EP20847630.9A priority patent/EP4006623A4/en
Priority to KR1020227006290A priority patent/KR20220035970A/ko
Publication of WO2021017683A1 publication Critical patent/WO2021017683A1/zh
Priority to US17/586,108 priority patent/US20220150413A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/09Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0264Details of the structure or mounting of specific components for a camera module assembly
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6812Motion detection based on additional sensors, e.g. acceleration sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • G03B2205/0023Movement of one or more optical elements for control of motion blur by tilting or inclining one or more optical elements with respect to the optical axis
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72448User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions
    • H04M1/72454User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions according to context-related or environment-related conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/52Details of telephonic subscriber devices including functional features of a camera

Definitions

  • This application relates to the field of optics, and in particular to an optical anti-shake device and control method.
  • the digital camera function of the mobile phone refers to whether the mobile phone can take still pictures or short videos through the built-in or external digital camera.
  • the camera capability of the mobile phone has become the most concerned by consumers in recent years One of the indicator characteristics.
  • the realization of mobile phone photography benefits from the camera module to complete the image collection on the hardware, and the software relies on the calculation of the algorithm to finally get the photographing experience used by the user.
  • the most important technologies include zoom, anti-shake and focus technologies.
  • CMOS complementary metal oxide semiconductor
  • the embodiments of the present application provide an optical anti-shake device, which can be used in various types of camera lenses to solve the problem of image shake caused by image quality degradation.
  • an optical anti-shake device which may include:
  • the first lens, the first reflecting mirror, the position sensor and the control part, and the position sensor and the control part are connected.
  • the first lens is used for imaging. Specifically, it can be a convex lens, a concave lens or a plane lens, and can be a single lens or a combination of multiple lenses.
  • the form and number of the first lens are not specifically limited in the embodiments of the present application.
  • the shape of the first reflector may be round, square, or other shapes, and the specific shape is not limited in the embodiment of the present application.
  • the light signal After passing through the first lens, the light signal is transmitted to the first reflecting mirror, and after being reflected by the first reflecting mirror, it is projected on the imaging surface.
  • the position sensor detects the shake information of the first lens and sends the shake information to the control component.
  • the shake information may include the shake direction of the first lens, Jitter parameters such as jitter frequency and jitter amplitude.
  • the control component controls the first mirror to rotate with the first preset direction as the axis according to the jitter information detected by the position sensor.
  • the first preset direction is not parallel to the normal direction of the first reflector, so when the first reflector rotates, the incident angle and the reflection angle of the optical signal on the first reflector can be changed, that is, the first reflector rotates
  • the direction of the optical path of the optical signal can be changed when the first reflector rotates
  • the rotation of the first mirror can be controlled according to the shake information of the first lens, so as to change the optical path direction of the optical signal incident on the imaging surface and compensate for the Deflection of the optical path caused by jitter.
  • the position of the light spot formed by the optical signal on the imaging surface is oscillated by the jitter of the first lens, and the optical signal is kept on the imaging surface. The position of the spot on the light is stable, so as to realize the anti-shake effect.
  • the control component when the first lens is shaken, can also be used to control the first mirror to rotate with the second preset direction as the axis according to the shake information, wherein the second preset direction and the second preset direction A predetermined direction and the normal direction of the first reflector are not parallel. Since the second preset direction is a direction that is not parallel to the normal direction of the first reflector, when the driving component drives the first reflector to rotate around the second preset direction, the optical signal can also be changed after the first reflector. The propagation direction after the mirror reflection realizes the compensation effect when the first mirror rotates along the first preset direction as the axis as described above.
  • the rotational movement of the first reflector along the first preset direction as the axis and the rotational movement along the second preset direction as the axis can be performed simultaneously or separately, which are specifically controlled by the control component Control based on jitter information.
  • a dual-axis optical anti-shake device is provided by controlling the rotation movement of the first mirror along the first preset direction as the axis and the rotation movement along the second preset direction as the axis.
  • the optical anti-shake device may further include: an image sensor connected to the control component, and the photosensitive surface of the image sensor is an imaging surface.
  • the image sensor After the light signal is projected to the imaging surface, that is, the photosensitive surface of the image sensor, the image sensor detects the sharpness information of the image formed by the light signal projected on the photosensitive surface, and sends the sharpness information to the control component. Therefore, the control component controls the movement position of the first mirror according to the sharpness information.
  • the optical path length of the optical signal changes with the movement of the first mirror position, and the optical path is from the first lens to the imaging surface The propagation path of the optical signal between.
  • the direction of the moving position of the first mirror can be set in advance, for example, it can be set to be along the optical path direction or along the normal direction of the reflection surface of the first mirror.
  • the optical path length of the optical signal also changes, that is, the image distance is changed, so that the optical signal can be clearly imaged on the photosensitive surface, thereby achieving a focusing effect.
  • the specific type of the position sensor may be CMOS or charge-coupled device (CCD), or other imaging devices or other reflective devices.
  • CCD charge-coupled device
  • the embodiment of the application does not specify the type of image sensor. limited.
  • the optical anti-shake device may further include: a second lens.
  • the second lens is arranged between the first mirror and the imaging surface. The light signal is reflected by the first mirror and then projected on the second lens. After passing through the second lens, it is finally projected on the imaging surface.
  • the second lens plays a role of assisting imaging, and may be a convex lens or a concave lens, and may include a combination of one or more lenses, and the specific number and form are not limited here.
  • the optical anti-shake device may further include: a second reflector.
  • the second reflecting mirror and the first reflecting mirror are respectively located at two sides of the first lens. After receiving the optical signal, the second reflecting mirror reflects the obtained optical signal to the first lens. After that, the light signal is reflected by the first mirror and finally projected on the imaging surface.
  • the control component can also control the second mirror to rotate in a second preset direction according to the shake information of the first lens detected by the position sensor, wherein the second preset direction is the same as the first preset direction.
  • the direction and the normal direction of the second mirror are not parallel. Therefore, when the second mirror rotates, it can also drive the change of the optical path direction of the optical signal to achieve the anti-shake effect.
  • the rotational movement of the second reflector about the second preset direction as the axis can be performed simultaneously with the rotational movement of the first reflector about the first preset direction as the axis or performed separately, specifically by the control component Control based on jitter information. When the two are performed at the same time, the dual-axis anti-shake effect can be combined.
  • the optical anti-shake device may further include: an image sensor connected to the control component, and the photosensitive surface of the image sensor is an imaging surface.
  • the image sensor After the light signal is projected to the imaging surface, that is, the photosensitive surface of the image sensor, the image sensor detects the sharpness information of the image formed by the light signal projected on the photosensitive surface, and sends the sharpness information to the control component. Therefore, the control component controls the movement position of the first mirror according to the sharpness information.
  • the optical path length of the optical signal changes with the movement of the first mirror position, and the optical path is from the first lens to the imaging surface The propagation path of the optical signal between.
  • the direction of the moving position of the first mirror can be set in advance, for example, it can be set to be along the optical path direction or along the normal direction of the reflection surface of the first mirror.
  • the optical path length of the optical signal also changes, that is, the image distance is changed, so that the optical signal can be clearly imaged on the photosensitive surface, thereby achieving a focusing effect.
  • the optical anti-shake device may further include a second lens.
  • the second lens is arranged between the first mirror and the imaging surface. The light signal is reflected by the first mirror and then projected on the second lens. After passing through the second lens, it is finally projected on the imaging surface.
  • the second lens plays a role of assisting imaging, and may be a convex lens or a concave lens, and may be a combination of one or more lenses. The specific number and form are not limited here.
  • the optical anti-shake device may further include a second lens.
  • the second lens is arranged on the outside of the second reflecting mirror, and the light signal is projected on the second reflecting mirror after passing through the second lens. After that, the light signal reflected by the second mirror, after passing through the first lens, is reflected by the first mirror, and finally projected on the imaging surface.
  • the second lens plays a role of assisting imaging, and may be a convex lens or a concave lens, and may be a combination of one or more lenses. The specific number and form are not limited here.
  • the optical anti-shake device may further include a second lens and a third lens.
  • the second lens is arranged outside the second mirror, and the third lens is arranged on the optical path between the first mirror and the imaging surface.
  • the light path passes through the second lens-the second mirror-the first lens-the first mirror-the third lens, and finally is projected on the imaging surface.
  • the second lens and the third lens play the role of assisting imaging.
  • the second lens and the third lens may be convex or concave lenses respectively, and may be a combination of one or more lenses. The specific number and form are here Not limited.
  • the optical anti-shake device may further include: a second reflector.
  • the second reflecting mirror is located between the first reflecting mirror and the imaging surface. After being reflected by the first mirror, the light signal is projected on the second mirror, and is reflected to the imaging surface by the second mirror.
  • the control component is also used to control the second mirror to rotate around a second preset direction as an axis according to the shake information of the first lens detected by the position sensor, wherein the second The predetermined direction is not parallel to the first predetermined direction and the normal direction of the second reflector. Therefore, when the second mirror rotates, it can also drive the change of the optical path direction of the optical signal to achieve the anti-shake effect.
  • the rotational movement of the second reflector about the second preset direction as the axis can be performed simultaneously with the rotational movement of the first reflector about the first preset direction as the axis or performed separately, specifically by the control component Control based on jitter information. When the two are performed at the same time, the effect of dual-axis anti-shake can be achieved.
  • the optical anti-shake device may further include: an image sensor connected to the control component, and the photosensitive surface of the image sensor is the imaging surface. After the light signal is projected onto the imaging surface, that is, the photosensitive surface of the image sensor, the image sensor detects the sharpness information of the image formed by the light signal projected on the photosensitive surface, and sends the sharpness information to the control component. After receiving the sharpness information detected by the image sensor, the control component controls the moving position of the first mirror and/or the second mirror according to the sharpness information.
  • the optical path length of the optical signal changes with the movement of the position of the first mirror and/or the second mirror, and the optical path is from the first lens To the propagation path of the optical signal between the imaging surface.
  • the direction of the moving position of the first reflector and/or the second reflector can be set in advance, for example, it can be set to be along the optical path direction or along the reflective surface of the first reflector and/or second reflector.
  • the optical path length of the optical signal also changes, that is, the image distance is changed, so that the optical signal can be clearly imaged on the photosensitive surface, thereby achieving a focusing effect.
  • the optical anti-shake device may further include a second lens.
  • the second lens is provided between the first mirror and the second mirror. After being reflected by the first mirror, the light signal passes through the second lens and is projected on the second mirror. After being reflected by the second mirror, the light signal is finally projected on the imaging surface.
  • the second lens plays a role of assisting imaging, and may be a convex lens or a concave lens, and may be a combination of one or more lenses. The specific number and form are not limited here.
  • the optical anti-shake device may further include a second lens.
  • the second lens is arranged between the second mirror and the imaging surface. After being reflected by the second mirror, the light signal passes through the second lens and is finally projected on the imaging surface.
  • the second lens plays a role of assisting imaging, and may be a convex lens or a concave lens, and may be a combination of one or more lenses. The specific number and form are not limited here.
  • the optical anti-shake device may further include a second lens and a third lens.
  • the second lens is arranged between the first reflecting mirror and the second reflecting mirror
  • the third lens is arranged between the second reflecting mirror and the imaging surface.
  • the light path passes through the first lens-the first mirror-the second lens-the second mirror-the third lens in turn, and finally is projected on the imaging surface.
  • the second lens and the third lens play the role of assisting imaging.
  • the second lens and the third lens may be convex or concave lenses respectively, and may be a combination of one or more lenses. The specific number and form are here Not limited.
  • a control component which may include:
  • the processing chip is used to receive the jitter information of the first lens detected by the position sensor described in the first aspect. After processing the jitter information, the processing chip controls the driving member to drive the first lens according to the result of processing the jitter information.
  • a reflecting mirror and/or a second reflecting mirror realize the rotational movement as described in the first aspect, thereby realizing the anti-shake function.
  • the processing chip in the control component is also used to receive the sharpness information of the image projected by the light signal on the photosensitive surface detected by the image sensor, and after processing the sharpness information, the processing chip It is also used for controlling the driving member to drive the first mirror and/or the second mirror to perform the movement position described in the first aspect regarding the first mirror according to the result of the sharpness information processing, so as to achieve a focusing effect.
  • control component may further include a voice coil motor (VCM) drive module, and the VCM drive module is connected to the processing chip.
  • VCM voice coil motor
  • the processing chip is also used to receive the sharpness information of the image projected by the light signal on the photosensitive surface detected by the image sensor. After the sharpness information is processed, the processing chip is also used to process the sharpness information according to the result of the sharpness information processing.
  • the VCM driving module is controlled to drive the first lens to move in position along the central axis of the first lens. When the first lens moves along the direction of the central axis of the first lens, the length of the propagation path of the optical signal from the first lens to the photosensitive surface changes, that is, the image distance changes, thereby achieving a focusing effect.
  • the VCM drive module drives the movement of the first lens along the central axis to move the position
  • the drive member drives the movement of the first mirror and/or the second mirror to move the position
  • a driving member which may include:
  • the first coil and the first magnet are The first coil and the first magnet.
  • the first reflector is connected to the outer frame through a first cantilever beam, the first coil is fixed on the back or edge of the first reflector, and the first magnet is fixed on the first outer frame.
  • the first coil is a " ⁇ -type" coil. It is divided into the left half coil and the right half coil, and they are symmetrical. After the first coil is energized, the magnetic field between the left part of the coil and the first magnet generates an ampere force perpendicular to the first reflector, and the right coil and the first magnet generate an ampere force perpendicular to the first reflector. Ampere force, thereby driving the first mirror to rotate along the second rotation axis.
  • the processing chip After receiving the jitter information of the first lens detected by the position sensor, the processing chip processes the jitter information, and controls the energization of the first coil according to the processing result.
  • the first coil After the first coil is energized, under the action of the magnetic field of the first magnet, the left half and the right half of the first coil respectively generate ampere forces in opposite directions, thereby pushing the first mirror fixedly connected with the first coil to the first
  • a preset direction is the axis for rotation.
  • the rotation axis may be a first cantilever beam, and in this case, the first preset direction is the direction of the first cantilever beam.
  • the control of the energization amount of the first coil by the processing chip according to the processing result includes controlling the current flow direction and current in the first coil, so that the rotation direction and the rotation angle of the first mirror can be controlled.
  • the driving member may further include: a second coil.
  • the second coil is fixed on the back or edge of the first reflector and insulated from the first coil.
  • the support frame is connected to the first reflector through the first rotating shaft, and is connected to the first outer frame through the second rotating shaft.
  • the second coil is a "font-shaped" coil, which is similar to the shape of the first coil with a degree of rotation, divided into an upper half coil and a lower half coil, and is symmetrical up and down.
  • the processing chip After receiving the jitter information of the first lens detected by the position sensor, the processing chip processes the jitter information, and controls the energization amount to the second coil according to the processing result.
  • the upper half and the lower half of the second coil respectively generate opposite ampere forces, thereby pushing the first mirror fixedly connected with the second coil to the second preset Set the direction as the axis to rotate.
  • the first preset direction is the direction of the second rotation axis
  • the second preset direction is the direction of the first rotation axis.
  • the driving member may further include: a second coil and a second magnet.
  • the second reflector is connected to the second outer frame through a second cantilever beam, the second coil is fixed on the back or edge of the second reflector, and the second magnet is fixed on the second outer frame.
  • the second coil is a "8-type" coil.
  • the second preset direction may be the direction of the second cantilever beam.
  • the driving member may include: a first coil, a first magnet, a second coil, and a third coil.
  • the first coil, the first magnet and the second coil can be described above, and the details will not be repeated here.
  • the third coil is fixed on the back or edge position of the first reflector, and is insulated from the first coil and the second coil, or the third coil can also be fixed on the support frame.
  • control of the energization amount of the third coil by the processing chip according to the processing result includes controlling the current flow direction and current magnitude in the third coil, so that the magnitude and direction of the position movement of the first mirror can be controlled. .
  • the third coil may also be disposed on the second reflector, and specifically may be fixed on the back or edge of the second reflector, and be insulated from the second coil.
  • the optical anti-shake device further includes a first outer frame and a support frame
  • the driving member may include:
  • the first coil, the first electromagnet, the second electromagnet, the third electromagnet, and the fourth electromagnet are the first coil, the first electromagnet, the second electromagnet, the third electromagnet, and the fourth electromagnet.
  • the first coil is a rectangular or square coil, and can be supplied with clockwise or counterclockwise current.
  • the first reflector is connected to the support frame through the second rotation axis, and the support frame is connected to the outer frame through the first rotation axis.
  • the coil is arranged and fixed on the back or edge of the first reflector, and the first electromagnet and the second electromagnet are respectively fixed on the outer frame.
  • the processing chip After receiving the jitter information of the first lens detected by the position sensor, the processing chip processes the jitter information, and controls the processing of the first electromagnet, the second electromagnet, the third electromagnet and/or the fourth electromagnet according to the processing result.
  • the energization of the coil that provides the magnetic field on the body such as controlling the magnitude and direction of the current, so as to generate a magnetic field in a preset direction around the first coil, so that the four sides of the first coil generate ampere forces in different directions, thereby pushing and
  • the first reflecting mirror fixedly connected to a coil rotates or moves the position, thereby realizing the anti-shake or focusing function.
  • the fourth aspect of the embodiments of the present application provides a control method, which may include:
  • the optical anti-shake device detects the shake information of the first lens. Specifically, when the first lens shakes, the position sensor in the optical anti-shake device detects shake information of the first lens, such as shake displacement, shake frequency, and shake direction. It should be noted that the position sensor here is not a specific sensor, but generally refers to a sensor that can detect the jitter information of the first lens.
  • the optical anti-shake device After detecting and determining the shake information of the first lens, the optical anti-shake device determines the first control parameter according to the shake information. Specifically, after receiving the jitter information detected by the position sensor, the processing chip processes the jitter information according to the preset first algorithm to obtain the first control parameter. Among them, the preset first algorithm can subsequently be updated via the network or according to the setting parameters input by the user.
  • the first control parameter may specifically be a parameter indicating the rotation of the first reflector. Specifically, the first control parameter may include rotation direction information and rotation angle information.
  • the optical anti-shake device controls the rotation of the first mirror through the control component according to the first control parameter. Specifically, after determining the first control parameter, the optical anti-shake device can determine the direction and magnitude of the current that needs to be loaded on the first coil and the second coil according to the first control parameter. Among them, this process can be realized by a preset third algorithm, which can be updated subsequently through the network or according to the setting parameters input by the user.
  • the image sensor detects the sharpness information of the image of the light signal on the photosensitive surface.
  • the processing chip receives the sharpness information detected by the image sensor, it processes the sharpness information according to the preset second algorithm to obtain the second control parameter.
  • the preset second algorithm can be subsequently updated through the network or according to the setting parameters input by the user.
  • the second control parameter includes a parameter indicating the moving position of the first mirror and a parameter indicating the moving position of the first lens.
  • the second control parameter may include movement direction information and movement distance information.
  • the optical image stabilization device can determine the direction and magnitude of the current to be loaded on the third coil and the VCM drive module according to the second control parameter.
  • this process can be implemented by a preset fourth algorithm, which can be updated subsequently through the network or according to the setting parameters input by the user.
  • the embodiment of the application provides an optical anti-shake device, which includes a first lens, a first mirror, a position sensor, and a driving component. After passing through the first lens, an optical signal is reflected by the first mirror, and then projected on Imaging surface.
  • the position sensor is used for detecting the shaking information of the first lens and sending it to the driving component, the driving component provides driving force according to the shaking information, and drives the first mirror to rotate with the first preset direction as an axis.
  • the first preset direction is a direction that is not parallel to the normal direction of the first reflector
  • the incidence of the optical signal on the first reflector is The angle and the reflection angle also change with rotation, that is, the rotation of the first mirror in the optical image stabilization device realizes the change of the propagation direction of the optical signal, and the jitter of the first lens can be caused by the change of the optical path direction.
  • the oscillation of the optical path is compensated, thereby providing an optical anti-shake device.
  • Figure 1 is a schematic diagram of lens imaging
  • 2A is a schematic diagram of light projection after passing through the lens module
  • 2B is a schematic diagram of the projection of light through the lens module after the lens shakes
  • 3A is a schematic diagram of an optical anti-shake device provided by an embodiment of the application.
  • 3B is a schematic diagram of an optical anti-shake device provided by another embodiment of the application.
  • 3C is a structural diagram of an optical path of an optical anti-shake device provided by an embodiment of the application.
  • 3D is a structural diagram of the optical path of an optical image stabilization device provided by another embodiment of the application.
  • 4A is a schematic diagram of an optical anti-shake device provided by another embodiment of this application.
  • 4B is a schematic diagram of an optical anti-shake device provided by another embodiment of the application.
  • 4C is a structural diagram of an optical path of an optical anti-shake device provided by another embodiment of the application.
  • 4D is a structural diagram of an optical path of an optical anti-shake device provided by another embodiment of this application.
  • 4E is a structural diagram of an optical path of an optical anti-shake device according to another embodiment of the application.
  • 4F is a structural diagram of an optical path of an optical anti-shake device provided by another embodiment of this application.
  • FIG. 5A is a schematic diagram of an optical image stabilization device according to another embodiment of this application.
  • 5B is a schematic diagram of an optical anti-shake device provided by another embodiment of this application.
  • 5C is a structural diagram of an optical path of an optical anti-shake device provided by another embodiment of the application.
  • 5D is a structural diagram of an optical path of an optical anti-shake device provided by another embodiment of the application.
  • 5E is a structural diagram of an optical path of an optical anti-shake device provided by another embodiment of this application.
  • 5F is a structural diagram of an optical path of an optical anti-shake device provided by another embodiment of the application.
  • 6A is a schematic diagram of a control component provided by an embodiment of the application.
  • 6B is a schematic diagram of a control component provided by another embodiment of the application.
  • FIG. 7A is a schematic diagram of a driving member provided by an embodiment of the application.
  • FIG. 7B is a schematic diagram of a driving member provided by another embodiment of the application.
  • FIG. 7C is a schematic diagram of a driving member provided by another embodiment of the application.
  • FIG. 7D is a schematic diagram of a driving member provided by another embodiment of the application.
  • FIG. 7E is a schematic diagram of a driving member provided by another embodiment of the application.
  • FIG. 8 is a schematic diagram of a control method provided by an embodiment of the application.
  • optical anti-shake device provided by the embodiments of the present application will be described in detail below with reference to the accompanying drawings.
  • optical anti-shake device in the embodiments of the present application can be applied to various types of lenses, including periscopes or various types of camera lenses, for example, but not limited to, applied to lens modules using mobile phones.
  • Focusing is also called focusing and focusing, which refers to the process of changing the distance between the imaging surface and the lens according to the different positions of objects at different distances that are clearly imaged at the back of the lens, so that the image of the object is clear. Since all imaging systems have a depth of field, if the object being shot is outside the depth of field, the image will be blurred after the object is shot. In order to ensure that the shot object is clearly presented, it needs to be focused. Focusing is also called focusing. By fine-tuning the image distance of the optical lens back and forth, a one-to-one corresponding shooting distance is obtained according to the design value, so that the subject can be kept within the depth of field for clear imaging.
  • Depth of field refers to the clear depth of imaging by the imaging optical system. Depth of field is a physical phenomenon, but the depth of field varies between different optical systems. As shown in Figure 1, it is a schematic diagram of lens imaging, ⁇ L is the depth of field, and L is the shooting distance. Among them, the size of the depth of field is related to the focal length f of the optical lens itself, the aperture number (F number) of the lens, and the diameter of the circle of confusion ⁇ that can be resolved by the image collector CMOS used.
  • the mobile phone camera needs to focus in order to obtain high-quality images.
  • the distance between the CMOS and the lens group is different.
  • FIG. 2A it is a schematic diagram of the projection of light through the lens module. After shaking, as shown in FIG. 2B, the projection point of the light on the photosensitive element is shifted.
  • the human body inevitably shakes during the process of handheld photography, especially for telephoto photography, this phenomenon is more serious, so it is necessary to load image anti-shake technology in the mobile phone camera module to eliminate this effect.
  • FIG. 3A is a schematic diagram of an embodiment of an optical anti-shake device provided in an embodiment of the present application.
  • the optical anti-shake device includes:
  • the first lens 301, the first mirror 302, the position sensor 303 and the control part 304, and the position sensor 303 and the control part 304 are connected.
  • the first lens 301 is used for imaging. Specifically, it can be a convex lens, a concave lens or a flat lens, and it can be a single lens or a combination of multiple lenses.
  • the form and quantity of the first lens 301 are not specified in the embodiment of this application. limited.
  • the shape of the first mirror 302 may be a circle, a square, or other shapes, and the specific shape is not limited in the embodiment of the present application.
  • the light signal After passing through the first lens 301, the light signal is transmitted to the first reflecting mirror 302, and after being reflected by the first reflecting mirror 302, it is projected on the imaging surface.
  • the position sensor 303 detects the shake information of the first lens 301 and sends the shake information to the control component 304.
  • the shake information may include the first lens 301 jitter parameters such as jitter direction, jitter frequency and jitter amplitude.
  • the control component 304 controls the first mirror 302 to rotate with the first preset direction as an axis according to the jitter information detected by the position sensor 303.
  • the first preset direction is not parallel to the normal direction of the first reflector 302, so when the first reflector 302 rotates, the incident angle and the reflection angle of the optical signal on the first reflector 302 can be changed, that is, the first When the mirror 302 rotates, the optical path direction of the optical signal can be changed.
  • the first mirror 302 can be controlled to rotate according to the shake information of the first lens 301, so as to change the optical path direction of the optical signal incident on the imaging surface and compensate for the The deflection of the optical path direction caused by the jitter of the lens 301.
  • the position of the light spot formed by the optical signal on the imaging surface is oscillated by the jitter of the first lens 301, and the optical signal is maintained at The position of the light spot on the imaging surface is stabilized, thereby achieving an anti-shake effect.
  • the control component 304 when the first lens 301 shakes, can also be used to control the first mirror 302 to set the second preset direction as The axis rotates, wherein the second predetermined direction is not parallel to the first predetermined direction and the normal direction of the first mirror 302. Since the second preset direction is a direction that is not parallel to the normal direction of the first reflector 302, when the driving component drives the first reflector 302 to rotate around the second preset direction, the optical signal can also be changed in the second preset direction.
  • the propagation direction of a reflector 302 after reflection achieves the compensation effect when the first reflector 302 rotates along the first preset direction as the axis as described above.
  • the rotational movement of the first reflector 302 along the first preset direction as the axis and the rotational movement along the second preset direction as the axis can be performed simultaneously or separately, specifically controlled by The component 304 performs control based on the jitter information.
  • the component 304 controls the rotation movement of the first reflector 302 along the first preset direction as the axis and the rotation movement along the second preset direction as the axis.
  • FIG. 3B is a schematic diagram of another embodiment of an optical anti-shake device provided in an embodiment of the application.
  • the optical image stabilization device may also include:
  • the photosensitive surface of the image sensor 305 is the imaging surface.
  • the image sensor 305 After the light signal is projected onto the imaging surface, that is, the photosensitive surface of the image sensor 305, the image sensor 305 detects the sharpness information of the image formed by the light signal projected on the photosensitive surface, and sends the sharpness information to the control component 304. Therefore, the control component 304 controls the movement position of the first mirror 302 according to the sharpness information.
  • the control component 304 controls the movement position of the first mirror 302 according to the sharpness information.
  • the optical path length of the optical signal changes with the movement of the first mirror 302, and the optical path is from the first lens 301 The propagation path of the optical signal to the imaging surface.
  • the direction of the moving position of the first mirror 302 can be set in advance, for example, it can be set to be along the optical path direction or along the normal direction of the reflective surface of the first mirror 302.
  • the optical path length of the optical signal also changes, that is, the image distance is changed, so that the optical signal can be clearly imaged on the photosensitive surface, thereby achieving a focusing effect.
  • the specific type of the image sensor 305 may be CMOS or CCD, or other imaging devices or other reflective devices.
  • the embodiment of the present application does not specifically limit the type of the image sensor 305.
  • Fig. 3A or Fig. 3B the positional relationship among the first lens 301, the first mirror 302, the position sensor 303, and the control part 304 is briefly described.
  • Fig. 3C shows the first lens 301 and the second lens 301.
  • the optical anti-shake device may further include a second lens 307.
  • FIG. 3D is a schematic diagram of an embodiment of the positional relationship between the first lens 301, the second lens 307, the first mirror 302, and the imaging surface.
  • the second lens 307 is arranged between the first mirror 302 and the imaging surface. After the light signal is reflected by the first mirror 302, it is projected on the second lens 307 and passes through the second lens 307. After the lens 307 is finally projected on the imaging surface.
  • the second lens 307 plays a role of assisting imaging, and may be a convex lens or a concave lens, and may include a combination of one or more lenses. The specific number and form are not limited here.
  • FIG. 4A is a schematic diagram of another embodiment of an optical anti-shake device provided in an embodiment of this application. It can also include:
  • the second mirror 306 and the first mirror 302 are respectively located at two sides of the first lens 301. After the second mirror 306 obtains the optical signal, it reflects the obtained optical signal to the first lens 301. After that, the light signal is reflected by the first mirror 302 and finally projected on the imaging surface.
  • the control component 304 can also control the second mirror 306 to rotate in a second preset direction according to the shake information of the first lens 301 detected by the position sensor 303, where the second preset direction Neither the first predetermined direction nor the normal direction of the second mirror 306 are parallel. Therefore, when the second reflector 306 rotates, the direction of the light path of the optical signal can also be changed to realize the anti-shake effect.
  • the rotational movement of the second reflector 306 taking the second preset direction as the axis can be performed simultaneously with the rotational movement of the first reflector 302 taking the first preset direction as the axis or can be performed separately.
  • the control part 304 performs control based on the jitter information. When the two are performed at the same time, the dual-axis anti-shake effect can be combined.
  • FIG. 4B is a schematic diagram of another embodiment of an optical anti-shake device provided in an embodiment of the application.
  • the optical anti-shake device may also include:
  • the photosensitive surface of the image sensor 305 is the imaging surface.
  • the image sensor 305 After the light signal is projected onto the imaging surface, that is, the photosensitive surface of the image sensor 305, the image sensor 305 detects the sharpness information of the image formed by the light signal projected on the photosensitive surface, and sends the sharpness information to the control component 304. Therefore, the control component 304 controls the movement position of the first mirror 302 according to the sharpness information.
  • the control component 304 controls the movement position of the first mirror 302 according to the sharpness information.
  • the optical path length of the optical signal changes with the movement of the first mirror 302, and the optical path is from the first lens 301 The propagation path of the optical signal to the imaging surface.
  • the direction of the moving position of the first mirror 302 can be set in advance, for example, it can be set to be along the optical path direction or along the normal direction of the reflective surface of the first mirror 302.
  • the optical path length of the optical signal also changes, that is, the image distance is changed, so that the optical signal can be clearly imaged on the photosensitive surface, thereby achieving a focusing effect.
  • FIG. 4A or FIG. 4B the positional relationship between the first lens 301, the first mirror 302, the second mirror 306, the position sensor 303 and the control part 304 is briefly described.
  • FIG. 4C and FIG. 4C It is a schematic diagram of an embodiment of the positional relationship between the first lens 301, the first mirror 302, and the second mirror 306.
  • the optical anti-shake device may further include a second lens 307.
  • 4D is a schematic diagram of an embodiment of the positional relationship between the first lens 301, the second lens 307, and the first mirror 302.
  • the second lens 307 is arranged between the first mirror 302 and the imaging surface. After the light signal is reflected by the first mirror 302, it is projected on the second lens 307 and passes through the second lens 307. After the lens 307 is finally projected on the imaging surface.
  • the second lens 307 plays a role of assisting imaging, and may be a convex lens or a concave lens, and may be a combination of one or more lenses. The specific number and form are not limited here.
  • the optical anti-shake device may further include a second lens 307.
  • FIG. 4E is a schematic diagram of another embodiment of the positional relationship between the first lens 301, the second lens 307, and the first mirror 302.
  • the second lens 307 is arranged on the outside of the second mirror 306, and the optical signal is projected on the second mirror 306 after passing through the second lens 307.
  • the light signal reflected by the second mirror 306 passes through the first lens 301, and then is reflected by the first mirror 302, and finally projected on the imaging surface.
  • the second lens 307 plays a role of assisting imaging, and may be a convex lens or a concave lens, and may be a combination of one or more lenses. The specific number and form are not limited here.
  • the optical anti-shake device may further include a second lens 307 and a third lens 308.
  • 4F is a schematic diagram of an embodiment of the positional relationship among the first lens 301, the second lens 307, the third lens 308, and the first mirror 302 in detail below.
  • the second lens 307 is disposed on the outer side of the second mirror 306, and the third lens 308 is disposed on the optical path between the first mirror 302 and the imaging surface.
  • the light path passes through the second lens 307-the second mirror 306-the first lens 301-the first mirror 302-the third lens 308 in sequence, and finally is projected on the imaging surface.
  • the second lens 307 and the third lens 308 play the role of assisting imaging.
  • the second lens 307 and the third lens 308 may be convex or concave lenses respectively, and may be a combination of one or more lenses. And the form is not limited here.
  • FIG. 5A is a schematic diagram of another embodiment of an optical anti-shake device provided in an embodiment of this application. It can also include:
  • the placement position of the second reflector 306 is shown in FIG. 5A, between the first reflector 302 and the imaging surface.
  • the light signal is reflected by the first mirror 302, is projected on the second mirror 306, and is reflected by the second mirror 306 to the imaging surface.
  • the control component 304 is also used to control the second mirror 306 to rotate around the second preset direction as the axis according to the shake information of the first lens 301 detected by the position sensor 303, wherein the second preset It is assumed that the direction is not parallel to the first predetermined direction and the normal direction of the second mirror 306. Therefore, when the second reflector 306 rotates, the direction of the light path of the optical signal can also be changed to realize the anti-shake effect.
  • the rotational movement of the second reflector 306 taking the second preset direction as the axis can be performed simultaneously with the rotational movement of the first reflector 302 taking the first preset direction as the axis or can be performed separately.
  • the control part 304 performs control based on the jitter information. When the two are performed at the same time, the effect of dual-axis anti-shake can be achieved.
  • FIG. 5B is a schematic diagram of another embodiment of an optical anti-shake device provided in an embodiment of the application, and the optical anti-shake device also Can include:
  • the photosensitive surface of the image sensor 305 is the imaging surface.
  • the image sensor 305 After the light signal is projected onto the imaging surface, that is, the photosensitive surface of the image sensor 305, the image sensor 305 detects the sharpness information of the image formed by the light signal projected on the photosensitive surface, and sends the sharpness information to the control component 304. After receiving the sharpness information detected by the image sensor 305, the control component 304 controls the moving position of the first mirror 302 and/or the second mirror 306 according to the sharpness information. When the position of the first mirror 302 and/or the second mirror 306 is moved, the optical path length of the optical signal changes with the movement of the position of the first mirror 302 and/or the second mirror 306, and the optical path is from the first lens 301 to The propagation path of the optical signal between the imaging surfaces.
  • the direction of the moving position of the first mirror 302 and/or the second mirror 306 can be set in advance, for example, it can be set to be along the optical path or along the first mirror 302 and/or the second mirror.
  • FIG. 5A or FIG. 5B the positional relationship between the first lens 301, the first mirror 302, the second mirror 306 and the imaging surface is briefly described.
  • FIG. 5C which is the first lens 301 , A schematic diagram of an embodiment of the positional relationship between the first mirror 302 and the second mirror 306.
  • the optical anti-shake device may further include a second lens 307.
  • FIG. 5D is a schematic diagram of another embodiment of the positional relationship between the first lens 301, the second lens 307, the first mirror 302, and the second mirror 306.
  • the second lens 307 is disposed between the first mirror 302 and the second mirror 306.
  • the light signal is reflected by the first mirror 302, passes through the second lens 307, and is projected on the second mirror 306, and is finally projected on the imaging surface after being reflected by the second mirror 306.
  • the second lens 307 plays a role of assisting imaging, and may be a convex lens or a concave lens, and may be a combination of one or more lenses.
  • the specific number and form are not limited here.
  • the optical anti-shake device may further include a second lens 307.
  • FIG. 5E is a schematic diagram of another embodiment of the positional relationship between the first lens 301, the second lens 307, the first mirror 302 and the second mirror 306.
  • the second lens 307 is disposed between the second mirror 306 and the imaging surface. After being reflected by the second mirror 306, the light signal passes through the second lens 307, and is finally projected on the imaging surface.
  • the second lens 307 plays a role of assisting imaging, and may be a convex lens or a concave lens, and may be a combination of one or more lenses. The specific number and form are not limited here.
  • the optical anti-shake device may further include a second lens 307 and a third lens 308.
  • FIG. 5F is a schematic diagram of an embodiment of the positional relationship among the first lens 301, the second lens 307, the third lens 308, the first mirror 302, and the second mirror 306.
  • the second lens 307 is disposed between the first mirror 302 and the second mirror 306, and the third lens 308 is disposed between the second mirror 306 and the imaging surface.
  • the light path passes through the first lens 301-the first mirror 302-the second lens 307-the second mirror 306-the third lens 308 in sequence, and finally is projected on the imaging surface.
  • the second lens 307 and the third lens 308 play the role of assisting imaging.
  • the second lens 307 and the third lens 308 may be convex or concave lenses respectively, and may be a combination of one or more lenses. And the form is not limited here.
  • each mirror between each lens, and between each mirror and lens
  • the positional relationship of is only used as an example.
  • the specific positions between each lens and the reflecting mirror such as the distance and angle setting between the first lens 301 and each reflecting mirror, the distance, position and angle setting between each lens, and the setting of each reflection
  • the distance between the mirrors and the setting of the included angle are not specifically limited in the embodiments of the present application. In practical applications, the specific positions between the lenses and the mirrors can be set according to requirements.
  • an optical image stabilization device based on any one of the specific embodiments in FIGS. 3A-3D, 4A-4F, and 5A-5F, specifically refer to FIG. 6A below, which is provided in the embodiment of the application
  • a schematic diagram of an embodiment of the control component 304, the control component 304 includes:
  • the driving member 3041 and the processing chip 3042 are The driving member 3041 and the processing chip 3042.
  • the processing chip 3042 is used to receive the jitter information of the first lens 301 detected by the position sensor 303 in any of the specific embodiments shown in FIGS. 3A-3D, 4A-4F, and 5A-5F, and after processing the jitter information,
  • the processing chip 3042 controls the driving component 3041 to drive the first mirror 302 and/or the second mirror 306 according to the result of processing the jitter information to realize the implementation as shown in any of the specific embodiments in FIGS. 3A-3D, 4A-4F, and 5A-5F. Describe the rotational movement to achieve the anti-shake function.
  • the processing chip 3042 in the control component 304 is also used to receive the image sensor 305 in the embodiment shown in FIG. 3B, or the implementation shown in 4B and 5B.
  • the image sensor 305 detects the sharpness information of the image projected by the light signal on the photosensitive surface.
  • the processing chip 3042 is also used to control the drive according to the result of the sharpness information processing
  • the component 3041 drives the first reflector 302 and/or the second reflector 306 to perform a moving position movement as described in any specific embodiment of FIG. 3B, 4B, or 5B, thereby achieving a focusing effect.
  • FIG. 6B is a schematic diagram of another embodiment of the control component 304 provided in the embodiment of the application.
  • the control component 304 may further include:
  • the VCM driving module 3043 is connected to the processing chip 3042.
  • the processing chip 3042 is also used to receive the image sensor 305 in the embodiment shown in FIG. 3B, or the sharpness of the image projected by the light signal on the photosensitive surface detected by the image sensor 305 in the embodiment shown in FIGS. 4B and 5B After processing the sharpness information, the processing chip 3042 is also used to control the VCM driving module 3043 to drive the first lens 301 to move along the central axis of the first lens 301 according to the result of the sharpness information processing.
  • the first lens 301 moves in the direction of the central axis of the first lens 301, the length of the propagation path of the optical signal from the first lens 301 to the photosensitive surface 305 changes, that is, the image distance changes, thereby achieving Focus effect.
  • VCM drive module 3043 drives the movement of the first lens 301 along the central axis
  • the drive member 3041 drives the movement of the first mirror 302 and/or the second mirror 306. Both can be performed at the same time. Or separately, when the two are performed at the same time, the function of fine focus or large focus can be realized, and large focus means to achieve a larger focus range.
  • the driving part 304 in the optical anti-shake device is briefly described, and the driving part 3041 will be further described below.
  • the driving method adopted by the driving member 3041 may be magnetoelectric driving, piezoelectric driving, or other types of driving.
  • the specific driving method is implemented in this application. The examples are not limited.
  • the optical anti-shake device further includes a first outer The frame 309 and the first cantilever beam 310.
  • FIG. 7A is a schematic diagram of an embodiment of the driving member 3041 in the embodiment of the application.
  • the driving member 3041 may include:
  • the first reflector 302 is connected to the outer frame 309 through the first cantilever beam 310, the first coil 30411 is fixed on the back or edge of the first reflector 302, and the first magnet 30412 is fixed on the first outer frame. 309 on.
  • the first coil is a " ⁇ -shaped" coil as shown in FIG. 7A. It is divided into the left half coil and the right half coil, and they are symmetrical. After the first coil 30411 is energized, the magnetic field between the left partial coil and the first magnet 30412 generates an ampere force perpendicular to the first mirror 302, and the magnetic field between the right coil and the first magnet 30412 generates a vertical reflection The outward ampere force of the mirror 302 drives the first mirror 302 to rotate along the second rotation axis. When the first mirror 302 needs to be controlled to rotate in the opposite direction, the first coil 30411 is supplied with a current in the direction opposite to that shown in FIG. 7A.
  • the processing chip 3042 After the processing chip 3042 receives the shake information of the first lens 301 detected by the position sensor 303, it processes the shake information and controls the amount of energization to the first coil 30411 according to the processing result. After the first coil 30411 is energized, under the action of the magnetic field of the first magnet 30412, the left half and the right half of the first coil 30411 respectively generate opposite ampere forces, thereby pushing the first coil fixedly connected to the first coil 30411.
  • the mirror 302 rotates with the first preset direction as an axis. Wherein, the rotation axis may be a first cantilever beam, and in this case, the first preset direction is the direction of the first cantilever beam.
  • the processing chip 3042 controls the energization of the first coil 30411 according to the processing result, including controlling the current flow direction and current magnitude in the first coil 30411, so as to realize the rotation direction and rotation angle of the first mirror 302 Size control.
  • the optical anti-shake device further includes a supporting frame 311.
  • FIG. 7B is the driving member 3041 in the embodiment of the application.
  • the driving member 3041 may further include:
  • the second coil 30413 The second coil 30413.
  • the second coil 30413 is fixed on the back or edge of the first mirror 302 and insulated from the first coil 40411.
  • the support frame 311 is connected to the first mirror 302 through the first rotation axis, and the second The rotating shaft is connected with the first outer frame 309.
  • the second coil 30413 is a "figure-eight" coil, which is similar to the shape of the first coil rotated by 90 degrees, and is divided into an upper half coil and a lower half coil, and is symmetrical.
  • the magnetic field action between the upper part of the coil and the first magnet 30412 generates an ampere force perpendicular to the first reflector 302, and the magnetic field action between the lower coil and the first magnet 30412 generates perpendicular to the first reflection
  • the outward ampere force of the mirror 302 drives the first mirror 302 to rotate along the second rotation axis.
  • the second coil 30413 is supplied with current in the direction opposite to that shown in FIG. 7B.
  • the processing chip 3042 After the processing chip 3042 receives the jitter information of the first lens 301 detected by the position sensor 303, it processes the jitter information and controls the energization of the second coil 30413 according to the processing result. After the second coil 30413 is energized, under the action of the magnetic field of the magnet 30412, the upper half and the lower half of the second coil 30413 respectively generate opposite ampere forces, thereby pushing the first mirror fixedly connected to the second coil 30413 302 rotates with the second preset direction as an axis.
  • the first preset direction is the direction of the second rotation axis
  • the second preset direction is the direction of the first rotation axis
  • the optical anti-shake device further includes a second outer frame 312 and a Two cantilever beams 313.
  • FIG. 7C is a schematic diagram of another embodiment of the driving member 3041 in the embodiment of the application.
  • the driving member 3041 may further include:
  • the second coil 30413 and the second magnet 30414 are identical to each other.
  • the second reflector 306 is connected to the second outer frame 312 through the second cantilever beam 313, the second coil 30413 is fixed on the back or edge of the second reflector 306, and the second magnet 30414 is fixed on the second On the frame 312.
  • the second coil 30413 is a "8-type" coil as shown in FIG. 7C.
  • the processing chip 3042 After the processing chip 3042 receives the jitter information of the first lens 301 detected by the position sensor 303, it processes the jitter information and controls the energization of the second coil 30413 according to the processing result. After the second coil 30413 is energized, under the action of the magnetic field of the magnet 30412, the upper half and the lower half of the second coil 30413 respectively generate opposite ampere forces, thereby pushing the second mirror fixedly connected to the second coil 30413 306 rotates with the second preset direction as an axis.
  • the second predetermined direction may be the direction of the second cantilever beam 313.
  • the optical anti-shake device includes a first outer frame 309 and a supporting frame 311, and specifically refer to FIG. 7D and FIG. 7D below.
  • FIG. 7D and FIG. 7D This is a schematic diagram of an embodiment of the driving member 3041 in the embodiment of this application.
  • the driving member 3041 may include:
  • the first coil 30411 and the first magnet 30412 can refer to the related description of the first coil 30411 and the first magnet 30412 in the embodiment shown in FIG. 7A, and the support frame 311 and the second coil 30413 can refer to the embodiment shown in FIG. 7B The related descriptions of the support frame 311 and the second coil 30413 in, details are not repeated here.
  • the third coil 30414 is fixed on the back or edge of the first mirror 302, and is insulated from the first coil 30411 and the second coil 30413, or the third coil 30414 can also be fixed on the support frame 311 on.
  • the processing chip 3042 After the processing chip 3042 receives the sharpness information of the image projected by the light signal on the photosensitive surface detected by the image sensor 305, the sharpness information is processed, and the amount of energization to the third coil 30414 is controlled according to the processing result. After the third coil 30414 is energized, under the action of the magnetic field of the first magnet 30412, an ampere force perpendicular to the plane of the third coil 30414 is generated, thereby pushing the first mirror 302 fixedly connected to the third coil 30414 to move.
  • the processing chip 3042 controls the energization amount of the third coil 30414 according to the processing result, including controlling the current flow direction and current magnitude in the third coil 30414, so as to realize the magnitude of the position movement of the first mirror 302 And direction to control.
  • the third coil 30414 in the driving member 3041 as shown in FIG. 7D may also be disposed on the second mirror 306 in the driving member 3041 as shown in 7C, and specifically may be fixed on the second mirror 306.
  • the specific settings are similar to those in Fig. 7D, and will not be repeated here.
  • the optical anti-shake device further includes a first outer The frame 309 and the support frame 311.
  • FIG. 7E is a schematic diagram of another embodiment of the driving member 3041 in the embodiment of the application.
  • the driving member 3041 may include:
  • the first coil 30411, the first electromagnet 30412, the second electromagnet 30413, the third electromagnet 30414, and the fourth electromagnet 30415 The structure of the support frame 311 is similar to the support frame 311 described in FIG. 7B, and will not be repeated here.
  • the first coil 30411 is a rectangular or square coil, and can pass current in a clockwise or counterclockwise direction.
  • the first mirror 302 is connected to the support frame 311 through the second rotation axis, and the support frame 311 passes through the A rotating shaft is connected to the outer frame 309, the first coil 30411 is fixed on the back or edge of the first reflector 302, and the first electromagnet 30412 and the second electromagnet 30413 are respectively fixed on the outer frame 309.
  • the processing chip 3042 After the processing chip 3042 receives the jitter information of the first lens 301 detected by the position sensor 303, it processes the jitter information and controls the energization of the first coil 30411 according to the processing result, such as controlling the magnitude and direction of the current. Under the action of, the four sides of the first coil respectively produce the same or different directions of ampere force, thereby pushing the first mirror 302 fixedly connected to the first coil to rotate or move the position, thereby achieving anti-shake or focusing Features.
  • the current as shown in the figure is passed to the first coil 30411, and the second electromagnet 30413 and the fourth electromagnet 30415 are controlled not to generate a magnetic field (that is, the second electromagnet 30413 and the fourth electromagnet
  • the coil of the body 30415 is energized), and the first electromagnet 30412 and the third electromagnet 30414 are controlled to generate the same magnetic field as shown in FIG. 7E.
  • FIG. 7E it can be seen that the upper half and the lower half of the first coil 30411 The wires respectively interact with the magnetic field to generate ampere force in the opposite direction, thereby pushing the first mirror 302 to rotate about the first rotation axis.
  • the second electromagnet 30413 and the fourth electromagnet 30415 can be controlled to generate magnetic fields in the same direction, while the first electromagnet 30412 and the third electromagnet 30414 can be controlled not to generate a magnetic field, thereby controlling the first mirror to rotate in the second
  • the axis is the axis to rotate.
  • FIG. 7E it can be seen that it is also possible to control the energization of the first coil 30411 and the magnetic fields of the first electromagnet 30412, the second electromagnet 30413, the third electromagnet 30414, and the fourth electromagnet 30415 to realize position movement or The rotation in other situations will not be repeated here.
  • FIG. 8 is a schematic diagram of an embodiment of a control method provided in an embodiment of this application, which may include:
  • the optical anti-shake device detects the shake information of the first lens 301.
  • the position sensor 303 in the optical image stabilization device detects the shake information of the first lens 301, such as shake displacement, shake frequency, and shake direction.
  • the position sensor 303 here is not a specific sensor, but generally refers to a sensor that can detect the jitter information of the first lens 301.
  • the image sensor 305 detects the sharpness information of the image of the light signal on the photosensitive surface.
  • the optical anti-shake device determines a first control parameter according to the jitter information.
  • the processing chip 3042 After the processing chip 3042 receives the jitter information detected by the position sensor 303, it processes the jitter information according to the preset first algorithm to obtain the first control parameter.
  • the preset first algorithm can subsequently be updated via the network or according to the setting parameters input by the user.
  • the first control parameter may specifically be a parameter indicating the rotation of the first reflector 302.
  • the first control parameter may include rotation direction information and rotation angle information.
  • the processing chip 3042 after the processing chip 3042 receives the sharpness information detected by the image sensor 305, it processes the sharpness information according to a preset second algorithm to obtain the second control parameter.
  • the preset second algorithm can be subsequently updated through the network or according to the setting parameters input by the user.
  • the second control parameter includes a parameter indicating the moving position of the first mirror 302 and a parameter indicating the moving position of the first lens 301.
  • the second control parameter may include movement direction information and movement distance information.
  • the optical anti-shake device controls the rotation of the first mirror 302 through the control component 304 according to the first control parameter.
  • the optical image stabilization device can determine the direction and magnitude of the current to be loaded on the first coil 30411 and the second coil 30413 according to the first control parameter.
  • this process can be realized by a preset third algorithm, which can be updated subsequently through the network or according to the setting parameters input by the user.
  • the optical anti-shake device can determine the direction and magnitude of the current to be loaded on the third coil 30414 and the VCM driving module 3043 according to the second control parameter.
  • this process can be implemented by a preset fourth algorithm, which can be updated subsequently through the network or according to the setting parameters input by the user.
  • the movement of controlling the rotation of the first mirror 302 by the control component 304, controlling the movement position of the first mirror 302 by the control component 304, and controlling the movement position of the first lens 301 by the VCM drive module 3042 can be performed simultaneously, or separately get on.
  • the first coil 30411, the second coil 30413, the third coil 30414, and the VCM drive module 3043 can be implemented after power-on, as shown in Table 1 below.
  • Table 1 below is A schematic table of the anti-shake and/or focus effects that can be achieved under different power-on conditions.
  • + means energization, and the specific direction of the current is set according to the calculated parameters; 0 means no power is supplied; anti-shake 1 means that the first mirror is driven after the first coil 30411 is energized The anti-shake effect that can be achieved when 302 rotates along the second rotation axis; anti-shake 2 represents the anti-shake effect that can be achieved when the first mirror 302 is driven to rotate along the first rotation axis after the second coil 30413 is energized; Focus 1 represents the focusing effect brought by the moving position of the first mirror 302; focus 2 represents the focusing effect brought by the VCM driving module 3043 driving the first lens 301 to translate along the central axis. Among them, anti-shake and focus can be performed at the same time, and focus 1 + focus 2 can achieve a larger range of focus and fine focus.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Studio Devices (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Structure And Mechanism Of Cameras (AREA)

Abstract

一种光学防抖装置,可保持摄像头的稳定,提升拍照效果,可应用于手机、平板电脑等终端设备中,也可应用于投影、3D距离传感器等设备中;光学防抖装置包括:第一透镜(301),第一反射镜(302)、位置传感器(303)、控制部件(304)和用于包裹第一透镜(301)和第一反射镜(302)的壳体,位置传感器(303)与控制部件(304)相连;光信号在通过第一透镜(301)后,传递至第一反射镜(302);第一反射镜(302)反射接收到的光信号,反射后的光信号投射在成像面上;位置传感器(303)用于检测第一透镜(301)的抖动信息,将抖动信息发送给控制部件(304);控制部件(304)用于根据抖动信息控制第一反射镜(302)以第一预设方向为轴进行旋转,其中,第一预设方向为与第一反射镜(301)的法向不平行的方向。

Description

一种光学防抖装置及控制方法
本申请要求于2019年7月31日提交中国专利局、申请号为201910704671.9,发明名称为“一种光学防抖装置及控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光学领域,尤其涉及一种光学防抖装置及控制方法。
背景技术
手机的数码相机功能指的是手机是否可以通过内置或是外接的数码相机进行拍摄静态图片或短片拍摄,作为手机的一项新的附加功能,近几年来,手机拍照能力已经成为消费者最关注的指标特征之一。手机拍照的实现,在硬件上得益于摄像头模组来完成图像的采集,软件上依赖算法的运算,来最终得到用户所用到的拍照体验。当前手机摄像模组中除成像功能以外,最重要的技术包括变焦、防抖和对焦技术。
而随着用户对手机越来越依赖,对摄像头模组的不同焦长的需求也越来越强烈,尤其是对长焦摄影方面。但是超长焦也有几个技术难点需要克服,一个是抖动敏感性的增强,另一个是对焦要求更加精细化。
由于手机拍摄的过程中,互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)芯片需要一定的响应时间,尤其是暗景拍摄,需要更长的曝光时间。而长时间曝光时,如果出现画面抖动,图像传感器传送的数据会变糊,成像质量严重下降,然而人体在手持拍照的过程中必然存在抖动,尤其对于长焦摄影,此现象更加严重,因此需要手机摄像头模组中加载图像防抖技术消除这一影响。
发明内容
本申请实施例提供了一种光学防抖装置,可以用在各类摄像镜头中,解决画面抖动导致成像质量下降的问题。
有鉴于此,本申请实施例第一方面提供了一种光学防抖装置,可以包括:
第一透镜、第一反射镜、位置传感器和控制部件,位置传感器和控制部件相连。
其中,第一透镜用于成像,具体可以是凸透镜,也可以是凹透镜或者平面镜,可以是一片透镜或多片透镜的组合,本申请实施例中对第一透镜的形式和数量不做具体限定。第一反射镜的形状可以为圆形或者方形,或其他形状,具体形状本申请实施例不做限定。
光信号在通过第一透镜后,传递至第一反射镜,并在经过第一反射镜的反射后,投射在成像面上。在光信号传递至成像面过程中,当第一透镜发生抖动时,位置传感器检测第一透镜的抖动信息,并将该抖动信息发送给控制部件,该抖动信息可以包括第一透镜的抖动方向、抖动频率和抖动幅度等抖动参数。之后,控制部件根据位置传感器检测的抖动信息控制第一反射镜以第一预设方向为轴进行旋转。其中,该第一预设方向与第一反射镜的法向不平行,因而第一反射镜旋转时可以改变第一反射镜上的光信号的入射角和反射角,也即第一反射镜旋转时可以改变光信号的光路方向。
根据以上的说明,可以看出,当第一透镜抖动时,可以根据第一透镜的抖动信息控制第 一反射镜旋转,从而改变射入成像面的光信号的光路方向,补偿由于第一透镜的抖动带来的光路方向的偏折。通过补偿由于第一透镜的抖动带来的光路方向的偏折,来减小光信号在成像面上形成的光点的位置受第一透镜的抖动而震荡的幅度大小,保持光信号在成像面上的光点位置的稳定,从而实现防抖效果。
在一个具体的实施例中,当第一透镜发生抖动时,控制部件还可以用于根据抖动信息控制第一反射镜以第二预设方向为轴进行旋转,其中,第二预设方向与第一预设方向及第一反射镜的法向均不平行。由于第二预设方向为与第一反射镜的法向不平行的方向,因而驱动部件在驱动第一反射镜以第二预设方向为轴旋转时,同样可以改变光信号在经第一反射镜反射后的传播方向,实现如上述描述中第一反射镜沿第一预设方向为轴旋转时的补偿效果。需要说明的是,本实施例中,第一反射镜沿第一预设方向为轴的旋转运动和沿第二预设方向为轴的旋转运动可以同时进行也可以分别单独进行,具体由控制部件根据抖动信息进行控制。本实施例中,通过控制第一反射镜沿第一预设方向为轴的旋转运动和沿第二预设方向为轴的旋转运动,从而提供了一种双轴光学防抖装置。
在一个具体的实施例中,该光学防抖装置还可以包括:与控制部件相连的图像传感器,图像传感器的感光面为成像面。
光信号投射至成像面,即图像传感器的感光面后,图像传感器检测光信号投射在感光面上形成的图像的锐度信息,并将该锐度信息发送至控制部件。从而,控制部件根据锐度信息控制第一反射镜移动位置,第一反射镜移动位置时,光信号的光路长度随第一反射镜位置的移动而改变,光路为从第一透镜到成像面上之间光信号的传播路径。
需要说明的是,第一反射镜移动位置的方向可以预先进行设定,例如可以设定为沿光路方向或者沿第一反射镜反射面的法向方向。第一反射镜移动位置时,光信号的光路长度也随之改变,即改变了像距,使得光信号可以在感光面上清晰成像,从而实现了对焦效果。
在一个具体的实施例中,位置传感器具体类型可以为CMOS或电荷耦合器件(charge-coupled device,CCD),或者其他成像装置或者是其他反射装置,本申请实施例对图像传感器的类型不做具体限定。
在一个具体的实施例中,该光学防抖装置还可以包括:第二透镜。其中,第二透镜被设置在第一反射镜和成像面之间,光信号在被第一反射镜反射后,投射在第二透镜上,并在透过第二透镜后,最终投射在成像面上。其中,需要说明的是,第二透镜起辅助成像的作用,可以是凸透镜或凹透镜,可以包括一片或多片透镜的组合,具体数量和形式此处不做限定。
在一个具体的实施例中,该光学防抖装置还可以包括:第二反射镜。其中,第二反射镜与第一反射镜分别位于第一透镜的两侧的位置。第二反射镜获取到光信号后,将获取的光信号反射至第一透镜。之后,该光信号再经第一反射镜的反射,最终投射在成像面上。
当第一透镜发生抖动时,控制部件还可以根据位置传感器检测的第一透镜的抖动信息,控制第二反射镜沿第二预设方向进行旋转,其中,第二预设方向与第一预设方向以及第二反射镜的法向均不平行。从而第二反射镜旋转时,同样可以带动改变光信号的光路方向,实现防抖效果。并且,需要说明的是,第二反射镜以第二预设方向为轴的旋转运动可以与第一反射镜以第一预设方向为轴的旋转运动同时进行或者分别单独进行,具体由控制部件根据抖动信息进行控制。当两者同时进行时,可以组合实现双轴防抖的效果。
在一个具体的实施例中,该光学防抖装置还可以包括:与控制部件相连的图像传感器,图像传感器的感光面为成像面。
光信号投射至成像面,即图像传感器的感光面后,图像传感器检测光信号投射在感光面上形成的图像的锐度信息,并将该锐度信息发送至控制部件。从而,控制部件根据锐度信息控制第一反射镜移动位置,第一反射镜移动位置时,光信号的光路长度随第一反射镜位置的移动而改变,光路为从第一透镜到成像面上之间光信号的传播路径。
需要说明的是,第一反射镜移动位置的方向可以预先进行设定,例如可以设定为沿光路方向或者沿第一反射镜反射面的法向方向。第一反射镜移动位置时,光信号的光路长度也随之改变,即改变了像距,使得光信号可以在感光面上清晰成像,从而实现了对焦效果。
在一个具体的实施例中,该光学防抖装置还可以包括第二透镜。其中,第二透镜被设置在第一反射镜和成像面之间,光信号在被第一反射镜反射后,投射在第二透镜上,并在透过第二透镜后,最终投射在成像面上。其中,需要说明的是,第二透镜起辅助成像的作用,可以是凸透镜或凹透镜,可以是一片或多片透镜的组合,具体数量和形式此处不做限定。
在一个具体的实施例中,该光学防抖装置还可以包括第二透镜。其中,第二透镜被设置在第二反射镜的外侧,光信号在通过第二透镜后,投射在第二反射镜上。之后,经过第二反射镜反射后的光信号,在透过第一透镜后,再经第一反射镜的反射,最终投射在成像面上。其中,需要说明的是,第二透镜起辅助成像的作用,可以是凸透镜或凹透镜,可以是一片或多片透镜的组合,具体数量和形式此处不做限定。
在一个具体的实施例中,该光学防抖装置还可以包括第二透镜和第三透镜。第二透镜被设置在第二反射镜的外侧,第三透镜被设置在第一反射镜与成像面之间的光路上。光路依次经过第二透镜-第二反射镜-第一透镜-第一反射镜-第三透镜,最后投射在成像面上。其中,需要说明的是,第二透镜和第三透镜起辅助成像的作用,第二透镜和第三透镜分别可以是凸透镜或凹透镜,可以是一片或多片透镜的组合,具体数量和形式此处不做限定。
在一个具体的实施例中,该光学防抖装置还可以包括:第二反射镜。其中,第二反射镜的位于第一反射镜和成像面之间。光信号在经所述第一反射镜反射后,投射在所述第二反射镜上,并经所述第二反射镜反射至成像面。
当第一透镜发生抖动时,所述控制部件还用于根据位置传感器检测的第一透镜的抖动信息控制所述第二反射镜以第二预设方向为轴进行旋转,其中,所述第二预设方向与所述第一预设方向以及所述第二反射镜的法向均不平行。从而第二反射镜旋转时,同样可以带动改变光信号的光路方向,实现防抖效果。并且,需要说明的是,第二反射镜以第二预设方向为轴的旋转运动可以与第一反射镜以第一预设方向为轴的旋转运动同时进行或者分别单独进行,具体由控制部件根据抖动信息进行控制。当两者同时进行时,可以实现双轴防抖的效果。
在一个具体的实施例中,该光学防抖装置还可以包括:与该控制部件相连的图像传感器,所述图像传感器的感光面为所述成像面。光信号投射至成像面,即图像传感器的感光面后,所述图像传感器检测所述光信号投射在所述感光面上形成的图像的锐度信息,并将该锐度信息发送至控制部件。所述控制部件接收到图像传感器检测的锐度信息后,根据所述锐度信息控制所述第一反射镜和/或第二反射镜移动位置。第一反射镜和/或第二反射镜移动位置时,所述光信号的光路长度随第一反射镜和/或第二反射镜位置的移动而改变,所述光路为从所述第一透镜到所述成像面上之间所述光信号的传播路径。
需要说明的是,第一反射镜和/或第二反射镜移动位置的方向可以预先进行设定,例如可以设定为沿光路方向或者沿第一反射镜和/或第二反射镜的反射面的法向方向。第一反射镜和/或第二反射镜移动位置时,光信号的光路长度也随之改变,即改变了像距,使得光信 号可以在感光面上清晰成像,从而实现了对焦效果。
在一个具体的实施例中,该光学防抖装置还可以包括第二透镜。第二透镜被设置在第一反射镜和第二反射镜之间。光信号在经过第一反射镜反射后,透过第二透镜,投射在第二反射镜上,并在经过第二反射镜的反射后,最终投射在成像面上。其中,需要说明的是,第二透镜起辅助成像的作用,可以是凸透镜或凹透镜,可以是一片或多片透镜的组合,具体数量和形式此处不做限定。
在一个具体的实施例中,该光学防抖装置还可以包括第二透镜。该第二透镜被设置在第二反射镜和成像面之间。光信号在经过第二反射镜反射后,透过第二透镜,最终投射在成像面上。其中,需要说明的是,第二透镜起辅助成像的作用,可以是凸透镜或凹透镜,可以是一片或多片透镜的组合,具体数量和形式此处不做限定。
在一个具体的实施例中,该光学防抖装置还可以包括第二透镜和第三透镜。该第二透镜被设置在第一反射镜和第二反射镜之间,第三透镜被设置在第二反射镜和成像面之间。光路依次经过第一透镜-第一反射镜-第二透镜-第二反射镜-第三透镜,最后投射在成像面上。其中,需要说明的是,第二透镜和第三透镜起辅助成像的作用,第二透镜和第三透镜分别可以是凸透镜或凹透镜,可以是一片或多片透镜的组合,具体数量和形式此处不做限定。
基于第一方面中的光学防抖装置,本申请实施例第二方面提供了一种控制部件,可以包括:
驱动构件和处理芯片。
其中,处理芯片用于接收第一方面中所述的位置传感器检测到的第一透镜的抖动信息,在对该抖动信息进行处理后,处理芯片根据对抖动信息处理的结果,控制驱动构件驱动第一反射镜和/或第二反射镜实现如第一方面中所描述的旋转运动,从而实现防抖功能。
在一个具体的实施例中,控制部件中的处理芯片还用于接收图像传感器检测到的、光信号在感光面上投射的图像的锐度信息,在对该锐度信息进行处理后,处理芯片还用于根据对锐度信息处理的结果控制驱动构件驱动第一反射镜和/或第二反射镜进行第一方面中关于第一反射镜中所描述的移动位置运动,从而实现对焦效果。
在一个具体的实施例中,控制部件还可以包括:音圈马达(voice coil motor,VCM)驱动模块,VCM驱动模块与处理芯片相连。
处理芯片还用于接收图像传感器检测到的、光信号在感光面上投射的图像的锐度信息,在对该锐度信息进行处理后,处理芯片还用于根据对锐度信息处理的结果,控制VCM驱动模块驱动第一透镜沿第一透镜的中轴线方向进行位置移动。第一透镜在沿第一透镜的中轴线方向进行移动时,光信号在在从第一透镜至感光面之间的传播路径的长度发生改变,也即像距发生改变,从而实现对焦效果。需要说明的是,VCM驱动模块驱动第一透镜沿中轴线移动位置的运动,和驱动构件驱动第一反射镜和/或第二反射镜移动位置的运动,两者可以同时进行或者分别进行,两者同时进行时,可以实现精细对焦或者大对焦的功能,大对焦即指实现更大的对焦范围。
基于第二方面中的控制部件,本申请实施例第三方面提供了一种驱动构件,可以包括:
第一线圈和第一磁体。
第一反射镜通过第一悬臂梁与外框相连,第一线圈固定在第一反射镜的背面或者边缘位置,第一磁体固定在第一外框上。
其中,第一线圈为“∞型”线圈。分为左半部分线圈和右半部分线圈,且左右对称。第 一线圈通电后,左侧部分线圈与第一磁体的磁场作用生成垂直于第一反射镜向里的安培力,右侧线圈与第一磁体的磁场作用生成垂直于第一反射镜向外的安培力,从而驱动第一反射镜沿第二转动轴进行旋转。
处理芯片接收到位置传感器检测的第一透镜的抖动信息后,对该抖动信息进行处理,并根据处理的结果控制对第一线圈的通电量。第一线圈通电后,在第一磁体的磁场作用下,在第一线圈的左半部分和右半部分分别生成方向相反的安培力,从而推动与第一线圈固定连接的第一反射镜以第一预设方向为轴进行旋转。其中,转动轴可以为第一悬臂梁,此时该第一预设方向即为第一悬臂梁的方向。需要说明的是,处理芯片根据处理的结果对第一线圈通电量的控制包括控制第一线圈中的电流流向和电流大小,从而可以实现对第一反射镜的旋转方向和旋转角度大小的控制。
在一个具体的实施例中,驱动构件还可以包括:第二线圈。该第二线圈固定在第一反射镜的背面或者边缘位置且与第一线圈相互绝缘,支撑架通过第一转动轴与第一反射镜相连,通过第二转动轴与第一外框相连。其中,第二线圈为“字型”线圈,类似于第一线圈旋转度的形状,分为上半部分线圈和下半部分线圈,且上下对称。第二线圈通电后,上侧部分线圈与第一磁体的磁场作用生成垂直于第一反射镜向里的安培力,下侧线圈与第一磁体的磁场作用生成垂直于第一反射镜向外的安培力,从而驱动第一反射镜沿第二转动轴进行旋转。处理芯片接收到位置传感器检测的第一透镜的抖动信息后,对该抖动信息进行处理,并根据处理的结果控制对第二线圈的通电量。第二线圈通电后,在磁体的磁场作用下,在第二线圈的上半部分和下半部分分别生成方向相反的安培力,从而推动与第二线圈固定连接的第一反射镜以第二预设方向为轴进行旋转。其中,本实施例中,第一预设方向即为第二转动轴的方向,第二预设方向即为第一转动轴的方向。
在一个具体的实施例中,驱动构件还可以包括:第二线圈和第二磁体。第二反射镜通过第二悬臂梁与第二外框相连,第二线圈固定在第二反射镜的背面或者边缘位置,第二磁体固定在第二外框上。其中,第二线圈为“8型”线圈。处理芯片接收到位置传感器检测的第一透镜的抖动信息后,对该抖动信息进行处理,并根据处理的结果控制对第二线圈的通电量。第二线圈通电后,在磁体的磁场作用下,在第二线圈的上半部分和下半部分分别生成方向相反的安培力,从而推动与第二线圈固定连接的第二反射镜以第二预设方向为轴进行旋转。其中,本实施例中,第二预设方向可以为第二悬臂梁的方向。
在一个具体的实施例中,驱动构件可以包括:第一线圈、第一磁体、第二线圈和第三线圈。其中,第一线圈、第一磁体和第二线圈可以前述的相关描述,具体此处不再赘述。第三线圈固定在第一反射镜的背面或者边缘位置,并且与第一线圈和第二线圈绝缘处理,或者,第三线圈也可以固定在支撑架上。处理芯片接收到图像传感器检测到的、光信号在感光面上投射的图像的锐度信息后,对该锐度信息进行处理,并根据处理的结果控制对第三线圈的通电量。第三线圈通电后,在第一磁体的磁场作用下,生成垂直第三线圈所在平面的安培力,从而推动与第三线圈固定连接的第一反射镜移动位置。需要说明的是,处理芯片根据处理的结果对第三线圈的通电量的控制包括控制第三线圈中的电流流向和电流大小,从而可以实现对第一反射镜的位置移动的大小和方向进行控制。
在一个具体的实施例中,第三线圈还可以设置在第二反射镜上,具体可以固定在第二反射镜的背面或者边缘位置,并且与第二线圈之间绝缘处理。
在一个具体的实施例中,该光学防抖装置还包括第一外框和支撑架,驱动构件可以包括:
第一线圈、第一电磁体、第二电磁体、第三电磁体和第四电磁体。
第一线圈为矩形或方形线圈,并可以通有顺指针或逆时针方向的电流,第一反射镜通过第二转动轴与支撑架相连,支撑架通过第一转动轴与外框相连,第一线圈被设置固定在第一反射镜的背面或者边缘位置,第一电磁体和第二电磁体分别固定在外框上。
处理芯片在接收到位置传感器检测的第一透镜的抖动信息后,对该抖动信息进行处理,并根据处理结果控制对第一电磁体、第二电磁体、第三电磁体和/或第四电磁体上提供磁场的线圈的通电,例如控制电流大小和电流方向,从而在第一线圈四周产生预设方向的磁场,使得第一线圈的四个边分别产生不同方向的安培力,从而推动与第一线圈固连的第一反射镜进行旋转或移动位置的运动,从而实现防抖或对焦功能。
基于第一方面、第二方面和第三发面相关结构,本申请实施例第四方面提供了一种控制方法,可以包括:
光学防抖装置检测第一透镜的抖动信息。具体地,第一透镜抖动时,光学防抖装置中的位置传感器检测第一透镜的抖动信息,例如抖动位移、抖动频率和抖动方向等。需要说明的是,这里的位置传感器并非为特定的传感器,而是泛指可以实现检测第一透镜抖动信息的传感器。
检测确定第一透镜的抖动信息后,光学防抖装置根据抖动信息确定第一控制参数。具体地,处理芯片接收到位置传感器检测的抖动信息后,根据预置的第一算法对该抖动信息进行处理,得到第一控制参数。其中,预置的第一算法后续可以通过网络,或根据用户输入的设置参数进行更新。该第一控制参数具体可以为指示第一反射镜旋转的参数,具体地,第一控制参数可以包括旋转方向信息和旋转角度信息。
确定第一控制参数后,光学防抖装置根据该第一控制参数、通过控制部件控制第一反射镜旋转。具体地,光学防抖装置在确定第一控制参数后,可以根据第一控制参数确定需要加载在第一线圈和第二线圈上的电流方向及电流大小。其中,这个过程可以通过预置的第三算法来实现,该第三算法后续可以通过网络,或根据用户输入的设置参数进行更新。
在一个具体的实施例中,光信号投射在图像传感器的感光面上后,图像传感器检测该光信号在感光面上的图像的锐度信息。处理芯片接收到图像传感器检测的锐度信息后,根据预置的第二算法对锐度信息进行处理,得到第二控制参数。其中,预置的第二算法后续可以通过网络,或根据用户输入的设置参数进行更新。该第二控制参数包括指示第一反射镜移动位置的参数和指示第一透镜移动位置的参数。具体地,该第二控制参数可以包括移动方向信息和移动距离信息。光学防抖装置在确定第二控制参数后,可以根据第二控制参数确定需要加载在第三线圈和VCM驱动模块上的电流方向及电流大小。其中,这个过程可以通过预置的第四算法来实现,该第四算法后续可以通过网络,或根据用户输入的设置参数进行更新。
从以上技术方案可以看出,本申请实施例具有以下优点:
本申请实施例提供了一种光学防抖装置,包括第一透镜、第一反射镜、位置传感器和驱动部件,光信号在通过第一透镜后,再经过第一反射镜的反射,之后投射在成像面上。位置传感器用于检测第一透镜的抖动信息并发送至驱动部件,该驱动部件根据该抖动信息提供驱动力,驱动该第一反射镜以该第一预设方向为轴进行旋转。由于该第一预设方向为与所述第一反射镜的法向不平行的方向,因而在第一反射镜以第一预设方向为轴旋转时,光信号在第一反射镜上的入射角和反射角也会随旋转而发生改变,即通过该光学防抖装置中第一反射镜的旋转实现了对光信号的传播方向的改变,可以通过光路方向的改变来对第一透镜抖动造成 的光路的震荡进行补偿,从而提供了一种光学防抖装置。
附图说明
图1为镜头成像的示意图;
图2A为光线透过镜头模组后的投射示意图;
图2B为镜头抖动后光线透过镜头模组的投射示意图;
图3A为本申请实施例提供的一种光学防抖装置的示意图;
图3B为本申请另一实施例提供的一种光学防抖装置的示意图;
图3C为本申请实施例提供的一种光学防抖装置的光路结构图;
图3D为本申请另一实施例提供的一种光学防抖装置的光路结构图;
图4A为本申请另一实施例提供的一种光学防抖装置的示意图;
图4B为本申请另一实施例提供的一种光学防抖装置的示意图;
图4C为本申请另一实施例提供的一种光学防抖装置的光路结构图;
图4D为本申请另一实施例提供的一种光学防抖装置的光路结构图;
图4E为本申请另一实施例提供的一种光学防抖装置的光路结构图;
图4F为本申请另一实施例提供的一种光学防抖装置的光路结构图;
图5A为本申请另一实施例提供的一种光学防抖装置的示意图;
图5B为本申请另一实施例提供的一种光学防抖装置的示意图;
图5C为本申请另一实施例提供的一种光学防抖装置的光路结构图;
图5D为本申请另一实施例提供的一种光学防抖装置的光路结构图;
图5E为本申请另一实施例提供的一种光学防抖装置的光路结构图;
图5F为本申请另一实施例提供的一种光学防抖装置的光路结构图;
图6A为本申请实施例提供的控制部件的示意图;
图6B为本申请另一实施例提供的控制部件的示意图;
图7A为本申请实施例提供的驱动构件的示意图;
图7B为本申请另一实施例提供的驱动构件的示意图;
图7C为本申请另一实施例提供的驱动构件的示意图;
图7D为本申请另一实施例提供的驱动构件的示意图;
图7E为本申请另一实施例提供的驱动构件的示意图;
图8为本申请实施例提供的一种控制方法示意图。
具体实施方式
下面结合附图对本申请实施例所提供的一种光学防抖装置进行详细说明。
本申请实施例中的光学防抖装置,可以应用于多种类型的镜头中,包括潜望镜或各种类型的摄像镜头中,例如但不限于,应用在采用手机的镜头模组中。
下面对本申请实施例中所包含的部分术语进行说明。
对焦也叫对光、聚焦,指的是根据不同距离的物体在镜头后部清晰成像的位置的不同而改变成像面与透镜间距离,使被拍物成像清晰的过程。由于所有的成像***都存在景深,如果被拍摄物体在景深之外,那么该物体拍摄后将出现图像模糊,为了保证拍摄的物体清晰呈现,需要进行对焦。对焦又称之为调焦,通过对光学镜头的像距进行前后微调,按照设计值 得到一一对应的拍摄距离,这样一来将拍摄物体保持在景深范围内清晰成像。
景深,是指的是成像光学***成像清晰的深度,景深是一种物理现象,只是不同光学***的景深大小有区别。如图1所示,为镜头成像的示意图,ΔL为景深,L为拍摄距离。其中,景深的大小与光学镜头自身的参数焦距f、镜头的光圈数(F数)有关,也和所使用的图像采集器CMOS能分辨的弥散圆直径δ有关。
其中,它们之间的关系如下公式1、公式2和公式3所述。
公式1:
Figure PCTCN2020097284-appb-000001
公式2:
Figure PCTCN2020097284-appb-000002
公式3:
Figure PCTCN2020097284-appb-000003
基于以上说明,手机摄像头要获得高质量的图像,就需要对焦。其中,在拍摄不同距离的图像时,CMOS和透镜组距离是不同的,例如在长焦摄影中,由于物距很长,根据成像公式:1/f=1/v+1/u(其中,f为焦距,凸正凹负;u为物距;v为像距,实正虚负)可知,像距就会很短;而在微距拍摄时,物距很短,相对像距就需要较长,这就对精细化对焦提出了需求。
此外,由于手机拍摄的过程中,CMOS芯片需要一定的响应时间,尤其是暗景拍摄,在光线不足的情况下,需要更长的曝光时间以获得足够的进光量。而长时间曝光时,即长快门时,若在一个快门时间内,如果出现画面抖动,在镜头发生抖动后,图像传感器传送的数据会变糊,成像质量严重下降,成为“糊片”。如图2A所示,为光线透过镜头模组的投射示意图,在发生抖动后,如图2B所示,光线在感光元件上的投射点发生了偏移。然而人体在手持拍照的过程中必然存在抖动,尤其对于长焦摄影,此现象更加严重,因此需要手机摄像头模组中加载图像防抖技术消除这一影响。
本申请实施例中提供了一种光学防抖装置,下面具体参照图3A,图3A为本申请实施例中所提供的一种光学防抖装置的一个实施例示意图,该光学防抖装置包括:
第一透镜301、第一反射镜302、位置传感器303和控制部件304,位置传感器303和控制部件304相连。
其中,第一透镜301用于成像,具体可以是凸透镜,也可以是凹透镜或者平面镜,可以是一片透镜或多片透镜的组合,本申请实施例中对第一透镜301的形式和数量不做具体限定。第一反射镜302的形状可以为圆形或者方形,或其他形状,具体形状本申请实施例不做限定。
光信号在通过第一透镜301后,传递至第一反射镜302,并在经过第一反射镜302的反射后,投射在成像面上。在光信号传递至成像面过程中,当第一透镜301发生抖动时,位置传感器303检测第一透镜301的抖动信息,并将该抖动信息发送给控制部件304,该抖动信息可以包括第一透镜301的抖动方向、抖动频率和抖动幅度等抖动参数。之后,控制部件304根据位置传感器303检测的抖动信息控制第一反射镜302以第一预设方向为轴进行旋转。其中,该第一预设方向与第一反射镜302的法向不平行,因而第一反射镜302旋转时可以改变第一反射镜302上的光信号的入射角和反射角,也即第一反射镜302旋转时可以改变光信号的光路方向。
根据以上的说明,可以看出,当第一透镜301抖动时,可以根据第一透镜301的抖动信息控制第一反射镜302旋转,从而改变射入成像面的光信号的光路方向,补偿由于第一透镜 301的抖动带来的光路方向的偏折。通过补偿由于第一透镜301的抖动带来的光路方向的偏折,来减小光信号在成像面上形成的光点的位置受第一透镜301的抖动而震荡的幅度大小,保持光信号在成像面上的光点位置的稳定,从而实现防抖效果。
在一个具体的实施例中,在图3A所示的实施例中,当第一透镜301发生抖动时,控制部件304还可以用于根据抖动信息控制第一反射镜302以第二预设方向为轴进行旋转,其中,第二预设方向与第一预设方向及第一反射镜302的法向均不平行。由于第二预设方向为与第一反射镜302的法向不平行的方向,因而驱动部件在驱动第一反射镜302以第二预设方向为轴旋转时,同样可以改变光信号在经第一反射镜302反射后的传播方向,实现如上述描述中第一反射镜302沿第一预设方向为轴旋转时的补偿效果。需要说明的是,本实施例中,第一反射镜302沿第一预设方向为轴的旋转运动和沿第二预设方向为轴的旋转运动可以同时进行也可以分别单独进行,具体由控制部件304根据抖动信息进行控制。本实施例中,通过控制第一反射镜302沿第一预设方向为轴的旋转运动和沿第二预设方向为轴的旋转运动,从而提供了一种双轴光学防抖装置。
在一个具体的实施例中,在图3A所示实施例的基础上,下面具体参照图3B,图3B为本申请实施例中所提供的一种光学防抖装置的另一个实施例示意图,该光学防抖装置还可以包括:
与控制部件304相连的图像传感器305,图像传感器305的感光面为成像面。
光信号投射至成像面,即图像传感器305的感光面后,图像传感器305检测光信号投射在感光面上形成的图像的锐度信息,并将该锐度信息发送至控制部件304。从而,控制部件304根据锐度信息控制第一反射镜302移动位置,第一反射镜302移动位置时,光信号的光路长度随第一反射镜302位置的移动而改变,光路为从第一透镜301到成像面上之间光信号的传播路径。
需要说明的是,第一反射镜302移动位置的方向可以预先进行设定,例如可以设定为沿光路方向或者沿第一反射镜302反射面的法向方向。第一反射镜302移动位置时,光信号的光路长度也随之改变,即改变了像距,使得光信号可以在感光面上清晰成像,从而实现了对焦效果。
在一个具体的实施例中,图像传感器305具体类型可以为CMOS或CCD,或者其他成像装置或者是其他反射装置,本申请实施例对图像传感器305的类型不做具体限定。
图3A或图3B中,对第一透镜301、第一反射镜302、位置传感器303和控制部件304之间的位置关系做了简要描述,下面参照图3C,图3C为第一透镜301和第一反射镜302之间位置关系的一个实施例示意图。
在一个具体的实施例中,该光学防抖装置还可以包括第二透镜307。下面具体参照图3D,图3D为第一透镜301、第二透镜307、第一反射镜302及成像面之间位置关系的一个实施例示意图。如图3D所示,第二透镜307被设置在第一反射镜302和成像面之间,光信号在被第一反射镜302反射后,投射在第二透镜307上,并在透过第二透镜307后,最终投射在成像面上。其中,需要说明的是,第二透镜307起辅助成像的作用,可以是凸透镜或凹透镜,可以包括一片或多片透镜的组合,具体数量和形式此处不做限定。
在一个具体的实施例中,在图3A的基础上,下面具体参照图4A,图4A为本申请实施例中所提供的一种光学防抖装置的另一个实施例示意图,该光学防抖装置还可以包括:
第二反射镜306。
其中,第二反射镜306与第一反射镜302分别位于第一透镜301的两侧的位置。第二反射镜306获取到光信号后,将获取的光信号反射至第一透镜301。之后,该光信号再经第一反射镜302的反射,最终投射在成像面上。
当第一透镜301发生抖动时,控制部件304还可以根据位置传感器303检测的第一透镜301的抖动信息,控制第二反射镜306沿第二预设方向进行旋转,其中,第二预设方向与第一预设方向以及第二反射镜306的法向均不平行。从而第二反射镜306旋转时,同样可以带动改变光信号的光路方向,实现防抖效果。并且,需要说明的是,第二反射镜306以第二预设方向为轴的旋转运动可以与第一反射镜302以第一预设方向为轴的旋转运动同时进行或者分别单独进行,具体由控制部件304根据抖动信息进行控制。当两者同时进行时,可以组合实现双轴防抖的效果。
在一个具体的实施例中,在图4A所示的实施例的基础上,下面具体参照图4B,图4B为本申请实施例中所提供的一种光学防抖装置的另一个实施例示意图,该光学防抖装置还可以包括:
与控制部件304相连的图像传感器305,图像传感器305的感光面为成像面。
光信号投射至成像面,即图像传感器305的感光面后,图像传感器305检测光信号投射在感光面上形成的图像的锐度信息,并将该锐度信息发送至控制部件304。从而,控制部件304根据锐度信息控制第一反射镜302移动位置,第一反射镜302移动位置时,光信号的光路长度随第一反射镜302位置的移动而改变,光路为从第一透镜301到成像面上之间光信号的传播路径。
需要说明的是,第一反射镜302移动位置的方向可以预先进行设定,例如可以设定为沿光路方向或者沿第一反射镜302反射面的法向方向。第一反射镜302移动位置时,光信号的光路长度也随之改变,即改变了像距,使得光信号可以在感光面上清晰成像,从而实现了对焦效果。
如图4A或图4B中,对第一透镜301、第一反射镜302、第二反射镜306和位置传感器303和控制部件304之间的位置关系做了简要描述,下面参照图4C,图4C为第一透镜301、第一反射镜302和第二反射镜306之间位置关系的一个实施例示意图。
在一个具体的实施例中,该光学防抖装置还可以包括第二透镜307。下面具体参照图4D,图4D为第一透镜301、第二透镜307和第一反射镜302之间位置关系的一个实施例示意图。如图4D所示,第二透镜307被设置在第一反射镜302和成像面之间,光信号在被第一反射镜302反射后,投射在第二透镜307上,并在透过第二透镜307后,最终投射在成像面上。其中,需要说明的是,第二透镜307起辅助成像的作用,可以是凸透镜或凹透镜,可以是一片或多片透镜的组合,具体数量和形式此处不做限定。
在一个具体的实施例中,该光学防抖装置还可以包括第二透镜307。下面具体参照图4E,图4E为第一透镜301、第二透镜307和第一反射镜302之间位置关系的另一个实施例示意图。如图4E所示,第二透镜307被设置在第二反射镜306的外侧,光信号在通过第二透镜307后,投射在第二反射镜306上。之后,经过第二反射镜306反射后的光信号,在透过第一透镜301后,再经第一反射镜302的反射,最终投射在成像面上。其中,需要说明的是,第二透镜307起辅助成像的作用,可以是凸透镜或凹透镜,可以是一片或多片透镜的组合,具体数量和形式此处不做限定。
在一个具体的实施例中,该光学防抖装置还可以包括第二透镜307和第三透镜308。下 面具体参照图4F,图4F为第一透镜301、第二透镜307、第三透镜308和第一反射镜302之间位置关系的一个实施例示意图。如图4F所示,第二透镜307被设置在第二反射镜306的外侧,第三透镜308被设置在第一反射镜302与成像面之间的光路上。光路依次经过第二透镜307-第二反射镜306-第一透镜301-第一反射镜302-第三透镜308,最后投射在成像面上。其中,需要说明的是,第二透镜307和第三透镜308起辅助成像的作用,第二透镜307和第三透镜308分别可以是凸透镜或凹透镜,可以是一片或多片透镜的组合,具体数量和形式此处不做限定。
在一个具体的实施例中,在图3A的基础上,下面具体参照图5A,图5A为本申请实施例中所提供的一种光学防抖装置的另一个实施例示意图,该光学防抖装置还可以包括:
第二反射镜306。
其中,其中,第二反射镜306的安置位置如图5A所示,位于第一反射镜302和成像面之间。光信号在经第一反射镜302反射后,投射在第二反射镜306上,并经第二反射镜306反射至成像面。
当第一透镜301发生抖动时,控制部件304还用于根据位置传感器303检测的第一透镜301的抖动信息控制第二反射镜306以第二预设方向为轴进行旋转,其中,第二预设方向与第一预设方向以及第二反射镜306的法向均不平行。从而第二反射镜306旋转时,同样可以带动改变光信号的光路方向,实现防抖效果。并且,需要说明的是,第二反射镜306以第二预设方向为轴的旋转运动可以与第一反射镜302以第一预设方向为轴的旋转运动同时进行或者分别单独进行,具体由控制部件304根据抖动信息进行控制。当两者同时进行时,可以实现双轴防抖的效果。
在一个具体的实施例中,在图5A的基础上,具体参照图5B,图5B为本申请实施例中所提供的一种光学防抖装置的另一个实施例示意图,该光学防抖装置还可以包括:
与控制部件304相连的图像传感器305,图像传感器305的感光面为成像面。
光信号投射至成像面,即图像传感器305的感光面后,图像传感器305检测光信号投射在感光面上形成的图像的锐度信息,并将该锐度信息发送至控制部件304。控制部件304接收到图像传感器305检测的锐度信息后,根据锐度信息控制第一反射镜302和/或第二反射镜306移动位置。第一反射镜302和/或第二反射镜306移动位置时,光信号的光路长度随第一反射镜302和/或第二反射镜306位置的移动而改变,光路为从第一透镜301到成像面上之间光信号的传播路径。
需要说明的是,第一反射镜302和/或第二反射镜306移动位置的方向可以预先进行设定,例如可以设定为沿光路方向或者沿第一反射镜302和/或第二反射镜306的反射面的法向方向。第一反射镜302和/或第二反射镜306移动位置时,光信号的光路长度也随之改变,即改变了像距,使得光信号可以在感光面上清晰成像,从而实现了对焦效果。
如图5A或图5B中,对第一透镜301、第一反射镜302、第二反射镜306和成像面之间的位置关系做了简要描述,下面参照图5C,图5C为第一透镜301、第一反射镜302和第二反射镜306之间位置关系的一个实施例示意图。
在一个具体的实施例中,该光学防抖装置还可以包括第二透镜307。下面具体参照图5D,图5D为第一透镜301、第二透镜307、第一反射镜302和第二反射镜306之间位置关系的另一个实施例示意图。如图5D所示,第二透镜307被设置在第一反射镜302和第二反射镜306之间。光信号在经过第一反射镜302反射后,透过第二透镜307,投射在第二反射镜306上, 并在经过第二反射镜306的反射后,最终投射在成像面上。其中,需要说明的是,第二透镜307起辅助成像的作用,可以是凸透镜或凹透镜,可以是一片或多片透镜的组合,具体数量和形式此处不做限定。
在一个具体的实施例中,该光学防抖装置还可以包括第二透镜307。下面具体参照图5E,图5E为第一透镜301、第二透镜307、第一反射镜302和第二反射镜306之间位置关系的另一个实施例示意图。如图5E所示,第二透镜307被设置在第二反射镜306和成像面之间。光信号在经过第二反射镜306反射后,透过第二透镜307,最终投射在成像面上。其中,需要说明的是,第二透镜307起辅助成像的作用,可以是凸透镜或凹透镜,可以是一片或多片透镜的组合,具体数量和形式此处不做限定。
在一个具体的实施例中,该光学防抖装置还可以包括第二透镜307和第三透镜308。下面具体参照图5F,图5F为第一透镜301、第二透镜307、第三透镜308、第一反射镜302和第二反射镜306之间位置关系的一个实施例示意图。如图5F所示,第二透镜307被设置在第一反射镜302和第二反射镜306之间,第三透镜308被设置在第二反射镜306和成像面之间。光路依次经过第一透镜301-第一反射镜302-第二透镜307-第二反射镜306-第三透镜308,最后投射在成像面上。其中,需要说明的是,第二透镜307和第三透镜308起辅助成像的作用,第二透镜307和第三透镜308分别可以是凸透镜或凹透镜,可以是一片或多片透镜的组合,具体数量和形式此处不做限定。
需要说明的是,图3C、3D,图4B-4F和图5B-5F中所示的光学防抖装置中所体现的,各个反射镜之间,各个透镜之间以及各个反射镜和透镜之间的位置关系仅作为举例说明。具体地,各透镜和反射镜的之间的具***置,如第一透镜301与各个反射镜之间的距离和夹角设置,各片透镜之间的距离、位置和夹角的设置、各个反射镜之间的距离和夹角的设置等在本申请实施例中不做具体限定。在实际应用中,各透镜和反射镜的之间的具***置可以根据需求进行设定。
在一个具体的实施例中,基于如图3A-3D、4A-4F和5A-5F中任一具体实施例的光学防抖装置,下面具体参照图6A,图6A为本申请实施例中所提供的控制部件304的一个实施例示意图,控制部件304包括:
驱动构件3041和处理芯片3042。
其中,处理芯片3042用于接收如图3A-3D、4A-4F和5A-5F任一具体实施例中位置传感器303检测到的第一透镜301的抖动信息,在对该抖动信息进行处理后,处理芯片3042根据对抖动信息处理的结果,控制驱动构件3041驱动第一反射镜302和/或第二反射镜306实现如图3A-3D、4A-4F和5A-5F任一具体实施例中所描述的旋转运动,从而实现防抖功能。
在一个具体的实施例中,参照图6A所示的控制部件304,控制部件304中的处理芯片3042还用于接收如图3B所示实施例中的图像传感器305、或者4B和5B所示实施例的中图像传感器305检测到的、光信号在感光面上投射的图像的锐度信息,在对该锐度信息进行处理后,处理芯片3042还用于根据对锐度信息处理的结果控制驱动构件3041驱动第一反射镜302和/或第二反射镜306进行如图3B、4B或5B任一具体实施例中所描述的移动位置运动,从而实现对焦效果。
在一个具体的实施例中,在图6A的基础上,下面具体参照图6B,图6B为本申请实施例中所提供的控制部件304的另一个实施例示意图,控制部件304还可以包括:
VCM驱动模块3043,VCM驱动模块3043与处理芯片3042相连。
处理芯片3042还用于接收如图3B所示实施例中的图像传感器305,或者图4B和5B所示实施例中的图像传感器305检测到的、光信号在感光面上投射的图像的锐度信息,在对该锐度信息进行处理后,处理芯片3042还用于根据对锐度信息处理的结果,控制VCM驱动模块3043驱动第一透镜301沿第一透镜301的中轴线方向进行位置移动。第一透镜301在沿第一透镜301的中轴线方向进行移动时,光信号在在从第一透镜301至感光面305之间的传播路径的长度发生改变,也即像距发生改变,从而实现对焦效果。
需要说明的是,VCM驱动模块3043驱动第一透镜301沿中轴线移动位置的运动,和驱动构件3041驱动第一反射镜302和/或第二反射镜306移动位置的运动,两者可以同时进行或者分别进行,两者同时进行时,可以实现精细对焦或者大对焦的功能,大对焦即指实现更大的对焦范围。
在以上所述的图6A和6B所示的实施例中,对该光学防抖装置中驱动部件304进行了简要描述,下面对驱动构件3041进行进一步的说明。
在一个具体的实施例中,反射镜在进行旋转或平移运动的过程中,驱动构件3041采用的驱动方式可以是磁电式驱动、压电式驱动、或者其他类型驱动,具体驱动方式本申请实施例不做限定。
在一个具体的实施例中,基于图3A-3D、4A-4F或5A-5F任一所示实施例中的光学防抖装置,下面具体参照图7A,该光学防抖装置还包括第一外框309和第一悬臂梁310,图7A为本申请实施例中驱动构件3041的一个实施例示意图,驱动构件3041可以包括:
第一线圈30411和第一磁体30412。
如图7A所示,第一反射镜302通过第一悬臂梁310与外框309相连,第一线圈30411固定在第一反射镜302的背面或者边缘位置,第一磁体30412固定在第一外框309上。
其中,第一线圈为如图7A所示的“∞型”线圈。分为左半部分线圈和右半部分线圈,且左右对称。第一线圈30411通电后,左侧部分线圈与第一磁体30412的磁场作用生成垂直于第一反射镜302向里的安培力,右侧线圈与第一磁体30412的磁场作用生成垂直于第一反射镜302向外的安培力,从而驱动第一反射镜302沿第二转动轴进行旋转。当需要控制第一反射镜302进行反方向旋转时,则向第一线圈30411供应与如图7A所示的方向反向的电流。
处理芯片3042接收到位置传感器303检测的第一透镜301的抖动信息后,对该抖动信息进行处理,并根据处理的结果控制对第一线圈30411的通电量。第一线圈30411通电后,在第一磁体30412的磁场作用下,在第一线圈30411的左半部分和右半部分分别生成方向相反的安培力,从而推动与第一线圈30411固定连接的第一反射镜302以第一预设方向为轴进行旋转。其中,转动轴可以为第一悬臂梁,此时该第一预设方向即为第一悬臂梁的方向。
需要说明的是,处理芯片3042根据处理的结果对第一线圈30411通电量的控制包括控制第一线圈30411中的电流流向和电流大小,从而可以实现对第一反射镜302的旋转方向和旋转角度大小的控制。
在一个具体的实施例中,基于图7A所示实施例中的驱动构件3041,下面具体参照图7B,该光学防抖装置还包括支撑架311,图7B为本申请实施例中驱动构件3041的另一个实施例示意图,驱动构件3041还可以包括:
第二线圈30413。
如图7B所示,第二线圈30413固定在第一反射镜302的背面或者边缘位置且与第一线圈40411相互绝缘,支撑架311通过第一转动轴与第一反射镜302相连,通过第二转动轴与 第一外框309相连。
其中,第二线圈30413为“8字型”线圈,类似于第一线圈旋转90度的形状,分为上半部分线圈和下半部分线圈,且上下对称。第二线圈30413通电后,上侧部分线圈与第一磁体30412的磁场作用生成垂直于第一反射镜302向里的安培力,下侧线圈与第一磁体30412的磁场作用生成垂直于第一反射镜302向外的安培力,从而驱动第一反射镜302沿第二转动轴进行旋转。当需要控制第一反射镜302进行反方向旋转时,则向第二线圈30413供应与如图7B所示的方向反向的电流。
处理芯片3042接收到位置传感器303检测的第一透镜301的抖动信息后,对该抖动信息进行处理,并根据处理的结果控制对第二线圈30413的通电量。第二线圈30413通电后,在磁体30412的磁场作用下,在第二线圈30413的上半部分和下半部分分别生成方向相反的安培力,从而推动与第二线圈30413固定连接的第一反射镜302以第二预设方向为轴进行旋转。
其中,本实施例中,第一预设方向即为第二转动轴的方向,第二预设方向即为第一转动轴的方向。
在一个具体的实施例中,基于图4A-4F或5A-5F任一所示实施例中的光学防抖装置,下面具体参照图7C,该光学防抖装置还包括第二外框312和第二悬臂梁313,图7C为本申请实施例中驱动构件3041的另一个实施例示意图,驱动构件3041还可以包括:
第二线圈30413和第二磁体30414。
如图7C所示,第二反射镜306通过第二悬臂梁313与第二外框312相连,第二线圈30413固定在第二反射镜306的背面或者边缘位置,第二磁体30414固定在第二外框312上。其中,第二线圈30413为如图7C所示的“8型”线圈。
处理芯片3042接收到位置传感器303检测的第一透镜301的抖动信息后,对该抖动信息进行处理,并根据处理的结果控制对第二线圈30413的通电量。第二线圈30413通电后,在磁体30412的磁场作用下,在第二线圈30413的上半部分和下半部分分别生成方向相反的安培力,从而推动与第二线圈30413固定连接的第二反射镜306以第二预设方向为轴进行旋转。
其中,本实施例中,第二预设方向可以为第二悬臂梁313的方向。
在一个具体的实施例中,基于图3B、4B或5B所示实施例中的光学防抖装置,该光学防抖装置包括第一外框309和支撑架311,下面具体参照图7D,图7D为本申请实施例中驱动构件3041的一个实施例示意图,驱动构件3041可以包括:
第一线圈30411、第一磁体30412、第二线圈30413和第三线圈30414。
其中,第一线圈30411和第一磁体30412可以参照图7A所示实施例中的第一线圈30411和第一磁体30412的相关描述,支撑架311和第二线圈30413可以参照图7B所示实施例中的支撑架311和第二线圈30413的相关描述,具体此处不再赘述。
如图7D所示,第三线圈30414固定在第一反射镜302的背面或者边缘位置,并且与第一线圈30411和第二线圈30413绝缘处理,或者,第三线圈30414也可以固定在支撑架311上。
处理芯片3042接收到图像传感器305检测到的、光信号在感光面上投射的图像的锐度信息后,对该锐度信息进行处理,并根据处理的结果控制对第三线圈30414的通电量。第三线圈30414通电后,在第一磁体30412的磁场作用下,生成垂直第三线圈30414所在平面的 安培力,从而推动与第三线圈30414固定连接的第一反射镜302移动位置。需要说明的是,处理芯片3042根据处理的结果对第三线圈30414的通电量的控制包括控制第三线圈30414中的电流流向和电流大小,从而可以实现对第一反射镜302的位置移动的大小和方向进行控制。
在一个具体的实施例中,如图7D所示的驱动构件3041中的第三线圈30414还可以设置在如7C所示的驱动构件3041中的第二反射镜306上,具体可以固定在第二反射镜306的背面或者边缘位置,并且与第二线圈30413之间绝缘处理。具体的设置与图7D类似,此处不再赘述。
在一个具体的实施例中,基于图3A-3D、4A-4F或5A-5F任一所示实施例中的光学防抖装置,下面具体参照图7E,该光学防抖装置还包括第一外框309和支撑架311,图7E为本申请实施例中驱动构件3041的另一个实施例示意图,驱动构件3041可以包括:
第一线圈30411、第一电磁体30412、第二电磁体30413、第三电磁体30414和第四电磁体30415。其中,支撑架311的结构如图7B中所述的支撑架311类似,此处不再赘述。
如图7E所示,第一线圈30411为矩形或方形线圈,并可以通有顺指针或逆时针方向的电流,第一反射镜302通过第二转动轴与支撑架311相连,支撑架311通过第一转动轴与外框309相连,第一线圈30411被设置固定在第一反射镜302的背面或者边缘位置,第一电磁体30412和第二电磁体30413分别固定在外框309上。
处理芯片3042在接收到位置传感器303检测的第一透镜301的抖动信息后,对该抖动信息进行处理,并根据处理结果控制对第一线圈30411的通电,例如控制电流大小和电流方向,在磁场的作用下,使得第一线圈的四个边分别产生相同或不同方向的安培力,从而推动与第一线圈固连的第一反射镜302进行旋转或移动位置的运动,从而实现防抖或对焦功能。
例如,如图7E所示,向第一线圈30411通如图所示的电流,并控制第二电磁体30413和第四电磁体30415不产生磁场(即不向第二电磁体30413和第四电磁体30415的线圈通电),控制第一电磁体30412和第三电磁体30414产生如图7E所示相同的磁场,从而结合图7E,可以看出,第一线圈30411的上半部分和下半部分的导线分别与磁场作用,产生相反方向的安培力,从而推动第一反射镜302以第一转动轴为轴进行旋转。类似的,还可以控制第二电磁体30413和第四电磁体30415产生同方向的磁场,而控制第一电磁体30412和第三电磁体30414不产生磁场,从而控制第一反射镜以第二转动轴为轴进行旋转。类似的,结合图7E可知,还可以通过控制第一线圈30411的通电,以及第一电磁体30412、第二电磁体30413、第三电磁体30414和第四电磁体30415的磁场,实现位置移动或者其他情况的旋转,此处不再赘述。
上述各个附图中,对光学防抖装置的各个部件进行了说明,下面具体参照图8,结合图6B和图7D所示的结构对根据抖动信息和锐度信息控制第一反射镜302和第一透镜301进行运动的方法进行说明,图8为本申请实施例中所提供的一种控制方法的一个实施例示意图,可以包括:
S801、光学防抖装置检测第一透镜301的抖动信息。
在一个具体的实施例中,第一透镜301抖动时,光学防抖装置中的位置传感器303检测第一透镜301的抖动信息,例如抖动位移、抖动频率和抖动方向等。需要说明的是,这里的位置传感器303并非为特定的传感器,而是泛指可以实现检测第一透镜301抖动信息的传感器。
在一个具体的实施例中,光信号投射在图像传感器305的感光面上后,图像传感器305检测该光信号在感光面上的图像的锐度信息。
S802、光学防抖装置根据抖动信息确定第一控制参数。
在一个具体的实施例中,处理芯片3042接收到位置传感器303检测的抖动信息后,根据预置的第一算法对该抖动信息进行处理,得到第一控制参数。其中,预置的第一算法后续可以通过网络,或根据用户输入的设置参数进行更新。该第一控制参数具体可以为指示第一反射镜302旋转的参数,具体地,第一控制参数可以包括旋转方向信息和旋转角度信息。
在一个具体的实施例中,处理芯片3042接收到图像传感器305检测的锐度信息后,根据预置的第二算法对锐度信息进行处理,得到第二控制参数。其中,预置的第二算法后续可以通过网络,或根据用户输入的设置参数进行更新。该第二控制参数包括指示第一反射镜302移动位置的参数和指示第一透镜301移动位置的参数。具体地,该第二控制参数可以包括移动方向信息和移动距离信息。
S803、光学防抖装置根据该第一控制参数、通过控制部件304控制第一反射镜302旋转。
在一个具体的实施例中,光学防抖装置在确定第一控制参数后,可以根据第一控制参数确定需要加载在第一线圈30411和第二线圈30413上的电流方向及电流大小。其中,这个过程可以通过预置的第三算法来实现,该第三算法后续可以通过网络,或根据用户输入的设置参数进行更新。
在一个具体的实施例中,光学防抖装置在确定第二控制参数后,可以根据第二控制参数确定需要加载在第三线圈30414和VCM驱动模块3043上的电流方向及电流大小。其中,这个过程可以通过预置的第四算法来实现,该第四算法后续可以通过网络,或根据用户输入的设置参数进行更新。
需要说明的是,通过控制部件304控制第一反射镜302旋转、通过控制部件304控制第一反射镜302移动位置和通过VCM驱动模块3042控制第一透镜301移动位置的运动可以同时进行,或分别进行。具体地,参照步骤S803所描述的内容,第一线圈30411、第二线圈30413、第三线圈30414和VCM驱动模块3043具体在通电后,可以实现的功能效果如下表1所示,下表1为不同通电情况时,可以实现的防抖和/或对焦效果的示意表。
Figure PCTCN2020097284-appb-000004
Figure PCTCN2020097284-appb-000005
表1
其中,如上表1所示,+表示通电,其中电流具体的方向根据计算得到的参数进行设置;0表示未通电的情况;防抖1表示在向第一线圈30411通电后,带动第一反射镜302沿第二转动轴旋转时,可以实现的防抖效果;防抖2表示在向第二线圈30413通电后,带动第一反射镜302沿第一转动轴旋转时,可以实现的防抖效果;对焦1表示第一反射镜302移动位置时带来的对焦效果;对焦2表示通过VCM驱动模块3043驱动第一透镜301沿中轴线平移时带来的对焦效果。其中,防抖和对焦可以同时进行,且对焦1+对焦2可以实现更大范围内的对焦以及精细对焦。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (16)

  1. 一种光学防抖装置,其特征在于,包括:
    第一透镜,第一反射镜、位置传感器和控制部件,所述位置传感器与所述控制部件相连;
    光信号在通过所述第一透镜后,传递至所述第一反射镜;
    所述第一反射镜反射接收到的光信号,反射后的所述光信号投射在成像面上;
    所述位置传感器用于检测所述第一透镜的抖动信息,将所述抖动信息发送给所述控制部件;
    所述控制部件用于根据所述抖动信息控制所述第一反射镜以第一预设方向为轴进行旋转,其中,所述第一预设方向与所述第一反射镜的法向不平行。
  2. 根据权利要求1所述的光学防抖装置,其特征在于,
    所述控制部件,还用于根据所述抖动信息控制所述第一反射镜以第二预设方向为轴进行旋转,其中,所述第二预设方向与所述第一预设方向及所述第一反射镜的法向均不平行。
  3. 根据权利要求1所述的光学防抖装置,其特征在于,
    所述光学防抖装置还包括第二反射镜;
    所述第二反射镜接收所述光信号,将所述光信号反射至所述第一透镜;
    所述控制部件,还用于根据所述抖动信息控制所述第二反射镜沿第二预设方向进行旋转,其中,所述第二预设方向与所述第一预设方向以及所述第二反射镜的法向均不平行。
  4. 根据权利要求1至3中任一项所述的光学防抖装置,其特征在于,
    所述光学防抖装置还包括:
    与所述控制部件相连的图像传感器,所述图像传感器的感光面为所述成像面;
    所述图像传感器用于检测所述光信号投射在所述感光面上形成的图像的锐度信息;
    所述控制部件还用于根据所述锐度信息控制所述第一反射镜移动位置,所述光信号的光路长度随所述第一反射镜位置的移动而改变,所述光路为从所述第一透镜到所述成像面上之间所述光信号的传播路径。
  5. 根据权利要求1所述的光学防抖装置,其特征在于,
    所述光学防抖装置还包括第二反射镜;
    所述光信号在经所述第一反射镜反射后,投射在所述第二反射镜上,并经所述第二反射镜反射至成像面;
    所述控制部件还用于控制所述第二反射镜以第二预设方向为轴进行旋转,其中,所述第二预设方向与所述第一预设方向以及所述第二反射镜的法向均不平行。
  6. 根据权利要求5所述的光学防抖装置,其特征在于,
    所述光学防抖装置还包括:
    与所述控制部件相连的图像传感器,所述图像传感器的感光面为所述成像面;
    所述图像传感器用于检测所述光信号投射在所述感光面上形成的图像的锐度信息;
    所述控制部件还用于根据所述锐度信息控制所述第一反射镜和/或所述第二反射镜移动位置,所述光信号的光路长度随所述第一反射镜和所述第二反射镜的位置移动而改变,所述光路为从所述第一透镜到所述成像面上之间所述光信号的传播路径。
  7. 根据权利要求2所述的光学防抖装置,其特征在于,所述光学防抖装置还包括外框和第一悬臂梁,所述第一反射镜通过所述第一悬臂梁与所述外框相连,所述控制部件包括第一线圈、磁体和处理芯片,所述第一线圈固定在所述第一反射镜的背面,所述磁体固定在所 述外框上,所述处理芯片用于根据所述抖动信息控制对所述第一线圈的通电量,对所述第一反射镜上所述第二预设方向的两侧产生方向相反的作用力,使得所述第一反射镜以所述第二预设方向为轴进行旋转。
  8. 根据权利要求3、5、6所述的光学防抖装置,其特征在于,所述光学防抖装置还包括外框和第一悬臂梁,所述第二反射镜通过所述第一悬臂梁与所述外框相连,所述控制部件包括第一线圈、磁体和处理芯片,所述第一线圈固定在所述第二反射镜的背面,所述磁体固定在所述外框上,所述处理芯片用于根据所述抖动信息控制对所述第一线圈的通电量,对所述第一反射镜上所述第二预设方向的两侧产生方向相反的作用力,使得所述第一反射镜以所述第二预设方向为轴进行旋转。
  9. 根据权利要求4所述的光学防抖装置,其特征在于,所述光学防抖装置还包括外框,所述第一反射镜与所述外框相连,所述控制部件包括第二线圈、磁体和处理芯片,所述第一线圈固定在所述第一反射镜的背面,所述磁体固定在所述外框上,所述处理芯片用于根据所述锐度信息控制对所述第一线圈的通电量,对所述第一反射镜产生方向相同的作用力,以使所述第一反射镜移动位置。
  10. 根据权利要求6所述的光学防抖装置,其特征在于,所述光学防抖装置还包括第一外框和第二外框;所述第一反射镜、所述第二反射镜分别与所述第一外框和所述第二外框相连,所述控制部件包括第一线圈、第一磁体、第二线圈、第二磁体和处理芯片,所述第一线圈和所述第二线圈分别固定在所述第一反射镜和所述第二发射镜的背面,所述第一磁体和所述第二磁体分别固定在所述第一外框和所述第二外框上,所述处理芯片用于根据所述锐度信息控制对所述第一线圈和/或所述第二线圈的通电量,分别使得所述第一反射镜和/或所述第二反射镜移动位置。
  11. 根据权利要求4、6、9或10中任一项所述的光学防抖装置,其特征在于,所述控制部件包括音圈马达VCM驱动模块,所述VCM驱动模块用于根据所述锐度信息驱动所述第一透镜沿发生位置移动。
  12. 根据权利要求7-11中任一项所述的光学防抖装置,其特征在于,所述控制部件还包括第三线圈,所述第一线圈、所述第二线圈与所述第三线圈之间绝缘,所述第三线圈固定在所述第一反射镜的背面,所述处理芯片还用于根据所述抖动信息控制对所述第三线圈进行通电,对所述第一反射镜上所述第一预设方向的两侧产生方向相反的作用力,使得所述第一反射镜以所述第一预设方向为轴进行旋转。
  13. 一种控制方法,其特征在于,用于光学防抖装置中,所述光学防抖装置包括第一透镜、第一反射镜、位置传感器和控制部件,光信号在透过所述第一透镜后,经所述第一反射镜反射投射至所述图像传感器的感光面上,所述方法包括:
    通过所述位置传感器检测第一透镜的抖动信息;
    根据所述抖动信息确定第一控制参数;
    根据所述第一控制参数、通过所述控制部件控制所述第一反射镜旋转。
  14. 根据权利要求13所述的方法,其特征在于,所述光学防抖装置还包括图像传感器,所述方法还包括:
    通过所述图像传感器检测所述光信号在所述感光面上投射的图像的锐度信息;
    根据所述抖动信息和所述锐度信息,确定第二控制参数;
    根据所述第二控制参数、通过所述控制部件控制所述第一反射镜和/或所述第一透镜移 动位置。
  15. 根据权利要求14所述的方法,其特征在于,所述控制部件包括第一线圈、第二线圈和第一磁体,所述第一线圈和所述第二线圈均固定在所述第一反射镜的背面,且相互绝缘,所述根据所述第一控制参数、通过所述控制部件控制所述第一反射镜旋转,包括:
    根据所述第一控制参数对所述第一线圈和所述第二线圈的通电状况进行控制,所述通电状况包括通电的电流大小和电流方向;
    其中,所述第一线圈通电和所述第二线圈通电后,在所述第一磁体的磁场作用下,分别对所述第一反射镜上第一预设方向和第二预设方向的两侧产生方向相反的作用力,使得所述第一反射镜分别以所述第一预设方向和所述第二预设方向为轴进行旋转。
  16. 根据权利要求15所述的方法,其特征在于,所述控制部件还包括第三线圈和音圈马达VCM驱动模块,所述第三线圈固定在所述第一反射镜的背面,且与所述第一线圈和所述第二线圈之间相互绝缘,所述VCM驱动模块与所述第一透镜相连,所述根据所述第二控制参数、通过所述控制部件控制所述第一反射镜和/或所述第一透镜移动位置,包括:
    根据所述第二控制参数对所述第三线圈和所述VCM驱动模块的通电状况进行控制,所述通电状况包括通电的电流大小和电流方向;
    其中,所述第三线圈通电后,在所述磁体的磁场作用下,带动所述第一反射镜移动位置;所述VCM通电后,带动所述第一透镜移动位置。
PCT/CN2020/097284 2019-07-31 2020-06-20 一种光学防抖装置及控制方法 WO2021017683A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022506065A JP2022542307A (ja) 2019-07-31 2020-06-20 光学式手ぶれ補正機構及び制御方法
EP20847630.9A EP4006623A4 (en) 2019-07-31 2020-06-20 ANTI-QUAKE OPTICAL APPARATUS AND CONTROL METHOD
KR1020227006290A KR20220035970A (ko) 2019-07-31 2020-06-20 광학 이미지 안정화 장치 및 제어 방법
US17/586,108 US20220150413A1 (en) 2019-07-31 2022-01-27 Optical image stabilization apparatus and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910704671.9A CN112394536B (zh) 2019-07-31 2019-07-31 一种光学防抖装置及控制方法
CN201910704671.9 2019-07-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/586,108 Continuation US20220150413A1 (en) 2019-07-31 2022-01-27 Optical image stabilization apparatus and control method

Publications (1)

Publication Number Publication Date
WO2021017683A1 true WO2021017683A1 (zh) 2021-02-04

Family

ID=74230058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097284 WO2021017683A1 (zh) 2019-07-31 2020-06-20 一种光学防抖装置及控制方法

Country Status (6)

Country Link
US (1) US20220150413A1 (zh)
EP (1) EP4006623A4 (zh)
JP (1) JP2022542307A (zh)
KR (1) KR20220035970A (zh)
CN (1) CN112394536B (zh)
WO (1) WO2021017683A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113193720A (zh) * 2021-03-15 2021-07-30 北京可利尔福科技有限公司 微型光学防抖马达及***模组
CN113259563A (zh) * 2021-05-14 2021-08-13 维沃移动通信(杭州)有限公司 摄像头模组及电子设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113114989B (zh) * 2021-04-02 2023-01-03 东莞市威新电子科技有限公司 一种新型对讲机安卓室内机主板
CN116719196B (zh) * 2022-09-23 2024-06-07 荣耀终端有限公司 防抖电子设备及防抖***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5523887A (en) * 1988-01-21 1996-06-04 Loral Fairchild Corporation Stabilized imaging system
CN1764871A (zh) * 2003-03-26 2006-04-26 松下电器产业株式会社 影像显示***
CN101201462A (zh) * 2006-12-04 2008-06-18 三星电子株式会社 用于校正图像拍摄装置的抖动的设备和方法
CN103676405A (zh) * 2013-12-02 2014-03-26 宇龙计算机通信科技(深圳)有限公司 光学成像装置、光学***和移动终端
CN107003587A (zh) * 2014-12-02 2017-08-01 富士胶片株式会社 摄像装置及像抖动校正方法
CN108828874A (zh) * 2013-12-11 2018-11-16 旭化成微电子株式会社 照相机模块及其光学元件的位置控制方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11305278A (ja) * 1998-04-20 1999-11-05 Asahi Optical Co Ltd 像振れ補正カメラ及び像振れ補正カメラの制御方法
US6130993A (en) * 1998-04-20 2000-10-10 Asahi Kogaku Kogyo Kabushiki Kaisha Camera having an image stabilizer
JP2000010139A (ja) * 1998-06-18 2000-01-14 Asahi Optical Co Ltd 像振れ補正カメラ及びカメラの像振れ補正方法
US20020176113A1 (en) * 2000-09-21 2002-11-28 Edgar Albert D. Dynamic image correction and imaging systems
JP4680373B2 (ja) * 2000-11-16 2011-05-11 オリンパス株式会社 ガルバノミラー
JP2002228903A (ja) * 2001-01-30 2002-08-14 Olympus Optical Co Ltd 光学ユニット
JP2004247947A (ja) * 2003-02-13 2004-09-02 Olympus Corp 光学装置
CN101401023A (zh) * 2006-02-06 2009-04-01 诺基亚公司 使用装有万向节的棱镜的光学图像稳定器
JP2008242207A (ja) * 2007-03-28 2008-10-09 Casio Comput Co Ltd ぶれ補正装置及び撮像装置
JP2008309998A (ja) * 2007-06-14 2008-12-25 Sony Corp ティルトレンズ系及び撮像装置
KR20090084494A (ko) * 2008-02-01 2009-08-05 (주)캠톤 영상촬영장치의 손떨림 보정을 위한 틸트구동장치
JP2009244490A (ja) * 2008-03-31 2009-10-22 Casio Comput Co Ltd カメラ、カメラ制御プログラム及びカメラ制御方法
US8687276B2 (en) * 2010-01-22 2014-04-01 Stereo Display, Inc Optical system with optical image stabilization using a MEMS mirror
JP5995969B2 (ja) * 2012-01-13 2016-09-21 キヤノン株式会社 レンズユニット、撮像装置、および、これらの制御方法
JP5949972B1 (ja) * 2015-02-12 2016-07-13 日本電気株式会社 撮像装置
CN206248987U (zh) * 2016-11-29 2017-06-13 深圳市世尊科技有限公司 潜望式摄像模组及用于该潜望式摄像模组的反射镜装置
DE102017206429A1 (de) * 2017-04-13 2018-10-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Multiaperturabbildungsvorrichtung, Abbildungssystem und Verfahren zum Bereitstellen einer Multiaperturabbildungsvorrichtung
US10712633B2 (en) * 2017-05-12 2020-07-14 Tdk Taiwan Corp. Optical system
WO2019225978A1 (en) * 2018-05-23 2019-11-28 Lg Electronics Inc. Camera and terminal including the same
CN108965663B (zh) * 2018-07-09 2020-07-03 Oppo广东移动通信有限公司 电子装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5523887A (en) * 1988-01-21 1996-06-04 Loral Fairchild Corporation Stabilized imaging system
CN1764871A (zh) * 2003-03-26 2006-04-26 松下电器产业株式会社 影像显示***
CN101201462A (zh) * 2006-12-04 2008-06-18 三星电子株式会社 用于校正图像拍摄装置的抖动的设备和方法
CN103676405A (zh) * 2013-12-02 2014-03-26 宇龙计算机通信科技(深圳)有限公司 光学成像装置、光学***和移动终端
CN108828874A (zh) * 2013-12-11 2018-11-16 旭化成微电子株式会社 照相机模块及其光学元件的位置控制方法
CN107003587A (zh) * 2014-12-02 2017-08-01 富士胶片株式会社 摄像装置及像抖动校正方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4006623A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113193720A (zh) * 2021-03-15 2021-07-30 北京可利尔福科技有限公司 微型光学防抖马达及***模组
CN113259563A (zh) * 2021-05-14 2021-08-13 维沃移动通信(杭州)有限公司 摄像头模组及电子设备

Also Published As

Publication number Publication date
KR20220035970A (ko) 2022-03-22
EP4006623A1 (en) 2022-06-01
CN112394536B (zh) 2022-04-29
US20220150413A1 (en) 2022-05-12
JP2022542307A (ja) 2022-09-30
CN112394536A (zh) 2021-02-23
EP4006623A4 (en) 2022-10-05

Similar Documents

Publication Publication Date Title
WO2021017683A1 (zh) 一种光学防抖装置及控制方法
US10498961B2 (en) Auto focus and optical image stabilization with roll compensation in a compact folded camera
JP6700345B2 (ja) フォールデッドオプティクスを用いたマルチカメラシステム
CA2952449C (en) Autofocus for folded optic array cameras
CN111901503B (zh) 一种摄像模组、终端设备、成像方法及成像装置
TW202102926A (zh) 驅動液體鏡頭的音圈馬達及具有音圈馬達的鏡頭元件
JP6960983B2 (ja) 手振れ補正機能付き撮像装置
JP2002277736A (ja) 撮像装置
JP2010518443A (ja) 手持ちカメラで安定画像を与える装置
KR102345120B1 (ko) 광로변환 모듈 및 이를 포함하는 카메라 모듈 및 휴대 단말기
CN110933266B (zh) 摄像装置、方法及调节元件
US11693221B2 (en) Camera module, camera assembly, and electronic device
KR20230011048A (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 장치
CN113874772A (zh) 一种光学***、电子设备以及显示装置
JP2010026172A (ja) レンズ鏡筒、レンズ鏡筒の調整方法、光学装置、および光学装置の調整方法
JP7398573B2 (ja) 光学画像システム、光学画像安定化を実行するための方法
JP2006309081A (ja) ブレ補正装置およびそれを用いたカメラ付き携帯機器
CN116699795A (zh) 一种镜头组件、控制方法、摄像模组及电子设备
JPH09214991A (ja) 撮像装置
JP2006084709A (ja) カメラ及びレンズユニット
JP2007034217A (ja) 複数光学系を有する撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20847630

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022506065

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227006290

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020847630

Country of ref document: EP

Effective date: 20220228