WO2021012855A1 - 一种全景图像生成***及全景图像生成方法 - Google Patents

一种全景图像生成***及全景图像生成方法 Download PDF

Info

Publication number
WO2021012855A1
WO2021012855A1 PCT/CN2020/097400 CN2020097400W WO2021012855A1 WO 2021012855 A1 WO2021012855 A1 WO 2021012855A1 CN 2020097400 W CN2020097400 W CN 2020097400W WO 2021012855 A1 WO2021012855 A1 WO 2021012855A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
lens
rotation
angle
panoramic image
Prior art date
Application number
PCT/CN2020/097400
Other languages
English (en)
French (fr)
Inventor
沈峘
张佩泽
程百顺
王汉全
Original Assignee
南京泓众电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京泓众电子科技有限公司 filed Critical 南京泓众电子科技有限公司
Publication of WO2021012855A1 publication Critical patent/WO2021012855A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/698Control of cameras or camera modules for achieving an enlarged field of view, e.g. panoramic image capture

Definitions

  • the present invention relates to the field of camera technology, in particular to the technical field of panoramic image shooting and generation.
  • the panorama shows the surrounding environment as much as possible through wide-angle representation methods and forms such as paintings, photos, videos, and three-dimensional models.
  • 360 panorama that is, by capturing the image information of the entire scene with a professional camera or using modeling software to render the pictures, using the software to combine the pictures, and playing them with a special player, that is, the plane photos or computer modeling pictures are turned into 360 degrees Full view, used for virtual reality browsing, simulating a two-dimensional plan into a real three-dimensional space and presenting it to the viewer.
  • the panoramic image records the information of the 360-degree space. When the panoramic image is displayed, you can drag the image screen to browse.
  • the feature of 360-degree full recording and unique viewing experience makes the panoramic image in many fields, such as hotel display, real estate display, Car exhibitions are widely used, and viewers can learn about the actual situation of hotels, etc. without leaving home.
  • the panoramic display greatly facilitates people's lives.
  • panoramic images there are two main methods for shooting panoramic images in the industry.
  • One is to set up a SLR on a pan-tilt, and use a professional photographer to manually turn the pan-tilt to shoot images from multiple angles, which are processed by professional stitching software on the PC side.
  • a panoramic image is obtained.
  • the panoramic image captured in this way has high quality, but the shooting process and the post-stitching process are relatively cumbersome and the shooting efficiency is low.
  • Another way is to use a panoramic camera to shoot, which has high shooting efficiency.
  • the shooting quality is high, but the price is expensive, basically more than 10,000 yuan.
  • binoculars the shooting efficiency is high and the price is low.
  • the binocular all-in-one cameras use fisheye lenses, and the edge areas of the fisheye images with poor image quality and more noise are used when stitching. Therefore, the final panoramic image quality of the stitching is not high.
  • the objective of the present invention is to address the shortcomings of the prior art and provide a panoramic image generation system that uses a lens module as a shooting terminal to achieve low-cost and high-quality panoramic image generation;
  • Another object of the present invention is to provide a method for generating panoramic images using the system.
  • the panoramic image generation system of the present invention includes a lens module, a rotation module, a photometry module, and an image acquisition module;
  • the lens module is connected to the rotation module, the lens module is rotated along the rotation center of the rotation module driven by the rotation module, and the lens node of the lens module is less than or equal to 3 cm from the rotation center of the rotation module;
  • the metering module is respectively communicatively connected with the rotating module and the lens module.
  • the rotating module drives the lens module to rotate to multiple angular positions according to the preset metering rotation angle and the number of metering rotations, and the metering module obtains the corresponding angle of the lens module Position exposure parameters, and use a fusion algorithm to fuse the exposure parameters, and the fused exposure parameters are used as the fixed shooting parameters of the lens module;
  • the image acquisition module communicates with the rotation module and the lens module respectively.
  • the rotation module drives the lens module to rotate to multiple angular positions according to the preset image acquisition rotation angle and the number of image acquisition rotations.
  • the image acquisition module acquires the lens module to fix it.
  • the regional images of the current field of view captured by the shooting parameters, and two regional images captured at adjacent shooting angles contain overlapping regions, the image acquisition module sends multiple regional images to the image synthesis module to synthesize a panoramic image.
  • a further preferred technical solution of the present invention is that it further includes a posture sensor and a posture correction module.
  • the posture sensor is used to obtain posture angle data when the lens module shoots images at different angles, and send the data to the posture correction module. Correct the panoramic image to the horizontal position according to the attitude angle data.
  • it further includes a position sensor for detecting the rotation angle data of the lens module and sending the data to the rotation module.
  • the rotation module compares the rotation angle data with predetermined angle data. If the rotation angle data is less than the predetermined angle, then Drive the lens module to rotate until it reaches a predetermined angle.
  • it further includes a storage module for storing processing programs and various sensor data.
  • the image synthesis module is an external processing terminal, and the image acquisition module sends multiple regional images to the external processing terminal through a wired or wireless connection, and the external processing terminal performs image synthesis.
  • the method for generating a panoramic image by the above-mentioned system of the present invention includes the following steps:
  • the rotation module rotates according to the set parameters to drive the lens module to rotate to different angle positions.
  • the lens of the lens module is in automatic exposure mode Acquire the exposure parameters of the current field of view; after the rotating module drives the lens module to rotate to the last metering angle, the metering module fuses the multiple sets of exposure parameters acquired by the lens module to obtain the fused exposure parameters, and combines the lens of the lens module Adjust to manual exposure mode and lock in the fusion exposure parameters;
  • Panoramic image synthesis The image synthesis module stitches and synthesizes the collected images of multiple angular positions according to the correlation characteristics of the overlapping areas of the images taken at adjacent angles to form a panoramic image.
  • the lens node of the lens module and the rotation center of the rotating module coincide.
  • the angular position in step (2) and step (3) includes a longitude position and a latitude position, wherein the longitude position corresponds to the heading angle of the lens, and the latitude position corresponds to the pitch angle of the lens.
  • step (2) photometry are:
  • the rotation angle includes the rotation angle to different longitude positions and the rotation angle to different latitude positions.
  • the rotation times include the rotation times to different longitude positions and the rotation times to different latitude positions. Number of rotations
  • the rotation module drives the lens to rotate to different angular positions according to the set rotation angle and number of rotations. In different positions, the metering module obtains the exposure parameters through the automatic exposure mode;
  • the exposure parameters include exposure time, gain and aperture.
  • step (3) shooting are:
  • a Set the lens exposure parameter of the lens module to the fusion exposure parameter.
  • the lens is switched to manual exposure mode.
  • the exposure parameters of the lens remain unchanged at different angles;
  • the horizontal field of view of the lens is ⁇ _hor, and set the overlapping field of view of the lens at two adjacent longitude positions as If the value of d ⁇ _hor and d ⁇ _hor is greater than 0, when the lens rotates from the first longitude position to the second longitude position, the rotation angle is ⁇ _hor-d ⁇ _hor, and the horizontal field of view angle of the panoramic image is ⁇ , ⁇ 360 degrees, then The number of horizontal rotations of the lens is calculated as ⁇ /( ⁇ _hor-d ⁇ _hor)-1. If the calculated value is a decimal, it will be rounded and increased by 1;
  • the vertical field of view of the lens is ⁇ _ver, and the overlapping field of view of two adjacent latitude images is set to d ⁇ _ver. If the value of d ⁇ _ver is greater than 0, the lens will rotate from the first latitude position to the second latitude position
  • the angle of rotation is ⁇ _ver-d ⁇ _ver, set the vertical angle of view of the panoramic image to ⁇ , ⁇ 360 degrees, then the number of vertical rotations of the lens is calculated as ⁇ /( ⁇ _ver-d ⁇ _ver)-1, if the calculated value is For decimals, round up and add 1;
  • the rotation module drives the lens to rotate to different angular positions according to the calculated rotation angle and number of rotations, and collects regional images of the current field of view; the image acquisition module sends multiple regional images acquired by the lens module to the image synthesis module.
  • the lens module is used as the image acquisition terminal, and the overall system is built on this basis to perform multi-point photography, thereby breaking through the resolution limit and realizing the shooting of panoramic images. Due to the stitching and synthesis of multiple panoramic images The regional images are captured by the same lens, and the consistency between the images in each region is relatively high. At the same time, by setting the distance between the lens node and the rotation center of the rotation module reasonably, the image parallax is reduced, which not only improves the imaging quality of the final panoramic image, but also reduces the Software and algorithm requirements and costs; compared with the panoramic image generation scheme of a binocular integrated machine or even a multi-camera integrated machine, the present invention greatly reduces the hardware cost.
  • the coordinated use of the lens module and the rotating module simplifies the system structure , Has the advantages of small size, light weight, and portable, and because the power consumption of the circuit part is significantly lower than that of the existing panoramic image generation solution, the standby time is obvious.
  • Fig. 1 is a schematic diagram of images collected in the longitude direction during photometry in the embodiment
  • FIG. 2 is a schematic diagram of images collected in the latitude direction during photometry in the embodiment
  • Fig. 3 is a schematic diagram of images collected in the longitude direction during shooting in the embodiment
  • Fig. 5 is a schematic diagram of different areas of the fisheye image in the embodiment.
  • Fig. 6 is a schematic diagram of the rotation direction of the photometry and image capture lens in the embodiment.
  • a panoramic image generation system includes a lens module, a rotation module, a light metering module, an image acquisition module, an image synthesis module, a posture sensor, a posture correction module, a position sensor, and a storage module.
  • the lens module is connected to the rotating module, and the lens module is driven by the rotating module to rotate along the rotation center of the rotating module, and the lens node of the lens module is less than or equal to 3 cm from the rotation center of the rotating module.
  • the lens node of the optimal lens module coincides with the rotation center line of the rotating module.
  • the metering module communicates with the rotating module and the lens module.
  • the rotating module drives the lens module to rotate to multiple angular positions according to the preset metering rotation angle and the number of metering rotations.
  • the metering module obtains the corresponding angular position of the lens module. Exposure parameters, and use a fusion algorithm to fuse various exposure parameters, and the fused exposure parameters are used as the fixed shooting parameters of the lens module;
  • the image acquisition module communicates with the rotation module and the lens module.
  • the rotation module drives the lens module to rotate to multiple angular positions according to the preset image acquisition rotation angle and number of image acquisition rotations.
  • the image acquisition module acquires the lens module to fix the shooting parameters.
  • the captured regional images of the current field of view, and two regional images captured at adjacent shooting angles contain overlapping regions, the image acquisition module sends multiple regional images to the image synthesis module to synthesize a panoramic image.
  • the posture sensor is used to obtain the posture angle data of the lens module when shooting images at different angles, and send the data to the posture correction module.
  • the posture correction module corrects the panoramic image to the horizontal position according to the posture angle data;
  • the position sensor is used to detect the lens
  • the rotation angle data of the module is sent to the rotation module, and the rotation module compares the rotation angle data with the predetermined angle data. If the rotation angle data is less than the predetermined angle, it drives the lens module to rotate until the predetermined angle is reached; storage module Used to store processing programs and various sensor data;
  • the image synthesis module is an external processing terminal, and the image acquisition module sends multiple regional images to the external processing terminal through a wired or wireless connection, and is processed by the external The terminal performs image synthesis.
  • the method for generating a panoramic image using the system includes the following steps:
  • the rotating module uses a steering gear.
  • the output shaft of the steering gear is used as the stator, and the main body of the steering gear is used as the rotor.
  • the rest of the system is connected to the main body of the steering gear and rotates synchronously with the main body of the steering gear.
  • Set the distance between the lens node and the center line of the servo output shaft to be less than or equal to 3cm. The smaller the distance, the smaller the parallax between two adjacent images, which is more conducive to the post-stitching process.
  • set the lens node to pass the servo Center line of output shaft.
  • the rotation angle and the number of rotations of the lens can be customized externally or obtained by calculation.
  • the specific calculation method is:
  • the horizontal field of view of the lens is ⁇ _hor, set the lens metering at two adjacent longitude positions
  • the overlapping field of view angle is d ⁇ _hor, when the lens rotates from the first longitude position to the second longitude position, the rotation angle is ⁇ _hor-d ⁇ _hor, and the horizontal field of view angle of the panoramic image is 360 degrees, then the number of horizontal rotations of the lens It is calculated as 360/( ⁇ _hor-d ⁇ _hor)-1. If the calculated value is a decimal, it will be rounded and added to ensure that all images within 360 angles in the horizontal direction are captured by the lens.
  • the overlapping angle of view is d ⁇ _hor, which can be 0.
  • the number of horizontal rotations of the lens is calculated as 360/ ⁇ _hor-1. If the calculated value is a decimal, it will be rounded and increased by 1.
  • the vertical field of view of the lens is ⁇ _ver, and the overlapping field of view of the images at two adjacent latitudes is set to d ⁇ _ver, when the lens is rotated from the first latitude position to the second latitude position ,
  • the required rotation angle is ⁇ _ver-d ⁇ _ver, and the vertical field of view angle of the panoramic image is set to 360 degrees
  • the number of vertical rotations of the lens is calculated as 360/( ⁇ _ver-d ⁇ _ver)-1, if the calculated value is a decimal, then round Add 1 to ensure that all images within the vertical 360 angle range are captured by the lens.
  • the overlapping angle of view is d ⁇ _ver, which can be 0.
  • the number of horizontal rotations of the lens is calculated as 360/ ⁇ _ver-1. If the calculated value is a decimal, it will be rounded and increased by 1.
  • the rotation module drives the lens to rotate to different angle positions according to the calculated rotation angle and number of rotations. In different positions, the lens obtains the exposure parameters through the automatic exposure mode.
  • the exposure parameters include exposure time, gain and aperture;
  • the parameter fusion module fuses multiple sets of exposure parameters acquired by the lens module to obtain the fused exposure parameters.
  • a Set the lens exposure parameter of the lens module to the fusion exposure parameter.
  • the lens exposure parameter is set to the fusion exposure parameter, the lens switches to manual exposure mode.
  • the exposure parameters of the lens remain unchanged at different angles;
  • the horizontal field of view of the lens is ⁇ _hor, and set the two adjacent longitude positions of the lens
  • the overlapping angle of view is d ⁇ _hor, and the value of d ⁇ _hor is greater than 0.
  • the angle of rotation is ⁇ _hor-d ⁇ _hor
  • the horizontal angle of view of the panoramic image is set to 360 degrees
  • the number of horizontal rotations of the lens is calculated as 360/( ⁇ _hor-d ⁇ _hor)-1. If the calculated value is a decimal, then round up and add 1 to ensure that images within 360 angles in the horizontal direction are collected by the lens;
  • the vertical field of view of the lens is ⁇ _ver, and the overlapping field of view of the images at two adjacent latitudes is set to d ⁇ _ver. If the value of d ⁇ _ver is greater than 0, the lens will start from the first latitude position.
  • the angle of rotation is ⁇ _ver-d ⁇ _ver, and the vertical field of view of the panoramic image is set to 360 degrees, then the number of vertical rotations of the lens is calculated as 360/( ⁇ _ver-d ⁇ _ver)-1, if calculated If the value is a decimal, round up and add 1 to ensure that the images within the vertical 360 angle range are captured by the lens;
  • the rotation module drives the lens to rotate to different angular positions according to the calculated rotation angle and number of rotations to collect regional images of the current field of view; the image acquisition module sends multiple regional images acquired by the lens module to the mobile device via WIFI.
  • the end position of the lens metering is set as the starting position of the image collected by the lens, and the photometric direction of the lens is opposite to the direction of the image collected by the lens.
  • the steering gear drives the lens to rotate clockwise, and finally stops at the end of photometry as shown in the figure.
  • this position is set as the starting position of the captured image. This position collects the first group of images, and then controls the lens to rotate counterclockwise to the remaining longitude positions to collect images.
  • the attitude angle acquisition module acquires the attitude angles of the lenses at different angles.
  • the attitude angles include pitch angle, roll angle, and heading angle. If the lens is placed obliquely during shooting, the originally vertical wall may appear to be inclined in the panorama shot.
  • the posture correction module corrects the panoramic image to a horizontal position, and the corrected panoramic image is convenient for human eyes to watch and understand when rendering and displaying.
  • the image synthesis module splices and synthesizes the collected images of multiple angular positions according to the correlation characteristics of the overlapping areas of the images taken at adjacent angles to form a panoramic image.
  • Image transmission and image synthesis are processed in parallel. When at least two images with adjacent angles are transmitted to the mobile device, the stitching operation starts, and other images continue to be transmitted.
  • a lens with a normal angle of view If a lens with a normal angle of view is selected, it will be directly spliced and synthesized according to the associated features of the overlapping area;
  • the edge area is the ring area p shown in Figure 5, if the edge is If the image of, participates in the splicing and fusion, dark shadows will appear in the panoramic image, and the definition of the edge pixels of the fisheye image is lower than that of the center image. Therefore, in order to obtain a high-quality panoramic image, try to select the overlap area close to the center of the image when splicing Such as area q.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Exposure Control For Cameras (AREA)

Abstract

本发明公开一种全景图像生成***,包括镜头模组、旋转模块、测光模块和图像采集模块;测光模块用于在自动曝光模式下获取镜头的曝光参数并融合各组曝光参数得到融合曝光参数;图像采集模块用于获取不同角度区域图像,图像采集模块将多张区域图像发送给图像合成模块合成为全景图像。本发明中采用镜头模组作为图像采集终端,并以此为基础搭建整体***,进行多点拍照,从而突破分辨率限制,实现全景图像的拍摄,由于拼接合成为全景图像的多张区域图像为同一镜头捕捉,各区域图像之间一致性较高,同时通过合理设置镜头节点与旋转模块旋转中心的距离,减小图像视差,全景图像合成效果好。

Description

一种全景图像生成***及全景图像生成方法 技术领域
本发明涉及摄像技术领域,尤其是涉及全景图像拍摄和生成的技术领域。
背景技术
全景图通过广角的表现手段以及绘画、相片、视频、三维模型等形式,尽可能多表现出周围的环境。360全景,即通过对专业相机捕捉整个场景的图像信息或者使用建模软件渲染过后的图片,使用软件进行图片拼合,并用专门的播放器进行播放,即将平面照片或者计算机建模图片变为360度全观,用于虚拟现实浏览,把二维的平面图模拟成真实的三维空间,呈现给观赏者。全景图像记录360度空间的信息,全景图像展示时可通过手拖动图像画面进行浏览,360度全记录的特性以及独特的观看体验,使得全景图像在多个领域,如酒店展示、房产展示、汽车展示等得到广泛应用,观看者足不出户即可了解到酒店等的实际情况,全景展示极大地方便了人们的生活。
目前行业内全景图像的拍摄方法主要有两种,一种是将单反架设在云台上,并通过专业摄影师手动转动云台拍摄多个角度的图像,后期在PC端通过专业的拼接软件处理得到全景图像,该种方式拍摄的全景图像画质高,但拍摄过程以及后期拼接过程都较为繁琐,拍摄效率低。另一种方式是通过全景一体机拍摄,拍摄效率高,对于多目的一体机,拍摄画质较高,但价格昂贵,基本都在万元以上,对于双目一体机,拍摄效率高,价格低,但是双目一体机都采用鱼眼镜头,拼接时会使用画质较差、噪点较多的鱼眼图像边缘区域,因此,最终拼接得到的全景图像画质不高。
而随着5G时代的到来,对全景图像内容的需求必将呈现井喷式增长,如果不能尽快的降低设备成本,提高成像质量,会严重影响全景图像的应用和推广速度,错过最佳发展机遇。
发明内容
发明目的:本发明目的在于针对现有技术的不足,提供一种全景图像生成***,采用镜头模组作为拍摄终端,实现全景图像低成本高质量的生成;
本发明的另一目的在于提供一种利用该***进行全景图像生成的方法。
技术方案:本发明所述全景图像生成***,包括镜头模组、旋转模块、测光模块和图像采集模块;
所述镜头模组与旋转模块连接,镜头模组在所述旋转模块的带动下沿该旋转模块的旋转中心旋转,且镜头模组的镜头节点距旋转模块的旋转中心小于或等于3cm;
测光模块分别与所述旋转模块、镜头模组通讯连接,旋转模块按照预设的测光旋转角度和测光旋转次数带动镜头模组转动至多个角度位置,测光模块获取镜头模组对应角度位置的曝光参数,并采用融合算法融合各曝光参数,融合的曝光参数作为镜头模组的固定拍摄参数;
图像采集模块分别与所述旋转模块、镜头模组通讯连接,旋转模块按照预设的图像采集旋转角度和图像采集旋转次数带动镜头模组转动至多个角度位置,图像采集模块获取镜头模组以固定拍摄参数拍摄的当前视场的区域图像,且相邻拍摄角度拍摄的两张区域图像内含有重合区域,图像采集模块将多张区域图像发送给图像合成模块合成为全景图像。
本发明进一步优选地技术方案为,还包括姿态传感器和姿态矫正模块,姿态传感器用于获取镜头模组在不同角度拍摄图像时的姿态角数据,并将该数据发送至姿态矫正模块,姿态矫正模块根据姿态角数据将全景图像矫正至水平位置。
优选地,还包括位置传感器,用于检测镜头模组的旋转角度数据,并将该数据发送至旋转模块,旋转模块比较该旋转角度数据与预定角度数据,若该旋转角度数据小于预定角度,则带动镜头模组转动直到达到预定角度。
优选地,还包括存储模块,所述存储模块用于存储处理程序以及各种传感器的数据。
优选地,所述图像合成模块为外置的处理终端,所述图像采集模块通过有线或无线连接方式将多张区域图像发送至该外置的处理终端,由外置的处理终端进行图像合成。
本发明上述的***进行全景图像生成方法,包括如下步骤:
(1)连接镜头模组与旋转模块,使镜头模组的镜头节点距旋转模块的旋转中心小于或等于3cm;
(2)测光:设定旋转模块在测光模式下的旋转角度和旋转次数参数,旋转模块按 照设定参数转动,带动镜头模组旋转至不同角度位置,镜头模组的镜头在自动曝光模式下获取当前视场的曝光参数;旋转模块带动镜头模组转动至最后一个测光角度后,测光模块将镜头模组获取的多组曝光参数融合得到融合曝光参数,并将镜头模组的镜头调节至手动曝光模式,并锁定在融合曝光参数;
(3)拍摄:设定旋转模块在拍摄模式下的旋转角度和旋转次数参数,保证镜头模组在每个拍摄角度的视场与前一拍摄角度的视场具有重合区域;旋转模块按照设定参数转动,带动镜头模组旋转至不同角度位置,镜头模组的镜头采集当前视场的区域图像;旋转模块带动镜头模组转动至最后一个拍摄角度后,图像采集模块将镜头模组获取的多张区域图像发送给图像合成模块;
(4)全景图像合成:图像合成模块按照相邻角度拍摄图像重合区域的关联特征将采集的多个角度位置的图像进行拼接合成,形成全景图像。
作为优选地,步骤(1)中在连接镜头模组与旋转模块时,镜头模组的镜头节点与旋转模块的旋转中心重合。
优选地,步骤(2)和步骤(3)中所述角度位置包含经度位置和纬度位置,其中,经度位置与镜头的航向角对应,纬度位置与镜头的俯仰角对应。
优选地,步骤(2)测光的具体步骤为:
a、获取镜头的旋转角度和旋转次数,旋转角度包括旋转到不同经度位置的旋转角度和旋转到不同纬度位置的旋转角度,旋转次数包括旋转到不同经度位置的旋转次数和旋转到不同纬度位置的旋转次数;
b、旋转模块根据设置的旋转角度和旋转次数,带动镜头旋转至不同角度位置,不同位置下,测光模块均通过自动曝光的模式获取曝光参数;
c、将多组曝光参数融合得到融合曝光参数。
优选地,所述曝光参数包括曝光时间、增益及光圈。
优选地,步骤(3)拍摄的具体步骤为:
a、设置镜头模组的镜头曝光参数为融合曝光参数,当设置镜头曝光参数为融合曝光参数后,镜头切换至手动曝光模式,采集图像过程中,不同角度下,镜头的曝光参数 不变;
b、计算镜头的旋转角度和旋转次数,包含经度和纬度的旋转角度和旋转次数计算,经度方向上,镜头的水平视场角为θ_hor,设置相邻两个经度位置镜头的重叠视场角为dθ_hor,dθ_hor的取值大于0,则镜头从第一经度位置旋转至第二经度位置时,需转动角度为θ_hor-dθ_hor,设全景图像的水平视场角为φ,φ≤360度,则镜头的水平旋转次数计算为φ/(θ_hor-dθ_hor)-1,若计算值为小数,则取整加1;
纬度方向上,镜头的竖直视场角为θ_ver,设置相邻两个纬度位置图像的重叠视场角为dθ_ver,dθ_ver的取值大于0,则镜头从第一纬度位置旋转至第二纬度位置时,需转动角度为θ_ver-dθ_ver,设置全景图像的竖直视场角为φ,φ≤360度,则镜头的竖直旋转次数计算为φ/(θ_ver-dθ_ver)-1,若计算值为小数,则取整加1;
c、旋转模块根据计算得到的旋转角度和旋转次数,带动镜头旋转至不同角度位置,采集当前视场的区域图像;图像采集模块将镜头模组获取的多张区域图像发送给图像合成模块。
有益效果:本发明中采用镜头模组作为图像采集终端,并以此为基础搭建整体***,进行多点拍照,从而突破分辨率限制,实现全景图像的拍摄,由于拼接合成为全景图像的多张区域图像为同一镜头捕捉,各区域图像之间一致性较高,同时通过合理设置镜头节点与旋转模块旋转中心的距离,减小图像视差,不仅提高了最终全景图像的成像质量,同时降低了对于软件和算法上的要求和成本;本发明相比双目一体机甚至多目一体机的全景图像生成方案,大幅度降低了硬件成本,同时镜头模组和旋转模块的配合使用,使***结构简化,具有体积小、重量轻、便携带的优势,而且由于电路部分相比现有的全景图像生成方案功耗显著降低,在待机时长上优势明显。
附图说明
图1为实施例中测光时经度方向采集图像示意图;
图2为实施例中测光时纬度方向采集图像示意图;
图3为实施例中拍摄时经度方向采集图像示意图;
图4为实施例中拍摄时纬度方向采集图像示意图;
图5为实施例中鱼眼图像不同区域示意图;
图6为实施例中测光与采集图像镜头旋转方向示意图。
具体实施方式
下面对本发明技术方案进行详细说明,但是本发明的保护范围不局限于所述实施例。
实施例:一种全景图像生成***,包括镜头模组、旋转模块、测光模块、图像采集模块、图像合成模块、姿态传感器、姿态矫正模块、位置传感器和存储模块。
镜头模组与旋转模块连接,镜头模组在旋转模块的带动下沿该旋转模块的旋转中心旋转,且镜头模组的镜头节点距旋转模块的旋转中心小于或等于3cm。最优的镜头模组的镜头节点与旋转模块的旋转中心线重合。
测光模块分别与旋转模块、镜头模组通讯连接,旋转模块按照预设的测光旋转角度和测光旋转次数带动镜头模组转动至多个角度位置,测光模块获取镜头模组对应角度位置的曝光参数,并采用融合算法融合各曝光参数,融合的曝光参数作为镜头模组的固定拍摄参数;
图像采集模块分别与旋转模块、镜头模组通讯连接,旋转模块按照预设的图像采集旋转角度和图像采集旋转次数带动镜头模组转动至多个角度位置,图像采集模块获取镜头模组以固定拍摄参数拍摄的当前视场的区域图像,且相邻拍摄角度拍摄的两张区域图像内含有重合区域,图像采集模块将多张区域图像发送给图像合成模块合成为全景图像。
姿态传感器用于获取镜头模组在不同角度拍摄图像时的姿态角数据,并将该数据发送至姿态矫正模块,姿态矫正模块根据姿态角数据将全景图像矫正至水平位置;位置传感器用于检测镜头模组的旋转角度数据,并将该数据发送至旋转模块,旋转模块比较该旋转角度数据与预定角度数据,若该旋转角度数据小于预定角度,则带动镜头模组转动直到达到预定角度;存储模块用于存储处理程序以及各种传感器的数据;图像合成模块 为外置的处理终端,图像采集模块通过有线或无线连接方式将多张区域图像发送至该外置的处理终端,由外置的处理终端进行图像合成。
利用该***进行全景图像生成方法,包括如下步骤:
(1)安装:
将镜头模组与旋转模块固定,旋转模块选用舵机,舵机的输出轴作为定子,舵机主体作为转子,***的其余部分与舵机主体连接,与舵机主体同步转动。设置镜头节点到舵机输出轴中心线的距离小于等于3cm,该距离越小,相邻两张图像之间的视差越小,越利于后期的拼接处理,最优地,设置镜头节点经过舵机输出轴中心线。
(2)测光:
a、获取镜头的旋转角度和旋转次数,旋转角度和旋转次数可以外部自定义输入也可以通过计算获取,具体的计算方式为:
计算镜头的旋转角度和旋转次数,包含经度和纬度的旋转角度和旋转次数计算,经度方向上,如图1所示,镜头的水平视场角为θ_hor,设置相邻两个经度位置镜头测光的重叠视场角为dψ_hor,则镜头从第一经度位置旋转至第二经度位置时,需转动角度为θ_hor-dψ_hor,设全景图像的水平视场角为360度,则镜头的水平旋转次数计算为360/(θ_hor-dψ_hor)-1,若计算值为小数,则取整加1,确保水平方向360角度范围内的图像均被镜头采集到。
测光时,重叠视场角为dψ_hor可以为0,此时镜头的水平旋转次数计算为360/θ_hor-1,若计算值为小数,则取整加1。
纬度方向上,如图2所示,镜头的竖直视场角为θ_ver,设置相邻两个纬度位置图像的重叠视场角为dψ_ver,则镜头从第一纬度位置旋转至第二纬度位置时,需转动角度为θ_ver-dψ_ver,设置全景图像的竖直视场角为360度,则镜头的竖直旋转次数计算为360/(θ_ver-dψ_ver)-1,若计算值为小数,则取整加1,确保竖直方向360角度范围内的图像均被镜头采集到。
测光时,重叠视场角为dψ_ver可以为0,此时镜头的水平旋转次数计算为360/θ_ver-1,若计算值为小数,则取整加1。
b、旋转模块根据计算得到的旋转角度和旋转次数,带动镜头旋转至不同角度位置,不同位置下,镜头均通过自动曝光的模式获取曝光参数,曝光参数包括曝光时间、增益及光圈;
c、旋转模块带动镜头模组转动至最后一个测光角度后,参数融合模块将镜头模组获取的多组曝光参数融合得到融合曝光参数。
(3)拍摄:
a、设置镜头模组的镜头曝光参数为融合曝光参数,当设置镜头曝光参数为融合曝光参数后,镜头切换至手动曝光模式,采集图像过程中,不同角度下,镜头的曝光参数不变;
b、计算镜头的旋转角度和旋转次数,包含经度和纬度的旋转角度和旋转次数计算,经度方向上,如图3所示,镜头的水平视场角为θ_hor,设置相邻两个经度位置镜头的重叠视场角为dθ_hor,dθ_hor的取值大于0,则镜头从第一经度位置旋转至第二经度位置时,需转动角度为θ_hor-dθ_hor,设全景图像的水平视场角为360度,则镜头的水平旋转次数计算为360/(θ_hor-dθ_hor)-1,若计算值为小数,则取整加1,确保水平方向360角度范围内的图像均被镜头采集到;
纬度方向上,如图4所示,镜头的竖直视场角为θ_ver,设置相邻两个纬度位置图像的重叠视场角为dθ_ver,dθ_ver的取值大于0,则镜头从第一纬度位置旋转至第二纬度位置时,需转动角度为θ_ver-dθ_ver,设置全景图像的竖直视场角为360度,则镜头的竖直旋转次数计算为360/(θ_ver-dθ_ver)-1,若计算值为小数,则取整加1,确保竖直方向360角度范围内的图像均被镜头采集到;
c、旋转模块根据计算得到的旋转角度和旋转次数,带动镜头旋转至不同角度位置,采集当前视场的区域图像;图像采集模块将镜头模组获取的多张区域图像通过WIFI发 送给移动设备。
在测光和拍摄时,为了提高采集图像的效率,设置镜头测光结束位置作为镜头采集图像的起始位置,镜头测光方向与镜头采集图像方向相反。如图6所示,假设测光时,舵机带动镜头顺时针旋转,最终停止在如图所示的测光结束位置,采集图像时,将该位置设定为采集图像的起始位置,在该位置采集第一组图像,然后控制镜头逆时针方向旋转至其余经度位置采集图像。
在实际旋转装置旋转时,会存在一定的偏差,为达到理论设计值,需设置位置传感器,检测镜头的旋转角度,若旋转角度未转到理论设计值,则控制旋转装置继续运动,直至最终达到设定位置。
另外,在拍摄图像的同时,姿态角获取模块获取不同角度位置镜头的姿态角,姿态角包括俯仰角、横滚角以及航向角。若拍摄时镜头倾斜放置,则拍摄出的全景图中,本来竖直的墙壁可能呈现倾斜的状态。当在全景播放器中播放全景照片,并改变全景图像的角度进行展示时,由于画面内容不竖直,画面的转动变化使得人眼不易理解。因此根据姿态角,姿态矫正模块将全景图像矫正至水平位置,矫正后的全景图像在渲染展示时便于人眼的观看和理解。
(4)全景图像合成:
图像合成模块按照相邻角度拍摄图像重合区域的关联特征将采集的多个角度位置的图像进行拼接合成,形成全景图像。图像传输与图像合成并行处理,当至少有两张相邻角度的图像传输至移动设备端后即开始拼接操作,其他图像继续进行传输。
若选用普通视场角的镜头,则按照重合区域的关联特征直接进行拼接合成;
若选用视场角大于180度的鱼眼镜头,由于鱼眼镜头成像时,边缘图像的亮度会小于图像中心的亮度而出现暗角,边缘区域如图5所示的圆环区域p,若边缘的图像参与拼接融合,则会在全景图中出现暗影,并且鱼眼图像边缘像素的清晰度低于中心图像,因此为获得高质量的全景图像,拼接时,尽量选取靠近图像中心的重合区域,如区域q。
如上所述,尽管参照特定的优选实施例已经表示和表述了本发明,但其不得解释为对本发明自身的限制。在不脱离所附权利要求定义的本发明的精神和范围前提下,可对其在形式上和细节上作出各种变化。

Claims (11)

  1. 一种全景图像生成***,其特征在于,包括镜头模组、旋转模块、测光模块和图像采集模块;
    所述镜头模组与旋转模块连接,镜头模组在所述旋转模块的带动下沿该旋转模块的旋转中心旋转,且镜头模组的镜头节点距旋转模块的旋转中心小于或等于3cm;
    测光模块分别与所述旋转模块、镜头模组通讯连接,旋转模块按照预设的测光旋转角度和测光旋转次数带动镜头模组转动至多个角度位置,测光模块获取镜头模组对应角度位置的曝光参数,并采用融合算法融合各曝光参数,融合的曝光参数作为镜头模组的固定拍摄参数;
    图像采集模块分别与所述旋转模块、镜头模组通讯连接,旋转模块按照预设的图像采集旋转角度和图像采集旋转次数带动镜头模组转动至多个角度位置,图像采集模块获取镜头模组以固定拍摄参数拍摄的当前视场的区域图像,且相邻拍摄角度拍摄的两张区域图像内含有重合区域,图像采集模块将多张区域图像发送给图像合成模块合成为全景图像。
  2. 根据权利要求1所述的全景图像生成***,其特征在于,还包括姿态传感器和姿态矫正模块,姿态传感器用于获取镜头模组在不同角度拍摄图像时的姿态角数据,并将该数据发送至姿态矫正模块,姿态矫正模块根据姿态角数据将全景图像矫正至水平位置。
  3. 根据权利要求2所述的全景图像生成***,其特征在于,还包括位置传感器,用于检测镜头模组的旋转角度数据,并将该数据发送至旋转模块,旋转模块比较该旋转角度数据与预定角度数据,若该旋转角度数据小于预定角度,则带动镜头模组转动直到达到预定角度。
  4. 根据权利要求3所述的全景图像生成***,其特征在于,还包括存储模块,所述存储模块用于存储处理程序以及各种传感器的数据。
  5. 根据权利要求1所述的全景图像生成***,其特征在于,所述图像合成模块为外置的处理终端,所述图像采集模块通过有线或无线连接方式将多张区域图像发送至该外置的处理终端,由外置的处理终端进行图像合成。
  6. 一种利用权利要求1~5任意一项所述的***进行全景图像生成方法,其特征在 于,包括如下步骤:
    (1)连接镜头模组与旋转模块,使镜头模组的镜头节点距旋转模块的旋转中心小于或等于3cm;
    (2)测光:设定旋转模块在测光模式下的旋转角度和旋转次数参数,旋转模块按照设定参数转动,带动镜头模组旋转至不同角度位置,镜头模组的镜头在自动曝光模式下获取当前视场的曝光参数;旋转模块带动镜头模组转动至最后一个测光角度后,测光模块将镜头模组获取的多组曝光参数融合得到融合曝光参数,并将镜头模组的镜头调节至手动曝光模式,并锁定在融合曝光参数;
    (3)拍摄:设定旋转模块在拍摄模式下的旋转角度和旋转次数参数,保证镜头模组在每个拍摄角度的视场与前一拍摄角度的视场具有重合区域;旋转模块按照设定参数转动,带动镜头模组旋转至不同角度位置,镜头模组的镜头采集当前视场的区域图像;旋转模块带动镜头模组转动至最后一个拍摄角度后,图像采集模块将镜头模组获取的多张区域图像发送给图像合成模块;
    (4)全景图像合成:图像合成模块按照相邻角度拍摄图像重合区域的关联特征将采集的多个角度位置的图像进行拼接合成,形成全景图像。
  7. 根据权利要求6所述的全景图像生成方法,其特征在于,步骤(1)中在连接镜头模组与旋转模块时,镜头模组的镜头节点与旋转模块的旋转中心重合。
  8. 根据权利要求6所述的全景图像生成方法,其特征在于,步骤(2)和步骤(3)中所述角度位置包含经度位置和纬度位置,其中,经度位置与镜头的航向角对应,纬度位置与镜头的俯仰角对应。
  9. 根据权利要求6所述的全景图像生成方法,其特征在于,步骤(2)测光的具体步骤为:
    a、获取镜头的旋转角度和旋转次数,旋转角度包括旋转到不同经度位置的旋转角度和旋转到不同纬度位置的旋转角度,旋转次数包括旋转到不同经度位置的旋转次数和旋转到不同纬度位置的旋转次数;
    b、旋转模块根据设置的旋转角度和旋转次数,带动镜头旋转至不同角度位置,不同位置下,测光模块均通过自动曝光的模式获取曝光参数;
    c、将多组曝光参数融合得到融合曝光参数。
  10. 根据权利要求9所述的全景图像生成方法,其特征在于,所述曝光参数包括曝光时间、增益及光圈。
  11. 根据权利要求6所述的全景图像生成方法,其特征在于,步骤(3)拍摄的具体步骤为:
    a、设置镜头模组的镜头曝光参数为融合曝光参数,当设置镜头曝光参数为融合曝光参数后,镜头切换至手动曝光模式,采集图像过程中,不同角度下,镜头的曝光参数不变;
    b、计算镜头的旋转角度和旋转次数,包含经度和纬度的旋转角度和旋转次数计算,经度方向上,镜头的水平视场角为θ_hor,设置相邻两个经度位置镜头的重叠视场角为dθ_hor,dθ_hor的取值大于0,则镜头从第一经度位置旋转至第二经度位置时,需转动角度为θ_hor-dθ_hor,设全景图像的水平视场角为φ,φ≤360度,则镜头的水平旋转次数计算为φ/(θ_hor-dθ_hor)-1,若计算值为小数,则取整加1;
    纬度方向上,镜头的竖直视场角为θ_ver,设置相邻两个纬度位置图像的重叠视场角为dθ_ver,dθ_ver的取值大于0,则镜头从第一纬度位置旋转至第二纬度位置时,需转动角度为θ_ver-dθ_ver,设置全景图像的竖直视场角为φ,φ≤360度,则镜头的竖直旋转次数计算为φ/(θ_ver-dθ_ver)-1,若计算值为小数,则取整加1;
    c、旋转模块根据计算得到的旋转角度和旋转次数,带动镜头旋转至不同角度位置,采集当前视场的区域图像;图像采集模块将镜头模组获取的多张区域图像发送给图像合成模块。
PCT/CN2020/097400 2019-02-14 2020-06-22 一种全景图像生成***及全景图像生成方法 WO2021012855A1 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201910114591.8A CN109743489A (zh) 2019-02-14 2019-02-14 一种旋转式相机及大视角照片拍摄方法
CN201910672949.9 2019-07-24
CN201910672949.9A CN110248079A (zh) 2019-02-14 2019-07-24 一种全景图像生成***及全景图像生成方法

Publications (1)

Publication Number Publication Date
WO2021012855A1 true WO2021012855A1 (zh) 2021-01-28

Family

ID=66367396

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2020/097404 WO2021012856A1 (zh) 2019-02-14 2020-06-22 一种全景图像的拍摄方法
PCT/CN2020/097363 WO2021012854A1 (zh) 2019-02-14 2020-06-22 一种全景图像的曝光参数获取方法
PCT/CN2020/097400 WO2021012855A1 (zh) 2019-02-14 2020-06-22 一种全景图像生成***及全景图像生成方法

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/097404 WO2021012856A1 (zh) 2019-02-14 2020-06-22 一种全景图像的拍摄方法
PCT/CN2020/097363 WO2021012854A1 (zh) 2019-02-14 2020-06-22 一种全景图像的曝光参数获取方法

Country Status (2)

Country Link
CN (5) CN109743489A (zh)
WO (3) WO2021012856A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110111333B (zh) * 2019-05-29 2024-06-11 武汉华正空间软件技术有限公司 立体图像采集***与方法
CN110568448B (zh) * 2019-07-29 2021-04-27 浙江大学 一种硬岩隧道掘进机隧道底部积渣识别装置及其方法
JP7166470B2 (ja) * 2019-10-24 2022-11-07 三菱電機株式会社 画像生成システム及び画像処理装置、並びにプログラム及び記録媒体
CN111093020B (zh) * 2019-12-31 2022-03-25 联想(北京)有限公司 信息处理方法、摄像头模组和电子设备
CN111432119B (zh) * 2020-03-27 2021-03-23 北京房江湖科技有限公司 图像拍摄方法、装置、计算机可读存储介质及电子设备
CN111784586B (zh) * 2020-05-25 2022-10-18 清华大学 自监督学***矫正方法及***
CN111741223B (zh) * 2020-07-17 2022-04-26 北京搜房科技发展有限公司 一种全景图像拍摄方法、装置和***
CN112261303B (zh) * 2020-11-19 2021-08-20 贝壳技术有限公司 三维彩色全景模型生成装置、方法、存储介质和处理器
CN112637585A (zh) * 2020-12-15 2021-04-09 上海交通建设总承包有限公司 一种单反相机全景拍摄过程中透视错位现象的矫正方法
CN113099111A (zh) * 2021-03-30 2021-07-09 广东拓斯达科技股份有限公司 点胶轨迹生成方法、装置、电子设备和存储介质
CN113744339B (zh) * 2021-11-05 2022-02-08 贝壳技术有限公司 生成全景图像的方法、装置、电子设备和存储介质
CN114554176A (zh) * 2022-01-24 2022-05-27 北京有竹居网络技术有限公司 深度相机
CN114979505A (zh) * 2022-05-27 2022-08-30 众趣(北京)科技有限公司 一种旋转拍摄全景的方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105635551A (zh) * 2014-10-29 2016-06-01 浙江大华技术股份有限公司 一种球型摄像机生成全景图像的方法及球型摄像机
CN107079104A (zh) * 2016-08-24 2017-08-18 深圳市大疆灵眸科技有限公司 广角照片拍摄方法、装置、云台、无人飞行器及机器人
CN109327656A (zh) * 2017-08-01 2019-02-12 上海同繁勘测工程科技有限公司 全景影像的图像采集方法及***
CN109660734A (zh) * 2019-02-14 2019-04-19 南京泓众电子科技有限公司 一种全景照片拍摄方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070081081A1 (en) * 2005-10-07 2007-04-12 Cheng Brett A Automated multi-frame image capture for panorama stitching using motion sensor
CN100517061C (zh) * 2006-01-24 2009-07-22 鸿富锦精密工业(深圳)有限公司 全景影像的产生装置及方法
CN101963751B (zh) * 2010-08-19 2011-11-30 西北工业大学 高分辨率实时全景高动态范围图像获取装置及方法
CN105046643B (zh) * 2015-07-06 2017-12-15 电子科技大学 一种基于亮度自适应配准的图像拼接方法
WO2018035811A1 (zh) * 2016-08-25 2018-03-01 北京小米移动软件有限公司 全景拍摄方法、终端、旋转组件及全景拍摄装置
CN106357966A (zh) * 2016-11-01 2017-01-25 乐视控股(北京)有限公司 全景图像拍摄装置及全景图像获取方法
CN110019886A (zh) * 2017-08-28 2019-07-16 富泰华工业(深圳)有限公司 全景影像生成装置及方法
CN108737738B (zh) * 2018-04-20 2021-03-12 影石创新科技股份有限公司 一种全景相机及其曝光方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105635551A (zh) * 2014-10-29 2016-06-01 浙江大华技术股份有限公司 一种球型摄像机生成全景图像的方法及球型摄像机
CN107079104A (zh) * 2016-08-24 2017-08-18 深圳市大疆灵眸科技有限公司 广角照片拍摄方法、装置、云台、无人飞行器及机器人
CN109327656A (zh) * 2017-08-01 2019-02-12 上海同繁勘测工程科技有限公司 全景影像的图像采集方法及***
CN109660734A (zh) * 2019-02-14 2019-04-19 南京泓众电子科技有限公司 一种全景照片拍摄方法及装置

Also Published As

Publication number Publication date
CN110248079A (zh) 2019-09-17
CN109743489A (zh) 2019-05-10
CN110213475A (zh) 2019-09-06
WO2021012854A1 (zh) 2021-01-28
CN209897158U (zh) 2020-01-03
WO2021012856A1 (zh) 2021-01-28
CN110248078A (zh) 2019-09-17

Similar Documents

Publication Publication Date Title
WO2021012855A1 (zh) 一种全景图像生成***及全景图像生成方法
JP5881827B2 (ja) 画像撮像装置および画像撮像方法
CN104365081B (zh) 图像生成设备以及图像生成方法
CN105594191B (zh) 摄像装置、图像处理装置以及图像处理方法
JP6192940B2 (ja) 撮影機器及び連携撮影方法
WO2017088678A1 (zh) 长曝光全景图像拍摄装置和方法
WO2018133849A1 (zh) 全景图像拍摄方法、全景图像显示方法、全景图像拍摄装置以及全景图像显示装置
CN106296589B (zh) 全景图像的处理方法及装置
JP2002503893A (ja) 仮想現実カメラ
WO2018133848A1 (zh) 全景图像拍摄装置、显示装置、拍摄方法以及显示方法
JP2009232471A (ja) 撮像装置
WO2017032336A1 (en) System and method for capturing and displaying images
JP6151809B2 (ja) 画像撮像装置および画像撮像方法
JP2005328497A (ja) 撮像装置及び撮像方法
KR20150091064A (ko) 단일의 카메라를 이용하여 3d 이미지를 캡쳐하는 방법 및 시스템
JP2007264592A (ja) 3次元イメージ自動生成装置及び方法
CN205792939U (zh) 用于全景摄像机的双鱼眼摄像装置
US20090059018A1 (en) Navigation assisted mosaic photography
CN109660734A (zh) 一种全景照片拍摄方法及装置
CN108205236B (zh) 全景摄像机及其镜头
US20220230275A1 (en) Imaging system, image processing apparatus, imaging device, and recording medium
JP7306089B2 (ja) 画像処理システム、撮像システム、画像処理装置、撮像装置およびプログラム
TW201926251A (zh) 全景攝像機、圖像處理系統及圖像處理方法
CN111541850A (zh) 一种全景电子云台矫正方法及装置
KR20060091438A (ko) 파노라마 전용 디지털 카메라

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20844582

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/03/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20844582

Country of ref document: EP

Kind code of ref document: A1