WO2021008606A1 - 一种基于扩展奈波尔-泽尼克模式优化相位恢复的波前误差检测装置及检测方法 - Google Patents

一种基于扩展奈波尔-泽尼克模式优化相位恢复的波前误差检测装置及检测方法 Download PDF

Info

Publication number
WO2021008606A1
WO2021008606A1 PCT/CN2020/102651 CN2020102651W WO2021008606A1 WO 2021008606 A1 WO2021008606 A1 WO 2021008606A1 CN 2020102651 W CN2020102651 W CN 2020102651W WO 2021008606 A1 WO2021008606 A1 WO 2021008606A1
Authority
WO
WIPO (PCT)
Prior art keywords
zernike
light intensity
intensity map
lens
wavefront error
Prior art date
Application number
PCT/CN2020/102651
Other languages
English (en)
French (fr)
Inventor
白剑
赵磊
卢斌杰
黄潇
周骧东
侯晶
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to US17/292,982 priority Critical patent/US11709111B2/en
Publication of WO2021008606A1 publication Critical patent/WO2021008606A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0271Testing optical properties by measuring geometrical properties or aberrations by using interferometric methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02075Reduction or prevention of errors; Testing; Calibration of particular errors
    • G01B9/02078Caused by ambiguity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0207Details of measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0221Testing optical properties by determining the optical axis or position of lenses

Definitions

  • the invention belongs to the technical field of optical measurement, and specifically relates to a wavefront error detection device and a detection method based on an expanded Naibol-Zernike mode optimized phase recovery.
  • the inertial confinement nuclear fusion high-power laser device has become an important evaluation indicator of a country's comprehensive national strength.
  • the research and control of laser wavefront distortion is an important part of the development process of laser inertial confinement nuclear fusion drive system.
  • the laser wavefront distortion directly affects the performance of the beam and the uniformity of the system to bombard the target pellet. Therefore, the study of wavefront distortion detection has important application value in inertial confinement nuclear fusion.
  • the inertial confinement nuclear fusion drive system contains thousands of large-aperture optical lenses. The surface quality of these large-aperture lenses directly affects the focusing performance of the drive system.
  • the wavefront emitted by the large-aperture optical lens is no longer an ideal wavefront, and there is a wavefront error, which is based on its frequency characteristics Divided into low-frequency, intermediate-frequency and high-frequency errors, the low-frequency error mainly affects the shape of the focal spot and the uniformity of the bombardment of the target pellet.
  • the intermediate frequency error will reduce the convergent power and cause the filamentary damage of the optical element. A larger angle will not affect the fusion system, but it will lower the damage threshold of the film. Therefore, the detection and control of the low-frequency error in the large-aperture optical lens becomes the key to improving the performance of the strong laser converging laser.
  • Traditional wavefront error detection methods such as coordinate measurement method, knife-edge instrument detection method, Hartmann wavefront sensor method, interference detection method.
  • the coordinate detection method can achieve in-situ detection, the resolution is low, and the detection accuracy is usually about 1 ⁇ m; the knife-edge detection method has high sensitivity, but it cannot achieve quantitative detection.
  • the Hartmann wavefront sensor method is easy to use, but its accuracy and resolution need to be improved.
  • Interferometric detection method has high intensity and good measurement repeatability. It has become the mainstream wavefront detection method at present. However, interferometric measurement has higher environmental requirements and is more sensitive to vibration and air disturbance. When measuring large-aperture optical lenses, the resolution is not high. Insufficient measuring range has become an urgent problem to be solved.
  • phase recovery methods Since the successful measurement of Hubble telescope aberrations by phase recovery technology in the 1990s, phase recovery methods have been extensively studied.
  • the traditional phase recovery method is to use the diffraction spot collected at the focal plane or defocus position to reverse the phase distribution through the Fourier transform method.
  • the experimental device is relatively simple and has strong anti-vibration ability, which can realize in-situ detection.
  • sub-aperture stitching method for wavefront measurement.
  • the sub-aperture stitching method is complicated to operate and the position error of the sub-aperture will introduce the wavefront measurement error.
  • the purpose of the present invention is to provide a wavefront error detection device and detection method based on the extended Naipol-Zernike mode optimized phase recovery in order to solve the problem of the traditional iterative phase recovery method in measuring large-aperture optical
  • the detection error caused by the sub-aperture stitching method the large amount of calculation caused by the high number of samples, and the difficulty in accurately determining the defocus position.
  • the present invention provides the following solutions:
  • a wavefront error detection device based on the extended Naipol-Zernike mode to optimize the phase recovery.
  • the device includes a point light source, a half mirror, a lens to be measured, a plane mirror, and an image sensor.
  • the inclination of the mirror is located behind the point light source, the lens to be tested and the plane mirror are arranged behind the point light source in sequence, and the point light source, the half mirror, the lens to be tested, the plane
  • the mirror has a common optical axis, the front focus of the lens to be tested is located at the point light source, the image sensor is located on the optical path of the reflected light of the half mirror and at the defocus position of the lens to be tested, so The image sensor also shares the optical axis with the reflected light of the half mirror.
  • the point light source is a spherical interferometer that emits spherical waves.
  • the image sensor is a CCD camera.
  • a wavefront error detection method based on the optimized phase recovery of the extended Naibol-Zernike mode is implemented based on the above detection device.
  • the method includes the following steps:
  • the point light source emits a spherical wave, and the spherical wave is collimated by the lens to be tested, reflected by the flat mirror, reflected by the half mirror, and then reflected by the image
  • the sensor collects the defocused light intensity map containing the wavefront error of the lens to be tested;
  • S2 The phase recovery method based on the optimization of the extended Naibel-Zernike mode is adopted to perform phase recovery on the defocused light intensity map collected by S1 to obtain the wavefront error of the tested lens.
  • the wavefront error detection device based on the optimized phase recovery of the extended Naibol-Zernike mode of the present invention only needs to collect a defocused light intensity map to realize the one-time full-aperture measurement of the large-aperture optical lens.
  • the detection device and the detection method of the present invention do not need to accurately measure the defocus position, and the precise determination of the defocus position can be achieved through an iterative optimization algorithm.
  • the present invention can use a part of the overexposed image to achieve accurate measurement of the wavefront error.
  • Figure 1 is a schematic diagram of the wavefront error detection device of the present invention.
  • Figure 2 is a schematic diagram of the flow of optimized phase recovery wavefront error detection based on the extended Naibel-Zernike mode
  • the point light source 1 the half mirror 2, the lens to be tested 3, the plane mirror 4, and the image sensor 5.
  • the purpose of the present invention is to provide a wavefront error detection device and detection method based on the extended Naipol-Zernike mode optimized phase recovery in order to solve the problem of the traditional iterative phase recovery method in measuring large-aperture optical
  • the detection error caused by the sub-aperture stitching method the large amount of calculation caused by the high number of samples, and the difficulty in accurately determining the defocus position.
  • a wavefront error detection device based on the extended Naipol-Zernike mode optimized phase recovery which includes a point light source 1, a half mirror 2, a lens to be tested 3, a plane mirror 4,
  • the half mirror 2 is located behind the point light source 1 at an inclination of 45 degrees
  • the test lens 3 and the plane mirror 4 are sequentially arranged behind the point light source 1
  • the point light source 1, the half mirror 2, the lens to be tested 3, and the plane mirror 4 share a common optical axis
  • the front focus of the lens to be tested 3 is located at the point light source 1
  • the image sensor 5 is located at the half
  • the reflected light of the transflective mirror 2 is on the optical path and is located at the defocus position of the lens 3 to be tested, and the image sensor 5 is also on the same optical axis with the reflected light of the transflective mirror 2.
  • the half mirror 2 is used to split light to realize simultaneous measurement of the interferometer and the phase recovery method; the plane mirror 4 reflects the e
  • the point light source 1 is a spherical interferometer that emits a spherical wave with a wavelength of 632.8 nm.
  • the image sensor 5 is a CCD camera, which is used to collect light spot images.
  • a wavefront error detection method based on the optimized phase recovery of the extended Naibol-Zernike mode is implemented based on the detection device of claim 1, and the method includes the following steps (as shown in FIG. 2):
  • the point light source 1 emits a spherical wave, and the spherical wave is collimated by the lens 3 to be measured, reflected by the flat mirror 4, and reflected by the half mirror 2
  • the image sensor 5 collects a defocused light intensity map containing the wavefront error of the lens 3 to be tested;
  • S2 The phase recovery method based on the optimization of the extended Naibel-Zernike mode is adopted to perform phase recovery on the defocused light intensity map collected by S1 to obtain the wavefront error of the tested lens.
  • (x (m,n) ,y (m,n) ) represents the image plane coordinates of the pixel (m,n), f is the defocus amount,
  • i is an imaginary number
  • Re represents the polar coordinate angle value of the image plane coordinates (x (m,n) ,y (m,n) )
  • Re represents the real part
  • Im represents the imaginary part
  • N and M are the radial order of the Zernike polynomial And angular frequency

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Geometry (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

一种基于扩展奈波尔-泽尼克模式优化相位恢复的波前误差检测装置,包括依次设置的点光源(1)、半透半反镜(2)、待测透镜(3)、平面反射镜(4)、图像传感器(5),将待测元件的波前误差使用泽尼克多项式表征,并基于扩展奈波尔-泽尼克衍射理论求解泽尼克多项式系数,能够实现大口径光学元件的一次性全口径波前误差测量,并且能够使用部分过曝图像实现波前误差的精准复原,同时克服了图像传感器(5)采集图像时,由于有限的动态范围带来的不过曝与高信噪比之间的矛盾。检测实验装置简单,对实验环境要求不高;检测方法快速简单,相比于传统迭代相位恢复方法的计算量小,检测精度高,抗噪性能强。

Description

一种基于扩展奈波尔-泽尼克模式优化相位恢复的波前误差检测装置及检测方法
本申请要求于2019年07月18日提交中国专利局、申请号为201910650327.6、发明名称为“一种基于扩展奈波尔-泽尼克模式优化相位恢复的波前误差检测装置及检测方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于光学测量技术领域,具体涉及一种基于扩展奈波尔-泽尼克模式优化相位恢复的波前误差检测装置及检测方法。
背景技术
随着各国将惯性约束核聚变固体激光驱动器作为其战略发展目标,惯性约束核聚变高功率激光装置已成为一个国家综合国力的重要评价指标。激光波前畸变的研究与控制是激光惯性约束核聚变驱动***研制过程很重要的一项内容。激光波前畸变直接影响光束的性能,影响***对轰击靶丸的均匀性,因此研究波前畸变检测在惯性约束核聚变中具有重要的应用价值。惯性约束核聚变驱动***中包含几千块大口径光学透镜,这些大口径透镜的面形质量的好坏直接影响驱动***的聚焦性能。由于大口径光学透镜本身的表面缺陷和加工工具研磨过程中留下的加工误差,由大口径光学透镜出射的波前不再是理想波前,且存在波前误差,波前误差根据其频率特性分为低频、中频和高频误差,其中低频误差主要影响焦斑形状,影响轰击靶丸的均匀性,中频误差会降低可会聚功率会造成光学元件丝状破坏,高频误差由于其造成的散射角度较大不会对聚变***造成影响,但是会降低薄膜的损伤阈值。因此对大口径光学透镜中低频误差进行检测控制成为提高强激光会聚激光性能的关键。
传统的波前误差检测方法如坐标测量法、刀口仪检测法、哈特曼波前传感器法、干涉检测法。坐标检测法虽可以实现在位检测,但分辨率较低,检测精度通常在1μm左右;刀口仪检测法虽灵敏度高,但却无法实现定 量检测。哈特曼波前传感器法使用方便,但其精度和分辨率有待提高。干涉检测法,强度高,测量重复性好,成为目前主流的波前检测方法,但是干涉测量对环境要求较高,对振动和空气扰动比较敏感,在测量大口径光学透镜时,分辨率不高和量程不足成为亟待需要解决的问题。自上世纪九十年代相位恢复技术成功对哈勃望远镜像差的测量之后,相位恢复方法被大量研究。传统相位恢复方法是通过傅里叶变换的方法使用在焦面或者离焦位置采集的衍射光斑反推相位分布的方法。其实验装置较为简单,且抗振动能力强,可实现在位检测。但在对大口径光学透镜测量时,由于受分辨率和采样数的限制,需要使用子孔径拼接的方法进行波前测量。子孔径拼接的方法操作复杂且子孔径的位置误差会引入波前测量误差。
发明内容
本发明的目的在于针对现有技术的不足,提供一种基于扩展奈波尔-泽尼克模式优化相位恢复的波前误差检测装置及检测方法,以解决传统的迭代相位恢复方法在测量大口径光学透镜波前误差时由于使用子孔径拼接方法造成的检测误差、采样数高造成计算量大的问题、以及离焦位置精确确定难度大等问题。
为实现所述目的,本发明提供了如下方案:
一种基于扩展奈波尔-泽尼克模式优化相位恢复的波前误差检测装置,该装置包括点光源、半透半反镜、待测透镜、平面反射镜、图像传感器,所述的半透半反镜倾斜度位于所述的点光源之后,所述的待测透镜、平面反射镜依次设置在所述的点光源之后,且所述的点光源、半透半反镜、待测透镜、平面反射镜共光轴,所述的待测透镜的前焦点位于点光源处,所述的图像传感器位于半透半反镜的反射光的光路上,且位于待测透镜的离焦位置处,所述的图像传感器还与所述的半透半反镜反射光共光轴。
进一步地,所述点光源为发出球面波的球面干涉仪。
进一步地,所述的图像传感器为CCD相机。
一种基于扩展奈波尔-泽尼克模式优化相位恢复的波前误差检测方法,该方法基于上述的检测装置来实现,该方法包括以下步骤:
S1:所述的点光源发出球面波,所述的球面波经所述的待测透镜准 直、所述的平面反射镜反射、所述的半透半反镜反射后,由所述的图像传感器采集含有待测透镜波前误差的离焦光强图;
S2:采用基于扩展奈波尔-泽尼克模式优化的相位恢复方法,对S1采集到的离焦光强图进行相位恢复,获得被测透镜的波前误差。
进一步地,所述的S2具体步骤如下:
S2.1:将所述的S1获得的离焦光强图I m'作为扩展奈波尔-泽尼克模式后续迭代的初始的离焦光强图,设置所述的图像传感器(5)初始的离焦量f 0,设置去除交叉项迭代总数K及初始的去除交叉项迭代次数k=1、离焦位置迭代总数L及初始的离焦位置迭代次数l=1、待测透镜(3)的口径以及泽尼克多项式的项数;
S2.2:根据离焦量,计算泽尼克多项式系数求解方程组的模式梯度矩阵的每个元素,从而得到泽尼克多项式系数求解方程组的模式梯度矩阵V;
S2.3:移除初始的离焦光强图I m'的过曝像素点,获得过曝像素点移除后的离焦光强图,并移除模式梯度矩阵V中过曝像素点对应行的元素,获得过曝像素点移除后的模式梯度矩阵;
S2.4:根据过曝像素点移除后的离焦光强图和过曝像素点移除后的模式梯度矩阵,采用最小二乘法求得泽尼克多项式的泽尼克系数矩阵A;
S2.5:根据泽尼克系数矩阵A,计算扩展奈波尔与泽尼克衍射模式的交叉项I c
S2.6:从初始的离焦光强图I m'移除交叉项I c,获得交叉项移除后的离焦光强图;
S2.7:判断去除交叉项迭代次数k是否大于K,若否,则令k=k+1,将交叉项移除后的离焦光强图作为初始的离焦光强图,并返回S2.3;若是,则进行下一步;
S2.8:判断离焦位置迭代次数l是否大于L,若否,利用公式
Figure PCTCN2020102651-appb-000001
计算离焦量的修正值Δf,并用离焦量当前值减去修正值作为下一步迭代的离焦量,将S1获得的离焦光强图作为初始的离焦光强图,令离焦位置迭代次数l=l+1,令去除交叉项迭代次数k=1,返回S2.2;其 中,β power是泽尼克多项式第四项的系数,λ表示入射光波长,N表示离焦光强图的横向的像素数量;若是,则使用得到的泽尼克系数矩阵拟合待测透镜(3)的波前相位误差,并根据泽尼克系数矩阵,利用公式
Figure PCTCN2020102651-appb-000002
计算图像传感器(5)所处的真实离焦位置U;其中,
Figure PCTCN2020102651-appb-000003
表示泽尼克系数矩中的泽尼克系数,
Figure PCTCN2020102651-appb-000004
表示泽尼克多项式,i为虚数,(m,n)为离焦光强图的像素,m=1,2,…,M,n=1,2,…,N,M表示离焦光强图的纵向的像素数量。
本发明的有益效果如下:
本发明的基于扩展奈波尔-泽尼克模式优化相位恢复的波前误差检测装置只需要采集一幅离焦光强图,即可实现大口径光学透镜一次性全口径测量。采用本发明的检测装置及检测方法可以不需要精确测量离焦位置,通过迭代优化算法即可实现离焦位置的精准确定,本发明可以使用部分过曝图像实现波前误差的精确测量。
说明书附图
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明的波前误差检测装置的示意图;
图2是基于扩展奈波尔-泽尼克模式优化相位恢复波前误差检测的流程示意图;
图中,点光源1、半透半反镜2、待测透镜3、平面反射镜4、图像传感器5。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的 范围。
本发明的目的在于针对现有技术的不足,提供一种基于扩展奈波尔-泽尼克模式优化相位恢复的波前误差检测装置及检测方法,以解决传统的迭代相位恢复方法在测量大口径光学透镜波前误差时由于使用子孔径拼接方法造成的检测误差、采样数高造成计算量大的问题、以及离焦位置精确确定难度大等问题。
为使本发明的所述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
如图1所示,一种基于扩展奈波尔-泽尼克模式优化相位恢复的波前误差检测装置,其包括点光源1、半透半反镜2、待测透镜3、平面反射镜4、图像传感器5,所述的半透半反镜2倾斜45度位于所述的点光源1之后,所述的待测透镜3、平面反射镜4依次设置在所述的点光源1之后,且所述的点光源1、半透半反镜2、待测透镜3、平面反射镜4共光轴,所述的待测透镜3的前焦点位于点光源1处,所述的图像传感器5位于半透半反镜2的反射光的光路上,且位于待测透镜3的离焦位置处,所述的图像传感器5还与所述的半透半反镜2反射光共光轴。该检测装置中,半透半反镜2用来分光实现干涉仪与相位恢复方法的同时测量;平面反射镜4将发射过来的光波反射实现光波的原路返回。
作为其中一种实施方式,点光源1为发出波长为632.8nm球面波的球面干涉仪。
作为其中一种实施方式,所述的图像传感器5为CCD相机,用于采集光斑图像。
一种基于扩展奈波尔-泽尼克模式优化相位恢复的波前误差检测方法,该方法基于权利要求1所述的检测装置来实现,该方法包括以下步骤(如图2所示):
S1:所述的点光源1发出球面波,所述的球面波经所述的待测透镜3准直、所述的平面反射镜4反射、所述的半透半反镜2反射后,由所述的图像传感器5采集含有待测透镜3波前误差的离焦光强图;
S2:采用基于扩展奈波尔-泽尼克模式优化的相位恢复方法,对S1采集到的离焦光强图进行相位恢复,获得被测透镜的波前误差。
S2.1:将所述的S1获得的I作为扩展奈波尔-泽尼克模式后续迭代的离焦光强图的初值,设置所述的图像传感器5初始离焦位置z0,设置去除交叉项迭代总数K及其初始迭代次数k=1、离焦位置迭代总数L及其初始迭代次数l=1、待测透镜3的口径、扩展奈波尔-泽尼克衍射模式的交叉项的初始值以及泽尼克多项式的项数;
S2.2:计算泽尼克多项式系数求解方程组的模式梯度矩阵的每个元素,从而得到泽尼克多项式系数求解方程组的模式梯度矩阵V;
Figure PCTCN2020102651-appb-000005
其中,
Figure PCTCN2020102651-appb-000006
Figure PCTCN2020102651-appb-000007
Figure PCTCN2020102651-appb-000008
Figure PCTCN2020102651-appb-000009
其中,(x (m,n),y (m,n))表示像素(m,n)的像面坐标,f为离焦量,
Figure PCTCN2020102651-appb-000010
为扩展奈波尔-泽尼克理论的内核,
Figure PCTCN2020102651-appb-000011
均为中间变量,i为虚数,
Figure PCTCN2020102651-appb-000012
为像素(m,n)的像面角频率,
Figure PCTCN2020102651-appb-000013
表示像面坐标(x (m,n),y (m,n))的极坐标角度值,Re表示取实部,Im表示取虚部,N和M分别为泽尼克多项式的径向级次和角频率;
S2.3:移除初始的离焦光强图I m'的过曝像素点得到I (k),并移除模式梯度矩阵V nm对应行的元素;
S2.4:根据过曝像素点移除后的离焦光强图和过曝像素点移除后的模式梯度矩阵,采用最小二乘法求得泽尼克多项式的系数矩阵A;
I (k)=V×A
S2.5:根据泽尼克系数矩阵A,计算扩展奈波尔与泽尼克衍射模式的交叉项I c
Figure PCTCN2020102651-appb-000014
其中,
Figure PCTCN2020102651-appb-000015
为泽尼克系数矩阵A的元素;
S2.6:从初始的离焦光强图I m'移除交叉项I c
I=I m'-I c
S2.7:判断迭代次数k是否大于K,若否,则令k=k+1,将交叉项移除后的离焦光强图作为初始的离焦光强图,返回S2.3;若是,则进行下一步;
S2.8:判断迭代次数l是否大于L,若否,利用公式
Figure PCTCN2020102651-appb-000016
计算离焦量的修正值Δf计算离焦量的修正值,并用离焦量当前值减去修正值作为下一步迭代的离焦量,将S1获得的离焦光强图作为初始的离焦光强图,令离焦位置迭代次数l=l+1,令去除交叉项迭代次数k=1,返回S2.2;其中,β power是泽尼克多项式第四项的系数,λ表示入射光波长,N表示离焦光强图的横向的像素数量;若是,则使用得到的泽尼克系数矩阵拟合待测透镜(3)的波前相位误差,并根据泽尼克系数矩阵,利用公式
Figure PCTCN2020102651-appb-000017
计算图像传感器(5)所处的真实离焦位置U;其中,
Figure PCTCN2020102651-appb-000018
表示泽尼克系数矩中的泽尼克系数,
Figure PCTCN2020102651-appb-000019
表示泽尼克多项式,i为虚数。
以上结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

Claims (5)

  1. 一种基于扩展奈波尔-泽尼克模式优化相位恢复的波前误差检测装置,其特征在于,该装置包括点光源(1)、半透半反镜(2)、待测透镜(3)、平面反射镜(4)、图像传感器(5),所述的半透半反镜(2)倾斜45度位于所述的点光源(1)之后,所述的待测透镜(3)、平面反射镜(4)依次设置在所述的点光源(1)之后,且所述的点光源(1)、半透半反镜(2)、待测透镜(3)、平面反射镜(4)共光轴,所述的待测透镜(3)的前焦点位于点光源(1)处,所述的图像传感器(5)位于半透半反镜(2)的反射光的光路上,且位于待测透镜(3)的离焦位置处,所述的图像传感器(5)还与所述的半透半反镜(2)反射光共光轴。
  2. 根据权利要求1所述的基于扩展奈波尔-泽尼克模式优化相位恢复的波前误差检测装置,其特征在于,所述点光源(1)为发出球面波的球面干涉仪。
  3. 根据权利要求1所述的基于扩展奈波尔-泽尼克模式优化相位恢复波前误差检测装置,其特征在于,所述的图像传感器(5)为CCD相机。
  4. 一种基于扩展奈波尔-泽尼克模式优化相位恢复的波前误差检测方法,其特征在于,该方法基于权利要求1所述的检测装置来实现,该方法包括以下步骤:
    S1:所述的点光源(1)发出球面波,所述的球面波经所述的待测透镜(3)准直、所述的平面反射镜(4)反射、所述的半透半反镜(2)反射后,由所述的图像传感器(5)采集含有待测透镜(3)波前误差的离焦光强图;
    S2:采用基于扩展奈波尔-泽尼克模式优化的相位恢复方法,对S1采集到的离焦光强图进行相位恢复,获得被测透镜的波前误差。
  5. 根据权利要求4所述的基于扩展奈波尔-泽尼克模式优化相位恢复的波前误差检测方法,其特征在于,所述的S2具体步骤如下:
    S2.1:将所述的S1获得的离焦光强图I m'作为扩展奈波尔-泽尼克模式后续迭代的初始的离焦光强图,设置所述的图像传感器(5)初始的离焦量f 0,设置去除交叉项迭代总数K及初始的去除交叉项迭代次数k=1、离焦位置迭代总数L及初始的离焦位置迭代次数l=1、待测透镜(3)的口径以及泽尼克多项式的项数;
    S2.2:根据离焦量,计算泽尼克多项式系数求解方程组的模式梯度矩阵的每个元素,从而得到泽尼克多项式系数求解方程组的模式梯度矩阵V;
    S2.3:移除初始的离焦光强图I m'的过曝像素点,获得过曝像素点移除后的离焦光强图,并移除模式梯度矩阵V中过曝像素点对应行的元素,获得过曝像素点移除后的模式梯度矩阵;
    S2.4:根据过曝像素点移除后的离焦光强图和过曝像素点移除后的模式梯度矩阵,采用最小二乘法求得泽尼克多项式的泽尼克系数矩阵A;
    S2.5:根据泽尼克系数矩阵A,计算扩展奈波尔与泽尼克衍射模式的交叉项I c
    S2.6:从初始的离焦光强图I m'移除交叉项I c,获得交叉项移除后的离焦光强图;
    S2.7:判断去除交叉项迭代次数k是否大于K,若否,则令k=k+1,将交叉项移除后的离焦光强图作为初始的离焦光强图,并返回S2.3;若是,则进行下一步;
    S2.8:判断离焦位置迭代次数l是否大于L,若否,利用公式
    Figure PCTCN2020102651-appb-100001
    计算离焦量的修正值Δf,并用离焦量当前值减去修正值作为下一步迭代的离焦量,将S1获得的离焦光强图作为初始的离焦光强图,令离焦位置迭代次数l=l+1,令去除交叉项迭代次数k=1,返回S2.2;其中,β power是泽尼克多项式第四项的系数,λ表示入射光波长,N表示离焦光强图的横向的像素数量;若是,则使用得到的泽尼克系数矩阵拟合待测透镜(3)的波前相位误差,并根据泽尼克系数矩阵,利用公式
    Figure PCTCN2020102651-appb-100002
    计算图像传感器(5)所处的真实离焦位置U;其中,
    Figure PCTCN2020102651-appb-100003
    表示泽尼克系数矩中的泽尼克系数,
    Figure PCTCN2020102651-appb-100004
    表示泽尼克多项式,i为虚数,(m,n)为离焦光强图的像素,m=1,2,…,M,n=1,2,…,N,M表示离焦光强图的纵向的像素数量。
PCT/CN2020/102651 2019-07-18 2020-07-17 一种基于扩展奈波尔-泽尼克模式优化相位恢复的波前误差检测装置及检测方法 WO2021008606A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/292,982 US11709111B2 (en) 2019-07-18 2020-07-17 Device and method for detecting wavefront error by modal-based optimization phase retrieval using extended Nijboer-Zernike theory

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910650327.6 2019-07-18
CN201910650327.6A CN110375964B (zh) 2019-07-18 2019-07-18 一种基于扩展奈波尔-泽尼克模式优化相位恢复的波前误差检测装置及检测方法

Publications (1)

Publication Number Publication Date
WO2021008606A1 true WO2021008606A1 (zh) 2021-01-21

Family

ID=68253989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102651 WO2021008606A1 (zh) 2019-07-18 2020-07-17 一种基于扩展奈波尔-泽尼克模式优化相位恢复的波前误差检测装置及检测方法

Country Status (3)

Country Link
US (1) US11709111B2 (zh)
CN (1) CN110375964B (zh)
WO (1) WO2021008606A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110375964B (zh) 2019-07-18 2021-01-01 浙江大学 一种基于扩展奈波尔-泽尼克模式优化相位恢复的波前误差检测装置及检测方法
CN110702383B (zh) * 2019-10-10 2020-11-20 浙江大学 一种基于扩展旋转对称结构光照明的波前重建装置及方法
CN110793465B (zh) * 2019-11-07 2021-07-20 中国计量大学 一种微透射元件多面形大动态范围同步测量方法
CN111595559B (zh) * 2020-06-22 2021-05-25 中国科学院长春光学精密机械与物理研究所 一种非连续镜面望远镜的一阶波前误差测量***
CN112629678B (zh) * 2020-12-01 2021-10-15 浙江大学 一种通用形状无衍射迭代计算的快速相位恢复方法
CN112629677B (zh) * 2020-12-01 2022-04-19 浙江大学 基于模式复原的快速大动态范围波前检测装置及检测方法
CN112903121B (zh) * 2021-03-15 2022-04-19 浙江大学 一种基于交叉迭代自动对焦的波前检测方法
CN113740037A (zh) * 2021-09-01 2021-12-03 苏州科技大学 一种大口径望远镜波前误差的检测方法
CN115131233B (zh) * 2022-06-13 2024-06-25 浙江大学 一种用于计算成像的强度背景光抑制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002206990A (ja) * 2001-01-09 2002-07-26 Canon Inc 波面収差測定方法及び投影露光装置
US6911637B1 (en) * 2002-05-23 2005-06-28 The United States Of America As Represented By The Secretary Of The Army Wavefront phase sensors using optically or electrically controlled phase spatial light modulators
CN102252763A (zh) * 2011-04-15 2011-11-23 中国科学院长春光学精密机械与物理研究所 光学成像***光学波前的单焦面高精度测试方法
CN103033260A (zh) * 2012-12-14 2013-04-10 中国科学院国家天文台南京天文光学技术研究所 基于波面分割及离焦的相位恢复波前分析仪及其分析方法
CN108225187A (zh) * 2018-01-29 2018-06-29 清华大学深圳研究生院 一种基于波前传感的非球面透镜误差检测方法
CN207850322U (zh) * 2018-01-08 2018-09-11 浙江大学 大口径光学元件的中频误差检测***及实验室
CN110375964A (zh) * 2019-07-18 2019-10-25 浙江大学 一种基于扩展奈波尔-泽尼克模式优化相位恢复的波前误差检测装置及检测方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58205834A (ja) * 1982-05-25 1983-11-30 Canon Inc 収差測定方法
US5120128A (en) * 1991-01-14 1992-06-09 Kaman Aerospace Corporation Apparatus for sensing wavefront aberration
US5448355A (en) * 1993-03-31 1995-09-05 Asahi Kogaku Kogyo Kabushiki Kaisha System for measuring tilt of image plane of optical system using diffracted light
JP2001074605A (ja) * 1999-08-31 2001-03-23 Nikon Corp 波面収差測定装置
US20060126019A1 (en) * 2004-12-10 2006-06-15 Junzhong Liang Methods and systems for wavefront analysis
CN100559145C (zh) * 2005-10-20 2009-11-11 中国科学院光电技术研究所 大口径非球面光学元件的中高频差检测方法
CN100573065C (zh) * 2006-08-07 2009-12-23 中国科学院光电技术研究所 一种基于线性相位反演的波前测量方法
JP5540614B2 (ja) * 2009-09-08 2014-07-02 コニカミノルタ株式会社 オートコリメータを用いた光学素子の偏心調整方法及び偏心測定方法、並びにレンズ加工方法
JP5483993B2 (ja) * 2009-10-20 2014-05-07 キヤノン株式会社 干渉計
CN102252832B (zh) * 2011-06-24 2012-10-03 北京理工大学 大口径准直***波前质量检测装置和方法
US9182289B2 (en) * 2011-10-14 2015-11-10 Canon Kabushiki Kaisha Apparatus and method for estimating wavefront parameters
CN102589854B (zh) * 2012-01-16 2014-01-08 北京理工大学 反射式差动共焦透镜焦距测量方法
CN105588519A (zh) * 2015-12-21 2016-05-18 中国科学院长春光学精密机械与物理研究所 利用相位差异相位恢复技术检测大口径望远镜面形的方法
CN105806479B (zh) * 2016-04-11 2018-05-29 中国科学院西安光学精密机械研究所 激光远场焦斑高精度动态诊断装置及诊断方法
CN107121092A (zh) * 2017-05-24 2017-09-01 西安交通大学 一种激光干涉检测轴承滚珠面型误差的***及方法
DE202018102149U1 (de) * 2018-04-18 2019-07-19 MÖLLER-WEDEL OPTICAL GmbH Optische Messeinrichtung
CN109059802B (zh) * 2018-08-03 2019-08-13 南京理工大学 基于Tip\Tilt镜的动态角度调制干涉***的误差标定方法
CN109990983B (zh) * 2019-04-19 2020-12-11 北京理工大学 双边错位差动共焦超长焦距测量方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002206990A (ja) * 2001-01-09 2002-07-26 Canon Inc 波面収差測定方法及び投影露光装置
US6911637B1 (en) * 2002-05-23 2005-06-28 The United States Of America As Represented By The Secretary Of The Army Wavefront phase sensors using optically or electrically controlled phase spatial light modulators
CN102252763A (zh) * 2011-04-15 2011-11-23 中国科学院长春光学精密机械与物理研究所 光学成像***光学波前的单焦面高精度测试方法
CN103033260A (zh) * 2012-12-14 2013-04-10 中国科学院国家天文台南京天文光学技术研究所 基于波面分割及离焦的相位恢复波前分析仪及其分析方法
CN207850322U (zh) * 2018-01-08 2018-09-11 浙江大学 大口径光学元件的中频误差检测***及实验室
CN108225187A (zh) * 2018-01-29 2018-06-29 清华大学深圳研究生院 一种基于波前传感的非球面透镜误差检测方法
CN110375964A (zh) * 2019-07-18 2019-10-25 浙江大学 一种基于扩展奈波尔-泽尼克模式优化相位恢复的波前误差检测装置及检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHAO, JING ET AL.: "Testing optical system with high NA based on phase retrieval", JOURNAL OF APPLIED OPTICS, vol. 34, no. 1, 31 January 2013 (2013-01-31), XP055773933 *

Also Published As

Publication number Publication date
CN110375964A (zh) 2019-10-25
US11709111B2 (en) 2023-07-25
US20220003633A1 (en) 2022-01-06
CN110375964B (zh) 2021-01-01

Similar Documents

Publication Publication Date Title
WO2021008606A1 (zh) 一种基于扩展奈波尔-泽尼克模式优化相位恢复的波前误差检测装置及检测方法
CN110160751B (zh) 一种基于相位恢复的宽频段波前误差检测装置及检测方法
CN103335819B (zh) 一种用于高精度角锥棱镜光学检测的装置与方法
JP6561110B2 (ja) 基板上の欠陥の場所を特定する方法
JP5009915B2 (ja) 投影露光装置の結像面中の強度分布を決定する方法
CN110346340A (zh) 基于波前传感器的机器学习快速像差测量***与方法
JP2012511728A (ja) 二重グレーチング横方向シアリング波面センサ
CN114216659B (zh) 一种大口径长焦距光轴平行度的测量***及其测量方法
JP3613906B2 (ja) 波面収差測定装置
JP5595463B2 (ja) 波面光学測定装置
CN105066910A (zh) 电光晶体z轴偏离角测量装置及测量方法
JP7204428B2 (ja) 偏心計測方法、レンズ製造方法、および偏心計測装置
JP4340625B2 (ja) 光学検査方法および装置
CN113820104A (zh) 一种弯月形透镜干涉检验光路的调整方法
WO2021068594A1 (zh) 一种基于扩展旋转对称结构光照明的波前重建装置及方法
CN112097681A (zh) 基于散斑场相位恢复的复杂光学曲面面形误差检测方法
CN112902875A (zh) 一种非球面反射镜曲率半径检测装置及方法
JP2016211933A (ja) 面形状計測装置、面形状計測方法、及び加工装置、並びにそれによって加工された光学素子
CN113472433B (zh) 一种适用于激光通信的信标光中心坐标计算误差评价方法
JP6823334B2 (ja) 高na集光素子の出口波面計測方法及び出口波面計測システム
CN109883343B (zh) 双边错位差动共焦镜组轴向间隙测量方法
JP2003270091A (ja) 光学系の波面収差測定方法及び波面収差測定装置
JP2017009405A (ja) 形状計測方法、形状計測装置および形状計測プログラム
Lee et al. Increasing the throughput of phase-shifting diffraction interferometer for quantitative characterization of ICF ablator capsule surfaces
CN116577931B (zh) 基于仪器传递函数的光学元件拼接检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20840708

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20840708

Country of ref document: EP

Kind code of ref document: A1