WO2021014818A1 - 樹脂組成物、成形品および樹脂組成物の製造方法 - Google Patents

樹脂組成物、成形品および樹脂組成物の製造方法 Download PDF

Info

Publication number
WO2021014818A1
WO2021014818A1 PCT/JP2020/023344 JP2020023344W WO2021014818A1 WO 2021014818 A1 WO2021014818 A1 WO 2021014818A1 JP 2020023344 W JP2020023344 W JP 2020023344W WO 2021014818 A1 WO2021014818 A1 WO 2021014818A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
mass
cerium oxide
resin
polyamide
Prior art date
Application number
PCT/JP2020/023344
Other languages
English (en)
French (fr)
Inventor
岡元 章人
Original Assignee
三菱エンジニアリングプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱エンジニアリングプラスチックス株式会社 filed Critical 三菱エンジニアリングプラスチックス株式会社
Priority to JP2021533860A priority Critical patent/JP7459107B2/ja
Priority to EP20845038.7A priority patent/EP4006094A4/en
Priority to CN202080052876.4A priority patent/CN114144474B/zh
Priority to US17/623,341 priority patent/US20220356304A1/en
Publication of WO2021014818A1 publication Critical patent/WO2021014818A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/221Oxides; Hydroxides of metals of rare earth metal
    • C08K2003/2213Oxides; Hydroxides of metals of rare earth metal of cerium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/019Specific properties of additives the composition being defined by the absence of a certain additive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids

Definitions

  • the present invention relates to a resin composition, a molded product, and a method for producing a resin composition.
  • Patent Document 1 describes that a copper compound such as copper iodide is blended with a polyamide resin as a heat stabilizer.
  • Patent Document 1 states that "a monovalent or divalent copper compound is added to the above-mentioned inorganic radical scavenger which is a cerium-containing and / or lanthanum-containing compound and particularly preferably cerium tetrahydroxydo and / or lanthanum trihydroxydo. Is included for thermal stabilization. Surprisingly, a strong synergistic effect is revealed, which is that the combination increases the reactivity of both metals, thereby increasing their activity as a thermal stabilizer. It is presumed to be due to the fact that it does. "
  • An object of the present invention is to solve the above problems, and a resin composition capable of effectively suppressing a decrease in mechanical strength and suppressing color transfer even after being placed under high temperature and high humidity.
  • An object of the present invention is to provide a molded product using the resin composition and a method for producing the resin composition.
  • ⁇ 1> A resin composition containing a polyamide resin and cerium oxide, wherein the content of lantern in the resin composition is more than 0 mass ppm and 40 mass ppm or less.
  • ⁇ 2> The resin composition according to ⁇ 1>, which contains cerium oxide having a lantern content of more than 0% by mass and 1% by mass or less as measured by ICP emission spectrometry.
  • ⁇ 3> The resin composition according to ⁇ 1> or ⁇ 2>, wherein the content of the cerium oxide is 0.01 to 5% by mass in the resin composition.
  • the resin composition is molded into a test piece having a thickness of 1.5 mm, which is based on ASTM standard D638, and left at 85 ° C. under a relative humidity of 85% for 1000 hours, and then ASTM D638.
  • the polyamide resin is composed of a diamine-derived structural unit and a dicarboxylic acid-derived structural unit, and 70 mol% or more of the diamine-derived structural unit is derived from xylylene diamine, and 70 of the dicarboxylic acid-derived structural unit.
  • the resin composition according to any one of ⁇ 1> to ⁇ 5> which comprises a polyamide resin in which mol% or more is derived from ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms.
  • ⁇ 7> The resin composition according to any one of ⁇ 1> to ⁇ 6>, wherein the content of the copper compound in the resin composition is 0.01% by mass or less.
  • ⁇ 8> A molded product formed from the resin composition according to any one of ⁇ 1> to ⁇ 7>.
  • ⁇ 9> A molded product having a member formed from the resin composition according to any one of ⁇ 1> to ⁇ 7> and a thermoplastic resin member in contact with the member.
  • a method for producing a resin composition which comprises blending cerium oxide with a polyamide resin and melt-kneading the resin composition, wherein the content of lantern measured by the ICP emission spectrometry method in the cerium oxide is 0% by mass.
  • a method for producing a resin composition which is super 1% by mass or less.
  • a resin composition capable of effectively suppressing a decrease in mechanical strength and suppressing color transfer even after being placed under high temperature and high humidity, a molded product and a resin composition using the resin composition. It has become possible to provide a manufacturing method for.
  • the resin composition of the present invention is a resin composition containing a polyamide resin and cerium oxide, and is characterized in that the content of lantern in the resin composition is more than 0 mass ppm and 40 mass ppm or less. With such a configuration, a resin composition capable of effectively suppressing a decrease in mechanical strength and suppressing color transfer can be obtained even after being placed under high temperature and high humidity.
  • a cerium-containing compound such as cerium oxide exhibits a strong synergistic effect as a heat stabilizer when used in combination with a copper compound.
  • cerium oxide is used alone has not been investigated.
  • the resin composition contains a predetermined amount of lanthanum, even if cerium oxide is used alone, it is effective in reducing the mechanical strength after being placed in high temperature and high humidity.
  • cerium oxide even if cerium oxide is used alone, it is effective in reducing the mechanical strength after being placed in high temperature and high humidity.
  • the resin composition of the present invention has a lantern content of more than 0 mass ppm and 40 mass ppm or less. As described above, by containing a small amount of lantern, color transfer can be effectively suppressed even after being placed under high temperature and high humidity. Further, by setting the content to 40 mass ppm or less, the tensile strength after being placed under high temperature and high humidity can be maintained high.
  • the lower limit of the content of lantern in the resin composition is preferably 0.01 mass ppm or more, more preferably 0.05 mass ppm or more, and 0.1 mass ppm or more. Is even more preferable, 0.5 mass ppm or more is more preferable, and 0.8 mass ppm or more is even more preferable.
  • the upper limit of the lantern content in the resin composition is preferably 30 mass ppm or less, more preferably 25 mass ppm or less, and even more preferably 20 mass ppm or less. It is even more preferably 15 mass ppm or less, and even more preferably 12 mass ppm or less.
  • the lantern content is measured according to the method described in Examples below.
  • the lantern is usually blended with the lantern contained in cerium oxide.
  • polyamide resin used in the present invention is not particularly specified, and known polyamide resins can be used, preferably containing at least one of an aliphatic polyamide resin and a semi-aromatic polyamide resin, and semi-aromatic. It is more preferable to contain at least one type of polyamide resin.
  • the aliphatic polyamide resin examples include polyamide 4, polyamide 6, polyamide 11, polyamide 12, polyamide 46, polyamide 66, polyamide 6/66, polyamide 610, and polyamide 612, and polyamide 6, polyamide 66, and polyamide 6/66. It is preferable to contain at least one selected from the group consisting of, and more preferably to contain polyamide 66.
  • the semi-aromatic polyamide resin refers to a polyamide resin in which 30 to 70 mol% (preferably 40 to 60 mol%) of all the constituent units contains an aromatic, preferably a diamine-derived constituent unit and a dicarboxylic acid-derived constituent. It is a polyamide resin derived from a diamine that is composed of units and contains 70 mol% or more of the constituent units derived from the diamine.
  • the semi-aromatic polyamide resin examples include polyhexamethylene terephthalamide (polyamide 6T), polyhexamethylene isophthalamide (polyamide 6I), polyamide 66 / 6T, polyamide 9T, polyamide 9MT, polyamide 6I / 6T, and xiri.
  • a range amine-based polyamide resin is exemplified, and a xylylene diamine-based polyamide resin is more preferable.
  • the xylylenediamine-based polyamide resin is composed of a diamine-derived structural unit and a dicarboxylic acid-derived structural unit, and 70 mol% or more of the diamine-derived structural unit is derived from xylylenediamine and is a dicarboxylic acid-derived structural unit. 70 mol% or more is a polyamide resin derived from ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms.
  • xylylenediamine-based polyamide resin 70 mol% or more of the diamine-derived constituent unit is derived from xylylenediamine, but 80 mol% or more is preferable, and 90 mol% or more is more preferable. It is more preferably 95 mol% or more, and even more preferably 99 mol% or more.
  • M-xylylenediamine is 30 to 100 mol% of metaxylylenediamine and 70 to 0 mol% of paraxylylenediamine (however, the total of metaxylylenediamine and paraxylylenediamine does not exceed 100 mol%. ), More preferably 50 to 100 mol% of metaxylylenediamine, 50 to 0 mol% of paraxylylenediamine, 60 to 100 mol% of metaxylylenediamine, and 40 to. It is more preferable to contain 0 mol% paraxylylenediamine, and even more preferably 60 to 90 mol% metaxylylenediamine and 40-10 mol% paraxylylenediamine.
  • the total of m-xylylenediamine and paraxylylenediamine preferably occupies 95 mol% or more, more preferably 99 mol% or more, still more preferably 100 mol%.
  • Diamine components other than xylylenediamine include tetramethylenediamine, pentamethylenediamine, 2-methylpentanediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, dodecamethylenediamine, 2, Aliphatic diamines such as 2,4-trimethyl-hexamethylenediamine and 2,4,4-trimethylhexamethylenediamine, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, 1, 3-Diaminocyclohexane, 1,4-diaminocyclohexane, bis (4-aminocyclohexyl) methane, 2,2-bis (4-aminocyclohexyl) propane, bis (aminomethyl) decalin, bis (aminomethyl) tricyclodecane, etc.
  • diamines having an aromatic ring such as alicyclic diamine, bis (4-aminophenyl) ether, paraphenylenediamine, and bis (aminomethyl) naphthalene can be exemplified, and one or more of them may be mixed. Can be used.
  • 70 mol% or more of the constituent unit derived from the dicarboxylic acid is derived from ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms, but the constituent unit is 80 mol% or more. Is more preferable, 90 mol% or more is more preferable, 95 mol% or more is further preferable, and 99 mol% or more is further preferable.
  • Examples of the ⁇ , ⁇ -linear aliphatic dicarboxylic acid component having 4 to 20 carbon atoms include succinic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, adipic acid, sebacic acid, and 1,12-dodecanedioic acid. It is preferable to contain at least one selected from adipic acid and sebacic acid.
  • dicarboxylic acids other than the above dicarboxylic acids include phthalic acid compounds such as isophthalic acid, terephthalic acid, and orthophthalic acid, 1,2-naphthalenedicarboxylic acid, 1,3-naphthalenedicarboxylic acid, and 1,4-naphthalenedicarboxylic acid.
  • 1,5-naphthalenedicarboxylic acid 1,6-naphthalenedicarboxylic acid, 1,7-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2, A naphthalenedicarboxylic acid such as 7-naphthalenedicarboxylic acid can be exemplified, and one kind or a mixture of two or more kinds can be used.
  • the content of the polyamide resin in the resin composition of the present invention is preferably 80% by mass or more, more preferably 85% by mass or more, and 90% by mass. The above is more preferable, and 95% by mass or more is further preferable.
  • the resin composition of the present invention contains an inorganic filler, the total content of the polyamide resin and the inorganic filler preferably occupies 80% by mass or more, more preferably 85% by mass or more of the resin composition. It is more preferable to occupy 90% by mass or more, and further preferably to occupy 95% by mass or more.
  • the resin composition of the present invention may contain only one type of polyamide resin, or may contain two or more types of polyamide resin. When two or more kinds are included, the total amount is preferably in the above range.
  • the resin composition of the present invention contains cerium oxide.
  • cerium oxide By containing cerium oxide, color transfer to other members (particularly, other thermoplastic resin members) can be effectively suppressed even after being placed under high temperature and humidity. Further, since cerium oxide has a relatively low Mohs hardness, it is possible to make it difficult to damage an inorganic filler such as glass fiber.
  • the cerium oxide in the present invention refers to cerium oxide having a purity of 90% by mass or more. That is, cerium oxide may contain impurities.
  • the cerium oxide of the present invention is preferably cerium oxide having a lanthanum content of more than 0% by mass and 1% by mass or less measured by the ICP luminescence analysis method, and the lanthanum content measured by the ICP luminescence analysis method is 0. It is more preferably 01 to 0.7% by mass of cerium oxide, and further preferably the lanthanum content measured by the ICP emission analysis method is 0.02 to 0.4% by mass of cerium oxide. It is more preferable that the lanthanum content measured by the analytical method is 0.05 to 0.2% by mass of cerium oxide. As described above, by using cerium oxide containing a small amount of lanthanum, a desired amount of lanthanum can be easily added to the resin composition.
  • the cerium oxide in the present invention preferably has a cerium content of 73% by mass or more, more preferably 75% by mass or more, and further preferably 77% by mass or more.
  • the upper limit of the content of cerium oxide is preferably 85% by mass or less, more preferably 83% by mass or less, and further preferably 80% by mass or less.
  • the median diameter (particle size by the laser diffraction / scattering method) of cerium oxide used in the present invention is preferably 3 ⁇ m or less.
  • the lower limit is, for example, 0.1 ⁇ m or more.
  • the content of cerium oxide in the resin composition of the present invention is preferably 0.01% by mass or more, and more preferably 0.05% by mass or more in the resin composition. Further, the upper limit value is preferably 5% by mass or less, more preferably 4% by mass or less, further preferably 3% by mass or less, and further preferably 2% by mass or less. ..
  • the resin composition of the present invention may or may not contain a copper compound.
  • copper compounds include copper halides.
  • One embodiment of the resin composition of the present invention includes a resin composition in which the content of the copper compound in the resin composition is 0.01% by mass or less. In the present embodiment, the content of the copper compound is more preferably 0.001% by mass or less, and further preferably not more than the detection limit. The content of the copper compound in the resin composition shall be detected by fluorescent X-ray analysis.
  • the resin composition of the present invention may contain an inorganic filler.
  • High mechanical strength can be achieved by including the inorganic filler.
  • the inorganic filler in the present embodiment does not include cerium oxide and a nucleating agent, which will be described later.
  • a fibrous inorganic filler such as glass fiber, carbon fiber, basalt fiber, wollastonite, or potassium titanate fiber can be used.
  • granular or amorphous fillers such as calcium carbonate, titanium oxide, feldspar minerals, clay and glass beads; and scaly fillers such as glass flakes and graphite can also be used.
  • the glass fiber has a glass composition such as A glass, C glass, E glass, S glass, D glass, M glass, and R glass, and E glass (non-alkali glass) is particularly preferable because it does not adversely affect the polyamide resin. ..
  • the glass fiber is a fiber having a perfect circular or polygonal cross-sectional shape cut at a right angle in the length direction and exhibiting a fibrous appearance.
  • the glass fiber used in the resin composition of the present invention may be a single fiber or a plurality of single fibers twisted together.
  • the morphology of glass fibers is "glass roving", which is a continuous winding of single fiber or multiple twisted fibers, "chopped strand”, which is cut to a length of 1 to 10 mm, and “mild”, which is crushed to a length of 10 to 500 ⁇ m. It may be any of "fiber” and the like.
  • Such glass fibers are commercially available from Asahi Fiber Glass Co., Ltd. under the trade names of "Glaslon chopped strand” and “Glaslon milled fiber” and are easily available.
  • As the glass fiber those having different morphologies can be used in combination.
  • glass fibers having an irregular cross-sectional shape are also preferable.
  • the irregular cross-sectional shape means that the flatness represented by the major axis / minor axis ratio (D2 / D1) when the major axis of the cross section perpendicular to the length direction of the fiber is D2 and the minor axis is D1 is, for example, 1. It is 5 to 10, and more preferably 2.5 to 10, more preferably 2.5 to 8, and particularly preferably 2.5 to 5.
  • the description in paragraphs 0065 to 0072 of JP2011-195820A can be referred to, and the contents thereof are incorporated in the present specification.
  • the blending amount of the inorganic filler in the resin composition of the present invention is preferably 25% by mass or more, more preferably 28% by mass or more of the polyamide resin composition.
  • the upper limit value is not particularly specified, but is preferably 60% by mass or less, more preferably 50% by mass or less, and may be 45% by mass or less.
  • the resin composition of the present invention may contain only one kind of inorganic filler, or may contain two or more kinds of inorganic fillers. When two or more types are included, the total amount is within the above range.
  • the resin composition of the present invention may contain a nucleating agent in order to adjust the crystallization rate.
  • the types of nucleating agents are not particularly limited, but are talc, boron nitride, mica, kaolin, calcium carbonate, sodium carbonate (Na 2 CO 3 ), potassium carbonate (K 2 CO 3 ), and sodium hydrogen carbonate (K 2 CO 3 ).
  • NaHCO 3 ), potassium hydrogen carbonate (KHCO 3 ), barium sulfate, silicon nitride, potassium titanate and molybdenum disulfide are preferred, talc and boron nitride are more preferred, and talc is even more preferred.
  • the content thereof is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 8 parts by mass, based on 100 parts by mass of the polyamide resin. 0.1 to 6 parts by mass is more preferable.
  • the resin composition of the present invention may contain only one kind of nucleating agent, or may contain two or more kinds of nucleating agents. When two or more kinds are included, the total amount is preferably in the above range.
  • the resin composition of the present invention may contain a mold release agent.
  • the release agent include an aliphatic carboxylic acid, a salt of an aliphatic carboxylic acid, an ester of an aliphatic carboxylic acid and an alcohol, an aliphatic carboxylic acid amide, and an aliphatic hydrocarbon compound having a number average molecular weight of 200 to 15,000. , Polysiloxane-based silicone oil and the like.
  • the details of the release agent can be referred to in paragraphs 0034 to 0039 of JP-A-2017-115093, and these contents are incorporated in the present specification.
  • the content thereof is preferably 0.05 to 1 part by mass, and 0.1 to 0.8 parts by mass with respect to 100 parts by mass of the polyamide resin. More preferably, 0.2 to 0.6 parts by mass is further preferable.
  • the resin composition of the present invention may contain only one type of release agent, or may contain two or more types of release agents. When two or more kinds are included, the total amount is preferably in the above range.
  • the resin composition of the present invention may contain other components as long as the gist of the present invention is not deviated.
  • additives include flame retardants, flame retardants, UV absorbers, antioxidants, optical brighteners, anti-dripping agents, antistatic agents, anti-fog agents, anti-blocking agents, fluidity improvers, etc.
  • plasticizers, dispersants and antibacterial agents Only one of these components may be used, or two or more of these components may be used in combination.
  • the contents of the polyamide resin, cerium oxide, and other components to be blended as necessary are adjusted so that the total of each component is 100% by mass.
  • the resin composition of the present invention is molded into a No. 4 piece 1.5 mm thick test piece based on the ASTM D638 standard, and left at 85 ° C. under a relative humidity of 85% for 1000 hours.
  • the retention rate of tensile strength according to the ASTM D638 standard is preferably 55% or more, more preferably 57% or more, and further preferably 58% or more.
  • the upper limit is ideally 100%, but 80% or less, and even 70% or less is practical.
  • the resin composition of the present invention contains the above-mentioned essential components and, if necessary, any of the above-mentioned optional components.
  • the production method thereof is arbitrary, and any conventionally known method for producing a resin composition may be used to mix and knead these raw materials.
  • the kneader examples include a kneader, a Banbury mixer, an extruder and the like.
  • the various conditions and devices for mixing and kneading are also not particularly limited, and may be appropriately selected and determined from any conventionally known conditions.
  • the kneading is preferably performed at a temperature higher than the temperature at which the polyamide resin melts.
  • a specific production method is a method for producing a resin composition including blending cerium oxide with a polyamide resin and melt-kneading it, and the content of lanthanum measured by the ICP emission spectrometry method in the cerium oxide.
  • An example is a method for producing a resin composition having an amount of more than 0% by mass and not more than 1% by mass.
  • the molded article of the present invention is formed from the resin composition of the present invention. Further, the pellet obtained by pelletizing the resin composition of the present invention is molded by various molding methods to obtain a molded product. Further, the resin composition melt-kneaded by an extruder can be directly molded into a molded product without passing through pellets.
  • the shape of the molded product is not particularly limited and may be appropriately selected depending on the intended use and purpose of the molded product. For example, plate-shaped, plate-shaped, rod-shaped, sheet-shaped, film-shaped, cylindrical, annular, etc.
  • the molded product of the present invention may be a finished product, or may be a part or a member.
  • the method for molding the molded product is not particularly limited, and a conventionally known molding method can be adopted.
  • a conventionally known molding method can be adopted.
  • Gas assist hollow molding method, blow molding method, extrusion blow molding, IMC (in-mold coating molding) molding method, rotary molding method, multi-layer molding method, two-color molding method, insert molding method, sandwich molding method, foam molding method, addition A pressure molding method and the like can be mentioned.
  • the molded product of the present invention since the molded product of the present invention has moisture and heat resistance, it is preferably used for applications used under high temperature and high humidity. Further, since the resin composition of the present invention can effectively suppress color transfer to other resin members, the member formed from the resin composition of the present invention and the thermoplastic resin member in contact with the member can be used. It is preferably used for a molded product having.
  • "contacting" means that at least a part of the members are in contact with each other, and it is preferable that they are in contact with each other in an area of 1 cm 2 or more. The upper limit of the contact area is not particularly defined, but is usually 50% or less of the surface area of the member.
  • a light-transmitting dye in the resin composition of the present invention it can be used as a resin composition (light-transmitting resin composition) on the side that transmits light by laser welding.
  • a light-absorbing dye with the resin composition of the present invention it can also be used as a resin composition (light-absorbing resin composition) on the side that absorbs light by laser welding.
  • a laser-welded molded product can be obtained by using the light-transmitting resin composition and the light-absorbing resin composition. Details of laser welding can be taken into account in WO 2017/110372, in particular paragraphs 0031 and 0043-0048, which are incorporated herein by reference.
  • the molded product of the present invention can be applied to various uses, for example, various storage containers, electrical / electronic equipment parts, office automation (OA) equipment parts, home appliance equipment parts, mechanical mechanism parts, vehicle mechanism parts, and the like.
  • various storage containers electrical / electronic equipment parts, office automation (OA) equipment parts, home appliance equipment parts, mechanical mechanism parts, vehicle mechanism parts, and the like.
  • food containers chemical containers, oil and fat product containers, hollow parts for vehicles (various tanks, intake manifold parts, camera housings, etc.), electrical parts for vehicles (various control units, ignition coil parts, etc.), motor parts, It can be suitably used for various sensor parts, connector parts, switch parts, breaker parts, relay parts, coil parts, transformer parts, lamp parts and the like.
  • MP10 Synthesized according to the following synthesis example.
  • MP6 Synthesized according to the following synthesis example.
  • PA66 Polyamide 66, manufactured by Solvay, STAVAMID26AE1K
  • Glass fiber Nippon Electric Glass Co., Ltd., T-756H, urethane-based focusing agent, E glass talc: Hayashi Kasei Co., Ltd., Micron White # 5000S Release agent: Light Amide WH255 manufactured by Kyoeisha Chemical Co., Ltd.
  • CuI cuprous iodide, cerium oxide manufactured by Nippon Kagaku Sangyo Co., Ltd .1: cerium oxide with a purity of 90% by mass or more, manufactured by Tribach Industry Japan, Cerium Oxide Hydrate 90, cerium content 72.1% by mass, Lantern content 4.4% by mass, median diameter (grain size by laser diffraction scattering method) 2 ⁇ m or less Cerium oxide 2: 90% by mass or more purity cerium oxide, manufactured by Tribach Industry Japan, Cerium Hydrate 90, cerium content Amount 78.5% by mass, lantern content 0.1% by mass, median diameter (grain size by laser diffraction scattering method) 3 ⁇ m or less
  • the glass fiber is charged into the above-mentioned twin-screw extruder from the side of the extruder using a vibrating cassette waving feeder (CE-V-1B-MP manufactured by Kubota), and melt-kneaded with a resin component or the like. , Pellets (resin composition) were obtained.
  • the pellets obtained above are dried at 120 ° C. for 4 hours, and then using an injection molding machine (SE-50D manufactured by Sumitomo Heavy Industries, Ltd.), No. 4 piece (1.5 mm thick) based on the ASTM D638 standard. Was produced.
  • the amount of lanthanum in the resin composition was calculated from the amount of lanthanum derived from cerium oxide.
  • the amount of lanterns of other components was below the detection limit.
  • the resin composition of the present invention has a high retention rate of tensile strength after being placed under high temperature and high humidity, and no color transfer is observed (Examples 1 to 6).
  • the content of lantern in the resin composition exceeds 40 mass ppm in the resin composition (Comparative Examples 1 and 2)
  • the tensile strength significantly decreases after being placed under high temperature and high humidity. I have.
  • a copper compound was used as the stabilizer (Comparative Examples 3 and 4)

Abstract

高温高湿下に置いた後でも、機械的強度の低下を効果的に抑制でき、かつ、色移りを抑制できる樹脂組成物、樹脂組成物を用いた成形品および樹脂組成物の製造方法の提供。ポリアミド樹脂と酸化セリウムを含む樹脂組成物であって、前記樹脂組成物中のランタンの含有量が0質量ppm超40質量ppm以下である、樹脂組成物。

Description

樹脂組成物、成形品および樹脂組成物の製造方法
 本発明は、樹脂組成物、成形品および樹脂組成物の製造方法に関する。
 ポリアミド樹脂の用途の1つとして、高温高湿下で用いられる部品が知られている。高温高湿下で用いられる部品にポリアミド樹脂を用いる場合、熱酸化による損傷を抑制する必要がある。具体的には、高温高湿下に置いた後も、機械的強度の低下を抑制する必要がある。このような、機械的強度の耐熱老化性を向上させる手段として、例えば、特許文献1には、ポリアミド樹脂に、ヨウ化銅等の銅化合物を熱安定剤として配合することが記載されている。また、特許文献1には、「セリウム含有及び/又はランタン含有化合物及び特に好ましくはセリウムテトラヒドロキシド及び/又はランタントリヒドロキシドである前記無機ラジカル捕捉剤に加えて、一価又は二価の銅化合物が熱安定化のために含まれる。驚くべきことに、強い相乗効果が明らかにされ、これは、前記組み合わせが両方の金属の反応性を増加し、それにより熱安定剤としてのその活性を増加するという事実に起因すると推定される。」との記載もある。
特表2016-529364号公報
 上述のとおり、銅化合物は熱安定剤として用いることが知られている。しかしながら、ポリアミド樹脂に銅化合物を配合した場合、高温高湿下に置いた後の機械的強度の低下は抑制できるものの、色移りが生じてしまう場合があることが分かった。そこで、銅化合物を配合しなくても、色移りが抑制できるポリアミド樹脂組成物が求められる。
 本発明は上記課題を解決することを目的とするものであって、高温高湿下に置いた後でも、機械的強度の低下を効果的に抑制でき、かつ、色移りを抑制できる樹脂組成物、前記樹脂組成物を用いた成形品および樹脂組成物の製造方法を提供することを目的とする。
 上記課題のもと、本発明者が検討を行った結果、下記手段<1>により、好ましくは<2>~<11>により、上記課題は解決された。
<1>ポリアミド樹脂と酸化セリウムを含む樹脂組成物であって、前記樹脂組成物中のランタンの含有量が0質量ppm超40質量ppm以下である、樹脂組成物。
<2>ICP発光分析法で測定したランタンの含有量が0質量%超1質量%以下である酸化セリウムを含む、<1>に記載の樹脂組成物。
<3>前記酸化セリウムの含有量は、樹脂組成物中、0.01~5質量%である、<1>または<2>に記載の樹脂組成物。
<4>前記樹脂組成物を、ASTM規格D638に基づく4号片1.5mm厚さの試験片に成形し、85℃で相対湿度85%の条件下に、1000時間置いた後の、ASTM D638に従った引張強さの保持率が55%以上である、<1>~<3>のいずれか1つに記載の樹脂組成物。
<5>さらに、無機充填剤を25~60質量%含む、<1>~<4>のいずれか1つに記載の樹脂組成物。
<6>前記ポリアミド樹脂が、ジアミン由来の構成単位とジカルボン酸由来の構成単位から構成され、ジアミン由来の構成単位の70モル%以上がキシリレンジアミンに由来し、ジカルボン酸由来の構成単位の70モル%以上が炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸に由来するポリアミド樹脂を含む、<1>~<5>のいずれか1つに記載の樹脂組成物。
<7>前記樹脂組成物中の銅化合物の含有量が0.01質量%以下である、<1>~<6>のいずれか1つに記載の樹脂組成物。
<8><1>~<7>のいずれか1つに記載の樹脂組成物から形成された成形品。
<9><1>~<7>のいずれか1つに記載の樹脂組成物から形成された部材と、前記部材に接している熱可塑性樹脂部材を有する成形品。
<10>ポリアミド樹脂に、酸化セリウムを配合して、溶融混練することを含む樹脂組成物の製造方法であって、前記酸化セリウム中のICP発光分析法で測定したランタンの含有量が0質量%超1質量%以下である、樹脂組成物の製造方法。
<11>前記樹脂組成物が、<1>~<7>のいずれか1つに記載の樹脂組成物である、<10>に記載の樹脂組成物の製造方法。
 本発明により、高温高湿下に置いた後でも、機械的強度の低下を効果的に抑制でき、かつ、色移りを抑制できる樹脂組成物、前記樹脂組成物を用いた成形品および樹脂組成物の製造方法を提供可能になった。
 以下において、本発明の内容について詳細に説明する。なお、本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 なお、本明細書において、ppmは、質量ppmを意味する。
 本発明の樹脂組成物は、ポリアミド樹脂と酸化セリウムを含む樹脂組成物であって、前記樹脂組成物中のランタンの含有量が0質量ppm超40質量ppm以下であることを特徴とする。このような構成とすることにより、高温高湿下に置いた後でも、機械的強度の低下を効果的に抑制でき、かつ、色移りを抑制できる樹脂組成物が得られる。
 上述のとおり、酸化セリウム等のセリウム含有化合物は、銅化合物と併用すると熱安定剤として強い相乗効果を示すことが知られている。しかしながら、酸化セリウムを単独で使用した場合については、検討されていない。そして、本発明者が検討を行ったところ、樹脂組成物が所定量のランタンを含むことにより、酸化セリウムを単独で用いても、高温高湿下に置いた後の機械的強度の低下を効果的に抑制でき、かつ、色移りも抑制できることを見出し、本発明を完成するに至った。
 以下、本発明の詳細について説明する。
<樹脂組成物中のランタンの含有量>
 本発明の樹脂組成物は、ランタンの含有量が0質量ppm超40質量ppm以下である。このように、微量のランタンを含むことにより、高温高湿下に置いた後も、色移りを効果的に抑制することができる。また、40質量ppm以下とすることにより、高温高湿下に置いた後の引張強さを高く保持できる。
 前記樹脂組成物中のランタンの含有量は、下限値が、0.01質量ppm以上であることが好ましく、0.05質量ppm以上であることがより好ましく、0.1質量ppm以上であることがさらに好ましく、0.5質量ppm以上であることが一層好ましく、0.8質量ppm以上であることがより一層好ましい。
 また、前記樹脂組成物中のランタンの含有量は、上限値が、30質量ppm以下であることが好ましく、25質量ppm以下であることがさらに好ましく、20質量ppm以下であることが一層好ましく、15質量ppm以下であることがより一層好ましく、12質量ppm以下であることがさらに一層好ましい。
 ランタンの含有量は、後述する実施例に記載の方法に従って測定される。
 本発明の樹脂組成物では、通常は、ランタンは、酸化セリウムに含まれるランタンによって、配合される。
<ポリアミド樹脂>
 本発明で用いるポリアミド樹脂はその種類等は特に定めるものではなく、公知のポリアミド樹脂を用いることができ、脂肪族ポリアミド樹脂および半芳香族ポリアミド樹脂の少なくとも1種を含むことが好ましく、半芳香族ポリアミド樹脂の少なくとも1種を含むことがより好ましい。
 脂肪族ポリアミド樹脂としては、ポリアミド4、ポリアミド6、ポリアミド11、ポリアミド12、ポリアミド46、ポリアミド66、ポリアミド6/66、ポリアミド610、ポリアミド612等が例示され、ポリアミド6、ポリアミド66およびポリアミド6/66からなる群から選択される少なくとも1種を含むことが好ましく、ポリアミド66を含むことがより好ましい。
 半芳香族ポリアミド樹脂は、全構成単位の30~70モル%(好ましくは40~60モル%)が芳香族を含むポリアミド樹脂をいい、好ましくは、ジアミン由来の構成単位と、ジカルボン酸由来の構成単位から構成され、前記ジアミン由来の構成単位の70モル%以上が芳香族を含有するジアミンに由来するポリアミド樹脂である。
 半芳香族ポリアミド樹脂の具体例としては、ポリヘキサメチレンテレフタラミド(ポリアミド6T)、ポリヘキサメチレンイソフタラミド(ポリアミド6I)、ポリアミド66/6T、ポリアミド9T、ポリアミド9MT、ポリアミド6I/6T、キシリレンジアミン系ポリアミド樹脂が例示され、キシリレンジアミン系ポリアミド樹脂がより好ましい。
 キシリレンジアミン系ポリアミド樹脂とは、ジアミン由来の構成単位とジカルボン酸由来の構成単位から構成され、ジアミン由来の構成単位の70モル%以上がキシリレンジアミンに由来し、ジカルボン酸由来の構成単位の70モル%以上が炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸に由来するポリアミド樹脂である。
 キシリレンジアミン系ポリアミド樹脂において、ジアミン由来の構成単位は、その70モル%以上がキシリレンジアミンに由来するが、80モル%以上であることが好ましく、90モル%以上であることがより好ましく、95モル%以上であることがさらに好ましく、99モル%以上であることが一層好ましい。
 キシリレンジアミンは、30~100モル%のメタキシリレンジアミンと、70~0モル%のパラキシリレンジアミン(ただし、メタキシリレンジアミンとパラキシリレンジアミンの合計が100モル%を超えることはない)を含むことが好ましく、50~100モル%のメタキシリレンジアミンと、50~0モル%のパラキシリレンジアミンを含むことがより好ましく、60~100モル%のメタキシリレンジアミンと、40~0モル%のパラキシリレンジアミンを含むことがさらに好ましく、60~90モル%のメタキシリレンジアミンと、40~10モル%のパラキシリレンジアミンを含むことが一層好ましい。また、キシリレンジアミンにおいて、メタキシリレンジアミンとパラキシリレンジアミンの合計が95モル%以上を占めることが好ましく、99モル%以上を占めることがさらに好ましく、100モル%であることが一層好ましい。
 キシリレンジアミン以外のジアミン成分としては、テトラメチレンジアミン、ペンタメチレンジアミン、2-メチルペンタンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ドデカメチレンジアミン、2,2,4-トリメチル-ヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン等の脂肪族ジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、1,3-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、2,2-ビス(4-アミノシクロヘキシル)プロパン、ビス(アミノメチル)デカリン、ビス(アミノメチル)トリシクロデカン等の脂環式ジアミン、ビス(4-アミノフェニル)エーテル、パラフェニレンジアミン、ビス(アミノメチル)ナフタレン等の芳香環を有するジアミン等を例示することができ、1種または2種以上を混合して使用できる。
 キシリレンジアミン系ポリアミド樹脂において、ジカルボン酸由来の構成単位は、その70モル%以上が炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸に由来するが、80モル%以上であることが好ましく、90モル%以上であることがより好ましく、95モル%以上であることがさらに好ましく、99モル%以上であることが一層好ましい。
 炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸成分としては、コハク酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、アジピン酸、セバシン酸、1,12-ドデカン二酸が例示され、アジピン酸およびセバシン酸から選択される少なくとも1種を含むことが好ましい。
 また、上記ジカルボン酸以外のジカルボン酸としては、イソフタル酸、テレフタル酸、オルソフタル酸等のフタル酸化合物、1,2-ナフタレンジカルボン酸、1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、1,6-ナフタレンジカルボン酸、1,7-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸等のナフタレンジカルボン酸等を例示することができ、1種または2種以上を混合して使用できる。
 本発明の樹脂組成物におけるポリアミド樹脂の含有量は、樹脂組成物が無機充填剤を含まない場合、80質量%以上であることが好ましく、85質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが一層好ましい。本発明の樹脂組成物が無機充填剤を含む場合、ポリアミド樹脂と無機充填剤の合計含有量が樹脂組成物の80質量%以上を占めることが好ましく、85質量%以上を占めることがより好ましく、90質量%以上を占めることがより好ましく、95質量%以上を占めることがさらに好ましい。
 本発明の樹脂組成物は、ポリアミド樹脂を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<酸化セリウム>
 本発明の樹脂組成物は、酸化セリウムを含む。酸化セリウムを含むことにより、高温湿熱下に置いた後も、他部材(特に、他の熱可塑性樹脂部材)への色移りを効果的に抑制できる。さらに、酸化セリウムはモース硬度が比較的低めであるため、ガラス繊維等の無機充填剤にダメージを与えにくくすることができる。
 本発明における酸化セリウムは、純度が90質量%以上の酸化セリウムをいう。すなわち、酸化セリウムには、不純物が含まれていてもよい。本発明の酸化セリウムは、ICP発光分析法で測定したランタンの含有量が0質量%超1質量%以下の酸化セリウムであることが好ましく、ICP発光分析法で測定したランタンの含有量が0.01~0.7質量%の酸化セリウムであることがより好ましく、ICP発光分析法で測定したランタンの含有量が0.02~0.4質量%の酸化セリウムであることがさらに好ましく、ICP発光分析法で測定したランタンの含有量0.05~0.2質量%の酸化セリウムであることが一層好ましい。
 このように、ランタンを微量な割合で含む酸化セリウムを用いることにより、樹脂組成物に容易に所望量のランタンを配合することができる。
 本発明における酸化セリウムは、セリウムの含有量が、73質量%以上であることが好ましく、75質量%以上であることがより好ましく、77質量%以上であることがさらに好ましい。また、前記酸化セリウムの含有量の上限は、85質量%以下であることが好ましく、83質量%以下であることがより好ましく、80質量%以下であることがさらに好ましい。
 本発明で用いる酸化セリウムのメジアン径(レーザー回折散乱法による粒度)は、3μm以下であることが好ましい。下限は、例えば、0.1μm以上である。
 上記メジアン径の酸化セリウムを用いることにより、よりガラス繊維等の無機充填剤へのダメージを与えにくくでき、より機械的強度に優れた樹脂組成物が得られる。
 本発明の樹脂組成物における酸化セリウムの含有量は、樹脂組成物中、0.01質量%以上であることが好ましく、0.05質量%以上であることがより好ましい。また、上限値としては、5質量%以下であることが好ましく、4質量%以下であることがさらに好ましく、3質量%以下であることが一層好ましく、2質量%以下であることがより一層好ましい。
<銅化合物>
 本発明の樹脂組成物は、銅化合物を含んでいてもよいし、含んでいなくてもよい。
 銅化合物の例には、ハロゲン化銅が例示される。
 本発明の樹脂組成物の一実施形態として、樹脂組成物中の銅化合物の含有量が0.01質量%以下である樹脂組成物が挙げられる。本実施形態において、前記銅化合物の含有量は、0.001質量%以下であることがより好ましく、検出限界以下であることがさらに好ましい。樹脂組成物中の銅化合物の含有量は、蛍光X線分析で検出するものとする。
<無機充填剤>
 本発明の樹脂組成物は、無機充填剤を含んでいてもよい。無機充填剤を含むことにより、高い機械的強度を達成できる。尚、本実施形態における無機充填剤には後述する酸化セリウム、核剤に相当するものは含まないものとする。
 無機充填剤は、ガラス繊維、炭素繊維、玄武岩繊維、ウォラストナイト、チタン酸カリウム繊維等の繊維状の無機充填剤を用いることができる。また、炭酸カルシウム、酸化チタン、長石系鉱物、クレー、ガラスビーズ等の粒状または無定形の充填剤;ガラスフレーク、グラファイト等の鱗片状の充填剤を用いることもできる。中でも、機械的強度、剛性および耐熱性の点から、繊維状の充填剤、特にはガラス繊維を用いるのが好ましい。
 ガラス繊維は、Aガラス、Cガラス、Eガラス、Sガラス、Dガラス、Mガラス、Rガラスなどのガラス組成からなり、特に、Eガラス(無アルカリガラス)がポリアミド樹脂に悪影響を及ぼさないので好ましい。
 ガラス繊維とは、長さ方向に直角に切断した断面形状が真円状、多角形状で繊維状外観を呈するものをいう。
 本発明の樹脂組成物に用いるガラス繊維は、単繊維または単繊維を複数本撚り合わせたものであってもよい。
 ガラス繊維の形態は、単繊維や複数本撚り合わせたものを連続的に巻き取った「ガラスロービング」、長さ1~10mmに切りそろえた「チョップドストランド」、長さ10~500μmに粉砕した「ミルドファイバー」などのいずれであってもよい。かかるガラス繊維としては、旭ファイバーグラス社より、「グラスロンチョップドストランド」や「グラスロンミルドファイバー」の商品名で市販されており、容易に入手可能である。ガラス繊維は、形態が異なるものを併用することもできる。
 また、本発明ではガラス繊維として、異形断面形状を有するものも好ましい。この異形断面形状とは、繊維の長さ方向に直角な断面の長径をD2、短径をD1とするときの長径/短径比(D2/D1)で示される扁平率が、例えば、1.5~10であり、中でも2.5~10、更には2.5~8、特に2.5~5であることが好ましい。かかる扁平ガラスについては、特開2011-195820号公報の段落番号0065~0072の記載を参酌でき、この内容は本明細書に組み込まれる。
 本発明の樹脂組成物における無機充填剤の配合量は、ポリアミド樹脂組成物の25質量%以上であることが好ましく、28質量%以上であることがより好ましい。上限値については、特に定めるものでは無いが、60質量%以下であることが好ましく、50質量%以下がより好ましく、45質量%以下であってもよい。本発明の樹脂組成物は、無機充填剤を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合は、合計量が上記範囲となる。
<核剤>
 本発明の樹脂組成物は、結晶化速度を調整するために、核剤を含んでいてもよい。核剤の種類は、特に、限定されるものではないが、タルク、窒化ホウ素、マイカ、カオリン、炭酸カルシウム、炭酸ナトリウム(NaCO)、炭酸カリウム(KCO)、炭酸水素ナトリウム(NaHCO)、炭酸水素カリウム(KHCO)、硫酸バリウム、窒化珪素、チタン酸カリウムおよび二硫化モリブデンが好ましく、タルクおよび窒化ホウ素がより好ましく、タルクがさらに好ましい。
 本発明の樹脂組成物が核剤を含む場合、その含有量は、ポリアミド樹脂100質量部に対し、0.01~10質量部であることが好ましく、0.1~8質量部がより好ましく、0.1~6質量部がさらに好ましい。
 本発明の樹脂組成物は、核剤を、1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<離型剤>
 本発明の樹脂組成物は、離型剤を含んでいてもよい。
 離型剤としては、例えば、脂肪族カルボン酸、脂肪族カルボン酸の塩、脂肪族カルボン酸とアルコールとのエステル、脂肪族カルボン酸アミド、数平均分子量200~15,000の脂肪族炭化水素化合物、ポリシロキサン系シリコーンオイルなどが挙げられる。
 離型剤の詳細は、特開2017-115093号公報の段落0034~0039の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 本発明の樹脂組成物が離型剤を含む場合、その含有量は、ポリアミド樹脂100質量部に対し、0.05~1質量部であることが好ましく、0.1~0.8質量部がより好ましく、0.2~0.6質量部がさらに好ましい。
 本発明の樹脂組成物は、離型剤を、1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<他の成分>
 本発明の樹脂組成物は、本発明の趣旨を逸脱しない範囲で他の成分を含んでいてもよい。このような添加剤としては、難燃剤、難燃助剤、紫外線吸収剤、酸化防止剤、蛍光増白剤、滴下防止剤、帯電防止剤、防曇剤、アンチブロッキング剤、流動性改良剤、可塑剤、分散剤、抗菌剤などが挙げられる。これらの成分は、1種のみを用いてもよいし、2種以上を併用してもよい。
 なお、本発明の樹脂組成物は、各成分の合計が100質量%となるように、ポリアミド樹脂と酸化セリウムと、必要に応じて配合される他の成分の含有量が調整される。
<樹脂組成物の物性>
 本発明においては、本発明の樹脂組成物を、ASTM D638規格に基づく4号片1.5mm厚さの試験片に成形し、85℃で相対湿度85%の条件下に、1000時間置いた後の、ASTM D638規格に従った引張強さの保持率が55%以上であることが好ましく、57%以上であることがより好ましく、58%以上であることがさらに好ましい。上限は100%が理想であるが、80%以下、さらには、70%以下が実際的である。
<樹脂組成物の製造方法>
 本発明の樹脂組成物は、上述した必須成分および必要に応じ上述した任意の成分を含有させてなる。そしてその製造方法は任意であり、従来公知の任意の、樹脂組成物の製造方法を使用し、これらの原料を混合・混練すればよい。
 混練機は、ニーダー、バンバリーミキサー、押出機等が例示される。混合・混練の各種条件や装置についても、特に制限はなく、従来公知の任意の条件から適宜選択して決定すればよい。混練はポリアミド樹脂が溶融する温度以上で行うことが好ましい。
 具体的な製造方法としては、ポリアミド樹脂に、酸化セリウムを配合して、溶融混練することを含む樹脂組成物の製造方法であって、前記酸化セリウム中のICP発光分析法で測定したランタンの含有量が0質量%超1質量%以下である樹脂組成物の製造方法が例示される。
<成形品>
 本発明の成形品は、本発明の樹脂組成物から形成される。
 また、本発明の樹脂組成物をペレタイズして得られたペレットは、各種の成形法で成形して成形品とされる。また、ペレットを経由せずに、押出機で溶融混練された樹脂組成物を直接、成形して成形品にすることもできる。
 成形品の形状としては、特に制限はなく、成形品の用途、目的に応じて適宜選択することができ、例えば、板状、プレート状、ロッド状、シート状、フィルム状、円筒状、環状、円形状、楕円形状、歯車状、多角形形状、異形品、中空品、枠状、箱状、パネル状、キャップ状のもの等が挙げられる。本発明の成形品は、完成品であってもよいし、部品や部材であってもよい。
 成形品を成形する方法としては、特に制限されず、従来公知の成形法を採用でき、例えば、射出成形法、射出圧縮成形法、押出成形法、異形押出法、トランスファー成形法、中空成形法、ガスアシスト中空成形法、ブロー成形法、押出ブロー成形、IMC(インモールドコーティング成形)成形法、回転成形法、多層成形法、2色成形法、インサート成形法、サンドイッチ成形法、発泡成形法、加圧成形法等が挙げられる。
 特に、本発明の成形品は、耐湿熱性を有することから、高温高湿下で用いられる用途に好ましく用いられる。さらに、本発明の樹脂組成物は、他の樹脂部材への色移りを効果的に抑制できることから、本発明の樹脂組成物から形成された部材と、前記部材に接している熱可塑性樹脂部材を有する成形品に好ましく用いられる。ここでの「接している」とは、部材同士の少なくとも一部が接していることをいい、1cm以上の面積で接していることが好ましい。接している面積の上限は特に定めるものではないが、通常、部材の表面積の50%以下である。
 また、本発明の樹脂組成物に光透過性色素を配合することにより、レーザー溶着用の光を透過する側の樹脂組成物(光透過性樹脂組成物)として用いることができる。一方、本発明の樹脂組成物に光吸収性色素を配合することにより、レーザー溶着用の光を吸収する側の樹脂組成物(光吸収性樹脂組成物)として用いることもできる。さらに、前記光透過性樹脂組成物と光吸収性樹脂組成物を用いて、レーザー溶着した成形品とすることもできる。レーザー溶着の詳細は、国際公開第2017/110372号の記載、特に、段落0031および段落0043~0048の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 本発明の成形品は、種々の用途、例えば、各種保存容器、電気・電子機器部品、オフィスオートメート(OA)機器部品、家電機器部品、機械機構部品、車両機構部品などに適用できる。特に、食品用容器、薬品用容器、油脂製品容器、車両用中空部品(各種タンク、インテークマニホールド部品、カメラ筐体など)、車両用電装部品(各種コントロールユニット、イグニッションコイル部品など)、モーター部品、各種センサー部品、コネクター部品、スイッチ部品、ブレーカー部品、リレー部品、コイル部品、トランス部品、ランプ部品などに好適に用いることができる。
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
[原料]
MP10:下記合成例に従って合成した。
MP6:下記合成例に従って合成した。
PA66:ポリアミド66、ソルベイ社製、STAVAMID26AE1K
<MP10の合成例(M/P比=7:3)>
 セバシン酸を窒素雰囲気下の反応缶内で加熱溶解した後、内容物を撹拌しながら、メタキシリレンジアミンとパラキシリレンジアミンのモル比が7:3の混合ジアミン(三菱ガス化学社製)を、加圧(0.35MPa)下でジアミンとセバシン酸とのモル比が約1:1になるように徐々に滴下しながら、温度を235℃まで上昇させた。滴下終了後、60分間反応継続し、分子量1,000以下の成分量を調整した。反応終了後、内容物をストランド状に取り出し、ペレタイザーにてペレット化し、ポリアミド樹脂(MP10、M/P=7:3)を得た。
<MP6の合成例(M/P比=7:3)>
 アジピン酸を窒素雰囲気下の反応缶内で加熱溶解した後、内容物を撹拌しながら、メタキシリレンジアミンとパラキシリレンジアミンのモル比が7:3の混合ジアミン(三菱ガス化学社製)を、加圧(0.35MPa)下でジアミンとアジピン酸(ローディア社製)とのモル比が約1:1になるように徐々に滴下しながら、温度を270℃まで上昇させた。滴下終了後、0.06MPaまで減圧し10分間反応を続け分子量1,000以下の成分量を調整した。その後、内容物をストランド状に取り出し、ペレタイザーにてペレット化し、ポリアミド樹脂(MP6、M/P=7:3)を得た。
ガラス繊維:日本電気硝子社製、T-756H、ウレタン系集束剤、Eガラス
タルク:林化成社製、ミクロンホワイト♯5000S
離型剤:共栄社化学社製、ライトアマイドWH255
CuI:ヨウ化第一銅、日本化学産業社製
酸化セリウム1:純度90質量%以上の酸化セリウム、トライバッハ・インダストリ・ジャパン社製、Cerium Oxide Hydrate 90、セリウム含有量72.1質量%、ランタン含有量4.4質量%、メジアン径(レーザー回折散乱法による粒度)2μm以下
酸化セリウム2:純度90質量%以上の酸化セリウム、トライバッハ・インダストリ・ジャパン社製、Cerium Hydrate 90、セリウム含有量78.5質量%、ランタン含有量0.1質量%、メジアン径(レーザー回折散乱法による粒度)3μm以下
<酸化セリウム中のランタンおよびセリウム含有量分析>
 試料を大気中、120℃で2時間加熱乾燥した。試料100mgを精秤し、過塩素酸、過酸化水素水および水を加え、加温分解後、水を加え一定容とした。この溶液を希釈し、ICP発光分析法(ICP-AES)で、Ceは酸濃度マッチング検量線法、Laは標準添加検量線法を用いて定量した。
参考例1、実施例1~6、比較例1~4
 後述する下記表1または表2に示す各成分であって、ガラス繊維以外の成分を表1または表2に示す割合(単位は、質量部である)をそれぞれ秤量し、ドライブレンドした後、二軸押出機(東芝機械社製、TEM26SS)のスクリュー根元から2軸スクリュー式カセットウェイングフィーダ(クボタ社製、CE-W-1-MP)を用いて投入した。また、ガラス繊維については振動式カセットウェイングフィーダ(クボタ社製、CE-V-1B-MP)を用いて押出機のサイドから上述の二軸押出機に投入し、樹脂成分等と溶融混練し、ペレット(樹脂組成物)を得た。
 上記で得られたペレットを、120℃で4時間乾燥した後、射出成形機(住友重機械工業社製、SE-50D)を用いて、ASTM D638規格に基づく4号片(1.5mm厚)を作製した。
<高温高湿下に置いた後の引張強さの保持率>
 実施例1で得られたASTM D638規格に基づく4号片を、85℃で相対湿度85%の条件下に1000時間静置した。静置前後のASTM D638規格に基づく4号片について、ASTM D638に従って引張強さを測定した。以下の式により、保持率を測定した。
引張強さの保持率(%)=[静置後の引張強さ/静置前の引張強さ]×100
 参考例1、実施例2~6および比較例1~4で得られたASTM規格D638に基づく4号片についても、同様に行った。
<高温高湿下に置いた後の色移り試験>
 実施例1で得られたASTM D638規格に基づく4号片と、参考例1で得られたASTM D638規格に基づく4号片を重ね、ダブルクリップ(中)で長手方向の両端を固定し、85℃で相対湿度85%の条件下に1000時間静置した。静置後、実施例1で得られたASTM D638規格に基づく4号片について、目視で確認し、色移りの有無を確認した。
 実施例2~6および比較例1~4で得られたASTM D638規格に基づく4号片についても、同様に行った。
A:色移りは認められなかった。
B:色移りが認められた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 上記において、樹脂組成物中のランタン量は、酸化セリウム由来のランタン量から算出した。他の成分のランタン量は、検出限界以下であった。
 上記結果から明らかなとおり、本発明の樹脂組成物は、高温高湿下に置いた後の引張強さの保持率が高く、かつ、色移りも認められなかった(実施例1~6)。
 これに対し、樹脂組成物中のランタンの含有量が樹脂組成物中、40質量ppmを超える場合(比較例1、2)、高温高湿下に置いた後、引張強さが顕著に低下してしまった。
 また、安定剤として、銅化合物を用いた場合(比較例3、4)、高温高湿下に置いた後、色移りが起きてしまった。

Claims (11)

  1. ポリアミド樹脂と酸化セリウムを含む樹脂組成物であって、
    前記樹脂組成物中のランタンの含有量が0質量ppm超40質量ppm以下である、樹脂組成物。
  2. ICP発光分析法で測定したランタンの含有量が0質量%超1質量%以下である酸化セリウムを含む、請求項1に記載の樹脂組成物。
  3. 前記酸化セリウムの含有量は、樹脂組成物中、0.01~5質量%である、請求項1または2に記載の樹脂組成物。
  4. 前記樹脂組成物を、ASTM D638規格に基づく4号片1.5mm厚さの試験片に成形し、85℃で相対湿度85%の条件下に、1000時間置いた後の、ASTM D638に従った引張強さの保持率が55%以上である、請求項1~3のいずれか1項に記載の樹脂組成物。
  5. さらに、無機充填剤を25~60質量%含む、請求項1~4のいずれか1項に記載の樹脂組成物。
  6. 前記ポリアミド樹脂が、ジアミン由来の構成単位とジカルボン酸由来の構成単位から構成され、ジアミン由来の構成単位の70モル%以上がキシリレンジアミンに由来し、ジカルボン酸由来の構成単位の70モル%以上が炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸に由来するポリアミド樹脂を含む、請求項1~5のいずれか1項に記載の樹脂組成物。
  7. 前記樹脂組成物中の銅化合物の含有量が0.01質量%以下である、請求項1~6のいずれか1項に記載の樹脂組成物。
  8. 請求項1~7のいずれか1項に記載の樹脂組成物から形成された成形品。
  9. 請求項1~7のいずれか1項に記載の樹脂組成物から形成された部材と、前記部材に接している熱可塑性樹脂部材を有する成形品。
  10. ポリアミド樹脂に、酸化セリウムを配合して、溶融混練することを含む樹脂組成物の製造方法であって、前記酸化セリウム中のICP発光分析法で測定したランタンの含有量が0質量%超1質量%以下である、樹脂組成物の製造方法。
  11. 前記樹脂組成物が、請求項1~7のいずれか1項に記載の樹脂組成物である、請求項10に記載の樹脂組成物の製造方法。
PCT/JP2020/023344 2019-07-24 2020-06-15 樹脂組成物、成形品および樹脂組成物の製造方法 WO2021014818A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021533860A JP7459107B2 (ja) 2019-07-24 2020-06-15 樹脂組成物、成形品および樹脂組成物の製造方法
EP20845038.7A EP4006094A4 (en) 2019-07-24 2020-06-15 RESIN COMPOSITION AND METHOD FOR MAKING THE SAME, AND MOLDED ARTICLE
CN202080052876.4A CN114144474B (zh) 2019-07-24 2020-06-15 树脂组合物、成型品及树脂组合物的制造方法
US17/623,341 US20220356304A1 (en) 2019-07-24 2020-06-15 Resin composition, molded article, and method for producing resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019135885 2019-07-24
JP2019-135885 2019-07-24

Publications (1)

Publication Number Publication Date
WO2021014818A1 true WO2021014818A1 (ja) 2021-01-28

Family

ID=74193373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023344 WO2021014818A1 (ja) 2019-07-24 2020-06-15 樹脂組成物、成形品および樹脂組成物の製造方法

Country Status (5)

Country Link
US (1) US20220356304A1 (ja)
EP (1) EP4006094A4 (ja)
JP (1) JP7459107B2 (ja)
CN (1) CN114144474B (ja)
WO (1) WO2021014818A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04219140A (ja) * 1990-02-22 1992-08-10 Engelhard Corp 分離した白金及びロジウム成分を含有する触媒組成物
JPH08283451A (ja) * 1995-04-20 1996-10-29 Idemitsu Petrochem Co Ltd 熱可塑性樹脂組成物
JP2001205565A (ja) * 2000-01-26 2001-07-31 Nippon Tokushu Kento Kk 半導体用研磨砥石
JP2002194208A (ja) * 2000-12-27 2002-07-10 Daicel Degussa Ltd 赤系色に着色されたポリアミド系樹脂組成物
JP2011195820A (ja) 2010-02-26 2011-10-06 Mitsubishi Engineering Plastics Corp ポリアルキレンテレフタレート系樹脂組成物および成形体
JP2012153749A (ja) * 2011-01-24 2012-08-16 Mitsubishi Gas Chemical Co Inc ポリアミド樹脂およびその製造方法
JP2014037467A (ja) * 2012-08-14 2014-02-27 Mitsubishi Gas Chemical Co Inc ポリエーテルポリアミド樹脂組成物
JP2014509342A (ja) * 2011-02-24 2014-04-17 ロディア オペレーションズ 安定化された次亜リン酸塩を含有する難燃性ポリマー組成物
JP2016529364A (ja) 2013-08-29 2016-09-23 エーエムエス−パテント アクチェンゲゼルシャフト ポリアミド成形材料及びそれから製造された成形品
WO2017110372A1 (ja) 2015-12-25 2017-06-29 三菱エンジニアリングプラスチックス株式会社 ポリアミド樹脂組成物、キット、成形品の製造方法および成形品
JP2017115093A (ja) 2015-12-25 2017-06-29 三菱エンジニアリングプラスチックス株式会社 ポリアミド樹脂組成物、キット、成形品の製造方法、成形品およびポリアミド樹脂組成物の製造方法
JP2018502082A (ja) * 2014-12-22 2018-01-25 ロディア オペレーションズRhodia Operations シクロアルカンの酸化触媒並びにアルコール及びケトンの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103443179A (zh) * 2011-02-24 2013-12-11 罗地亚经营管理公司 包含稳定化的次磷酸盐的阻燃聚合物组合物
JP6435689B2 (ja) 2014-07-25 2018-12-12 Agc株式会社 研磨剤と研磨方法、および研磨用添加液
BR112020019728A2 (pt) 2018-03-30 2021-02-17 Ascend Performance Materials Operations Llc poliamidas estabilizadas com cério e processos para a sua produção

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04219140A (ja) * 1990-02-22 1992-08-10 Engelhard Corp 分離した白金及びロジウム成分を含有する触媒組成物
JPH08283451A (ja) * 1995-04-20 1996-10-29 Idemitsu Petrochem Co Ltd 熱可塑性樹脂組成物
JP2001205565A (ja) * 2000-01-26 2001-07-31 Nippon Tokushu Kento Kk 半導体用研磨砥石
JP2002194208A (ja) * 2000-12-27 2002-07-10 Daicel Degussa Ltd 赤系色に着色されたポリアミド系樹脂組成物
JP2011195820A (ja) 2010-02-26 2011-10-06 Mitsubishi Engineering Plastics Corp ポリアルキレンテレフタレート系樹脂組成物および成形体
JP2012153749A (ja) * 2011-01-24 2012-08-16 Mitsubishi Gas Chemical Co Inc ポリアミド樹脂およびその製造方法
JP2014509342A (ja) * 2011-02-24 2014-04-17 ロディア オペレーションズ 安定化された次亜リン酸塩を含有する難燃性ポリマー組成物
JP2014037467A (ja) * 2012-08-14 2014-02-27 Mitsubishi Gas Chemical Co Inc ポリエーテルポリアミド樹脂組成物
JP2016529364A (ja) 2013-08-29 2016-09-23 エーエムエス−パテント アクチェンゲゼルシャフト ポリアミド成形材料及びそれから製造された成形品
JP2018502082A (ja) * 2014-12-22 2018-01-25 ロディア オペレーションズRhodia Operations シクロアルカンの酸化触媒並びにアルコール及びケトンの製造方法
WO2017110372A1 (ja) 2015-12-25 2017-06-29 三菱エンジニアリングプラスチックス株式会社 ポリアミド樹脂組成物、キット、成形品の製造方法および成形品
JP2017115093A (ja) 2015-12-25 2017-06-29 三菱エンジニアリングプラスチックス株式会社 ポリアミド樹脂組成物、キット、成形品の製造方法、成形品およびポリアミド樹脂組成物の製造方法

Also Published As

Publication number Publication date
JP7459107B2 (ja) 2024-04-01
CN114144474A (zh) 2022-03-04
JPWO2021014818A1 (ja) 2021-01-28
EP4006094A4 (en) 2023-07-26
CN114144474B (zh) 2023-10-03
US20220356304A1 (en) 2022-11-10
EP4006094A1 (en) 2022-06-01

Similar Documents

Publication Publication Date Title
TWI501995B (zh) 聚醯胺樹脂成形體
KR20180108626A (ko) 성형품 및 그 제조 방법
WO2012093722A1 (ja) 共重合ポリアミド
EP3792312B1 (en) Resin composition, kit, method for manufacturing resin composition, method for manufacturing formed article, and formed article
JP7120025B2 (ja) ポリアミド樹脂組成物、成形品およびポリアミド樹脂ペレットの製造方法
WO2015199062A1 (ja) 樹脂組成物およびその成形体
JP2014015594A (ja) ポリアミド樹脂組成物及び成形品
WO2013038846A1 (ja) 薄肉成形品
JP7459107B2 (ja) 樹脂組成物、成形品および樹脂組成物の製造方法
US11746234B2 (en) Polyamide resin composition and molded article
WO2017159418A1 (ja) ポリアミド樹脂組成物および成形品
WO2021241382A1 (ja) レーザー溶着用光透過性樹脂組成物、成形品、キット、および、成形品の製造方法
JP2022127208A (ja) 樹脂組成物および成形品
WO2021193196A1 (ja) ポリアミド樹脂組成物
JP2013053188A (ja) ポリアミド樹脂組成物およびそれからなる成形体
WO2021205938A1 (ja) 難燃性ポリアミド樹脂組成物
CN115667415B (zh) 激光熔敷用透光性树脂组合物、组合物组合、成型品、以及成型品的制造方法
JP2022054099A (ja) 樹脂組成物、成形品および薄肉成形品の製造方法
JP6896551B2 (ja) 視認性タンク用ポリアミド樹脂組成物および視認性タンク
JP2021123643A (ja) 樹脂組成物、キット、成形品の製造方法および成形品
JP6998678B2 (ja) ポリアミド樹脂組成物、成形品および物品
JP6436768B2 (ja) ポリアミド樹脂組成物および成形品
WO2021241380A1 (ja) レーザー溶着用透過性樹脂組成物、キット、成形品および成形品の製造方法
WO2022239466A1 (ja) 樹脂組成物および成形品
JP7129790B2 (ja) 樹脂組成物および成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20845038

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021533860

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020845038

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020845038

Country of ref document: EP

Effective date: 20220224