WO2020262816A1 - 분리막 활성층 형성용 조성물, 분리막의 제조 방법, 분리막 및 수처리 모듈 - Google Patents

분리막 활성층 형성용 조성물, 분리막의 제조 방법, 분리막 및 수처리 모듈 Download PDF

Info

Publication number
WO2020262816A1
WO2020262816A1 PCT/KR2020/005295 KR2020005295W WO2020262816A1 WO 2020262816 A1 WO2020262816 A1 WO 2020262816A1 KR 2020005295 W KR2020005295 W KR 2020005295W WO 2020262816 A1 WO2020262816 A1 WO 2020262816A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation membrane
active layer
composition
forming
formula
Prior art date
Application number
PCT/KR2020/005295
Other languages
English (en)
French (fr)
Inventor
강혜림
최락원
신혜자
이가현
신정규
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US17/609,072 priority Critical patent/US20220226785A1/en
Priority to CN202080033054.1A priority patent/CN113784780B/zh
Publication of WO2020262816A1 publication Critical patent/WO2020262816A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/105Support pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • B01D69/1251In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction by interfacial polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/281Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling by applying a special coating to the membrane or to any module element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/02Hydrophilization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/216Surfactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2182Organic additives
    • B01D2323/21827Salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2182Organic additives
    • B01D2323/21839Polymeric additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/219Specific solvent system
    • B01D2323/22Specific non-solvents or non-solvent system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/40Details relating to membrane preparation in-situ membrane formation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/48Influencing the pH
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/34Molecular weight or degree of polymerisation
    • B01D2325/341At least two polymers of same structure but different molecular weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/007Modular design

Definitions

  • the present specification relates to a composition for forming a separation membrane active layer, a method of manufacturing a separation membrane, a separation membrane manufactured thereby, and a water treatment module.
  • Liquid separation is classified into micro filtration, ultra filtration, nano filtration, reverse osmosis, sedimentation, active transport, and electrodialysis, depending on the pores of the membrane.
  • the nanofilter corresponding to nanofiltration is composed of a porous layer and an active layer, and is a membrane that separates a solvent and a solute by using the surface charge of the separation membrane, the size of the separated ions, and reverse osmosis.
  • the permeation flow rate of the nanofilter and the selective removal rate of ions are used as important indicators for the performance of the membrane, and these performances are greatly influenced by the structure of the active layer produced by interfacial polymerization. Development of a method for improving the performance of such a nanofilter is continuously required.
  • the present specification relates to a composition for forming a separation membrane active layer, a method of manufacturing a separation membrane, a separation membrane manufactured thereby, and a water treatment module.
  • An exemplary embodiment of the present specification includes a compound represented by the following Formula 1 and a compound represented by the following Formula 2,
  • the percentage (a/b) of the compound weight (a) represented by the following Formula 1 to the compound weight (b) represented by the following Formula 2 is 30% to 60%
  • composition for forming a separation membrane active layer having a pH of 11 to 12.7.
  • R1 to R16 are the same as or different from each other, and each independently -CRR'-; Or -NR''-,
  • At least two of R1 to R10 are -NR''-,
  • At least two of R11 to R16 are -NR''-,
  • R, R'and R'' are the same as or different from each other, and each independently hydrogen; Or a substituted or unsubstituted alkyl group.
  • An exemplary embodiment of the present specification is preparing a porous layer
  • the porous layer includes the compound represented by the following Formula 1 and the compound represented by the following Formula 2, and the weight of the compound represented by the following Formula 2 to the compound weight (a) represented by the following Formula 1 It provides a method of manufacturing a separation membrane comprising the step of preparing an active layer using a composition for forming a separation membrane active layer having a percentage (a/b) of 30% to 60% and a pH of 11 to 12.7.
  • R1 to R16 are the same as or different from each other, and each independently -CRR'-; Or -NR''-,
  • At least two of R1 to R10 are -NR''-,
  • At least two of R11 to R16 are -NR''-,
  • R, R'and R'' are the same as or different from each other, and each independently hydrogen; Or a substituted or unsubstituted alkyl group.
  • An exemplary embodiment of the present specification is a separation membrane prepared by the method for manufacturing the separation membrane described above, and a salt removal rate measured under conditions of 2,000 ppm MgSO 4 aqueous solution, pressure 130 psi, temperature 25° C., 4 L/min is 99.7% or more, and permeate flow rate It provides a separation membrane of 21 GFD or more.
  • An exemplary embodiment of the present specification provides a separation membrane manufactured by the above-described method of manufacturing a separation membrane, which satisfies Equation 1 below.
  • Aa means the absorbance value of wavenumber 1640 cm -1 in FT-IR analysis
  • Ab means an absorbance value of 1587 cm -1 wavenumber in FT-IR analysis.
  • an exemplary embodiment of the present specification provides a water treatment module including one or more of the above-described separation membranes.
  • the salt removal rate and permeation flow rate of the separation membrane may be improved.
  • FIG. 1 illustrates a separation membrane according to an exemplary embodiment of the present specification.
  • FIG. 2 illustrates a water treatment module according to an exemplary embodiment of the present specification.
  • the alkyl group may be a straight chain or branched chain, and the number of carbon atoms is not particularly limited, but may be 1 to 30, may be 1 to 20, and preferably 1 to 10.
  • Specific examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n-pentyl , Isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl, n -Heptyl, 1-methylhexyl, cyclopentylmethyl, cyclopent
  • the cycloalkyl group is not particularly limited, but according to an exemplary embodiment, the number of carbon atoms of the cycloalkyl group is 3 to 30. According to another exemplary embodiment, the number of carbon atoms of the cycloalkyl group is 3 to 20. According to another exemplary embodiment, the cycloalkyl group has 3 to 10 carbon atoms. Specifically, there are a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and the like, but are not limited thereto.
  • the alkylene group means that the alkane has two bonding sites.
  • the alkylene group may be linear, branched or cyclic.
  • the number of carbon atoms of the alkylene group is not particularly limited, but is, for example, 1 to 30, specifically 1 to 20, and more specifically 1 to 10 carbon atoms.
  • a cycloalkylene group means that the cycloalkane has two bonding sites.
  • the description of the cycloalkyl group may be applied.
  • An exemplary embodiment of the present specification includes a compound represented by the following formula (1) and a compound represented by the following formula (2), and the weight of the compound represented by the following formula (a) to the weight (b) of the compound represented by the following formula (2) It provides a composition for forming a separator active layer having a percentage (a/b) of 30% to 60% and a pH of 11 to 12.7.
  • R1 to R16 are the same as or different from each other, and each independently -CRR'-; Or -NR''-,
  • At least two of R1 to R10 are -NR''-,
  • At least two of R11 to R16 are -NR''-,
  • R, R'and R'' are the same as or different from each other, and each independently hydrogen; Or a substituted or unsubstituted alkyl group.
  • composition for forming an active layer according to the present specification includes both the compound represented by Formula 1 and the compound represented by Formula 2, the permeation flow rate of the separator is improved due to the increase in pore size included in the active layer. do.
  • the pH of the composition for forming the active layer is 11 to 12.7
  • the salt of the separator due to the principle of neutralization of HCl generated after the reaction of the compound represented by Formula 1 or the compound represented by Formula 2 with an acyl halide compound The removal rate and permeation flow rate can be further improved.
  • the pH of the composition for forming the active layer may be 12 to 12.5.
  • R1 to R16 are the same as or different from each other, and each independently -CRR'-; Or -NR''-.
  • R3, R8, R12, and R15 are -NR''-, and R'' is the same as defined in Formulas 1 and 2.
  • At least two of R1 to R10 are -NR''-.
  • At least two of R11 to R16 are -NR''-.
  • R, R'and R'' are the same as or different from each other, and each independently hydrogen; Or a substituted or unsubstituted alkyl group.
  • R, R'and R'' are the same as or different from each other, and each independently hydrogen; Or a substituted or unsubstituted C 1 to C 30 alkyl group.
  • R, R'and R'' are the same as or different from each other, and each independently hydrogen; Or a substituted or unsubstituted C1-C20 alkyl group.
  • R, R'and R'' are the same as or different from each other, and each independently hydrogen; Or a substituted or unsubstituted C1-C10 alkyl group.
  • R, R'and R'' are each hydrogen.
  • Formula 1 may be represented by the following formula, but is not limited thereto.
  • Formula 2 may be represented by the following formula, but is not limited thereto.
  • each of the compound represented by Formula 1 and the compound represented by Formula 2 is contained in an amount of 0.1% to 0.3% by weight based on the total weight of the composition for forming the active layer.
  • each of the compound represented by Formula 1 and the compound represented by Formula 2 is contained in an amount of 0.11% to 0.25% by weight based on the total weight of the composition for forming the active layer.
  • the compound represented by Formula 1 is 0.11% by weight to 0.21% by weight based on the total weight of the composition for forming the active layer.
  • the compound represented by Formula 2 is 0.14% by weight to 0.25% by weight based on the total weight of the composition for forming the active layer.
  • the permeation flow rate may be improved without a decrease in the salt removal rate.
  • the pH of the composition for forming the active layer of the separation membrane is 11 to 12.7.
  • the active layer polymerization reaction is possible, so that a salt removal rate of 97% or more, preferably 99.7% or more of the separator can be secured.
  • the pH of the composition for forming the active layer is less than 11, polymerization of the active layer does not occur, and when the pH exceeds 12.7, the salt removal rate of the separator decreases significantly to less than 95%.
  • composition for forming the active layer may further include a salt of triethylamine and camphorsulfonic acid.
  • the salt of triethylamine and camphorsulfonic acid in the composition for forming the active layer may be included in 4% to 9% by weight.
  • the salt of triethylamine and camphorsulfonic acid may be included in an amount of 5% to 7% by weight.
  • the active layer-forming composition may contain sodium hydroxide (NaOH) to satisfy the pH range of the active layer-forming composition.
  • NaOH sodium hydroxide
  • An exemplary embodiment of the present specification is a surfactant; Hydrophilic polymer compound; And it provides a composition for forming a separation membrane active layer further comprising a solvent.
  • the surfactant for example, sodium lauryl sulfate (SLS) or sodium dodecyl benzene sulfonate may be used, but the present invention is not limited thereto.
  • the surfactant may be sodium lauryl sulfate (SLS).
  • the surfactant may be included in an amount of 0.05% to 1% by weight in the composition for forming the active layer, based on the total weight of the composition for forming the active layer.
  • the surfactant is included in the above range, there is an effect that the composition for forming an active layer is evenly applied to the surface of the porous layer.
  • the hydrophilic polymer compound includes, for example, polyvinyl alcohol (PVA), polyethylene oxide, polyacrylic acid, and polyethylene glycol, but is not limited thereto.
  • PVA polyvinyl alcohol
  • the hydrophilic polymer compound may be polyvinyl alcohol (PVA).
  • the hydrophilic polymer compound may be included in an amount of 0.05% to 1% by weight in the composition for forming the active layer, based on the total weight of the composition for forming the active layer.
  • the hydrophilic polymer compound is included in the above range, mechanical strength of the active layer can be secured.
  • the solvent may be water, and the balance excluding the amine compound in the composition for forming the active layer may be water.
  • An exemplary embodiment of the present specification is preparing a porous layer; And a compound represented by the following Formula 1 and a compound represented by the following Formula 2 on the porous layer, and the weight of the compound represented by Formula 2 below (b) of the compound weight (a) represented by the following Formula 1 ) To a percentage (a/b) of 30% to 60%, and a pH of 11 to 12.7, a separation membrane manufacturing method comprising the step of preparing an active layer using a composition for forming a separation membrane active layer.
  • R1 to R16 are the same as or different from each other, and each independently -CRR'-; Or -NR''-,
  • At least two of R1 to R10 are -NR''-,
  • At least two of R11 to R16 are -NR''-,
  • R, R'and R'' are the same as or different from each other, and each independently hydrogen; Or a substituted or unsubstituted alkyl group.
  • the step of preparing an active layer using the active layer-forming composition includes interfacial polymerization of the active layer-forming composition and an organic solution containing an acyl halide compound.
  • the active layer-forming composition and the organic solution when the active layer-forming composition and the organic solution are in contact, the amine compound coated on the surface of the support layer and the polyfunctional acyl halide compound react to generate polyamide by interfacial polymerization, and are adsorbed to the support layer to form a thin film. Is formed.
  • the polyamide active layer may be formed through a method such as immersion, spray, or coating.
  • the organic solution containing the acyl halide compound includes an acyl halide compound and an organic solvent.
  • the acyl halide compound is not particularly limited, but, for example, as an aromatic compound having 2 to 3 carboxylic acid halides, trimesoyl chloride (TMC), isophthaloyl It may be a mixture of one or more selected from the group consisting of chloride, terephthaloyl chloride, and mixtures thereof.
  • trimesoyl chloride TMC
  • isophthaloyl It may be a mixture of one or more selected from the group consisting of chloride, terephthaloyl chloride, and mixtures thereof.
  • the acyl halide compound is trimesoyl chloride (TMC).
  • the content of the acyl halide compound may be included in 0.2% to 0.8% by weight based on the total weight of the composition for forming the active layer of the reverse osmosis membrane.
  • the content of the acyl halide compound may be included in an amount of 0.4% to 0.5% by weight.
  • the organic solvent is an aliphatic hydrocarbon solvent, for example, freon and a hydrophobic liquid that does not mix with water such as hexane, cyclohexane, heptane and alkanes having 5 to 12 carbon atoms, for example, alkane having 5 to 12 carbon atoms.
  • a mixture thereof, IsoPar (Exxon), ISOL-C (SK Chem), ISOL-G (Exxon), IsoPar G, etc. may be used, but are not limited thereto.
  • the remainder excluding the acyl halide compound may be the organic solvent.
  • the preparing of the porous layer comprises: preparing a first porous support; And forming a second porous support, which is a coating layer of a polymer material, on the first porous support.
  • the porous layer includes a first porous support and a second porous support.
  • the first porous support is a nonwoven fabric
  • the second porous support is a polysulfone layer
  • a nonwoven fabric may be used as the first porous support.
  • Polyethylene terephthalate may be used as the material of the nonwoven fabric, but is not limited thereto.
  • the thickness of the nonwoven fabric may be 50 ⁇ m to 150 ⁇ m, but is not limited thereto. Preferably, the thickness may be 80 ⁇ m to 120 ⁇ m. When the thickness of the nonwoven fabric satisfies the above range, durability of the gas separation membrane including the porous layer may be maintained.
  • the second porous support may mean that a coating layer of a polymer material is formed on the first porous support.
  • the polymer material include polysulfone, polyethersulfone, polycarbonate, polyethylene oxide, polyimide, polyetherimide, polyetheretherketone, polypropylene, polymethylpentene, polymethylchloride and polyvinylidene fluorine. Ride and the like may be used, but are not necessarily limited thereto.
  • polysulfone may be used as the polymer material. That is, the second porous support is a polysulfone layer.
  • the thickness of the second porous support may be 20 ⁇ m to 200 ⁇ m, but is not limited thereto. Preferably, the thickness may be 40 ⁇ m to 160 ⁇ m. When the thickness of the coating layer satisfies the above range, durability of the separator including the porous layer including the second porous support may be properly maintained.
  • the second porous support may be made of a polymer solution containing the polysulfone.
  • the polymer solution containing polysulfone is, based on the total weight of the polymer solution containing the polysulfone, 10% to 20% by weight of polysulfone solid is added to 80% to 90% by weight of solvent dimethylformamide It may be a homogeneous liquid obtained after melting at 80° C. to 85° C. for 12 hours, but the weight range is not limited to the above range.
  • the second porous support may be formed by a casting method.
  • the casting refers to a solution casting method, and specifically, may refer to a method of dissolving the polymer material in a solvent and then displacing the polymer material on a smooth surface without adhesiveness and then replacing the solvent.
  • the method of substituting the solvent may use a nonsolvent induced phase separation method.
  • a non-solvent induced phase separation method a polymer is dissolved in a solvent to form a homogeneous solution, which is formed into a predetermined shape, and then immersed in a non-solvent. Thereafter, the composition of the polymer solution is changed by diffusion of the non-solvent and the solvent, and the polymer solution is precipitated, thereby forming pores in the portion occupied by the solvent and the non-solvent.
  • the step of preparing the active layer after the step of preparing the active layer, it further includes preparing a protective layer on the active layer.
  • the protective layer is made of a composition for forming a protective layer, and the composition for forming a protective layer includes polyvinyl alcohol, polyethylene glycol, or glycerol.
  • the composition for forming the protective layer includes polyvinyl alcohol.
  • the polyvinyl alcohol may be contained in an amount of 0.1% to 3% by weight in the composition for forming a protective layer, based on the total weight of the composition for forming the protective layer.
  • the active layer can be protected from physical damage.
  • composition for forming a protective layer may use water as a solvent, but is not limited thereto.
  • the separation membrane according to the present specification further includes the protective layer, contamination resistance and durability may be improved while minimizing a decrease in permeation flow rate.
  • the step of preparing a protective layer on the active layer may be performed, for example, through a method of immersing the porous layer on which the polyamide active layer is formed in the composition for forming the protective layer, and on the porous layer on which the polyamide active layer is formed. It may be carried out through a method of applying the composition for forming a protective layer described above, but is not limited thereto.
  • the immersion time may be appropriately adjusted in consideration of the thickness of the protective layer to be formed, for example, about 0.1 minutes to 10 hours, preferably about 1 minute to 1 hour.
  • the immersion time is less than 0.1 minutes, the protective layer is not sufficiently formed, and when the immersion time exceeds 10 hours, the thickness of the protective layer becomes too thick and the permeation flow rate of the separator is reduced.
  • the thickness of the protective layer may be 100nm to 300nm. If the thickness of the protective layer is less than 100 nm, the active layer may be easily damaged, and if it exceeds 300 nm, the permeation flow rate and the salt removal rate of the separator may be reduced.
  • An exemplary embodiment of the present specification is a separation membrane prepared by the method for manufacturing the separation membrane described above, and a salt removal rate measured under conditions of 2,000 ppm MgSO 4 aqueous solution, pressure 130 psi, temperature 25° C., 4 L/min is 99.7% or more, and permeate flow rate It provides a separation membrane of 21 GFD or more.
  • the salt removal rate is preferably 99.7% to 99.9%, more preferably 99.77% to 99.85%.
  • the permeate flow rate is preferably 21 GFD to 29 GFD, more preferably 21.16 GFD to 25.85 GFD.
  • the separation membrane according to the present specification satisfies the above-described salt removal rate and permeation flow rate, the separation membrane can be easily used for separating sulfate ions (SO 4 2- ) in seawater.
  • the GFD is a unit of permeate flow rate, and means gallons/ft 2 /day.
  • An exemplary embodiment of the present specification provides a separation membrane manufactured by the above-described method of manufacturing a separation membrane, which satisfies Equation 1 below.
  • Aa means the absorbance value of wavenumber 1640 cm -1 in FT-IR analysis
  • Ab means an absorbance value of 1587 cm -1 wavenumber in FT-IR analysis.
  • the spectrum may be measured using a Cary 660 during FT-IR analysis, but is not limited thereto.
  • it may be 0.31 ⁇ Aa/Ab ⁇ 0.49, and more preferably, it may be 0.32 ⁇ Aa/Ab ⁇ 0.48.
  • the sulfonyl group and the amide group included in the separation membrane According to the content ratio of, the ratio of the thickness of the active layer to the thickness of the porous layer included in the separation membrane can be checked.
  • the sulfone group is included in the polysulfone of the porous layer
  • the amide group is included in the polyamide of the active layer.
  • the interfacial polymerization of the composition for forming the active layer and the organic solution containing an acyl halide compound It means that the thickness of the active layer prepared by this method is thin so that the salt removal rate and the permeation flow rate of the separation membrane intended in the present specification can be satisfied.
  • the Aa/Ab value is less than 0.28, the thickness of the active layer is thin, so that the salt removal rate including the active layer is sharply lowered, and when the Aa/Ab value is greater than 0.50, the thickness of the active layer is thickened and the separator including the active layer The permeate flow rate of is lowered.
  • the separation membrane may be a microfiltration membrane, an ultrafiltration membrane, a nanofiltration membrane, or a reverse osmosis membrane.
  • the separation membrane is a nano filtration membrane.
  • An exemplary embodiment of the present specification provides a water treatment module including at least one separation membrane.
  • the number of reverse osmosis membranes included in the water treatment module may be 1 to 50, 1 to 30, and preferably 24 to 28, but is not limited thereto.
  • the specific type of the water treatment module is not particularly limited, and examples thereof may include a plate & frame module, a tubular module, a hollow & fiber module, or a spiral wound module. .
  • the water treatment module includes the above-described separation membrane, other configurations and manufacturing methods are not particularly limited, and general means known in the art may be employed without limitation.
  • FIG. 1 illustrates a separation membrane according to an exemplary embodiment of the present specification.
  • FIG. 1 is a porous layer including a first porous support 100 and a second porous support 200;
  • the brine 400 is introduced into the active layer 300, and the purified water 500 is discharged through the support 100, and the concentrated water 600 is the active layer ( 300) and is discharged to the outside.
  • the water treatment module includes a central tube 40, a feed spacer 20, a separation membrane 10, a tricot filtration channel 30, and the like.
  • raw water is sent to the water treatment module, raw water is introduced through the supply spacer 20 in the water treatment module.
  • One or more separation membranes 10 extend outwardly from the tube 40 and are wound around the tube 40.
  • the supply spacer 20 forms a passage through which raw water is introduced from the outside, and serves to maintain a gap between one separator 10 and the other separator 10. To this end, the supply spacer 20 is in contact with the one or more separation membranes 10 from the upper and lower sides and is wound around the tube 40.
  • the tricot filtration channel 30 generally has a structure in the form of a fabric, and serves as a channel to create a space through which purified water can flow through the separation membrane 10.
  • the tube 4 is located at the center of the water treatment module and serves as a passage through which filtered water is introduced and discharged. At this time, the outside of the tube 40 is preferably formed with a pore having a predetermined size so that the filtered water is introduced, and at least one is preferably formed.
  • the separation membrane 10 includes the active layer 300 made of the active layer-forming composition, the separation membrane performance of the salt removal rate and/or the flow rate may be improved.
  • a nonwoven fabric was used as the first porous support, and the nonwoven fabric was polyethylene terephthalate, and polyethylene terephthalate having a thickness of 100 ⁇ m was used.
  • a polymer solution containing polysulfone was prepared.
  • the polysulfone-containing polymer solution is, based on the total weight of the polysulfone-containing polymer solution, 15% by weight of polysulfone solid is added to 85% by weight of solvent dimethylformamide at 80 to 85°C. It was a homogeneous liquid obtained after melting for 12 hours.
  • a polymer solution containing the polysulfone in 40 ⁇ m was cast on the first porous support (polyethylene terephthalate) by a slot die coating method to prepare a second porous support (polysulfone layer).
  • a porous layer including a support and a polysulfone layer was prepared.
  • the active layer-forming composition comprises 0.11% by weight of 4,4'-bipiperidine, a compound represented by Formula 1, and 0.25% by weight of piperazine, a compound represented by Formula 2 based on the total weight of the active layer-forming composition. Then, 6% by weight of triethylamine/camphorsulfonic acid was added in the form of a salt, and sodium hydroxide (NaOH) was added to set the pH of the composition for forming the active layer to 12.5.
  • sodium hydroxide NaOH
  • each of a surfactant of sodium lauryl sulfate (SLS) and a hydrophilic polymer compound of polyvinyl alcohol were used based on the total weight of the composition for forming the active layer. 0.5% by weight and 0.5% by weight were added. Then, a composition for forming an active layer was prepared by including the remainder of water.
  • SLS sodium lauryl sulfate
  • hydrophilic polymer compound of polyvinyl alcohol 0.5% by weight and 0.5% by weight were added.
  • the prepared composition for forming an active layer was applied on the porous layer to form an aqueous solution layer. Furthermore, the excess aqueous solution generated during application was removed using an air knife.
  • the organic solution containing an acyl halide compound was applied onto the aqueous solution layer.
  • the organic solution containing the acyl halide compound was prepared by including 0.45% by weight of trimesoyl chloride (TMC) and the remainder of the organic solvent (IsoPar G) based on the total weight of the organic solution containing the acyl halide compound.
  • TMC trimesoyl chloride
  • IsoPar G organic solvent
  • the composition for forming a protective layer was prepared by including 3% by weight of polyvinyl alcohol and the remainder of water based on the total weight of the composition for forming a protective layer.
  • Example 1 the same method as in Example 1, except that the contents of the compound represented by Formula 1 and the compound represented by Formula 2 included in the composition for forming the active layer were applied as described in Table 1 below. To prepare a separator.
  • Example 1 the same method as in Example 1, except that the contents of the compound represented by Formula 1 and the compound represented by Formula 2 included in the composition for forming the active layer were applied as described in Table 1 below. To prepare a separator.
  • Example 1 the content of the compound represented by Formula 1 and the compound represented by Formula 2 included in the composition for forming the active layer was applied as described in Table 1 below, and sodium hydroxide was not added to a pH of 10. Except for the adjustment, a separator was prepared in the same manner as in Example 1.
  • the separators of Examples 1 to 4 maintain a salt removal rate of 99.7% or more, and the permeation flow rate is 21 GFD or more.
  • the separator according to the present specification has excellent performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

본 명세서는 분리막 활성층 형성용 조성물, 분리막의 제조방법, 분리막 및 수처리 모듈을 제공한다.

Description

분리막 활성층 형성용 조성물, 분리막의 제조 방법, 분리막 및 수처리 모듈
본 명세서는 분리막 활성층 형성용 조성물, 분리막의 제조 방법, 이에 의해 제조된 분리막 및 수처리 모듈에 관한 것이다.
본 출원은 2019년 06월 26일에 한국특허청에 제출된 한국 특허 출원 제 10-2019-0076310호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
최근 수질환경의 심각한 오염과 물 부족으로 인해 새로운 수자원 공급원을 개발하는 것이 시급한 당면 과제로 대두되고 있다. 수질환경 오염에 대한 연구는 양질의 생활 및 공업용수, 각종 생활하수 및 산업폐수 처리를 목표로 하고 있으며, 에너지 절약의 장점을 지닌 분리막을 이용한 수 처리 공정에 대한 관심이 고조되고 있다. 또한, 가속화되고 있는 환경 규제의 강화는 분리막 기술의 활성화를 앞당길 것으로 예상된다. 전통적인 수처리 공정으로는 강화되는 규제에 부합하기 힘드나, 분리막 기술의 경우 우수한 처리효율과 안정적인 처리를 보증하기 때문에 향후 수처리 분야의 주도적인 기술로 자리매김할 것으로 예상된다.
액체분리는 막의 기공에 따라 정밀여과(Micro Filtration), 한외여과(UltraFiltration), 나노여과(Nano Filtration), 역삼투(Reverse Osmosis), 침석, 능동수송 및 전기투석 등으로 분류된다.
그 중에서 나노여과에 해당하는 나노필터는 다공성층과 활성층으로 구성되어 있으며, 분리막의 표면 전하 및 분리 이온의 사이즈, 그리고 역삼투 현상을 이용하여 용매와 용질을 분리하는 막이다. 나노필터의 투과 유량과 이온의 선택적 제거율은 막의 성능을 나타내는 중요한 지표로 사용되며, 이러한 성능은 계면 중합에 의해 생성된 활성층의 구조에 의해 큰 영향을 받는다. 이러한 나노필터의 성능을 향상시키기 위한 방법의 개발이 지속적으로 요구되고 있다.
본 명세서는 분리막 활성층 형성용 조성물, 분리막의 제조 방법, 이에 의해 제조된 분리막 및 수처리 모듈에 관한 것이다.
본 명세서의 일 실시상태는 하기 화학식 1로 표시되는 화합물 및 하기 화학식 2로 표시되는 화합물을 포함하고,
하기 화학식 1로 표시되는 화합물 중량 (a)의 하기 화학식 2로 표시되는 화합물 중량 (b)에 대한 백분율(a/b)이 30% 내지 60%이며,
pH가 11 내지 12.7인 분리막 활성층 형성용 조성물을 제공한다.
[화학식 1]
Figure PCTKR2020005295-appb-I000001
[화학식 2]
Figure PCTKR2020005295-appb-I000002
상기 화학식 1 및 2에 있어서,
R1 내지 R16은 서로 같거나 상이하고, 각각 독립적으로 -CRR'-; 또는 -NR''-이고,
R1 내지 R10 중 적어도 두 개는 -NR''-이고,
R11 내지 R16 중 적어도 두 개는 -NR''-이며,
R, R' 및 R''는 서로 같거나 상이하고, 각각 독립적으로 수소; 또는 치환 또는 비치환된 알킬기이다.
본 명세서의 일 실시상태는 다공성층을 준비하는 단계; 및
상기 다공성층 상에 전술한 하기 화학식 1로 표시되는 화합물 및 하기 화학식 2로 표시되는 화합물을 포함하고, 하기 화학식 1로 표시되는 화합물 중량 (a)의 하기 화학식 2로 표시되는 화합물 중량 (b)에 대한 백분율(a/b)이 30% 내지 60%이며, pH가 11 내지 12.7인 분리막 활성층 형성용 조성물을 이용하여 활성층을 제조하는 단계를 포함하는 분리막의 제조방법을 제공한다.
[화학식 1]
Figure PCTKR2020005295-appb-I000003
[화학식 2]
Figure PCTKR2020005295-appb-I000004
상기 화학식 1 및 2에 있어서,
R1 내지 R16은 서로 같거나 상이하고, 각각 독립적으로 -CRR'-; 또는 -NR''-이고,
R1 내지 R10 중 적어도 두 개는 -NR''-이고,
R11 내지 R16 중 적어도 두 개는 -NR''-이며,
R, R' 및 R''는 서로 같거나 상이하고, 각각 독립적으로 수소; 또는 치환 또는 비치환된 알킬기이다.
본 명세서의 일 실시상태는 전술한 분리막의 제조 방법에 의해 제조된 분리막으로, 2,000ppm MgSO4 수용액, 압력 130psi, 온도 25℃, 4L/min 조건에서 측정한 염 제거율이 99.7% 이상이고, 투과 유량이 21 GFD 이상인 분리막을 제공한다.
본 명세서의 일 실시상태는 전술한 분리막의 제조 방법에 의해 제조된 분리막으로, 하기 식 1을 만족하는 것인 분리막을 제공한다.
[식 1]
0.28≤Aa/Ab≤0.50
상기 식 1에서,
Aa는 FT-IR 분석시 파수 1640 cm-1의 흡광도 값을 의미하고,
Ab는 FT-IR 분석시 파수 1587 cm-1의 흡광도 값을 의미한다.
또한, 본 명세서의 일 실시상태는 전술한 분리막을 하나 이상 포함하는 수처리 모듈을 제공한다.
본 명세서의 일 실시상태에 따른 분리막 활성층 형성용 조성물을 이용하여 분리막을 제조하는 경우, 분리막의 염 제거율 및 투과 유량을 향상시킬 수 있다.
도 1은 본 명세서의 일 실시상태에 따른 분리막을 도시한 것이다.
도 2는 본 명세서의 일 실시상태에 따른 수처리 모듈을 도시한 것이다.
본 명세서에서 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본 명세서에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
본 명세서에 있어서, 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 30일 수 있고, 1 내지 20일 수 있으며, 바람직하게는 1 내지 10일 수 있다. 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 시클로펜틸메틸, 시클로헥실메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 시클로알킬기는 특별히 한정되지 않으나, 일 실시상태에 따르면, 상기 시클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 시클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 시클로알킬기의 탄소수는 3 내지 10이다. 구체적으로 시클로프로필기, 시클로부틸기, 시클로펜틸기, 시클로헥실기, 시클로헵틸기, 시클로옥틸기 등이 있으나, 이에 한정되지 않는다.
본 명세서에서 알킬렌기는 알칸(alkane)에 결합위치가 두 개 있는 것을 의미한다. 상기 알킬렌기는 직쇄, 분지쇄 또는 고리쇄일 수 있다. 알킬렌기의 탄소수는 특별히 한정되지 않으나, 예컨대 탄소수 1 내지 30, 구체적으로는 1 내지 20, 더욱 구체적으로는 1 내지 10이다.
본 명세서에 있어서, 시클로알킬렌기는 시클로알칸에 결합위치가 두 개 있는 것을 의미한다. 상기 시클로알칸은 전술한 시클로알킬기에 대한 설명이 적용될 수 있다.
이하 본 명세서에 대하여 더욱 상세하게 설명한다.
본 명세서의 일 실시상태는 하기 화학식 1로 표시되는 화합물 및 하기 화학식 2로 표시되는 화합물을 포함하고, 하기 화학식 1로 표시되는 화합물 중량 (a)의 하기 화학식 2로 표시되는 화합물 중량 (b)에 대한 백분율(a/b)이 30% 내지 60%이며, pH가 11 내지 12.7인 분리막 활성층 형성용 조성물을 제공한다.
[화학식 1]
Figure PCTKR2020005295-appb-I000005
[화학식 2]
Figure PCTKR2020005295-appb-I000006
상기 화학식 1 및 2에 있어서,
R1 내지 R16은 서로 같거나 상이하고, 각각 독립적으로 -CRR'-; 또는 -NR''-이고,
R1 내지 R10 중 적어도 두 개는 -NR''-이고,
R11 내지 R16 중 적어도 두 개는 -NR''-이며,
R, R' 및 R''는 서로 같거나 상이하고, 각각 독립적으로 수소; 또는 치환 또는 비치환된 알킬기이다.
본 명세서에 따른 활성층 형성용 조성물이 상기 화학식 1로 표시되는 화합물 및 상기 화학식 2로 표시되는 화합물을 모두 포함하는 경우, 활성층 내 포함되는 공극 크기(pore size)의 증가로 인하여 분리막의 투과유량이 향상된다.
또한, 상기 화학식 1로 표시되는 화합물 중량 (a)의 상기 화학식 2로 표시되는 화합물 중량 (b)에 대한 백분율(a/b)이 30% 내지 60%인 경우, 분리막의 염 제거율 하락 없이 투과유량을 향상시킬 수 있다.
덧붙여, 상기 활성층 형성용 조성물의 pH가 11 내지 12.7인 경우, 상기 화학식 1로 표시되는 화합물 또는 상기 화학식 2로 표시되는 화합물과 아실 할라이드 화합물의 반응 후 생성되는 HCl의 중화 작용 원리로 인하여 분리막의 염 제거율 및 투과유량을 더 향상시킬 수 있다. 바람직하게 상기 활성층 형성용 조성물의 pH는 12 내지 12.5일 수 있다.
본 명세서의 일 실시상태에 있어서, R1 내지 R16은 서로 같거나 상이하고, 각각 독립적으로 -CRR'-; 또는 -NR''-이다.
본 명세서의 일 실시상태에 있어서, 상기 R3, R8, R12 및 R15는 -NR''-이며, 상기 R''는 상기 화학식 1 및 2에서 정의한 것과 같다.
본 명세서의 일 실시상태에 있어서, R1 내지 R10 중 적어도 두 개는 -NR''-이다.
본 명세서의 일 실시상태에 있어서, R11 내지 R16 중 적어도 두 개는 -NR''-이다.
본 명세서의 일 실시상태에 있어서, R, R' 및 R''는 서로 같거나 상이하고, 각각 독립적으로 수소; 또는 치환 또는 비치환된 알킬기이다.
본 명세서의 일 실시상태에 있어서, R, R' 및 R''는 서로 같거나 상이하고, 각각 독립적으로 수소; 또는 치환 또는 비치환된 탄소수 1 내지 30의 알킬기이다.
본 명세서의 일 실시상태에 있어서, R, R' 및 R''는 서로 같거나 상이하고, 각각 독립적으로 수소; 또는 치환 또는 비치환된 탄소수 1 내지 20의 알킬기이다.
본 명세서의 일 실시상태에 있어서, R, R' 및 R''는 서로 같거나 상이하고, 각각 독립적으로 수소; 또는 치환 또는 비치환된 탄소수 1 내지 10의 알킬기이다.
본 명세서의 일 실시상태에 있어서, R, R' 및 R''는 각각 수소이다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1은 하기 화학식으로 표시될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2020005295-appb-I000007
본 명세서의 일 실시상태에 있어서, 상기 화학식 2는 하기 화학식으로 표시될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2020005295-appb-I000008
본 명세서의 일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물 및 상기 화학식 2로 표시되는 화합물 각각은 상기 활성층 형성용 조성물 총 중량을 기준으로 0.1 중량% 내지 0.3 중량% 포함된다.
바람직하게 상기 화학식 1로 표시되는 화합물 및 상기 화학식 2로 표시되는 화합물 각각은 상기 활성층 형성용 조성물 총 중량을 기준으로 0.11 중량% 내지 0.25 중량% 포함된다.
구체적으로 상기 화학식 1로 표시되는 화합물은 상기 활성층 형성용 조성물 총 중량을 기준으로 0.11 중량% 내지 0.21 중량%이다.
더욱 구체적으로 상기 화학식 2로 표시되는 화합물은 상기 활성층 형성용 조성물 총 중량을 기준으로 0.14 중량% 내지 0.25 중량%이다.
상기 화학식 1로 표시되는 화합물 및 상기 화학식 2로 표시되는 화합물 각각이 상기 중량 범위를 만족하는 경우, 염 제거율 하락 없이 투과 유량을 향상시킬 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 분리막 활성층 형성용 조성물의 pH가 11 내지 12.7이다.
상기 활성층 형성용 조성물이 상기 pH 범위를 만족하는 경우, 활성층 중합 반응이 가능하여 분리막의 염 제거율 97% 이상, 바람직하게는 99.7% 이상 확보가 가능하다.
상기 활성층 형성용 조성물의 pH가 11 미만인 경우, 활성층 중합 반응이 일어나지 않으며, pH가 12.7을 초과하는 경우, 분리막의 염 제거율이 95% 미만으로 크게 하락한다.
상기 활성층 형성용 조성물은 트리에틸아민 및 캠퍼설폰산의 염을 더 포함할 수 있다.
상기 활성층 형성용 조성물 총 중량을 기준으로, 상기 활성층 형성용 조성물 내 상기 트리에틸아민 및 캠퍼설폰산의 염은 4 중량% 내지 9 중량% 포함될 수 있다. 바람직하게 상기 트리에틸아민 및 캠퍼설폰산의 염은 5 중량% 내지 7 중량% 포함될 수 있다.
또한, 상기 활성층 형성용 조성물은 상기 활성층 형성용 조성물의 pH 범위를 만족시키기 위하여, 수산화나트륨(NaOH)을 포함할 수 있다.
본 명세서의 일 실시상태는 계면활성제; 친수성 고분자 화합물; 및 용매를 더 포함하는 것인 분리막 활성층 형성용 조성물을 제공한다.
상기 계면활성제는 예컨대 소듐라우릴설페이트(Sodium lauryl sulfate, SLS) 또는 소듐도데실벤젠설포네이트(sodium dodecyl benzene sulfonate)를 사용할 수 있으나, 이에 한정되는 것은 아니다. 바람직하게 상기 계면활성제는 소듐라우릴설페이트(SLS)일 수 있다.
상기 계면활성제는 상기 활성층 형성용 조성물 총 중량을 기준으로, 상기 활성층 형성용 조성물 내 0.05 중량% 내지 1 중량% 포함될 수 있다. 상기 계면활성제가 상기 범위로 포함되는 경우, 활성층 형성용 조성물이 상기 다공성층 표면에 고르게 도포되는 효과가 있다.
상기 친수성 고분자 화합물은 예컨대, 폴리비닐알코올(poly vinylalcohol, PVA), 폴리에틸렌옥사이드(poly ethylene oxide), 폴리아크릴산(poly acrylic acid), 폴리에틸렌글리콜(poly ethylene glycol)이 있으나, 이에 한정되는 것은 아니다. 바람직하게 상기 친수성 고분자 화합물은 폴리비닐알코올(PVA)일 수 있다.
상기 친수성 고분자 화합물은 상기 활성층 형성용 조성물 총 중량을 기준으로, 상기 활성층 형성용 조성물 내 0.05 중량% 내지 1 중량% 포함될 수 있다. 상기 친수성 고분자 화합물이 상기 범위로 포함되는 경우, 상기 활성층의 기계적 강도를 확보할 수 있다.
상기 용매는 물일 수 있으며, 상기 활성층 형성용 조성물에서 상기 아민 화합물을 제외한 잔부는 물일 수 있다.
본 명세서의 일 실시상태는 다공성층을 준비하는 단계; 및 상기 다공성층 상에 전술한, 하기 화학식 1로 표시되는 화합물 및 하기 화학식 2로 표시되는 화합물을 포함하고, 하기 화학식 1로 표시되는 화합물 중량 (a)의 하기 화학식 2로 표시되는 화합물 중량 (b)에 대한 백분율(a/b)이 30% 내지 60%이며, pH가 11 내지 12.7인 분리막 활성층 형성용 조성물을 이용하여 활성층을 제조하는 단계를 포함하는 분리막 제조방법을 제공한다.
[화학식 1]
Figure PCTKR2020005295-appb-I000009
[화학식 2]
Figure PCTKR2020005295-appb-I000010
상기 화학식 1 및 2에 있어서,
R1 내지 R16은 서로 같거나 상이하고, 각각 독립적으로 -CRR'-; 또는 -NR''-이고,
R1 내지 R10 중 적어도 두 개는 -NR''-이고,
R11 내지 R16 중 적어도 두 개는 -NR''-이며,
R, R' 및 R''는 서로 같거나 상이하고, 각각 독립적으로 수소; 또는 치환 또는 비치환된 알킬기이다.
상기 분리막의 제조방법에 있어서, 상기 화학식 1 및 화학식 2의 정의는 전술한 바와 같다.
본 명세서의 일 실시상태에 있어서, 상기 활성층 형성용 조성물을 이용하여 활성층을 제조하는 단계는 상기 활성층 형성용 조성물과 아실 할라이드 화합물을 포함하는 유기용액의 계면 중합을 포함한다.
구체적으로, 상기 활성층 형성용 조성물과 상기 유기용액의 접촉시, 상기 지지층의 표면에 코팅된 아민 화합물과 다관능성 아실 할라이드 화합물이 반응하면서 계면 중합에 의해 폴리아미드를 생성하고, 상기 지지층에 흡착되어 박막이 형성된다. 상기 접촉 방법에 있어서, 침지, 스프레이 또는 코팅 등의 방법을 통해 상기 폴리아미드 활성층을 형성할 수 있다.
상기 아실할라이드 화합물을 포함하는 유기용액은, 아실 할라이드 화합물 및 유기용매를 포함한다.
본 명세서의 일 실시상태에 따르면, 상기 아실 할라이드 화합물은, 특별히 한정되는 것은 아니나, 예를 들면, 2 내지 3 개의 카르복실산 할라이드를 갖는 방향족 화합물로서, 트리메조일클로라이드(TMC), 이소프탈로일클로라이드, 테레프탈로일클로라이드, 및 이들의 혼합물로 이루어진 군으로부터 선택되는 1종 이상의 혼합물일 수 있다. 바람직하게 상기 아실 할라이드 화합물은 트리메조일클로라이드(TMC)이다.
본 명세서의 일 실시상태에 따르면, 상기 아실 할라이드 화합물의 함량은 상기 역삼투막의 활성층 형성용 조성물 총 중량을 기준으로 0.2 중량% 내지 0.8 중량% 포함될 수 있다. 바람직하게, 상기 아실 할라이드 화합물의 함량은 0.4 중량% 내지 0.5 중량% 포함될 수 있다.
상기 유기용매로는 지방족 탄화수소 용매, 예를 들면, 프레온류와 탄소수가 5 내지 12인 헥산, 사이클로헥산, 헵탄, 알칸과 같은 물과 섞이지 않는 소수성 액체, 예를 들면, 탄소수가 5 내지 12인 알칸과 그 혼합물인 IsoPar(Exxon), ISOL-C(SK Chem), ISOL-G(Exxon), IsoPar G 등이 사용될 수 있으나, 이로써 제한되는 것은 아니다.
본 명세서의 일 실시상태에 따르면, 상기 아실 할라이드 화합물을 포함하는 유기용액에서 상기 아실 할라이드 화합물을 제외한 잔부는 상기 유기용매일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 다공성층을 준비하는 단계는 제1 다공성 지지체를 준비하는 단계; 및 상기 제1 다공성 지지체 상에 고분자 재료의 코팅층인 제2 다공성 지지체를 형성시키는 것을 포함한다.
즉, 상기 다공성층은 제1 다공성 지지체 및 제2 다공성 지지체를 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 제1 다공성지지체는 부직포이고, 상기 제2 다공성 지지체는 폴리설폰층이다.
상기 제1 다공성 지지체로는 부직포를 사용할 수 있다. 상기 부직포의 재료로서는 폴리에틸렌테레프탈레이트가 사용될 수 있으나, 이에 한정되는 것은 아니다.
상기 부직포의 두께는 50 ㎛ 내지 150 ㎛일 수 있으나, 이에 한정되는 것은 아니다. 바람직하게 상기 두께는 80 ㎛ 내지 120 ㎛일 수 있다. 상기 부직포의 두께가 상기 범위를 만족하는 경우, 상기 다공성층을 포함하는 기체 분리막의 내구성이 유지될 수 있다.
상기 제2 다공성 지지체는 상기 제1 다공성 지지체 상에 고분자 재료의 코팅층이 형성된 것을 의미할 수 있다. 상기 고분자 재료로는, 예를 들면, 폴리설폰, 폴리에테르설폰, 폴리카보네이트, 폴리에틸렌옥사이드, 폴리이미드, 폴리에테르이미드, 폴리에테르에테르케톤, 폴리프로필렌, 폴리메틸펜텐, 폴리메틸클로라이드 및 폴리비닐리덴플루오라이드 등이 사용될 수 있으나, 반드시 이들로 제한되는 것은 아니다. 구체적으로, 상기 고분자 재료로서 폴리설폰을 사용할 수 있다. 즉, 상기 제2 다공성 지지체는 폴리설폰층이다.
상기 제2 다공성 지지체의 두께는 20㎛ 내지 200㎛일 수 있으나, 이에 한정되는 것은 아니다. 바람직하게 상기 두께는 40㎛ 내지 160㎛일 수 있다. 상기 코팅층의 두께가 상기 범위를 만족하는 경우, 상기 제2 다공성 지지체를 포함하는 다공성층을 포함하는 분리막의 내구성이 적절히 유지될 수 있다.
일 예에 따르면, 상기 제2 다공성 지지체는 상기 폴리설폰이 포함된 고분자 용액으로 제조될 수 있다. 상기 폴리설폰이 포함된 고분자 용액은, 상기 폴리설폰이 포함된 고분자 용액 총 중량을 기준으로, 80 중량% 내지 90 중량%의 용매 디메틸포름아마이드에 10 중량% 내지 20 중량%의 폴리설폰 고형을 넣고 80 ℃ 내지 85 ℃에서 12시간동안 녹인 후 얻은 균질(homogeneous)한 액상일 수 있으나, 상기 중량 범위가 상기 범위로 한정되는 것은 아니다.
상기 폴리설폰이 포함된 고분자 용액의 총 중량을 기준으로 상기 범위의 폴리설폰 고형이 포함되는 경우, 상기 제2 다공성 지지체를 포함하는 분리막의 내구성이 적절히 유지될 수 있다.
상기 제2 다공성 지지체는 캐스팅의 방법으로 형성될 수 있다. 상기 캐스팅은 용액 주조(casting) 방법을 의미하는 것으로, 구체적으로, 상기 고분자 재료를 용매에 용해시킨 후, 접착성이 없는 평활한 표면에 전개시킨 후 용매를 치환시키는 방법을 의미할 수 있다. 구체적으로, 상기 용매로 치환시키는 방법은 비용매 유도 상분리법(nonsolvent induced phase separation)을 이용할 수 있다. 상기 비용매 유도 상분리법이란, 고분자를 용매에 용해시켜 균일 용액을 만들고 이를 일정형태로 성형시킨 후 비용매에 침지시킨다. 이후 비용매와 용매의 확산에 의한 상호교환이 이루어지며 고분자 용액의 조성이 변하게 되고, 고분자의 침전이 일어나면서 용매와 비용매가 차지하던 부분을 기공으로 형성시키는 방법이다.
본 명세서의 일 실시상태에 있어서, 상기 활성층을 제조하는 단계 이후에 상기 활성층 상에 보호층을 제조하는 단계를 더 포함한다.
상기 보호층은 보호층 형성용 조성물로 제조되며, 상기 보호층 형성용 조성물은 폴리비닐알코올(polyvinyl alcohol), 폴리에틸렌글리콜(poly ethylene glycol), 또는 글리세롤(glycerol)을 포함한다. 바람직하게, 상기 보호층 형성용 조성물은 폴리비닐알코올을 포함한다.
상기 폴리비닐알코올은 상기 보호층 형성용 조성물 총 중량을 기준으로, 상기 보호층 형성용 조성물 내 0.1 중량% 내지 3 중량% 포함될 수 있다. 상기 폴리비닐알코올이 상기 범위로 포함되는 경우, 활성층을 물리적인 손상으로부터 보호할 수 있다.
상기 보호층 형성용 조성물은 용매로 물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 따른 분리막이 상기 보호층을 더 포함함으로써, 투과 유량 저하를 최소화하면서도 내오염성 및 내구성을 향상시킬 수 있다.
상기 활성층 상에 보호층을 제조하는 단계는, 예를 들면, 폴리아미드 활성층이 형성된 다공성층을 상기 보호층 형성용 조성물에 침지시키는 방법을 통해 수행될 수 있고, 상기 폴리아미드 활성층이 형성된 다공성층 상에 전술한 보호층 형성용 조성물을 도포하는 방법을 통해 수행될 수 있으나, 이에 제한되지 않는다.
한편, 상기 침지 시간은 형성하고자 하는 보호층의 두께 등을 고려하여 적절하게 조절될 수 있으며, 예를 들면, 0.1 분 내지 10시간 정도, 바람직하게는 1 분 내지 1 시간 정도인 것이 좋다. 침지 시간이 0.1 분 미만일 경우, 보호층이 충분히 형성되지 않으며, 침지 시간이 10 시간을 초과할 경우에는, 보호층 두께가 너무 두꺼워져 분리막의 투과유량이 감소되는 부정적인 영향이 있다.
본 명세서의 일 실시상태에 따르면, 상기 보호층의 두께는 100nm 내지 300nm 일 수 있다. 상기 보호층의 두께가 100nm 미만이면, 활성층이 쉽게 손상될 수 있고, 300nm 초과이면 상기 분리막의 투과 유량 및 염제거율을 감소시킬 수 있다.
본 명세서의 일 실시상태는 전술한 분리막의 제조 방법에 의해 제조된 분리막으로, 2,000ppm MgSO4 수용액, 압력 130psi, 온도 25℃, 4L/min 조건에서 측정한 염 제거율이 99.7% 이상이고, 투과 유량이 21 GFD 이상인 분리막을 제공한다.
상기 염 제거율은 바람직하게 99.7% 내지 99.9%이고, 더욱 바람직하게 99.77% 내지 99.85%이다.
상기 투과 유량은 바람직하게 21 GFD 내지 29 GFD이고, 더욱 바람직하게 21.16 GFD 내지 25.85 GFD이다.
본 명세서에 따른 분리막이 전술한 염 제거율 및 투과 유량을 만족하는 경우, 상기 분리막은 해수 내 황산이온(SO4 2-) 분리를 위해 용이하게 사용할 수 있다.
본 명세서에 있어서, 상기 GFD란 투과 유량의 단위로, gallons/ft2/day를 의미한다.
본 명세서의 일 실시상태는 전술한 분리막의 제조 방법에 의해 제조된 분리막으로, 하기 식 1을 만족하는 것인 분리막을 제공한다.
[식 1]
0.28≤Aa/Ab≤0.50
상기 식 1에서,
Aa는 FT-IR 분석시 파수 1640 cm-1의 흡광도 값을 의미하고,
Ab는 FT-IR 분석시 파수 1587 cm-1의 흡광도 값을 의미한다.
구체적으로, FT-IR 분석시 Cary 660를 이용하여 스펙트럼을 측정할 수 있으나, 이에 제한되는 것은 아니다.
본 명세서의 일 실시상태에 있어서, 바람직하게는 0.31≤Aa/Ab≤0.49일 수 있고, 더욱 바람직하게는 0.32≤Aa/Ab≤0.48일 수 있다.
전술한 분리막의 제조 방법에 의해 제조된 분리막의 FT-IR 분석시 파수 1800 cm-1 내지 1000 cm-1 구간을 분석하면, 상기 분리막에 포함되는 설폰기(sulfonyl group) 및 아미드기(amide group)의 함량 비율에 따라 상기 분리막에 포함되는 상기 다공성층 두께 대비 상기 활성층의 두께 비율을 확인할 수 있다. 상기 설폰기는 상기 다공성층의 폴리설폰에 포함되며, 상기 아미드기는 상기 활성층의 폴리아미드에 포함된다.
상기 식 1의 Aa/Ab 값이 0.28≤Aa/Ab≤0.50의 범위를 만족하는 경우, 상기 다공성층의 두께 대비, 전술한 상기 활성층 형성용 조성물과 아실 할라이드 화합물을 포함하는 유기용액의 계면 중합에 의해 제조된 활성층의 두께가 얇아 본 명세서에서 목적하는 분리막의 염 제거율 및 투과 유량을 만족할 수 있는 것을 의미한다. 상기 Aa/Ab 값이 0.28 미만인 경우, 활성층의 두께가 얇아 상기 활성층을 포함하는 염 제거율이 급격하게 낮아지고, 상기 Aa/Ab 값이 0.50 초과인 경우 활성층의 두께가 두껴워져 상기 활성층을 포함하는 분리막의 투과 유량이 낮아진다.
본 명세서의 일 실시상태에 있어서, 상기 분리막은 정밀 여과막, 한외 여과막, 나노 여과막 또는 역삼투막일 수 있다. 바람직하게 상기 분리막은 나노 여과막이다.
본 명세서의 일 실시상태는 상기 분리막을 하나 이상 포함하는 수처리 모듈을 제공한다.
상기 수처리 모듈에 포함되는 역삼투막은 1 내지 50개일 수 있으며, 1 내지 30개 일 수 있고, 바람직하게는 24 내지 28개 일 수 있으나, 이에 한정되는 것은 아니다.
상기 수처리 모듈의 구체적인 종류는 특별히 제한되지 않으며, 그 예에는 판형(plate & frame) 모듈, 관형(tubular) 모듈, 중공사형(Hollow & Fiber) 모듈 또는 나권형(spiral wound) 모듈 등이 포함될 수 있다.
또한, 상기 수처리 모듈은 전술한 분리막을 포함하는 한, 그 외의 기타 구성 및 제조 방법 등은 특별히 한정되지 않고, 이 분야에서 공지된 일반적인 수단을 제한 없이 채용할 수 있다.
도 1은 본 명세서의 일 실시상태에 따른 분리막을 도시한 것이다. 구체적으로, 도 1은 제1 다공성 지지체(100) 및 제2 다공성 지지체(200)를 포함하는 다공성층; 활성층(300)이 순차적으로 구비된 분리막을 도시한 것으로서, 활성층(300)으로 염수(400)가 유입되어, 정제수(500)가 지지체(100)를 통하여 배출되고, 농축수(600)는 활성층(300)을 통과하지 못하고 외부로 배출된다.
도 2는 본 명세서의 일 실시상태에 따른 수처리 모듈을 도시한 것이다. 구체적으로, 수처리 모듈은 중앙 튜브(40), 공급 스페이서(Feed spacer)(20), 분리막(10), 트리코트 여과수로(30) 등을 포함하여 구성된다. 수처리 모듈에 원수를 흘려 보내주면, 수처리 모듈 내 공급 스페이서(20)를 통해, 원수가 유입된다. 하나 이상의 분리막(10)은 튜브(40)로부터 외측 방향으로 연장되고, 튜브(40) 둘레로 권취되게 된다. 공급 스페이서(20)는 외부로부터 원수가 유입되는 통로를 형성하며, 하나의 분리막(10)과 다른 하나의 분리막(10) 사이의 간격을 유지시키는 역할을 수행한다. 이를 위해, 공급 스페이서(20)는 하나 이상의 분리막(10)과 상측 및 하측에서 접촉하며 튜브(40) 둘레로 권취되게 된다. 트리코트 여과수로(30)는 일반적으로 직물 형태의 구조를 가지며, 분리막(10)을 통해 정제된 물이 흘러나갈 수 있는 공간을 만들어주는 유로 역할을 수행하게 된다. 튜브(4)는 수처리 모듈의 중심에 위치하며, 여과된 물이 유입되어 배출되는 통로 역할을 수행한다. 이 때, 튜브(40) 외측에는 여과된 물이 유입되도록 소정 크기의 공극이 형성되는 것이 바람직하여, 하나 이상 형성되는 것이 바람직하다. 상기 분리막(10)이 상기 활성층 형성용 조성물로 제조된 활성층(300)을 포함함에 따라, 염 제거율 및/또는 유량의 분리막 성능이 향상될 수 있다.
이하, 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.
제조예
실시예 1.
(다공성층의 제조)
제1 다공성 지지체로서 부직포를 사용하였으며, 상기 부직포는 폴리에틸렌테레프탈레이트였고, 두께가 100μm인 폴리에틸렌테레프탈레이트를 사용하였다.
상기 제1 다공성 지지체 상에 제2 다공성 지지체인 폴리설폰층을 제조하기 위하여, 폴리설폰이 포함된 고분자 용액을 제조하였다. 상기 폴리설폰이 포함된 고분자 용액은, 상기 폴리설폰이 포함된 고분자 용액 총 중량을 기준으로, 85 중량%의 용매 디메틸포름아마이드에 15 중량%의 폴리설폰 고형(solid)을 넣고 80 내지 85 ℃에서 12시간동안 녹인 후 얻은 균질(homogeneous)한 액상이었다.
이후, 상기 제1 다공성 지지체(폴리에틸렌테레프탈레이트) 위에 40 μm 로 상기 폴리설폰이 포함된 고분자 용액을 슬롯 다이코팅 방법으로 캐스팅하여, 제2 다공성 지지체(폴리설폰층)을 제조하였다. 이를 통해, 지지체 및 폴리설폰층을 포함하는 다공성층을 제조하였다.
(활성층의 제조)
상기 다공성층 상에 활성층을 제조하기 위해, 활성층 형성용 조성물을 제조하였다. 상기 활성층 형성용 조성물은 상기 활성층 형성용 조성물 총 중량을 기준으로 상기 화학식 1로 표시되는 화합물인 4,4'-비피페리딘 0.11 중량%, 상기 화학식 2로 표시되는 화합물인 피페라진 0.25 중량%을 넣고, 트리에틸아민/캠퍼설폰산을 염 형태로 6 중량%을 첨가하고, 상기 활성층 형성용 조성물의 pH를 12.5로 하기 위하여, 수산화나트륨(NaOH)을 첨가하였다.
또한, 다공성층 표면에 활성층 형성용 조성물을 균일하게 도포하기 위하여 소듐라우릴설페이트(SLS)의 계면활성제와 폴리비닐알코올(polyvinyl alcohol)의 친수성 고분자 화합물 각각을 상기 활성층 형성용 조성물 총 중량을 기준으로 0.5 중량%, 0.5 중량% 첨가하였다. 그리고 잔부의 물을 포함시켜 활성층 형성용 조성물을 제조하였다.
이후, 제조한 상기 활성층 형성용 조성물을 상기 다공성층 상에 도포하여 수용액층을 형성하였다. 나아가, 도포시 발생한 여분의 수용액을 에어 나이프를 이용하여 제거하였다.
상기 수용액층 상에 아실 할라이드 화합물을 포함하는 유기용액을 도포하였다. 상기 아실 할라이드 화합물을 포함하는 유기용액은, 상기 아실 할라이드 화합물을 포함하는 유기용액 총 중량을 기준으로 트리메조일클로라이드(TMC) 0.45 중량% 및 잔부의 유기용매(IsoPar G)를 포함시켜 제조하였다.
그리고, 95℃의 오븐에서 액상 성분이 모두 증발할 때까지 건조한 후, 초순수 증류수(DIW)로 세척하여 분리막을 제조하였다.
세척된 분리막 표면에 보호층 형성용 조성물인 폴리비닐알코올(polyvinyl alcohol) 수용액을 도포한 뒤, 에어 나이프를 이용하여 여분의 수용액을 제거하고, 85 ℃조건에서 액상 성분이 모두 증발할 때까지 건조하여 최종 분리막을 제조하였다. 상기 보호층 형성용 조성물은, 보호층 형성용 조성물 총 중량을 기준으로 3 중량%의 폴리비닐알코올 및 잔부의 물을 포함시켜 제조하였다.
실시예 2 내지 4.
상기 실시예 1에서, 상기 활성층 형성용 조성물에 포함되는 상기 화학식 1로 표시되는 화합물 및 상기 화학식 2로 표시되는 화합물의 함량을 하기 표 1에 기재된 것을 적용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 분리막을 제조하였다.
비교예 1 내지 5.
상기 실시예 1에서, 상기 활성층 형성용 조성물에 포함되는 상기 화학식 1로 표시되는 화합물 및 상기 화학식 2로 표시되는 화합물의 함량을 하기 표 1에 기재된 것을 적용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 분리막을 제조하였다.
비교예 6 내지 9.
상기 실시예 1에서, 상기 활성층 형성용 조성물에 포함되는 상기 화학식 1로 표시되는 화합물 및 상기 화학식 2로 표시되는 화합물의 함량을 하기 표 1에 기재된 것을 적용하고, 수산화나트륨을 첨가하지 않아 pH 10으로 조절한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 분리막을 제조하였다.
화학식 1로 표시되는 화합물(4,4'-비피페리딘)(a)의 중량% 화학식 2로 표시되는 화합물(피페라진)(b)의 중량% a/b 백분율(%) pH
실시예 1 0.11 0.25 30 12.5
실시예 2 0.14 0.21 40 12.5
실시예 3 0.18 0.18 50 12.5
실시예 4 0.21 0.14 60 12.5
비교예 1 0 0.35 0 12.5
비교예 2 0.04 0.32 10 12.5
비교예 3 0.07 0.28 20 12.5
비교예 4 0.26 0.09 75 12.5
비교예 5 0.35 0 100 12.5
비교예 6 0.11 0.25 30 10
비교예 7 0.14 0.21 40 10
비교예 8 0.18 0.18 50 10
비교예 9 0.21 0.14 60 10
실험예
(분리막의 성능 측정)
염 제거율 및 투과 유량 측정
상기 실시예 1 내지 4 및 비교예 1 내지 9에 의하여 제조된 분리막에 대하여, 2,000 ppm의 MgSO4 수용액을 130 psi, 4 L/min의 유량으로 1 시간 가량 장비 운전을 실시하여 안정화된 것을 확인한 후, 25℃에서 10분 간 투과되는 물의 양을 측정하여 투과유량(flux: GFD(gallon/ft2/day))을 계산하고, 전도도 미터(Conductivity Meter)를 사용하여 투과 전과 후의 염 농도를 분석하여 염 제거율(Rejection)을 계산한 결과를 하기 표 2에 기재하였다.
염 제거율(%) 투과 유량(GFD)
실시예 1 99.77 21.16
실시예 2 99.81 25.85
실시예 3 99.85 24.46
실시예 4 99.84 25.14
비교예 1 99.95 16.61
비교예 2 99.87 13.21
비교예 3 99.83 14.41
비교예 4 98.81 32.44
비교예 5 97.75 53.27
비교예 6 75.89 17.65
비교예 7 79.14 18.21
비교예 8 74.95 16.58
비교예 9 73.51 18.39
상기 표 2에 따르면, 비교예 1 내지 9의 분리막에 비교하여 실시예 1 내지 4의 분리막은 염 제거율을 99.7% 이상으로 유지하면서, 투과 유량이 21 GFD 이상인 것을 확인할 수 있다.
이로써, 본 명세서에 따른 분리막은 성능이 우수함을 확인할 수 있었다.
(FT-IR 분석을 통한 활성층의 두께 측정)
상기 실시예 1 내지 4 및 비교예 1 내지 5에 의하여 제조된 분리막을 FT-IR spectrometer인 Cary 660를 이용하여 파수 1800 cm-1 내지 1000cm-1 구간을 분석하였다. 구체적으로 파수 1640 cm-1 의 흡광도 값을 측정하여 하기 표 3에 Aa로 기재하였고, 1587 cm-1의 흡광도 값을 측정하여 하기 표 3에 Ab로 기재하였다. 그리고 Aa/Ab 값을 계산하여 하기 표 3에 기재하였다.
Aa Ab Aa/Ab
실시예 1 0.172 0.36 0.48
실시예 2 0.140 0.36 0.39
실시예 3 0.124 0.36 0.34
실시예 4 0.114 0.36 0.32
비교예 1 0.186 0.36 0.52
비교예 2 0.184 0.36 0.51
비교예 3 0.183 0.36 0.51
비교예 4 0.096 0.36 0.27
비교예 5 0.087 0.36 0.24
상기 표 3에 따르면, 실시예 1 내지 4의 Ab/Ab 값이 0.28≤Aa/Ab≤0.50을 만족함으로써 다공성층의 두께 대비 전술한 상기 활성층 형성용 조성물과 아실 할라이드 화합물을 포함하는 유기용액의 계면 중합에 의해 제조된 활성층의 두께가 얇아 본 명세서에서 목적하는 염 제거율 및 투과 유량을 만족하는 것을 확인할 수 있었다.
이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 발명의 범주에 속한다.
[부호의 설명]
10: 분리막
20: 공급 스페이서
30: 트리코트 여과수로
40: 튜브
100: 제1 다공성 지지체
200: 제2 다공성 지지체
300: 활성층
400: 염수
500: 정제수
600: 농축수

Claims (12)

  1. 하기 화학식 1로 표시되는 화합물 및 하기 화학식 2로 표시되는 화합물을 포함하고,
    하기 화학식 1로 표시되는 화합물 중량 (a)의 하기 화학식 2로 표시되는 화합물 중량 (b)에 대한 백분율(a/b)이 30% 내지 60%이며,
    pH가 11 내지 12.7인
    분리막 활성층 형성용 조성물:
    [화학식 1]
    Figure PCTKR2020005295-appb-I000011
    [화학식 2]
    Figure PCTKR2020005295-appb-I000012
    상기 화학식 1 및 2에 있어서,
    R1 내지 R16은 서로 같거나 상이하고, 각각 독립적으로 -CRR'-; 또는 -NR''-이고,
    R1 내지 R10 중 적어도 두 개는 -NR''-이고,
    R11 내지 R16 중 적어도 두 개는 -NR''-이며,
    R, R' 및 R''는 서로 같거나 상이하고, 각각 독립적으로 수소; 또는 치환 또는 비치환된 알킬기이다.
  2. 청구항 1에 있어서, 상기 R3, R8, R12 및 R15는 -NR''-이며,
    상기 R''는 상기 화학식 1 및 2에서 정의한 것과 같은 것인 분리막 활성층 형성용 조성물.
  3. 청구항 1에 있어서, 상기 화학식 1로 표시되는 화합물 및 상기 화학식 2로 표시되는 화합물 각각은 상기 활성층 형성용 조성물 총 중량을 기준으로 0.1 중량% 내지 0.3 중량% 포함되는 것인 분리막 활성층 형성용 조성물.
  4. 청구항 1에 있어서, 계면활성제; 친수성 고분자 화합물; 및 용매를 더 포함하는 것인 분리막 활성층 형성용 조성물.
  5. 다공성층을 준비하는 단계; 및
    상기 다공성층 상에 청구항 1 내지 4 중 어느 한 항에 따른, 하기 화학식 1로 표시되는 화합물 및 하기 화학식 2로 표시되는 화합물을 포함하고, 하기 화학식 1로 표시되는 화합물 중량 (a)의 하기 화학식 2로 표시되는 화합물 중량 (b)에 대한 백분율(a/b)이 30% 내지 60%이며, pH가 11 내지 12.7인 분리막 활성층 형성용 조성물을 이용하여 활성층을 제조하는 단계를 포함하는 분리막의 제조방법:
    [화학식 1]
    Figure PCTKR2020005295-appb-I000013
    [화학식 2]
    Figure PCTKR2020005295-appb-I000014
    상기 화학식 1 및 2에 있어서,
    R1 내지 R16은 서로 같거나 상이하고, 각각 독립적으로 -CRR'-; 또는 -NR''-이고,
    R1 내지 R10 중 적어도 두 개는 -NR''-이고,
    R11 내지 R16 중 적어도 두 개는 -NR''-이며,
    R, R' 및 R''는 서로 같거나 상이하고, 각각 독립적으로 수소; 또는 치환 또는 비치환된 알킬기이다.
  6. 청구항 5에 있어서, 상기 활성층 형성용 조성물을 이용하여 활성층을 제조하는 단계는 상기 활성층 형성용 조성물과 아실 할라이드 화합물을 포함하는 유기용액의 계면 중합을 포함하는 것인 분리막의 제조방법.
  7. 청구항 5에 있어서, 상기 다공성층을 준비하는 단계는 제1 다공성 지지체를 준비하는 단계; 및 상기 제1 다공성 지지체 상에 제2 다공성 지지체를 제조하는 단계를 포함하는 것인 분리막의 제조방법.
  8. 청구항 7에 있어서, 상기 제1 다공성 지지체는 부직포이고,
    상기 제2 다공성 지지체는 폴리설폰층인 것인 분리막의 제조방법.
  9. 청구항 5에 있어서, 상기 활성층을 제조하는 단계 이후에 상기 활성층 상에 보호층을 제조하는 단계를 더 포함하는 것인 분리막의 제조방법.
  10. 청구항 5에 따른 분리막의 제조 방법에 의해 제조된 분리막으로,
    2,000ppm MgSO4 수용액, 압력 130psi, 온도 25℃, 4L/min 조건에서 측정한 염 제거율이 99.7% 이상이고,
    투과 유량이 21 GFD 이상인 분리막.
  11. 청구항 5에 따른 분리막의 제조 방법에 의해 제조된 분리막으로,
    하기 식 1을 만족하는 것인 분리막:
    [식 1]
    0.28≤Aa/Ab≤0.50
    상기 식 1에서,
    Aa는 FT-IR 분석시 파수 1640 cm-1의 흡광도 값을 의미하고,
    Ab는 FT-IR 분석시 파수 1587 cm-1의 흡광도 값을 의미한다.
  12. 청구항 10에 따른 분리막을 하나 이상 포함하는 수처리 모듈.
PCT/KR2020/005295 2019-06-26 2020-04-22 분리막 활성층 형성용 조성물, 분리막의 제조 방법, 분리막 및 수처리 모듈 WO2020262816A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/609,072 US20220226785A1 (en) 2019-06-26 2020-04-22 Composition for forming separation membrane active layer, method for producing separation membrane, separation membrane, and water treatment module
CN202080033054.1A CN113784780B (zh) 2019-06-26 2020-04-22 用于形成分离膜活性层的组合物、用于制造分离膜的方法、分离膜、以及水处理模块

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0076310 2019-06-26
KR20190076310 2019-06-26

Publications (1)

Publication Number Publication Date
WO2020262816A1 true WO2020262816A1 (ko) 2020-12-30

Family

ID=74059772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/005295 WO2020262816A1 (ko) 2019-06-26 2020-04-22 분리막 활성층 형성용 조성물, 분리막의 제조 방법, 분리막 및 수처리 모듈

Country Status (5)

Country Link
US (1) US20220226785A1 (ko)
KR (1) KR102327836B1 (ko)
CN (1) CN113784780B (ko)
TW (1) TWI829925B (ko)
WO (1) WO2020262816A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227298A (ja) * 2006-02-27 2007-09-06 Noritsu Koki Co Ltd ワーク処理装置
KR101421974B1 (ko) * 2013-04-17 2014-07-24 한양대학교 산학협력단 그래핀 옥사이드/담즙산 또는 그의 염 코팅층을 포함하는 복합 분리막 및 그 제조방법
KR20170047114A (ko) * 2015-10-22 2017-05-04 주식회사 엘지화학 수처리 분리막의 제조방법 및 이에 의하여 제조된 수처리 분리막 및 수처리 분리막을 포함하는 수처리 모듈
KR20190051550A (ko) * 2017-11-07 2019-05-15 주식회사 엘지화학 수처리 분리막의 제조방법 및 이에 의하여 제조된 수처리 분리막

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6464873B1 (en) * 1999-06-15 2002-10-15 Hydranautics Interfacially polymerized, bipiperidine-polyamide membranes for reverse osmosis and/or nanofiltration and process for making the same
TW201247297A (en) * 2011-03-29 2012-12-01 Toray Industries Spiral type separation membrane element and method for producing the same
KR101919466B1 (ko) * 2012-05-24 2018-11-19 한양대학교 산학협력단 분리막 및 상기 분리막을 포함하는 수처리 장치
EP3015161B1 (en) 2013-08-01 2020-03-11 LG Chem, Ltd. Polyamide-based water-treatment separation membrane having excellent durability, and manufacturing method therefor
CN105848767B (zh) * 2013-12-26 2019-06-18 株式会社Lg化学 高性能的基于聚酰胺的干式水处理分离器及其制造方法
US9795928B2 (en) * 2014-06-24 2017-10-24 Nano And Advanced Materials Institute Limited Stepwise interfacial polymerization technique with different reagent solution designs to prepare hollow fiber nanofiltration membrane composites
US9724651B2 (en) * 2015-07-14 2017-08-08 Lg Nanoh2O, Inc. Chemical additives for water flux enhancement
KR102564660B1 (ko) * 2015-07-31 2023-08-09 도레이 카부시키가이샤 분리막, 분리막 엘리먼트, 정수기 및 분리막의 제조 방법
JP6642861B2 (ja) * 2015-09-01 2020-02-12 エルジー・ケム・リミテッド 水処理分離膜の製造方法、これを用いて製造された水処理分離膜、および水処理分離膜を含む水処理モジュール
KR102002367B1 (ko) * 2016-10-20 2019-07-23 주식회사 엘지화학 역삼투막 보호층 형성용 조성물, 이를 이용한 역삼투막 제조방법, 역삼투막 및 수처리 모듈

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227298A (ja) * 2006-02-27 2007-09-06 Noritsu Koki Co Ltd ワーク処理装置
KR101421974B1 (ko) * 2013-04-17 2014-07-24 한양대학교 산학협력단 그래핀 옥사이드/담즙산 또는 그의 염 코팅층을 포함하는 복합 분리막 및 그 제조방법
KR20170047114A (ko) * 2015-10-22 2017-05-04 주식회사 엘지화학 수처리 분리막의 제조방법 및 이에 의하여 제조된 수처리 분리막 및 수처리 분리막을 포함하는 수처리 모듈
KR20190051550A (ko) * 2017-11-07 2019-05-15 주식회사 엘지화학 수처리 분리막의 제조방법 및 이에 의하여 제조된 수처리 분리막

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BOO, C.: "High performance nanofiltration membrane for effective removal of perfluoroalkyl substances at high water recovery", ENVIRONMENTAL SCIENCE & TECHNOLOGY, vol. 52, no. 13, 2018, pages 7279 - 7288, XP055774943 *

Also Published As

Publication number Publication date
TW202104184A (zh) 2021-02-01
TWI829925B (zh) 2024-01-21
CN113784780B (zh) 2023-11-10
KR20210001908A (ko) 2021-01-06
CN113784780A (zh) 2021-12-10
KR102327836B1 (ko) 2021-11-17
US20220226785A1 (en) 2022-07-21

Similar Documents

Publication Publication Date Title
WO2013180517A1 (ko) 카보디이미드계 화합물을 포함하는 고투과 역삼투막 및 이를 제조하는 방법
WO2014196835A1 (ko) 내산화성 및 내염소성이 우수한 폴리아미드계 수처리 분리막 및 그 제조방법
WO2013103257A1 (ko) 내오염성이 우수한 역삼투막 및 그 제조방법
WO2014204218A2 (ko) 염제거율 및 투과유량 특성이 우수한 폴리아미드계 수처리 분리막 및 그 제조 방법
WO2014204220A1 (ko) 염제거율 및 투과유량 특성이 우수한 폴리아미드계 역삼투 분리막 제조방법 및 상기 제조방법으로 제조된 역삼투 분리막
WO2013183969A1 (ko) 표면 처리된 제올라이트를 포함하는 고투과 유량 역삼투막 및 이를 제조하는 방법
WO2013176524A1 (ko) 역삼투 분리막
WO2011136465A2 (ko) 해수담수용 정삼투막 및 그 제조방법
WO2015137678A1 (ko) 산화그래핀 코팅층을 포함하는 복합막, 이를 포함하는 다공성 고분자 지지체 및 이의 제조방법
WO2012173417A2 (ko) 초친수성 보호층을 포함하는 역삼투막 및 이의 제조방법
WO2019209010A1 (ko) 방향족 탄화수소를 이용한 우수한 용질 제거 성능을 가진 분리막 제조 기술
WO2011105828A2 (ko) 고다공성 중공사막 및 이의 제조방법
WO2014069786A1 (ko) 내오염성이 우수한 폴리아미드계 수처리 분리막 및 그 제조 방법
WO2013176523A1 (ko) 역삼투 분리막 제조방법 및 이에 의해 제조된 역삼투 분리막
WO2017146457A2 (ko) 열전환 폴리(벤즈옥사졸-이미드) 공중합체 기반의 초박형 복합막 및 그 제조방법
WO2014137049A1 (ko) 내오염성이 우수한 폴리아미드계 수처리 분리막 및 그 제조 방법
WO2017116009A1 (ko) 듀얼(이중층)-슬롯코팅 기술을 이용한 박막 복합 분리막의 단일 제조공정
WO2017039112A2 (ko) 수처리 분리막의 제조방법, 이를 이용하여 제조된 수처리 분리막, 및 수처리 분리막을 포함하는 수처리 모듈
WO2014081230A1 (ko) 내염소성이 우수한 고유량 수처리 분리막 및 그 제조방법
WO2018004314A1 (ko) 아산화질소 선택성 기체 분리막 및 이를 이용한 아산화질소 정제방법
WO2012134254A2 (ko) 고분자 전해질 및 이의 제조 방법
WO2015030448A1 (ko) 고유량 정삼투막 집합체 및 이를 포함하는 정삼투모듈
WO2022124554A1 (ko) 내구성 및 내오염성이 우수한 폴리아미드 역삼투막 및 이의 제조방법
WO2013176508A1 (ko) 초기 투과 유량이 우수한 폴리아미드계 역삼투 분리막 및 이의 제조방법
KR102176822B1 (ko) 내용매성 복합 분리막 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20831018

Country of ref document: EP

Kind code of ref document: A1