WO2019209010A1 - 방향족 탄화수소를 이용한 우수한 용질 제거 성능을 가진 분리막 제조 기술 - Google Patents

방향족 탄화수소를 이용한 우수한 용질 제거 성능을 가진 분리막 제조 기술 Download PDF

Info

Publication number
WO2019209010A1
WO2019209010A1 PCT/KR2019/004899 KR2019004899W WO2019209010A1 WO 2019209010 A1 WO2019209010 A1 WO 2019209010A1 KR 2019004899 W KR2019004899 W KR 2019004899W WO 2019209010 A1 WO2019209010 A1 WO 2019209010A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
film composite
support
composite separator
solvent
Prior art date
Application number
PCT/KR2019/004899
Other languages
English (en)
French (fr)
Inventor
이정현
박성준
권효은
권순진
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to US17/049,647 priority Critical patent/US20210245111A1/en
Publication of WO2019209010A1 publication Critical patent/WO2019209010A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/105Support pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • B01D69/1251In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction by interfacial polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/02Hydrophilization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/219Specific solvent system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/34Use of radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/46Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/445Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by forward osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/108Boron compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination

Definitions

  • the present invention relates to a method for producing a thin film composite separator using an aromatic hydrocarbon and a thin film composite separator prepared by the above method.
  • the separation membrane used in the water treatment and seawater desalination process is prepared in the form of a thin film composite in which a selection layer is bonded on a porous support.
  • the selective layer is prepared by interfacial polymerization between two organic monomers dissolved in two kinds of solvents that are not mixed with each other on a support.
  • acyl chloride monomer solutions dissolved in an aqueous amine monomer solution and an organic solvent (mainly n-hexane) on a porous polysulfone support having pores of 1 nm to 10 ⁇ m.
  • an organic solvent mainly n-hexane
  • the concentration of boron in fresh water is less than 0.03 ppm, which is not a problem.
  • the concentration of boron in the seawater is high, 4 to 5 ppm, which may interfere with the reproductive function of animals and plants. Accordingly, the water quality standards of WHO for drinking water were set to 0.5 ppm or less of boron, and the EU water quality standard was set to 1 ppm or less of boron.
  • boron is present in the form of boric acid (boric acid, H2BO3), which is a non-ionizing substance in seawater, and it is reported that it is difficult to remove it with a general reverse osmosis membrane.
  • boron removal rate in the case of using a general reverse osmosis membrane is about 60 to 70% at Brackish RO process pressure condition (15.5 bar), which does not meet the WHO water quality standard.
  • forward osmosis separation technology is a water treatment process technology that separates the material using the osmotic pressure generated by the concentration difference, unlike the reverse osmosis separation technology to apply a pressure across the semi-permeable membrane.
  • the technology can be applied to various process fields such as low energy type seawater desalination and desalination, water treatment fields such as sewage and wastewater treatment, purification of food and bio products, and energy production through salt generation.
  • the membrane for forward osmosis has been developed in the form of a thin film composite composed of a porous support and a thin film selection layer in order to improve water permeability.
  • the performance of the membrane for forward osmosis is greatly affected by the physicochemical structure of the support as well as the selective layer.
  • the forward osmosis membrane in order to have high water permeability, has high hydrophilicity, high porosity and pore connectivity, and minimizes internal concentration polarization (ICP) in the membrane by using a thin support. It is preferable.
  • ICP internal concentration polarization
  • it is preferable to produce a selection layer having a high selectivity it is preferable to use a support having a small uniform pore structure.
  • the ideal separation membrane has a high permeability and selectivity, excellent mechanical and chemical durability, and should be applicable to various application environments.
  • polysulfone PSF
  • polyethersulfone PES
  • polyacrylate PAN
  • polyacrylonitrile PAN
  • polyketone polysulfone
  • DMF dimethyl methacrylate
  • PAN polyacrylonitrile
  • Polysulfone has low durability against organic solvents and cannot be used in the field of treating contaminants containing organic solvents (DMF, NMP, toluene, THF, etc.) such as factory wastewater or chemical synthetic waste.
  • the membrane prepared by the prior art was unable to remove the boron that can satisfy the water quality standards of WHO.
  • an object of the present invention is to provide a thin film composite separator having a boron removal rate superior to the conventional separator.
  • an object of the present invention is to provide a thin film composite separator having excellent water permeability, salt removal rate and salt selectivity.
  • the present invention includes the step of forming a selection layer on a support
  • the selective layer is sequentially impregnated or coated with a first solution comprising a first organic monomer and a first solvent and a second solution comprising a second organic monomer and a second solvent, and the first solution and the first It is prepared through interfacial polymerization between two solutions,
  • the second solvent is toluene, xylene, cumene or dibutyl phthalate provides a method for producing a thin film composite separator.
  • the present invention is produced by the above-described manufacturing method
  • It provides a thin film composite separator comprising a selection layer formed on the support.
  • the method for preparing a thin film composite separator according to the present invention uses toluene, xylene, cumene, or dibutyl phthalate as the organic solvent in the preparation of the selective layer, so that the diffusion of the amine monomer into the organic solvent layer is very rapidly promoted during the interfacial polymerization process. By doing so, the synthesis rate of the selective layer can be significantly improved. Through this, a selection layer having a very thin crosslink density and higher than the selection layer of the conventional thin film composite separator can be manufactured.
  • the thin film composite separator according to the present invention has very excellent salt (NaCl) and solute removal rate, water permeability and salt selectivity compared to the conventional thin film composite separator and a commercial separator.
  • the thin film composite separator according to the present invention has a very good boron removal rate. Therefore, it is effective as a thin film composite membrane for water treatment.
  • FIG. 1 is a graph showing the diffusion rate of a first organic monomer (MPD) dissolved in a first solvent (water) onto a second solvent (n-hexane or toluene). The graph shows the ratio of the concentration of MPD dissolved in the first solvent and the second solvent over time.
  • MPD organic monomer
  • FIG. 2 is a photograph showing a comparison of the surface structure of a selective layer of a thin film composite separator using toluene, xylene, and n-hexane.
  • FIG. 3 is a cross-sectional structure comparison photograph of a thin film composite separator using toluene, xylene, and n-hexane.
  • the thin film composite separator according to the present invention may be prepared through forming a selection layer on a support.
  • the support serves to support the selective layer and to reinforce the mechanical strength of the thin film composite separator.
  • the support may have a porous structure.
  • Such a support may be a commercially available product or synthesized.
  • the support is polyacrylonitrile (PAN), polyethylene (PE, PE), polypropylene (PP), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF) , Cellulose acetate, polyimide (PI), polyetherimide (PEI), polyvinylpyrrolidone (PVP), polysulfone (PSF), polyethersulfone (PES) And it may be formed from a resin selected from the group consisting of polybenzoimidazole (PBI).
  • PAN polyacrylonitrile
  • PE polyethylene
  • PP polypropylene
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • PI polyimide
  • PEI polyetherimide
  • PVP polyvinylpyrrolidone
  • PSF polysulfone
  • PES polyethersulfone
  • PBI polybenz
  • the support before forming the selective layer on the support, the support may further comprise a step of hydrophilizing treatment.
  • This hydrophilization treatment may be treated on one or both sides of the support, and may be treated on the side on which the selection layer is formed when treated on the cross section. In general, since the support is hydrophobic, the formation of the selection layer may be facilitated through the hydrophilization treatment.
  • Such hydrophilization treatment may be chemical oxidation, plasma, UV oxidation, atomic layer deposition (ALD), chemical vapor deposition (CVD), inorganic coating or polymer coating treatment.
  • the chemical oxidation is an acid solution including hydrochloric acid, sulfuric acid, sulfuric acid, nitric acid, hydrogen peroxide or sodium hypochlorite, sodium hydroxide, hydroxide
  • a basic solution containing potassium hydroxide or ammonium hydroxide may be used, and one side and both sides may be treated using plasma treatment.
  • copper oxide, zinc oxide, titanium oxide, tin oxide, or aluminum oxide may be used as the inorganic material.
  • polyhydroxyethylene methacrylate, polyacrylic acid, polyhydroxymethylene, polyallylamine, polyaminostyrene, polyacrylamide , Compounds having hydrophilic properties such as polyethyleneimine, polyvinyl alcohol, polydopamine, and the like can be used.
  • the support material is polyacrylonitrile (PAN), strong base treatment, polysulfone (PSF) may be sulfuric acid treatment, if polyvinylidene fluoride (PVDF) to perform a dry oxygen plasma treatment
  • PAN polyacrylonitrile
  • PVDF polyvinylidene fluoride
  • the hydrophilicity of the support can be increased.
  • PE polyethylene
  • oxygen plasma treatment or polymer treatment may be performed.
  • the hydrophilization treatment after the hydrophilization treatment, it may further comprise the step of washing the support.
  • the washing solvent isopropyl alcohol, water or a mixed solvent thereof may be used.
  • the selection layer is formed on the support, the selection layer has a smooth surface with a thin film of high density.
  • the selective layer may be formed through an interfacial polymerization method, a dip coating method, a spray coating method, a spin coating method or a layer-by-layer method, and in the present invention, may be formed through an interfacial polymerization method. have.
  • the coating may be prepared by interfacial polymerization between the first solution and the second solution.
  • the type of the first organic monomer is not particularly limited.
  • m-phenylenediamine MPD
  • p-phenylene diamine p-phenylenediamine
  • PPD p-phenylenediamine
  • OPD o-phenylenediamine
  • resorcinol diethylene triamine (DETA), methane diamine (MDA), piperazine (piperazine: PIP), N-aminoethyl piperazine (N-AEP), triethylene tetramine (TETA), diethyl propyl amine (DEPA), isophoronediamine (isophoroediamine: IPDA), 4-4'-diaminodiphenyl methane (DDM), M-xylenediamine (MXDA) 4-4'-diaminodiphenylsulfone At least one selected from the group consisting of (4,4 ⁇ -diaminodiphenyl sulfone
  • the kind of the first solvent is not particularly limited, and for example, at least one selected from the group consisting of water, methanol, ethanol, propanol, butanol, isopropanol, ethyl acetate, diethyl ether, acetone and chloroform Can be used.
  • the type of the second organic monomer is not particularly limited, for example, as a molecule having an acyl chloride group, trimesoyl chloride (TMC), 1-isocyanato-3,5- 1-isocyanato-3,5-benzenedicarbonyl chloride, terephthaloyl chloride, cyclohexane-1,3,5-tricarbonyl chloride ) And one or more selected from the group consisting of isophthaloyl chloride.
  • TMC trimesoyl chloride
  • 1-isocyanato-3,5- 1-isocyanato-3,5-benzenedicarbonyl chloride terephthaloyl chloride, cyclohexane-1,3,5-tricarbonyl chloride
  • the concentration of the second organic monomer in the second solution may be 0.01 to 4 w / v.% Or 0.1 to 2 w / v.%.
  • the second solvent may be toluene, xylene cumene or dibutyl phthalate.
  • the xylene is m-xylene (m-xylene), o-xylene (o-xylene) and p-xylene (p-xylene), a mixture thereof may be used.
  • toluene or xylene may be used as the second solvent.
  • an aliphatic hydrocarbon solvent such as n-hexane is used as an organic solvent.
  • the boron removal rate is about 60%, which shows low efficiency, and has a low water permeability (Comparative Example 1 of the present invention).
  • the separation membrane according to the present invention has a very excellent effect in addition to the boron removal rate, water permeability, salt (NaCl) removal rate and salt selectivity. This can be confirmed from the fact that the diffusion rate of MPD to toluene relative to n-hexane is very high as in the graph of FIG. 1 comparing the diffusion rate of MPD to toluene or n-hexane.
  • a selective layer including polyamide may be synthesized through interfacial polymerization between the monomers.
  • the method may further comprise removing excess first solution on the surface of the support.
  • the removal of the first solution is not particularly limited, but it is preferable to use an air gun or a roller.
  • the manufacturing method according to the invention may further comprise the step of washing after forming the selection layer.
  • the present invention also provides a thin film composite separator prepared by the above-described method for manufacturing a thin film composite.
  • the thin film composite separator is a support
  • It may include a selection layer formed on the support.
  • the support has a porous structure, serves to support the selective layer and to reinforce the mechanical strength of the thin film composite separator.
  • the support described above can be used as the support.
  • the thickness of the support is not particularly limited, and may be, for example, 5 to 200 ⁇ m, 10 to 200 ⁇ m, or 20 to 170 ⁇ m. It is possible to implement excellent performance as a thin film composite separator within the thickness range. Although it has a physical property and performance that can be used as a separator even at a thickness exceeding 200 ⁇ m, it is preferable to adjust the thickness to 5 to 200 ⁇ m because it may lead to an increase in manufacturing cost with a decrease in water permeability.
  • the pore size of the support may be 1 to 10000 nm, 1 to 100 nm or 10 to 30 nm.
  • the porosity may be 20 to 90%, 30 to 90%, 40 to 90% or 50 to 90%. It may have excellent physical properties in the pore size and porosity.
  • the support according to the invention may be a hydrophilized support.
  • the hydrophilization treatment is as described above.
  • the selection layer is formed on the support.
  • the selective layer is a thin film of high density.
  • the selective layer may be polyamide, polyfurane, polyether-polyfurane, sulfonated polysulfone, polyamide via polyethylenimine, polyamide -Polyamide via polyepiamine, polyvinylamine, polypyrrolidine, polypiperazine-amide, fully aromatic polyamide, semi-aromatic polyamide -aromatic polyamides, crosslinked polyamides, cross linked fully aromatic polyamides, crosslinked aralkyl polyamides and resorcinol based polymers one or more polymers selected from the group consisting of polymers.
  • the thickness of this selective layer may be 3 nm to 1 um, 5 to 500 nm or 5 to 200 nm.
  • the thickness is 5 to 80 nm, 5 to 50 nm, 5 to 30 nm or 10 to 25 nm.
  • the selective layer of can be manufactured easily.
  • the membrane composite membrane according to the present invention is nanofiltration (Nanofiltration, NF), forward osmosis (FO), pressure assisted osmosis (PAO), pressure-retarded osmosis (PRO) and reverse osmosis It can be used in reverse osmosis (RO) processes.
  • the forward osmosis may be pressure-retarded osmosis (PRO) or pressure assisted osmosis (PAO).
  • the thin film composite separator according to the present invention when used in the reverse osmosis process, has a thin selective layer thickness, has an excellent boron removal rate and salt (NaCl) removal rate.
  • the boron removal rate of the thin film composite separator may be 80% or more, 85% or more, 89% or more, or 90% or more.
  • the salt (NaCl) removal rate may be at least 90%, at least 95% or at least 99%.
  • the removal rate of boron and the removal rate of salt (NaCl) were obtained when the aqueous solution of 5 ppm of boron was permeated through the thin film composite membrane using a cross-flow filtration apparatus under a high flow rate of 1 L / min, 25 ° C. and 15.5 bar. Indicates.
  • the present invention provides a support; And a thin film composite separator for reverse osmosis for boron removal or salt removal, including a selective layer formed on the support.
  • the thin film composite separator according to the present invention has excellent salt (NaCl) removal rate when used in the forward osmosis process.
  • the water permeability (Jw) of the thin film composite separator using 1 M NaCl solution at flow rates of 0.6 Lmin ⁇ 1 and 25 ⁇ 0.5 ° C. is at least 20 Lm ⁇ 2 h ⁇ 1 or 30 Lm ⁇ 2 h It may be greater than or equal to -1 and the salt selectivity (Jw / Js) may be less than or equal to 0.3 Lg ⁇ 1 .
  • the present invention provides a support; And a thin film composite separator for forward osmosis for removing salt (NaCl) including a selection layer formed on the support.
  • the degree of diffusion of the organic monomer according to the type of solvent was measured.
  • the MPD concentration of the organic solvent layer (n-hexane layer and toluene layer) was analyzed by HPLC (High-performance liquid chromatography) according to the time (0, 5, 10, 15 and 25 hours).
  • HPLC High-performance liquid chromatography
  • the amount of MPD diffused from the aqueous layer to the organic solvent layer was calculated and compared, and through this, the diffusion rate and the degree of diffusion of the MPD into the organic solvent layer in the aqueous solution were evaluated.
  • Figure 1 is a graph showing the results of measuring the rate of diffusion of MPD dissolved in water to the aromatic hydrocarbon toluene and aliphatic hydrocarbon n-hexane over time.
  • MPD shows a very excellent diffusion rate compared to n-hexane in toluene.
  • Polyacrylonitrile (PAN) with a surface pore size of 10 to 30 nm (hereinafter referred to as polyacrylonitrile support) or oxygen plasma (O 2 -plasma) treatment with a surface pore size of 100 to 300 nm or polydopamine
  • PAN Polyacrylonitrile
  • O 2 -plasma oxygen plasma
  • the coated hydrophilic polyethylene (PE) (hereinafter referred to as polyethylene support) was used as the porous support.
  • the oxygen plasma treatment to the polyethylene was performed for 20 seconds using UVFAB systems (CUTE-MPR) under a pressure of 0.09 kPa and a plasma intensity of 20 W.
  • the polydopamine coating treatment was dissolved dopamine hydrochloride in Tris-HCl buffer solution (10mM) and ethanol 1: 1 mixed solution (prepared dopamine solution (2 g / L)), the polyethylene in the dopamine solution at 40 °C Performed by soaking for 8 hours.
  • the concentration of MPD in the first solution was 4 w / v.%.
  • TMC trimesoyl chloride
  • the selective layer was prepared as follows by using an interfacial polymerization method.
  • FIG. 2 and 3 in the present invention is a photograph showing the surface structure (Fig. 2, the surface of the selective layer) and the cross-sectional structure (Fig. 3) of the thin film composite separator prepared in Examples 1 to 2 and Comparative Example 1.
  • 2 is an SEM image
  • FIG. 3 is a TEM image.
  • a selective layer having a high density and a thin thickness of about 20 nm can be prepared.
  • the thin film composite separator according to the present invention has a characteristic of excellent salt removal rate because the thickness of the selective layer is high in water permeability, and the selective layer is high density.
  • the thin film composite separators prepared in Examples 1 to 4 and Comparative Examples 1 to 4 were tested for performance using a cross-flow filtration apparatus (Sepra Tek).
  • the water permeability, the salt (NaCl) removal rate and the boron removal rate were measured by permeating a 2000 ppm NaCl aqueous solution or 5 ppm aqueous boron aqueous solution through a membrane at process conditions of 1 L / min flow rate, temperature 25 ° C., and pressure 15.5 bar.
  • the water permeability was calculated from the amount of water permeated per unit area per membrane, and the salt or boron removal rate was calculated by measuring the concentrations of NaCl or boron in the feed and permeate solutions.
  • the thin film composite separator according to the present invention shows a performance difference depending on the type of the second solvent (organic solvent) used in the manufacture.
  • the thin film composite membranes of Examples (Examples 1 to 4) using aromatic hydrocarbons, that is, toluene or xylene, as solvents are not only commercial reverse osmosis membranes (Comparative Examples 1 to 3) using conventional n-hexane. Comparative Example 4) Better water permeability and NaCl removal rate were shown. In addition, the boron removal rate was very good.
  • a thin film composite separator having high water permeability, high salt (NaCl) removal rate, and high boron removal rate can be prepared.
  • PAN Polyacrylonitrile
  • PE hydrophilic polyethylene
  • the concentration of MPD in the first solution was 5 w / v.%.
  • TMC trimesoyl chloride
  • the selective layer was prepared as follows by using an interfacial polymerization method.
  • a commercial HTI TFC thin film composite separator was used as the thin film composite separator.
  • the water permeability, reverse salt permeability and salt selectivity of the thin film composite membranes were compared using a flow rate of 0.6 Lmin ⁇ 1 , 25 ⁇ 0.5 ° C. using a NaCl solution of 1 M.
  • the thin film composite separator for forward osmosis
  • the thin film composite membranes of Examples (Examples 5 to 6) using aromatic hydrocarbons, that is, toluene as a solvent, are not only conventional membrane composite membranes (Comparative Examples 5 to 6) using n-hexane but also commercial forward osmosis membranes Examples 7 to 8 showed better water permeability and salt selectivity.
  • the method for preparing a thin film composite separator according to the present invention uses toluene, xylene, cumene, or dibutyl phthalate as the organic solvent in the preparation of the selective layer, so that the diffusion of the amine monomer into the organic solvent layer is very rapidly promoted during the interfacial polymerization process. By doing so, the synthesis rate of the selective layer can be significantly improved. Through this, a selection layer having a very thin crosslink density and higher than the selection layer of the conventional thin film composite separator can be manufactured.
  • the thin film composite separator according to the present invention has very excellent salt (NaCl) and solute removal rate, water permeability and salt selectivity compared to the conventional thin film composite separator and a commercial separator.
  • the thin film composite separator according to the present invention has a very good boron removal rate. Therefore, it is effective as a thin film composite membrane for water treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

본 발명은 박막 복합체 분리막 및 그 제조 방법에 관한 것이다. 본 발명에 따른 박막 복합체 분리막은 우수한 수투과도와 함께 우수한 염(NaCl) 제거율 및/또는 보론 제거율을 가질 수 있다.

Description

방향족 탄화수소를 이용한 우수한 용질 제거 성능을 가진 분리막 제조 기술
본 발명은 방향족 탄화수소를 이용한 박막 복합체 분리막의 제조 방법 및 상기 제조 방법에 의해 제조된 박막 복합체 분리막에 관한 것이다.
일반적으로 수처리 및 해수담수화 공정에 사용되는 분리막은 다공성 지지체 위에 선택층이 결합되어 있는 박막 복합체 형태로 제조된다. 선택층은 지지체 위에서 서로 섞이지 않는 두 종류의 용매 내에 각각 용해되어있는 두 유기단량체 간의 계면중합을 통해 제조된다.
상용화 역삼투 분리막의 경우 일반적으로, 1 nm 내지 10 μm의 기공을 가지는 다공성의 폴리술폰(polysulfone) 지지체 위에, 아민 단량체 수용액과 유기용매(주로 n-hexane)에 용해되어있는 아실클로라이드 단량체 용액을 이용하여 계면을 형성시키고, 형성된 계면에서 단량체간의 축합중합반응을 통해 가교된 폴라아마이드 선택층을 형성한다.
일반적으로 담수에서 보론의 농도는 0.03 ppm 이하로 문제될 것이 없는 수준이다. 하지만 해수에 존재하는 보론의 농도는 4 내지 5 ppm으로 높은 수준이며, 상기 농도에서는 동식물과 사람의 생식기능에 장애를 일으킬 수 있다. 이에 따라, 식수에 대한 WHO의 수질기준은 보론 0.5 ppm 이하, EU의 수질기준은 보론 1 ppm 이하로 설정되었다.
그러나, 보론은 해수 내에서 비이온화 물질인 붕산(boric acid, H2BO3) 형태로 존재하여, 일반적인 역삼투 분리막으로 제거하기가 어렵다고 보고되고 있다. 현재 일반적인 역삼투 분리막 사용시의 보론의 제거율은 Brackish RO 공정압력 조건(15.5 bar)에서 약 60 내지 70% 정도로, WHO의 수질기준에 미치지 못하는 상황이다.
이에 따라 해수담수화에 있어서, 우수한 보론 제거율을 가지는 역삼투 분리막의 연구가 계속되고 있다.
한편, 정삼투 분리기술은 반투막을 사이에 두고 압력을 가하는 역삼투 분리기술과는 달리, 외부 구동압력 없이 농도차에 의해 발생하는 삼투압을 이용하여 물질을 분리하는 수처리 공정기술이다. 상기 기술은 저에너지형 해수담수화 및 탈염, 하·폐수처리 등의 수처리 분야를 비롯하여, 식품 및 바이오 생산물의 정제, 염분차 발전을 통한 에너지 생산 등 다양한 공정 분야에 적용될 수 있다.
최근 정삼투용 분리막은 수투과도를 향상시키기 위하여, 다공성 지지체와 박막 선택층으로 구성된 박막 복합체의 형태로 개발되고 있다. 상기 정삼투용 분리막의 성능은 선택층뿐만 아니라, 지지체의 물리화학적 구조에 큰 영향을 받는다. 즉, 정삼투용 분리막이 높은 수투과특성을 가지기 위해서는 높은 친수성, 높은 기공도 및 기공연결도를 가지면서, 두께가 얇은 지지체를 사용하여 분리막 내 내부농도분극(internal concentration polarization, ICP)을 최소화시키는 것이 바람직하다. 또한, 높은 선택도를 갖는 선택층을 제조하기 위해서는 작고 균일한 기공구조를 갖는 지지체를 사용하는 것이 바람직하다.
한편, 이상적인 분리막은 높은 투과성능, 선택도와 함께, 우수한 기계적·화학적 내구성을 가져, 다양한 응용환경에 적용될 수 있어야 한다.
현재까지, 지지체에 폴리설폰(polysulfone, PSF), 폴리이터설폰(polyethersulfone, PES), 폴리아크릴레이트(polyacrylate), 폴리아크릴로니트릴(polyacrylonitrile, PAN) 및 폴리케톤(polyketone) 등의 다양한 고분자들이 사용되었다. 폴리설폰의 경우, 유기용매에 대한 내구성이 약하여 공장폐수 또는 화학합성 폐기물과 같이 유기용매(DMF, NMP, toluene, THF 등)가 포함된 오염물을 처리하는 분야에는 사용할 수 없다.
종래 기술로 제조된 분리막은, 특히 WHO의 수질기준을 만족시킬 수 있는 보론의 제거가 불가능하였다.
따라서, 본 발명은 기존의 분리막보다 우수한 보론 제거율을 가지는 박막 복합체 분리막을 제공하는 것을 목적으로 한다.
또한, 본 발명은 우수한 수투과도, 염 제거율 및 염선택도를 가지는 박막 복합체 분리막을 제공하는 것을 목적으로 한다.
본 발명은 지지체 상에 선택층을 형성하는 단계를 포함하고,
상기 선택층은 지지체 상에 제 1 유기단량체 및 제 1 용매를 포함하는 제 1 용액 및 제 2 유기단량체 및 제 2 용매를 포함하는 제 2 용액을 순차적으로 함침 또는 도포하고, 상기 제 1 용액 및 제 2 용액 간의 계면중합을 통해 제조되며,
상기 제 2 용매는 톨루엔, 자일렌, 쿠멘 또는 디부틸프탈레이트인 박막 복합체 분리막의 제조 방법을 제공한다.
또한, 본 발명은 전술한 제조 방법에 의해 제조되며,
지지체; 및
상기 지지체 상에 형성된 선택층을 포함하는 박막 복합체 분리막을 제공한다.
본 발명에 따른 박막 복합체 분리막의 제조 방법은 선택층의 제조시 유기용매로 톨루엔, 자일렌, 쿠멘 또는 디부틸프탈레이트를 사용하므로, 계면중합 과정에서 아민 단량체의 유기용매 층으로의 확산을 매우 빠르게 촉진시켜, 선택층의 합성 속도를 월등히 향상시킬 수 있다. 이를 통해, 기존의 박막 복합체 분리막의 선택층보다 매우 얇고 가교 밀도가 높은 선택층을 제조할 수 있다.
본 발명에 따른 박막 복합체 분리막은 기존의 박막 복합체 분리막과 상용분리막 대비 매우 우수한 염(NaCl) 및 용질 제거율, 수투과도 및 염선택도를 가진다. 특히, 본 발명에 따른 박막 복합체 분리막은 매우 우수한 보론 제거율을 가진다. 따라서, 수처리용 박막 복합체 분리막으로 효율적이다.
도 1은 제 1 용매(물)에 용해되어 있는 제 1 유기단량체(MPD)의 제 2 용매(n-헥산 또는 톨루엔) 상으로의 확산 속도를 나타내는 그래프이다. 상기 그래프는 시간에 따른 제 1 용매와 제 2 용매에 용해되어 있는 MPD의 농도 비를 나타낸다.
도 2는 톨루엔, 자일렌 및 n-헥산을 이용한 박막 복합체 분리막의 선택층의 표면 구조 비교 사진이다.
도 3은 톨루엔, 자일렌 및 n-헥산을 이용한 박막 복합체 분리막의 단면 구조 비교 사진이다.
이하, 본 발명의 박막 복합체 분리막의 제조 방법을 구체적으로 설명한다.
본 발명에 따른 박막 복합체 분리막은 지지체 상에 선택층을 형성하는 단계를 통해 제조될 수 있다.
본 발명에서 지지체는 선택층을 지지하고 박막 복합체 분리막의 기계적 강도를 보강하는 역할을 수행한다. 상기 지지체는 다공성 구조를 가질 수 있다.
이러한 지지체는 시중에서 시판되는 제품을 이용하거나, 합성하여 사용할 수 있다. 상기 지지체는 폴리아크릴로니트릴(polyacrylonitrile, PAN), 폴리에틸렌(polyethylene, PE), 폴리프로필렌(polypropylene, PP), 폴리테트라플루오로에틸렌(polytetrafluoroethylene, PTFE), 폴리비닐 리덴 플루오라이드(polyvinylidene fluoride, PVDF), 셀룰로즈 아세테이트(cellulose acetate), 폴리이미드(polyimide, PI), 폴리에터이미드(polyetherimide, PEI), 폴리비닐피롤리돈(polyvinylpyrrolidone, PVP), polysulfone(PSF), 폴리이서설폰(polyethersulfone, PES) 및 폴리벤조이미다졸(polybenzoimidazole, PBI)로 이루어진 그룹으로부터 선택된 수지로부터 형성될 수 있다.
본 발명의 제조 방법에서는 지지체 상에 선택층을 형성하기 전에, 상기 지지체를 친수화 처리하는 단계를 추가로 포함할 수 있다.
상기 친수화 처리에 의해 지지체의 표면에너지가 높아지므로, 선택층과의 결합력을 높일 수 있다. 이러한 친수화 처리는 지지체의 단면 또는 양면에 처리될 수 있으며, 단면에 처리될 경우 선택층이 형성되는 면에 처리될 수 있다. 일반적으로, 지지체는 소수성이므로, 상기 친수화 처리를 통해 선택층의 형성이 용이해 질 수 있다.
이러한 친수화 처리는 화학적 산화, 플라즈마, UV 산화, 단원자층 증착(atomic layer deposition, ALD), 화학기상 증착(chemical vapor deposition, CVD), 무기물 코팅 또는 고분자 코팅 처리일 수 있다.
상기 화학적 산화는 염산(hydrochloric acid), 황산(sulfuric acid), 질산(nitric acid), 과산화수소(hydrogen peroxide) 또는 차아염소산나트륨(sodium hypochlorite)을 포함하는 산성 용액이나, 수산화 나트륨(sodium hydroxide), 수산화 칼륨(potassium hydroxide) 또는 수산화 암모늄(ammonium hydroxide)을 포함하는 염기성 용액을 이용할 수 있고, 플라즈마 처리를 이용할 경우 단면 및 양면을 처리할 수 있다. 무기물 코팅에서 무기물로는 구리 산화물(copper oxide), 아연 산화물(zinc oxide), 티타늄 산화물(titanium oxide), 주석 산화물(tin oxide) 또는 알루미늄 산화물(aluminum oxide) 등을 이용할 수 있으며, 고분자 코팅에서 고분자로는 폴리하이드록시에틸렌메타크릴레이트(polyhydroxyethylenemethacrylate), 폴리아크릴산(polyacrylic acid), 폴리하이드록시메틸렌(polyhydroxymethylene), 폴리아릴아민(polyallyl- amine), 폴리아미노스틸렌(polyaminostyrene), 폴리아크릴아마드(polyacrylamide), 폴리에틸렌이민(polyethyleneimine), 폴리바이닐알코올(polyvinyl alcohol), 폴리도파민(polydopamine) 등의 친수 특성이 있는 화합물을 이용할 수 있다.
일 구체예에서 지지체의 재질이 폴리아크릴로니트릴(PAN)이면 강염기 처리를, 폴리설폰(PSF)이면 황산 처리를 수행할 수 있으며, 폴리비닐리덴 플루오라이드(PVDF)이면 건식 산소 플라즈마 처리를 수행하여 지지체의 친수성을 증가시킬 수 있다. 또한, 지지체의 재질이 폴리에틸렌(PE)이면 산소 플라즈마 처리 또는 고분자 처리를 수행할 수 있다.
본 발명에서는 친수화 처리 후, 지지체를 세척하는 단계를 추가로 포함할 수 있다. 상기 세척 용매로는 아이소프로필 알코올(isopropyl alcohol), 물 또는 이들의 혼합 용매를 사용할 수 있다.
본 발명에서 선택층은 지지체 상에 형성되며, 상기 선택층은 고밀도의 얇은 박막으로 매끈한 표면을 가진다.
본 발명에서 선택층은 계면중합법, 딥코팅법, 스프레이코팅법, 스핀코팅법 또는 층상조립(layer-by-layer)법을 통해 형성될 수 있으며, 본 발명에서는 계면중합법을 통해 형성될 수 있다.
본 발명에서 상기 계면중합을 이용한 선택층의 형성은, 지지체 상에 제 1 유기단량체 및 제 1 용매를 포함하는 제 1 용액 및 제 2 유기단량체 및 제 2 용매를 포함하는 제 2 용액을 순차적으로 함침 또는 도포하고, 상기 제 1 용액 및 제 2 용액 간의 계면중합을 통해 제조할 수 있다.
일 구체예에서, 상기 제 1 유기단량체의 종류는 특별히 제한되지 않으며, 예를 들어, 아민 또는 하이드록실기를 가지는 분자로서, m-페닐렌 디아민(m-phenylenediamine: MPD), p-페닐렌 디아민(p-phenylenediamine: PPD), o-페닐렌 디아민(o-phenylenediamine: OPD), 레조르시놀(resorcinol), 디에틸렌 트리아민(diethylene triamine: DETA), 메탄 디아민(methane diamine: MDA), 피페라진(piperazine: PIP), N-아미노 에틸 피퍼라진(N-aminoethyl piperazine: N-AEP), 트리에틸렌 테트라민(triethylene tetramine: TETA), 디에틸아미노 프로필 아민(diethyl propyl amine: DEPA), 이소포론디아민(isophoroediamine: IPDA), 4-4'-디아미노디페닐메탄(4,4'-diaminodiphenyl methane: DDM), M-자일렌 디아민(M-xylenediamine: MXDA) 4-4'-디아미노디페닐술폰(4,4`-diaminodiphenyl sulphone: DDS) 및 하이드록시알킬아민(hydroxyakylamine)으로 이루어진 그룹으로부터 선택된 하나 이상을 사용할 수 있다. 상기 제 1 용액에서 제 1 유기단량체의 농도는 1 내지 10 w/v.% 또는 3 내지 6 w/v.%일 수 있다.
일 구체예에서, 제 1 용매의 종류는 특별히 제한되지 않으며, 예를 들어, 물, 메탄올, 에탄올, 프로판올, 부탄올, 이소프로판올, 에틸아세테이트, 디에틸에테르, 아세톤 및 클로로포름으로 이루어진 그룹으로부터 선택된 하나 이상을 사용할 수 있다.
일 구체예에서, 제 2 유기단량체의 종류는 특별히 제한되지 않으며, 예를 들어, 아실클로라이드기를 가지는 분자로서, 트리메소일 클로라이드(trimesoyl chloride: TMC), 1-이소시아네이토-3,5-벤젠디카보닐클로라이드(1-isocyanato-3,5-benzenedicarbonyl chloride), 테레프탈로일 클로라이드(terephthaloyl chloride), 시클로헥산-1,3,5-트리카보닐 클로라이드(cyclohexane-1,3,5-tricarbonyl chloride) 및 이소프탈로일 클로라이드(isophthaloyl chloride)로 이루어진 그룹으로부터 선택된 하나 이상을 사용할 수 있다. 상기 제 2 용액에서 제 2 유기단량체의 농도는 0.01 내지 4 w/v.% 또는 0.1 내지 2 w/v.%일 수 있다.
또한, 제 2 용매(유기용매)는 톨루엔(toluene), 자일렌(xylene) 큐멘(cumene) 또는 디부틸 프탈레이트(dibutyl Phthalate)일 수 있다. 상기 자일렌은 m-자일렌(m-xylene), o-자일렌(o-xylene) 및 p-자일렌(p-xylene)이며, 이들의 혼합물을 사용할 수 있다.
본 발명의 실시예에서는 제 2 용매로 톨루엔 또는 자일렌을 사용할 수 있다.
기존의 박막 복합체 분리막의 제조 방법에서는 유기용매로 n-헥산 등의 지방족 탄화수소계 용매를 사용한다. 상기 n-헥산을 사용할 경우 보론 제거율은 약 60%로 낮은 효율을 보이며, 수투과도도 낮은 값을 가진다(본 발명의 비교예 1). 본 발명에서는 유기용매로 전술한 용매를 사용하여, 제 1 유기단량체의 유기용매층으로의 확산을 매우 빠르게 촉진시켜 보론 제거율이 매우 우수한 분리막을 제조할 수 있다. 또한, 본 발명에 따른 분리막은 상기 보론 제거율뿐만 아니라, 수투과도, 염(NaCl) 제거율 및 염선택도도 매우 우수한 효과를 가진다. 이는, 톨루엔 또는 n-헥산으로의 MPD의 확산 속도를 비교한 도 1의 그래프에서와 같이, n-헥산 대비 톨루엔으로의 MPD의 확산속도가 매우 높은 것으로부터 확인할 수 있다.
본 발명의 실시예에서는 제 1 용액은 아민 단량체를 포함하고, 제 2 용액은 아실클로라이드 단량체를 포함하므로, 상기 단량체들 간의 계면중합을 통해 폴리아마이드(polyamide)를 포함하는 선택층을 합성할 수 있다.
일 구체예에서, 지지체 상에 제 1 용액을 도포한 후, 지지체 표면의 과잉의 제 1 용액을 제거하는 단계를 추가로 포함할 수 있다. 이때, 제 1 용액의 제거는 특별히 한정하지는 않으나, 에어건을 사용하거나 롤러를 사용하는 것이 좋다.
또한, 본 발명에 따른 제조 방법에서는 선택층을 형성한 후 세척하는 단계를 추가로 포함할 수 있다.
또한, 본 발명은 전술한 박막 복합체의 제조 방법에 의해 제조된 박막 복합체 분리막을 제공한다.
상기 박막 복합체 분리막은 지지체; 및
상기 지지체 상에 형성된 선택층을 포함할 수 있다.
본 발명에서 지지체는 다공성의 구조를 가지며, 선택층을 지지하고 박막 복합체 분리막의 기계적 강도를 보강하는 역할을 수행한다. 상기 지지체로 전술한 지지체를 사용할 수 있다.
본 발명에서 지지체의 두께는 특별히 제한되지 않으며, 예를 들어, 5 내지 200 ㎛, 10 내지 200 ㎛ 또는 20 내지 170 ㎛일 수 있다. 상기 두께 범위 내에서 박막 복합체 분리막으로서의 우수한 성능을 구현할 수 있다. 200 ㎛를 초과하는 두께에서도 분리막으로 사용 가능한 물성 및 성능을 가지나, 수투과도의 저감과 함께 제조 비용의 상승을 가져올 수 있으므로 두께를 5 내지 200 ㎛로 조절하는 것이 좋다.
또한, 지지체의 기공 크기는 1 내지 10000 nm, 1 내지 100 nm 또는 10 내지 30 nm일 수 있다. 또한, 기공도는 20 내지 90%, 30 내지 90%, 40 내지 90% 또는 50 내지 90%일 수 있다. 상기 기공 크기 및 기공도에서 우수한 물성을 가질 수 있다.
본 발명에 따른 지지체는 친수화 처리된 지지체일 수 있다. 상기 친수화 처리는 전술한 바와 같다.
본 발명에서 선택층은 지지체 상에 형성된다. 상기 선택층은 고밀도의 얇은 박막이다.
상기 선택층은 폴리아마이드(polyamide), 폴리퓨란(polyfurane), 폴리에테르-폴리퓨란(polyether-polyfurane), 술폰화된 폴리술폰(sulfonated polysulfone), 폴리아미드-폴리에틸렌이민(polyamide via polyethylenimine), 폴리아미드-폴리에피아민(polyamide via polyepiamine), 폴리비닐아민(polyvinylamine), 폴리피롤리딘(polypyrrolidine), 폴리피페라진-아미드(polypiperazine-amide), 전 방향족 폴리아미드(fully aromatic polyamide), 반 방향족 폴리아미드(semi-aromatic polyamide), 가교결합된 폴리아미드(crosslinked polyamide), 가교결합된 전 방향족 폴리아미드(cross linked fully aromatic polyamide), 가교결합된 아랄킬 폴리아미드(crosslinked aralkyl polyamide) 및 레소시놀계 고분자(resorcinol based polymer)로 이루어진 그룹으로부터 선택된 하나 이상의 고분자를 포함할 수 있다.
이러한 선택층의 두께는 3 nm 내지 1 um, 5 내지 500 nm 또는 5 내지 200 nm일 수 있다. 특히, 본 발명에서는 제 2 용매로 톨루엔, 자일렌, 쿠멘 또는 디부틸프탈레이트의 방향족 탄화수소를 사용하므로, 두께가 5 내지 80 nm, 5 내지 50 nm, 5 내지 30 nm 또는 10 내지 25 nm인 얇은 두께의 선택층을 용이하게 제조할 수 있다.
본 발명에 따른 박막 복합체 분리막은 나노필트레이션(nanofiltration, NF), 정삼투(forward osmosis, FO), 가압식 정삼투(pressure assisted osmosis, PAO), 압력지연삼투(pressure-retarded osmosis, PRO) 및 역삼투(reverse osmosis, RO) 공정에 사용될 수 있다. 이때, 정삼투는 압력지연삼투(pressure-retarded osmosis, PRO) 또는 가압식 정삼투(pressure assisted osmosis, PAO)일 수 있다.
특히, 본 발명에 따른 박막 복합체 분리막은 역삼투 공정에 사용될 경우, 얇은 선택층 두께를 가지고, 우수한 보론 제거율 및 염(NaCl) 제거율을 가진다. 이러한 박막 복합체 분리막의 보론 제거율은 80% 이상, 85% 이상, 89% 이상 또는 90% 이상일 수 있다. 또한, 염(NaCl) 제거율은 90% 이상, 95% 이상 또는 99% 이상일 수 있다.
상기 보론 제거율 및 염(NaCl) 제거율은 Cross-flow filtration 장치를 이용하여, 유량 1 L/min, 25℃, 15.5 bar의 고압 조건에서, 5 ppm의 보론 수용액을 박막 복합체 분리막에 투과시켰을 때의 제거율을 나타낸다.
따라서, 본 발명은 지지체; 및 상기 지지체 상에 형성된 선택층을 포함하는 보론(Boron) 제거용 또는 염(NaCl) 제거용 역삼투용 박막 복합체 분리막일 수 있다.
또한, 본 발명에 따른 박막 복합체 분리막은 정삼투 공정에 사용될 경우, 우수한 염(NaCl) 제거율을 가진다.
일 구체예에서, 유량 0.6 Lmin-1 및 25 ± 0.5 ℃에서 1 M의 NaCl 용액을 사용했을 때의 박막 복합체 분리막의 수투과도(Jw)는 20 Lm-2h-1 이상 또는 30 Lm-2h-1 이상일 수 있고, 염선택도(Jw/Js)는 0.3 Lg-1 이하일 수 있다.
따라서, 본 발명은 지지체; 및 상기 지지체 상에 형성된 선택층을 포함하는 염(NaCl) 제거용 정삼투용 박막 복합체 분리막일 수 있다.
실시예
참고예 1. 용매의 종류에 따른 유기단량체 확산 속도 평가
용매의 종류에 따른 유기단량체의 확산 정도를 측정하였다.
먼저 50 mL 비커에 m-페닐렌 디아민(m-phenylenediamine: MPD) 4 w/v.% 수용액 20 mL를 넣고, 그 위에 유기용매 20 mL 를 부어주었다. 이 때, 유기용매로 n-헥산과 톨루엔을 사용하였다.
이 후, 시간(0, 5, 10, 15 및 25 시간)에 따라 유기용매층(n-헥산층 및 톨루엔층)의 MPD 농도를 HPLC(High-performance liquid chromatography)를 이용하여 분석하였다. 그리고, 수용액 층에서 유기용매 층으로 확산 된 MPD의 양을 계산하여 비교하고, 이를 통해, 수용액 내 MPD의 유기용매 층으로의 확산속도와 확산정도를 평가하였다.
본 발명에서 도 1은 물에 녹아있는 MPD가 방향족 탄화수소인 톨루엔과 지방족 탄화수소인 n-헥산으로 확산 되는 속도를 시간에 따라 측정한 결과를 도시한 그래프이다.
상기 도 1에 나타난 바와 같이, MPD는 톨루엔에서 n-헥산과 비교하여 매우 우수한 확산속도를 보이는 것을 확인할 수 있다.
실시예 1 내지 4 및 비교예 1 내지 3. 역삼투용 박막 복합체 분리막 제조
1) 다공성 지지체
표면 기공 크기가 10 내지 30 nm인 폴리아크릴로니트릴(polyacrylonitrile, PAN)(이하, 폴리아크릴로니트릴 지지체) 또는 표면 기공 크기가 100 내지 300 nm인 산소 플라즈마(O2-plasma) 처리 또는 폴리도파민이 코팅 처리된 친수성 폴리에틸렌(polyethylene, PE)(이하, 폴리에틸렌 지지체)을 다공성 지지체로 사용하였다.
이때, 상기 폴리에틸렌에의 산소 플라즈마 처리는 UVFAB systems(CUTE-MPR)을 사용하여 0.09 kPa의 압력 및 20 W의 플라즈마 세기하에서 20초 동안 처리를 수행하였다. 또한, 폴리도파민 코팅 처리는 Tris-HCl 버퍼 용액(10mM) 및 에탄올 1:1 혼합 용액에 도파민 하이드로클로라이드를 녹인 후(도파민 용액(2 g/L) 제조), 상기 도파민 용액에 폴리에틸렌을 40℃에서 8시간 동안 담지하여 수행하였다.
2) 선택층 제조
제 1 용액의 제 1 용매(친수성 용매)로 물을 사용하고, 이에 포함되는 제 1 유기단량체로 m-페닐렌 디아민(m-phenylenediamine: MPD)을 사용하였다. 상기 제 1 용액에서 MPD의 농도는 4 w/v.% 였다.
제 2 용액의 제 2 용매(유기용매)로 톨루엔(toluene), 자일렌(mixture of o-, m-, p-xylene, 대정화금) 또는 n-헥산을 사용하고(표 1), 이에 포함되는 제 2 유기단량체로 트리메소일 클로라이드(trimesoyl chloride: TMC)를 사용하였다. 상기 제 2 용액에서 TMC의 농도는 1 w/v.% 였다.
지지체 제 2 용액의 용매
실시예 1 PAN 톨루엔
실시예 2 자일렌
비교예 1 n-헥산
실시예 3 산소플라즈마 처리된 PE 톨루엔
비교예 2 n-헥산
실시예 4 폴리도파민이 코팅된 PE 톨루엔
비교예 3 n-헥산
선택층은 계면중합(interfacial polymerization)법을 이용하여 하기와 같이 제조하였다.
(1) 지지체를 아이소프로필 알코올(isopropyl alcohol)과 물을 사용하여 세척하였다.
(2) 세척한 지지체를 반응틀로 고정하고, 제 1 용액 20 ml 부어 지지체 내에 제 1 용액을 함침시켰다.
(3) 제 1 용액을 제거하고, 지지체 표면에 남은 미량의 제 1 용액을 에어건을 사용하여 제거하였다.
(4) 그 위에 제 2 용액을 부어 계면중합반응을 통해 선택층을 합성하였다.
(5) 미 반응한 제 2 유기단량체를 제 2 용액에서 사용한 용매로 세척하여 제거하고, 상온에서 3분 동안 건조하였다.
(6) 70℃의 오븐에 넣고 5분 동안 건조한 후, 상온의 물에 넣어 보관하였다.
비교예 4. 상용 역삼투막
상용 역삼투막(Hydranautics- SWC4+)을 사용하였다.
본 발명에서 도 2 및 도 3은 실시예 1 내지 2 및 비교예 1에서 제조된 박막 복합체 분리막의 표면 구조(도 2, 선택층 표면) 및 단면 구조(도 3)를 나타낸 사진이다. 상기 도 2는 SEM 이미지이며, 도 3은 TEM 이미지이다.
상기 도에 나타난 바와 같이, 제 2 용매(유기용매)로 톨루엔 또는 자일렌을 사용할 경우, 고밀도를 가지며 약 20 nm의 얇은 두께를 가지는 선택층을 제조할 수 있다.
본 발명에 따른 박막 복합체 분리막은 선택층의 두께가 얇아 수투과도가 높으며, 선택층이 고밀도이므로 염제거율이 우수한 특성을 가진다.
실험예 1. 성능 실험
(1) 조건
실시예 1 내지 4 및 비교예 1 내지 4에서 제조된 박막 복합체 분리막에 대하여 Cross-flow filtration 장치(Sepra Tek 사)를 이용하여 성능을 실험하였다.
구체적으로, 유량 1 L/min, 온도 25℃, 압력 15.5 bar의 공정조건에서 2000 ppm NaCl 수용액 또는 5 ppm 보론 수용액을 분리막에 투과시켜, 수투과도, 염(NaCl) 제거율 및 보론 제거율을 측정하였다.
상기 수투과도는 분리막 단위면적당, 단위시간당 투과된 물의 양으로부터 계산하였고, 염 또는 보론 제거율은 공급용액과 투과용액의 NaCl 또는 보론의 농도를 측정하여 계산하였다.
(2) 결과
상기 분리막의 성능 평가 결과를 하기 표 2에 기재하였다.
지지체/분리막 제 2 용액의 용매 수투과도(Lm-2h-1) NaCl 제거율(%) 보론 제거율(%)
실시예 1 PAN 톨루엔 26.1 99.9 90.3
실시예 2 자일렌 25.5 99.8 89.2
비교예 1 n-헥산 8.7 96.8 60.4
실시예 3 산소플라즈마 처리 PE 톨루엔 45.3 99.7 85.1
비교예 2 n-헥산 26.2 99.5 82.8
실시예 4 폴리도파민 코팅 PE 톨루엔 45.5 99.7 85.4
비교예 3 n-헥산 26.3 99.5 82.9
비교예 4 상용 역삼투막 (Hydranautics- SWC4+) 21.0 99.1 64.8
상기 표에 나타난 바와 같이, 본 발명에 따른 박막 복합체 분리막(역삼투용)은 제조시 사용된 제 2 용매(유기용매)의 종류에 따라 성능차이를 보이는 것을 확인할 수 있다.
구체적으로, 용매로 방향족 탄화수소, 즉 톨루엔 또는 자일렌을 사용한 실시예의 박막 복합체 분리막(실시예 1 내지 4)은 기존의 n-헥산을 이용한 박막 복합체 분리막(비교예 1 내지 3)뿐만 아니라 상용 역삼투막(비교예 4) 보다 우수한 수투과도 및 NaCl 제거율을 보였다. 또한, 매우 우수한 보론 제거율을 보였다.
이는 기존 박막 복합체 분리막 제조기술(비교예 1 내지 3)의 경우, 선택층의 두께를 얇고, 구조를 고밀도로 만들지 못하므로, 낮은 수투과도, 낮은 염(NaCl) 제거율 및 낮은 보론 제거율을 보이는 것이다.
반면, 본 발명에에서는 두께가 얇고 고밀도를 가지는 선택층을 제조하여, 높은 수투과도, 높은 염(NaCl) 제거율, 및 높은 보론 제거율을 가지는 박막 복합체 분리막을 제조할 수 있다.
실시예 5 내지 6 및 비교예 5 내지 6. 정삼투용 박막 복합체 분리막 제조
1) 다공성 지지체
표면 기공 크기가 10 내지 30 nm인 폴리아크릴로니트릴(polyacrylonitrile, PAN) 또는 표면 기공 크기가 100 내지 300 nm인 폴리도파민이 코팅 처리된 친수성 폴리에틸렌(polyethylene, PE)을 다공성 지지체로 사용하였다.
이때, 폴리도파민의 코팅 처리는 실시예 4에서와 같이 수행하였다.
2) 선택층 제조
제 1 용액의 제 1 용매(친수성 용매)로 물을 사용하고, 이에 포함되는 제 1 유기단량체로 m-페닐렌 디아민(m-phenylenediamine: MPD)을 사용하였다. 상기 제 1 용액에서 MPD의 농도는 5 w/v.% 였다.
제 2 용액의 제 2 용매(유기용매)로 톨루엔(toluene) 또는 n-헥산을 사용하고, 이에 포함되는 제 2 유기단량체로 트리메소일 클로라이드(trimesoyl chloride: TMC)를 사용하였다. 상기 제 2 용액에서 에서 TMC의 농도는 1 w/v.% 였다.
지지체 제 2 용액의 유기용매
실시예 5 PAN 톨루엔
비교예 5 PAN n-헥산
실시예 6 폴리도파민이 코팅된 PE 톨루엔
비교예 6 폴리도파민이 코팅된 PE n-헥산
선택층은 계면중합(interfacial polymerization)법을 이용하여 하기와 같이 제조하였다.
(1) 지지체를 아이소프로필 알코올(isopropyl alcohol)과 물을 사용하여 세척하였다.
(2) 세척한 지지체를 반응틀로 고정하고, 제 1 용액 20 ml 부어 지지체 내에 제 1 용액을 함침시켰다.
(3) 제 1 용액을 제거하고, 지지체 표면에 남은 미량의 제 1 용액을 에어건을 사용하여 제거하였다.
(4) 그 위에 제 2 용액을 부어 계면중합반응을 통해 선택층을 합성하였다.
5) 미 반응한 제 2 유기단량체를 제 2 용액에서 사용한 용매로 세척하여 제거하고, 상온에서 3분 동안 건조하였다.
(6) 70℃의 오븐에 넣고 5분 동안 건조 한 후, 상온의 물에 넣어 보관하였다.
비교예 7
박막 복합체 분리막으로 상용 HTI사의 CTA 단일 분리막을 사용하였다.
비교예 8
박막 복합체 분리막으로 상용 HTI사의 TFC 박막 복합체 분리막을 사용하였다.
실험예 2. 성능 실험
(1) 조건
정삼투 공정에서 실시예 5 내지 6 및 비교예 5 내지 8에서 제조된 박막 복합체 분리막의 성능(수투과도, 역염투과도 및 염선택도)을 비교하였다.
구체적으로, 박막 복합체 분리막을 유량 0.6 Lmin-1, 25 ± 0.5℃ 공정조건에서 1 M의 NaCl 유도용액을 사용하여 수투과도, 역염투과도 및 염선택도를 비교하였다.
(2) 결과
상기 분리막의 성능 평가 결과를 하기 표 4에 기재하였다.
지지체/분리막 제 2 유기 단량체 용액의 용매 수투과도(Jw, Lm-2h-1) 역염투과도(Js , gm-2h-1) 염선택도(Js / Jw, g-1L)
실시예 5 PAN 톨루엔 33.4 5.6 0.17
비교예 5 n-헥산 15.6 4.8 0.31
실시예 6 폴리도파민 코팅 PE 톨루엔 53.0 14.8 0.28
비교예 6 n-헥산 26.7 9.8 0.37
비교예 7 상용 정삼투막(HTI-CTA) - 11.8 6.7 0.57
비교예 8 상용 정삼투막(HTI-TFC) - 16.0 12.1 0.76
상기 표에 나타난 바와 같이, 본 발명에 따른 박막 복합체 분리막(정삼투용)은 제조시 사용된 제 2 용매(유기용매)의 종류에 따라 성능차이를 보이는 것을 확인할 수 있다.
구체적으로, 용매로 방향족 탄화수소, 즉 톨루엔을 사용한 실시예의 박막 복합체 분리막(실시예 5 내지 6)은 기존의 n-헥산을 사용한 박막 복합체 분리막(비교예 5 내지 6)뿐만아니라 상용 정삼투막(비교예 7 내지 8) 보다 우수한 수투과도 및 염선택도를 보였다.
본 발명에에서는 두께가 얇고 고밀도를 가지는 선택층을 제조하여, 높은 수투과도 및 높은 염선택도를 가지는 박막 복합체 분리막을 제조할 수 있다.
본 발명에 따른 박막 복합체 분리막의 제조 방법은 선택층의 제조시 유기용매로 톨루엔, 자일렌, 쿠멘 또는 디부틸프탈레이트를 사용하므로, 계면중합 과정에서 아민 단량체의 유기용매 층으로의 확산을 매우 빠르게 촉진시켜, 선택층의 합성 속도를 월등히 향상시킬 수 있다. 이를 통해, 기존의 박막 복합체 분리막의 선택층보다 매우 얇고 가교 밀도가 높은 선택층을 제조할 수 있다.
본 발명에 따른 박막 복합체 분리막은 기존의 박막 복합체 분리막과 상용분리막 대비 매우 우수한 염(NaCl) 및 용질 제거율, 수투과도 및 염선택도를 가진다. 특히, 본 발명에 따른 박막 복합체 분리막은 매우 우수한 보론 제거율을 가진다. 따라서, 수처리용 박막 복합체 분리막으로 효율적이다.

Claims (13)

  1. 지지체 상에 선택층을 형성하는 단계를 포함하고,
    상기 선택층은 지지체 상에 제 1 유기단량체 및 제 1 용매를 포함하는 제 1 용액 및 제 2 유기단량체 및 제 2 용매를 포함하는 제 2 용액을 순차적으로 함침 또는 도포하고, 상기 제 1 용액 및 제 2 용액 간의 계면중합을 통해 제조되며,
    상기 제 2 용매는 톨루엔, 자일렌, 쿠멘 또는 디부틸프탈레이트인 박막 복합체 분리막의 제조 방법.
  2. 제 1 항에 있어서,
    지지체는 폴리아크릴로니트릴(polyacrylonitrile, PAN), 폴리에틸렌(polyethylene, PE), 폴리프로필렌(polypropylene, PP), 폴리테트라플루오로에틸렌(polytetrafluoroethylene, PTFE), 폴리비닐 리덴 플루오라이드(polyvinylidene fluoride, PVDF), 셀룰로즈 아세테이트(cellulose acetate), 폴리이미드(polyimide, PI), 폴리에터이미드(polyetherimide, PEI), 폴리비닐피롤리돈(polyvinylpyrrolidone, PVP), polysulfone(PSF), 폴리이서설폰(polyethersulfone, PES) 및 폴리벤조이미다졸(polybenzoimidazole, PBI)로 이루어진 그룹으로부터 선택된 수지로부터 형성되는 박막 복합체 분리막.
  3. 제 1 항에 있어서,
    지지체 상에 선택층을 형성하기 전에, 상기 지지체를 친수화 처리하는 단계를 추가로 포함하는 박막 복합체 분리막의 제조 방법.
  4. 제 3 항에 있어서,
    친수화 처리는 화학적 산화, 플라즈마, UV 산화, 단원자층 증착(atomic layer deposition, ALD), 화학기상 증착(chemical vapor deposition, CVD), 무기물 코팅 또는 고분자 코팅 처리인 박막 복합체 분리막의 제조 방법.
  5. 제 1 항에 있어서,
    제 1 유기단량체는 m-페닐렌 디아민(m-phenylenediamine: MPD), p-페닐렌 디아민(p-phenylenediamine: PPD), o-페닐렌 디아민(o-phenylenediamine: OPD), 레조르시놀(resorcinol), 디에틸렌 트리아민(diethylene triamine: DETA), 메탄 디아민(methane diamine: MDA), 피페라진(piperazine: PIP), N-아미노 에틸 피퍼라진(N-aminoethyl piperazine: N-AEP), 트리에틸렌 테트라민(triethylene tetramine: TETA), 디에틸아미노 프로필 아민(diethyl propyl amine: DEPA), 이소포론디아민(isophoroediamine: IPDA), 4-4`-디아미노디페닐메탄(4,4`-diaminodiphenyl methane: DDM), M-자일렌 디아민(M-xylenediamine: MXDA) 4-4`-디아미노디페닐술폰(4,4`-diaminodiphenyl sulphone: DDS) 및 하이드록시알킬아민(hydroxyakylamine)으로 이루어진 그룹으로부터 선택된 하나 이상인 박막 복합체 분리막의 제조 방법.
  6. 제 1 항에 있어서,
    제 1 용매는 물, 메탄올, 에탄올, 프로판올, 부탄올, 이소프로판올, 에틸아세테이트, 디에틸에테르, 아세톤 및 클로로포름으로 이루어진 그룹으로부터 선택된 하나 이상인 박막 복합체 분리막의 제조 방법.
  7. 제 1 항에 있어서,
    제 2 유기단량체는 트리메소일 클로라이드(trimesoyl chloride: TMC), 1-이소시아네이토-3,5-벤젠디카보닐클로라이드(1-isocyanato-3,5-benzenedicarbonyl chloride), 테레프탈로일 클로라이드(terephthaloyl chloride), 시클로헥산-1,3,5-트리카보닐 클로라이드(cyclohexane-1,3,5-tricarbonyl chloride) 및 이소프탈로일 클로라이드(isophthaloyl chloride)로 이루어진 그룹으로부터 선택된 하나 이상인 박막 복합체 분리막의 제조 방법.
  8. 지지체; 및
    상기 지지체 상에 형성된 선택층을 포함하는 제1항에 따른 제조 방법에 의해 제조된 박막 복합체 분리막.
  9. 제 1 항에 있어서,
    지지체는 친수화 처리된 것인 박막 복합체 분리막.
  10. 제 8 항에 있어서,
    선택층은 폴리아마이드(polyamide), 폴리퓨란(polyfurane), 폴리에테르-폴리퓨란(polyether-polyfurane), 술폰화된 폴리술폰(sulfonated polysulfone), 폴리아미드-폴리에틸렌이민(polyamide via polyethylenimine), 폴리아미드-폴리에피아민(polyamide via polyepiamine), 폴리비닐아민(polyvinylamine), 폴리피롤리딘(polypyrrolidine), 폴리피페라진-아미드(polypiperazine-amide), 전 방향족 폴리아미드(fully aromatic polyamide), 반 방향족 폴리아미드(semi-aromatic polyamide), 가교결합된 폴리아미드(crosslinked polyamide), 가교결합된 전 방향족 폴리아미드(cross linked fully aromatic polyamide), 가교결합된 아랄킬 폴리아미드(crosslinked aralkyl polyamide) 및 레소시놀계 고분자(resorcinol based polymer)로 이루어진 그룹으로부터 선택된 하나 이상의 고분자를 포함하는 박막 복합체 분리막.
  11. 제 8 항에 있어서,
    선택층의 두께는 3 nm 내지 1 um인 박막 복합체 분리막.
  12. 제 1 항에 있어서,
    나노필트레이션(nanofiltration, NF), 정삼투(forward osmosis, FO), 가압식 정삼투(pressure assisted osmosis, PAO), 압력지연삼투(pressure-retarded osmosis, PRO) 또는 역삼투(reverse osmosis, RO) 공정에 사용되는 박막 복합체 분리막.
  13. 제 12 항에 있어서,
    역삼투 공정에 사용시 보론(Boron) 제거율은 80% 이상인 박막 복합체 분리막.
PCT/KR2019/004899 2018-04-23 2019-04-23 방향족 탄화수소를 이용한 우수한 용질 제거 성능을 가진 분리막 제조 기술 WO2019209010A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/049,647 US20210245111A1 (en) 2018-04-23 2019-04-23 Technique for manufacturing high solute-selective thin film composite membranes using aromatic hydrocarbon solvents

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20180046928 2018-04-23
KR10-2018-0046928 2018-04-23

Publications (1)

Publication Number Publication Date
WO2019209010A1 true WO2019209010A1 (ko) 2019-10-31

Family

ID=68294161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/004899 WO2019209010A1 (ko) 2018-04-23 2019-04-23 방향족 탄화수소를 이용한 우수한 용질 제거 성능을 가진 분리막 제조 기술

Country Status (3)

Country Link
US (1) US20210245111A1 (ko)
KR (1) KR102198401B1 (ko)
WO (1) WO2019209010A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3717531A4 (en) 2017-12-01 2021-08-25 The Regents of the University of California BIOLOGICAL SOIL RESISTANT COATINGS AND THEIR MANUFACTURING AND USE PROCESSES
CN114514044B (zh) 2019-06-05 2023-12-12 加州大学评议会 抗生物污着涂层及其制造和使用方法
CN111389240A (zh) * 2020-03-20 2020-07-10 北京碧水源膜科技有限公司 聚乙烯复合纳滤膜的制备方法
CN111467981A (zh) * 2020-04-13 2020-07-31 浙江迪萧环保科技有限公司 一种高倍截留强化纳米结构复合膜的制备方法
CN112919668B (zh) * 2020-12-31 2022-08-26 山东大学 一种反渗透-肥料驱动的正渗透海水淡化方法
CN117654287B (zh) * 2024-02-01 2024-05-14 蓝星(杭州)膜工业有限公司 复合膜及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070018529A (ko) * 2005-08-10 2007-02-14 주식회사 새 한 보론 제거 기능이 있는 역삼투 분리막의 제조방법
KR101519026B1 (ko) * 2014-02-17 2015-05-12 한국과학기술연구원 유기단량체 간의 가교를 이용한 다층박막기반의 정삼투계 분리막 및 그 제조방법
KR20160039918A (ko) * 2014-10-02 2016-04-12 주식회사 엘지화학 역삼투 분리막의 제조방법 및 이에 의해 제조된 역삼투 분리막
KR20170079777A (ko) * 2015-12-31 2017-07-10 고려대학교 산학협력단 듀얼(이중층)-슬롯코팅 기술을 이용한 박막 복합 분리막의 단일 제조공정
KR20180006608A (ko) * 2016-07-07 2018-01-18 고려대학교 산학협력단 폴리에틸렌 다공성 지지체를 이용한 정삼투용 박막 복합체 분리막의 제조방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101184213B1 (ko) * 2010-02-05 2012-09-19 웅진케미칼 주식회사 보론 제거 성능이 우수한 역삼투 분리막 및 이의 제조방법
US9022227B2 (en) * 2011-03-21 2015-05-05 International Business Machines Corporation Composite membranes and methods of preparation thereof
US9302922B2 (en) * 2012-01-30 2016-04-05 California Institute Of Technology Filtration membranes and related compositions, methods and systems
KR101450723B1 (ko) * 2013-02-21 2014-10-17 한국과학기술연구원 유기 단량체 간의 가교를 이용한 다층 박막 기반의 역삼투 분리막 및 그 제조방법
KR101620150B1 (ko) 2013-12-31 2016-05-12 도레이케미칼 주식회사 보론 제거 성능이 우수한 역삼투막 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070018529A (ko) * 2005-08-10 2007-02-14 주식회사 새 한 보론 제거 기능이 있는 역삼투 분리막의 제조방법
KR101519026B1 (ko) * 2014-02-17 2015-05-12 한국과학기술연구원 유기단량체 간의 가교를 이용한 다층박막기반의 정삼투계 분리막 및 그 제조방법
KR20160039918A (ko) * 2014-10-02 2016-04-12 주식회사 엘지화학 역삼투 분리막의 제조방법 및 이에 의해 제조된 역삼투 분리막
KR20170079777A (ko) * 2015-12-31 2017-07-10 고려대학교 산학협력단 듀얼(이중층)-슬롯코팅 기술을 이용한 박막 복합 분리막의 단일 제조공정
KR20180006608A (ko) * 2016-07-07 2018-01-18 고려대학교 산학협력단 폴리에틸렌 다공성 지지체를 이용한 정삼투용 박막 복합체 분리막의 제조방법

Also Published As

Publication number Publication date
US20210245111A1 (en) 2021-08-12
KR102198401B1 (ko) 2021-01-06
KR20190123243A (ko) 2019-10-31

Similar Documents

Publication Publication Date Title
WO2019209010A1 (ko) 방향족 탄화수소를 이용한 우수한 용질 제거 성능을 가진 분리막 제조 기술
WO2014204218A2 (ko) 염제거율 및 투과유량 특성이 우수한 폴리아미드계 수처리 분리막 및 그 제조 방법
WO2013183969A1 (ko) 표면 처리된 제올라이트를 포함하는 고투과 유량 역삼투막 및 이를 제조하는 방법
WO2014204220A1 (ko) 염제거율 및 투과유량 특성이 우수한 폴리아미드계 역삼투 분리막 제조방법 및 상기 제조방법으로 제조된 역삼투 분리막
WO2013176524A1 (ko) 역삼투 분리막
WO2017116009A1 (ko) 듀얼(이중층)-슬롯코팅 기술을 이용한 박막 복합 분리막의 단일 제조공정
WO2011136465A2 (ko) 해수담수용 정삼투막 및 그 제조방법
WO2014137049A1 (ko) 내오염성이 우수한 폴리아미드계 수처리 분리막 및 그 제조 방법
WO2013180517A1 (ko) 카보디이미드계 화합물을 포함하는 고투과 역삼투막 및 이를 제조하는 방법
WO2014196835A1 (ko) 내산화성 및 내염소성이 우수한 폴리아미드계 수처리 분리막 및 그 제조방법
WO2010082710A1 (en) Method for preparing a highly durable reverse osmosis membrane
WO2013176523A1 (ko) 역삼투 분리막 제조방법 및 이에 의해 제조된 역삼투 분리막
WO2022124554A1 (ko) 내구성 및 내오염성이 우수한 폴리아미드 역삼투막 및 이의 제조방법
WO2019143225A1 (ko) 용매 후처리를 통한 고성능 박막 복합체 분리막의 제조 방법
WO2013103257A1 (ko) 내오염성이 우수한 역삼투막 및 그 제조방법
WO2014084661A1 (ko) 내염소성 고투과 수처리 분리막 및 그 제조 방법
WO2016175499A1 (ko) 지지체-프리 계면중합으로 제조된 선택층을 이용한 분리막의 제조방법
WO2017150885A1 (en) Methods of enhancing water flux of a tfc membrane using oxidizing and reducing agents
WO2014081232A1 (ko) 내염소성이 우수한 고유량 수처리 분리막
WO2013176508A1 (ko) 초기 투과 유량이 우수한 폴리아미드계 역삼투 분리막 및 이의 제조방법
WO2012161483A2 (ko) 역삼투 분리막의 제조 방법 및 이에 의해 제조된 역삼투 분리막
WO2012173417A2 (ko) 초친수성 보호층을 포함하는 역삼투막 및 이의 제조방법
WO2017146457A2 (ko) 열전환 폴리(벤즈옥사졸-이미드) 공중합체 기반의 초박형 복합막 및 그 제조방법
WO2017039112A2 (ko) 수처리 분리막의 제조방법, 이를 이용하여 제조된 수처리 분리막, 및 수처리 분리막을 포함하는 수처리 모듈
KR20150057093A (ko) 멤브레인, 수처리용 분리막, 수처리 장치 및 상기 멤브레인의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793734

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19793734

Country of ref document: EP

Kind code of ref document: A1