WO2021006280A1 - 無方向性電磁鋼板とその製造方法およびモータコア - Google Patents

無方向性電磁鋼板とその製造方法およびモータコア Download PDF

Info

Publication number
WO2021006280A1
WO2021006280A1 PCT/JP2020/026599 JP2020026599W WO2021006280A1 WO 2021006280 A1 WO2021006280 A1 WO 2021006280A1 JP 2020026599 W JP2020026599 W JP 2020026599W WO 2021006280 A1 WO2021006280 A1 WO 2021006280A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
grain size
group
steel sheet
Prior art date
Application number
PCT/JP2020/026599
Other languages
English (en)
French (fr)
Inventor
田中 孝明
智幸 大久保
善彰 財前
尾田 善彦
幸乃 宮本
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP20837616.0A priority Critical patent/EP3998358A4/en
Priority to KR1020217038820A priority patent/KR102635010B1/ko
Priority to CN202080047739.1A priority patent/CN114040989A/zh
Priority to US17/619,838 priority patent/US20220359108A1/en
Priority to JP2020559002A priority patent/JP6825758B1/ja
Priority to MX2022000467A priority patent/MX2022000467A/es
Publication of WO2021006280A1 publication Critical patent/WO2021006280A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/30Stress-relieving
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/02Cores, Yokes, or armatures made from sheets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material

Definitions

  • the present invention relates to a non-oriented electrical steel sheet, a manufacturing method thereof, and a motor core composed of the above-mentioned steel sheet.
  • the motor core is divided into a stator core and a rotor core, but since the rotor core of the HEV drive motor has a large outer diameter, a large centrifugal force acts. Further, the rotor core has a very narrow portion (1 to 2 mm) called a rotor core bridge portion due to its structure, and this portion is in a particularly high stress state during driving of the motor. Further, since the motor repeatedly rotates and stops, a large repetitive stress due to centrifugal force acts on the rotor core, so that the electromagnetic steel plate used for the rotor core needs to have excellent fatigue characteristics.
  • the electrical steel sheet used for the stator core has a high magnetic flux density and low iron loss in order to achieve miniaturization and high output of the motor. That is, the characteristics of the electrical steel sheet used for the motor core are ideally high fatigue characteristics for the rotor core and high magnetic flux density and low iron loss for the stator core.
  • Patent Document 1 states that high-strength non-oriented electrical steel sheets are manufactured and punched from the steel sheets to form a rotor core material.
  • a technique for manufacturing a high-strength rotor core and a low iron loss stator core from the same material by collecting and laminating the stator core material, assembling the rotor core and the stator core, and then performing strain relief annealing only on the stator core. ing.
  • Patent Document 1 can increase the yield stress by using a high-strength non-oriented electrical steel sheet, but it is the most important characteristic, fatigue strength.
  • the iron loss after strain removal annealing is greatly improved, but the magnetic flux density may be significantly reduced.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is a rotor core material that requires high strength and high fatigue characteristics, and a stator core material that requires better magnetic characteristics.
  • an object of the present invention is a rotor core material that requires high strength and high fatigue characteristics, and a stator core material that requires better magnetic characteristics.
  • the inventors diligently studied the composition of steel components, especially Zn, in order to solve the above problems. As a result, high fatigue strength is achieved by adding an appropriate amount of Zn and further performing cold-rolled sheet annealing under appropriate conditions to control the grain size and the non-uniformity of the grain size. It has been found that a non-oriented electrical steel sheet having a small decrease in magnetic flux density in the subsequent heat treatment can be obtained, and the present invention has been developed.
  • C 0.005 mass% or less
  • Si 2.0 mass% or more and 5.0 mass% or less
  • Mn 0.05 mass% or more and 5.0 mass% or less
  • P 0.1 mass % Or less
  • S 0.01 mass% or less
  • Al 3.0 mass% or less
  • N 0.0050 mass% or less
  • Zn 0.0003 mass% or more and 0.0050 mass% or less
  • the above-mentioned non-oriented electrical steel sheet of the present invention further comprises the following groups A to E; -Group A; Cr: 0.1 mass% or more and 5.0 mass% or less-Group B: Ca: 0.001 mass% or more and 0.01 mass% or less, Mg: 0.001 mass% or more and 0.01 mass% or less and REM: 0.
  • the non-directional electromagnetic steel sheet of the present invention has C: 0.005 mass% or less, Si: 2.0 mass% or more and 5.0 mass% or less, Mn: 0.05 mass% or more and 5.0 mass% or less, P: 0.1 mass% or less, S: 0.01 mass% or less, Al: 3.0 mass% or less, N: 0.0050 mass% or less and Zn: 0.0003 mass% or more and 0.0050 mass% or less, and the balance is It is characterized by having a component composition consisting of Fe and unavoidable impurities, having an average crystal grain size of 120 ⁇ m or more, and having a crystal grain size of 1.5 times or more the average crystal grain size of 5% or more in area ratio. It is a non-directional electromagnetic steel plate.
  • C 0.005 mass% or less
  • Si 2.0 mass% or more and 5.0 mass% or less
  • Mn 0.05 mass% or more and 5.0 mass% or less
  • P 0.1 mass% or less
  • S 0.01 mass% or less
  • Al 3.0 mass% or less
  • N 0.0050 mass% or less
  • Zn 0.0003 mass% or more and 0.0050 mass% or less
  • the balance is composed of Fe and unavoidable impurities.
  • a steel material having a composition is hot-rolled to obtain a hot-rolled plate, pickled, cold-rolled to obtain a cold-rolled plate, and then subjected to cold-rolled plate annealing.
  • the steel material used in the method for producing the non-oriented electrical steel sheet of the present invention has the following group A to E in addition to the above component composition.
  • the method for producing a non-oriented electrical steel sheet of the present invention is the non-oriented electrical steel sheet after annealing of a cold-rolled sheet according to the above [5] or [6], and further, between 750 and 900 ° C. subjected to heat treatment for heating and held at the annealing temperature T 2, the average crystal grain size of 120 ⁇ m or more, to the crystal grains having a particle size of 1.5 times or more the average crystal grain size in the area of 5% or more It is a feature.
  • the present invention is composed of the rotor core composed of the non-oriented electrical steel sheet according to the above [1] or [2] and the non-oriented electrical steel sheet according to the above [3] or [4]. It is a motor core composed of a stator core.
  • a rotor core material having high strength and high fatigue strength and a stator core material having excellent magnetic characteristics can be obtained from the same non-oriented electrical steel sheet, so that a high-performance motor core can be obtained with good material yield and material yield. , It becomes possible to manufacture at low cost.
  • the component composition of the non-oriented electrical steel sheet of the present invention and the reason for its limitation will be described.
  • the component composition of the steel material used for manufacturing the non-oriented electrical steel sheet and the product plate are the same.
  • C 0.005 mass% or less
  • C is a harmful element that forms carbides during use of the motor to cause magnetic aging and deteriorate the iron loss characteristics.
  • it is necessary to make C contained in the material 0.005 mass% or less.
  • it is 0.004 mass% or less.
  • the lower limit of C is not particularly specified, it is preferably about 0.0001 mass% from the viewpoint of reducing the decarburization cost in the steelmaking process.
  • Si 2.0 mass% or more and 5.0 mass% or less
  • Si is an essential element for increasing the intrinsic resistance of steel and reducing iron loss, and is also an element for increasing the strength of steel by solid solution strengthening.
  • Si is added in an amount of 2.0 mass% or more.
  • the upper limit is set to 5.0 mass%.
  • the range is preferably 2.5 mass% or more and 5.0 mass% or less, and more preferably 3.0 mass% or more and 5.0 mass% or less.
  • Mn 0.05 mass% or more and 5.0 mass% or less
  • Mn is an element useful for increasing the intrinsic resistance and strength of steel.
  • Mn is added in an amount of 0.05 mass% or more.
  • the addition of Mn exceeding 5.0 mass% may promote the precipitation of MnC and deteriorate the magnetic characteristics, so the upper limit is set to 5.0 mass%. It is preferably in the range of 0.1 mass% or more and 3.0 mass% or less.
  • P 0.1 mass% or less
  • P is a useful element used for adjusting the strength (hardness) of steel.
  • the upper limit is set to 0.1 mass%.
  • the lower limit is not particularly specified, an excessive reduction of P causes an increase in manufacturing cost, and thus is set to about 0.001 mass%. It is preferably in the range of 0.005 mass% or more and 0.08 mass% or less.
  • S 0.01 mass% or less S is a harmful element that forms and precipitates fine sulfides and adversely affects the iron loss characteristics. In particular, if it exceeds 0.01 mass%, the adverse effect becomes remarkable, so the limit is limited to 0.01 mass% or less. It is preferably 0.005 mass% or less.
  • Al 3.0 mass% or less Al is a useful element that increases the natural resistance of steel and reduces iron loss, like Si. Further, in the case of compound addition with Zn, by combining the addition of Zn, which will be described later, with the annealing or heat treatment of the cold-rolled plate under appropriate conditions, the non-uniformity of the crystal grain size after the annealing of the cold-rolled plate due to the addition of Zn or after the heat treatment It has the effect of reinforcing the effect of changing. As a result, the fatigue strength of the steel sheet after annealing the cold-rolled sheet is increased, and the decrease in magnetic flux density due to the subsequent heat treatment is suppressed.
  • the upper limit is set to 3.0 mass%. It is preferably 2.0 mass% or less.
  • N 0.0050 mass% or less N is a harmful element that forms and precipitates fine nitrides and adversely affects the iron loss characteristics. In particular, if it exceeds 0.0050 mass%, the adverse effect becomes remarkable, so the limit is limited to 0.0050 mass% or less. It is preferably 0.0030 mass% or less.
  • Zn 0.0003 mass% or more and 0.0050 mass% or less
  • Zn is an important element in the present invention, and after annealing the cold-rolled plate by adding an appropriate amount and further performing cold-rolled plate annealing or heat treatment under appropriate conditions. Alternatively, it has the effect of changing the non-uniformity of the crystal grain size after heat treatment. As a result, the fatigue strength is increased, and the decrease in magnetic flux density when the grains are grown by heat treatment is suppressed. In order to obtain such an effect, it is necessary to add Zn in 0.0003 mass% or more. It is preferably 0.0005 mass% or more, and more preferably 0.0008 mass% or more.
  • the upper limit is set to 0.0050 mass%. It is preferably 0.0030 mass% or less.
  • the balance other than the above components is Fe and unavoidable impurities.
  • the following components can be further contained in addition to the above component composition.
  • Cr 0.1 mass% or more and 5.0 mass% or less Cr has the effect of increasing the intrinsic resistance of steel and reducing iron loss. In order to obtain such an effect, it is preferable that Cr is contained in an amount of 0.1 mass% or more. On the other hand, when it exceeds 5.0 mass%, the magnetic flux density is remarkably lowered due to the decrease in the saturation magnetic flux density. Therefore, when Cr is added, it is preferable to add it in the range of 0.1 mass% or more and 5.0 mass% or less.
  • any one or two or more Ca , Mg and REM are both elements that fix S as a sulfide and contribute to the reduction of iron loss.
  • the upper limit is preferably 0.01 mass%.
  • any one or two of Sn: 0.001 mass% or more and 0.2 mass% or less and Sb: 0.001 mass% or more and 0.2 mass% or less Sn and Sb increase the magnetic flux density through improvement of texture. It is an effective element to enhance. In order to obtain such an effect, it is preferable to add 0.001 mass% or more of each. On the other hand, if it exceeds 0.2 mass%, the above effect is saturated and only the raw material cost is increased. Therefore, the upper limit is preferably 0.2 mass%.
  • Ni 0.01 mass% or more and 3.0 mass% or less Ni is an element effective for increasing the magnetic flux density. In order to obtain the above effect, it is preferable to add 0.01 mass% or more. However, if it exceeds 3.0 mass%, the above effect is saturated and only the raw material cost is increased. Therefore, the upper limit is preferably 3.0 mass%.
  • Cu 0.05 mass% or more and 0.5 mass% or less
  • Nb 0.003 mass% or more and 0.05 mass% or less
  • Ti 0.003 mass% or more and 0.05 mass% or less
  • V 0.010 mass% or more and 0.20 mass%
  • Any one or more of the following Cu, Nb, Ti and V are precipitated alone in the steel or in the form of carbides, nitrides or carbonitrides, and the strength and fatigue of the steel sheet. It is an element that contributes to the improvement of strength. In order to obtain such an effect, it is preferable to add Cu at 0.05 mass% or more, Nb and Ti at 0.003 mass% or more, and V at 0.010 mass% or more.
  • Cu exceeds 0.5 mass%, Nb and Ti each exceed 0.05 mass%, and V exceeds 0.20 mass%, grain growth during heat treatment may be inhibited and iron loss may deteriorate.
  • the upper limit is preferably Cu: 0.5 mass%, Nb and Ti: 0.05 mass% and V: 0.20 mass%.
  • Cu is 0.02 mass% or less, Nb is 0.0005 mass% or less, Ti is 0.0010 mass% or less, and V is 0.0010 mass%. It is preferable to limit to the following.
  • the non-oriented electrical steel sheet after annealing the cold-rolled sheet according to [1] or [2] will be described.
  • Average crystal grain size 80 ⁇ m or less
  • the fatigue strength of the steel sheet after annealing the cold-rolled sheet is improved by making the average crystal grain size finer.
  • the average crystal grain size is 80 ⁇ m or less, it is possible to secure a fatigue strength of 450 MPa or more, which is required as a material for a rotor core of an HEV / EV motor. Therefore, the non-oriented electrical steel sheet used for the rotor core of the present invention limits the average crystal grain size to 80 ⁇ m or less.
  • Crystal grains having a grain size 1.5 times or more the average crystal grain size: 10% or more in area ratio The inventors have controlled the non-uniformity of the crystal grain size after annealing the cold-rolled plate to achieve fatigue strength. It has been newly found that it is an excellent non-directional electromagnetic steel sheet and can suppress a decrease in magnetic flux density when grains are grown by heat treatment. Specifically, by setting the area ratio of crystal grains having a particle size of 1.5 times or more the average crystal grain size to 10% or more, the fatigue strength required for the rotor material of the HEV / EV motor: It is possible to satisfy 450 MPa or more and suppress a decrease in magnetic flux density due to heat treatment.
  • the reason why such an effect can be obtained by controlling the non-uniformity of the crystal grain size is not fully clarified, but the orientation relationship between adjacent crystal grains changes, and as a result, near the grain boundary. It is presumed that the stress concentration is relaxed, the fatigue strength is improved, and the deterioration of the texture due to the subsequent heat treatment is suppressed.
  • the preferable area ratio of the crystal grains having a particle size of 1.5 times or more the average crystal grain size is 15% or more.
  • the upper limit is not particularly specified, but according to the examination by the inventors, it is usually 30% or less.
  • Crystal grains with an aspect ratio of 0.3 or less 20% or less in area ratio
  • stress concentration during stress loading is promoted, so fatigue strength Decreases.
  • crystal grains having an aspect ratio of 0.3 or less are 20% in area ratio. It needs to be: It is preferably 10% or less.
  • the heat-treated steel sheet of the present invention has an average crystal grain size of 120 ⁇ m or more in order to achieve the iron loss characteristics required for the stator core. It is preferably 150 ⁇ m or more. In addition, since excessive coarsening may cause deterioration of iron loss, the upper limit is preferably about 500 ⁇ m.
  • Crystal grain having a grain size 1.5 times or more the average crystal grain size: 5% or more in area ratio As described above, by controlling the non-uniformity of the crystal grain size, non-directional with excellent fatigue strength. It has been found that it can be an electromagnetic steel sheet and can suppress a decrease in magnetic flux density when grains are grown by heat treatment. Specifically, in the non-oriented electrical steel sheet of the present invention, the area ratio of crystal grains having a crystal grain size of 1.5 times or more the average crystal grain size is 5 in the steel sheet structure after grain growth by heat treatment. If it is% or more, the decrease in magnetic flux density after heat treatment can be minimized. It is preferably 10% or more. The upper limit is not specified, but according to the examination by the inventors, it is usually 25% or less.
  • the average crystal grain size and the area ratio of the crystal grains having a particle size 1.5 times or more the average crystal grain size and the area ratio of the crystal grains having an aspect ratio of 0.3 or less are both parallel to the surface of the steel plate. Moreover, it is a value obtained by measuring the surface (observation surface) at the position of 1/4 of the plate thickness by electron backscatter diffraction (EBSD) and analyzing by the method described in the examples.
  • EBSD electron backscatter diffraction
  • the non-oriented electrical steel sheet according to [1] or [2] of the present invention manufactures a steel material having the component composition according to the above [1] or [2], and the steel material is hot-rolled.
  • the hot-rolled plate can be produced by subjecting the hot-rolled plate to hot-rolled plate annealing as necessary, then pickling, cold-rolling, and cold-rolling plate annealing.
  • a specific description will be given.
  • the steel used for producing the non-oriented electrical steel sheet according to [1] or [2] of the present invention may be adjusted to the component composition described in [1] or [2] above.
  • the method for melting the steel can employ a commonly known refining process using a converter, an electric furnace, a vacuum degassing device, or the like, and is not particularly limited. Further, as a method for producing a steel material, a continuous casting method is preferable, but an ingot-bulk rolling method, a thin slab continuous casting method, or the like may be used.
  • Hot rolling Hot rolling is a step of obtaining a hot-rolled plate having a predetermined plate thickness by hot-rolling a steel material having the above-mentioned composition.
  • the conditions for this hot rolling are not particularly specified, but for example, the reheating temperature of the steel material is 1000 ° C. or higher and 1200 ° C. or lower, the finish rolling end temperature of hot rolling is 800 ° C. or higher and 950 ° C. or lower, and after the hot rolling is completed.
  • the conditions under which the average cooling rate of the coil is 20 ° C./s or more and 100 ° C./s or less and the coil winding temperature is 400 ° C. or more and 700 ° C. or less can be exemplified.
  • Hot-rolled sheet annealing is a step of homogenizing the steel sheet structure by heating the hot-rolled sheet and keeping it at a high temperature.
  • the annealing temperature and holding time of the hot-rolled plate annealing are not particularly specified, but are preferably in the range of 800 ° C. or higher and 1100 ° C. or lower ⁇ 3s or higher and 600s or lower. This hot-rolled plate annealing is not essential and may be omitted.
  • Pickling Pickling is a step of descaling the steel sheet after annealing the hot-rolled plate or the hot-rolled plate when the hot-rolled plate annealing is omitted.
  • the pickling conditions need only be descaled to the extent that cold rolling can be performed, and for example, ordinary pickling conditions using hydrochloric acid, sulfuric acid, or the like can be applied. This pickling may be carried out continuously after annealing on the hot-rolled plate annealing line, or may be carried out on another line.
  • Cold rolling is a process in which a hot-rolled plate or a hot-rolled annealed plate that has been pickled is cold-rolled to obtain the plate thickness (final plate thickness) of the product plate.
  • This cold rolling is not particularly limited as long as the final plate thickness can be obtained. Further, the cold rolling is not limited to one time, and cold rolling may be performed two or more times with intermediate annealing sandwiched if necessary.
  • the intermediate annealing condition in this case may be any ordinary condition, and is not particularly limited.
  • Cold-rolled plate annealing is a step of annealing a cold-rolled plate whose final plate thickness is obtained by cold rolling, and is one of the important steps in the present invention.
  • the cold-rolled sheet annealing a more average heating rate V 1 of 10 ° C. / s between 700 ° C. from 500 ° C. of the heating process, heating to the annealing temperature T 1 of in between 700 to 850 ° C., if necessary It is necessary to carry out under the conditions of soaking and cooling.
  • V 1 10 ° C. / s between 700 ° C. from 500 ° C. of the heating process
  • T 1 heating to the annealing temperature T 1 of in between 700 to 850 ° C.
  • the frequency of recrystallized nuclei is low, so recrystallization nucleation occurred early.
  • the region where the crystal grains have grown is the main component, and the structure tends to be dominated by relatively coarse crystal grains. Therefore, the area ratio of crystal grains having a particle size of 1.5 times or more the average crystal grain size becomes small.
  • the average heating rate between 500 ° C. and 700 ° C. is high, the recrystallization nuclei are generated frequently and the grains grow at different rates, so that the grains are coarser than the average size crystal grains.
  • the proportion of crystal grains having a different particle size increases.
  • the steel sheet having a compatible chemical composition in the present invention the average heating rate V 1 of the inter-700 ° C. from 500 ° C. With 10 ° C. / s or more, the average crystal grain 1.5 times the particle diameter Crystal grains having a diameter can be increased to 10% or more in terms of area ratio. It is preferably 50 ° C./s or higher, more preferably 100 ° C./s or higher, and even more preferably 200 ° C./s or higher.
  • Annealing temperature T 1 700 ° C or higher and 850 ° C or lower If the annealing temperature T 1 is lower than 700 ° C, the growth of recrystallized grains is delayed, so that the recrystallized grains that exceed the grain boundaries of the crystal grains elongated by cold rolling Growth is suppressed, and it tends to become elongated recrystallized grains. In addition, a part of the steel sheet may not be recrystallized, and the crystal grains elongated by cold rolling may remain as they are. As a result, it becomes impossible to reduce the area ratio of crystal grains having an aspect ratio of 0.3 or less to 20% or less. Therefore, in the present invention, the annealing temperature T 1 is set to 700 ° C. or higher.
  • the annealing temperature T 1 is set to 850 ° C. or lower. It is preferably 825 ° C. or lower.
  • the steel sheet after annealing the cold-rolled sheet is generally made into a product by applying an insulating coating on the surface, but the method and the type of coating are not particularly limited, and it is appropriate depending on the required coating characteristics. , A common insulating coating may be applied.
  • Annealing temperature T 2 750 ° C. or higher and 900 ° C. or lower If the annealing temperature T 2 of the heat treatment is less than 750 ° C., the grain growth becomes insufficient and the average crystal grain size cannot be 120 ⁇ m or higher. Therefore, the annealing temperature T 2 is set to 750 ° C. or higher. It is preferably 775 ° C. or higher. On the other hand, when the annealing temperature T 2 exceeds 900 ° C., the crystal grains grow excessively, resulting in a homogeneous structure. Therefore, the area ratio of the crystal grains having a particle size 1.5 times or more the average crystal grain size is obtained. It becomes impossible to make it 5% or more.
  • the annealing temperature T 2 is set to 900 ° C. or lower. It is preferably 875 ° C or lower.
  • the time for holding at the annealing temperature is not particularly specified, but is preferably in the range of 10 min or more and 500 min or less.
  • the atmosphere at the time of heat treatment is not particularly specified, but a non-oxidizing or reducing atmosphere is preferable.
  • the motor core of the present invention was produced by collecting a rotor core material and a stator core material from the non-oriented electrical steel sheet according to [1] or [2], laminating the rotor core material and laminating and heat-treating the stator core material. It is composed of a stator core made of the non-oriented electrical steel sheet according to [3] or [4].
  • the method for manufacturing the rotor core and the stator core may be according to a conventional method except that the rotor core material and the stator core material are collected from the same material steel sheet, and there is no particular limitation.
  • stator core material may be collected from the steel sheet and laminated to form a stator core.
  • the rotor core material and the stator core material are simultaneously collected from the material steel sheet according to the above [1] or [2], and then only the stator core material is heat-treated under the same conditions as above, and then laminated and assembled into the stator core. May be good.
  • Steels having various component compositions shown in Table 1 are melted by a commonly known method and continuously cast to obtain a slab (steel material) having a wall thickness of 230 mm, and then the slab is hot-rolled to form a plate.
  • a hot-rolled plate having a thickness of 2.0 mm was used.
  • the hot-rolled plate was annealed and pickled by a commonly known method, and then cold-rolled to obtain cold-rolled plates having various plate thicknesses shown in Table 2.
  • the cold-rolled plate was annealed under the conditions shown in Table 2, and then an insulating film was applied by a commonly known method to obtain a cold-rolled annealed plate.
  • the cold-rolled annealed plate was subjected to a heat treatment for holding 1 hr at the annealing temperature shown in Table 2 to obtain a heat-treated plate.
  • the cold-rolled annealed plate and the heat-treated plate thus obtained were subjected to the following evaluation tests, and the results are also shown in Table 2.
  • Table 2 The results are also shown in Table 2.
  • ⁇ Observation of steel sheet structure> A test piece for microstructure observation is taken from each of the cold-rolled annealed plate and the heat-treated plate, and the observation surface is parallel to the rolled surface (ND surface) of the test piece and corresponds to 1/4 of the plate thickness. In addition, it was thickened by chemical polishing and mirrored. Electron backscatter diffraction (EBSD) measurement was performed on this observation surface.
  • EBSD Electron backscatter diffraction
  • the Area Average of the Grain Size was calculated and used as the average crystal grain size. Further, the ratio (area ratio) of the crystal grains having a crystal grain size 1.5 times or more the average crystal grain size was determined. Further, the ratio (area ratio) of crystal grains having an aspect ratio (Grain Shape Aspect ratio) of 0.3 or less defined by OIM Analysis 8 was determined.
  • the iron loss W 10/400 after the heat treatment is 8.8 W / kg or less for the 0.10 mm plate thickness material, 10.3 W / kg or less for the 0.20 mm material, and 11.5 W / kg for the 0.25 mm plate thickness material. It was evaluated that the iron loss characteristics were excellent when the thickness of the material was 14.7 W / kg or less and the thickness of the material was 0.50 mm and the thickness was 21.7 W / kg or less.
  • the slabs (steel materials) of steel codes A, M and N having different Al content and Zn content shown in Table 1 are hot-rolled under the same conditions as in Example 1 above to obtain a plate thickness of 2.0 mm.
  • the hot-rolled plate was annealed, pickled, and then cold-rolled to obtain a cold-rolled plate having a plate thickness of 0.25 mm.
  • the cold-rolled plate was annealed with the cold-rolled plate under the conditions shown in Table 3, and then coated with an insulating film to obtain a cold-rolled annealed plate.
  • the average rate of temperature rise between 500 and 700 ° C. during the heating process in the cold rolled sheet annealing was variously changed.
  • the cold-rolled annealed plate was subjected to a heat treatment for holding 1 hr at the annealing temperature shown in Table 3 to obtain a heat-treated plate.
  • the cold-rolled annealed sheet and the heat-treated sheet thus obtained were subjected to a structure observation, fatigue property and magnetic property evaluation test of the steel sheet in the same manner as in Example 1, and the results are shown in Table 3 together. It is shown in FIG. From these results, when the cold-rolled sheet was annealed under appropriate conditions, the deterioration of the magnetic flux density due to the heat treatment was suppressed by adding Zn alone, and the deterioration of the magnetic flux density due to the heat treatment was further caused by the combined addition of Zn + Al. It can be seen that it is more suppressed.
  • the technique of the present invention can be applied not only to HEV / EV motors, but also to high-efficiency air conditioner motors, spindle motors of machine tools, high-speed motors such as railway motors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Child & Adolescent Psychology (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

mass%で、C:0.005%以下、Si:2.0~5.0%、Mn:0.05~5.0%、Al:3.0%以下およびZn:0.0003~0.0050%を含有する鋼素材を、熱間圧延し、冷間圧延し、冷延板焼鈍する際、上記冷延板焼鈍の加熱過程における500~700℃間の平均昇温速度を10℃/s以上として700~850℃間の焼鈍温度まで加熱することで、平均結晶粒径が80μm以下、平均結晶粒径の1.5倍以上の結晶粒が面積率で10%以上、アスペクト比が0.3以下の結晶粒が面積率で20%以下の無方向性電磁鋼板を得る。

Description

無方向性電磁鋼板とその製造方法およびモータコア
 本発明は、無方向性電磁鋼板とその製造方法および上記鋼板から構成されるモータコアに関するものである。
 近年の電気機器に対する省エネルギー化への要求の高まりにともない、回転機の鉄心に使用される無方向性電磁鋼板に対して、より優れた磁気特性が要求されるようになってきている。また、最近では、HEV(ハイブリッド車)やEV(電気自動車)の駆動モータ等における小型化・高出力化への要求を達成するため、駆動周波数を高めてモータの回転数を高めることが行われている。
 モータコアは、ステータコアとロータコアに分けられるが、HEV駆動モータのロータコアは外径が大きいことから、大きな遠心力が働く。また、ロータコアは、構造上ロータコアブリッジ部と呼ばれる非常に狭い部分(1~2mm)が存在し、該部分はモータの駆動中には特に高応力状態となる。さらに、モータは、回転と停止を繰り返すため、ロータコアには遠心力による大きな繰り返し応力が働くことから、ロータコアに用いられる電磁鋼板は、優れた疲労特性を有する必要がある。
 一方、ステータコアに用いられる電磁鋼板は、モータの小型化・高出力化を達成するため、高磁束密度・低鉄損であることが望ましい。すわなち、モータコアに使用される電磁鋼板の特性としては、ロータコア用には高疲労特性、ステータコア用には高磁束密度・低鉄損であることが理想的である。
 このように、同じモータコアに使用される電磁鋼板であっても、ロータコアとステータコアでは要求される特性が大きく異なる。しかし、モータコアを製造する観点からは、材料歩留りや生産性を高めるため、同一の素材鋼板からロータコア材とステータコア材を同時に採取し、その後、それぞれの鋼板を積層してロータコアまたはステータコアに組み立てることができるのが望ましい。
 モータコア用の高強度で低鉄損の無方向性電磁鋼板を製造する技術として、例えば、特許文献1には、高強度の無方向性電磁鋼板を製造し、該鋼板から打抜加工でロータコア材とステータコア材を採取し、積層して、ロータコアとステータコアを組み立てた後、ステータコアのみに歪取焼鈍を施すことで、高強度のロータコアと低鉄損のステータコアを同一素材から製造する技術が開示されている。
特開2008-50686号公報
 しかしながら、発明者らの検討によると、上記特許文献1に開示の技術は、高強度の無方向性電磁鋼板を使用することで降伏応力を高めることができるものの、最も重要な特性である疲労強度が必ずしも向上するとは限らないことや、歪取焼鈍後の鉄損は大きく改善するが、磁束密度が大幅に低下することがあるといった問題がある。
 本発明は、従来技術が抱える上記の問題点に鑑みてなされたものであり、その目的は、高強度・高疲労特性が要求されるロータコア材と、より優れた磁気特性が要求されるステータコア材とを、同一素材から採取することができる無方向性電磁鋼板とその製造方法、ならびに、上記無方向性電磁鋼板から構成されるモータコアを提供することにある。
 発明者らは、上記課題の解決に向け、鋼の成分組成、特にZnに着目して鋭意検討した。その結果、適切な量のZnを添加し、さらに適切な条件で冷延板焼鈍を施して、結晶粒径を制御するとともに、結晶粒径の不均一性を制御することで、高い疲労強度を有するとともに、その後の熱処理における磁束密度の低下が小さい無方向性電磁鋼板が得られることを知見し、本発明を開発するに至った。
[1] 上記知見に基く本発明は、C:0.005mass%以下、Si:2.0mass%以上5.0mass%以下、Mn:0.05mass%以上5.0mass%以下、P:0.1mass%以下、S:0.01mass%以下、Al:3.0mass%以下、N:0.0050mass%以下およびZn:0.0003mass%以上0.0050mass%以下を含有し、残部がFeおよび不可避不純物からなる成分組成を有し、平均結晶粒径が80μm以下、平均結晶粒径の1.5倍以上の粒径を有する結晶粒が面積率で10%以上、アスペクト比が0.3以下の結晶粒が面積率で20%以下であることを特徴とする無方向性電磁鋼板である。
[2] 本発明の上記無方向性電磁鋼板は、上記成分組成に加えてさらに、下記A~E群;
 ・A群;Cr:0.1mass%以上5.0mass%以下
 ・B群;Ca:0.001mass%以上0.01mass%以下、Mg:0.001mass%以上0.01mass%以下およびREM:0.001mass%以上0.01mass%以下のうちのいずれか1種または2種以上
 ・C群;Sn:0.001mass%以上0.2mass%以下およびSb:0.001mass%以上0.2mass%以下のうちのいずれか1種または2種
 ・D群;Ni:0.01mass%以上3.0mass%以下
 ・E群;Cu:0.05mass%以上0.5mass%以下、Nb:0.003mass%以上0.05mass%以下、Ti:0.003mass%以上0.05mass%以下およびV:0.010mass%以上0.20mass%以下のうちのいずれか1種または2種以上
のうちの少なくとも1群の成分を含有することを特徴とする。
[3] また、本発明の上記無方向性電磁鋼板は、C:0.005mass%以下、Si:2.0mass%以上5.0mass%以下、Mn:0.05mass%以上5.0mass%以下、P:0.1mass%以下、S:0.01mass%以下、Al:3.0mass%以下、N:0.0050mass%以下およびZn:0.0003mass%以上0.0050mass%以下を含有し、残部がFeおよび不可避不純物からなる成分組成を有し、平均結晶粒径が120μm以上、平均結晶粒径の1.5倍以上の粒径を有する結晶粒が面積率で5%以上であることを特徴とする無方向性電磁鋼板である。
[4] また、本発明の上記無方向性電磁鋼板は、上記成分組成に加えてさらに、下記A~E群;
 ・A群;Cr:0.1mass%以上5.0mass%以下
 ・B群;Ca:0.001mass%以上0.01mass%以下、Mg:0.001mass%以上0.01mass%以下およびREM:0.001mass%以上0.01mass%以下のうちのいずれか1種または2種以上
 ・C群;Sn:0.001mass%以上0.2mass%以下およびSb:0.001mass%以上0.2mass%以下のうちのいずれか1種または2種
 ・D群;Ni:0.01mass%以上3.0mass%以下
 ・E群;Cu:0.05mass%以上0.5mass%以下、Nb:0.003mass%以上0.05mass%以下、Ti:0.003mass%以上0.05mass%以下、およびV:0.010mass%以上0.20mass%以下のうちのいずれか1種または2種以上
のうちの少なくとも1群の成分を含有することを特徴とする。
[5] また、本発明は、C:0.005mass%以下、Si:2.0mass%以上5.0mass%以下、Mn:0.05mass%以上5.0mass%以下、P:0.1mass%以下、S:0.01mass%以下、Al:3.0mass%以下、N:0.0050mass%以下およびZn:0.0003mass%以上0.0050mass%以下を含有し、残部がFeおよび不可避不純物からなる成分組成を有する鋼素材を、熱間圧延して熱延板とし、酸洗し、冷間圧延して冷延板とし、その後、冷延板焼鈍を施す無方向性電磁鋼板の製造方法において、上記冷延板焼鈍の加熱過程における500℃から700℃間の平均昇温速度Vを10℃/s以上として、700℃から850℃間の焼鈍温度Tまで加熱し、冷却することで、平均結晶粒径を80μm以下、平均結晶粒径の1.5倍以上の粒径を有する結晶粒を面積率で10%以上、アスペクト比が0.3以下の結晶粒を面積率で20%以下とすることを特徴とする無方向性電磁鋼板の製造方法を提案する。
[6] また、本発明の上記無方向性電磁鋼板の製造方法に用いる上記鋼素材は上記成分組成に加えてさらに、下記A~E群;
 ・A群;Cr:0.1mass%以上5.0mass%以下
 ・B群;Ca:0.001mass%以上0.01mass%以下、Mg:0.001mass%以上0.01mass%以下およびREM:0.001mass%以上0.01mass%以下のうちのいずれか1種または2種以上
 ・C群;Sn:0.001mass%以上0.2mass%以下およびSb:0.001mass%以上0.2mass%以下のうちのいずれか1種または2種
 ・D群;Ni:0.01mass%以上3.0mass%以下
 ・E群;Cu:0.05mass%以上0.5mass%以下、Nb:0.003mass%以上0.05mass%以下、Ti:0.003mass%以上0.05mass%以下およびV:0.010mass%以上0.20mass%以下のうちのいずれか1種または2種以上
のうちの少なくとも1群の成分を含有することを特徴とする。
[7] また、本発明の無方向性電磁鋼板の製造方法は、上記[5]または[6]に記載の冷延板焼鈍後の無方向性電磁鋼板に、さらに、750~900℃間の焼鈍温度Tに加熱・保持する熱処理を施して、平均結晶粒径を120μm以上、平均結晶粒径の1.5倍以上の粒径を有する結晶粒を面積率で5%以上とすることを特徴とする。
[8] また、本発明は、上記[1]または[2]に記載の無方向性電磁鋼板で構成されるロータコアと、上記[3]または[4]に記載の無方向性電磁鋼板で構成されるステータコアからなるモータコアである。
 本発明によれば、高強度で疲労強度が高いロータコア材と、磁気特性に優れるステータコア材を、同一の無方向性電磁鋼板から得ることができるので、高性能なモータコアを、材料歩留りよく、かつ、安価に製造することが可能となる。
冷延板焼鈍の加熱過程の500~700℃間における平均昇温速度が、熱処理による磁束密度の劣化量ΔB50に及ぼす影響を示すグラフである。
 まず、本発明の無方向性電磁鋼板の成分組成とその限定理由を説明する。なお、本発明においては、無方向性電磁鋼板の製造に用いる鋼素材と製品板の成分組成は同一である。
C:0.005mass%以下
 Cは、モータ使用中に炭化物を形成して磁気時効が生じ、鉄損特性を劣化させる有害元素である。この磁気時効を回避するためには、素材中に含まれるCを0.005mass%以下とする必要がある。好ましくは、0.004mass%以下である。なお、Cの下限は特に規定しないが、製鋼工程での脱炭コストを低減する観点から、0.0001mass%程度とするのが好ましい。
Si:2.0mass%以上5.0mass%以下
 Siは、鋼の固有抵抗を高め、鉄損を低減するために必須の元素であり、また、固溶強化により鋼の強度を高める元素でもある。上記効果を得るため、本発明では、Siを2.0mass%以上添加する。一方、5.0mass%を超えると、飽和磁束密度が低下し、磁束密度が顕著に低下するため、上限を5.0mass%とする。好ましくは2.5mass%以上5.0mass%以下、より好ましくは3.0mass%以上5.0mass%以下の範囲である。
Mn:0.05mass%以上5.0mass%以下
 Mnは、Siと同様、鋼の固有抵抗と強度を高めるのに有用な元素である。これらの効果を得るため、Mnは0.05mass%以上添加する。一方、5.0mass%を超えるMnの添加は、MnCの析出を促進し、磁気特性を劣化させるおそれがあるので、上限は5.0mass%とする。好ましくは0.1mass%以上3.0mass%以下の範囲である。
P:0.1mass%以下
 Pは、鋼の強度(硬さ)調整に用いられる有用な元素である。しかし、0.1mass%を超える添加は、靱性を低下し、加工時に割れが生じ易くなるため、上限は0.1mass%とする。なお、下限は特に規定しないが、過度のPの低減は、製造コストの上昇を招くことから、0.001mass%程度とする。好ましくは0.005mass%以上0.08mass%以下の範囲である。
S:0.01mass%以下
 Sは、微細硫化物を形成して析出し、鉄損特性に悪影響を及ぼす有害元素である。特に0.01mass%を超えると、その悪影響が顕著になるため、0.01mass%以下に制限する。好ましくは0.005mass%以下である。
Al:3.0mass%以下
 Alは、Siと同様、鋼の固有抵抗を高め、鉄損を低減する有用な元素である。また、Znと複合添加した場合には、後述するZn添加と適切な条件の冷延板焼鈍もしくは熱処理を組み合わせることで、Zn添加による冷延板焼鈍後もしくは熱処理後の結晶粒径の不均一性を変化させる効果を補強する効果がある。これにより、冷延板焼鈍後の鋼板の疲労強度が高まるとともに、その後の熱処理による磁束密度の低下が抑制される。このような効果を得るためには、Alは0.005mass%以上添加することが好ましい。より好ましくは0.010mass%以上、さらに好ましくは0.015mass%以上である。一方、3.0mass%を超える添加は、鋼板表面の窒化を促進し、磁気特性を劣化させるおそれがあるので、上限は3.0mass%とする。好ましくは2.0mass%以下である。
N:0.0050mass%以下
 Nは、微細な窒化物を形成して析出し、鉄損特性に悪影響を及ぼす有害元素である。特に0.0050mass%を超えると、その悪影響が顕著になるため、0.0050mass%以下に制限する。好ましくは0.0030mass%以下である。
Zn:0.0003mass%以上0.0050mass%以下
 Znは、本発明において重要な元素であり、適量を添加し、さらに適切な条件で冷延板焼鈍もしくは熱処理を施すことで、冷延板焼鈍後もしくは熱処理後の結晶粒径の不均一性を変化させる効果がある。これにより、疲労強度が上昇するとともに、熱処理で粒成長させたときの磁束密度の低下が抑制される。このような効果を得るためには、Znを0.0003mass%以上添加する必要がある。好ましくは0.0005mass%以上、より好ましくは0.0008mass%以上である。一方、0.0050mass%を超える添加は、鋼板の靱性を劣化させ、冷間圧延時の破断の原因となることから、上限を0.0050mass%とする。好ましくは0.0030mass%以下である。なお、Znの適量添加と適切な冷延板焼鈍もしくは熱処理との組み合わせにより結晶粒径の不均一性が変化する理由は、まだ十分に明らかとなっていないが、発明者らは、再結晶や粒成長の駆動力が変化することによるものと推測している。
 本発明の無方向性電磁鋼板は、上記成分以外の残部は、Feおよび不可避的不純物である。ただし、要求される特性に応じて、上記成分組成に加えてさらに、以下の成分を含有することができる。
Cr:0.1mass%以上5.0mass%以下
 Crは、鋼の固有抵抗を高め、鉄損を低減する効果がある。このような効果を得るためには、Crは0.1mass%以上含有させることが好ましい。一方、5.0mass%を超えると、飽和磁束密度の低下によって磁束密度が顕著に低下するようになる。よって、Crを添加する場合は、0.1mass%以上5.0mass%以下の範囲で添加するのが好ましい。
Ca:0.001mass%以上0.01mass%以下、Mg:0.001mass%以上0.01mass%以下およびREM:0.001mass%以上0.01mass%以下のうちのいずれか1種または2種以上
 Ca,MgおよびREMは、いずれもSを硫化物として固定し、鉄損低減に寄与する元素である。このような効果を得るためにはCa,MgおよびREMをそれぞれ0.001mass%以上添加するのが好ましい。一方、0.01mass%を超えると、上記効果が飽和し、原料コストの上昇を招くだけであるため、上限はいずれも0.01mass%とするのが好ましい。
Sn:0.001mass%以上0.2mass%以下およびSb:0.001mass%以上0.2mass%以下のうちのいずれか1種または2種
 SnおよびSbは、集合組織の改善を介して磁束密度を高めるのに有効な元素である。このような効果を得るためには、それぞれ0.001mass%以上添加するのが好ましい。一方、0.2mass%を超えると、上記効果が飽和し、原料コストの上昇を招くだけであるため、上限はいずれも0.2mass%とするのが好ましい。
Ni:0.01mass%以上3.0mass%以下
 Niは、磁束密度を高めるのに有効な元素である。上記効果を得るためには0.01mass%以上添加するのが好ましい。しかし、3.0mass%を超えると、上記効果が飽和し、原料コストの上昇を招くだけであるため、上限は3.0mass%とするのが好ましい。
 Cu:0.05mass%以上0.5mass%以下、Nb:0.003mass%以上0.05mass%以下、Ti:0.003mass%以上0.05mass%以下およびV:0.010mass%以上0.20mass%以下のうちのいずれか1種または2種以上
 Cu,Nb,TiおよびVは、鋼中に単独で析出し、または、炭化物、窒化物あるいは炭窒化物の形態で析出し、鋼板の強度および疲労強度の向上に寄与する元素である。このような効果を得るためには、Cuは0.05mass%以上、NbおよびTiはそれぞれ0.003mass%以上、Vは0.010mass%以上添加するのが好ましい。しかし、Cuは0.5mass%超え、NbおよびTiはそれぞれ0.05mass%超え、Vは0.20mass%超え添加すると、熱処理時の粒成長を阻害し、鉄損が劣化する場合があるので、上限は、Cu:0.5mass%、NbおよびTi:0.05mass%およびV:0.20mass%とするのが好ましい。ただし、鋼板の強度や疲労強度よりも磁気特性が重要視される場合は、Cuは0.02mass%以下、Nbは0.0005mass%以下、Tiは0.0010mass%以下およびVは0.0010mass%以下に制限するのが好ましい。
 次に、本発明の無方向性電磁鋼板のミクロ組織について説明する。
 まず、[1]または[2]に記載の冷延板焼鈍後の無方向性電磁鋼板について説明する。
平均結晶粒径:80μm以下
 発明者らの検討によると、冷延板焼鈍後の鋼板は、平均結晶粒径を微細とすることで疲労強度が向上する。特に、平均結晶粒径が80μm以下であれば、HEV/EVモータのロータコア用素材として必要とされる450MPa以上の疲労強度を確保することができる。よって、本発明のロータコアに用いる無方向性電磁鋼板は、平均結晶粒径を80μm以下に制限する。
平均結晶粒径の1.5倍以上の粒径を有する結晶粒:面積率で10%以上
 発明者らは、冷延板焼鈍後の結晶粒径の不均一性を制御することで、疲労強度に優れた無方向性電磁鋼板となり、かつ、熱処理により粒成長させたときの磁束密度の低下を抑制できることを新規に見出した。具体的には、平均結晶粒径の1.5倍以上の粒径を有する結晶粒を面積率で10%以上とすることで、HEV/EVモータのロータ用材料で必要とされる疲労強度:450MPa以上を満足するとともに、熱処理による磁束密度の低下を抑制することができる。結晶粒径の不均一性を制御することで、このような効果が得られる理由は十分に明らかとなっていないが、隣接する結晶粒同士の方位関係が変化し、その結果、粒界近傍の応力集中が緩和されて疲労強度が向上するとともに、その後の熱処理による集合組織の劣化が抑制されると推測している。なお、平均結晶粒径の1.5倍以上の粒径を有する結晶粒の好ましい面積率は15%以上である。上限については特に規定しないが、発明者らの検討によると通常30%以下である。
アスペクト比が0.3以下の結晶粒:面積率で20%以下
 製品板の鋼板組織に、伸長した結晶粒が多数存在する場合には、応力負荷時の応力集中が助長されるため、疲労強度が低下する。発明者らの検討によれば、HEV/EVモータのロータ用材料で必要とされる疲労強度:450MPa以上を満足するためには、アスペクト比が0.3以下の結晶粒が面積率で20%以下であることが必要である。好ましくは、10%以下である。
 次に、[3]または[4]に記載の熱処理後の無方向性電磁鋼板について説明する。
平均結晶粒径:120μm以上
 無方向性電磁鋼板の鉄損特性は、平均結晶粒径に依存して変化する。そこで、本発明の熱処理後の鋼板は、ステータコアに求められる鉄損特性を達成するため、平均結晶粒径を120μm以上とする。好ましくは150μm以上である。なお、過度の粗大化は、鉄損の劣化を起こす可能性があることから、上限は500μm程度とするのが好ましい。
平均結晶粒径の1.5倍以上の粒径を有する結晶粒:面積率で5%以上
 前述したように、結晶粒径の不均一性を制御することで、疲労強度に優れた無方向性電磁鋼板となり、かつ熱処理により粒成長させた場合の磁束密度の低下を抑制できることを見出した。具体的には、本発明の無方向性電磁鋼板は、熱処理により粒成長させた後の鋼板組織について、平均結晶粒径の1.5倍以上の結晶粒径を有する結晶粒の面積率が5%以上であれば、熱処理後の磁束密度の低下を最小限に抑えることができる。好ましくは10%以上である。上限については特に規定しないが、発明者らの検討によると通常25%以下である。
 ここで、平均結晶粒径および平均結晶粒径の1.5倍以上の粒径を有する結晶粒の面積率およびアスペクト比が0.3以下の結晶粒の面積率は、いずれも鋼板表面に平行かつ板厚1/4の位置における表面(観察面)を電子線後方散乱回折(EBSD)で測定し、実施例に記載した方法で解析して得た値である。
 次に、本発明の無方向性電磁鋼板の製造方法について説明する。
 まず、[1]または[2]に記載の無方向性電磁鋼板の製造方法について説明する。
 本発明の[1]または[2]に記載の無方向性電磁鋼板は、上記した[1]または[2]に記載の成分組成を有する鋼素材を製造し、該鋼素材を熱間圧延して熱延板とし、該熱延板に必要に応じで熱延板焼鈍を施した後、酸洗し、冷間圧延し、冷延板焼鈍を施すことにより製造することができる。以下、具体的に説明する。
鋼素材
 本発明の[1]または[2]に記載の無方向性電磁鋼板の製造に用いる鋼は、上記した[1]または[2]に記載の成分組成に調整したものであればよく、その鋼の溶製方法は、転炉または電気炉や真空脱ガス装置等を用いた通常公知の精錬プロセスを採用することができ、特に限定されない。また、鋼素材の製造方法は、連続鋳造法が好ましいが、造塊-分塊圧延法または薄スラブ連鋳法等を用いてもよい。
熱間圧延
 熱間圧延は、上記成分組成を有する鋼素材に、熱間で圧延を施すことで所定の板厚の熱延板を得る工程である。この熱間圧延の条件は、特に規定しないが、例えば、鋼素材の再加熱温度は1000℃以上1200℃以下、熱間圧延の仕上圧延終了温度は800℃以上950℃以下、熱間圧延終了後の平均冷却速度は20℃/s以上100℃/s以下、コイル巻取温度は400℃以上700℃以下の巻取温度でコイルに巻き取る条件を例示することができる。
熱延板焼鈍
 熱延板焼鈍は、上記熱延板を加熱し高温に保持することで、鋼板組織を均質化する工程である。熱延板焼鈍の焼鈍温度、保持時間は、特に規定しないが、800℃以上1100℃以下×3s以上600s以下の範囲とするのが好ましい。なお、この熱延板焼鈍は、必須ではなく、省略してもよい。
酸洗
 酸洗は、熱延板焼鈍後の鋼板、または、熱延板焼鈍を省略する場合の熱延板を脱スケールする工程である。酸洗条件は、冷間圧延を施すことができる程度に脱スケールできればよく、例えば塩酸または硫酸等を使用する常用の酸洗条件を適用することができる。この酸洗は、上記熱延板焼鈍ラインで焼鈍後に連続して実施してもよいし、別のラインで実施してもよい。
冷間圧延
 冷間圧延は、酸洗を経た熱延板または熱延焼鈍板に、冷間で圧延して製品板の板厚(最終板厚)とする工程である。この冷間圧延は、上記最終板厚とすることができれば、特に制限されない。また、冷間圧延は、1回に限定されず、必要に応じて中間焼鈍を挟む2回以上の冷間圧延を行ってもよい。この場合の中間焼鈍条件も常用の条件であればよく、特に制限はない。
冷延板焼鈍
 冷延板焼鈍は、冷間圧延で最終板厚とした冷延板に焼鈍を施す工程であり、本発明においては重要な工程の一つである。この冷延板焼鈍は、加熱過程の500℃から700℃間の平均昇温速度Vを10℃/s以上として、700から850℃間にある焼鈍温度Tまで加熱し、必要に応じて均熱し、冷却する条件で行う必要がある。以下、具体的に説明する。
500~700℃間の平均昇温速度V:10℃/s以上
 500℃から700℃間の平均昇温速度が低い場合は、再結晶核の生成頻度が低いため、早期に核生成した再結晶粒が成長した領域が主体となり、比較的粗大な結晶粒が大半を占める組織となりやすい。そのため、平均結晶粒径の1.5倍以上の粒径を有する結晶粒の面積率が小さくなる。一方、500℃から700℃間の平均昇温速度が高い場合には、再結晶核の生成頻度が高く、各々が異なった速度で粒成長するため、平均的なサイズの結晶粒に対して粗大な粒径を有する結晶粒の割合が増加する。特に、本発明に適合する成分組成を有する鋼板では、500℃から700℃間の平均昇温速度Vを10℃/s以上とすることで、平均結晶粒径の1.5倍以上の粒径を有する結晶粒を面積率で10%以上に高めることができる。好ましくは50℃/s以上、より好ましくは、100℃/s以上、さらに好ましくは200℃/s以上である。
焼鈍温度T:700℃以上850℃以下
 焼鈍温度Tが700℃未満であると、再結晶粒の成長が遅延するため、冷間圧延によって伸長した結晶粒の粒界を超えた再結晶粒の成長が抑制され、伸長した再結晶粒となり易い。また、鋼板の一部が再結晶せず、冷間圧延で伸長した結晶粒がそのまま残存することもある。その結果、アスペクト比が0.3以下の結晶粒を面積率で20%以下とすることができなくなる。よって、本発明では、焼鈍温度Tは700℃以上とする。好ましくは750℃以上である。一方、焼鈍温度Tが850℃を超えると、再結晶粒が過度に成長し、平均結晶粒径を80μm以下とすることができなくなる。よって、焼鈍温度Tは850℃以下とする。好ましくは825℃以下である。
 上記冷延板焼鈍後の鋼板は、表面に絶縁コーティングを施すことで製品とするのが一般的であるが、その方法およびコーティングの種類は特に限定されず、要求される被膜特性に応じで適宜、常用の絶縁コーティングを適用すればよい。
 次に、本発明の[3]または[4]に記載の熱処理後の無方向性電磁鋼板の製造方法について説明する。
 本発明の[3]または[4]に記載の無方向性電磁鋼板は、前述したように、[1]または[2]に記載の無方向性電磁鋼板に、以下に説明する熱処理を施すことで製造することができる。以下、熱処理条件について具体的に説明する。
焼鈍温度T:750℃以上900℃以下
 熱処理の焼鈍温度Tが750℃未満では、粒成長が不十分となり、平均結晶粒径を120μm以上とすることができない。よって、焼鈍温度Tは750℃以上とする。好ましくは775℃以上である。一方、焼鈍温度Tが900℃を超えると、結晶粒が過度に成長し、結果として均質な組織となるため、平均結晶粒径の1.5倍以上の粒径を有する結晶粒を面積率で5%以上とすることができなくなる。そのため、焼鈍温度Tは900℃以下とする。好ましくは875℃以下である。なお、焼鈍温度に保持する時間は、特に規定しないが10min以上500min以下の範囲とするのが好ましい。また、熱処理時の雰囲気についても特に規定しないが、非酸化性あるいは還元性の雰囲気であることが好ましい。
 次に、本発明のモータコアおよびその製造方法について説明する。
 本発明のモータコアは、[1]または[2]に記載の無方向性電磁鋼板からロータコア材とステータコア材を採取し、ロータコア材を積層したロータコアと、ステータコア材を積層・熱処理して作製した、[3]または[4]に記載の無方向性電磁鋼板からなるステータコアと、からなる。上記ロータコアとステータコアを製造する方法は、上記の同一素材鋼板からロータコア材とステータコア材を採取すること以外は、常法の方法に従えばよく、特に制限はない。
 ただし、本発明のモータコアの製造において重要なことは、上記積層したステータコアに対しては、所望の磁気特性を付与するため、前述した熱処理を施すことが必要であるということである。なお、この熱処理は、通常、上記したようにコアに組み立て後のステータコアに施すことが一般的であるが、[1]または[2]に記載の無方向性電磁鋼板を分割し、一方の鋼板に、上記と同じ条件の熱処理を施した後、該鋼板からステータコア材を採取し、積層してステータコアとしてもよい。また、上記[1]または[2]に記載の素材鋼板から、ロータコア材とステータコア材を同時に採取した後、ステータコア材にのみ上記と同じ条件の熱処理を施した後、積層してステータコアに組み立ててもよい。
 表1に示した種々の成分組成を有する鋼を、通常公知の手法により溶製し、連続鋳造して肉厚230mmのスラブ(鋼素材)とした後、該スラブを熱間圧延して、板厚2.0mmの熱延板とした。次いで、上記熱延板に通常公知の手法により熱延板焼鈍および酸洗を施した後、冷間圧延して、表2に示す種々の板厚の冷延板とした。
 次いで、上記冷延板に、表2に示す条件で冷延板焼鈍を施した後、通常公知の手法により絶縁被膜を塗布し、冷延焼鈍板とした。
 次いで、上記冷延焼鈍板に、表2に示す焼鈍温度で1hr保持する熱処理を施し、熱処理板とした。
 斯くして得た冷延焼鈍板および熱処理板について、以下の評価試験に供し、その結果を表2中に併記した。
<鋼板の組織観察>
 上記冷延焼鈍板および熱処理板のそれぞれから組織観察用の試験片を採取し、試験片の圧延面(ND面)に平行で、板厚の1/4に相当する位置が観察面となるように、化学研磨により減厚し、鏡面化した。この観察面に対し、電子線後方散乱回折(EBSD)測定を行った。なお、上記測定条件は、冷延焼鈍板に対しては、ステップサイズ:2μm、測定領域:4mmとし、熱処理板に対しては、ステップサイズ:10μm、測定領域:100mmとした。
 次いで、上記測定結果について、解析ソフト:OIM Analysis 8を用いて、局所方位データの解析を行なった。なお、上記データ解析に先立ち、解析ソフトのGrain Dilation機能(Grain Tolerance Angle:5°、Minimum Grain Size:5、Single Iteration:ON)、および、Grain CI Standardization機能(Grain Tolerance Angle:5°、Minimum Grain Size:5)によるクリーンアップ処理を順に1回ずつ施し、CI値>0.1の測定点のみを解析に使用した。
 次いで、結晶粒界をGrain Tolerance Angleを15°として定義した上で、Grain Size(diameter)のArea Averageを求め、平均結晶粒径とした。さらに、平均結晶粒径の1.5倍以上の結晶粒径を有する結晶粒の割合(面積率)を求めた。さらに、OIM Analysis 8により定義されたアスペクト比(Grain Shape Aspect ratio)が0.3以下である結晶粒の割合(面積率)を求めた。
<疲労特性の評価>
 上記の冷延焼鈍板から、圧延方向を長手方向とする引張疲労試験片(JIS Z 2275:1978に準拠した1号試験片、b:15mm、R:100mm)を採取し、引張り-引張り(片振り)、応力比(=最小応力/最大応力):0.1および周波数:20Hzの条件で疲労試験を実施し、繰り返し数10回において疲労破断を起こさない最大応力を疲労限(疲労強度)とした。なお、疲労特性の評価は、疲労限が450MPa以上の場合に疲労特性に優れるとした。
<磁気特性の評価>
 上記の冷延焼鈍板および熱処理板のそれぞれから、長さ方向を圧延方向または圧延直角方向とする、幅30mm×長さ180mmの磁気測定用試験片を採取し、JIS C 2550-1:2011に準拠したエプスタイン法で、冷延焼鈍板については磁束密度B50を、熱処理板については磁束密度B50および鉄損W10/400を測定した。そして、熱処理前後の磁束密度B50の差ΔB50(熱処理後の磁束密度B50-熱処理前の磁束密度B50)が-0.040T以上である場合に、熱処理による磁束密度の低下が抑制されていると評価した。また、熱処理後の鉄損W10/400は、板厚0.10mm材では8.8W/kg以下、0.20mm材では10.3W/kg以下、板厚0.25mm材では11.5W/kg以下、板厚0.35mm材では14.7W/kg以下、板厚0.50mm材では21.7W/kg以下の場合に、鉄損特性に優れていると評価した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1に示したAl含有量およびZn含有量が異なる鋼符号A,MおよびNのスラブ(鋼素材)を、上記した実施例1と同じ条件で、熱間圧延して板厚2.0mmの熱延板とし、熱延板焼鈍し、酸洗した後、冷間圧延して、板厚0.25mmの冷延板とした。
 次いで、上記冷延板に、表3に示す条件で冷延板焼鈍を施した後、絶縁被膜をコーティングし、冷延焼鈍板とした。この際、冷延板焼鈍における加熱過程の500~700℃間における平均昇温速度を種々に変化させた。
 次いで、上記冷延焼鈍板に、表3に示す焼鈍温度で1hr保持する熱処理を施し、熱処理板とした。
 斯くして得た冷延焼鈍板および熱処理板について、実施例1と同様にして、鋼板の組織観察、疲労特性および磁気特性の評価試験に供し、その結果を、表3中に併記するとともに、図1に示した。これらの結果から、適切な条件で冷延板焼鈍を施した場合に、Znの単独添加で熱処理による磁束密度の劣化が抑制されること、さらに、Zn+Alの複合添加で熱処理による磁束密度の劣化がより抑制されることがわかる。
Figure JPOXMLDOC01-appb-T000005
 本発明の技術は、HEV/EVモータだけでなく、高効率エアコンモータや、工作機械の主軸モータ、鉄道モータ等の高速モータにも適用することができる。

Claims (8)

  1. C:0.005mass%以下、Si:2.0mass%以上5.0mass%以下、Mn:0.05mass%以上5.0mass%以下、P:0.1mass%以下、S:0.01mass%以下、Al:3.0mass%以下、N:0.0050mass%以下およびZn:0.0003mass%以上0.0050mass%以下を含有し、残部がFeおよび不可避不純物からなる成分組成を有し、
    平均結晶粒径が80μm以下、平均結晶粒径の1.5倍以上の粒径を有する結晶粒が面積率で10%以上、アスペクト比が0.3以下の結晶粒が面積率で20%以下であることを特徴とする無方向性電磁鋼板。
  2. 上記成分組成に加えてさらに、下記A~E群のうちの少なくとも1群の成分を含有することを特徴とする請求項1に記載の無方向性電磁鋼板。
            記
     ・A群;Cr:0.1mass%以上5.0mass%以下
     ・B群;Ca:0.001mass%以上0.01mass%以下、Mg:0.001mass%以上0.01mass%以下およびREM:0.001mass%以上0.01mass%以下のうちのいずれか1種または2種以上
     ・C群;Sn:0.001mass%以上0.2mass%以下およびSb:0.001mass%以上0.2mass%以下のうちのいずれか1種または2種
     ・D群;Ni:0.01mass%以上3.0mass%以下
     ・E群;Cu:0.05mass%以上0.5mass%以下、Nb:0.003mass%以上0.05mass%以下、Ti:0.003mass%以上0.05mass%以下およびV:0.010mass%以上0.20mass%以下のうちのいずれか1種または2種以上
  3. C:0.005mass%以下、Si:2.0mass%以上5.0mass%以下、Mn:0.05mass%以上5.0mass%以下、P:0.1mass%以下、S:0.01mass%以下、Al:3.0mass%以下、N:0.0050mass%以下およびZn:0.0003mass%以上0.0050mass%以下を含有し、残部がFeおよび不可避不純物からなる成分組成を有し、
    平均結晶粒径が120μm以上、平均結晶粒径の1.5倍以上の粒径を有する結晶粒が面積率で5%以上であることを特徴とする無方向性電磁鋼板。
  4. 上記成分組成に加えてさらに、下記A~E群のうちの少なくとも1群の成分を含有することを特徴とする請求項3に記載の無方向性電磁鋼板。
            記
     ・A群;Cr:0.1mass%以上5.0mass%以下
     ・B群;Ca:0.001mass%以上0.01mass%以下、Mg:0.001mass%以上0.01mass%以下およびREM:0.001mass%以上0.01mass%以下のうちのいずれか1種または2種以上
     ・C群;Sn:0.001mass%以上0.2mass%以下およびSb:0.001mass%以上0.2mass%以下のうちのいずれか1種または2種
     ・D群;Ni:0.01mass%以上3.0mass%以下
     ・E群;Cu:0.05mass%以上0.5mass%以下、Nb:0.003mass%以上0.05mass%以下、Ti:0.003mass%以上0.05mass%以下、およびV:0.010mass%以上0.20mass%以下のうちのいずれか1種または2種以上
  5. C:0.005mass%以下、Si:2.0mass%以上5.0mass%以下、Mn:0.05mass%以上5.0mass%以下、P:0.1mass%以下、S:0.01mass%以下、Al:3.0mass%以下、N:0.0050mass%以下およびZn:0.0003mass%以上0.0050mass%以下を含有し、残部がFeおよび不可避不純物からなる成分組成を有する鋼素材を、熱間圧延して熱延板とし、酸洗し、冷間圧延して冷延板とし、その後、冷延板焼鈍を施す無方向性電磁鋼板の製造方法において、
    上記冷延板焼鈍の加熱過程における500℃から700℃間の平均昇温速度Vを10℃/s以上として、700℃から850℃間の焼鈍温度Tまで加熱し、冷却することで、
    平均結晶粒径を80μm以下、平均結晶粒径の1.5倍以上の粒径を有する結晶粒を面積率で10%以上、アスペクト比が0.3以下の結晶粒を面積率で20%以下とすることを特徴とする無方向性電磁鋼板の製造方法。
  6. 上記鋼素材は上記成分組成に加えてさらに、下記A~E群のうちの少なくとも1群の成分を含有することを特徴とする請求項5に記載の無方向性電磁鋼板の製造方法。
            記
     ・A群;Cr:0.1mass%以上5.0mass%以下
     ・B群;Ca:0.001mass%以上0.01mass%以下、Mg:0.001mass%以上0.01mass%以下およびREM:0.001mass%以上0.01mass%以下のうちのいずれか1種または2種以上
     ・C群;Sn:0.001mass%以上0.2mass%以下およびSb:0.001mass%以上0.2mass%以下のうちのいずれか1種または2種
     ・D群;Ni:0.01mass%以上3.0mass%以下
     ・E群;Cu:0.05mass%以上0.5mass%以下、Nb:0.003mass%以上0.05mass%以下、Ti:0.003mass%以上0.05mass%以下およびV:0.010mass%以上0.20mass%以下のうちのいずれか1種または2種以上
  7. 上記請求項5または6に記載の冷延板焼鈍後の無方向性電磁鋼板に、さらに、750~900℃間の焼鈍温度Tに加熱・保持する熱処理を施して、平均結晶粒径を120μm以上、平均結晶粒径の1.5倍以上の粒径を有する結晶粒を面積率で5%以上とすることを特徴とする無方向性電磁鋼板の製造方法。
  8. 請求項1または2に記載の無方向性電磁鋼板で構成されるロータコアと、請求項3または4に記載の無方向性電磁鋼板で構成されるステータコアからなるモータコア。
PCT/JP2020/026599 2019-07-11 2020-07-07 無方向性電磁鋼板とその製造方法およびモータコア WO2021006280A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP20837616.0A EP3998358A4 (en) 2019-07-11 2020-07-07 NON-ORIENTED ELECTROMAGNETIC STEEL SHEET, PROCESS FOR ITS PRODUCTION AND MOTOR CORE
KR1020217038820A KR102635010B1 (ko) 2019-07-11 2020-07-07 무방향성 전기 강판과 그 제조 방법 및 모터 코어
CN202080047739.1A CN114040989A (zh) 2019-07-11 2020-07-07 无方向性电磁钢板及其制造方法以及马达铁芯
US17/619,838 US20220359108A1 (en) 2019-07-11 2020-07-07 Non-oriented electrical steel sheet, method for producing the same, and motor core
JP2020559002A JP6825758B1 (ja) 2019-07-11 2020-07-07 無方向性電磁鋼板とその製造方法およびモータコア
MX2022000467A MX2022000467A (es) 2019-07-11 2020-07-07 Lamina de acero electrico no orientado, metodo de produccion de la misma y nucleo de motor.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-129224 2019-07-11
JP2019129224 2019-07-11

Publications (1)

Publication Number Publication Date
WO2021006280A1 true WO2021006280A1 (ja) 2021-01-14

Family

ID=74114832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026599 WO2021006280A1 (ja) 2019-07-11 2020-07-07 無方向性電磁鋼板とその製造方法およびモータコア

Country Status (8)

Country Link
US (1) US20220359108A1 (ja)
EP (1) EP3998358A4 (ja)
JP (1) JP6825758B1 (ja)
KR (1) KR102635010B1 (ja)
CN (1) CN114040989A (ja)
MX (1) MX2022000467A (ja)
TW (1) TWI718973B (ja)
WO (1) WO2021006280A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022210530A1 (ja) * 2021-03-31 2022-10-06
JP7268803B1 (ja) * 2021-11-02 2023-05-08 Jfeスチール株式会社 無方向性電磁鋼板とその製造方法
WO2024063574A1 (ko) * 2022-09-21 2024-03-28 현대제철 주식회사 무방향성 전기강판 및 그 제조 방법

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102515028B1 (ko) * 2021-02-10 2023-03-27 엘지전자 주식회사 무방향성 전기강판의 제조방법 및 이에 의해 제조된 무방향성 전기강판
US11970750B2 (en) * 2021-03-31 2024-04-30 Nippon Steel Corporation Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050686A (ja) 2006-07-27 2008-03-06 Nippon Steel Corp 強度と磁気特性に優れた無方向性電磁鋼板とその製造方法
US20140366988A1 (en) * 2011-09-16 2014-12-18 Voestalpine Stahl Gmbh Method for producing a non-grain-oriented higher-strength electrical strip and use thereof
JP2016138316A (ja) * 2015-01-28 2016-08-04 Jfeスチール株式会社 無方向性電磁鋼板とモータコア
CN105950960A (zh) * 2016-05-04 2016-09-21 武汉钢铁股份有限公司 电动汽车驱动电机用无取向硅钢及其制备方法
KR20180071587A (ko) * 2016-12-20 2018-06-28 주식회사 포스코 무방향성 전기강판 및 그 제조방법
WO2018164185A1 (ja) * 2017-03-07 2018-09-13 新日鐵住金株式会社 無方向性電磁鋼板、及び、無方向性電磁鋼板の製造方法
JP2019019355A (ja) * 2017-07-13 2019-02-07 新日鐵住金株式会社 電磁鋼板及びその製造方法、ロータ用モータコア及びその製造方法、ステータ用モータコア及びその製造方法、並びに、モータコアの製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5375149B2 (ja) * 2008-09-11 2013-12-25 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
JP5668460B2 (ja) * 2010-12-22 2015-02-12 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
JP5892327B2 (ja) * 2012-03-15 2016-03-23 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
CA2956686C (en) * 2014-07-31 2019-01-08 Jfe Steel Corporation Non-oriented electrical steel sheet and method for producing the same, and motor core and method of producing the same
JP6048699B2 (ja) * 2015-02-18 2016-12-21 Jfeスチール株式会社 無方向性電磁鋼板とその製造方法ならびにモータコア
PL3495525T3 (pl) * 2016-08-05 2022-06-20 Nippon Steel Corporation Blacha cienka z niezorientowanej stali elektrotechnicznej, sposób wytwarzania blachy cienkiej z niezorientowanej stali elektrotechnicznej i sposób wytwarzania rdzenia do silnika
KR101901313B1 (ko) * 2016-12-19 2018-09-21 주식회사 포스코 무방향성 전기강판 및 그 제조방법
CA3051823C (en) * 2017-02-07 2022-07-12 Jfe Steel Corporation Method for producing non-oriented electrical steel sheet, method for producing motor core, and motor core
PL3633056T3 (pl) * 2017-06-02 2023-05-15 Nippon Steel Corporation Nieorientowana elektrotechniczna blacha stalowa
EP3656885A4 (en) * 2017-07-19 2021-04-14 Nippon Steel Corporation NON-ORIENTED ELECTROMAGNETIC STEEL SHEET

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050686A (ja) 2006-07-27 2008-03-06 Nippon Steel Corp 強度と磁気特性に優れた無方向性電磁鋼板とその製造方法
US20140366988A1 (en) * 2011-09-16 2014-12-18 Voestalpine Stahl Gmbh Method for producing a non-grain-oriented higher-strength electrical strip and use thereof
JP2016138316A (ja) * 2015-01-28 2016-08-04 Jfeスチール株式会社 無方向性電磁鋼板とモータコア
CN105950960A (zh) * 2016-05-04 2016-09-21 武汉钢铁股份有限公司 电动汽车驱动电机用无取向硅钢及其制备方法
KR20180071587A (ko) * 2016-12-20 2018-06-28 주식회사 포스코 무방향성 전기강판 및 그 제조방법
WO2018164185A1 (ja) * 2017-03-07 2018-09-13 新日鐵住金株式会社 無方向性電磁鋼板、及び、無方向性電磁鋼板の製造方法
JP2019019355A (ja) * 2017-07-13 2019-02-07 新日鐵住金株式会社 電磁鋼板及びその製造方法、ロータ用モータコア及びその製造方法、ステータ用モータコア及びその製造方法、並びに、モータコアの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3998358A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022210530A1 (ja) * 2021-03-31 2022-10-06
WO2022210530A1 (ja) * 2021-03-31 2022-10-06 日本製鉄株式会社 無方向性電磁鋼板、モータコア、無方向性電磁鋼板の製造方法及びモータコアの製造方法
JP7303476B2 (ja) 2021-03-31 2023-07-05 日本製鉄株式会社 無方向性電磁鋼板、モータコア、無方向性電磁鋼板の製造方法及びモータコアの製造方法
KR20230134148A (ko) * 2021-03-31 2023-09-20 닛폰세이테츠 가부시키가이샤 무방향성 전자 강판, 모터 코어, 무방향성 전자 강판의 제조 방법 및 모터 코어의 제조 방법
KR102670258B1 (ko) 2021-03-31 2024-06-04 닛폰세이테츠 가부시키가이샤 무방향성 전자 강판, 모터 코어, 무방향성 전자 강판의 제조 방법 및 모터 코어의 제조 방법
JP7268803B1 (ja) * 2021-11-02 2023-05-08 Jfeスチール株式会社 無方向性電磁鋼板とその製造方法
WO2023079836A1 (ja) * 2021-11-02 2023-05-11 Jfeスチール株式会社 無方向性電磁鋼板とその製造方法
WO2024063574A1 (ko) * 2022-09-21 2024-03-28 현대제철 주식회사 무방향성 전기강판 및 그 제조 방법

Also Published As

Publication number Publication date
CN114040989A (zh) 2022-02-11
KR102635010B1 (ko) 2024-02-07
KR20220002546A (ko) 2022-01-06
MX2022000467A (es) 2022-02-03
JPWO2021006280A1 (ja) 2021-09-13
TWI718973B (zh) 2021-02-11
US20220359108A1 (en) 2022-11-10
JP6825758B1 (ja) 2021-02-03
EP3998358A1 (en) 2022-05-18
EP3998358A4 (en) 2022-07-13
TW202104614A (zh) 2021-02-01

Similar Documents

Publication Publication Date Title
JP6825758B1 (ja) 無方向性電磁鋼板とその製造方法およびモータコア
JP6866935B2 (ja) 無方向性電磁鋼板の製造方法
JP7054074B2 (ja) 無方向性電磁鋼板の製造方法とモータコアの製造方法およびモータコア
JP7119519B2 (ja) 無方向性電磁鋼板、ステータコア、ロータコア及びこれらの製造方法
WO2023282195A1 (ja) 無方向性電磁鋼板およびその製造方法
JP7231133B1 (ja) 無方向性電磁鋼板およびその製造方法、ならびにモータコア
JP7231134B1 (ja) 無方向性電磁鋼板およびその製造方法
JP7235187B1 (ja) 無方向性電磁鋼板およびその製造方法、ならびにモータコア
TWI837908B (zh) 無方向性電磁鋼板及其製造方法、以及馬達鐵芯
JP7235188B1 (ja) 無方向性電磁鋼板およびその製造方法
JP7268803B1 (ja) 無方向性電磁鋼板とその製造方法
JP7439993B2 (ja) 無方向性電磁鋼板およびその製造方法
WO2023282197A1 (ja) 無方向性電磁鋼板およびその製造方法、ならびにモータコア
TW202417647A (zh) 無方向性電磁鋼板及其製造方法、以及馬達鐵芯
TW202417656A (zh) 無方向性電磁鋼板及其製造方法
WO2024057940A1 (ja) 高強度無方向性電磁鋼板とその製造方法
KR20240089777A (ko) 무방향성 전기 강판 및 그 제조 방법
TW202413664A (zh) 高強度無方向性電磁鋼板及其製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020559002

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20837616

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217038820

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020837616

Country of ref document: EP

Effective date: 20220211