WO2021005873A1 - 電力変換装置、圧送装置、電力変換方法、プログラム、診断装置及び診断方法 - Google Patents

電力変換装置、圧送装置、電力変換方法、プログラム、診断装置及び診断方法 Download PDF

Info

Publication number
WO2021005873A1
WO2021005873A1 PCT/JP2020/018340 JP2020018340W WO2021005873A1 WO 2021005873 A1 WO2021005873 A1 WO 2021005873A1 JP 2020018340 W JP2020018340 W JP 2020018340W WO 2021005873 A1 WO2021005873 A1 WO 2021005873A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplitude
driving
amplitude threshold
speed
threshold value
Prior art date
Application number
PCT/JP2020/018340
Other languages
English (en)
French (fr)
Inventor
諒 高橋
池 英昭
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to CN202080047861.9A priority Critical patent/CN114073001A/zh
Priority to JP2021530499A priority patent/JP7276453B2/ja
Priority to EP20835984.4A priority patent/EP3998701A4/en
Publication of WO2021005873A1 publication Critical patent/WO2021005873A1/ja
Priority to US17/647,392 priority patent/US11855523B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode

Definitions

  • the present disclosure relates to a power conversion device, a pumping device, a power conversion method, a program, a diagnostic device, and a diagnostic method.
  • Patent Document 1 the electric motor current output to the electric motor for driving the pump drops to the preset electric motor no-load current value and reaches the value, and the electric motor current does not increase even after the preset time elapses.
  • an inverter device provided with means for promptly stopping the inverter device and outputting an alarm is disclosed.
  • the present disclosure provides a power conversion device, a pumping device, a power conversion method, a program, a diagnostic device, and a diagnostic method effective for simplifying a configuration for detecting an abnormality of a drive target.
  • the power conversion device includes a power conversion circuit that converts primary side power into secondary side power and supplies it to a drive target, and a control circuit that causes the secondary side power to follow a control command by the power conversion circuit.
  • the control circuit evaluates the amplitude of the driving force of the driving target based on the secondary power, and the amplitude threshold is determined based on the relationship between the evaluation result of the amplitude and the driving speed of the driving target. Further execution is performed to set an amplitude threshold profile showing the relationship with the drive speed, and to detect an abnormality of the drive target according to the amplitude evaluation result exceeding the amplitude threshold based on the amplitude threshold profile. It is configured.
  • the pumping device includes the above-mentioned power conversion device and an electric pump as a driving target.
  • the power conversion method is to make the secondary side power follow the control command by a power conversion circuit that converts the primary side power into the secondary side power and supplies it to the driving target, and to make the amplitude follow.
  • An amplitude threshold profile showing the relationship between the amplitude threshold and the driving speed is set based on the relationship between the evaluation result and the driving speed of the driving target, and the amplitude evaluation result exceeds the amplitude threshold based on the amplitude threshold profile.
  • the program according to still another aspect of the present disclosure is to make the secondary side power follow a control command by a power conversion circuit that converts the primary side power into the secondary side power and supplies it to the drive target, and the secondary side power.
  • This is a program for causing the power conversion device to execute that, and to detect an abnormality of the driving target according to the amplitude evaluation result exceeding the amplitude threshold based on the amplitude threshold profile.
  • the diagnostic device evaluates the amplitude of the driving force of the driving target based on the power supplied by the power conversion circuit to the driving target, evaluates the amplitude, and drives the driving target.
  • An amplitude threshold profile showing the relationship between the amplitude threshold and the driving speed is set based on the relationship with the speed, and an abnormality of the driving target is detected according to the amplitude evaluation result exceeding the amplitude threshold based on the amplitude threshold profile.
  • a diagnostic method is to evaluate the amplitude of the driving force of the driving target based on the power supplied to the driving target by the power conversion circuit, the amplitude evaluation result, and the driving of the driving target.
  • An amplitude threshold profile showing the relationship between the amplitude threshold and the driving speed is set based on the relationship with the speed, and an abnormality of the driving target is detected according to the amplitude evaluation result exceeding the amplitude threshold based on the amplitude threshold profile. Including to detect.
  • a power conversion device a pumping device, a power conversion method, a program, a diagnostic device, and a diagnostic method effective for simplifying a configuration for detecting an abnormality of a driving target.
  • the pumping device 1 shown in FIG. 1 includes an electric pump 20 (drive target) for pumping a liquid, a power conversion device 30, an electrical device holding unit 13, and a unit base 2 for holding the electric device holding unit 13.
  • the pump 20 has a pump main body 21 and a motor 22 for driving the pump main body 21.
  • the pump body 21 is a non-volume type rotary pump.
  • the pump body 21 is a centrifugal pump such as a centrifugal pump, and has an impeller 23 that pumps a liquid by centrifugal force.
  • the pump body 21 may be a positive displacement pump or a reciprocating pump such as a diaphragm type or a bellows type.
  • the pump body 21 may be any pump as long as the relationship between the driving speed and the driving force during steady operation is determined.
  • Specific examples of the motor 22 include a rotary synchronous motor, an induction motor, and the like.
  • the power conversion device 30 converts the power of the power supply 91 (primary power) into drive power (secondary power) and supplies it to the motor 22.
  • primary side power and secondary side power may be direct current or alternating current.
  • both the primary side power and the secondary side power are three-phase alternating current.
  • the electrical equipment holding unit 13 is fixed to the motor 22 and holds the power conversion device 30.
  • the electrical device holding unit 13 is a case fixed to the outer periphery of the frame of the motor 22, and holds the power conversion device 30 inside the case.
  • the power conversion device 30 includes a power conversion circuit 40 and a control circuit 100.
  • the power conversion circuit 40 converts the primary side electric power into the secondary side electric power and supplies it to the motor 22.
  • the power conversion circuit 40 includes a rectifier circuit 41, a capacitor 43, an inverter circuit 44, and current sensors 45U, 45V, 45W.
  • the rectifier circuit 41 is, for example, a diode bridge circuit or a PWM converter circuit, and converts the primary side power into DC power and outputs it to the DC bus 42P and 42N.
  • the capacitor 43 smoothes the DC voltage between the DC buses 42P and 42N.
  • the inverter circuit 44 converts the DC power of the DC bus 42P and 42N into secondary power and supplies it to the motor 22.
  • the inverter circuit 44 has a plurality of switching elements 46, and converts DC power into secondary side power by switching on / off of the plurality of switching elements 46.
  • the switching element 46 is, for example, a power MOSFET (Metal Oxide Semiconductor Field Transistor) or an IGBT (Insulated Gate Bipolar Transistor), and switches on / off according to a gate drive signal.
  • the current sensors 45U, 45V, 45W detect the current flowing between the power conversion circuit 40 and the motor 22.
  • the current sensors 45U, 45V, and 45W detect alternating currents of U phase, V phase, and W phase, respectively.
  • the configuration of the power conversion circuit 40 is just an example.
  • the power conversion circuit 40 can be configured in any way as long as the primary side power can be converted into the secondary side power.
  • the power conversion circuit 40 may be a matrix converter that converts the primary side power into the secondary side power without going through the direct current conversion of the power.
  • the power conversion circuit 40 does not have to have the rectifier circuit 41.
  • the power conversion circuit 40 does not have to have the inverter circuit 44.
  • the control circuit 100 causes the secondary side power to follow the control command by the power conversion circuit 40.
  • Making the secondary side power follow the control command includes making a value that correlates with the secondary side power follow the control command.
  • the control circuit 100 causes the power conversion circuit 40 to generate secondary power so that the speed command (control command) follows the rotation speed of the motor 22.
  • the control circuit 100 generates a driving force command value for making the rotation speed of the motor 22 follow the speed command, and a power conversion circuit so as to generate a driving force corresponding to the driving force command value in the motor 22. Let 40 generate secondary power.
  • the control circuit 100 may acquire a speed command from the host controller 300, or may hold a preset speed command internally. Specific examples of the host controller 300 include a programmable logic controller and the like.
  • the control circuit 100 evaluates the amplitude of the driving force of the pump 20 based on the secondary power, and the amplitude threshold value and the driving speed are determined based on the relationship between the amplitude evaluation result and the driving speed of the pump 20. It is configured to further execute setting an amplitude threshold profile indicating the relationship and detecting an abnormality in the pump 20 according to the amplitude evaluation result exceeding the amplitude threshold based on the amplitude threshold profile. ..
  • the control circuit 100 sets an amplitude threshold profile based on the relationship between the amplitude evaluation result (hereinafter, referred to as “normal amplitude”) in a state where no abnormality has occurred in the pump 20 and the driving speed of the pump 20.
  • the driving force of the pump 20 is, for example, the driving force applied to the pump main body 21 by the motor 22.
  • the driving speed of the pump 20 is the driving speed of the pump main body 21 by the motor 22.
  • the control circuit 100 may set the amplitude threshold profile by adding a margin that changes according to the driving speed to the normal amplitude, or multiplys the normal amplitude by a magnification that changes according to the driving speed to set the amplitude threshold profile. You may.
  • the control circuit 100 may set the amplitude threshold profile as discrete data. For example, the control circuit 100 may set a plurality of amplitude threshold values corresponding to a plurality of reference speeds as the amplitude threshold value profile. When the drive speed is located between the two reference speeds, the control circuit 100 may calculate the amplitude threshold value corresponding to the drive speed by interpolating the two amplitude threshold values corresponding to the two reference speeds.
  • the control circuit 100 evaluates the amplitude of the driving force while increasing the driving speed, and sets the driving speed at the time when the increase / decrease tendency of the amplitude evaluation result is reversed according to the increase in the driving speed as the reference speed, thereby performing a plurality of references.
  • the speed may be set and a plurality of amplitude thresholds corresponding to each of the plurality of reference speeds may be set.
  • the control circuit 100 may be configured to acquire force data indicating the driving force based on the secondary power and evaluate the amplitude of the driving force based on the amplitude of the force data.
  • force data is data that uniquely specifies a driving force.
  • Specific examples of the force data include a command value or a detected value (for example, a value detected by the current sensors 45U, 45V, 45W) of the current value flowing between the power conversion circuit 40 and the motor 22.
  • the force data may be a command value (for example, the driving force command value) generated by the control circuit 100 to control the pump 20.
  • the control circuit 100 acquires force data indicating the driving force based on the secondary side electric power, and acquires the force data and a plurality of the force data acquired between a predetermined period before the acquisition of the force data and the acquisition time.
  • the amplitude of the driving force may be evaluated based on the difference from the trend value of the force data.
  • control circuit 100 has a power conversion control unit 111, a data acquisition unit 113, an operation data storage unit 114, and an amplitude calculation unit 115 (amplitude) as functional configurations (hereinafter referred to as “functional blocks”). It has an evaluation unit), a threshold value calculation unit 116, a threshold value storage unit 117, and an abnormality detection unit 118.
  • the power conversion control unit 111 controls the power conversion circuit 40 so that the secondary power follows the control command based on the detected values of the current sensors 45U, 45V, 45W.
  • the power conversion control unit 111 causes the power conversion circuit 40 to generate secondary power so that the rotation speed of the motor 22 is made to follow a speed command acquired from the host controller 300, a preset speed command, or the like.
  • the control circuit 100 generates a driving force command for following the rotation speed of the motor 22 to the speed command, and causes the power conversion circuit 40 to generate a driving force in response to the driving force command. Generate secondary power.
  • the power conversion control unit 111 may execute the power conversion control in the scan mode for setting the amplitude threshold value and the power conversion control in the normal mode for operating the pump 20 for the purpose of pumping the liquid.
  • the power conversion control unit 111 causes the power conversion circuit 40 to generate secondary power so as to make the rotation speed of the motor 22 follow the gradually increasing speed command. Gradually increasing includes gradual increase.
  • the power conversion control unit 111 causes the power conversion circuit 40 to generate secondary power so that the rotation speed of the motor 22 follows the speed command for normal operation.
  • the data acquisition unit 113 acquires the above-mentioned force data and speed data indicating the driving speed.
  • the speed data may be any data as long as it uniquely specifies the driving speed.
  • the data acquisition unit 113 acquires the values detected by the current sensors 45U, 45V, and 45W from the power conversion control unit 111 as force data. Further, the data acquisition unit 113 acquires the value of the speed command from the power conversion control unit 111 as the speed data.
  • the operation data storage unit 114 stores the data acquired by the data acquisition unit 113 in chronological order.
  • the amplitude calculation unit 115 evaluates the driving force based on the force data. For example, the amplitude calculation unit 115 calculates the amplitude of the vibration component of the force data as the evaluation result of the amplitude of the driving force based on the data stored in the operation data storage unit 114. For example, the amplitude calculation unit 115 calculates the amplitude of the vibration component of the force data based on a plurality of force data acquired from a predetermined period before the acquisition of the force data to the acquisition time.
  • the amplitude may be the width from the negative peak to the positive peak, or may be half the width from the negative peak to the positive peak.
  • the vibration component is a vibration component of force data in the steady operation of the pumping device 1.
  • the steady operation means an operating state in which the liquid to be pumped (hereinafter, simply referred to as “liquid”) is filled in the pump main body 21 and the driving speed of the pump 20 substantially matches the target speed.
  • Substantial agreement means that the difference between the drive speed and the target speed is within a negligible margin of error.
  • the amplitude may be obtained, for example, from the difference between the maximum value and the minimum value within a predetermined time, or can be derived by a fast Fourier transform (FFT) or the like.
  • FFT fast Fourier transform
  • the amplitude calculation unit 115 may derive the amplitude of a predetermined frequency component by FFT, or may derive the average value or the maximum value of the amplitude in the frequency component of the predetermined band.
  • the amplitude calculation unit 115 evaluates the amplitude of the driving force by determining the difference between the force data and the trend values of a plurality of force data acquired between a predetermined period before the acquisition of the force data and the acquisition time. It may be calculated as. For example, the amplitude calculation unit 115 calculates the trend value by performing low-pass type filtering using the past force data on the latest force data in the operation data storage unit 114.
  • low-pass type filtering include finite impulse response type filtering.
  • the amplitude calculation unit 115 does not necessarily have to use the latest force data for calculating the trend value, and may calculate the trend value based only on the past force data.
  • the above X [k] may be force data acquired several times (for example, one) before the latest.
  • the threshold value calculation unit 116 is based on the relationship between the amplitude evaluation result (the above-mentioned "normal amplitude") and the driving speed of the pump 20 (hereinafter, referred to as "normal amplitude profile") in a state where no abnormality has occurred in the pump 20.
  • the above amplitude threshold profile is set.
  • the threshold storage unit 117 stores the amplitude threshold profile set by the threshold calculation unit 116. After the amplitude threshold profile is stored once, the same profile may be diverted to another power conversion device 30 of the same model. For example, the amplitude threshold profile stored in the threshold storage unit 117 may be copied to the threshold storage unit 117 of another power conversion device 30.
  • the threshold value calculation unit 116 adds a predetermined margin to the normal amplitude profile to set the amplitude threshold profile.
  • the threshold value calculation unit 116 may set the amplitude threshold value profile by adding a margin that changes according to the driving speed to the normal amplitude profile.
  • the amplitude threshold profile is set so that the difference between the amplitude threshold and the normal amplitude changes according to the driving speed.
  • the margin may be set so that the difference between the amplitude threshold value and the normal amplitude increases as the driving speed increases, or the amplitude threshold value and the normal amplitude increase as the normal amplitude increases. It may be set so that the difference between the two is large.
  • the threshold value calculation unit 116 may set the amplitude threshold value profile by multiplying the normal amplitude profile by a predetermined magnification.
  • the threshold value calculation unit 116 may set the amplitude threshold value profile by multiplying the normal amplitude profile by a magnification that changes according to the driving speed.
  • the amplitude threshold profile is set so that the magnification of the amplitude threshold with respect to the normal amplitude changes according to the driving speed.
  • the above-mentioned magnification may be set so as to increase as the driving speed increases, or may be set so as to increase as the normal amplitude increases.
  • the threshold value calculation unit 116 may set a plurality of amplitude threshold values corresponding to a plurality of reference speeds as the amplitude threshold value profile.
  • FIG. 3 is a graph showing a setting example of the amplitude threshold profile.
  • Line L01 is a normal amplitude profile. As illustrated in line L01, when the normal amplitude profile is convex in the negative direction of the amplitude, the threshold value calculation unit 116 may set the amplitude threshold profile so as to be convex in the negative direction of the amplitude. ..
  • the threshold value calculation unit 116 calculates the amplitude threshold values P01, P02, and P03 by adding a predetermined margin to the amplitude threshold values corresponding to each of the plurality of reference speeds V01, V02, and V03.
  • FIG. 3A exemplifies a case where the margin is constant
  • FIG. 3B shows a case where the margin is set so as to increase as the driving speed increases. Illustrate.
  • the threshold value calculation unit 116 may calculate the amplitude threshold values P01, P02, and P03 by multiplying the amplitude threshold values corresponding to each of the plurality of reference speeds V01, V02, and V03 by a predetermined magnification.
  • FIG. 3C illustrates a case where the magnification is set so as to increase as the driving speed increases.
  • the amplitude threshold value corresponding to the drive speed is set by linear interpolation of the two amplitude threshold values corresponding to the two reference speeds.
  • setting the amplitude thresholds P01, P02, P03 corresponds to setting the amplitude threshold profile of the line L02 connecting them with a straight line or an approximate curve. ..
  • the threshold value calculation unit 116 is a drive speed when the increase / decrease tendency of the normal amplitude is reversed according to the increase in the drive speed in the process of gradually increasing the drive speed by setting the control command of the scan mode described above (hereinafter, “reversal speed”). ”)
  • reversal speed As a reference speed, at least one of a plurality of reference speeds may be set.
  • the threshold value calculation unit 116 sets the minimum speed of a predetermined speed range as the reference speed V01, the maximum speed of the speed range as the reference speed V03, and the reverse speed as the reference speed V02.
  • the speed range is preset based on the range of the speed command in the control command setting of the normal mode.
  • the reversal speed may be the speed at the moment when the increase / decrease tendency reverses, or may be the speed immediately before or immediately after the moment.
  • the threshold value calculation unit 116 may use the speed at the moment when the reversal of the increase / decrease tendency is detected as the reversal speed.
  • the reversal of the increasing / decreasing tendency is detected later than the moment when the reversal of the increasing / decreasing tendency occurs. Therefore, the threshold value calculation unit 116 may set the speed before a predetermined time from the moment when the reversal of the increase / decrease tendency is detected as the reversal speed.
  • the abnormality detection unit 118 detects an abnormality in the pump 20 according to the amplitude evaluation result exceeding the amplitude threshold value based on the amplitude threshold value profile. For example, the abnormality detection unit 118 sets an amplitude threshold value (hereinafter, referred to as “current amplitude threshold value”) based on the speed data acquired by the data acquisition unit 113 and the amplitude threshold value profile stored in the threshold value storage unit 117. The anomaly detection unit 118 compares the amplitude evaluation result calculated by the amplitude calculation unit 115 (hereinafter referred to as “current amplitude”) with the current amplitude threshold value, and the current amplitude exceeds the current amplitude threshold value. If so, the abnormality of the pump 20 is detected. The abnormality detection unit 118 may output the abnormality detection result to the host controller 300, the display device, or the like.
  • the control circuit 100 is configured to further execute setting a calculation standard of the amplitude threshold value based on the normal amplitude for each drive speed based on the user setting, and calculates the normal amplitude for each drive speed and each drive speed. It may be configured to set the amplitude threshold profile based on the criteria.
  • the control circuit 100 further includes a setting condition acquisition unit 121 and a setting condition storage unit 122.
  • the setting condition acquisition unit 121 acquires the setting condition of the amplitude threshold profile including the above calculation standard.
  • the setting conditions include the minimum speed and the maximum speed of the speed range and the calculation reference within the speed range.
  • Specific examples of the calculation standard include the above margin, the above magnification, and the like.
  • the setting condition acquisition unit 121 displays the setting condition input screen on the setting computer 200, and acquires the setting condition input to the input screen by the user.
  • the setting condition storage unit 122 stores the setting conditions acquired by the setting condition acquisition unit 121.
  • Specific examples of the setting computer 200 include a personal computer having a communication function with the control circuit 100.
  • FIG. 4 is a block diagram illustrating the hardware configuration of the control circuit 100.
  • the control circuit 100 includes one or more processors 191 and a memory 192, a storage 193, an input / output port 194, and a communication port 195.
  • the storage 193 has a computer-readable storage medium, such as a non-volatile semiconductor memory.
  • the secondary side power is made to follow the control command by the power conversion circuit 40 that converts the primary side power into the secondary side power and is supplied to the pump 20, and the pump 20 is driven based on the secondary side power.
  • the memory 192 temporarily stores the program loaded from the storage medium of the storage 193 and the calculation result by the processor 191.
  • the processor 191 constitutes each functional block of the control circuit 100 by executing the above program in cooperation with the memory 192.
  • the input / output port 194 has an input power supply terminal block, and also inputs / outputs electric signals to / from the inverter circuit 44 and the current sensors 45U, 45V, 45W in accordance with a command from the processor 191.
  • the communication port 195 performs information communication with the setting computer 200 and the host controller 300 in accordance with a command from the processor 191.
  • the control circuit 100 is not necessarily limited to the one that configures each function by a program.
  • the control circuit 100 may have at least a part of its functions configured by a dedicated logic circuit or an ASIC (Application Specific Integrated Circuit) that integrates the logic circuit.
  • ASIC Application Specific Integrated Circuit
  • step S01 the setting condition acquisition unit 121 causes the setting computer 200 to display the setting condition input screen.
  • step S02 the setting condition acquisition unit 121 waits for the registration instruction input (for example, clicking the registration button) on the setting condition input screen.
  • step S03 the setting condition acquisition unit 121 acquires the setting condition based on the content input on the setting condition input screen and stores it in the setting condition storage unit 122. This completes the procedure for acquiring the amplitude threshold setting conditions.
  • the control circuit 100 first executes S11, S12, S13, S14, and S15.
  • the power conversion control unit 111 waits for the input of the amplitude threshold profile setting command.
  • the setting command may be input by the host controller 300 or may be directly input to the control circuit 100 by the user.
  • the power conversion control unit 111 sets the speed command to the initial speed.
  • the initial speed is, for example, the minimum speed in the speed range under the setting conditions stored in the setting condition storage unit 122.
  • step S13 the power conversion control unit 111 starts controlling the power conversion circuit 40 so that the secondary power follows the control command based on the detected values of the current sensors 45U, 45V, 45W.
  • step S14 the data acquisition unit 113 acquires the force data and the speed data from the power conversion control unit 111 and stores them in the operation data storage unit 114.
  • step S15 the amplitude calculation unit 115 confirms whether or not the number of force data stored in the operation data storage unit 114 has reached the number required for evaluating the amplitude of the driving force.
  • step S15 If it is determined in step S15 that the number of force data has not reached the number required for evaluating the amplitude of the driving force, the control circuit 100 returns the process to step S14. After that, acquisition and storage of the force data and the speed data are repeated until a number of force data necessary for evaluating the amplitude of the driving force is accumulated in the operation data storage unit 114.
  • step S15 When it is determined in step S15 that the number of force data has reached the number required for evaluating the amplitude of the driving force, the control circuit 100 executes steps S16 and S17.
  • step S16 the amplitude calculation unit 115 evaluates the driving force based on the data stored in the operation data storage unit 114, and calculates the normal amplitude.
  • step S17 the threshold value calculation unit 116 confirms whether the current speed (speed data acquired in the immediately preceding step S14) is the initial speed or the final speed.
  • the final speed is, for example, the maximum speed of the speed range under the setting conditions stored in the setting condition storage unit 122.
  • step S18 the threshold value calculation unit 116 confirms whether or not the increase / decrease tendency is reversed at the current speed.
  • the threshold value calculation unit 116 includes a difference between the current normal amplitude (normal amplitude calculated in the immediately preceding step S16) and the previous normal amplitude (amplitude calculated in the previous step S16), and the previous one. It is determined that the increase / decrease tendency is reversed when the positive / negative is reversed based on the difference between the normal amplitude and the normal amplitude two times before (the amplitude calculated in step S16 two times before).
  • step S17 If it is determined in step S17 that the current speed is the initial speed or the final speed, the control circuit 100 executes step S19.
  • step S19 the threshold value calculation unit 116 sets the current speed as the reference speed.
  • step S21 the threshold value calculation unit 116 sets the previous speed (speed data acquired in the previous step S14) as the reference speed.
  • step S22 the threshold value calculation unit 116 calculates the amplitude threshold value corresponding to the reference speed based on the normal amplitude corresponding to the reference speed and the calculation reference in the setting condition stored in the setting condition storage unit 122, and sets the reference speed as the reference speed. It is stored in the threshold storage unit 117 in association with each other.
  • the normal amplitude corresponding to the reference speed means the normal amplitude calculated by the amplitude calculation unit 115 when the speed data matches the reference speed.
  • step S23 the control circuit 100 executes step S23. If it is determined in step S18 that the increase / decrease tendency is not reversed at the current speed, the control circuit 100 executes step S23 without executing steps S19, S21, and S22.
  • step S23 the power conversion control unit 111 confirms whether or not the current speed is the final speed. If it is determined in step S23 that the current speed is not the final speed, the control circuit 100 executes step S24.
  • step S24 the power conversion control unit 111 changes the speed command. For example, the power conversion control unit 111 adds a predetermined speed-up pitch of the current speed command. After that, the control circuit 100 returns the process to step S14. After that, the amplitude threshold profile setting process is continued until the current speed reaches the final speed.
  • step S23 If it is determined in step S23 that the current speed is the final speed, the control circuit 100 executes step S25.
  • step S25 the power conversion control unit 111 stops the control of the power conversion circuit 40 to make the secondary side power follow the control command. This completes the procedure for setting the amplitude threshold profile.
  • step S31 the power conversion control unit 111 waits for the input of the operation command of the pump 20.
  • the operation command may be input by the host controller 300 or may be directly input to the control circuit 100 by the user.
  • step S32 the power conversion control unit 111 sets the speed command to the normal speed.
  • the normal speed is preset for normal operation.
  • step S33 the power conversion control unit 111 starts controlling the power conversion circuit 40 so that the secondary power follows the control command based on the detected values of the current sensors 45U, 45V, 45W.
  • step S34 the data acquisition unit 113 acquires the force data and the speed data from the power conversion control unit 111 and stores them in the operation data storage unit 114.
  • step S35 the amplitude calculation unit 115 confirms whether or not the number of force data stored in the operation data storage unit 114 has reached the number required for evaluating the amplitude of the driving force.
  • step S35 If it is determined in step S35 that the number of force data has not reached the number required for evaluating the amplitude of the driving force, the control circuit 100 returns the process to step S14. After that, acquisition and storage of the force data and the speed data are repeated until a number of force data necessary for evaluating the amplitude of the driving force is accumulated in the operation data storage unit 114.
  • step S35 When it is determined in step S35 that the number of force data has reached the number required for evaluating the amplitude of the driving force, the control circuit 100 executes steps S36, S37, and S38.
  • step S36 the amplitude calculation unit 115 evaluates the amplitude of the driving force based on the data stored in the operation data storage unit 114.
  • the amplitude evaluation result in step S36 is referred to as "current amplitude”.
  • step S37 the abnormality detection unit 118 sets the amplitude threshold value (hereinafter, referred to as “current amplitude threshold value”) based on the current speed and the amplitude threshold value profile stored in the threshold value storage unit 117.
  • step S38 the abnormality detection unit 118 confirms whether or not the current amplitude exceeds the current amplitude threshold value.
  • step S39 the abnormality detection unit 118 detects the abnormality of the pump 20, and outputs the detection result to the host controller 300, the display device, or the like.
  • step S41 the control circuit 100 executes step S41. If it is determined in step S38 that the current amplitude does not exceed the current amplitude threshold, the control circuit 100 executes step S41 without executing step S39.
  • step S41 the power conversion control unit 111 confirms whether or not there is a stop command for the pump 20. The stop command may be input by the host controller 300 or may be directly input to the control circuit 100 by the user.
  • step S41 If it is determined in step S41 that there is no stop command for the pump 20, the control circuit 100 returns the process to step S14. After that, the power conversion control and the amplitude monitoring are continued until the stop command is input.
  • step S41 If it is determined in step S41 that there is a stop command for the pump 20, the control circuit 100 executes step S42.
  • step S42 the power conversion control unit 111 stops the control of the power conversion circuit 40 to make the secondary side power follow the control command. This completes the pump operation procedure.
  • the power conversion device 30 follows the control command by the power conversion circuit 40 that converts the primary side power into the secondary side power and supplies it to the pump 20, and the power conversion circuit 40.
  • the control circuit 100 includes, and the control circuit 100 evaluates the amplitude of the driving force of the pump 20 based on the secondary power, and is based on the relationship between the evaluation result of the amplitude and the driving speed of the pump 20. Then, setting an amplitude threshold profile showing the relationship between the amplitude threshold and the driving speed, and detecting an abnormality in the pump 20 according to the amplitude evaluation result exceeding the amplitude threshold based on the amplitude threshold profile. It is configured to run further.
  • the amplitude threshold profile is set based on the relationship between the evaluation result and the drive speed, and the pump 20 is abnormal as the amplitude evaluation result exceeds the amplitude threshold based on the amplitude threshold profile. Is detected.
  • the power conversion device 30 performs abnormality detection that achieves both suppression of erroneous detection and improvement of detection sensitivity, it is possible to simplify the configuration for detecting the abnormality of the pump 20.
  • the control circuit 100 is configured to further execute setting a calculation standard of the amplitude threshold value based on the amplitude evaluation result for each drive speed based on the user setting, and further executes the calculation result of the amplitude for each drive speed and the drive.
  • the amplitude threshold profile may be set based on the calculation standard for each velocity. In this case, since the amplitude threshold profile is set based on both the amplitude evaluation result and the user setting, it is possible to perform abnormality detection that more closely matches the user needs.
  • the control circuit 100 may set an amplitude threshold profile by adding a margin that changes according to the driving speed to the amplitude evaluation result. In this case, it is possible to more surely achieve both suppression of erroneous detection and improvement of detection sensitivity.
  • the control circuit 100 may set an amplitude threshold profile by multiplying the amplitude evaluation result by a magnification that changes according to the driving speed. In this case, it is possible to more surely achieve both suppression of erroneous detection and improvement of detection sensitivity.
  • the control circuit 100 sets a plurality of amplitude thresholds corresponding to a plurality of reference speeds as an amplitude threshold profile, and when the drive speed is located between the two reference speeds, the control circuit 100 corresponds to the two reference speeds, respectively.
  • the amplitude threshold value corresponding to the driving speed may be calculated by interpolating the two amplitude threshold values. In this case, the number of data points of the amplitude threshold profile can be reduced.
  • the control circuit 100 evaluates the amplitude of the driving force while increasing the driving speed, and sets the driving speed at the time when the increase / decrease tendency of the evaluation result of the amplitude corresponding to the increase of the driving speed is reversed as the reference speed. At least one of the speeds may be set. In this case, it is possible to achieve both the correspondence of the amplitude threshold profile with the relationship between the amplitude evaluation result and the driving speed and the reduction of the number of data points.
  • the control circuit 100 may acquire force data indicating the driving force based on the secondary power and evaluate the amplitude of the driving force based on the amplitude of the force data. In this case, the amplitude of the driving force can be derived with high reliability.
  • the control circuit 100 uses the difference between the driving force and the trend value of the driving force based on a plurality of values of the driving force acquired between a predetermined period before the acquisition of the driving force and the acquisition of the driving force as the amplitude of the driving force. It may be configured to perform further calculations. In this case, the abnormality of the pump 20 can be quickly detected even in a situation where an abnormality suddenly occurs.
  • the amplitude of the driving force of the pump 20 is evaluated based on the power supplied by the power conversion circuit 40 to the pump 20, and the relationship between the amplitude evaluation result and the driving speed of the pump 20. Based on this, an amplitude threshold profile showing the relationship between the amplitude threshold and the driving speed is set, and an abnormality of the pump 20 is detected according to the amplitude evaluation result exceeding the amplitude threshold based on the amplitude threshold profile.
  • the diagnostic device may be provided outside the control circuit 100.
  • the diagnostic device 400 shown in FIG. 8 is configured outside the control circuit 100, and includes a data acquisition unit 113, an operation data storage unit 114, an amplitude calculation unit 115, a threshold value calculation unit 116, and a threshold value storage unit. It has 117, an abnormality detection unit 118, a setting condition acquisition unit 121, and a setting condition storage unit 122.
  • the diagnostic device may be incorporated in the host controller 300.
  • the electric drive target is not limited to the pumping device 1.
  • the electric drive target may be a fan, a stirrer, or the like whose power source is an electric motor. Further, the motor itself may be an electric drive target.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

電力変換装置30は、一次側電力を二次側電力に変換してポンプ20に供給する電力変換回路40と、電力変換回路40により二次側電力を制御指令に追従させる制御回路100と、を備え、制御回路100は、二次側電力に基づいてポンプ20の駆動力の振幅を評価することと、振幅の評価結果と、ポンプ20の駆動速度との関係に基づいて、振幅閾値と駆動速度との関係を示す振幅閾値プロファイルを設定することと、振幅閾値プロファイルに基づく振幅閾値を振幅の評価結果が超えるのに応じてポンプ20の異常を検出することと、を更に実行するように構成されている。

Description

電力変換装置、圧送装置、電力変換方法、プログラム、診断装置及び診断方法
 本開示は、電力変換装置、圧送装置、電力変換方法、プログラム、診断装置及び診断方法に関する。
 特許文献1には、ポンプの駆動用の電動機に出力する電動機電流が、あらかじめ設定した電動機無負荷電流値に低下して到達し、かつ、あらかじめ設定した時間が経過しても電動機電流が増加しない場合には、速やかにインバータ装置を停止させると共に、警報を出力する手段を備えるインバータ装置が開示されている。
特開平6-165521号公報
 本開示は、駆動対象の異常を検出する構成の簡素化に有効な電力変換装置、圧送装置、電力変換方法、プログラム、診断装置及び診断方法を提供する。
 本開示の一側面に係る電力変換装置は、一次側電力を二次側電力に変換して駆動対象に供給する電力変換回路と、電力変換回路により二次側電力を制御指令に追従させる制御回路と、を備え、制御回路は、二次側電力に基づいて駆動対象の駆動力の振幅を評価することと、振幅の評価結果と、駆動対象の駆動速度との関係に基づいて、振幅閾値と駆動速度との関係を示す振幅閾値プロファイルを設定することと、振幅閾値プロファイルに基づく振幅閾値を振幅の評価結果が超えるのに応じて駆動対象の異常を検出することと、を更に実行するように構成されている。
 本開示の他の側面に係る圧送装置は、上記の電力変換装置と、駆動対象としての電動式のポンプと、を備える。
 本開示の更に他の側面に係る電力変換方法は、一次側電力を二次側電力に変換して駆動対象に供給する電力変換回路により二次側電力を制御指令に追従させることと、振幅の評価結果と、駆動対象の駆動速度との関係に基づいて、振幅閾値と駆動速度との関係を示す振幅閾値プロファイルを設定することと、振幅閾値プロファイルに基づく振幅閾値を振幅の評価結果が超えるのに応じて駆動対象の異常を検出することと、を含む。
 本開示の更に他の側面に係るプログラムは、一次側電力を二次側電力に変換して駆動対象に供給する電力変換回路により二次側電力を制御指令に追従させることと、二次側電力に基づいて駆動対象の駆動力の振幅を評価することと、振幅の評価結果と、駆動対象の駆動速度との関係に基づいて、振幅閾値と駆動速度との関係を示す振幅閾値プロファイルを設定することと、振幅閾値プロファイルに基づく振幅閾値を振幅の評価結果が超えるのに応じて駆動対象の異常を検出することと、を電力変換装置に実行させるためのプログラムである。
 本開示の更に他の側面に係る診断装置は、電力変換回路が駆動対象に供給する電力に基づいて、駆動対象の駆動力の振幅を評価することと、振幅の評価結果と、駆動対象の駆動速度との関係に基づいて、振幅閾値と駆動速度との関係を示す振幅閾値プロファイルを設定することと、振幅閾値プロファイルに基づく振幅閾値を振幅の評価結果が超えるのに応じて駆動対象の異常を検出することと、を実行する。
 本開示の更に他の側面に係る診断方法は、電力変換回路が駆動対象に供給する電力に基づいて、駆動対象の駆動力の振幅を評価することと、振幅の評価結果と、駆動対象の駆動速度との関係に基づいて、振幅閾値と駆動速度との関係を示す振幅閾値プロファイルを設定することと、振幅閾値プロファイルに基づく振幅閾値を振幅の評価結果が超えるのに応じて駆動対象の異常を検出することと、を含む。
 本開示によれば、駆動対象の異常を検出する構成の簡素化に有効な電力変換装置、圧送装置、電力変換方法、プログラム、診断装置及び診断方法を提供することができる。
圧送装置の側面図である。 電力変換装置の構成を示すブロック図である。 閾値ラインを例示するグラフである。 制御回路のハードウェア構成図である。 閾値の設定条件の取得手順を例示するフローチャートである。 閾値プロファイルの設定手順を例示するフローチャートである。 ポンプの運転手順を例示するフローチャートである。 診断装置の変形例を示すブロック図である。
 以下、実施形態について、図面を参照しつつ詳細に説明する。説明において、同一要素又は同一機能を有する要素には同一の符号を付し、重複する説明を省略する。
〔圧送装置〕
(全体構成)
 図1に示す圧送装置1は、液体を圧送する電動式のポンプ20(駆動対象)と、電力変換装置30と、電装保持部13と、これらを保持するユニットベース2とを備える。
 ポンプ20は、ポンプ本体21と、ポンプ本体21を駆動するモータ22とを有する。ポンプ本体21は、非容積型の回転式ポンプである。例えばポンプ本体21は、渦巻ポンプ等の遠心ポンプであり、遠心力により液体を圧送するインペラ23を有する。なお、ポンプ本体21は、容積型のポンプであってもよいし、ダイヤフラム式又はベローズ式等の往復式ポンプであってもよい。ポンプ本体21は、定常運転時における駆動速度と駆動力との関係が定まるものであればいかなるポンプであってもよい。モータ22の具体例としては、回転型の同期電動機又は誘導電動機等が挙げられる。
 電力変換装置30は、電源91の電力(一次側電力)を駆動電力(二次側電力)に変換してモータ22に供給する。一次側電力及び二次側電力の形態に特に制限はない。一次側電力及び二次側電力は直流であってもよいし、交流であってもよい。一例として、一次側電力及び二次側電力はいずれも三相交流である。
 電装保持部13は、モータ22に固定され、電力変換装置30を保持する。例えば電装保持部13は、モータ22のフレーム外周に固定されたケースであり、その内部に電力変換装置30を保持する。
(電力変換装置)
 図2に示すように、電力変換装置30は、電力変換回路40と、制御回路100とを有する。電力変換回路40は、一次側電力を二次側電力に変換してモータ22に供給する。例えば電力変換回路40は、整流回路41と、コンデンサ43と、インバータ回路44と電流センサ45U,45V,45Wとを有する。
 整流回路41は、例えばダイオードブリッジ回路又はPWMコンバータ回路であり、一次側電力を直流電力に変換して直流母線42P,42Nに出力する。コンデンサ43は、直流母線42P,42N間の直流電圧を平滑化する。インバータ回路44は、直流母線42P,42Nの直流電力を二次側電力に変換してモータ22に供給する。例えばインバータ回路44は、複数のスイッチング素子46を有し、複数のスイッチング素子46のオン・オフを切り替えることにより直流電力を二次側電力に変換する。スイッチング素子46は、例えばパワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor)又はIGBT(Insulated Gate Bipolar Transistor)等であり、ゲート駆動信号に応じてオン・オフを切り替える。
 電流センサ45U,45V,45Wは、電力変換回路40とモータ22との間に流れる電流を検出する。例えば電流センサ45U,45V,45Wは、U相、V相及びW相の交流電流をそれぞれ検出する。
 なお、電力変換回路40の構成はあくまで一例である。電力変換回路40は、一次側電力を二次側電力に変換し得る限りいかようにも構成可能である。例えば電力変換回路40は、電力の直流化を経ることなく一次側電力を二次側電力に変換するマトリクスコンバータであってもよい。また、一次側電力が直流電力であり、二次側電力が交流電力である場合、電力変換回路40は整流回路41を有しなくてもよい。一次側電力が交流電力であり、二次側電力が直流電力である場合、電力変換回路40はインバータ回路44を有しなくてもよい。
 制御回路100は、電力変換回路40により二次側電力を制御指令に追従させる。二次側電力を制御指令に追従させることは、二次側電力に相関する値を制御指令に追従させることを含む。例えば制御回路100は、速度指令(制御指令)にモータ22の回転速度を追従させるように、電力変換回路40に二次側電力を生成させる。一例として、制御回路100は、速度指令にモータ22の回転速度を追従させるための駆動力指令値を生成し、駆動力指令値に応じた駆動力をモータ22に発生させるように、電力変換回路40に二次側電力を生成させる。なお、制御回路100は、速度指令を上位コントローラ300から取得してもよいし、予め設定された速度指令を内部に保持していてもよい。上位コントローラ300の具体例としては、プログラマブルロジックコントローラ等が挙げられる。
 制御回路100は、二次側電力に基づいてポンプ20の駆動力の振幅を評価することと、振幅の評価結果と、ポンプ20の駆動速度との関係に基づいて、振幅閾値と駆動速度との関係を示す振幅閾値プロファイルを設定することと、振幅閾値プロファイルに基づく振幅閾値を振幅の評価結果が超えるのに応じてポンプ20の異常を検出することと、を更に実行するように構成されている。
 例えば制御回路100は、ポンプ20に異常が生じていない状態における振幅の評価結果(以下、「正常振幅」という。)と、ポンプ20の駆動速度との関係に基づいて、振幅閾値プロファイルを設定するポンプ20の駆動力は、例えばモータ22がポンプ本体21に付与する駆動力である。ポンプ20の駆動速度は、モータ22によるポンプ本体21の駆動速度である。
 制御回路100は、駆動速度に応じて変わるマージンを正常振幅に加算して振幅閾値プロファイルを設定してもよいし、駆動速度に応じて変わる倍率を正常振幅に乗算して振幅閾値プロファイルを設定してもよい。
 制御回路100は、振幅閾値プロファイルを離散型データとして設定してもよい。例えば制御回路100は、振幅閾値プロファイルとして、複数の基準速度にそれぞれ対応する複数の振幅閾値を設定してもよい。駆動速度が2つの基準速度の間に位置する場合、制御回路100は、当該2つの基準速度にそれぞれ対応する2つの振幅閾値の補間により当該駆動速度に対応する振幅閾値を算出してもよい。
 制御回路100は、駆動速度を増加させながら駆動力の振幅を評価し、駆動速度の増加に応じた振幅の評価結果の増減傾向が逆転する際の駆動速度を基準速度とすることで複数の基準速度を設定し、複数の基準速度にそれぞれ対応する複数の振幅閾値を設定してもよい。
 制御回路100は、駆動力を示す力データを二次側電力に基づいて取得し、力データの振幅に基づいて駆動力の振幅を評価するように構成されていてもよい。例えば力データは、駆動力を一義的に特定するデータである。力データの具体例としては、電力変換回路40とモータ22との間に流れる電流値の指令値又は検出値(例えば電流センサ45U,45V,45Wによる検出値)が挙げられる。力データは、制御回路100がポンプ20を制御するために生成する指令値(例えば上記駆動力指令値)であってもよい。
 制御回路100は、駆動力を示す力データを二次側電力に基づいて取得し、当該力データと、当該力データの取得時よりも所定期間前から当該取得時までの間に取得した複数の力データのトレンド値との差に基づいて駆動力の振幅を評価してもよい。
 一例として、制御回路100は、機能上の構成(以下、「機能ブロック」という。)として、電力変換制御部111と、データ取得部113と、運転データ記憶部114と、振幅算出部115(振幅評価部)と、閾値算出部116と、閾値記憶部117と、異常検出部118とを有する。
 電力変換制御部111は、電流センサ45U,45V,45Wの検出値に基づいて、二次側電力を制御指令に追従させるように電力変換回路40を制御する。例えば電力変換制御部111は、上位コントローラ300から取得した速度指令、又は予め設定された速度指令等にモータ22の回転速度を追従させるように、電力変換回路40に二次側電力を生成させる。一例として、制御回路100は、速度指令にモータ22の回転速度を追従させるための駆動力指令を生成し、駆動力指令に応じた駆動力をモータ22に発生させるように、電力変換回路40に二次側電力を生成させる。
 電力変換制御部111は、上記振幅閾値を設定するためのスキャンモードの電力変換制御と、液体の圧送を目的としてポンプ20を運転するための通常モードの電力変換制御とを実行してもよい。スキャンモードの電力変換制御において、電力変換制御部111は、徐々に増加する速度指令にモータ22の回転速度を追従させるように、電力変換回路40に二次側電力を生成させる。徐々に増加することは、段階的に増加することを含む。通常モードの電力変換制御において、電力変換制御部111は、通常運転用の速度指令にモータ22の回転速度を追従させるように、電力変換回路40に二次側電力を生成させる。
 データ取得部113は、上記力データと、駆動速度を示す速度データとを取得する。速度データは、駆動速度を一義的に特定するデータであればいかなるデータであってもよい。例えばデータ取得部113は、力データとして、電流センサ45U,45V,45Wによる検出値を電力変換制御部111から取得する。また、データ取得部113は、速度データとして、速度指令の値を電力変換制御部111から取得する。運転データ記憶部114は、データ取得部113が取得したデータを時系列で記憶する。
 振幅算出部115は、力データに基づいて駆動力を評価する。例えば振幅算出部115は、運転データ記憶部114が記憶するデータに基づいて、力データの振動成分の振幅を駆動力の振幅の評価結果として算出する。例えば振幅算出部115は、力データの取得時よりも所定期間前から当該取得時までの間に取得された複数の力データに基づき力データの振動成分の振幅を算出する。
 振幅は、負側のピークから正側のピークまでの幅であってもよいし、負側のピークから正側のピークまでの幅の半分であってもよい。振動成分は、圧送装置1の定常運転における力データの振動成分である。定常運転とは、圧送対象の液体(以下、単に「液体」という。)がポンプ本体21内に充填され、ポンプ20の駆動速度が目標速度に実質的に一致した運転状態を意味する。実質的に一致とは、駆動速度と目標速度との差異が無視可能な誤差範囲内であることを意味する。振幅は、例えば所定時間内の最大値と最小値の差から求めてもよいし、高速フーリエ変換(FFT)等でも導出可能である。例えば振幅算出部115は、FFTにより所定の周波数成分の振幅を導出してもよいし、所定帯域の周波数成分における振幅の平均値又は最大値等を導出してもよい。
 振幅算出部115は、力データと、当該力データの取得時よりも所定期間前から当該取得時までの間に取得された複数の力データのトレンド値との差を駆動力の振幅の評価結果として算出してもよい。例えば振幅算出部115は、運転データ記憶部114内の最新の力データに対して、過去の力データを用いたローパス型のフィルタリングを施してトレンド値を算出する。
 ローパス型のフィルタリングの具体例としては、有限インパルス応答方式のフィルタリングが挙げられる。有限インパルス応答方式の一次フィルタリングを用いる場合、トレンド値は次式により導出される。
Y=A・X[k]+(1-A)・X[k-1]・・・(1)
Y:トレンド値
X[k]:最新の力データ
X[k-1]:一つ前に取得された力データ
A:フィルタ係数
 有限インパルス応答方式の二次フィルタリングを用いる場合、トレンド値は次式により導出される。
Y=A・X[k]+B・X[k-1]+(1-A-B)・X[k-2]・・・(2)
Y:トレンド値
X[k]:最新の力データ
X[k-1]:一つ前に取得された力データ
X[k-2]:二つ前に取得された力データ
A,B:フィルタ係数
 なお、振幅算出部115は、必ずしも最新の力データをトレンド値の算出に用いなくてもよく、過去の力データのみに基づいてトレンド値を算出してもよい。例えば、上記X[k]が、最新に対していくつか(例えば一つ)前に取得された力データであってもよい。
 閾値算出部116は、ポンプ20に異常が生じていない状態における振幅の評価結果(上記「正常振幅」)と、ポンプ20の駆動速度との関係(以下、「正常振幅プロファイル」という。)に基づいて、上記振幅閾値プロファイルを設定する。閾値記憶部117は、閾値算出部116により設定された振幅閾値プロファイルを記憶する。なお、振幅閾値プロファイルをいったん記憶させた後は、同一機種である他の電力変換装置30で、これと同一のプロファイルを流用してもよい。例えば、閾値記憶部117に記憶させた振幅閾値プロファイルを他の電力変換装置30の閾値記憶部117にコピーしてもよい。
 例えば閾値算出部116は、上記正常振幅プロファイルに所定のマージンを加算して上記振幅閾値プロファイルを設定する。閾値算出部116は、駆動速度に応じて変わるマージンを正常振幅プロファイルに加算して振幅閾値プロファイルを設定してもよい。これにより、振幅閾値と正常振幅との差が、駆動速度に応じて変わるように振幅閾値プロファイルが設定される。例えば上記マージンは、駆動速度が大きくなるのに応じて振幅閾値と正常振幅との差が大きくなるように設定されていてもよいし、正常振幅が大きくなるのに応じて振幅閾値と正常振幅との差が大きくなるように設定されていてもよい。
 閾値算出部116は、上記正常振幅プロファイルに所定の倍率を乗算して上記振幅閾値プロファイルを設定してもよい。閾値算出部116は、駆動速度に応じて変わる倍率を正常振幅プロファイルに乗算して振幅閾値プロファイルを設定してもよい。これにより、正常振幅に対する振幅閾値の倍率が、駆動速度に応じて変わるように振幅閾値プロファイルが設定される。例えば上記倍率は、駆動速度が大きくなるのに応じて大きくなるように設定されていてもよいし、正常振幅が大きくなるのに応じて大きくなるように設定されていてもよい。閾値算出部116は、振幅閾値プロファイルとして、複数の基準速度にそれぞれ対応する複数の振幅閾値を設定してもよい。
 図3は、振幅閾値プロファイルの設定例を示すグラフである。ラインL01は正常振幅プロファイルである。ラインL01に例示されるように、正常振幅プロファイルが振幅の負方向に凸となっている場合、閾値算出部116は、振幅の負方向に凸となるように振幅閾値プロファイルを設定してもよい。
 例えば閾値算出部116は、複数の基準速度V01,V02,V03のそれぞれに対応する振幅閾値に所定のマージンを加算して、振幅閾値P01,P02,P03を算出する。図3の(a)は、上記マージンが一定である場合を例示しており、図3の(b)は、駆動速度が大きくなるのに応じて大きくなるようにマージンが設定されている場合を例示している。
 例えば閾値算出部116は、複数の基準速度V01,V02,V03のそれぞれに対応する振幅閾値に所定の倍率を乗算して、振幅閾値P01,P02,P03を算出してもよい。図3の(c)は、駆動速度が大きくなるのに応じて大きくなるように上記倍率が設定されている場合を例示している。
 後述するように、駆動速度が2つの基準速度の間に位置する場合、当該2つの基準速度にそれぞれ対応する2つの振幅閾値の線形補間により当該駆動速度に対応する振幅閾値が設定される。振幅閾値P01,P02,P03がこのように用いられる場合、振幅閾値P01,P02,P03を設定することは、これらを直線又は近似曲線で結んだラインL02の振幅閾値プロファイルを設定することに相当する。
 閾値算出部116は、上述したスキャンモードの制御指令設定により駆動速度が徐々に増加する過程で、駆動速度の増加に応じた正常振幅の増減傾向が逆転する際の駆動速度(以下、「逆転速度」という。)を基準速度とすることで複数の基準速度の少なくとも1つを設定してもよい。
 一例として、図3においては、閾値算出部116が、所定の速度レンジの最小速度を基準速度V01とし、当該速度レンジの最大速度を基準速度V03とし、上記逆転速度を基準速度V02としている。なお、速度レンジは、上記通常モードの制御指令設定における速度指令の範囲等に基づいて予め設定されている。
 逆転速度は、上記増減傾向が逆転する瞬間の速度であってもよいし、当該瞬間の直前又は直後の速度であってもよい。例えば閾値算出部116は、上記増減傾向の逆転を検知した瞬間の速度を逆転速度としてもよい。増減傾向の逆転が検知されるのは、増減傾向の逆転が生じる瞬間よりも遅れる。そこで閾値算出部116は、上記増減傾向の逆転を検知した瞬間より所定時間前の速度を逆転速度としてもよい。
 異常検出部118は、振幅閾値プロファイルに基づく振幅閾値を振幅の評価結果が超えるのに応じてポンプ20の異常を検出する。例えば異常検出部118は、データ取得部113が取得した速度データと、閾値記憶部117が記憶する振幅閾値プロファイルとに基づいて振幅閾値(以下、「現在の振幅閾値」という。)を設定する。異常検出部118は、振幅算出部115が算出した振幅の評価結果(以下、「現在の振幅」という。)と、現在の振幅閾値とを比較し、現在の振幅が現在の振幅閾値を超えている場合にポンプ20の異常を検出する。異常検出部118は、異常検出の結果を上位コントローラ300又は表示デバイス等に出力してもよい。
 制御回路100は、正常振幅に基づく振幅閾値の算出基準を、ユーザ設定に基づいて駆動速度ごとに設定することを更に実行するように構成され、駆動速度ごとの正常振幅と、駆動速度ごとの算出基準とに基づいて、振幅閾値プロファイルを設定するように構成されていてもよい。例えば制御回路100は、設定条件取得部121と、設定条件記憶部122とを更に有する。
 設定条件取得部121は、上記算出基準を含む振幅閾値プロファイルの設定条件を取得する。例えば設定条件は、上記速度レンジの最小速度及び最大速度と、当該速度レンジ内における上記算出基準とを含む。算出基準の具体例としては、上記マージン又は上記倍率等が挙げられる。
 例えば設定条件取得部121は、設定条件の入力画面を設定用コンピュータ200に表示させ、ユーザにより当該入力画面に入力された設定条件を取得する。設定条件記憶部122は、設定条件取得部121が取得した設定条件を記憶する。設定用コンピュータ200の具体例としては、制御回路100との通信機能を有するパーソナルコンピュータが挙げられる。
 図4は、制御回路100のハードウェア構成を例示するブロック図である。図4に示すように、制御回路100は、一つ又は複数のプロセッサ191と、メモリ192と、ストレージ193と、入出力ポート194と、通信ポート195とを含む。ストレージ193は、例えば不揮発性の半導体メモリ等、コンピュータによって読み取り可能な記憶媒体を有する。ストレージ193は、一次側電力を二次側電力に変換してポンプ20に供給する電力変換回路40により二次側電力を制御指令に追従させることと、二次側電力に基づいてポンプ20の駆動力の振幅を評価することと、振幅の評価結果と、ポンプ20の駆動速度との関係に基づいて振幅閾値プロファイルを設定することと、振幅閾値プロファイルに基づく振幅閾値を振幅の評価結果が超えるのに応じてポンプ20の異常を検出することと、を電力変換装置30に実行させるためのプログラムを記憶している。
 メモリ192は、ストレージ193の記憶媒体からロードしたプログラム及びプロセッサ191による演算結果を一時的に記憶する。プロセッサ191は、メモリ192と協働して上記プログラムを実行することで、制御回路100の各機能ブロックを構成する。入出力ポート194は、入力電源の端子台があるほか、プロセッサ191からの指令に従って、インバータ回路44及び電流センサ45U,45V,45Wとの間で電気信号の入出力を行う。通信ポート195は、プロセッサ191からの指令に従って、設定用コンピュータ200及び上位コントローラ300との間で情報通信を行う。
 なお、制御回路100は、必ずしもプログラムにより各機能を構成するものに限られない。例えば制御回路100は、専用の論理回路又はこれを集積したASIC(Application Specific Integrated Circuit)により少なくとも一部の機能を構成してもよい。
〔電力変換手順〕
 続いて、電力変換方法の一例として、制御回路100が実行する制御手順を例示する。この制御手順は、一次側電力を二次側電力に変換してポンプ20に供給する電力変換回路40により二次側電力を制御指令に追従させることと、二次側電力に基づいてポンプ20の駆動力の振幅を評価することと、振幅の評価結果と、ポンプ20の駆動速度との関係に基づいて振幅閾値プロファイルを設定することと、振幅閾値プロファイルに基づく振幅閾値を振幅の評価結果が超えるのに応じてポンプ20の異常を検出することと、を含む。以下、この手順を、振幅閾値プロファイルの設定条件の取得手順と、振幅閾値プロファイルの設定手順と、ポンプ20の運転手順とに分けて詳細に例示する。
(設定条件の取得手順)
 図5に示すように、制御回路100は、ステップS01,S02,S03を実行する。ステップS01では、設定条件取得部121が、設定条件の入力画面を設定用コンピュータ200に表示させる。ステップS02では、設定条件の入力画面において、登録指示入力(例えば登録ボタンのクリック)がなされるのを設定条件取得部121が待機する。ステップS03では、設定条件取得部121が、設定条件の入力画面に入力された内容に基づく設定条件を取得し、設定条件記憶部122に保存する。以上で振幅閾値の設定条件の取得手順が完了する。
(振幅閾値プロファイルの設定手順)
 図6に示すように、制御回路100は、まずS11,S12,S13,S14,S15を実行する。ステップS11では、電力変換制御部111が振幅閾値プロファイルの設定指令の入力を待機する。当該設定指令は、上位コントローラ300により入力されてもよいし、ユーザにより制御回路100に直接入力されてもよい。ステップS12では、電力変換制御部111が速度指令を初期速度に設定する。初期速度は、例えば設定条件記憶部122が記憶する設定条件における速度レンジの最小速度である。
 ステップS13では、電力変換制御部111が、電流センサ45U,45V,45Wの検出値に基づいて、二次側電力を制御指令に追従させるように電力変換回路40を制御することを開始する。ステップS14では、データ取得部113が、上記力データと、上記速度データとを電力変換制御部111から取得し、運転データ記憶部114に保存する。ステップS15では、運転データ記憶部114に保存された力データの数が、駆動力の振幅の評価に必要な数に達したか否かを振幅算出部115が確認する。
 ステップS15において力データの数が駆動力の振幅の評価に必要な数に達していないと判定した場合、制御回路100は処理をステップS14に戻す。以後、駆動力の振幅の評価に必要な数の力データが運転データ記憶部114に蓄積されるまで、力データ及び速度データの取得と保存とが繰り返される。
 ステップS15において力データの数が駆動力の振幅の評価に必要な数に達したと判定した場合、制御回路100はステップS16,S17を実行する。ステップS16では、運転データ記憶部114が記憶するデータに基づいて、振幅算出部115が駆動力を評価し、上記正常振幅を算出する。ステップS17では、現在の速度(直前のステップS14で取得された速度データ)が初期速度であるか最終速度であるかを閾値算出部116が確認する。最終速度は、例えば設定条件記憶部122が記憶する設定条件における速度レンジの最大速度である。
 ステップS17において現在の速度が初期速度でも最終速度でもないと判定した場合、制御回路100はステップS18を実行する。ステップS18では、現在の速度で上記増減傾向が逆転したか否かを閾値算出部116が確認する。例えば閾値算出部116は、現在の正常振幅(直前のステップS16において算出された正常振幅)と一つ前の正常振幅(前回のステップS16において算出された振幅)との差分と、一つ前の正常振幅と二つ前の正常振幅(前々回のステップS16において算出された振幅)との差分とで、正負が逆転している場合に、上記増減傾向が逆転したと判定する。
 ステップS17において現在の速度が初期速度又は最終速度であると判定した場合、制御回路100はステップS19を実行する。ステップS19では、閾値算出部116が現在の速度を上記基準速度にする。
 ステップS18において現在の速度で増減傾向が逆転したと判定した場合、制御回路100はステップS21を実行する。ステップS21では、閾値算出部116が一つ前の速度(前回のステップS14で取得された速度データ)を上記基準速度にする。
 次に、制御回路100は、ステップS22を実行する。ステップS22では、基準速度に対応する正常振幅と、設定条件記憶部122が記憶する設定条件における算出基準とに基づいて、基準速度に対応する振幅閾値を閾値算出部116が算出し、基準速度に対応付けて閾値記憶部117に保存する。なお、基準速度に対応する正常振幅とは、速度データが基準速度に一致しているときに振幅算出部115により算出された正常振幅を意味する。
 次に、制御回路100は、ステップS23を実行する。ステップS18において現在の速度で増減傾向が逆転していないと判定した場合、制御回路100はステップS19,S21,S22を実行することなくステップS23を実行する。ステップS23では、現在の速度が最終速度であるか否かを電力変換制御部111が確認する。ステップS23において現在の速度が最終速度でないと判定した場合、制御回路100はステップS24を実行する。ステップS24では、電力変換制御部111が速度指令を変更する。例えば電力変換制御部111は、現在の速度指令の所定の増速ピッチを加算する。その後、制御回路100は処理をステップS14に戻す。以後、現在の速度が最終速度に達するまで、振幅閾値プロファイルの設定処理が継続される。
 ステップS23において現在の速度が最終速度であると判定した場合、制御回路100はステップS25を実行する。ステップS25では、電力変換制御部111が、電力変換回路40により二次側電力を制御指令に追従させる制御を停止する。以上で振幅閾値プロファイルの設定手順が完了する。
(ポンプの運転手順)
 図7に示すように、制御回路100は、まずステップS31,S32,S33,S34,S35を実行する。ステップS31では、電力変換制御部111がポンプ20の運転指令の入力を待機する。当該運転指令は、上位コントローラ300により入力されてもよいし、ユーザにより制御回路100に直接入力されてもよい。ステップS32では、電力変換制御部111が速度指令を通常速度に設定する。通常速度は、通常運転用に予め設定されている。
 ステップS33では、電力変換制御部111が、電流センサ45U,45V,45Wの検出値に基づいて、二次側電力を制御指令に追従させるように電力変換回路40を制御することを開始する。ステップS34では、データ取得部113が、上記力データと、上記速度データとを電力変換制御部111から取得し、運転データ記憶部114に保存する。ステップS35では、運転データ記憶部114に保存された力データの数が、駆動力の振幅の評価に必要な数に達したか否かを振幅算出部115が確認する。
 ステップS35において力データの数が駆動力の振幅の評価に必要な数に達していないと判定した場合、制御回路100は処理をステップS14に戻す。以後、駆動力の振幅の評価に必要な数の力データが運転データ記憶部114に蓄積されるまで、力データ及び速度データの取得と保存とが繰り返される。
 ステップS35において力データの数が駆動力の振幅の評価に必要な数に達したと判定した場合、制御回路100はステップS36,S37,S38を実行する。ステップS36では、運転データ記憶部114が記憶するデータに基づいて、振幅算出部115が駆動力の振幅を評価する。以下、ステップS36における振幅の評価結果を「現在の振幅」という。
 ステップS37では、現在の速度と、閾値記憶部117が記憶する振幅閾値プロファイルとに基づいて、異常検出部118が振幅閾値(以下、「現在の振幅閾値」という。)を設定する。ステップS38では、現在の振幅が現在の振幅閾値を超えているか否かを異常検出部118が確認する。
 ステップS38において現在の振幅が現在の振幅閾値を超えていると判定した場合、制御回路100はステップS39を実行する。ステップS39では、異常検出部118がポンプ20の異常を検出し、検出結果を上位コントローラ300又は表示デバイス等に出力する。
 次に、制御回路100はステップS41を実行する。ステップS38において現在の振幅が現在の振幅閾値を超えていないと判定した場合、制御回路100はステップS39を実行することなくステップS41を実行する。ステップS41では、ポンプ20の停止指令があるか否かを電力変換制御部111が確認する。当該停止指令は、上位コントローラ300により入力されてもよいし、ユーザにより制御回路100に直接入力されてもよい。
 ステップS41においてポンプ20の停止指令がないと判定した場合、制御回路100は処理をステップS14に戻す。以後、停止指令が入力されるまで、電力変換制御と、振幅の監視とが継続される。
 ステップS41においてポンプ20の停止指令があると判定した場合、制御回路100はステップS42を実行する。ステップS42では、電力変換制御部111が、電力変換回路40により二次側電力を制御指令に追従させる制御を停止する。以上でポンプの運転手順が完了する。
〔本実施形態の効果〕
 以上に説明したように、電力変換装置30は、一次側電力を二次側電力に変換してポンプ20に供給する電力変換回路40と、電力変換回路40により二次側電力を制御指令に追従させる制御回路100と、を備え、制御回路100は、二次側電力に基づいてポンプ20の駆動力の振幅を評価することと、振幅の評価結果と、ポンプ20の駆動速度との関係に基づいて、振幅閾値と駆動速度との関係を示す振幅閾値プロファイルを設定することと、振幅閾値プロファイルに基づく振幅閾値を振幅の評価結果が超えるのに応じてポンプ20の異常を検出することと、を更に実行するように構成されている。
 この電力変換装置30によれば、上記評価結果と駆動速度との関係に基づいて振幅閾値プロファイルが設定され、振幅閾値プロファイルに基づく振幅閾値を振幅の評価結果が超えるのに応じてポンプ20の異常が検出される。これにより、駆動力の振幅が大きい駆動速度における異常の誤検出を抑制しつつ、駆動力の振幅が小さい駆動速度における異常の検出感度を向上させることができる。このように、誤検出の抑制と検出感度の向上とを両立した異常検出を電力変換装置30が行うことによって、ポンプ20の異常を検出する構成の簡素化が可能となる。
 制御回路100は、振幅の評価結果に基づく振幅閾値の算出基準を、ユーザ設定に基づいて駆動速度ごとに設定することを更に実行するように構成され、駆動速度ごとの振幅の評価結果と、駆動速度ごとの算出基準とに基づいて、振幅閾値プロファイルを設定してもよい。この場合、振幅の評価結果と、ユーザ設定との両方に基づいて振幅閾値プロファイルが設定されるので、よりユーザニーズに合致した異常検出を行うことが可能となる。
 制御回路100は、駆動速度に応じて変わるマージンを振幅の評価結果に加算して振幅閾値プロファイルを設定してもよい。この場合、誤検出の抑制と検出感度の向上との両立をより確実に図ることができる。
 制御回路100は、駆動速度に応じて変わる倍率を振幅の評価結果に乗算して振幅閾値プロファイルを設定してもよい。この場合、誤検出の抑制と検出感度の向上との両立をより確実に図ることができる。
 制御回路100は、振幅閾値プロファイルとして、複数の基準速度にそれぞれ対応する複数の振幅閾値を設定し、駆動速度が2つの基準速度の間に位置する場合には、当該2つの基準速度にそれぞれ対応する2つの振幅閾値の補間により当該駆動速度に対応する振幅閾値を算出してもよい。この場合、振幅閾値プロファイルのデータ点数を削減することができる。
 制御回路100は、駆動速度を増加させながら駆動力の振幅を評価し、駆動速度の増加に応じた振幅の評価結果の増減傾向が逆転する際の駆動速度を基準速度とすることで複数の基準速度の少なくとも1つを設定してもよい。この場合、振幅の評価結果と駆動速度との関係に振幅閾値プロファイルを対応させることと、上記データ点数の削減との両立を図ることができる。
 制御回路100は、駆動力を示す力データを二次側電力に基づいて取得し、力データの振幅に基づいて駆動力の振幅を評価してもよい。この場合、駆動力の振幅を高い信頼性で導出することができる。
 制御回路100は、駆動力当該値の取得時よりも所定期間前から当該取得時までの間に取得された駆動力の複数の値に基づく駆動力のトレンド値との差を駆動力の振幅として算出することを更に実行するように構成されていてもよい。この場合、異常が突発した状況等においても、ポンプ20の異常を迅速に検出し得る。
 以上、実施形態について説明したが、本発明は必ずしも上述した形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。上述の実施形態においては、電力変換回路40がポンプ20に供給する電力に基づいて、ポンプ20の駆動力の振幅を評価することと、振幅の評価結果と、ポンプ20の駆動速度との関係に基づいて、振幅閾値と駆動速度との関係を示す振幅閾値プロファイルを設定することと、振幅閾値プロファイルに基づく振幅閾値を振幅の評価結果が超えるのに応じてポンプ20の異常を検出することと、を含む診断手順を実行する診断装置が圧送装置1の制御回路100に組み込まれた構成を例示したが、診断装置は、制御回路100の外部に設けられていてもよい。例えば、図8に示す診断装置400は、制御回路100の外部に構成されており、データ取得部113と、運転データ記憶部114と、振幅算出部115と、閾値算出部116と、閾値記憶部117と、異常検出部118と、設定条件取得部121と、設定条件記憶部122とを有する。診断装置は上位コントローラ300に組み込まれていても良い。また、電動式の駆動対象は圧送装置1に限られない。電動式の駆動対象は、ファン及び撹拌機等、電動式のモータを動力源とするものであればよい。また、モータ自体が電動式の駆動対象であってもよい。
 1…圧送装置、13…電装保持部、20…ポンプ(駆動対象)、30…電力変換装置、40…電力変換回路、100…制御回路、400…診断装置。

Claims (16)

  1.  一次側電力を二次側電力に変換して駆動対象に供給する電力変換回路と、
     前記電力変換回路により前記二次側電力を制御指令に追従させる制御回路と、を備え、
     前記制御回路は、
     前記二次側電力に基づいて前記駆動対象の駆動力の振幅を評価することと、
     前記振幅の評価結果と、前記駆動対象の駆動速度との関係に基づいて、振幅閾値と前記駆動速度との関係を示す振幅閾値プロファイルを設定することと、
     前記振幅閾値プロファイルに基づく前記振幅閾値を前記振幅の評価結果が超えるのに応じて前記駆動対象の異常を検出することと、を更に実行するように構成されている、電力変換装置。
  2.  前記制御回路は、
     前記振幅の評価結果に基づく前記振幅閾値の算出基準を、ユーザ設定に基づいて前記駆動速度ごとに設定することを更に実行するように構成され、
     前記駆動速度ごとの前記振幅の評価結果と、前記駆動速度ごとの前記算出基準とに基づいて、前記振幅閾値プロファイルを設定する、請求項1記載の電力変換装置。
  3.  前記制御回路は、前記駆動速度に応じて変わるマージンを前記振幅の評価結果に加算して前記振幅閾値プロファイルを設定する、請求項1又は2記載の電力変換装置。
  4.  前記制御回路は、前記駆動速度に応じて変わる倍率を前記振幅の評価結果に乗算して前記振幅閾値プロファイルを設定する、請求項1又は2記載の電力変換装置。
  5.  前記制御回路は、前記振幅閾値プロファイルとして、複数の基準速度にそれぞれ対応する複数の振幅閾値を設定し、前記駆動速度が2つの前記基準速度の間に位置する場合には、当該2つの前記基準速度にそれぞれ対応する2つの前記振幅閾値の補間により当該駆動速度に対応する振幅閾値を算出する、請求項1~4のいずれか一項記載の電力変換装置。
  6.  前記制御回路は、前記駆動速度を増加させながら前記駆動力の振幅を評価し、前記駆動速度の増加に応じた前記振幅の評価結果の増減傾向が逆転する際の前記駆動速度を基準速度とすることで前記複数の基準速度の少なくとも1つを設定する、請求項5記載の電力変換装置。
  7.  前記制御回路は、前記駆動力を示す力データを前記二次側電力に基づいて取得し、前記力データの振幅に基づいて前記駆動力の振幅を評価する、請求項1~6のいずれか一項記載の電力変換装置。
  8.  前記制御回路は、前記駆動力を示す力データ前記二次側電力に基づいて取得し、当該力データと、当該力データの取得時よりも所定期間前から当該取得時までの間に取得した複数の前記力データのトレンド値との差に基づいて前記駆動力の振幅を評価する、請求項1~6のいずれか一項記載の電力変換装置。
  9.  請求項1~8のいずれか一項記載の電力変換装置と、
     前記駆動対象としての電動式のポンプと、を備える圧送装置。
  10.  前記ポンプに固定され、前記電力変換装置を保持する電装保持部を更に備える、請求項9記載の圧送装置。
  11.  一次側電力を二次側電力に変換して駆動対象に供給する電力変換回路により前記二次側電力を制御指令に追従させることと、
     前記二次側電力に基づいて前記駆動対象の駆動力の振幅を評価することと、
     前記振幅の評価結果と、前記駆動対象の駆動速度との関係に基づいて、振幅閾値と前記駆動速度との関係を示す振幅閾値プロファイルを設定することと、
     前記振幅閾値プロファイルに基づく前記振幅閾値を前記振幅の評価結果が超えるのに応じて前記駆動対象の異常を検出することと、を含む電力変換方法。
  12.  一次側電力を二次側電力に変換して駆動対象に供給する電力変換回路により前記二次側電力を制御指令に追従させることと、
     前記二次側電力に基づいて前記駆動対象の駆動力の振幅を評価することと、
     前記振幅の評価結果と、前記駆動対象の駆動速度との関係に基づいて、振幅閾値と前記駆動速度との関係を示す振幅閾値プロファイルを設定することと、
     前記振幅閾値プロファイルに基づく前記振幅閾値を前記振幅の評価結果が超えるのに応じて前記駆動対象の異常を検出することと、を電力変換装置に実行させるためのプログラム。
  13.  電力変換回路が駆動対象に供給する電力に基づいて、前記駆動対象の駆動力の振幅を評価することと、
     前記振幅の評価結果と、前記駆動対象の駆動速度との関係に基づいて、振幅閾値と前記駆動速度との関係を示す振幅閾値プロファイルを設定することと、
     前記振幅閾値プロファイルに基づく前記振幅閾値を前記振幅の評価結果が超えるのに応じて前記駆動対象の異常を検出することと、を実行する診断装置。
  14.  制御回路が駆動対象を制御するために生成する指令値に基づいて、前記駆動対象の駆動力の振幅を評価することと、
     前記振幅の評価結果と、前記駆動対象の駆動速度との関係に基づいて、振幅閾値と前記駆動速度との関係を示す振幅閾値プロファイルを設定することと、
     前記振幅閾値プロファイルに基づく前記振幅閾値を前記振幅の評価結果が超えるのに応じて前記駆動対象の異常を検出することと、を実行する診断装置。
  15.  電力変換回路が駆動対象に供給する電力に基づいて、前記駆動対象の駆動力の振幅を評価することと、
     前記振幅の評価結果と、前記駆動対象の駆動速度との関係に基づいて、振幅閾値と前記駆動速度との関係を示す振幅閾値プロファイルを設定することと、
     前記振幅閾値プロファイルに基づく前記振幅閾値を前記振幅の評価結果が超えるのに応じて前記駆動対象の異常を検出することと、を含む診断方法。
  16.  制御回路が駆動対象を制御するために生成する指令値に基づいて、前記駆動対象の駆動力の振幅を評価することと、
     前記振幅の評価結果と、前記駆動対象の駆動速度との関係に基づいて、振幅閾値と前記駆動速度との関係を示す振幅閾値プロファイルを設定することと、
     前記振幅閾値プロファイルに基づく前記振幅閾値を前記振幅の評価結果が超えるのに応じて前記駆動対象の異常を検出することと、を含む診断方法。
PCT/JP2020/018340 2019-07-09 2020-04-30 電力変換装置、圧送装置、電力変換方法、プログラム、診断装置及び診断方法 WO2021005873A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080047861.9A CN114073001A (zh) 2019-07-09 2020-04-30 电力转换装置、压送装置、电力转换方法、程序、诊断装置以及诊断方法
JP2021530499A JP7276453B2 (ja) 2019-07-09 2020-04-30 電力変換装置、圧送装置、電力変換方法、プログラム、診断装置及び診断方法
EP20835984.4A EP3998701A4 (en) 2019-07-09 2020-04-30 POWER CONVERSION DEVICE, PRESSURE FEED DEVICE, POWER CONVERSION METHOD, PROGRAM, DIAGNOSTIC DEVICE AND DIAGNOSTIC METHOD
US17/647,392 US11855523B2 (en) 2019-07-09 2022-01-07 Power conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019127534 2019-07-09
JP2019-127534 2019-07-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/647,392 Continuation US11855523B2 (en) 2019-07-09 2022-01-07 Power conversion device

Publications (1)

Publication Number Publication Date
WO2021005873A1 true WO2021005873A1 (ja) 2021-01-14

Family

ID=74113989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018340 WO2021005873A1 (ja) 2019-07-09 2020-04-30 電力変換装置、圧送装置、電力変換方法、プログラム、診断装置及び診断方法

Country Status (5)

Country Link
US (1) US11855523B2 (ja)
EP (1) EP3998701A4 (ja)
JP (1) JP7276453B2 (ja)
CN (1) CN114073001A (ja)
WO (1) WO2021005873A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06165521A (ja) 1992-11-18 1994-06-10 Toshiba Corp インバータ装置
JPH09100901A (ja) * 1995-10-06 1997-04-15 Hitachi Ltd エンジンパワートレイン制御装置及び制御方法
JP2013106377A (ja) * 2011-11-10 2013-05-30 Fuji Electric Co Ltd 電力変換装置、および過電流保護回路
JP2015081693A (ja) * 2013-10-21 2015-04-27 日立アプライアンス株式会社 空気調和機
JP2018148669A (ja) * 2017-03-03 2018-09-20 日本電産トーソク株式会社 モータ及び電動オイルポンプ
JP2019028765A (ja) * 2017-07-31 2019-02-21 株式会社安川電機 電力変換装置、サーバ、及びデータ生成方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4647919A (en) * 1983-06-03 1987-03-03 Beckman Instruments, Inc. Method and apparatus for monitoring liquid flow
JP3025421B2 (ja) * 1995-06-14 2000-03-27 三菱電機株式会社 制御システムの異常検知装置
JP4361598B1 (ja) * 2009-03-09 2009-11-11 山洋電気株式会社 センサレス交流電動機の制御装置
JP2014128190A (ja) * 2013-06-18 2014-07-07 Dsp Technology Kk モータ制御装置およびモータ制御方法
JP6159659B2 (ja) * 2013-12-20 2017-07-05 東海旅客鉄道株式会社 電力変換器の制御装置及び電気車
JP6456650B2 (ja) * 2014-10-14 2019-01-23 日立アプライアンス株式会社 モータ制御装置、圧縮機、空気調和機およびプログラム
CN106982016B (zh) * 2016-01-15 2021-11-26 松下知识产权经营株式会社 涡轮压缩机装置
JP6685184B2 (ja) * 2016-06-21 2020-04-22 株式会社 日立パワーデバイス モータ駆動装置およびそれを用いたエアコン室外機
JP6776066B2 (ja) * 2016-09-05 2020-10-28 東芝インフラシステムズ株式会社 インバータ制御装置および電動機駆動システム
JP6487397B2 (ja) * 2016-09-07 2019-03-20 ファナック株式会社 工作機械の制御装置、制御方法及びコンピュータプログラム
CN108426691B (zh) * 2018-03-08 2019-09-06 中国石油大学(北京) 变速旋转机械设备振动状态监测方法及装置
WO2020095450A1 (ja) * 2018-11-09 2020-05-14 株式会社安川電機 電力変換装置、圧送装置、及び制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06165521A (ja) 1992-11-18 1994-06-10 Toshiba Corp インバータ装置
JPH09100901A (ja) * 1995-10-06 1997-04-15 Hitachi Ltd エンジンパワートレイン制御装置及び制御方法
JP2013106377A (ja) * 2011-11-10 2013-05-30 Fuji Electric Co Ltd 電力変換装置、および過電流保護回路
JP2015081693A (ja) * 2013-10-21 2015-04-27 日立アプライアンス株式会社 空気調和機
JP2018148669A (ja) * 2017-03-03 2018-09-20 日本電産トーソク株式会社 モータ及び電動オイルポンプ
JP2019028765A (ja) * 2017-07-31 2019-02-21 株式会社安川電機 電力変換装置、サーバ、及びデータ生成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3998701A4

Also Published As

Publication number Publication date
JPWO2021005873A1 (ja) 2021-01-14
EP3998701A1 (en) 2022-05-18
CN114073001A (zh) 2022-02-18
US11855523B2 (en) 2023-12-26
US20220131493A1 (en) 2022-04-28
JP7276453B2 (ja) 2023-05-18
EP3998701A4 (en) 2023-07-26

Similar Documents

Publication Publication Date Title
JP6824494B1 (ja) 異常診断装置、電力変換装置および異常診断方法
CN108267649B (zh) 压缩机相序检测方法和装置及其启动控制方法和设备
JP6285572B2 (ja) 電力変換装置
US11621629B2 (en) Diagnostic apparatus for electric drive object
WO2021005873A1 (ja) 電力変換装置、圧送装置、電力変換方法、プログラム、診断装置及び診断方法
US20200274477A1 (en) Fault determination apparatus, motor driving system, and failure determination method
JP7355534B2 (ja) 回転機械駆動システムおよび回転機械駆動システムの制御方法
EP2958224A1 (en) Thyristor startup device and method for controlling same
US11933289B2 (en) Selective fluid pumping system
US20150115864A1 (en) Motor control apparatus and method for controlling motor
WO2021111856A1 (ja) 電力変換装置、診断装置及び診断方法
US11777429B2 (en) Control device and failure determination method
JP7449950B2 (ja) 電力変換装置及びそれに用いる予兆診断方法
CN112997390B (zh) 电力转换装置、压送装置、控制方法、诊断装置和方法
JP7370775B2 (ja) 電力変換装置、および電力変換装置の制御方法
JP2012130121A (ja) モータ制御システム
JP6079353B2 (ja) Dcブラシレスモータの制御装置
JP5838895B2 (ja) 回転速度検出装置および圧縮機制御装置
JP2000253690A (ja) 圧縮機用電動機の制御方法とその装置
JP5166112B2 (ja) モータ駆動用インバータ制御装置
JP2019205243A (ja) インバータ装置
JP2022140892A (ja) 電気機器および電気機器の異常判定方法
TW202349853A (zh) 診斷裝置、診斷方法、診斷程式
JP2024083207A (ja) 診断装置、制御装置、電力変換装置、診断方法、プログラム
CN112532124A (zh) 具有变频机制的马达驱动***及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20835984

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021530499

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020835984

Country of ref document: EP

Effective date: 20220209