WO2020261933A1 - 光電変換素子、撮像素子、光センサ、光電変換素子用材料 - Google Patents

光電変換素子、撮像素子、光センサ、光電変換素子用材料 Download PDF

Info

Publication number
WO2020261933A1
WO2020261933A1 PCT/JP2020/022287 JP2020022287W WO2020261933A1 WO 2020261933 A1 WO2020261933 A1 WO 2020261933A1 JP 2020022287 W JP2020022287 W JP 2020022287W WO 2020261933 A1 WO2020261933 A1 WO 2020261933A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituent
group
photoelectric conversion
conversion element
formula
Prior art date
Application number
PCT/JP2020/022287
Other languages
English (en)
French (fr)
Inventor
花木 直幸
知昭 吉岡
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2021527593A priority Critical patent/JP7382404B2/ja
Publication of WO2020261933A1 publication Critical patent/WO2020261933A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a photoelectric conversion element, an image sensor, an optical sensor, and a material for a photoelectric conversion element.
  • Patent Document 1 discloses a photoelectric conversion element containing a predetermined compound.
  • a photoelectric conversion element is required to have excellent responsiveness when receiving light.
  • the compound represented by the formula (1) described later is a compound represented by the formula (2) described later, a compound represented by the formula (3) described later, or a compound represented by the formula (4) described later.
  • the present invention it is possible to provide a photoelectric conversion element having excellent responsiveness. Further, according to the present invention, it is possible to provide a material for an image sensor, an optical sensor, and a photoelectric conversion element.
  • the "substituent” includes a group exemplified by the substituent W described later, unless otherwise specified.
  • the substituent W is, for example, a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), an alkyl group (including a cycloalkyl group, a bicycloalkyl group, and a tricycloalkyl group), an alkenyl group (including a cycloalkyl group, a bicycloalkyl group, and an alkenyl group).
  • a halogen atom fluorine atom, chlorine atom, bromine atom, iodine atom, etc.
  • an alkyl group including a cycloalkyl group, a bicycloalkyl group, and a tricycloalkyl group
  • an alkenyl group including a cycloalkyl group, a bicycloalkyl group, and an alkenyl group.
  • each of the above-mentioned groups may further have a substituent (for example, one or more groups of each of the above-mentioned groups) if possible.
  • a substituent for example, one or more groups of each of the above-mentioned groups
  • an alkyl group which may have a substituent is also included as a form of the substituent W.
  • the substituent W has a carbon atom
  • the number of carbon atoms of the substituent W is, for example, 1 to 20.
  • the number of atoms other than the hydrogen atom of the substituent W is, for example, 1 to 30.
  • the number of carbon atoms of the alkyl group is preferably 1 to 20, more preferably 1 to 10, and even more preferably 1 to 6.
  • the alkyl group may be linear, branched, or cyclic. Examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, a t-butyl group, an n-hexyl group, a cyclopentyl group and the like.
  • the alkyl group may be, for example, a cycloalkyl group, a bicycloalkyl group, or a tricycloalkyl group, and may have a cyclic structure thereof as a partial structure.
  • the substituent that the alkyl group may have is not particularly limited, and examples thereof include a substituent W, and an aryl group (preferably 6 to 18 carbon atoms, more preferably). 6), a heteroaryl group (preferably 5 to 18, more preferably 5 to 6 carbon atoms), or a halogen atom (preferably a fluorine atom or a chlorine atom).
  • the above-mentioned alkyl group is preferable as the alkyl group portion of the alkoxy group.
  • the above-mentioned alkyl group is preferable as the alkyl group moiety in the alkylthio group.
  • the substituent that the alkoxy group may have includes the same examples as the substituent in the alkyl group that may have a substituent.
  • the substituent which the alkylthio group may have includes the same examples as the substituent in the alkyl group which may have a substituent.
  • the alkenyl group may be linear, branched chain, or cyclic.
  • the alkenyl group preferably has 2 to 20 carbon atoms.
  • the substituent which the alkenyl group may have includes the same examples as the substituent in the alkyl group which may have a substituent.
  • the alkynyl group may be linear, branched chain, or cyclic.
  • the alkynyl group preferably has 2 to 20 carbon atoms.
  • the substituent which the alkynyl group may have includes the same examples as the substituent in the alkyl group which may have a substituent.
  • the aryl group is preferably an aryl group having 6 to 18 ring members, unless otherwise specified.
  • the aryl group may be monocyclic or polycyclic.
  • the aryl group is preferably, for example, a phenyl group, a naphthyl group, an anthryl group, or a phenanthrenyl group.
  • the substituent which the aryl group may have is not particularly limited, and examples thereof include a substituent W, and an alkyl group which may have a substituent (preferably).
  • the number of carbon atoms is preferably 1 to 10), and a methyl group is more preferable.
  • the heteroaryl group includes a hetero atom such as a nitrogen atom, a sulfur atom, an oxygen atom, a selenium atom, a tellurium atom, a phosphorus atom, a silicon atom, and / or a boron atom.
  • a heteroaryl group having a monocyclic or polycyclic ring structure is preferable.
  • the number of carbon atoms in the ring member atom of the heteroaryl group is not particularly limited, and is preferably 3 to 18 and more preferably 3 to 5.
  • the number of heteroatoms in the ring member atom of the heteroaryl group is not particularly limited, and is preferably 1 to 10, more preferably 1 to 4, and even more preferably 1 to 2.
  • the number of ring members of the heteroaryl group is not particularly limited, and is preferably 5 to 8, more preferably 5 to 7, and even more preferably 5 to 6.
  • the heteroaryl group includes a fryl group, a pyridyl group, a quinolyl group, an isoquinolyl group, an acridinyl group, a phenanthridinyl group, a pteridinyl group, a pyrazinyl group, a quinoxalinyl group, a pyrimidinyl group, a quinazolyl group, a pyridadinyl group, a synnolinyl group and a phthalazinyl group.
  • the substituent the substituent
  • the silyl group which may have a substituent includes, for example, a group represented by —Si ( RS1 ) ( RS2 ) ( RS3 ).
  • R S1 , R S2 , and R S3 independently have an alkyl group which may have a substituent, an alkoxy group which may have a substituent, an alkylthio group which may have a substituent, and a substituent.
  • the numerical range represented by using “-” means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • the hydrogen atom may be a light hydrogen atom (ordinary hydrogen atom) or a deuterium atom (double hydrogen atom or the like).
  • the photoelectric conversion element of the present invention is a photoelectric conversion element having a conductive film, a photoelectric conversion film, and a transparent conductive film in this order, and the photoelectric conversion film is a compound represented by the formula (1) (hereinafter referred to as a compound). , Also referred to as "specific compound”), and n-type semiconductor materials.
  • a compound represented by the formula (1)
  • specific compound also referred to as "specific compound”
  • n-type semiconductor materials n-type semiconductor materials.
  • the specific compound Since the specific compound has such a characteristic structure, it is presumed that the responsiveness of the photoelectric conversion element is excellent when the specific compound is used for the photoelectric conversion element. Further, the photoelectric conversion element having a photoelectric conversion film manufactured by using a specific compound is also excellent in heat resistance. It is believed that this is due to the rigid structure of the particular compound.
  • the excellent responsiveness and / or heat resistance of the obtained photoelectric conversion element is also simply referred to as "the effect of the present invention is excellent".
  • FIG. 1 shows a schematic cross-sectional view of an embodiment of the photoelectric conversion element of the present invention.
  • the photoelectric conversion element 10a shown in FIG. 1 includes a conductive film (hereinafter, also referred to as a lower electrode) 11 that functions as a lower electrode, an electron blocking film 16A, a photoelectric conversion film 12 containing a specific compound described later, and an upper electrode. It has a structure in which functional transparent conductive films (hereinafter, also referred to as upper electrodes) 15 are laminated in this order.
  • FIG. 2 shows a configuration example of another photoelectric conversion element.
  • FIGS. 1 and 2 has a configuration in which an electron blocking film 16A, a photoelectric conversion film 12, a hole blocking film 16B, and an upper electrode 15 are laminated in this order on a lower electrode 11.
  • the stacking order of the electron blocking film 16A, the photoelectric conversion film 12, and the hole blocking film 16B in FIGS. 1 and 2 may be appropriately changed depending on the application and characteristics.
  • the photoelectric conversion element 10a it is preferable that light is incident on the photoelectric conversion film 12 via the upper electrode 15. Further, when the photoelectric conversion element 10a (or 10b) is used, a voltage can be applied. In this case, it is preferable that the lower electrode 11 and the upper electrode 15 form a pair of electrodes, and a voltage of 1 ⁇ 10 -5 to 1 ⁇ 10 7 V / cm is applied between the pair of electrodes. From the viewpoint of performance and power consumption, the applied voltage is more preferably 1 ⁇ 10 -4 to 1 ⁇ 10 7 V / cm, further preferably 1 ⁇ 10 -3 to 5 ⁇ 10 6 V / cm.
  • the voltage application method it is preferable to apply the voltage so that the electron blocking film 16A side serves as the cathode and the photoelectric conversion film 12 side serves as the anode in FIGS. 1 and 2.
  • a voltage can be applied by the same method.
  • the photoelectric conversion element 10a (or 10b) can be suitably applied to an image sensor application.
  • the photoelectric conversion film is a film containing a specific compound.
  • the specific compound will be described in detail.
  • R a1 and R a2 each independently represent a hydrogen atom or a substituent.
  • substituent W which includes a halogen atom, an alkyl group which may have a substituent, an alkoxy group which may have a substituent, and a substituent.
  • An alkylthio group which may have a substituent, a silyl group which may have a substituent, an aryl group which may have a substituent, or a heteroaryl group which may have a substituent is preferable.
  • R a1 and R a2 are each independently preferably a hydrogen atom.
  • R a1 when a plurality of R a1 is present, R a1 may have respectively be the same or different where there exist a plurality. In the formula (1), when a plurality of R a2 are present, R a2 may have respectively be the same or different where there exist a plurality.
  • the 5-membered ring containing X 1 and Y 1 is an aromatic hetero ring
  • the 5-membered ring containing X 2 and Y 2 is an aromatic hetero ring.
  • it is preferable that one of X 1 and Y 1 represents -CR a1 and the other represents -O-, -S-, or -Se-.
  • Ra3 may have a hydrogen atom, a halogen atom, an alkyl group which may have a substituent, an alkoxy group which may have a substituent, an alkylthio group which may have a substituent, and a substituent.
  • R a3 when a plurality of R a3 is present, R a3 may have respectively be the same or different where there exist a plurality.
  • Ar 1 to Ar 4 each independently represent an aromatic ring group which may have a substituent.
  • the aromatic ring group may be monocyclic or polycyclic.
  • the aromatic ring group has one or more (preferably 1 to 3) heteroatoms (nitrogen atom, sulfur atom, oxygen atom, selenium atom, tellurium atom, phosphorus atom, silicon atom, and / or boron atom, etc.) as ring member atoms. ) May or may not be included.
  • the number of ring members of the aromatic ring group is preferably 5 to 18.
  • the monocyclic aromatic ring group includes, for example, a benzene ring group, a frill ring group, a pyridine ring group, a pyrazine ring group, a pyrimidine ring group, and a pyridazine ring group.
  • a polycyclic aromatic ring group is a group formed by condensing single rings having aromaticity.
  • a polycyclic aromatic ring group two or more of the ring member atoms of each monocycle (monocycle having aromaticity) constituting the polycyclic aromatic ring are other singles constituting the polycyclic aromatic ring group. It is also a ring member atom of a ring (a single ring having aromaticity).
  • the aromatic ring group is a polycyclic aromatic ring group
  • the polycyclic aromatic ring group includes, for example, a naphthalene ring group, an anthracene ring group, a quinoline ring group, an isoquinolin ring group, an acrydin ring group, and phenanthridin.
  • Ring group pteridine ring group, quinoxaline ring group, quinazoline ring group, cinnoline ring group, phthalazine ring group, benzoxazole ring group, benzothiazole ring group, benzimidazole ring group, indazole ring group, benzoisooxazole ring group, benzoiso Thiazole ring group, benzofuran ring group, benzothiophene ring group, benzoselenophen ring group, dibenzofuran ring group, dibenzothiophene ring group, dibenzoselenophen ring group, thienothiophene ring group, thienopyrol ring group, dithienopyrrole ring group, indol ring group , Imidazopyridine ring group, and carbazole ring group.
  • the substituent that the aromatic ring group in Ar 1 and Ar 2 may have is not L 1 . Further, the substituent that the aromatic ring group in Ar 2 may have is not Ar 1 . Similarly, the substituent that the aromatic ring group in Ar 3 and Ar 3 may have is not L 2 . Further, the substituent that the aromatic ring group in Ar 3 may have is not Ar 4 . Further, Ar 1 and Ar 2 are directly bonded to each other by a single bond specified in the formula (1). Similarly, Ar 3 and Ar 4 are directly bonded to each other by a single bond specified in the formula (1).
  • Examples of the substituent which the aromatic ring group in Ar 1 to Ar 4 may have include the substituent W, and among them, a halogen atom, an alkyl group which may have a substituent, and a substituent are included.
  • a aryl group which may have a substituent or a heteroaryl group which may have a substituent is preferable.
  • the aromatic ring group further has an aromatic ring group as a substituent.
  • Examples of the above-mentioned "aromatic ring group as a substituent” include the above-mentioned monocyclic aromatic ring group and polycyclic aromatic ring group.
  • the aromatic ring group further has an aromatic ring group as a substituent
  • one or more of these aromatic ring groups may have further different substituents.
  • the different substituents of each of these aromatic ring groups may be bonded to each other. That is, these aromatic ring groups may be bonded to each other by forming a further different ring between them.
  • the further different ring formed between these aromatic ring groups is a non-aromatic ring.
  • the aromatic ring group A further has an aromatic ring group B as a substituent
  • the aromatic ring group A may further have a substituent A
  • the aromatic ring group B further contains a substituent B. You may have.
  • Substituent A and substituent B may be bonded to each other to form a further different ring (non-aromatic ring) between the aromatic ring group A and the aromatic ring group B.
  • aromatic ring groups are bonded to each other by forming a further different ring (non-aromatic ring) between them, for example, these aromatic ring groups jointly form a fluorene ring group.
  • Ar 1 to Ar 4 preferably Ar 1 and / or Ar 4
  • Ar 2 and Ar 3 are preferably a monocyclic aromatic ring group which may have a substituent, and more preferably a benzene ring group which may have a substituent. Further, from the viewpoint that the effect of the present invention is more excellent, it is preferable that at least one of Ar 1 and Ar 2 is a benzene ring group which may have a substituent, and at least one of Ar 3 and Ar 4 has a substituent. It is also preferable that it is a benzene ring group which may have. As will be described later, Ar 1 and Ar 2 may have a bond via L 1 in addition to the single bond specified in the equation (1).
  • Ar 1 and Ar 2 are benzene ring groups which may have a substituent
  • Ar 1 and Ar 2 have a bond via L 1
  • Ar 1 and Ar 2 are jointly used.
  • a fluorene ring group which may have a substituent may be formed.
  • Ar 3 and Ar 4 may have a bond via L 2 in addition to the single bond specified in the formula (1).
  • Ar 3 and Ar 4 are benzene ring groups which may have a substituent
  • Ar 3 and Ar 4 have a bond via L 2
  • Ar 3 and Ar 4 are jointly used.
  • a fluorene ring group which may have a substituent may be formed.
  • Ar 1 and Ar 4 are polycyclic aromatic ring groups which may have substituents or groups represented by the formula (R), respectively. It is preferable to have it.
  • the number of ring members of the polycyclic aromatic ring group is preferably 9 to 18.
  • Examples of the polycyclic aromatic ring group are as described above, and a naphthalene ring group or a benzothiophene ring group is preferable.
  • * 1 and * 2 independently represent the coupling positions. Specifically, in Ar 1 which is a group represented by the formula (R), * 1 represents the bonding position with Ar 2 and * 2 represents the bonding position with (L 1 ) m 1 . In Ar 4 which is a group represented by the formula (R), * 1 represents a bond position with Ar 3 and * 2 represents a bond position with (L 2 ) m 2 . However, as described later, m1 and m2 may be 0. In Ar 1 which is a group represented by the formula (R), when m1 is 0, * 2 does not exist. In Ar 4 which is a group represented by the formula (R), when m2 is 0, * 2 does not exist.
  • Ar X represents a monocyclic aromatic ring group which may have a substituent other than Ar Y.
  • Examples of the monocyclic aromatic ring group are as described above, and among them, a benzene ring group is preferable.
  • Ar Y represents an aromatic ring group which may have a substituent.
  • Examples of the aromatic ring group of Ar Y include the above-mentioned monocyclic aromatic ring group and the above-mentioned polycyclic aromatic ring group, and among them, the benzene ring group is preferable.
  • the monocyclic aromatic ring group in Ar X and the aromatic ring group in Ar Y have ring-membered atoms bonded to each other by a single bond.
  • Examples of the substituent that the monocyclic aromatic ring group in Ar X may have other than Ar Y and the substituent that the aromatic ring group in Ar Y may have include the substituent W. It is also preferable that the monocyclic aromatic ring group in Ar X has no substituent other than Ar Y. Further, the substituent which the aromatic ring group may have in Ar Y has a halogen atom, an alkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent. Heteroaryl groups may be preferred. However, the substituent that the monocyclic aromatic ring group in Ar X may have other than Ar Y and the substituent that the aromatic ring group in Ar Y may have do not bond to each other. That is, Ar X and Ar Y are not combined except for the single bond specified in the formula (R). For example, the group represented by the formula (R) does not include a fluorene ring group.
  • m1 and m2 independently represent 0 or 1, respectively.
  • L 1 and L 2 independently form -S-, -O-, -Se- , -SiR a4 R a5- , -NR a6- , or -CR a7 R a8- , respectively.
  • R a4 to R a8 are independently hydrogen atom, halogen atom, alkyl group which may have a substituent, alkoxy group which may have a substituent, and an alkylthio group which may have a substituent.
  • L 1 and L 2 each independently, -CR a7 R a8 - preferably, R a7 and R a8 are -CR a7 R a8 is an alkyl group which may have a substituent - are more preferred, -C (CH 3 ) 2 -is more preferable.
  • L 1 is directly bonded to each aromatic ring group in Ar 1 and Ar 2 .
  • L 2 is directly attached to the respective aromatic ring groups in Ar 3 and Ar 4 .
  • the compound represented by the formula (1) is represented by the compound represented by the formula (2), the compound represented by the formula (3), or the compound represented by the formula (4). It is preferably a compound. Among them, the compound represented by the formula (1) is more preferably the compound represented by the formula (3).
  • Y 3 and Y 4 independently represent -O-, -S-, or -Se-, respectively.
  • R 1 to R 4 independently have a hydrogen atom, a halogen atom, an alkyl group which may have a substituent, an alkoxy group which may have a substituent, and a substituent. It represents an alkylthio group which may have a substituent, a silyl group which may have a substituent, an aryl group which may have a substituent, or a heteroaryl group which may have a substituent.
  • Ar 1 to Ar 4 each independently represent an aromatic ring group which may have a substituent.
  • m1 and m2 independently represent 0 or 1, respectively.
  • L 1 and L 2 independently form -S-, -O-, -Se- , -SiR a4 R a5- , -NR a6- , or -CR a7 R a8- , respectively.
  • R a4 to R a8 independently have a hydrogen atom, a halogen atom, an alkyl group which may have a substituent, an alkoxy group which may have a substituent, and a substituent.
  • alkylthio group which may have a substituent a silyl group which may have a substituent, an alkenyl group which may have a substituent, an alkynyl group which may have a substituent, an aryl group which may have a substituent, Alternatively, it represents a heteroaryl group which may have a substituent.
  • m1 represents 0, L 1 is absent, and Ar 1 and Ar 2 are connected only by a single bond, which is specified in the above formula (2).
  • m2 represents 0, L 2 does not exist, and Ar 3 and Ar 4 are connected only by the single bond specified in the above equation (2).
  • Ar 1 to Ar 4 , m1, m2, L 1 , L 2 and R a4 to R a8 in the formula (2) are Ar 1 to Ar 4 , m1, m2, L 1 , in the formula (1). It is the same as L 2 and R a4 to R a8 , respectively.
  • Y 3 and X 3 independently represent -O-, -S-, or -Se-, respectively.
  • R 1 to R 3 and R 5 are independently a hydrogen atom, a halogen atom, an alkyl group which may have a substituent, an alkoxy group which may have a substituent, and a substituent, respectively.
  • Ar 1 to Ar 4 each independently represent an aromatic ring group which may have a substituent.
  • m1 and m2 independently represent 0 or 1, respectively.
  • L 1 and L 2 independently form -S-, -O-, -Se- , -SiR a4 R a5- , -NR a6- , or -CR a7 R a8- , respectively.
  • R a4 to R a8 independently have a hydrogen atom, a halogen atom, an alkyl group which may have a substituent, an alkoxy group which may have a substituent, and a substituent.
  • alkylthio group which may have a substituent a silyl group which may have a substituent, an alkenyl group which may have a substituent, an alkynyl group which may have a substituent, an aryl group which may have a substituent, Alternatively, it represents a heteroaryl group which may have a substituent.
  • m1 represents 0, L 1 is absent, and Ar 1 and Ar 2, are connected only by a single bond, which is specified in the above formula (3).
  • m2 represents 0, L 2 does not exist, and Ar 3 and Ar 4 are connected only by the single bond specified in the above equation (3).
  • Ar 1 to Ar 4 , m1, m2, L 1 , L 2 and R a4 to R a8 in the formula (3) are Ar 1 to Ar 4 , m1, m2, L 1 , L 1 in the formula (1). It is the same as L 2 and R a4 to R a8 , respectively.
  • X 3 and X 4 independently represent -O-, -S-, or -Se-, respectively.
  • R 1 to R 2 and R 5 to R 6 independently have a hydrogen atom, a halogen atom, an alkyl group which may have a substituent, and an alkoxy group which may have a substituent.
  • Ar 1 to Ar 4 each independently represent an aromatic ring group which may have a substituent.
  • m1 and m2 independently represent 0 or 1, respectively.
  • L 1 and L 2 independently form -S-, -O-, -Se- , -SiR a4 R a5- , -NR a6- , or -CR a7 R a8- , respectively.
  • R a4 to R a8 independently have a hydrogen atom, a halogen atom, an alkyl group which may have a substituent, an alkoxy group which may have a substituent, and a substituent.
  • alkylthio group which may have a substituent a silyl group which may have a substituent, an alkenyl group which may have a substituent, an alkynyl group which may have a substituent, an aryl group which may have a substituent, Alternatively, it represents a heteroaryl group which may have a substituent.
  • m1 represents 0, L 1 is absent, and Ar 1 and Ar 2, are connected only by a single bond which is expressly in the formula (4).
  • m2 represents 0, L 2 does not exist, and Ar 3 and Ar 4 are connected only by the single bond specified in the above equation (4).
  • Ar 1 ⁇ Ar 4 in, m1, m2, L 1, L 2 and,, R a4 ⁇ R a8 are, Ar 1 ⁇ Ar 4 in the formula (1), m1, m2, L 1, It is the same as L 2 and R a4 to R a8 , respectively.
  • the molecular weight of the specific compound is not particularly limited, and is preferably 425 to 1200, more preferably 450 to 900. When the molecular weight is 1200 or less, the vapor deposition temperature does not rise and the decomposition of the compound is unlikely to occur. When the molecular weight is 425 or more, the glass transition point of the vapor-deposited film is not lowered, and the heat resistance of the photoelectric conversion element is improved.
  • the specific compound may be used alone or in combination of two or more.
  • the specific compound is particularly useful as a material for a photoelectric conversion film used in an image sensor or an optical sensor.
  • the specific compound can also be used as a coloring material, a liquid crystal material, an organic semiconductor material, a charge transport material, a pharmaceutical material, and a fluorescence diagnostic agent material.
  • the specific compound is preferably a compound having an ionization potential of -5.0 to -6.0 eV in a single membrane in terms of matching the energy level with the n-type semiconductor material described later.
  • the maximum absorption wavelength of the specific compound is not particularly limited, and is preferably in the range of, for example, 300 to 500 nm.
  • the maximum absorption wavelength is a value measured in a solution state (solvent: chloroform) by adjusting the absorption spectrum of the specific compound to a concentration such that the absorbance becomes 0.5 to 1.
  • the maximum absorption wavelength of the photoelectric conversion film is not particularly limited, and is preferably in the range of, for example, 300 to 700 nm.
  • the photoelectric conversion film contains an n-type semiconductor material as a component other than the above-mentioned specific compound.
  • the n-type semiconductor material is an acceptor-type organic semiconductor material (compound), and refers to an organic compound having a property of easily accepting electrons. More specifically, the n-type semiconductor material refers to an organic compound having a higher electron affinity than the specific compound when used in contact with the above-mentioned specific compound.
  • the electron affinity of the n-type semiconductor material is preferably 3.0 to 5.0 eV.
  • the n-type semiconductor material includes, for example, fullerenes selected from the group consisting of fullerene and derivatives thereof, condensed aromatic carbocyclic compounds (for example, naphthalene derivatives, anthracene derivatives, phenanthrene derivatives, tetracene derivatives, pyrene derivatives, perylene derivatives, and , Fluolanthene derivative); 5- to 7-membered heterocyclic compound having at least one nitrogen atom, oxygen atom, and sulfur atom (eg, pyridine, pyrazine, pyrimidine, pyridazine, triazine, quinoline, quinoxalin, quinazoline, phthalazine) , Synnoline, Isoquinolin, Pteridine, Aclysine, Phenazine, Phenantroline, Tetrazole, Pyrazole, Imidazole, and Thiazole, etc.); Polyarylene compounds; Fluorene compounds; Cyclop
  • the n-type semiconductor material preferably contains fullerenes selected from the group consisting of fullerenes and derivatives thereof.
  • fullerenes include fullerenes C60, fullerenes C70, fullerenes C76, fullerenes C78, fullerenes C80, fullerenes C82, fullerenes C84, fullerenes C90, fullerenes C96, fullerenes C240, fullerenes C540, and mixed fullerenes.
  • the fullerene derivative include compounds in which a substituent is added to the fullerene.
  • the substituent is preferably an alkyl group, an aryl group, or a heterocyclic group.
  • the fullerene derivative the compound described in JP-A-2007-123707 is preferable.
  • the thickness) ⁇ 100) in terms of a single layer is preferably 15 to 100% by volume, more preferably 35 to 100% by volume.
  • An organic dye may be used as the n-type semiconductor material in place of the n-type semiconductor material described in the upper row or together with the n-type semiconductor material described in the upper row.
  • an organic dye By using an organic dye as the n-type semiconductor material, it is easy to control the absorption wavelength (maximum absorption wavelength) of the photoelectric conversion element in an arbitrary wavelength range.
  • the organic pigments include, for example, cyanine pigments, styryl pigments, hemicyanine pigments, merocyanine pigments (including zero methine merocyanin (simple merocyanin)), rodacianin pigments, allopolar pigments, oxonols pigments, hemioxonor pigments, squalium pigments, croconium pigments, etc.
  • the n-type semiconductor material contains an organic dye
  • the film thickness) ⁇ 100) in terms of a single layer is preferably 15 to 100% by volume, more preferably 35 to 100% by volume.
  • the molecular weight of the n-type semiconductor material is preferably 200 to 1200, more preferably 200 to 1000.
  • the photoelectric conversion film preferably has a bulk heterostructure formed in a state where a specific compound and an n-type semiconductor material are mixed.
  • the bulk heterostructure is a layer in which a specific compound and an n-type semiconductor material are mixed and dispersed in a photoelectric conversion film.
  • the bulk heterostructure is described in detail in paragraphs [0013] to [0014] of JP-A-2005-303266.
  • the film thickness of the n-type semiconductor material (thickness in terms of a single layer) ⁇ 100) is preferably 15 to 75% by volume, more preferably 35 to 75% by volume.
  • the photoelectric conversion film is substantially composed of a specific compound and an n-type semiconductor material. Substantially means that the total content of the specific compound and the n-type semiconductor material is 95% by mass or more with respect to the total mass of the photoelectric conversion film.
  • the n-type semiconductor material contained in the photoelectric conversion film may be used alone or in combination of two or more.
  • the photoelectric conversion film containing a specific compound is a non-luminescent film, and has characteristics different from those of an organic electroluminescent device (OLED: Organic Light Emitting Diode).
  • the non-emission film is intended to be a film having an emission quantum efficiency of 1% or less, and an emission quantum efficiency of 0.5% or less is preferable, and 0.1% or less is more preferable.
  • the photoelectric conversion film can be formed mainly by a dry film forming method.
  • the dry film forming method includes, for example, a physical vapor deposition method such as a vapor deposition method (particularly a vacuum vapor deposition method), a sputtering method, an ion plating method, an MBE (Molecular Beam Epitaxy) method, and a CVD method such as plasma polymerization. (Chemical Vapor Deposition) method can be mentioned. Of these, the vacuum deposition method is preferable.
  • the manufacturing conditions such as the degree of vacuum and the vapor deposition temperature can be set according to a conventional method.
  • the thickness of the photoelectric conversion film is preferably 10 to 1000 nm, more preferably 50 to 800 nm, further preferably 50 to 500 nm, and particularly preferably 50 to 300 nm.
  • the electrodes are made of a conductive material.
  • the conductive material include metals, alloys, metal oxides, electrically conductive compounds, and mixtures thereof. Since light is incident from the upper electrode 15, it is preferable that the upper electrode 15 is transparent to the light to be detected.
  • the material constituting the upper electrode 15 is, for example, antimony or fluorine-doped tin oxide (ATO: Antimony Tin Oxide, FTO: Fluorine topped Tin Oxide), tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO: Conductive metal oxides such as Indium Tin Oxide) and indium zinc oxide (IZO); metal thin films such as gold, silver, chromium, and nickel; these metals and conductive metal oxides Mixtures or laminates; and organic conductive materials such as polyaniline, polythiophene, and polypyrrole, and the like. Of these, conductive metal oxides are preferable from the viewpoints of high conductivity and transparency.
  • the sheet resistance is preferably 100 to 10000 ⁇ / ⁇ .
  • the degree of freedom in the range of film thickness that can be thinned is large.
  • Increasing the light transmittance is preferable because it increases the light absorption in the photoelectric conversion film and increases the photoelectric conversion ability.
  • the film thickness of the upper electrode 15 is preferably 5 to 100 nm, more preferably 5 to 20 nm.
  • the lower electrode 11 may be transparent or may reflect light without being transparent, depending on the intended use.
  • the materials constituting the lower electrode 11 are, for example, antimony or fluorine-doped tin oxide (ATO, FTO), tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO).
  • Conductive metal oxides such as gold, silver, chromium, nickel, titanium, tungsten, and metals such as aluminum, oxides of these metals, or conductive compounds such as nitrides (as an example, titanium nitride (TiN)). ); Mixtures or laminates of these metals and conductive metal oxides; and organic conductive materials such as polyaniline, polythiophene, and polypyrrole.
  • the method for forming the electrode is not particularly limited and can be appropriately selected depending on the electrode material. Specifically, a wet method such as a printing method and a coating method; a physical method such as a vacuum deposition method, a sputtering method, and an ion plating method; and a chemical method such as CVD and a plasma CVD method. , Etc. can be mentioned.
  • a wet method such as a printing method and a coating method
  • a physical method such as a vacuum deposition method, a sputtering method, and an ion plating method
  • a chemical method such as CVD and a plasma CVD method.
  • Etc. can be mentioned.
  • the electrode material is ITO
  • methods such as an electron beam method, a sputtering method, a resistance heating vapor deposition method, a chemical reaction method (sol-gel method, etc.), and a dispersion of indium tin oxide can be mentioned.
  • the photoelectric conversion element of the present invention preferably has one or more intermediate layers in addition to the photoelectric conversion film between the conductive film and the transparent conductive film.
  • the intermediate layer include a charge blocking film.
  • the charge blocking film include an electron blocking film and a hole blocking film. Each film will be described in detail below.
  • the electron blocking film is a donor organic semiconductor material (compound), and for example, the following p-type organic semiconductors can be used.
  • One type of p-type organic semiconductor may be used alone, or two or more types may be used.
  • the p-type organic semiconductor is, for example, a triarylamine compound (for example, N, N'-bis (3-methylphenyl)-(1,1'-biphenyl) -4,4'-diamine (TPD), 4,4.
  • TPD triarylamine
  • '-Bis [N- (naphthyl) -N-phenyl-amino] biphenyl ( ⁇ -NPD) a compound described in paragraphs [0128] to [0148] of JP2011-228614A, JP-A-2011-176259.
  • JP2011-228614A JP-A-2011-176259.
  • Pyrazole compounds polyarylene compounds, condensed aromatic carbocyclic compounds (eg, naphthalene derivatives, anthracene derivatives, phenanthrene derivatives, tetracene derivatives, pentacene derivatives, pyrene derivatives, perylene derivatives, and fluorantene derivatives. Body), porphyrin compounds, phthalocyanine compounds, triazole compounds, oxadiazole compounds, imidazole compounds, polyarylalkane compounds, pyrazolone compounds, amino-substituted calcon compounds, oxazole compounds, fluorenone compounds, silazane compounds, and nitrogen-containing heterocyclic compounds.
  • condensed aromatic carbocyclic compounds eg, naphthalene derivatives, anthracene derivatives, phenanthrene derivatives, tetracene derivatives, pentacene derivatives, pyrene derivatives, perylene derivatives, and fluorantene derivatives
  • Examples thereof include a metal complex having as a ligand.
  • Examples of the p-type organic semiconductor include compounds having a smaller ionization potential than the n-type semiconductor material, and if this condition is satisfied, the organic dye exemplified as the n-type semiconductor material can also be used.
  • a polymer material can also be used as the electron blocking film.
  • the polymer material include polymers such as phenylene vinylene, fluorene, carbazole, indole, pyrrole, pyrrole, picolin, thiophene, acetylene, and diacetylene, and derivatives thereof.
  • the electron blocking film may be composed of a plurality of films.
  • the electron blocking film may be made of an inorganic material.
  • Inorganic materials that can serve as electron blocking films include, for example, calcium oxide, chromium oxide, copper oxide, manganese oxide, cobalt oxide, nickel oxide, copper oxide, gallium copper oxide, strontium oxide copper, niobium oxide, molybdenum oxide, and indium copper oxide. , Indium silver oxide, and iridium oxide.
  • the hole blocking film is an acceptor-type organic semiconductor material (compound), and the above-mentioned n-type semiconductor material can be used.
  • the method for producing the charge blocking film is not particularly limited, and examples thereof include a dry film forming method and a wet film forming method.
  • the dry film forming method include a vapor deposition method and a sputtering method.
  • the vapor deposition method may be any of a physical vapor deposition (PVD) method and a chemical vapor deposition (CVD) method, and a physical vapor deposition method such as a vacuum vapor deposition method is preferable.
  • Examples of the wet film forming method include an inkjet method, a spray method, a nozzle printing method, a spin coating method, a dip coating method, a casting method, a die coating method, a roll coating method, a bar coating method, and a gravure coating method. From the viewpoint of precision patterning, the inkjet method is preferable.
  • the thickness of the charge blocking film is preferably 3 to 200 nm, more preferably 5 to 100 nm, and even more preferably 5 to 30 nm, respectively.
  • the photoelectric conversion element may further have a substrate.
  • the type of substrate used is not particularly limited, and examples thereof include a semiconductor substrate, a glass substrate, and a plastic substrate.
  • the position of the substrate is not particularly limited, and usually, a conductive film, a photoelectric conversion film, and a transparent conductive film are laminated on the substrate in this order.
  • the photoelectric conversion element may further have a sealing layer.
  • the performance of the photoelectric conversion material may be significantly deteriorated due to the presence of deterioration factors such as water molecules. Therefore, the entire photoelectric conversion film is coated with a ceramic such as a dense metal oxide, metal nitride, or metal nitride that does not allow water molecules to permeate, or a sealing layer such as diamond-like carbon (DLC: Diamond-like Carbon). The above deterioration can be prevented by coating and sealing.
  • the sealing layer may be selected and manufactured as a material in accordance with paragraphs [0210] to [0215] of JP2011-082508.
  • An image sensor is an element that converts optical information of an image into an electric signal.
  • a plurality of photoelectric conversion elements are arranged on a matrix in the same plane, and each photoelectric conversion element (pixel) has an optical signal. Is converted into an electric signal, and the electric signal can be sequentially output to the outside of the image sensor for each pixel. Therefore, each pixel is composed of one or more photoelectric conversion elements and one or more transistors.
  • FIG. 3 is a schematic cross-sectional view showing a schematic configuration of an image pickup device for explaining an embodiment of the present invention.
  • This image pickup element is mounted on an image pickup element such as a digital camera and a digital video camera, an electronic endoscope, and an image pickup module such as a mobile phone.
  • the imaging element 20a shown in FIG. 3 includes a photoelectric conversion element 10a (green photoelectric conversion element 10a) of the present invention, a blue photoelectric conversion element 22, and a red photoelectric conversion element 24, and these include a direction in which light is incident. Are laminated.
  • the photoelectric conversion element 10a is the photoelectric conversion element of the present invention, and is mainly used as a green photoelectric conversion element by controlling the absorption wavelength so that green light can be received. Examples of the method of controlling the absorption wavelength of the photoelectric conversion element of the present invention include a method of using an organic dye suitable as an n-type semiconductor material.
  • the image sensor 20a is a so-called laminated body type color-separated image sensor.
  • the wavelength spectra detected by the photoelectric conversion element 10a, the blue photoelectric conversion element 22, and the red photoelectric conversion element 24 are different from each other. That is, the blue photoelectric conversion element 22 and the red photoelectric conversion element 24 correspond to photoelectric conversion elements that receive light having a wavelength different from the light received (absorbed) by the photoelectric conversion element 10a.
  • the photoelectric conversion element 10a can mainly receive green light
  • the blue photoelectric conversion element 22 can mainly receive blue light
  • the red photoelectric conversion element can mainly receive red light.
  • the green light is intended to be light having a wavelength in the range of 500 to 600 nm
  • the blue light is intended to be light in the wavelength range of 400 to 500 nm
  • the red light is intended to be light in the wavelength range of 600 to 700 nm.
  • the photoelectric conversion element 10a mainly absorbs green light, but blue light and red light pass through the photoelectric conversion element 10a.
  • the blue light is mainly absorbed, but the red light is transmitted through the blue photoelectric conversion element 22.
  • the red photoelectric conversion element 24 is absorbed by the red photoelectric conversion element 24.
  • the image sensor 20a which is a laminated color-separated image sensor, one pixel can be composed of three light receiving units of green, blue, and red, and a large area of the light receiving unit can be obtained.
  • the configurations of the blue photoelectric conversion element 22 and the red photoelectric conversion element 24 are not particularly limited.
  • a photoelectric conversion element having a configuration in which silicon is used to separate colors according to the difference in light absorption length may be used.
  • the blue photoelectric conversion element 22 and the red photoelectric conversion element 24 may both be made of silicon.
  • the photoelectric conversion element 10a mainly receives the green light having the middle wavelength, and the remaining blue light. And red light can be easily separated.
  • blue light is easily absorbed near the surface of silicon, and red light reaches a relatively deep position in silicon. Can invade.
  • blue light is mainly received by the blue photoelectric conversion element 22 existing at a shallower position
  • red light is mainly received by the red photoelectric conversion element 24 existing at a deeper position.
  • the blue photoelectric conversion element 22 and the red photoelectric conversion element 24 have a conductive film, an organic photoelectric conversion film having a maximum absorption maximum for blue light or red light, and a transparent conductive film formation in this order.
  • a photoelectric conversion element (blue photoelectric conversion element 22 or red photoelectric conversion element 24) may be used.
  • the blue photoelectric conversion element 22 may be the photoelectric conversion element of the present invention in which the absorption wavelength is controlled so that the blue light has an absorption maximum.
  • the red photoelectric conversion element 24 may be the photoelectric conversion element of the present invention in which the absorption wavelength is controlled so that the red light has an absorption maximum.
  • the photoelectric conversion element, the blue photoelectric conversion element, and the red photoelectric conversion element of the present invention are arranged in this order from the incident side of the light, but the present invention is not limited to this, and the arrangement is not limited to this. You may.
  • the blue photoelectric conversion element, the photoelectric conversion element of the present invention, and the red photoelectric conversion element may be arranged in this order from the side where the light is incident.
  • the green photoelectric conversion element may be used as a photoelectric conversion element other than the photoelectric conversion element of the present invention, and the blue photoelectric conversion element and / or the red photoelectric conversion element may be used as the photoelectric conversion element of the present invention.
  • the configuration in which the photoelectric conversion elements of the three primary colors of blue, green, and red are stacked has been described, but the number of layers (2 colors) or 4 layers (4 colors) or more is large. It doesn't matter.
  • the photoelectric conversion element 10a of the present invention may be arranged on the arranged blue photoelectric conversion element 22 and the red photoelectric conversion element 24. If necessary, a color filter that further absorbs light having a predetermined wavelength may be arranged on the incident side of the light.
  • the form of the image sensor is not limited to that shown in FIG. 3 and the above-mentioned form, and may be another form.
  • the photoelectric conversion element, the blue photoelectric conversion element, and the red photoelectric conversion element of the present invention may be arranged at the same in-plane position.
  • the photoelectric conversion element may be used in a single layer.
  • a blue, red, and green color filters may be arranged on the photoelectric conversion element 10a of the present invention to separate colors.
  • the photoelectric conversion element of the present invention may be used by the photoelectric conversion element alone, or may be used as a line sensor in which the photoelectric conversion element is arranged in a straight line, or a two-dimensional sensor in which the photoelectric conversion element is arranged on a plane.
  • the present invention also includes the invention of a material for a photoelectric conversion element.
  • the material for a photoelectric conversion element of the present invention is a material used for manufacturing a photoelectric conversion element (preferably a photoelectric conversion element for an image sensor or an optical sensor) containing a compound (specific compound) represented by the formula (1).
  • a photoelectric conversion element preferably a photoelectric conversion element for an image sensor or an optical sensor
  • the compound represented by the formula (1) in the material for a photoelectric conversion element is the same as the compound represented by the above formula (1), and the preferable conditions are also the same. It is preferable that each of the specific compounds contained in the material for the photoelectric conversion element is used for producing the photoelectric conversion film of the photoelectric conversion film contained in the photoelectric conversion element.
  • the content of the specific compound contained in the material for the photoelectric conversion element is preferably 30 to 100% by mass, more preferably 70 to 100% by mass, and 99 to 100% by mass, respectively, of the total mass of the material for the photoelectric conversion element. More preferred.
  • the specific compound contained in the material for the photoelectric conversion element may be one kind alone or two or more kinds.
  • Titanium tetrachloride (12.4 g, 65.3 mmol) was dissolved in THF (tetrahydrofuran, 455 mL) in a 1000 mL three-necked flask under a nitrogen atmosphere. Further, after the liquid temperature in the flask was set to ⁇ 10 ° C., zinc powder (8.54 g, 131 mmol) was added to the flask. THF of intermediate 7a (2.42 g, 10.9 mmol; synthesized according to the synthetic method of S4j described in Supporting information of Chemistry A European Journal 2015, 21, 12871-12875) while heating and refluxing the obtained mixture. The (200 mL) solution was added over 5 hours.
  • THF tetrahydrofuran
  • reaction product was purified by silica gel column chromatography to obtain 1.73 g of Intermediate 7b. Yield 84%.
  • the measurement results of the intermediate 7b by ESI-MS were as follows.
  • a dehydrated THF (7 mL) solution of tributyltin chloride (2.6 g, 7.9 mmol) was added dropwise to the solution while maintaining the internal temperature of the solution at ⁇ 66 ° C. or lower, and then the solution was added to room temperature (7 mL). The temperature was returned to 23 ° C.) and reacted at room temperature for 1 hour to obtain a reaction solution.
  • Water (50 mL) was measured in a 300 mL Erlenmeyer flask, and the obtained reaction solution was added thereto to stop the reaction.
  • the reaction product contained in the obtained liquid was extracted with ethyl acetate.
  • the organic phase containing the reaction product obtained by the extraction treatment was dried over sodium sulfate and concentrated under reduced pressure.
  • the photoelectric conversion element includes a lower electrode 11, an electron blocking film 16A, a photoelectric conversion film 12, a hole blocking film 16B, and an upper electrode 15.
  • an amorphous ITO is formed on a glass substrate by a sputtering method to form a lower electrode 11 (thickness: 30 nm), and the following compound (B-1) is further vacuumed on the lower electrode 11.
  • An electron blocking film 16A was formed by forming a film by a heat vapor deposition method.
  • a photoelectric conversion film 12 having a bulk heterostructure of 200 nm was formed by co-depositing and forming a film by a vacuum vapor deposition method so as to have a temperature of 100 nm and 100 nm (photoelectric conversion film forming step). Further, the following compound (B-2) was formed on the photoelectric conversion film 12 to form a hole blocking film 16B (thickness: 10 nm).
  • an amorphous ITO was formed on the hole blocking film 16B by a sputtering method to form an upper electrode 15 (transparent conductive film) (thickness: 10 nm).
  • a SiO film is formed on the upper electrode 15 as a sealing layer by a vacuum vapor deposition method, and then an aluminum oxide (Al 2 O 3 ) layer is formed on the SiO film by an ALCVD (Atomic Layer Chemical Vapor Deposition) method to form a photoelectric conversion element.
  • ALCVD Atomic Layer Chemical Vapor Deposition
  • the responsiveness of each of the obtained elements (A) was evaluated. A voltage is applied so that the electric field intensity of 1.0 ⁇ 10 5 V / cm in each element (A), was irradiated with light of 400nm from the upper electrode (transparent conductive film) side. Assuming that the value of the photocurrent 10 milliseconds after the start of irradiation was 100%, the time required for the photocurrent to reach 97% or more was calculated. The responsiveness of each element (A) was evaluated by a relative value when the value of the element (A) of Example 1 (the time required for the photocurrent to reach 97% or more) was set to 1.
  • Evaluation was performed with a relative value of 0.5 or less as A, a value larger than 0.5 and 1 or less as B, a value larger than 1 and 2 or less as C, and a value larger than 2 as D. Practically, A or B is preferable, and A is more preferable. The results are shown in Table 1.
  • Table 1 below shows the results of tests conducted using photoelectric conversion elements manufactured using each compound.
  • Table 1 below shows the results of tests conducted using photoelectric conversion elements manufactured using each compound.
  • the column "Formula (3)” indicates whether or not the specific compound used corresponds to the compound represented by the formula (3). If this requirement is met, it is designated as A, and if it is not met, it is designated as B.
  • the photoelectric conversion element of the present invention using a specific compound for the photoelectric conversion film has excellent responsiveness. It was also confirmed that the photoelectric conversion element of the present invention is also excellent in heat resistance.
  • the photoelectric conversion element using the compound R-1 in which the aromatic ring group corresponding to Ar 1 and Ar 4 in the formula (1) does not exist has insufficient responsiveness.
  • the heat resistance was also inferior to that of the photoelectric conversion element of the present invention.
  • the photoelectric conversion element using the compound R-2 having a mother nucleus having a structure different from that of the specific compound had insufficient responsiveness.
  • the heat resistance was also inferior to that of the photoelectric conversion element of the present invention.
  • the group corresponding to the group represented by Ar 1 or Ar 4 in the formula (1) in the specific compound is represented by a polycyclic aromatic ring group which may have a substituent or a formula (R). It was confirmed that the obtained photoelectric conversion element has more excellent heat resistance in the case of a group (see the results of Examples 2, 3, 6, 7, 8 and the like).

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Light Receiving Elements (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

本発明は、応答性に優れる光電変換素子を提供する。また、撮像素子、光センサ、及び、光電変換素子用材料を提供する。本発明の光電変換素子は、導電性膜(11)、光電変換膜(12)、及び、透明導電性膜(15)をこの順で有する光電変換素子であって、光電変換膜が、式(1)で表される化合物、及び、n型半導体材料を含む。

Description

光電変換素子、撮像素子、光センサ、光電変換素子用材料
 本発明は、光電変換素子、撮像素子、光センサ、及び、光電変換素子用材料に関する。
 近年、光電変換膜を有する素子(例えば、撮像素子)の開発が進んでいる。
 例えば、特許文献1において、所定の化合物を含む光電変換素子が開示されている。
特開2017-39662号公報
 近年、撮像素子及び光センサ等の性能向上の要求に伴い、これらに使用される光電変換素子に求められる諸特性に関してもさらなる向上が求められている。
 例えば、光電変換素子は、受光した際の応答性に優れることが求められている。
 本発明は、上記実情に鑑みて、応答性に優れる光電変換素子を提供することを課題とする。
 また、本発明は、撮像素子、光センサ、及び、光電変換素子用材料を提供することも課題とする。
 本発明者らは、上記課題について鋭意検討した結果、下記構成により上記課題を解決できることを見出し、本発明を完成するに至った。
 〔1〕
 導電性膜、光電変換膜、及び、透明導電性膜をこの順で有する光電変換素子であって、
 上記光電変換膜が、後述する式(1)で表される化合物、及び、n型半導体材料を含む、光電変換素子。
 〔2〕
 後述する式(1)で表される化合物が、後述する式(2)で表される化合物、後述する式(3)で表される化合物、又は、後述する式(4)で表される化合物である、〔1〕に記載の光電変換素子。
 〔3〕
 式中、Ar及びArが、置換基を有してもよい単環の芳香環基を表す、〔1〕又は〔2〕に記載の光電変換素子。
 〔4〕
 後述する式(1)で表される化合物の分子量が450~900である、〔1〕~〔3〕のいずれかに記載の光電変換素子。
 〔5〕
 上記光電変換膜が、後述する式(1)で表される化合物と上記n型半導体材料とが混合された状態で形成されるバルクへテロ構造を有する、〔1〕~〔4〕のいずれかに記載の光電変換素子。
 〔6〕
 上記導電性膜と上記透明導電性膜との間に、上記光電変換膜の他に1種以上の中間層を有する、〔1〕~〔5〕のいずれかに記載の光電変換素子。
 〔7〕
 上記n型半導体材料が、フラーレン及びその誘導体からなる群より選択されるフラーレン類を含む、〔1〕~〔6〕のいずれかに記載の光電変換素子。
 〔8〕
 〔1〕~〔7〕のいずれかに記載の光電変換素子を有する、撮像素子。
 〔9〕
 〔1〕~〔7〕のいずれかに記載の光電変換素子を有する、光センサ。
 〔10〕
 後述する式(1)で表される化合物を含む、光電変換素子用材料。
 本発明によれば、応答性に優れる光電変換素子を提供できる。
 また、本発明によれば、撮像素子、光センサ、及び、光電変換素子用材料を提供できる。
光電変換素子の一構成例を示す断面模式図である。 光電変換素子の一構成例を示す断面模式図である。 撮像素子の一実施形態の断面模式図である。
 以下に、本発明の光電変換素子の好適実施形態について説明する。
 また、本明細書において、「置換基」は、特段の断りがない限り、後述する置換基Wで例示される基が挙げられる。
(置換基W)
 本明細書における置換基Wについて記載する。
 置換基Wは、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子、及び、ヨウ素原子等)、アルキル基(シクロアルキル基、ビシクロアルキル基、及び、トリシクロアルキル基を含む)、アルケニル基(シクロアルケニル基、及び、ビシクロアルケニル基を含む)、アルキニル基、アリール基、ヘテロアリール基(ヘテロ環基といってもよい。)、シアノ基、ヒドロキシ基、カルボキシ基、ニトロ基、アルコキシ基、アリールオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アミノ基(アニリノ基を含む。)、アンモニオ基、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキル又はアリールスルホニルアミノ基、メルカプト基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、アルキル又はアリールスルフィニル基、アルキル又はアリールスルホニル基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基、アリール又はヘテロ環アゾ基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、ホスホノ基、シリル基、ヒドラジノ基、ウレイド基、及び、ボロン酸基(-B(OH))が挙げられる。また、上述の各基は、可能な場合、更に置換基(例えば、上述の各基のうちの1以上の基)を有してもよい。例えば、置換基を有してもよいアルキル基も、置換基Wの一形態として含まれる。
 また、置換基Wが炭素原子を有する場合、置換基Wが有する炭素数は、例えば、1~20である。
 置換基Wが有する水素原子以外の原子の数は、例えば、1~30である。
 また、本明細書において、特段の断りがない限り、アルキル基の炭素数は、1~20が好ましく、1~10がより好ましく、1~6が更に好ましい。
 アルキル基は、直鎖状、分岐鎖状、及び、環状のいずれであってもよい。
 アルキル基は、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、t-ブチル基、n-ヘキシル基、及び、シクロペンチル基等が挙げられる。
 また、アルキル基は、例えば、シクロアルキル基、ビシクロアルキル基、及び、トリシクロアルキル基であってもよく、これらの環状構造を部分構造として有してもよい。
 置換基を有してもよいアルキル基において、アルキル基が有してもよい置換基は特に制限されず、例えば、置換基Wが挙げられ、アリール基(好ましくは炭素数6~18、より好ましくは炭素数6)、ヘテロアリール基(好ましくは炭素数5~18、より好ましくは炭素数5~6)、又は、ハロゲン原子(好ましくはフッ素原子又は塩素原子)が好ましい。
 本明細書において、特段の断りがない限り、アルコキシ基におけるアルキル基部分は上記アルキル基が好ましい。アルキルチオ基におけるアルキル基部分は上記アルキル基が好ましい。
 置換基を有してもよいアルコキシ基において、アルコキシ基が有してもよい置換基は、置換基を有してもよいアルキル基における置換基と同様の例が挙げられる。置換基を有してもよいアルキルチオ基において、アルキルチオ基が有してもよい置換基は、置換基を有してもよいアルキル基における置換基と同様の例が挙げられる。
 本明細書において、特段の断りがない限り、アルケニル基は、直鎖状、分岐鎖状、及び、環状のいずれであってもよい。上記アルケニル基の炭素数は、2~20が好ましい。置換基を有してもよいアルケニル基において、アルケニル基が有してもよい置換基は、置換基を有してもよいアルキル基における置換基と同様の例が挙げられる。
 本明細書において、特段の断りがない限り、アルキニル基は、直鎖状、分岐鎖状、及び、環状のいずれであってもよい。上記アルキニル基の炭素数は、2~20が好ましい。置換基を有してもよいアルキニル基において、アルキニル基が有してもよい置換基は、置換基を有してもよいアルキル基における置換基と同様の例が挙げられる。
 本明細書において、特段の断りがない限り、アリール基は、環員数が6~18のアリール基が好ましい。
 アリール基は、単環でも多環でもよい。
 アリール基は、例えば、フェニル基、ナフチル基、アントリル基、又は、フェナントレニル基が好ましい。
 置換基を有してもよいアリール基において、アリール基が有してもよい置換基は特に制限されず、例えば、置換基Wが挙げられ、置換基を有してもよいアルキル基(好ましくは炭素数1~10)が好ましく、メチル基がより好ましい。
 本明細書において、特段の断りがない限り、ヘテロアリール基は、窒素原子、硫黄原子、酸素原子、セレン原子、テルル原子、リン原子、ケイ素原子、及び/又は、ホウ素原子等のヘテロ原子を含む、単環又は多環の環構造を有するヘテロアリール基が好ましい。
 上記ヘテロアリール基の環員原子中の炭素数は特に制限されず、3~18が好ましく、3~5がより好ましい。
 ヘテロアリール基の環員原子中のヘテロ原子の数は特に制限されず、1~10が好ましく、1~4がより好ましく、1~2が更に好ましい。
 ヘテロアリール基の環員数は特に制限されず、5~8が好ましく、5~7がより好ましく、5~6が更に好ましい。
 上記ヘテロアリール基は、フリル基、ピリジル基、キノリル基、イソキノリル基、アクリジニル基、フェナントリジニル基、プテリジニル基、ピラジニル基、キノキサリニル基、ピリミジニル基、キナゾリル基、ピリダジニル基、シンノリニル基、フタラジニル基、トリアジニル基、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、ベンゾチアゾリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、インダゾリル基、イソオキサゾリル基、ベンゾイソオキサゾリル基、イソチアゾリル基、ベンゾイソチアゾリル基、オキサジアゾリル基、チアジアゾリル基、トリアゾリル基、テトラゾリル基、ベンゾフリル基、チエニル基、ベンゾチエニル基、ジベンゾフリル基、ジベンゾチエニル基、ピロリル基、インドリル基、イミダゾピリジニル基、及び、カルバゾリル基等が挙げられる。
 置換基を有してもよいヘテロアリール基において、ヘテロアリール基が有してもよい置換基は特に制限されず、例えば、置換基Wが挙げられる。
 本明細書において、特段の断りがない限り、置換基を有してもよいシリル基は、例えば、-Si(RS1)(RS2)(RS3)で表される基が挙げられる。RS1、RS2、及び、RS3は、それぞれ独立に、置換基を有してもよいアルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアルキルチオ基、置換基を有してもよいアリール基、又は、置換基を有してもよいヘテロアリール基を表す。
 また、本明細書において、「~」を用いて表される数値範囲は、「~」前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において、水素原子は、軽水素原子(通常の水素原子)であってもよいし、重水素原子(二重水素原子等)であってもよい。
 本発明の光電変換素子は、導電性膜、光電変換膜、及び、透明導電性膜をこの順で有する光電変換素子であって、光電変換膜が、式(1)で表される化合物(以下、「特定化合物」とも言う)、及び、n型半導体材料を含む。
 本発明の光電変換素子がこのような構成をとることで上記課題を解決できるメカニズムは必ずしも明らかではないが、本発明者らは以下のように推測している。
 すなわち、特定化合物は、母核として中心部に特定の環が3個縮環した構造を有しており、更に上記母核の両端に芳香環基が連続して結合している。特定化合物がこのような特徴的な構造を有するため、特定化合物を光電変換素子に使用した場合に、光電変換素子の応答性が優れる、と推測している。
 また、特定化合物を使用して製造した光電変換膜を有する光電変換素子は耐熱性にも優れている。これは、特定化合物が有する剛直な構造に由来すると考えられている。
 以下、得られる光電変換素子の、応答性、及び/又は、耐熱性が優れることを、単に「本発明の効果が優れる」とも言う。
 図1に、本発明の光電変換素子の一実施形態の断面模式図を示す。
 図1に示す光電変換素子10aは、下部電極として機能する導電性膜(以下、下部電極とも記す)11と、電子ブロッキング膜16Aと、後述する特定化合物を含む光電変換膜12と、上部電極として機能する透明導電性膜(以下、上部電極とも記す)15とがこの順に積層された構成を有する。
 図2に別の光電変換素子の構成例を示す。図2に示す光電変換素子10bは、下部電極11上に、電子ブロッキング膜16Aと、光電変換膜12と、正孔ブロッキング膜16Bと、上部電極15とがこの順に積層された構成を有する。なお、図1及び図2中の電子ブロッキング膜16A、光電変換膜12、及び、正孔ブロッキング膜16Bの積層順は、用途及び特性に応じて、適宜変更してもよい。
 光電変換素子10a(又は10b)では、上部電極15を介して光電変換膜12に光が入射されることが好ましい。
 また、光電変換素子10a(又は10b)を使用する場合には、電圧を印加できる。この場合、下部電極11と上部電極15とが一対の電極をなし、この一対の電極間に、1×10-5~1×10V/cmの電圧を印加することが好ましい。性能及び消費電力の点から、印加される電圧は、1×10-4~1×10V/cmがより好ましく、1×10-3~5×10V/cmが更に好ましい。
 なお、電圧印加方法については、図1及び図2において、電子ブロッキング膜16A側が陰極となり、光電変換膜12側が陽極となるように印加することが好ましい。光電変換素子10a(又は10b)を光センサとして使用した場合、また、撮像素子に組み込んだ場合も、同様の方法により電圧を印加できる。
 後段で、詳述するように、光電変換素子10a(又は10b)は撮像素子用途に好適に適用できる。
 以下に、本発明の光電変換素子を構成する各層の形態について詳述する。
<光電変換膜>
 光電変換膜は、特定化合物を含む膜である
 以下、特定化合物について詳述する。
(式(1)で表される化合物(特定化合物))
 特定化合物は、下記式(1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000006
 式(1)中、X及びYの一方が、-CRa1=又は-N=を表し、他方が、-O-、-S-、-Se-、-Te-、又は、-NRa2-を表す。
 X及びYの一方が、-CRa1=又は-N=を表し、他方が、-O-、-S-、-Se-、-Te-、又は、-NRa2-を表す。
 つまり、例えば、Xが-CRa1=又は-N=を表す場合、Yは-O-、-S-、-Se-、-Te-、又は、-NRa2-を表す。
 -CRa1=及び-NRa2-における、Ra1及びRa2は、それぞれ独立に、水素原子又は置換基を表す。
 Ra1及びRa2で表される置換基としては、例えば、置換基Wが挙げられ、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアルキルチオ基、置換基を有してもよいシリル基、置換基を有してもよいアリール基、又は、置換基を有してもよいヘテロアリール基が好ましい。
 Ra1及びRa2は、それぞれ独立に、水素原子が好ましい。
 式(1)中に、複数のRa1が存在する場合、複数存在するRa1はそれぞれ同一でも異なっていてもよい。
 式(1)中に、複数のRa2が存在する場合、複数存在するRa2はそれぞれ同一でも異なっていてもよい。
 式(1)中における、X及びYを含む5員環は芳香族ヘテロ環であり、X及びYを含む5員環は芳香族ヘテロ環である。
 中でも、X及びYの一方が、-CRa1=を表し、他方が、-O-、-S-、又は、-Se-を表すのが好ましい。
 X及びYの一方が、-CRa1=を表し、他方が、-O-、-S-、又は、-Se-を表すのが好ましい。
 式(1)中、Z及びZは、それぞれ独立に、-CRa3=又は-N=を表す。
 Ra3は、水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアルキルチオ基、置換基を有してもよいシリル基、置換基を有してもよいアリール基、又は、置換基を有してもよいヘテロアリール基を表す。
 なお、Z及びZが共に-CRa3=である場合においても、Ra3同士が互いに結合して環を形成することはない。
 式(1)中に、複数のRa3が存在する場合、複数存在するRa3はそれぞれ同一でも異なっていてもよい。
 Z及びZは、それぞれ独立に、-CRa3=が好ましく、-CH=がより好ましい。
 式(1)中、Ar~Arは、それぞれ独立に、置換基を有してもよい芳香環基を表す。
 上記芳香環基は、単環でも多環でもよい。
 上記芳香環基は環員原子として1以上(好ましくは1~3)のヘテロ原子(窒素原子、硫黄原子、酸素原子、セレン原子、テルル原子、リン原子、ケイ素原子、及び/又は、ホウ素原子等)を含んでいてもよく、含んでいなくてもよい。上記芳香環基の環員数は5~18が好ましい。
 上記芳香環基が単環の芳香環基である場合、上記単環の芳香環基としては、例えば、ベンゼン環基、フリル環基、ピリジン環基、ピラジン環基、ピリミジン環基、ピリダジン環基、トリアジン環基、オキサゾール環基、チアゾール環基、イミダゾール環基、ピラゾール環基、イソオキサゾール環基、イソチアゾール環基、オキサジアゾール環基、チアジアゾール環基、トリアゾール環基、テトラゾール環基、チオフェン環基、セレノフェン環基、及び、ピロール環基が挙げられる。
 多環の芳香環基は、芳香族性を有する単環同士が縮環してなる基である。多環の芳香環基において、多環の芳香環を構成するそれぞれの単環(芳香族性を有する単環)の環員原子の2以上は、多環の芳香環基を構成する他の単環(芳香族性を有する単環)の環員原子にもなっている。
 上記芳香環基が多環の芳香環基である場合、上記多環の芳香環基としては、例えば、ナフタレン環基、アントラセン環基、キノリン環基、イソキノリン環基、アクリジン環基、フェナントリジン環基、プテリジン環基、キノキサリン環基、キナゾリン環基、シンノリン環基、フタラジン環基、ベンゾオキサゾール環基、ベンゾチアゾール環基、ベンゾイミダゾール環基、インダゾール環基、ベンゾイソオキサゾール環基、ベンゾイソチアゾール環基、ベンゾフラン環基、ベンゾチオフェン環基、ベンゾセレノフェン環基、ジベンゾフラン環基、ジベンゾチオフェン環基、ジベンゾセレノフェン環基、チエノチオフェン環基、チエノピロール環基、ジチエノピロール環基、インドール環基、イミダゾピリジン環基、及び、カルバゾール環基が挙げられる。
 なお、Ar及びArにおける芳香環基が有してもよい置換基とは、Lのことではない。また、Arにおける芳香環基が有してもよい置換基とは、Arのことでもない。
 同様に、Ar及びArにおける芳香環基が有してもよい置換基とは、Lのことではない。また、Arにおける芳香環基が有してもよい置換基とは、Arのことでもない。
 また、ArとArとは、それぞれの芳香環基同士が式(1)中に明示される単結合で直接結合している。
 同様に、ArとArとは、それぞれの芳香環基同士が式(1)中に明示される単結合で直接結合している。
 Ar~Arにおける芳香環基が有してもよい置換基としては、例えば、置換基Wが挙げられ、中でも、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、又は、置換基を有してもよいヘテロアリール基が好ましい。
 また、上記芳香環基が、更に、置換基としての芳香環基を有するのも好ましい。上記「置換基としての芳香環基」としては、例えば、上述の、単環の芳香環基及び多環の芳香環基が挙げられる。
 また、芳香環基が、更に、置換基としての芳香環基を有する場合、これらの芳香環基の1以上がそれぞれ更に異なる置換基を有してもよい。また、これらの芳香環基がそれぞれ有する、上記更に異なる置換基同士が互いに結合していてもよい。つまり、これらの芳香環基同士が、その間に、更に異なる環を形成して結合していてもよい。ただし、これらの芳香環基同士の間に形成される、上記更に異なる環は、非芳香環である。
 例えば、芳香環基Aが、更に、置換基としての芳香環基Bを有する場合において、芳香環基Aは更に置換基Aを有していてもよく、芳香環基Bは更に置換基Bを有していてもよい。置換基Aと置換基Bとは互いに結合して、芳香環基Aと芳香環基Bとの間に、更に異なる環(非芳香環)を形成していてもよい。
 芳香環基同士が、その間に、更に異なる環(非芳香環)を形成して結合している形態の具体例としては、例えば、これらの芳香環基同士が共同してフルオレン環基を形成している形態が挙げられる。つまり、例えば、Ar~Ar(好ましくは、Ar及び/又はAr)は、フルオレン環基(9,9-ジメチルフルオレン環基のような、置換基を有するフルオレン環基であってもよい)であってもよい。
 中でも、Ar及びArは、置換基を有してもよい単環の芳香環基が好ましく、置換基を有してもよいベンゼン環基がより好ましい。
 また、本発明の効果がより優れる点から、Ar及びArの少なくとも一方が置換基を有してもよいベンゼン環基であるのも好ましく、Ar及びArの少なくとも一方が置換基を有してもよいベンゼン環基であるのも好ましい。
 なお、後述する通り、ArとArとは、式(1)中に明示される単結合の他にも、Lを介する結合を有していてもよい。例えば、Ar及びArの両方が置換基を有してもよいベンゼン環基である場合において、ArとArとがLを介する結合を有し、ArとArとが共同して、置換基を有してもよいフルオレン環基を形成してもよい。
 同様に、ArとArとは、式(1)中に明示される単結合の他にも、Lを介する結合を有していてもよい。例えば、Ar及びArの両方が置換基を有してもよいベンゼン環基である場合において、ArとArとがLを介する結合を有し、ArとArとが共同して、置換基を有してもよいフルオレン環基を形成してもよい。
 中でも、本発明の効果がより優れる点から、Ar及びArは、それぞれ独立に、置換基を有してもよい多環の芳香環基、又は、式(R)で表される基であるのが好ましい。
 上記多環の芳香環基の環員数は9~18が好ましい。
 上記多環の芳香環基の例は上述の通りであり、ナフタレン環基又はベンゾチオフェン環基が好ましい。
 式(R)で表される基を次に示す。
Figure JPOXMLDOC01-appb-C000007
 式(R)中、*1及び*2は、それぞれ独立に結合位置を表す。具体的には、式(R)で表される基であるArにおいて、*1はArとの結合位置を表し、*2は(Lm1との結合位置を表す。式(R)で表される基であるArにおいて、*1はArとの結合位置を表し、*2は(Lm2との結合位置を表す。
 ただし、後述のとおり、m1及びm2は0でもよい。式(R)で表される基であるArにおいて、m1が0である場合、*2は存在しない。式(R)で表される基であるArにおいて、m2が0である場合、*2は存在しない。
 式(R)中、Arは、Ar以外にも置換基を有してもよい単環の芳香環基を表す。
 上記単環の芳香環基の例は上述の通りであり、中でも、ベンゼン環基が好ましい。
 式(R)中、Arは、置換基を有してもよい芳香環基を表す。Arの芳香環基の例としては、上述の単環の芳香環基、及び、上述の多環の芳香環基が挙げられ、中でも、ベンゼン環基が好ましい。
 Arにおける単環の芳香環基と、Arにおける芳香環基とは、互いに環員原子同士が単結合で結合している。
 Arにおける単環の芳香環基がAr以外にも有してもよい置換基、及び、Arにおける芳香環基が有してもよい置換基としては、置換基Wが挙げられる。
 Arにおける単環の芳香環基は、Ar以外には置換基を有さないのも好ましい。
 また、Arにおける芳香環基が有してもよい置換基は、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、又は、置換基を有してもよいヘテロアリール基が好ましい。
 ただし、Arにおける単環の芳香環基がAr以外にも有してもよい置換基と、Arにおける芳香環基が有してもよい置換基とは、互いに結合することはない。つまり、ArとArとは、式(R)中に明示される単結合以外では結合しない。例えば、式(R)で表される基に、フルオレン環基は含まれない。
 式(1)中、m1及びm2は、それぞれ独立に、0又は1を表す。
 式(1)中、L及びLは、それぞれ独立に、-S-、-O-、-Se-、-SiRa4a5-、-NRa6-、又は、-CRa7a8-を表す。
 Ra4~Ra8は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアルキルチオ基、置換基を有してもよいシリル基、置換基を有してもよいアルケニル基、置換基を有してもよいアルキニル基、置換基を有してもよいアリール基、又は、置換基を有してもよいヘテロアリール基を表す。
 中でも、L及びLは、それぞれ独立に、-CRa7a8-が好ましく、Ra7及びRa8が置換基を有してもよいアルキル基である-CRa7a8-がより好ましく、-C(CH-が更に好ましい。
 なお、Lは、Ar及びArにおけるそれぞれの芳香環基に対して直接結合している。
 同様に、Lは、Ar及びArにおけるそれぞれの芳香環基に対して直接結合している。
 ただし、m1が0を表す場合、Lは存在せず、ArとArとは、式(1)中に明示された単結合のみで連結する。
 m2が0を表す場合、Lは存在せず、ArとArとは、式(1)中に明示された単結合のみで連結する。
 例えば、m1及びm2が0を表す場合、特定化合物は、下記式(1a)で表される化合物となる。同様に、m1及びm2が1を表す場合、特定化合物は、下記式(1b)で表される化合物となる。
 なお、下記式(1a)及び式(1b)の各記号で表される基は、式(1)中の相当する基とそれぞれ同様である。
Figure JPOXMLDOC01-appb-C000008
(式(2)で表される化合物、式(3)で表される化合物、式(4)で表される化合物)
 本発明の効果がより優れる点から、式(1)で表される化合物は、式(2)で表される化合物、式(3)で表される化合物、又は、式(4)で表される化合物であるのが好ましい。中でも、式(1)で表される化合物は、式(3)で表される化合物であるのがより好ましい。
Figure JPOXMLDOC01-appb-C000009
 式(2)中、Y及びYは、それぞれ独立に、-O-、-S-、又は、-Se-を表す。
 式(2)中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアルキルチオ基、置換基を有してもよいシリル基、置換基を有してもよいアリール基、又は、置換基を有してもよいヘテロアリール基を表す。
 式(2)中、Ar~Arは、それぞれ独立に、置換基を有してもよい芳香環基を表す。
 式(2)中、m1及びm2は、それぞれ独立に、0又は1を表す。
 式(2)中、L及びLは、それぞれ独立に、-S-、-O-、-Se-、-SiRa4a5-、-NRa6-、又は、-CRa7a8-を表す。
 式(2)中、Ra4~Ra8は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアルキルチオ基、置換基を有してもよいシリル基、置換基を有してもよいアルケニル基、置換基を有してもよいアルキニル基、置換基を有してもよいアリール基、又は、置換基を有してもよいヘテロアリール基を表す。
 ただし、m1が0を表す場合、Lは存在せず、ArとArとは、上記式(2)中に明示された単結合のみで連結する。m2が0を表す場合、Lは存在せず、ArとArとは、上記式(2)中に明示された単結合のみで連結する。
 式(2)中のAr~Ar、m1、m2、L、L、及び、Ra4~Ra8は、式(1)中のAr~Ar、m1、m2、L、L、及び、Ra4~Ra8とそれぞれ同様である。
Figure JPOXMLDOC01-appb-C000010

 式(3)中、Y及びXは、それぞれ独立に、-O-、-S-、又は、-Se-を表す。
 式(3)中、R~R及びRは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアルキルチオ基、置換基を有してもよいシリル基、置換基を有してもよいアリール基、又は、置換基を有してもよいヘテロアリール基を表す。
 式(3)中、Ar~Arは、それぞれ独立に、置換基を有してもよい芳香環基を表す。
 式(3)中、m1及びm2は、それぞれ独立に、0又は1を表す。
 式(3)中、L及びLは、それぞれ独立に、-S-、-O-、-Se-、-SiRa4a5-、-NRa6-、又は、-CRa7a8-を表す。
 式(3)中、Ra4~Ra8は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアルキルチオ基、置換基を有してもよいシリル基、置換基を有してもよいアルケニル基、置換基を有してもよいアルキニル基、置換基を有してもよいアリール基、又は、置換基を有してもよいヘテロアリール基を表す。
 ただし、m1が0を表す場合、Lは存在せず、ArとArとは、上記式(3)中に明示された単結合のみで連結する。m2が0を表す場合、Lは存在せず、ArとArとは、上記式(3)中に明示された単結合のみで連結する。
 式(3)中のAr~Ar、m1、m2、L、L、及び、Ra4~Ra8は、式(1)中のAr~Ar、m1、m2、L、L、及び、Ra4~Ra8とそれぞれ同様である。
Figure JPOXMLDOC01-appb-C000011

 式(4)中、X及びXは、それぞれ独立に、-O-、-S-、又は、-Se-を表す。
 式(4)中、R~R及びR~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアルキルチオ基、置換基を有してもよいシリル基、置換基を有してもよいアリール基、又は、置換基を有してもよいヘテロアリール基を表す。
 式(4)中、Ar~Arは、それぞれ独立に、置換基を有してもよい芳香環基を表す。
 式(4)中、m1及びm2は、それぞれ独立に、0又は1を表す。
 式(4)中、L及びLは、それぞれ独立に、-S-、-O-、-Se-、-SiRa4a5-、-NRa6-、又は、-CRa7a8-を表す。
 式(4)中、Ra4~Ra8は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアルキルチオ基、置換基を有してもよいシリル基、置換基を有してもよいアルケニル基、置換基を有してもよいアルキニル基、置換基を有してもよいアリール基、又は、置換基を有してもよいヘテロアリール基を表す。
 ただし、m1が0を表す場合、Lは存在せず、ArとArとは、前記式(4)中に明示された単結合のみで連結する。m2が0を表す場合、Lは存在せず、ArとArとは、前記式(4)中に明示された単結合のみで連結する。
 式(4)中のAr~Ar、m1、m2、L、L、及び、Ra4~Ra8は、式(1)中のAr~Ar、m1、m2、L、L、及び、Ra4~Ra8とそれぞれ同様である。
 特定化合物の分子量は特に制限されず、425~1200が好ましく、450~900がより好ましい。分子量が1200以下であれば、蒸着温度が高くならず、化合物の分解が起こりにくい。分子量が425以上であれば、蒸着膜のガラス転移点が低くならず、光電変換素子の耐熱性が向上する。
 特定化合物は1種単独で使用してもよく、2種以上使用してもよい。
 特定化合物は、撮像素子、又は、光センサに用いる光電変換膜の材料として特に有用である。また、特定化合物は、着色材料、液晶材料、有機半導体材料、電荷輸送材料、医薬材料、及び蛍光診断薬材料としても使用できる。
 特定化合物は、後述のn型半導体材料とのエネルギー準位のマッチングの点で、単独膜でのイオン化ポテンシャルが-5.0~-6.0eVである化合物であるのが好ましい。
 特定化合物の極大吸収波長は特に制限されず、例えば、300~500nmの範囲にあるのが好ましい。
 なお、上記極大吸収波長は、特定化合物の吸収スペクトルを吸光度が0.5~1になる程度の濃度に調整して溶液状態(溶剤:クロロホルム)で測定した値である。
 光電変換膜の極大吸収波長は特に制限されず、例えば、300~700nmの範囲にあるのが好ましい。
<n型半導体材料>
 光電変換膜は、上述した特定化合物以外の他の成分として、n型半導体材料を含む。n型半導体材料は、アクセプター性有機半導体材料(化合物)であり、電子を受容しやすい性質がある有機化合物をいう。
 更に詳しくは、n型半導体材料は、上述の特定化合物と接触させて用いた場合に、特定化合物よりも電子親和力の大きい有機化合物をいう。
 本明細書において、電子親和力の値としてGaussian‘09(Gaussian社製ソフトウェア)を用いてB3LYP/6-31G(d)の計算により求められるLUMOの値の反数の値(マイナス1を掛けた値)を用いる。
 n型半導体材料の電子親和力は、3.0~5.0eVが好ましい。
 n型半導体材料は、例えば、フラーレン及びその誘導体からなる群より選択されるフラーレン類、縮合芳香族炭素環化合物(例えば、ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、テトラセン誘導体、ピレン誘導体、ペリレン誘導体、及び、フルオランテン誘導体);窒素原子、酸素原子、及び、硫黄原子の少なくとも1つを有する5~7員環のヘテロ環化合物(例えば、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、キノリン、キノキサリン、キナゾリン、フタラジン、シンノリン、イソキノリン、プテリジン、アクリジン、フェナジン、フェナントロリン、テトラゾール、ピラゾール、イミダゾール、及び、チアゾール等);ポリアリーレン化合物;フルオレン化合物;シクロペンタジエン化合物;シリル化合物;1,4,5,8-ナフタレンテトラカルボン酸無水物;1,4,5,8-ナフタレンテトラカルボン酸無水物イミド誘導体、オキサジアゾール誘導体;アントラキノジメタン誘導体;ジフェニルキノン誘導体;バソクプロイン、バソフェナントロリン、及びこれらの誘導体;トリアゾール化合物;ジスチリルアリーレン誘導体;含窒素ヘテロ環化合物を配位子として有する金属錯体;シロール化合物;ならびに、特開2006-100767号公報の段落[0056]~[0057]に記載の化合物が挙げられる。
 中でも、n型半導体材料は、フラーレン及びその誘導体からなる群より選択されるフラーレン類を含むのが好ましい。
 フラーレンは、例えば、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC80、フラーレンC82、フラーレンC84、フラーレンC90、フラーレンC96、フラーレンC240、フラーレンC540、及び、ミックスドフラーレンが挙げられる。
 フラーレン誘導体は、例えば、上記フラーレンに置換基が付加した化合物が挙げられる。置換基は、アルキル基、アリール基、又は、複素環基が好ましい。フラーレン誘導体は、特開2007-123707号公報に記載の化合物が好ましい。
 n型半導体材料がフラーレン類を含む場合、光電変換膜中におけるn型半導体材料の合計の含有量に対するフラーレン類の含有量(=(フラーレン類の単層換算での膜厚/全n型半導体材料の単層換算での膜厚)×100)は、15~100体積%が好ましく、35~100体積%がより好ましい。
 上段までに記載したn型半導体材料に代えて、又は、上段までに記載したn型半導体材料とともに、n型半導体材料として有機色素を使用してもよい。
 n型半導体材料として有機色素を使用することで、光電変換素子の吸収波長(極大吸収波長)を、任意の波長域にコントロールしやすい。
 上記有機色素は、例えば、シアニン色素、スチリル色素、ヘミシアニン色素、メロシアニン色素(ゼロメチンメロシアニン(シンプルメロシアニン)を含む)、ロダシアニン色素、アロポーラー色素、オキソノール色素、ヘミオキソノール色素、スクアリウム色素、クロコニウム色素、アザメチン色素、クマリン色素、アリーリデン色素、アントラキノン色素、トリフェニルメタン色素、アゾ色素、アゾメチン色素、メタロセン色素、フルオレノン色素、フルギド色素、ペリレン色素、フェナジン色素、フェノチアジン色素、キノン色素、ジフェニルメタン色素、ポリエン色素、アクリジン色素、アクリジノン色素、ジフェニルアミン色素、キノフタロン色素、フェノキサジン色素、フタロペリレン色素、ジオキサン色素、ポルフィリン色素、クロロフィル色素、フタロシアニン色素、サブフタロシアニン色素、金属錯体色素、特開2014-82483号公報の段落[0083]~[0089]に記載の化合物、特開2009-167348号公報の段落[0029]~[0033]に記載の化合物、特開2012-77064号公報の段落[0197]~[0227]に記載の化合物、WO2018-105269号公報の段落[0035]~[0038]に記載の化合物、WO2018-186389号公報の段落[0041]~[0043]に記載の化合物、WO2018-186397号公報の段落[0059]~[0062]に記載の化合物、WO2019-009249号公報の段落[0078]~[0083]に記載の化合物、WO2019-049946号公報の段落[0054]~[0056]に記載の化合物、WO2019-054327号公報の段落[0059]~[0063]に記載の化合物、及び、WO2019-098161号公報の段落[0086]~[0087]に記載の化合物が挙げられる。
 n型半導体材料が有機色素を含む場合、光電変換膜中におけるn型半導体材料の合計の含有量に対する有機色素の含有量(=(有機色素の単層換算での膜厚/全n型半導体材料の単層換算での膜厚)×100)は、15~100体積%が好ましく、35~100体積%がより好ましい。
 n型半導体材料の分子量は、200~1200が好ましく、200~1000がより好ましい。
 光電変換膜は、特定化合物とn型半導体材料とが混合された状態で形成されるバルクヘテロ構造を有するのが好ましい。バルクヘテロ構造は、光電変換膜内で、特定化合物とn型半導体材料とが混合、分散している層である。なお、バルクへテロ構造については、特開2005-303266号公報の段落[0013]~[0014]等において詳細に説明されている。
 光電変換素子の応答性の点から、特定化合物とn型半導体材料との合計の含有量に対する特定化合物の含有量(=特定化合物の単層換算での膜厚/(特定化合物の単層換算での膜厚+n型半導体材料の単層換算での膜厚)×100)は、15~75体積%が好ましく、35~75体積%がより好ましい。
 なお、光電変換膜は、実質的に、特定化合物とn型半導体材料とから構成されるのが好ましい。実質的とは、光電変換膜全質量に対して、特定化合物及びn型半導体材料の合計含有量が95質量%以上であることを意味する。
 なお、光電変換膜中に含まれるn型半導体材料は、1種単独で使用してもよいし、2種以上を併用してもよい。
 特定化合物を含む光電変換膜は非発光性膜であり、有機電界発光素子(OLED:Organic Light Emitting Diode)とは異なる特徴を有する。非発光性膜とは発光量子効率が1%以下の膜を意図し、発光量子効率は0.5%以下が好ましく、0.1%以下がより好ましい。
<成膜方法>
 光電変換膜は、主に、乾式成膜法により成膜できる。乾式成膜法は、例えば、蒸着法(特に、真空蒸着法)、スパッタ法、イオンプレーティング法、及び、MBE(Molecular Beam Epitaxy)法等の物理気相成長法、並びに、プラズマ重合等のCVD(Chemical Vapor Deposition)法が挙げられる。なかでも、真空蒸着法が好ましい。真空蒸着法により光電変換膜を成膜する場合、真空度及び蒸着温度等の製造条件は常法に従って設定できる。
 光電変換膜の厚みは、10~1000nmが好ましく、50~800nmがより好ましく、50~500nmが更に好ましく、50~300nmが特に好ましい。
<電極>
 電極(上部電極(透明導電性膜)15と下部電極(導電性膜)11)は、導電性材料から構成される。導電性材料は、金属、合金、金属酸化物、電気伝導性化合物、及びこれらの混合物等が挙げられる。
 上部電極15から光が入射されるため、上部電極15は検知したい光に対し透明であるのが好ましい。上部電極15を構成する材料は、例えば、アンチモン又はフッ素等をドープした酸化錫(ATO:Antimony Tin Oxide、FTO:Fluorine doped Tin Oxide)、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO:Indium Tin Oxide)、及び、酸化亜鉛インジウム(IZO:Indium zinc oxide)等の導電性金属酸化物;金、銀、クロム、及び、ニッケル等の金属薄膜;これらの金属と導電性金属酸化物との混合物又は積層物;ならびに、ポリアニリン、ポリチオフェン、及び、ポリピロール等の有機導電性材料、等が挙げられる。なかでも、高導電性及び透明性等の点から、導電性金属酸化物が好ましい。
 通常、導電性膜をある範囲より薄くすると、急激な抵抗値の増加をもたらすが、本実施形態にかかる光電変換素子を組み込んだ固体撮像素子では、シート抵抗は、好ましくは100~10000Ω/□でよく、薄膜化できる膜厚の範囲の自由度は大きい。また、上部電極(透明導電性膜)15は厚みが薄いほど吸収する光の量は少なくなり、一般に光透過率が増す。光透過率の増加は、光電変換膜での光吸収を増大させ、光電変換能を増大させるため、好ましい。薄膜化に伴う、リーク電流の抑制、薄膜の抵抗値の増大、及び、透過率の増加を考慮すると、上部電極15の膜厚は、5~100nmが好ましく、5~20nmがより好ましい。
 下部電極11は、用途に応じて、透明性を持たせる場合と、逆に透明性を持たせず光を反射させる場合とがある。下部電極11を構成する材料は、例えば、アンチモン又はフッ素等をドープした酸化錫(ATO、FTO)、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、及び、酸化亜鉛インジウム(IZO)等の導電性金属酸化物;金、銀、クロム、ニッケル、チタン、タングステン、及び、アルミ等の金属、これらの金属の酸化物又は窒化物等の導電性化合物(一例として窒化チタン(TiN)を挙げる);これらの金属と導電性金属酸化物との混合物又は積層物;並びに、ポリアニリン、ポリチオフェン、及び、ポリピロール、等の有機導電性材料等が挙げられる。
 電極を形成する方法は特に制限されず、電極材料に応じて適宜選択できる。具体的には、印刷方式、及び、コーティング方式等の湿式方式;真空蒸着法、スパッタ法、及び、イオンプレーティング法等の物理的方式;並びに、CVD、及び、プラズマCVD法等の化学的方式、等が挙げられる。
 電極の材料がITOの場合、電子ビーム法、スパッタ法、抵抗加熱蒸着法、化学反応法(ゾル-ゲル法等)、及び、酸化インジウムスズの分散物の塗布等の方法が挙げられる。
<電荷ブロッキング膜:電子ブロッキング膜、正孔ブロッキング膜>
 本発明の光電変換素子は、導電性膜と透明導電性膜との間に、光電変換膜の他に1種以上の中間層を有しているのも好ましい。上記中間層は、電荷ブロッキング膜が挙げられる。光電変換素子がこの膜を有することにより、得られる光電変換素子の特性(光電変換効率及び応答性等)がより優れる。電荷ブロッキング膜は、電子ブロッキング膜と正孔ブロッキング膜とが挙げられる。以下に、それぞれの膜について詳述する。
(電子ブロッキング膜)
 電子ブロッキング膜は、ドナー性有機半導体材料(化合物)であり、例えば、下記のp型有機半導体を使用できる。p型有機半導体は1種単独で使用してもよく、2種以上を使用してもよい。
 p型有機半導体は、例えば、トリアリールアミン化合物(例えば、N,N’-ビス(3-メチルフェニル)-(1,1’-ビフェニル)-4,4’-ジアミン(TPD)、4,4’-ビス[N-(ナフチル)-N-フェニル-アミノ]ビフェニル(α-NPD)、特開2011-228614号公報の段落[0128]~[0148]に記載の化合物、特開2011-176259号公報の段落[0052]~[0063]に記載の化合物、特開2011-225544号公報の段落[0119]~[0158]に記載の化合物、特開2015-153910号公報の[0044]~[0051]に記載の化合物、及び、特開2012-94660号公報の段落[0086]~[0090]に記載の化合物等)、ピラゾリン化合物、スチリルアミン化合物、ヒドラゾン化合物、ポリシラン化合物、チオフェン化合物(例えば、チエノチオフェン誘導体、ジベンゾチオフェン誘導体、ベンゾジチオフェン誘導体、ジチエノチオフェン誘導体、[1]ベンゾチエノ[3,2-b]チオフェン(BTBT)誘導体、チエノ[3,2-f:4,5-f´]ビス[1]ベンゾチオフェン(TBBT)誘導体、特開2018-14474号の段落[0031]~[0036]に記載の化合物、WO2016-194630号の段落[0043]~[0045]に記載の化合物、WO2017-159684号の段落[0025]~[0037]、[0099]~[0109]に記載の化合物、特開2017-076766号公報の段落[0029]~[0034]に記載の化合物、WO2018-207722の段落[0015]~[0025]に記載の化合物、特開2019-54228の段落[0045]~[0053]に記載の化合物、WO2019-058995の段落[0045]~[0055]に記載の化合物、WO2019-081416の段落[0063]~[0089]に記載の化合物、特開2019-80052の段落[0033]~[0036]に記載の化合物等)、シアニン化合物、オキソノール化合物、ポリアミン化合物、インドール化合物、ピロール化合物、ピラゾール化合物、ポリアリーレン化合物、縮合芳香族炭素環化合物(例えば、ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、テトラセン誘導体、ペンタセン誘導体、ピレン誘導体、ペリレン誘導体、及び、フルオランテン誘導体)、ポルフィリン化合物、フタロシアニン化合物、トリアゾール化合物、オキサジアゾール化合物、イミダゾール化合物、ポリアリールアルカン化合物、ピラゾロン化合物、アミノ置換カルコン化合物、オキサゾール化合物、フルオレノン化合物、シラザン化合物、並びに、含窒素ヘテロ環化合物を配位子として有する金属錯体が挙げられる。
 p型有機半導体は、n型半導体材料よりもイオン化ポテンシャルが小さい化合物が挙げられ、この条件を満たせば、n型半導体材料として例示した有機色素も使用し得る。
 また、電子ブロッキング膜として、高分子材料も使用できる。
 高分子材料は、例えば、フェニレンビニレン、フルオレン、カルバゾール、インドール、ピレン、ピロール、ピコリン、チオフェン、アセチレン、及び、ジアセチレン等の重合体、並びに、その誘導体が挙げられる。
 なお、電子ブロッキング膜は、複数膜で構成してもよい。
 電子ブロッキング膜は、無機材料で構成されていてもよい。一般的に、無機材料は有機材料よりも誘電率が大きいため、無機材料を電子ブロッキング膜に用いた場合に、光電変換膜に電圧が多くかかるようになり、光電変換効率が高くなる。電子ブロッキング膜となりうる無機材料は、例えば、酸化カルシウム、酸化クロム、酸化クロム銅、酸化マンガン、酸化コバルト、酸化ニッケル、酸化銅、酸化ガリウム銅、酸化ストロンチウム銅、酸化ニオブ、酸化モリブデン、酸化インジウム銅、酸化インジウム銀、及び、酸化イリジウムが挙げられる。
(正孔ブロッキング膜)
 正孔ブロッキング膜は、アクセプター性有機半導体材料(化合物)であり、上述のn型半導体材料を利用できる。
 電荷ブロッキング膜の製造方法は特に制限されず、例えば、乾式成膜法及び湿式成膜法が挙げられる。乾式成膜法は、例えば、蒸着法及びスパッタ法が挙げられる。蒸着法は、物理蒸着(PVD:Physical Vapor Deposition)法及び化学蒸着(CVD)法のいずれでもよく、真空蒸着法等の物理蒸着法が好ましい。湿式成膜法は、例えば、インクジェット法、スプレー法、ノズルプリント法、スピンコート法、ディップコート法、キャスト法、ダイコート法、ロールコート法、バーコート法、及び、グラビアコート法が挙げられ、高精度パターニングの点からは、インクジェット法が好ましい。
 電荷ブロッキング膜(電子ブロッキング膜及び正孔ブロッキング膜)の厚みは、それぞれ、3~200nmが好ましく、5~100nmがより好ましく、5~30nmが更に好ましい。
<基板>
 光電変換素子は、更に基板を有してもよい。使用される基板の種類は特に制限されず、例えば、半導体基板、ガラス基板、及び、プラスチック基板が挙げられる。
 なお、基板の位置は特に制限されず、通常、基板上に導電性膜、光電変換膜、及び透明導電性膜をこの順で積層する。
<封止層>
 光電変換素子は、更に封止層を有してもよい。光電変換材料は水分子等の劣化因子の存在で顕著にその性能が劣化してしまうことがある。そこで、水分子を浸透させない緻密な金属酸化物、金属窒化物、もしくは、金属窒化酸化物等のセラミクス、又は、ダイヤモンド状炭素(DLC:Diamond-like Carbon)等の封止層で光電変換膜全体を被覆して封止することで、上記劣化を防止できる。
 なお、封止層は、特開2011-082508号公報の段落[0210]~[0215]に記載に従って、材料の選択及び製造を行ってもよい。
<撮像素子>
 光電変換素子の用途として、例えば、撮像素子が挙げられる。撮像素子とは、画像の光情報を電気信号に変換する素子であり、通常、複数の光電変換素子が同一平面状でマトリクス上に配置されており、各々の光電変換素子(画素)において光信号を電気信号に変換し、その電気信号を画素ごとに逐次撮像素子外に出力できるものをいう。そのために、画素ひとつあたり、一つ以上の光電変換素子、一つ以上のトランジスタから構成される。
 図3は、本発明の一実施形態を説明するための撮像素子の概略構成を示す断面模式図である。この撮像素子は、デジタルカメラ及びデジタルビデオカメラ等の撮像素子、電子内視鏡、ならびに、携帯電話機等の撮像モジュール等に搭載される。
 図3に示す撮像素子20aは、本発明の光電変換素子10a(緑色光電変換素子10a)と、青色光電変換素子22と、赤色光電変換素子24とを含み、これらは光が入射する方向に沿って積層されている。光電変換素子10aは、本発明の光電変換素子であり、主に、緑色光を受光できるように吸収波長をコントロールして、緑色光電変換素子としている。本発明の光電変換素子の吸収波長をコントロールする方法は、例えば、n型半導体材料として適当な有機色素を使用する方法が挙げられる。
 撮像素子20aは、いわゆる積層体型の色分離撮像素子である。光電変換素子10a、青色光電変換素子22、及び、赤色光電変換素子24は、それぞれ検出する波長スペクトルが異なる。つまり、青色光電変換素子22及び赤色光電変換素子24は、光電変換素子10aが受光(吸収)する光とは異なる波長の光を受光する光電変換素子に該当する。光電変換素子10aでは主に緑色光を受光でき、青色光電変換素子22では主に青色光を受光でき、赤色光電変換素子では主に赤色光を受光できる。
 なお、緑色光とは波長500~600nmの範囲の光を、青色光とは波長400~500nmの範囲の光を、赤色光とは波長600~700nmの範囲の光を意図する。
 撮像素子20aに矢印の方向から光が入射すると、まず、光電変換素子10aにおいて主に緑色光が吸収されるが、青色光及び赤色光に関しては光電変換素子10aを透過する。光電変換素子10aを透過した光が青色光電変換素子22に進んだ際には、主に青色光が吸収されるが、赤色光に関しては青色光電変換素子22を透過する。その後、青色光電変換素子22を透過した光は、赤色光電変換素子24によって吸収される。このように積層型の色分離撮像素子である撮像素子20aにおいては、緑、青、及び、赤の3つの受光部で1つの画素を構成でき、受光部の面積を大きく取れる。
 青色光電変換素子22、及び、赤色光電変換素子24の構成は特に制限されない。
 例えば、シリコンを用いて光吸収長の差により色を分離する構成の光電変換素子でもよい。より具体的には、例えば、青色光電変換素子22と、赤色光電変換素子24とが、ともにシリコンからなっていてもよい。この場合、撮像素子20aに矢印の方向から入射した青色光と緑色光と赤色光とからなる光は、光電変換素子10aによって真ん中の波長の光である緑色光が主に受光され、残る青色光と赤色光とを色分離しやすくなる。青色光と赤色光とは、シリコンに対する光吸収長に差(シリコンに対する吸収係数の波長依存性)があり、青色光はシリコンの表面近傍で吸収されやすく、赤色光はシリコンの比較的深い位置まで侵入できる。このような光吸収長に差に基づき、より浅い位置に存在する青色光電変換素子22によって主に青色光が受光され、より深い位置に存在する赤色光電変換素子24によって主に赤色光が受光される。
 また、青色光電変換素子22、及び、赤色光電変換素子24は、導電性膜、青色光又は赤色光に吸収極大を有する有機の光電変換膜、及び、透明導電成膜をこの順で有する構成の光電変換素子(青色光電変換素子22、又は、赤色光電変換素子24)でもよい。例えば、青色光電変換素子22は、青色光に吸収極大を有するように吸収波長をコントロールした本発明の光電変換素子でもよい。同様に、赤色光電変換素子24は、赤色光に吸収極大を有するように吸収波長をコントロールした本発明の光電変換素子でもよい。
 図3においては、光の入射側から本発明の光電変換素子、青色光電変換素子、及び、赤色光電変換素子の順に配置されていたが、この態様には限定されず、他の配置順であってもよい。例えば、光の入射する側から青色光電変換素子、本発明の光電変換素子、及び、赤色光電変換素子の順に配置されていてもよい。
 また、緑色光電変換素子を本発明の光電変換素子以外の光電変換素子として、青色光電変換素子及び/又は赤色光電変換素子を本発明の光電変換素子としてもよい。
 撮像素子として、上述のように、青色、緑色、及び、赤色の三原色の光電変換素子を積み上げた構成を説明したが、2層(2色)、又は、4層(4色)以上であってもかまわない。
 たとえば、配列した青色光電変換素子22と赤色光電変換素子24の上に本発明の光電変換素子10aを配置する態様であってもよい。なお、必要に応じて、光の入射側に更に所定の波長の光を吸収するカラーフィルタを配置してもよい。
 撮像素子の形態は図3及び上述の形態に限定されず、他の形態であってもよい。
 例えば、同一面内位置に、本発明の光電変換素子、青色光電変換素子、及び、赤色光電変換素子が配置された態様であってもよい。
 また、光電変換素子を単層で用いる構成であってもよい。例えば、本発明の光電変換素子10aのうえに、青、赤、緑のカラーフィルタを配置して色を分離する構成であってもよい。
 本発明の光電変換素子は光センサとして用いるのも好ましい。光センサは、上記光電変換素子単独で用いてもよいし、上記光電変換素子を直線状に配したラインセンサ、又は平面上に配した2次元センサとして用いてもよい。
<光電変換素子用材料>
 本発明は、光電変換素子用材料の発明をも含む。
 本発明の光電変換素子用材料は、式(1)で表される化合物(特定化合物)を含む、光電変換素子(好ましくは撮像素子用又は光センサ用の光電変換素子)の製造に用いられる材料である。
 光電変換素子用材料における式(1)で表される化合物は、上述の式(1)で表される化合物と同様であり、好ましい条件も同様である。
 光電変換素子用材料に含まれる特定化合物は、それぞれ、光電変換素子に含まれる光電変換膜の、光電変換膜の作製に用いられるのが好ましい。
 光電変換素子用材料に含まれる特定化合物の含有量は、それぞれ、光電変換素子用材料の全質量の、30~100質量%が好ましく、70~100質量%がより好ましく、99~100質量%が更に好ましい。
 光電変換素子用材料が含む特定化合物は、1種単独でもよく、2種以上でもよい。
 以下に実施例に基づいて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更できる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
<化合物(D-7)の合成>
 以下のスキームに従って、化合物(D-7)を合成した。
Figure JPOXMLDOC01-appb-C000012
・中間体7bの合成
 窒素雰囲気下、1000mL三口フラスコで四塩化チタン(12.4g、65.3mmol)をTHF(テトラヒドロフラン、455mL)に溶解した。更に、上記フラスコ内の液温を-10℃としてから、上記フラスコに亜鉛粉末(8.54g、131mmol)を添加した。得られた混合物を加熱還流させながら、中間体7a(2.42g、10.9mmol; Chemistry A European Journal 2015, 21, 12871-12875文献のSupporting informationに記載のS4jの合成法に従って合成した)のTHF(200mL)溶液を、5時間かけて添加した。添加後、上記混合物を、更に1.5時間加熱還流させて反応混合液を得た。上記反応混合液を室温まで冷却した後、上記反応混合液を氷水に加えた。得られた液体を、重曹水で中性にしてから、酢酸エチルを用いて液体中に含まれる反応生成物を抽出した。得られた粗生成物(反応生成物)をシリカゲルカラムクロマトグラフィーで精製して、中間体7bを1.73g得た。収率84%。
 中間体7bのESI-MS(エレクトロスプレーイオン化法による質量分析)による測定結果は次の通りであった。
  m/z=189.99 (M
 中間体7bの1H NMR(Nuclear Magnetic Resonance)及び13C NMRによる測定結果は次の通りであった。
  1H NMR(400MHz、CDCl3)δ7.44(dd、J=4.4 and 9.6Hz、2H)、7.57(s、2H)、7.76(d、J=8.4Hz、2H)、7.82(d、J=8.4Hz、2H)。
  13C NMR(125MHz、CDCl3)δ118.93、120.14、121.64、124.20、124.66、127.15、133.63、134.48、136.30、136.84。
・中間体7cの合成
 窒素雰囲気下にて、50mL三口フラスコで中間体7b(0.50g、2.6mmol)を脱水THF(18mL)に溶解させた。得られた溶解液を、ドライアイス-アセトン浴で冷却した後、上記溶解液にn-ブチルリチウム(1.6Mヘキサン溶液、3.9mL、6.3mmol)を、上記溶解液の内温を-65℃以下に維持しながら滴下した。滴下後、上記溶解液を、内温-70℃以下に維持しながら3.5時間撹拌した。上記溶解液に塩化トリブチルスズ(2.6g、7.9mmol)の脱水THF(7mL)溶液を、上記溶解液の内温を-66℃以下に維持しながら滴下し、その後、上記溶解液を室温(23℃)に戻して、室温で1時間反応させ、反応液を得た。300mL三角フラスコに水(50mL)を測り取り、これに得られた反応液を添加して反応を停止させた。得られた液体に含まれる反応生成物を、酢酸エチルで抽出した。抽出処理によって得られた反応生成物を含む有機相を硫酸ナトリウムで乾燥し、減圧濃縮した。得られた粗生成物(反応生成物)をアミノ修飾型シリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン)で精製して、中間体7cを1.50g得た。収率74%。
 中間体7cのESI-MSによる測定結果は次の通りであった。
  m/z=770.20 (M
 中間体7cの1H NMRによる測定結果は次の通りであった。
  1H NMR(400MHz、CDCl3)δ0.70-1.70(m、54H)7.48(s、1H)、7.62(d、J=0.8Hz、1H)、7.70(d、J=8.4Hz、1H)、7.79(dd、J=0.8 and 8.4Hz、1H)。
・化合物(D-7)の合成
 50mL三口フラスコに、中間体7c(0.75g、0.98mmol)、4-ブロモ-p-テルフェニル(0.73g、2.35mmol)、トリス(ジベンジリデンアセトン)二パラジウム(0.018g、0.02mmol)、トリ(o-トリル)ホスフィン(0.025g、0.078mmol)、及び、N,N-ジメチルホルムアミド(12mL)を加えて混合し、その後、上記フラスコ内の減圧脱気と窒素置換を3回繰り返した。上記フラスコ内の混合物を、窒素雰囲気下100℃で6時間反応させた後、析出した固体(粗成生物)を濾別した。得られた粗生成物をクロロベンゼン中にて140℃1時間加熱してから熱時濾過し、得られた固体(濾物)を減圧下昇華精製することで、化合物(D-7)を得た。
 化合物(D-7)のESI-MSによる測定結果は次の通りであった。
  m/z=646.18 (M
<化合物(D-2)の合成>
 化合物(D-7)の合成における4-ブロモ-p-テルフェニルを2-(4-ブロモフェニル)ナフタレンに変えたこと以外は、化合物(D-7)の合成と同様にして、化合物(D-2)を得た。
 化合物(D-2)のESI-MSによる測定結果は次の通りであった。
  m/z=594.15 (M
<化合物(D-5)の合成>
 化合物(D-7)の合成における4-ブロモ-p-テルフェニルを4-ブロモビフェニルに変えたこと以外は、化合物(D-7)の合成と同様にして、化合物(D-5)を得た。
 化合物(D-5)のESI-MSによる測定結果は次の通りであった。
  m/z=494.12 (M
<化合物(D-9)の合成>
 化合物(D-7)の合成における4-ブロモ-p-テルフェニルを2-(4-ブロモフェニル)-9,9-ジメチル-9H-フルオレンに変えたこと以外は、化合物(D-7)の合成と同様にして、化合物(D-9)を得た。
 化合物(D-9)のESI-MSによる測定結果は次の通りであった。
  m/z=726.24 (M
<化合物(D-1)の合成>
 以下のスキームに従って、化合物(D-1)を合成した。
Figure JPOXMLDOC01-appb-C000013
・中間体1bの合成
 中間体7cの合成における中間体7bを中間体1a(Journal of Organic Chemistry 1994, 59, 3077-3081の化合物11の合成例に従って合成した)に変えたこと以外は、中間体7cの合成と同様にして、中間体1bを得た。
 中間体1bのESI-MSによる測定結果は次の通りであった。
  m/z=770.20 (M
・化合物(D-1)の合成
 化合物(D-5)の合成における中間体7cを中間体1bに変えたこと以外は、化合物(D-5)の合成と同様にして、化合物(D-1)を得た。
 化合物(D-1)のESI-MSによる測定結果は次の通りであった。
  m/z=494.12 (M
<化合物(D-3)の合成>
 化合物(D-1)の合成における4-ブロモビフェニルを4-ブロモ-p-テルフェニルに変えたこと以外は、化合物(D-1)の合成と同様にして、化合物(D-3)を得た。
 化合物(D-3)のESI-MSによる測定結果は次の通りであった。
  m/z=646.18 (M
<化合物(D-4)の合成>
 以下のスキームに従って、化合物(D-4)を合成した。
Figure JPOXMLDOC01-appb-C000014
・中間体4bの合成
 中間体7cの合成における中間体7bを中間体4a(Journal of Heterocyclic Chemistry 2013, 50, 1021-1024の化合物1の合成例に従って合成した)に変えたこと以外は、中間体7cの合成と同様にして、中間体4bを得た。
 中間体4bのESI-MSによる測定結果は次の通りであった。
  m/z=770.20 (M
・化合物(D-4)の合成
 化合物(D-5)の合成における中間体7cを中間体4bに変えたこと以外は、化合物(D-5)の合成と同様にして、化合物(D-4)を得た。
 化合物(D-4)のESI-MSによる測定結果は次の通りであった。
  m/z=494.12 (M
<化合物(D-6)の合成>
 化合物(D-7)の合成における中間体7cを中間体4bに変えたこと以外は、化合物(D-7)の合成と同様にして、化合物(D-6)を得た。
 化合物(D-6)のESI-MSによる測定結果は次の通りであった。
  m/z=646.18 (M
<化合物(D-8)の合成>
 化合物(D-4)の合成における4-ブロモビフェニルを2-(4-ブロモフェニル)ベンゾ[b]チオフェンに変えたこと以外は、化合物(D-4)の合成と同様にして、化合物(D-8)を得た。
 化合物(D-8)のESI-MSによる測定結果は次の通りであった。
  m/z=606.06 (M
<化合物(D-10)の合成>
 以下のスキームに従って、化合物(D-10)を合成した。
Figure JPOXMLDOC01-appb-C000015
・中間体10bの合成
 中間体7cの合成における中間体7bを中間体10a(Tetrahedron 2016, 72, 4159-4168の化合物3Oの合成例に従って合成した)に変えたこと以外は、中間体7cの合成と同様にして、中間体10bを得た。
 中間体10bのESI-MSによる測定結果は次の通りであった。
  m/z=738.25 (M
・化合物(D-10)の合成
 化合物(D-5)の合成における中間体7cを中間体10bに変えたこと以外は、化合物(D-5)の合成と同様にして、化合物(D-10)を得た。
 化合物(D-10)のESI-MSによる測定結果は次の通りであった。
  m/z=462.16 (M
<化合物(R-1)の合成>
 化合物(D-1)の合成における4-ブロモビフェニルをブロモベンゼンに変えたこと以外は、化合物(D-1)の合成と同様にして、化合物(R-1)を得た。
 化合物(R-1)のESI-MSによる測定結果は次の通りであった。
  m/z=342.05 (M
<化合物(R-2)の合成>
 特開2017-39662の実施例1に記載の化合物(111)の合成法に従って合成した。
 以下に、特定化合物である化合物(D-1)~(D-10)と、比較用の化合物(R-1)~(R-2)を示す。
Figure JPOXMLDOC01-appb-C000016
 上記化合物(D-1)~(D-10)、(R-1)~(R-2)と、フラーレン(C60)のLUMOの値を、それぞれ、Gaussian‘09(Gaussian社製ソフトウェア)を用いてB3LYP/6-31G(d)の計算により求めた。得られたLUMOの値の反数の値を化合物の電子親和力の値として採用した。
 その結果、フラーレン(C60)の電子親和力は、化合物(D-1)~(D-10)、(R-1)~(R-2)のいずれの電子親和力よりも大きいことが確認された。つまり、フラーレン(C60)は、化合物(D-1)~(D-10)、(R-1)~(R-2)との関係で、n型半導体材料に該当することが確認された。
<実施例及び比較例:光電変換素子の作製>
 得られた化合物を用いて図2の形態の光電変換素子を作製した。ここで、光電変換素子は、下部電極11、電子ブロッキング膜16A、光電変換膜12、正孔ブロッキング膜16B、及び、上部電極15からなる。
 具体的には、ガラス基板上に、アモルファス性ITOをスパッタ法により成膜して、下部電極11(厚み:30nm)を形成し、更に下部電極11上に下記の化合物(B-1)を真空加熱蒸着法により成膜して、電子ブロッキング膜16A(厚み:10nm)を形成した。
 更に、基板の温度を25℃に制御した状態で、電子ブロッキング膜16A上に化合物(D-1)とフラーレン(C60)とを2.0Å/秒の蒸着レートに設定し、それぞれ単層換算で100nm、100nmとなるように真空蒸着法により共蒸着して成膜し、200nmのバルクヘテロ構造を有する光電変換膜12を形成した(光電変換膜形成工程)。
 更に光電変換膜12上に下記の化合物(B-2)を成膜して正孔ブロッキング膜16B(厚み:10nm)を形成した。
 更に、正孔ブロッキング膜16B上に、アモルファス性ITOをスパッタ法により成膜して、上部電極15(透明導電性膜)(厚み:10nm)を形成した。上部電極15上に、真空蒸着法により封止層としてSiO膜を形成した後、その上にALCVD(Atomic Layer Chemical Vapor Deposition)法により酸化アルミニウム(Al)層を形成し、光電変換素子を作製し、この素子を、素子(A)とした。
 上述の製造方法と同様にして、化合物(D-2)~(D-10)又は(R-1)~(R-2)を使用した素子(A)をそれぞれ作製した。
Figure JPOXMLDOC01-appb-C000017
<駆動の確認(光電変換効率、暗電流の評価)>
 得られた各素子(A)の駆動の確認をした。各素子(A)に1.0×10V/cmの電界強度となるように電圧を印加した。その後、上部電極(透明導電性膜)側から光を照射して400nmでの光電変換効率(外部量子効率)を評価した。外部量子効率は、オプテル製定エネルギー量子効率測定装置を用いて測定した。照射した光量は50μW/cmであった。いずれの素子(A)も30%以上の光電変換効率と10nA/cm以下の暗電流を示し、問題なく駆動することを確認した。
<応答性の評価>
 得られた各素子(A)の応答性の評価を行った。各素子(A)に1.0×10V/cmの電界強度となるように電圧を印加し、上部電極(透明導電性膜)側から400nmの光を照射した。照射開始から10ミリ秒後の光電流の値を100%とした場合に、光電流が97%以上になるまでにかかった時間を算出した。実施例1の素子(A)の値(光電流が97%以上になるまでにかかった時間)を1とした場合の相対値で、各素子(A)の応答性を評価した。相対値が0.5以下のものをA、0.5より大きく1以下のものをB、1より大きく2以下のものをC、2よりも大きいものをDとして評価を行った。実用上、A又はBが好ましく、Aがより好ましい。結果を表1に示す。
<耐熱性の評価>
 得られた各素子(A)をグローブボックス中で160℃、2時間加熱処理した。その後に上述の<駆動の確認(光電変換効率、暗電流の評価)>と同様の方法で、暗電流の評価を行った。加熱処理前の暗電流値を1とした場合の相対値で評価を行い、相対値が、2以下であればA、2より大きく5以下であればB、5より大きく10以下であればC、10よりも大きければDとして評価を行った。実用上、A又はBが好ましく、Aがより好ましい。結果を表1に示す。
 各化合物を用いて作製した光電変換素子を使用して行った試験の結果を下記表1に示す。
 各化合物を用いて作製した光電変換素子を使用して行った試験の結果を下記表1に示す。
 表1中、「式(3)」欄は、使用した特定化合物が、式(3)で表される化合物に該当するか否かを示す。本要件を満たす場合はAとし、満たさない場合はBとした。
 「Ar、Ar=多環芳香族/式(R)」欄は、特定化合物中における式(1)中のAr、Arで表される基に相当する基が、置換基を有してもよい多環の芳香環基、又は、式(R)で表される基であるか否かを示す。本要件を満たす場合はAとし、満たさない場合はBとした。
Figure JPOXMLDOC01-appb-T000018
 表1に示す結果より、光電変換膜に特定化合物を使用する本発明の光電変換素子は、応答性にすぐれることが確認された。また、本発明の光電変換素子は、耐熱性にも優れることが確認された。
 一方で、式(1)におけるAr及びArに相当する芳香環基が存在しない化合物R-1を使用した光電変換素子は、応答性が不十分であった。また、耐熱性も、本発明の光電変換素子と比べて劣っていた。
 また、特定化合物とは異なる構造の母核を有する化合物R-2を使用した光電変換素子は、応答性が不十分であった。また、耐熱性も、本発明の光電変換素子と比べて劣っていた。
 また、特定化合物が、式(3)で表される化合物に該当する場合、得られる光電変換素子の応答性がより優れることが確認された(実施例2、5、7、9の結果等を参照)。
 特定化合物中における式(1)中のAr、Arで表される基に相当する基が、置換基を有してもよい多環の芳香環基、又は、式(R)で表される基である場合、得られる光電変換素子の耐熱性がより優れることが確認された(実施例2、3、6、7、8の結果等を参照)。
 10a,10b  光電変換素子
 11  導電性膜(下部電極)
 12  光電変換膜
 15  透明導電性膜(上部電極)
 16A  電子ブロッキング膜
 16B  正孔ブロッキング膜
 20a  撮像素子
 22  青色光電変換素子
 24  赤色光電変換素子

Claims (10)

  1.  導電性膜、光電変換膜、及び、透明導電性膜をこの順で有する光電変換素子であって、
     前記光電変換膜が、式(1)で表される化合物、及び、n型半導体材料を含む、光電変換素子。
    Figure JPOXMLDOC01-appb-C000001

     式(1)中、X及びYの一方が、-CRa1=又は-N=を表し、他方が、-O-、-S-、-Se-、-Te-、又は、-NRa2-を表す。
     X及びYの一方が、-CRa1=又は-N=を表し、他方が、-O-、-S-、-Se-、-Te-、又は、-NRa2-を表す。
     Ra1及びRa2は、それぞれ独立に、水素原子又は置換基を表す。
     Z及びZは、それぞれ独立に、-CRa3=又は-N=を表す。
     Ra3は、水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアルキルチオ基、置換基を有してもよいシリル基、置換基を有してもよいアリール基、又は、置換基を有してもよいヘテロアリール基を表す。
     Ar~Arは、それぞれ独立に、置換基を有してもよい芳香環基を表す。
     m1及びm2は、それぞれ独立に、0又は1を表す。
     L及びLは、それぞれ独立に、-S-、-O-、-Se-、-SiRa4a5-、-NRa6-、又は、-CRa7a8-を表す。
     Ra4~Ra8は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアルキルチオ基、置換基を有してもよいシリル基、置換基を有してもよいアルケニル基、置換基を有してもよいアルキニル基、置換基を有してもよいアリール基、又は、置換基を有してもよいヘテロアリール基を表す。
     ただし、m1が0を表す場合、Lは存在せず、ArとArとは、前記式(1)中に明示された単結合のみで連結する。m2が0を表す場合、Lは存在せず、ArとArとは、前記式(1)中に明示された単結合のみで連結する。
  2.  前記式(1)で表される化合物が、式(2)で表される化合物、式(3)で表される化合物、又は、式(4)で表される化合物である、請求項1に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000002

     式(2)中、Y及びYは、それぞれ独立に、-O-、-S-、又は、-Se-を表す。
     R~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアルキルチオ基、置換基を有してもよいシリル基、置換基を有してもよいアリール基、又は、置換基を有してもよいヘテロアリール基を表す。
     Ar~Arは、それぞれ独立に、置換基を有してもよい芳香環基を表す。
     m1及びm2は、それぞれ独立に、0又は1を表す。
     L及びLは、それぞれ独立に、-S-、-O-、-Se-、-SiRa4a5-、-NRa6-、又は、-CRa7a8-を表す。
     Ra4~Ra8は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアルキルチオ基、置換基を有してもよいシリル基、置換基を有してもよいアルケニル基、置換基を有してもよいアルキニル基、置換基を有してもよいアリール基、又は、置換基を有してもよいヘテロアリール基を表す。
     ただし、m1が0を表す場合、Lは存在せず、ArとArとは、前記式(2)中に明示された単結合のみで連結する。m2が0を表す場合、Lは存在せず、ArとArとは、前記式(2)中に明示された単結合のみで連結する。
    Figure JPOXMLDOC01-appb-C000003

     式(3)中、Y及びXは、それぞれ独立に、-O-、-S-、又は、-Se-を表す。
     R~R及びRは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアルキルチオ基、置換基を有してもよいシリル基、置換基を有してもよいアリール基、又は、置換基を有してもよいヘテロアリール基を表す。
     Ar~Arは、それぞれ独立に、置換基を有してもよい芳香環基を表す。
     m1及びm2は、それぞれ独立に、0又は1を表す。
     L及びLは、それぞれ独立に、-S-、-O-、-Se-、-SiRa4a5-、-NRa6-、又は、-CRa7a8-を表す。
     Ra4~Ra8は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアルキルチオ基、置換基を有してもよいシリル基、置換基を有してもよいアルケニル基、置換基を有してもよいアルキニル基、置換基を有してもよいアリール基、又は、置換基を有してもよいヘテロアリール基を表す。
     ただし、m1が0を表す場合、Lは存在せず、ArとArとは、前記式(3)中に明示された単結合のみで連結する。m2が0を表す場合、Lは存在せず、ArとArとは、前記式(3)中に明示された単結合のみで連結する。
    Figure JPOXMLDOC01-appb-C000004

     式(4)中、X及びXは、それぞれ独立に、-O-、-S-、又は、-Se-を表す。
     R~R及びR~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアルキルチオ基、置換基を有してもよいシリル基、置換基を有してもよいアリール基、又は、置換基を有してもよいヘテロアリール基を表す。
     Ar~Arは、それぞれ独立に、置換基を有してもよい芳香環基を表す。
     m1及びm2は、それぞれ独立に、0又は1を表す。
     L及びLは、それぞれ独立に、-S-、-O-、-Se-、-SiRa4a5-、-NRa6-、又は、-CRa7a8-を表す。
     Ra4~Ra8は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアルキルチオ基、置換基を有してもよいシリル基、置換基を有してもよいアルケニル基、置換基を有してもよいアルキニル基、置換基を有してもよいアリール基、又は、置換基を有してもよいヘテロアリール基を表す。
     ただし、m1が0を表す場合、Lは存在せず、ArとArとは、前記式(4)中に明示された単結合のみで連結する。m2が0を表す場合、Lは存在せず、ArとArとは、前記式(4)中に明示された単結合のみで連結する。
  3.  Ar及びArが、置換基を有してもよい単環の芳香環基を表す、請求項1又は2に記載の光電変換素子。
  4.  前記式(1)で表される化合物の分子量が450~900である、請求項1~3のいずれか1項に記載の光電変換素子。
  5.  前記光電変換膜が、前記式(1)で表される化合物と前記n型半導体材料とが混合された状態で形成されるバルクへテロ構造を有する、請求項1~4のいずれか1項に記載の光電変換素子。
  6.  前記導電性膜と前記透明導電性膜との間に、前記光電変換膜の他に1種以上の中間層を有する、請求項1~5のいずれか1項に記載の光電変換素子。
  7.  前記n型半導体材料が、フラーレン及びその誘導体からなる群より選択されるフラーレン類を含む、請求項1~6のいずれか1項に記載の光電変換素子。
  8.  請求項1~7のいずれか1項に記載の光電変換素子を有する、撮像素子。
  9.  請求項1~7のいずれか1項に記載の光電変換素子を有する、光センサ。
  10.  式(1)で表される化合物を含む、光電変換素子用材料。
    Figure JPOXMLDOC01-appb-C000005

     式(1)中、X及びYの一方が、-CRa1=又は-N=を表し、他方が、-O-、-S-、-Se-、-Te-、又は、-NRa2-を表す。
     X及びYの一方が、-CRa1=又は-N=を表し、他方が、-O-、-S-、-Se-、-Te-、又は、-NRa2-を表す。
     Ra1及びRa2は、それぞれ独立に、水素原子又は置換基を表す。
     Z及びZは、それぞれ独立に、-CRa3=又は-N=を表す。
     Ra3は、水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアルキルチオ基、置換基を有してもよいシリル基、置換基を有してもよいアリール基、又は、置換基を有してもよいヘテロアリール基を表す。
     Ar~Arは、それぞれ独立に、置換基を有してもよい芳香環基を表す。
     m1及びm2は、それぞれ独立に、0又は1を表す。
     L及びLは、それぞれ独立に、-S-、-O-、-Se-、-SiRa4a5-、-NRa6-、又は、-CRa7a8-を表す。
     Ra4~Ra8は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアルキルチオ基、置換基を有してもよいシリル基、置換基を有してもよいアルケニル基、置換基を有してもよいアルキニル基、置換基を有してもよいアリール基、又は、置換基を有してもよいヘテロアリール基を表す。
     ただし、m1が0を表す場合、Lは存在せず、ArとArとは、前記式(1)中に明示された単結合のみで連結する。m2が0を表す場合、Lは存在せず、ArとArとは、前記式(1)中に明示された単結合のみで連結する。
PCT/JP2020/022287 2019-06-28 2020-06-05 光電変換素子、撮像素子、光センサ、光電変換素子用材料 WO2020261933A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021527593A JP7382404B2 (ja) 2019-06-28 2020-06-05 光電変換素子、撮像素子、光センサ、光電変換素子用材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-121252 2019-06-28
JP2019121252 2019-06-28

Publications (1)

Publication Number Publication Date
WO2020261933A1 true WO2020261933A1 (ja) 2020-12-30

Family

ID=74061237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022287 WO2020261933A1 (ja) 2019-06-28 2020-06-05 光電変換素子、撮像素子、光センサ、光電変換素子用材料

Country Status (3)

Country Link
JP (1) JP7382404B2 (ja)
TW (1) TW202100529A (ja)
WO (1) WO2020261933A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105386A1 (ja) * 2006-03-10 2007-09-20 Osaka University 縮合環化合物及びその製造方法、重合体、これらを含む有機薄膜、並びに、これを備える有機薄膜素子及び有機薄膜トランジスタ
JP2011116964A (ja) * 2009-10-30 2011-06-16 Sumitomo Chemical Co Ltd 化合物及びそれを用いた素子
CN103664994A (zh) * 2012-08-31 2014-03-26 昆山维信诺显示技术有限公司 苯并二噻吩类衍生物有机电致发光材料及其应用
JP2015118977A (ja) * 2013-12-17 2015-06-25 富士フイルム株式会社 受光層形成方法及び有機光電変換素子の製造方法、成膜用有機材料及びそれを用いて得られた有機光電変換素子、光センサ。
JP2017039662A (ja) * 2015-08-20 2017-02-23 日本化薬株式会社 有機多環芳香族化合物、およびその利用
JP2019036724A (ja) * 2017-08-10 2019-03-07 パナソニックIpマネジメント株式会社 光電変換材料および光電変換素子

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008127314A (ja) * 2006-11-20 2008-06-05 Canon Inc 1,3−アゾール縮合多環化合物および有機電界発光素子
US20090308456A1 (en) * 2008-06-13 2009-12-17 Interuniversitair Microelektronica Centrum (Imec) Photovoltaic Structures and Method to Produce the Same
WO2011052567A1 (ja) * 2009-10-30 2011-05-05 住友化学株式会社 有機光電変換素子
KR20140140455A (ko) * 2013-05-29 2014-12-09 희성소재 (주) 벤조디이미다졸계 화합물 및 이를 이용한 유기발광소자
CN108807691A (zh) * 2017-04-28 2018-11-13 松下知识产权经营株式会社 光电转换膜以及使用了该光电转换膜的光电转换元件和摄像装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105386A1 (ja) * 2006-03-10 2007-09-20 Osaka University 縮合環化合物及びその製造方法、重合体、これらを含む有機薄膜、並びに、これを備える有機薄膜素子及び有機薄膜トランジスタ
JP2011116964A (ja) * 2009-10-30 2011-06-16 Sumitomo Chemical Co Ltd 化合物及びそれを用いた素子
CN103664994A (zh) * 2012-08-31 2014-03-26 昆山维信诺显示技术有限公司 苯并二噻吩类衍生物有机电致发光材料及其应用
JP2015118977A (ja) * 2013-12-17 2015-06-25 富士フイルム株式会社 受光層形成方法及び有機光電変換素子の製造方法、成膜用有機材料及びそれを用いて得られた有機光電変換素子、光センサ。
JP2017039662A (ja) * 2015-08-20 2017-02-23 日本化薬株式会社 有機多環芳香族化合物、およびその利用
JP2019036724A (ja) * 2017-08-10 2019-03-07 パナソニックIpマネジメント株式会社 光電変換材料および光電変換素子

Also Published As

Publication number Publication date
JP7382404B2 (ja) 2023-11-16
JPWO2020261933A1 (ja) 2020-12-30
TW202100529A (zh) 2021-01-01

Similar Documents

Publication Publication Date Title
JP6892932B2 (ja) 光電変換素子、光センサ、撮像素子、化合物
US20160013426A1 (en) Photoelectric conversion element, imaging device, optical sensor, and method of using photoelectric conversion element
KR20150122748A (ko) 광전 변환 소자 및 그 사용 방법, 광 센서, 촬상 소자
WO2014051007A1 (ja) 光電変換素子およびその使用方法、光センサ、撮像素子
US10944055B2 (en) Compound and organic photoelectric device, image sensor and electronic device including the same
JP6794530B2 (ja) 光電変換素子、光センサ、撮像素子、および、化合物
JP5840187B2 (ja) 光電変換素子およびその使用方法、光センサ、撮像素子
JP7026780B2 (ja) 光電変換素子、撮像素子、光センサ、化合物
JP6077426B2 (ja) 光電変換素子およびその使用方法、光センサ、撮像素子
WO2022004473A1 (ja) 光電変換素子、撮像素子、光センサ、化合物
US10547012B2 (en) Photoelectric conversion element, imaging element, optical sensor, and compound
JPWO2019230562A1 (ja) 光電変換素子、撮像素子、光センサ、化合物
WO2022014721A1 (ja) 光電変換素子、撮像素子、光センサ、及び化合物
JPWO2019176754A1 (ja) 光電変換素子、撮像素子、光センサ、化合物
JP7133707B2 (ja) 光電変換素子、撮像素子、光センサ、光電変換素子用材料、撮像素子用材料、光センサ用材料
WO2021141078A1 (ja) 光電変換素子、撮像素子、光センサ
WO2020261933A1 (ja) 光電変換素子、撮像素子、光センサ、光電変換素子用材料
JP7215970B2 (ja) 光電変換素子、撮像素子、光センサ、光電変換素子用材料、化合物
WO2020261938A1 (ja) 光電変換素子、撮像素子、光センサ、光電変換素子用材料
WO2021090619A1 (ja) 光電変換素子、撮像素子、光センサ、光電変換素子用材料、化合物
WO2020202978A1 (ja) 光電変換素子、撮像素子、光センサ、撮像素子用光電変換素子用材料、光センサ用光電変換素子用材料
WO2021261389A1 (ja) 光電変換素子、撮像素子、光センサ、化合物
JP7411073B2 (ja) 光電変換素子、撮像素子、光センサ、及び化合物
WO2022168856A1 (ja) 光電変換素子、撮像素子、光センサ、化合物
KR20240048538A (ko) 광전 변환 소자, 촬상 소자, 광 센서, 화합물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20833253

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021527593

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20833253

Country of ref document: EP

Kind code of ref document: A1