WO2020253359A1 - 终端设备的定位方法及装置、存储介质、电子装置 - Google Patents

终端设备的定位方法及装置、存储介质、电子装置 Download PDF

Info

Publication number
WO2020253359A1
WO2020253359A1 PCT/CN2020/086148 CN2020086148W WO2020253359A1 WO 2020253359 A1 WO2020253359 A1 WO 2020253359A1 CN 2020086148 W CN2020086148 W CN 2020086148W WO 2020253359 A1 WO2020253359 A1 WO 2020253359A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
angle
base station
value
distance
Prior art date
Application number
PCT/CN2020/086148
Other languages
English (en)
French (fr)
Inventor
李乐
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2020253359A1 publication Critical patent/WO2020253359A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/021Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/08Systems for determining direction or position line
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/06Reselecting a communication resource in the serving access point

Definitions

  • the present invention relates to the field of communications, and in particular to a method and device for positioning terminal equipment, a storage medium, and an electronic device.
  • the 5G base station gNodeB, referred to as gNB
  • RAN Radio Access Network
  • UE User Equipment
  • the accuracy requirement for positioning reaches the meter level.
  • the goal is to use mobile phones instead of professional surveying and mapping terminals or vehicle-mounted terminals to achieve meter-level positioning accuracy.
  • mobile communication itself has the characteristics of the entire network, and can complete positioning in a variety of scenarios under the premise of ensuring seamless coverage.
  • the embodiments of the present invention provide a method and device for locating a terminal device, a storage medium, and an electronic device, so as to at least to a certain extent solve the problem of locating 5G terminal equipment in related technologies.
  • a method for locating a terminal device including: determining a first angle of the terminal device relative to a base station from a beam accessed by the terminal device; The timing advance TA value at the time of the beam; determine the first distance of the terminal device relative to the base station based on the distance corresponding to the TA value; use the first angle and the first distance to locate the terminal device .
  • a positioning apparatus for terminal equipment including: a first determining module, configured to determine a first angle of the terminal equipment relative to the base station from the beams accessed by the terminal equipment; The second determining module is used to determine the timing advance TA value when the terminal device accesses the beam; the third determining module is used to determine the terminal device relative to the base station based on the distance corresponding to the TA value The first distance; the positioning module is used to locate the terminal device using the first angle and the first distance.
  • a storage medium in which a computer program is stored, wherein the computer program is configured to execute the steps in any one of the foregoing method embodiments when running.
  • an electronic device including a memory and a processor, the memory stores a computer program, and the processor is configured to run the computer program to execute any of the above Steps in the method embodiment.
  • FIG. 1 is a block diagram of the hardware structure of a mobile terminal of a method for positioning a terminal device according to an embodiment of the present invention
  • Figure 2 is a flowchart of a method for positioning a terminal device according to an embodiment of the present invention
  • FIG. 3 is a flowchart of angular position positioning in this embodiment
  • Figure 4 is a flowchart of the angular position update in this embodiment
  • Figure 5 is a schematic diagram of distance position positioning in this embodiment
  • Fig. 6 is a schematic diagram of transmitting beams of a 5G communication system base station in a millimeter wave band according to an embodiment of the present invention
  • Fig. 7 is a schematic diagram of beam acquisition-wide beam angle position determination in an embodiment of the present invention.
  • Fig. 8 is a schematic diagram of determining the angular position of a narrow beam according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of determining the angular position of a refined beam according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of UE distance position positioning according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of positioning location update according to the narrow beam handover P2 process in an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of positioning location update according to the P2 process of wide-narrow beam switching in an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of location update according to the P1 process in an embodiment of the present invention.
  • Fig. 14 is a structural block diagram of a positioning device of a terminal device according to an embodiment of the present invention.
  • FIG. 1 is a hardware structural block diagram of a mobile terminal in a method for positioning a terminal device according to an embodiment of the present invention.
  • the mobile terminal 10 may include one or more (only one is shown in FIG. 1) processor 102 (the processor 102 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA. ) And a memory 104 for storing data.
  • the above-mentioned mobile terminal may further include a transmission device 106 and an input/output device 108 for communication functions.
  • a transmission device 106 may further include a transmission device 106 and an input/output device 108 for communication functions.
  • the structure shown in FIG. 1 is only for illustration, and does not limit the structure of the above-mentioned mobile terminal.
  • the mobile terminal 10 may also include more or fewer components than those shown in FIG. 1, or have a different configuration from that shown in FIG.
  • the memory 104 can be used to store computer programs, for example, software programs and modules of application software, such as the computer programs corresponding to the terminal device positioning method in the embodiment of the present invention.
  • the processor 102 runs the computer programs stored in the memory 104, thereby Perform various functional applications and data processing, that is, realize the above-mentioned methods.
  • the memory 104 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory 104 may include a memory remotely provided with respect to the processor 102, and these remote memories may be connected to the mobile terminal 10 through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the transmission device 106 is used to receive or send data via a network.
  • the above-mentioned specific example of the network may include a wireless network provided by the communication provider of the mobile terminal 10.
  • the transmission device 106 includes a network adapter (Network Interface Controller, NIC for short), which can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 106 may be a radio frequency (Radio Frequency, referred to as RF) module, which is used to communicate with the Internet in a wireless manner.
  • RF Radio Frequency
  • FIG. 2 is a flowchart of the method for locating a terminal device according to an embodiment of the present invention. As shown in FIG. 2, the process includes the following steps:
  • Step S202 Determine a first angle of the terminal device relative to the base station from the beam accessed by the terminal device;
  • Step S204 Determine the timing advance TA value when the terminal device accesses the beam
  • Step S206 Determine the first distance of the terminal device relative to the base station based on the distance corresponding to the TA value
  • Step S208 Use the first angle and the first distance to locate the terminal device.
  • the base station is used to determine the first angle of the terminal device relative to the base station from the beam accessed by the terminal device; and determine the timing advance TA value when the terminal device accesses the beam; determine the distance based on the TA value
  • the first distance of the terminal device relative to the base station the base station uses the first angle and the first distance to locate the terminal device.
  • the base station can determine the position of the terminal device from the beam accessed by the terminal device.
  • the terminal equipment can be accurately located. Therefore, positioning of 5G terminal equipment can be provided to achieve the effect of accurately positioning the terminal equipment.
  • the execution subject of the foregoing steps may be a base station or the like, but is not limited thereto.
  • step S202 and step S204 can be interchanged, that is, step S204 may be executed first, and then S202 may be executed.
  • this embodiment can be applied to a scenario where terminal devices are located in a 5G scenario.
  • terminal devices include but are not limited to mobile phones, computers, vehicle-mounted devices, and so on.
  • the positioning of the terminal device may be to obtain the position of the terminal device in space.
  • the location of the space may be determined by the first distance and the first angle from the terminal device to the base station.
  • a signal attenuation of up to several decibels dB may cause the communication system to fail to work normally.
  • 5G beamforming can effectively combat path loss.
  • 5G base stations can support large-scale antenna arrays, and the number of configurable antennas can even reach 1024.
  • the 5G beamforming technology can effectively superimpose the signals by adjusting the phase of each antenna, and generate stronger signal gain to overcome the path loss, thus providing a strong guarantee for the transmission quality of 5G wireless signals.
  • the beamforming technology focuses the wireless signal to form a directional beam. Generally, the narrower the beam, the greater the signal gain.
  • 5G base stations After adopting beamforming technology, 5G base stations must use multiple beams with different directions to completely cover the cell.
  • the base station uses beams of different directions to transmit wireless signals at a time. This process is called beam sweeping.
  • the terminal equipment measures the wireless signals emitted by different beams (Beam measurement) and sends them to The base station reports relevant information (Beam Reporting); the base station determines the most recent transmitted beam (Beam determination) aimed at the terminal device according to the terminal device report.
  • a hierarchical scanning strategy is adopted in 5G communication, that is, scanning from wide to narrow.
  • the first stage is coarse scanning.
  • the base station uses a small number of wide beams to cover the entire cell and scans the direction in which each wide beam is aligned.
  • the second stage is fine scanning.
  • the base station uses multiple narrow beams to scan the directions covered by the wide beam in the first stage one by one.
  • Hierarchical scanning can be carried out at any time according to the needs of each terminal device, constantly switching the best beam, and providing wireless coverage for the terminal device.
  • an important feature of uplink transmission is orthogonal multiple access in time and frequency for different terminal devices, that is, the uplink transmissions of different terminal devices from the same cell do not interfere with each other.
  • the base station gNB requires signals from different terminal devices in the same subframe but different frequency domain resources to arrive at the gNB basically at the same time. As long as the gNB receives the uplink data sent by the terminal device within the range of the Cyclic Prefix (CP), it can decode the uplink data correctly. Therefore, uplink synchronization requires signals from different terminal devices in the same subframe to reach the gNB The time falls within the CP.
  • CP Cyclic Prefix
  • Timing Advance is essentially a negative offset between the start time of receiving the downlink subframe and the time of transmitting the uplink subframe (negative offset).
  • the gNB can control the time when the uplink signals from different terminal devices reach the gNB by appropriately controlling the offset of each terminal device. For the terminal equipment far away from the gNB, due to the larger transmission delay, it is necessary to send the uplink data earlier than the terminal equipment closer to the gNB.
  • the 5G communication system in the millimeter wave band uses a larger subcarrier spacing, more Fast Fourier Transformation (FFT) points, shorter time per Ts, shorter distance represented by the TA value, and better position accuracy high.
  • the distance corresponding to the TA value is calculated with reference to 1Ts.
  • the subcarrier spacing is 120kHz
  • the FFT size is 4096
  • the reporting range of the TA value is between 0 and 1282.
  • the positioning distance of the 5G communication system in the millimeter wave band to the terminal device is 12.51 km.
  • determining the first angle of the terminal device relative to the base station from the beam accessed by the terminal device includes:
  • S3 Determine a first angle of the terminal device relative to the base station based on the first RSRP value.
  • the first measurement request sent by the base station to the terminal device is for measuring the wide beam
  • the terminal device parses the first measurement request to obtain the time and measurement of the first wide beam CSIRS.
  • the terminal device measures the CSIRS according to the instructions of the first measurement request, and reports the first RSRP value.
  • the method after receiving the first RSRP value sent by the terminal device, the method further includes:
  • S3 Determine the first angle of the terminal device relative to the base station based on the second RSRP value.
  • the base station after receiving the first RSRP value sent by the terminal device, the base station then sends to the terminal device to measure the second narrow beam adjacent to the first wide beam or the second refined beam.
  • the terminal device parses the second measurement request to obtain the time of measuring the first narrow beam and the timing of the measurement report. For example, the terminal device selects the best two narrow beams and reports two RSRP values, and the base station determines the narrow beam corresponding to the largest RSRP value as the first narrow beam.
  • determining the first angle of the terminal device relative to the base station based on the second RSRP value includes:
  • S3 Determine the horizontal angle and the vertical angle as the first angle of the terminal device relative to the base station.
  • the horizontal angle corresponding to 33 is 21° and the horizontal bandwidth is 13°; the vertical angle is 5° and the vertical bandwidth is 6°.
  • the position of the terminal equipment determined by the base station is 14.5°-27.5° horizontally and 2°-8° vertically.
  • the horizontal angle is 28°
  • the horizontal bandwidth is 14°
  • the vertical angle is 5°
  • the vertical bandwidth is 6°.
  • the position of the terminal equipment is 21° ⁇ 35° horizontally and 2° ⁇ 8° vertically.
  • the spatial location of the terminal device can be accurately determined.
  • the method before determining the first angle of the terminal device relative to the base station based on the first RSRP value, the method further includes:
  • S2 Determine the wide beam corresponding to the wide beam identification ID as the first wide beam accessed by the terminal device.
  • each terminal device scans the synchronization signal block (Synchronization Signal Block, referred to as SSB) issued by the base station in 8 directions 0-7 wide beams before powering on and accessing, according to its best reception Direction, determine the best transmission beam of the base station for the terminal device, and then send MSG1 on the physical random access channel (Physical Random Access Channel, referred to as PRACH) time-frequency resource corresponding to the beam.
  • SSB Synchrom Signal Block
  • PRACH Physical Random Access Channel
  • MAC Medium Access Control
  • RAC Random Access Control
  • the base station MAC access processing module RAC reports the wide beam ID used in the UE access process to the BEAM module, and the BEAM module stores it as wBeamIdInUse, and reports this wide beam ID to the base station positioning processing module. For example, if the first wide beam ID is 5, the horizontal angle is 21° and the horizontal bandwidth is 13°; the vertical angle is 2° and the vertical bandwidth is 10°.
  • the position of the terminal equipment is 14.5° ⁇ 27.5° horizontally and -3° ⁇ 7° vertically.
  • the method further includes:
  • S4 Determine the angle corresponding to the second narrow beam as the second angle of the terminal device relative to the base station.
  • the base station periodically sends measurements using 5 narrow beams adjacent to the first wide beam or a refined beam measurement configuration.
  • the terminal device performs narrow beam or refined beam measurement. This process may trigger narrow beam switching, and the positioning angle position of the UE will be updated.
  • 33 and 48 are both narrow beams added to the first wide beam 5, and the table beams and angular positions are updated.
  • the positioning angle position is updated from H: 14.5° ⁇ 27.5°V: 2° ⁇ 7° to H: 14.5° ⁇ 27.5°V: 7° ⁇ 13°.
  • the method before periodically sending the fourth measurement request to the terminal device through the MAC, the method further includes:
  • the base station after the terminal device accesses the base station, in the random access process, the base station periodically sends the configuration information of the narrow beam and the configuration information reported by the measurement to the terminal device through the third measurement request.
  • the method further includes:
  • S4 Determine the angle corresponding to the second wide beam as the third angle of the terminal device relative to the base station.
  • the terminal device accesses the first wide beam, if the RSRP value of the adjacent wide beam is greater than the first RSRP value, the terminal device is switched to the adjacent wide beam.
  • the method further includes:
  • the terminal device accesses the first wide beam, if the RSRP value of the third wide beam that is not adjacent to the wide beam is greater than the first RSRP value, the terminal device is switched to the third wide beam.
  • determining the timing advance TA value when the terminal device accesses the beam includes:
  • S1 Determine the initial TA value of the terminal device from the received time of the random access preamble sent by the terminal device;
  • the current TA value of the terminal device is determined in the SRS or DMRS;
  • the TA value determined when the terminal device is turned on is the initial TA value.
  • determining the distance corresponding to the TA value to obtain the first distance of the terminal device relative to the base station includes:
  • S1 Determine the uplink transmission time sent by the terminal equipment on the beam by using the correspondence between TA and uplink transmission time;
  • S2 Determine the distance from the uplink transmission time as the first distance.
  • TA 10
  • N_TA 10*16Ts
  • locating the terminal device using the first angle and the first distance includes:
  • the positioning of the terminal device is the positioning of the spatial position.
  • the method further includes:
  • S1 Send the longitude, latitude, and altitude of the terminal device to the core network to instruct the core network to determine the communication hotspot area from the longitude, latitude, and altitude of the terminal device.
  • each terminal device when multiple terminal devices access in the 5G millimeter wave coverage area, each terminal device is turned on to locate and track while moving, and through the angle between the position of the terminal device and the position of the base station antenna, the terminal device The distance between the location and the base station antenna location is converted into longitude (Latitude), latitude (Longitude) and altitude (elevation), and reported to the core network through User Location Information.
  • the core network reports the graphics display monitoring software to realize the monitoring of multiple UE radars. Graphic real-time position display, sort out precise areas of communication hotspots.
  • the best beam reported by the terminal equipment to the base station during the beam management process and the TA value measured by the base station are used to achieve precise positioning of the 5G terminal equipment.
  • FIG. 3 is a flowchart of angular position positioning in this embodiment. As shown in FIG. 3, it includes the following steps:
  • each UE scans the signal strength of multiple beams issued by the base station.
  • S302 The UE uses the beam with the best signal to perform random access.
  • the base station obtains the used beam ID through the time-frequency resource used by the access used by the UE.
  • S304 Obtain the angle of the UE location from the beam ID. Then the base station further issues a measurement request through the control channel of the Medium Access Control (MAC) layer, requesting the UE to perform signal strength on the narrower and finer beam near the UE location, that is, the beam with a narrower coverage angle. Measurement.
  • MAC Medium Access Control
  • the base station further accurately locates the angular position of the UE relative to the base station through the measurement report.
  • Figure 4 is a flowchart of the angular position update in this embodiment. As shown in Figure 4, it includes the following steps:
  • the base station After the UE accesses, the base station issues measurement-related configuration information through Radio Resource Control (Radio Resource Control, RRC for short). Periodic measurement requests are issued through the control channel of the Medium Access Control (MAC) layer. By measuring the signal strength of all the wide beams and the current UE's additional narrow and fine beams, the position and angle information tracking when the UE is moving is realized. First, the base station issues the measurement configuration through RRC.
  • Radio Resource Control Radio Resource Control
  • MAC Medium Access Control
  • the base station issues a periodic measurement request for narrow beams near the location of the UE through the MAC.
  • S403 The UE reports a measurement report.
  • the base station sends a periodic measurement request for a wide beam near the location of the UE through the MAC.
  • S406 The UE reports a measurement report.
  • S408 The UE reports a measurement report.
  • S409 If a new wide beam signal is better than the originally positioned wide beam, perform wide beam skipping. If there is no new beam signal better than the original positioning beam, or wide beam switching, after switching, wait for the next cycle measurement trigger.
  • S402, S403, and S404 narrow beam switching the angular position tracking update is completed.
  • Fig. 5 is a flowchart of distance positioning in this embodiment. As shown in Fig. 5, it includes the following steps:
  • S501 In random access, in order to establish a radio resource control (Radio Resource Control, RRC for short) connection, the 5G UE sends a random access preamble.
  • RRC Radio Resource Control
  • Timing Advance The timing advance (Timing Advance, referred to as TA) by detecting the actually received preamble time.
  • S504 Save the current TA value. After access, the base station measures the SRS/DMRS signal in the uplink transmission of the corresponding UE.
  • S505 Determine the TA value of each UE.
  • the TA value is continuously updated through the saved initial TA value and accumulation.
  • S506 Continuously update the UE distance positioning information.
  • the positioning position of the UE can be reported.
  • This IE provides UE location information.
  • this IE to add precise location information, which is the UE's longitude (Latitude), latitude (Longitude) and altitude (elevation).
  • the distance information determined by the TA is (the distance between the UE position and the base station antenna position) Distance) to obtain the latitude, longitude and altitude of the current location of the UE.
  • This IE is carried in the uplink message between the RAN and the core network, and the precise location information of the UE is reported to the core network.
  • the core network uses the accurate location information of the UE reported by the RAN to implement more comprehensive location services.
  • this embodiment can be applied to a scenario where a single UE is powered on for positioning, as follows:
  • the beam sent by the base station is shown in Figure 6.
  • the 53 beams are divided into: 8 wide beams, the horizontal direction is from -55° to 55°, the horizontal width is from 12° to 21°, the middle is 12°, and the sides are 21°.
  • the vertical direction is 2°, and the vertical width is 10°.
  • the horizontal width is the same as the corresponding wide beam, and the horizontal angle is the same as the wide beam.
  • the vertical width is 6°.
  • the narrow beam is a bit narrower in the vertical direction and the direction is more refined.
  • the refined beam is located in the middle of the two wide beams, the horizontal width is from 12° to 18°, the middle is 12°, and the sides are 18°.
  • the vertical direction is also divided into three groups, 0°, 5°, 10°, and the vertical width is 6°.
  • the horizontal resolution angle is 12°-21°, and the vertical resolution angle within the coverage is 6°.
  • each UE scans the SSB with 0-7 wide beams in 8 directions issued by the base station, and determines the best base station for itself according to its best receiving direction Transmit a beam, and then send MSG1 on the PRACH time-frequency resource corresponding to the beam.
  • the subsequent access procedures (MSG1, 2, 3, 4) all use this wide beam.
  • the base station MAC judges based on the received MSG1. Different wide-beam UEs use different time-frequency resources to send MSG1.
  • the wide-beam ID used in the access process is obtained through the PRACH time-frequency resources used by the UE.
  • the base station MAC access processing module RAC reports the wide beam ID used in the UE access process to the BEAM module, and the BEAM module itself stores it as wBeamIdInUse, and reports the wide beam ID to the base station positioning processing module.
  • the wide beam ID is 5
  • the horizontal angle is 21°
  • the horizontal bandwidth is 13°
  • the vertical angle is 2°, and the vertical bandwidth is 10°. That is, the position is 14.5° ⁇ 27.5° horizontally and -3° ⁇ 7° vertically. Determine the angular position as shown in Figure 7.
  • the base station issues the measurement of the wide-beam ULDCI
  • the UE parses the ULDCI to obtain the time of measuring the CSIRS and the timing of the measurement report, and the UE measures the wide-beam CSIRS according to the ULDCI instruction and reports the RSRP.
  • This process is called P3 process).
  • the RSRP value of the wide beam 5 is 80.
  • the base station After receiving the valid P3 measurement report, the base station then issues the ULDCI for measuring the 5 narrow beams or refined beam measurements adjacent to the wide beam.
  • the UE parses the ULDCI to obtain the time of measuring CSIRS and the timing of measurement report.
  • the UE selects the best 2 narrow beams, report 2 RSRPs, the base station stores the narrow beam corresponding to the largest RSRP in the measurement report as nBeamldInUse[0], and records nBeamRsrpInUse[0].
  • Another smaller reported value is also recorded in the table by position, and the table records [0:self], [1:up], [2:down], [3:left], [4:right] in sequence.
  • the best narrow beam ID is 33, the horizontal angle is 21°, and the horizontal bandwidth is 13°; the vertical angle is 5° and the vertical bandwidth is 6°. That is, the position is 14.5° ⁇ 27.5° horizontally and 2° ⁇ 8° vertically.
  • the base station MAC module reports the finally determined beam ID 33 to the base station positioning module.
  • the base station positioning module determines the angular position of the UE as: that is, the position is 14.5°-27.5° horizontally and 2°-8° vertically, as shown in Figure 8.
  • the best refined beam ID is 34, the horizontal angle is 28°, and the horizontal bandwidth is 14°; the vertical angle is 5° and the vertical bandwidth is 6°. That is, the position is 21° ⁇ 35° horizontally and 2° ⁇ 8° vertically.
  • the base station MAC module reports the finally determined beam ID 34 to the base station positioning module.
  • the base station positioning module determines the angular position of the UE as: that is, the position is 21°-35° horizontally and 2°-8° vertically. As shown in Figure 9.
  • UE distance positioning information is determined:
  • TA Timing Advance
  • the base station After the UE accesses, in the random access process, the base station periodically sends the P-CSIRS configuration information and measurement report configuration information to the UE through the RRC Setup (MSG4) message.
  • MSG4 RRC Setup
  • the beam is switched, and the positioning angle position of the UE is updated.
  • the base station periodically issues measurements using 5 narrow beams adjacent to the wide beam or a refined beam measurement configuration (P2 process).
  • the UE executes the P2 process to perform narrow beam or refined beam measurement.
  • This process (P2) may trigger beam switching and update the positioning angle position of the UE.
  • P2 narrow beam switching causes angular position update.
  • the UE receives the P2 measurement report, as shown in Table 6.
  • the positioning angle position is updated from H:14.5° ⁇ 27.5°V: 2° ⁇ 7° to H: 14.5° ⁇ 27.5°V: 7° ⁇ 13°, as shown in Figure 11.
  • P2 wide and narrow beam switching causes the angular position to be updated.
  • the beam 35 does not use the wide beam 5, it will trigger the switch of the wide beam at this time, from the wide beam 5 to the wide beam 6, the table is updated, the wide beam 6P3 measurement is triggered, and the beam 6Rsrp value is updated, as shown in Table 9.
  • the MAC module of the base station notifies the UE through MACCE. After the UE responds to the ACK, it replaces the InUse value above with the ToSwitch value below. UE angular positioning information is updated. H: 21° ⁇ 35°V: 2° ⁇ 8° is updated to H: 28° ⁇ 44°V: 2° ⁇ 11°, as shown in Figure 12.
  • the positioning angle position of the UE does not need to be updated.
  • the base station side periodically triggers (P3 process) measurement.
  • P3 process P3 process
  • nBeamIdInUse[0] is a refined beam
  • P3 of two wide beams should be measured.
  • 2 RSRPs will be received and 2 wide beams will be maintained.
  • wBeamRsrpNgb>wBeamRsrpInUse+threshold handover is triggered. Switch from wBeamIdInUse to wBeamIdNgb, as shown in Table 10.
  • the MAC module of the base station informs the UE to switch the wide beam through MACCE, and replaces the above InUse value with the ToSwitch value in the following table after receiving the ACK response from the UE. Because the refined beam of the UE's actual angular position positioning has not changed, the UE angular positioning information does not need to be updated. As shown in Table 11.
  • the UE's positioning angle position is updated.
  • the UE measures 8 wide beams according to the configuration information, and reports the two best wide beam RSRP and ID through PUCCH CSI. (P1 process).
  • Table 12 shows the current wide beam and adjacent wide beam RSRP values.
  • Table 13 shows the optimal beam RSRP value in the P1 process.
  • the positioning angle position is updated from H: 21° ⁇ 35°V: 2° ⁇ 8 to H: -65.5° ⁇ -44.5°V: 2° ⁇ 7° as shown in Figure 13.
  • the base station measures the SRS/DMRS signals in the uplink transmission of the corresponding UE to determine the TA value of the UE.
  • the distance information of the UE positioning is continuously updated.
  • UE radar real-time location display of multiple UEs in 5G millimeter wave coverage area; locate communication hotspot areas.
  • each UE’s power-on positioning and moving position tracking are used, and the distance between the UE position and the base station antenna position is converted into longitude ( Latitude), latitude (Longitude) and elevation (elevation) are reported to the core network through User Location Information, and the core network reports graphics display monitoring software to realize the real-time graphical location display of multiple UE radars and locate precise areas of communication hotspots.
  • the method according to the above embodiment can be implemented by means of software plus the necessary general hardware platform, of course, it can also be implemented by hardware, but in many cases the former is Better implementation.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to enable a terminal device (which can be a mobile phone, a computer, a server, or a network device, etc.) to execute the method described in each embodiment of the present invention.
  • a positioning device for terminal equipment is also provided.
  • the device is used to implement the above-mentioned embodiments and some embodiments, and those that have been described will not be repeated.
  • the term "module" can implement a combination of software and/or hardware with predetermined functions.
  • the devices described in the following embodiments are preferably implemented by software, hardware or a combination of software and hardware is also possible and conceived.
  • FIG. 14 is a structural block diagram of a positioning apparatus for terminal equipment according to an embodiment of the present invention. As shown in FIG. 14, the apparatus includes: a first determining module 1402, a second determining module 1404, a third determining module 1406, and a positioning module 1408, The device is described below:
  • the first determining module 1402 is configured to determine a first angle of the terminal device relative to the base station from the beam accessed by the terminal device;
  • the second determining module 1404 is configured to determine the timing advance TA value when the terminal device accesses the beam;
  • the third determining module 1406 is configured to determine the first distance of the terminal device relative to the base station based on the distance corresponding to the TA value;
  • the positioning module 1408 is configured to use the first angle and the first distance to locate the terminal device.
  • the base station is used to determine the first angle of the terminal device relative to the base station from the beam accessed by the terminal device; and determine the timing advance TA value when the terminal device accesses the beam; determine the distance based on the TA value
  • the first distance of the terminal device relative to the base station the base station uses the first angle and the first distance to locate the terminal device.
  • the base station can determine the position of the terminal device from the beam accessed by the terminal device.
  • the terminal equipment can be accurately located. Therefore, positioning of 5G terminal equipment can be provided to achieve the effect of accurately positioning the terminal equipment.
  • the execution subject of the foregoing steps may be a base station or the like, but is not limited thereto.
  • this embodiment can be applied to a scenario where terminal devices are located in a 5G scenario.
  • terminal devices include but are not limited to mobile phones, computers, vehicle-mounted devices, and so on.
  • the positioning of the terminal device may be to obtain the position of the terminal device in space.
  • the location of the space may be determined by the first distance and the first angle from the terminal device to the base station.
  • a signal attenuation of up to several decibels dB may cause the communication system to fail to work normally.
  • 5G beamforming can effectively combat path loss.
  • 5G base stations can support large-scale antenna arrays, and the number of configurable antennas can even reach 1024.
  • the 5G beamforming technology can effectively superimpose the signals by adjusting the phase of each antenna, and generate stronger signal gain to overcome the path loss, thus providing a strong guarantee for the transmission quality of 5G wireless signals.
  • the beamforming technology focuses the wireless signal to form a directional beam. Generally, the narrower the beam, the greater the signal gain.
  • 5G base stations After adopting beamforming technology, 5G base stations must use multiple beams with different directions to completely cover the cell.
  • the base station uses beams of different directions to transmit wireless signals at a time. This process is called beam sweeping.
  • the terminal equipment measures the wireless signals emitted by different beams (Beam measurement) and sends them to The base station reports relevant information (Beam Reporting); the base station determines the most recent transmitted beam (Beam determination) aimed at the terminal device according to the terminal device report.
  • a hierarchical scanning strategy is adopted in 5G communication, that is, scanning from wide to narrow.
  • the first stage is coarse scanning.
  • the base station uses a small number of wide beams to cover the entire cell and scans the direction in which each wide beam is aligned.
  • the second stage is fine scanning.
  • the base station uses multiple narrow beams to scan the directions covered by the wide beam in the first stage one by one.
  • Hierarchical scanning can be carried out at any time according to the needs of each terminal device, constantly switching the best beam, and providing wireless coverage for the terminal device.
  • an important feature of uplink transmission is orthogonal multiple access in time and frequency for different terminal devices, that is, the uplink transmissions of different terminal devices from the same cell do not interfere with each other.
  • the base station gNB requires signals from different terminal devices in the same subframe but different frequency domain resources to arrive at the gNB basically at the same time. As long as the gNB receives the uplink data sent by the terminal device within the range of the Cyclic Prefix (CP), it can decode the uplink data correctly. Therefore, uplink synchronization requires signals from different terminal devices in the same subframe to reach the gNB The time falls within the CP.
  • CP Cyclic Prefix
  • Timing Advance is essentially a negative offset between the start time of receiving the downlink subframe and the time of transmitting the uplink subframe (negative offset).
  • the gNB can control the time when the uplink signals from different terminal devices reach the gNB by appropriately controlling the offset of each terminal device. For the terminal equipment far away from the gNB, due to the larger transmission delay, it is necessary to send the uplink data earlier than the terminal equipment closer to the gNB.
  • the 5G communication system in the millimeter wave band uses a larger subcarrier spacing, more Fast Fourier Transformation (FFT) points, shorter time per Ts, shorter distance represented by the TA value, and better position accuracy high.
  • the distance corresponding to the TA value is calculated with reference to 1Ts.
  • the subcarrier spacing is 120kHz
  • the FFT size is 4096
  • the reporting range of the TA value is between 0 and 1282.
  • the positioning distance of the 5G communication system in the millimeter wave band to the terminal device is 12.51 km.
  • the first angle of the terminal device relative to the base station is determined from the beam accessed by the terminal device in the following manner:
  • S3 Determine a first angle of the terminal device relative to the base station based on the first RSRP value.
  • the first measurement request sent by the base station to the terminal device is for measuring the wide beam
  • the terminal device parses the first measurement request to obtain the time and measurement of the first wide beam CSIRS.
  • the terminal device measures the CSIRS according to the instructions of the first measurement request, and reports the first RSRP value.
  • the foregoing apparatus after receiving the first RSRP value sent by the terminal device, is further configured to:
  • S3 Determine the first angle of the terminal device relative to the base station based on the second RSRP value.
  • the base station after receiving the first RSRP value sent by the terminal device, the base station then sends to the terminal device to measure the second narrow beam adjacent to the first wide beam or the second refined beam.
  • the terminal device parses the second measurement request to obtain the time of measuring the first narrow beam and the timing of measurement report. For example, the terminal device selects the best two narrow beams and reports two RSRP values, and the base station determines the narrow beam corresponding to the largest RSRP value as the first narrow beam.
  • the first angle of the terminal device relative to the base station is determined based on the second RSRP value in the following manner:
  • S3 Determine the horizontal angle and the vertical angle as the first angle of the terminal device relative to the base station.
  • the horizontal angle corresponding to 33 is 21° and the horizontal bandwidth is 13°; the vertical angle is 5° and the vertical bandwidth is 6°.
  • the position of the terminal equipment determined by the base station is 14.5°-27.5° horizontally and 2°-8° vertically.
  • the horizontal angle is 28°
  • the horizontal bandwidth is 14°
  • the vertical angle is 5°
  • the vertical bandwidth is 6°.
  • the position of the terminal equipment is 21° ⁇ 35° horizontally and 2° ⁇ 8° vertically.
  • the spatial location of the terminal device can be accurately determined.
  • the foregoing apparatus is further configured to:
  • S2 Determine the wide beam corresponding to the wide beam identification ID as the first wide beam accessed by the terminal device.
  • each terminal device scans 8 directions 0-7SSB issued by the base station before powering on and accessing, and determines the best transmitting beam of the base station for the terminal device according to its best receiving direction , And then send MSG1 on the physical random access channel (Physical Random Access Channel, PRACH for short) time-frequency resource corresponding to the beam.
  • the subsequent access procedures (MSG1, 2, 3, 4) all use this wide beam.
  • the media access control (Multiple Access Channel, referred to as MAC) and the random access control (Random Access Control, referred to as RAC) of the access processing module in the base station make judgments based on the received MSG1, and different wide beam terminal devices send
  • the time-frequency resources used by MSG1 are different, and the wide beam ID used in the access process is obtained through the PRACH time-frequency resources used by the terminal equipment.
  • the base station MAC access processing module RAC reports the wide beam ID used in the UE access process to the BEAM module, and the BEAM module itself stores it as wBeamIdInUse, and reports the wide beam ID to the base station positioning processing module.
  • the horizontal angle is 21° and the horizontal bandwidth is 13°; the vertical angle is 2° and the vertical bandwidth is 10°.
  • the position of the terminal equipment is 14.5° ⁇ 27.5° horizontally and -3° ⁇ 7° vertically.
  • the foregoing apparatus is further used to:
  • S4 Determine the angle corresponding to the second narrow beam as the second angle of the terminal device relative to the base station.
  • the base station periodically sends measurements using 5 narrow beams adjacent to the first wide beam or a refined beam measurement configuration.
  • the terminal device performs narrow beam or refined beam measurement. This process may trigger narrow beam switching, and the positioning angle position of the UE will be updated.
  • 33 and 48 are both narrow beams added to the first wide beam 5, and the table beams and angular positions are updated.
  • the positioning angle position is updated from H: 14.5° ⁇ 27.5°V: 2° ⁇ 7° to H: 14.5° ⁇ 27.5°V: 7° ⁇ 13°.
  • the foregoing apparatus before periodically sending the fourth measurement request to the terminal device through the MAC, is further configured to:
  • the base station after the terminal device accesses the base station, in the random access process, the base station periodically sends the configuration information of the narrow beam and the configuration information reported by the measurement to the terminal device through the third measurement request.
  • the foregoing apparatus is further used to:
  • S4 Determine the angle corresponding to the second wide beam as the third angle of the terminal device relative to the base station.
  • the terminal device accesses the first wide beam, if the RSRP value of the adjacent wide beam is greater than the first RSRP value, the terminal device is switched to the adjacent wide beam.
  • the above apparatus is further used to:
  • the terminal device accesses the first wide beam, if the RSRP value of the third wide beam that is not adjacent to the wide beam is greater than the first RSRP value, the terminal device is switched to the third wide beam.
  • the timing advance TA value when the terminal device accesses the beam is determined in the following manner:
  • S1 Determine the initial TA value of the terminal device from the received time of the random access preamble sent by the terminal device;
  • the current TA value of the terminal device is determined in the SRS or DMRS;
  • the TA value determined when the terminal device is turned on is the initial TA value.
  • the distance corresponding to the TA value is determined in the following manner to obtain the first distance of the terminal device relative to the base station:
  • S1 Determine the uplink transmission time sent by the terminal equipment on the beam by using the correspondence between TA and uplink transmission time;
  • S2 Determine the distance from the uplink transmission time as the first distance.
  • TA 10
  • N_TA 10*16Ts
  • the first angle and the first distance are used to locate the terminal device in the following manner:
  • S1 Determine the coordinate position of the terminal device by using the first angle and the first distance, where the coordinate position includes the longitude, latitude, and altitude of the terminal device after the conversion of the passing angle position and the distance position of the terminal device;
  • the positioning of the terminal device is the positioning of the spatial position.
  • the foregoing apparatus is further used to:
  • S1 Send the longitude, latitude, and altitude of the terminal device to the core network to instruct the core network to determine the communication hotspot area from the longitude, latitude, and altitude of the terminal device.
  • each terminal device when multiple terminal devices access in the 5G millimeter wave coverage area, each terminal device is turned on to locate and track while moving, and through the angle between the position of the terminal device and the position of the base station antenna, the terminal device The distance between the location and the base station antenna location is converted into longitude (Latitude), latitude (Longitude) and altitude (elevation), and reported to the core network through User Location Information.
  • the core network reports the graphics display monitoring software to realize the monitoring of multiple UE radars. Graphic real-time position display, sort out precise areas of communication hotspots.
  • the best beam reported by the terminal equipment to the base station during the beam management process and the TA value measured by the base station are used to achieve precise positioning of the 5G terminal equipment.
  • each of the above modules can be implemented by software or hardware.
  • it can be implemented in the following manner, but not limited to this: the above modules are all located in the same processor; or, the above modules are combined in any combination The forms are located in different processors.
  • An embodiment of the present invention also provides a storage medium in which a computer program is stored, wherein the computer program is configured to execute the steps in any one of the foregoing method embodiments when running.
  • the above-mentioned storage medium may be configured to store a computer program for executing the above steps.
  • the aforementioned storage medium may include, but is not limited to: U disk, Read-Only Memory (Read-Only Memory, ROM for short), Random Access Memory (Random Access Memory, for short)
  • U disk Read-Only Memory
  • ROM Read-Only Memory
  • Random Access Memory Random Access Memory
  • Various media that can store computer programs such as RAM
  • mobile hard disks magnetic disks, or optical disks.
  • An embodiment of the present invention also provides an electronic device, including a memory and a processor, the memory is stored with a computer program, and the processor is configured to run the computer program to execute the steps in any of the foregoing method embodiments.
  • the aforementioned electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the aforementioned processor, and the input-output device is connected to the aforementioned processor.
  • the foregoing processor may be configured to execute the foregoing steps through a computer program.
  • the base station determines the first angle of the terminal device relative to the base station from the beam accessed by the terminal device; and determines the timing advance TA value when the terminal device accesses the beam; and determines the distance based on the TA value
  • the first distance of the terminal device relative to the base station uses the first angle and the first distance to locate the terminal device.
  • the base station can determine the position of the terminal device from the beam accessed by the terminal device.
  • the terminal equipment can be accurately located. Therefore, positioning of 5G terminal equipment can be provided to achieve the effect of accurately positioning the terminal equipment.
  • modules or steps of the present invention can be implemented by a general computing device, and they can be concentrated on a single computing device or distributed on a network composed of multiple computing devices.
  • they can be implemented by program codes executable by a computing device, so that they can be stored in a storage device for execution by the computing device, and in some cases, they can be different from this
  • the steps shown or described are executed in the order in which they are shown, or they are respectively fabricated into individual integrated circuit modules, or multiple modules or steps of them are fabricated into a single integrated circuit module for implementation. In this way, the present invention is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种终端设备的定位方法及装置、存储介质、电子装置,该方法包括:从终端设备接入的波束中确定终端设备相对于基站的第一角度;确定出终端设备接入波束时的定时提前量TA值;基于TA值对应的距离确定终端设备相对于基站的第一距离;利用第一角度和第一距离定位终端设备。

Description

终端设备的定位方法及装置、存储介质、电子装置
相关申请的交叉引用
本申请基于申请号为201910538898.0、申请日为2019年06月20日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及通信领域,具体而言,涉及一种终端设备的定位方法及装置、存储介质、电子装置。
背景技术
随着移动通信技术的发展,各种业务应用对定位的需求以及定位精度的要求越来越高。在第五代(5rd Generation,简称为5G)网络架构中,无线接入网络(Radio Access Network,简称为RAN)相关的5G基站(gNodeB,简称为gNB)与5G终端终端设备设备(User Equipment,简称为UE),对定位的精度需求达到米级。目标是使用手机而不是专业测绘终端或者车载终端实现米级定位精度。另外,移动通信本身具有全程全网的特点,在保证无缝覆盖的前提下,可在多种场景下完成定位。
但相关技术中尚未出现对5G终端设备进行定位的方案。
针对上述技术问题,相关技术中尚未提出有效的解决方案。
发明内容
本发明实施例提供了一种终端设备的定位方法及装置、存储介质、电子装置,以至少在一定程度上解决相关技术中对5G终端设备进行定位的问题。
根据本发明的一个实施例,提供了一种终端设备的定位方法,包括:从终端设备接入的波束中确定所述终端设备相对于基站的第一角度;确定出所述终端设备接入所述波束时的定时提前量TA值;基于所述TA值对应的距离确定所述终端设备相对于所述基站的第一距离;利用所述第一角度和所述第一距离定位所述终端设备。
根据本发明的另一个实施例,提供了一种终端设备的定位装置,包括:第一确定模块,用于从终端设备接入的波束中确定所述终端设备相对于基站的第一角度;第二确定模块,用于确定出所述终端设备接入所述波束时的定时提前量TA值;第三确定模块,用于基于所述TA值对应的距离确定所述终端设备相对于所述基站的第一距离;定位模块,用于利用所述第一角度和所述第一距离定位所述终端设备。
根据本发明的又一个实施例,还提供了一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
根据本发明的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项方法实施例中的步骤。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是本发明实施例的一种终端设备的定位方法的移动终端的硬件结构框图;
图2是根据本发明实施例的终端设备的定位方法的流程图;
图3是本实施例中的角度位置定位的流程图;
图4是本实施例中的角度位置更新的流程图;
图5是本实施例中的距离位置定位示意图;
图6是根据本发明实施例中的毫米波段的5G通信***基站发送波束示意图;
图7是根据本发明实施例中的波束捕获-宽波束角度位置确定示意图;
图8是根据本发明实施例中的窄波束角度位置确定示意图;
图9是根据本发明实施例中的精细化波束角度位置确定示意图;
图10是根据本发明实施例中的UE距离位置定位示意图;
图11是根据本发明实施例中的窄波束切换P2过程定位位置更新示意图;
图12是根据本发明实施例中的宽窄波束切换P2过程定位位置更新示意图;
图13是根据本发明实施例中的P1过程定位位置更新示意图;
图14是根据本发明实施例的终端设备的定位装置的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请实施例所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,图1是本发明实施例的一种终端设备的定位方法的移动终端的硬件结构框图。如图1所示,移动终端10可以包括一个或多个(图1中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)和用于存储数据的存储器104,在某些实施例中上述移动终端还可以包括用于通信功能的传输设备106以及输入输出设备108。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述移动终端的结构造成限定。例如,移动终端10还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可用于存储计算机程序,例如,应用软件的软件程序以及模块,如本发明实施例中的终端设备的定位方法对应的计算机程序,处理器102通过运行存储在存储器104内的计算机程序,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106用于经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端10的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,简称为RF)模块,其用于通过无线方式与互联网进行通讯。
在本实施例中提供了一种终端设备的定位方法,图2是根据本发明实施例的终端设备的定位方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,从终端设备接入的波束中确定终端设备相对于基站的第一角度;
步骤S204,确定出终端设备接入波束时的定时提前量TA值;
步骤S206,基于TA值对应的距离确定终端设备相对于基站的第一距离;
步骤S208,利用第一角度和第一距离定位终端设备。
通过本发明实施例,采用基站从终端设备接入的波束中确定终端设备相对于基站的第一角度;并确定出终端设备接入波束时的定时提前量TA值;基于TA值对应的距离确定终端设备相对于基站的第一距 离;基站利用第一角度和第一距离定位终端设备。可以实现基站从终端设备接入的波束中确定出终端设备的位置。从而可以精确的定位终端设备。因此,可以提供对5G终端设备进行定位,达到精确定位终端设备的效果。
在某些实施例中,上述步骤的执行主体可以为基站等,但不限于此。
在某些实施例中,步骤S202和步骤S204的执行顺序是可以互换的,即可以先执行步骤S204,然后再执行S202。
在某些实施例中,本实施例可以应用于5G场景下对终端设备进行定位的场景,在该场景中,终端设备包括但不限于手机、电脑、车载设备等等。
在某些实施例中,在本实施例中,对终端设备的定位可以是获取终端设备在空间中的位置。空间的位置可由终端设备到基站的第一距离和第一角度确定。
在某些实施例中,毫米波段的5G通信***,高达几十分贝dB的信号衰减可能会导致通信***无法正常工作。在这种情况下,5G的波束成形可以有效对抗路损。5G基站可以支持大规模天线阵列,可配置的天线数量甚至可以达到1024根。5G的波束成形技术,通过调节各天线的相位使信号进行有效叠加,产生更强的信号增益来克服路损,从而为5G无线信号的传输质量提供了强有力的保障。波束成形技术会对无线信号产生聚焦,形成一个指向性波束Beam。通常波束越窄,信号增益越大。
采用波束成形技术之后,5G基站必须使用多个不同指向的波束才能完全覆盖小区。在下行过程中,基站一次使用不同指向的波束发射无线信号,该过程被称作波束扫描(Beam sweeping);与此同时,终端设备测量不同的波束发射出的无线信号(Beam measurement),并向基站报告相关信息(Beam Reporting);基站根据终端设备报告确定对准该终端设备的最近发射波束(Beam determination)。
5G通信中采取了分级扫描策略,即由宽到窄扫描。第一阶段为粗扫描,基站使用少量的宽波束覆盖整个小区,并依此扫描各宽波束对准的方向。第二阶段为细扫描,基站利用多个窄波束逐一扫描已在第一阶段中被宽波束覆盖的方向。最后考虑到终端设备可能移动,为了更好的跟踪终端设备(Beam tracking),分级扫描可以根据每个终端设备的需要随时展开,不断切换最佳波束,为终端设备提供无线覆盖。
在某些实施例中,上行传输的一个重要特征是不同终端设备在时频上正交多址接入,即来自同一小区的不同终端设备的上行传输之间互不干扰。为了保证上行传输的正交性,避免小区内干扰,基站gNB要求来自同一子帧但不同频域资源的不同终端设备的信号到达gNB的时间基本上是对齐的。gNB只要在循环前缀(Cyclic Prefix,简称为CP)范围内接收到终端设备所发送的上行数据,就能够正确地解码上行数据,因此,上行同步要求来自同一子帧的不同终端设备的信号到达gNB的时间都落在CP之内。
在某些实施例中,在终端设备侧看来,定时提前(Timing Advance,简称为TA)本质上是接收到下行子帧的起始时间与传输上行子帧的时间之间的一个负偏移(negative offset)。gNB通过适当地控制每个终端设备的偏移,可以控制来自不同终端设备的上行信号到达gNB的时间。对于离gNB较远的终端设备,由于有较大的传输延迟,就要比离gNB较近的终端设备提前发送上行数据。
毫米波段的5G通信***采用的子载波间隔更大,快速傅氏变换(Fast Fourier Transformation,简称为FFT)点数更多,每Ts时间更短,通过TA值表征的距离长度更短,位置精度更高。TA值对应的距离是参照1Ts来计算的。含义就是距离=传播速度(光速)*1Ts/2(上下行路径和)。例如子载波间隔120kHz,FFT大小为4096,1Ts对应的时间提前量距离等于:(3*10^8*1/(120000*4096))/2=0.61m。
在终端设备随机接入过程中,TA值上报的范围在0~1282之间,根据TA值,终端设备调整上行发射时间N_TA=TA*16Ts,值恒为正。例如:TA=1,那么N_TA=1*16Ts,表示的距离为16*0.61m=9.76m, 同时可以计算得到在初始接入阶段,终端设备与网络的最大接入距离=1282*9.76m=12.51km。在本实施例中毫米波段的5G通信***对终端设备的定位距离为12.51km。
在某些实施例中,从终端设备接入的波束中确定终端设备相对于基站的第一角度包括:
S1,向终端设备发送第一测量请求,其中,第一测量请求用于请求获取终端设备所接入的第一宽波束的第一参考信号接收功率RSRP值;
S2,接收终端设备发送的第一RSRP值;
S3,基于第一RSRP值确定出终端设备相对于基站的第一角度。
在某些实施例中,在本实施例中,基站向终端设备发送的第一测量请求是用于测量宽波束的,终端设备解析第一测量请求获取到测量第一宽波束CSIRS的时刻和测量上报的时机,终端设备按照第一测量请求的指示测量CSIRS,并上报第一RSRP值。
在某些实施例中,在接收终端设备发送的第一RSRP值之后,方法还包括:
S1,向终端设备发送第二测量请求,其中,第二测量请求用于请求终端设备所接入的第一窄波束的第二RSRP值,其中,第一窄波束邻近第一宽波束;
S2,接收终端设备发送的第二RSRP值;
S3,基于第二RSRP值确定出终端设备相对于基站的第一角度。
在某些实施例中,在本实施例中,基站在接收到终端设备发送的第一RSRP值之后,接着向终端设备下发测量与第一宽波束邻近的窄波束或者精细化波束的第二测量请求,终端设备解析第二测量请求获取测量第一窄波束的时刻和测量上报的时机。例如,终端设备选择最佳的2个窄波束,上报2个RSRP值,基站将最大RSRP值对应的窄波束确定为第一窄波束。
在某些实施例中,基于第二RSRP值确定出终端设备相对于基站的第一角度包括:
S1,从第二RSRP值中确定出第一窄波束的ID;
S2,利用第一窄波束的ID确定出终端设备相对于基站的水平角度以及终端设备相对于基站的垂直角度;
S3,将水平角度和垂直角度确定为终端设备相对于基站的第一角度。
在某些实施例中,例如第一窄波束的ID为33,则33对应的水平角度是21°,水平带宽是13°;垂直角度是5°,垂直带宽是6°。则基站确定的终端设备的位置在水平14.5°~27.5°,垂直2°~8°。
如果终端设备所在的精细化波束ID为34,则水平角度是28°,水平带宽为是14°;垂直角度是5°,垂直带宽为是6°。则终端设备的位置在水平21°~35°,垂直2°~8°。
通过本实施例,可以精确的确定终端设备的空间位置。
在某些实施例中,在基于第一RSRP值确定出终端设备相对于基站的第一角度之前,方法还包括:
S1,从终端设备发送的信令消息MSG中确定宽波束标识ID;
S2,将宽波束标识ID所对应的宽波束确定为终端设备接入的第一宽波束。
在某些实施例中,每个终端设备在开机接入前,会扫描基站下发的8个方向0~7宽波束的同步信号块(Synchronization Signal Block,简称SSB),根据它的最佳接收方向,确定对终端设备而言的基站最佳发射波束,然后在该波束对应的物理随机接入信道(Physical Random Access Channel,简称为PRACH)时频资源上发MSG1。之后的接入流程(MSG1,2,3,4)都使用此宽波束。基站中的媒体接入控制(Medium Access Control,简称为MAC)、接入处理模块随机接入控制(Random Access Control,简称为RAC)通过接收到的MSG1来做判断,不同的宽波束终端设备发送MSG1使用的时频资源不一样,通过终端设备所使用的PRACH时频资源获取到接入过程中所使用的宽波束ID。基站MAC接入处理模块 RAC将UE接入过程中使用的宽波束ID报给BEAM模块,BEAM模块自己存为wBeamIdInUse,并且将这个宽波束ID报给基站定位处理模块。例如,第一宽波束ID为5,则水平角度是21°,水平带宽是13°;垂直角度2°,垂直带宽为10°。则终端设备的位置在水平14.5°~27.5°,垂直-3°~7°。
在某些实施例中,从终端设备接入的波束中确定终端设备相对于基站的第一角度之后,方法还包括:
S1,通过媒体接入控制MAC周期性的向终端设备发送第三测量请求,其中,第三测量请求用于请求测量与终端设备所接入的窄波束邻近的第二窄波束的信号;
S2,接收终端设备发送的第一测量报告,其中,第一测量报告中包括第二窄波束的信号;
S3,在第二窄波束的信号大于终端设备接入的窄波束的信号的情况下,指示终端设备切换至第二窄波束进行接入;
S4,将第二窄波束所对应的角度确定为终端设备相对于基站的第二角度。
在某些实施例中,在本实施例中,例如,基站周期下发测量使用第一宽波束邻近的5个窄波束或者精细化波束测量配置。终端设备进行窄波束或者精细化波束测量。该过程可能会触发窄波束切换,UE的定位角度位置会更新。
例如,33和48都是第一宽波束5附加的窄波束,表格波束和角度位置都进行更新。定位角度位置由H:14.5°~27.5°V:2°~7°更新为H:14.5°~27.5°V:7°~13°。
通过本实施例,可以实现在终端设备移动的过程中对终端设备进行实时定位。
在某些实施例中,在通过MAC周期性的向终端设备发送第四测量请求之前,方法还包括:
S1,通过无线资源控制RRC向终端设备发送第四测量请求,其中,第四测量请求用于请求测量终端设备的接入配置,其中,接入配置用于触发向终端设备发送第四测量请求。
在本实施例中,终端设备接入基站之后,在随机接入过程中,基站通过第三测量请求将周期地把窄波束的配置信息和测量上报的配置信息下发给终端设备。
在某些实施例中,从终端设备接入的波束中确定终端设备相对于基站的第一角度之后,方法还包括:
S1,通过MAC周期性的向终端设备发送第五测量请求,其中,第五测量请求用于请求测量与终端设备所接入的宽波束邻近的第二宽波束的信号;
S2,接收终端设备发送的第二测量报告,其中,第二测量报告中包括第二宽波束的信号;
S3,在第二宽波束的信号大于终端设备接入的宽波束的信号的情况下,指示终端设备切换至第二宽波束进行接入;
S4,将第二宽波束所对应的角度确定为终端设备相对于基站的第三角度。
在某些实施例中,在本实施例中,终端设备在接入第一宽波束之后,如果出现邻近宽波束的RSRP值大于第一RSRP值,则将终端设备切换至邻近宽波束。
在某些实施例中,将第二宽波束所对应的角度确定为终端设备相对于基站的第三角度之后,方法还包括:
S1,通过MAC周期性的向终端设备发送第六测量请求,其中,第六测量请求用于请求测量与终端设备对应的所有宽波束的信号;
S2,在所有宽波束的信号中存在大于第二宽波束的信号的情况下,指示终端设备跳切至信号大于第二宽波束的信号的第三宽波束中;
S3,将第三宽波束所对应的角度确定为终端设备相对于基站的第四角度;
S4,继续测量第三宽波束中终端设备所接入的窄波束。
在本实施例中,终端设备在接入第一宽波束之后,如果出现不是邻近宽波束的第三宽波束的RSRP 值大于第一RSRP值,则将终端设备切换至第三宽波束。
在某些实施例中,确定出终端设备接入波束时的定时提前量TA值,包括:
S1,从接收的终端设备发送的随机接入前导码的时间中确定出终端设备的初始TA值;
S2,测量终端设备上行传输中的信道探测参考信号SRS或者解调参考信号DMRS;
S3,SRS或者DMRS中确定出终端设备的当前TA值;
S4,将初始TA值和当前TA值进行累加,得到TA值。
在某些实施例中,终端设备在开机确定的TA值即是初始TA值。例如,终端设备在随机接入中,gNB通过检测实际接收到的preamble时间,计算出初始TA值。如:TA=10,那么N_TA=10*16Ts,表征的距离为160*0.61m=97.6m。
在某些实施例中,确定与TA值对应的距离,得到终端设备相对于基站的第一距离包括:
S1,利用TA与上行发送时间的对应关系确定出终端设备在波束上发送的上行发送时间;
S2,将与上行发送时间所表示的距离确定为第一距离。
在某些实施例中,在本实施例中,例如TA=10,上行发送时间N_TA=10*16Ts,表征的距离为160*0.61m=97.6m。
在某些实施例中,利用第一角度和第一距离定位终端设备包括:
S1,利用第一角度和第一距离确定终端设备的坐标位置,其中,坐标位置包括通过事先获知的基站天线经度,纬度和海拔高度位置以及基站天线与终端的角度和距离进行计算得到的终端设备所在的经度、纬度以及海拔高度;
S2,利用坐标位置定位终端设备。
在某些实施例中,对终端设备的定位是空间位置的定位。
在某些实施例中,在利用第一角度和第一距离中确定终端设备的坐标位置之后,方法还包括:
S1,将终端设备所在的经度、纬度以及海拔高度发送给核心网,以指示核心网从终端设备所在的经度、纬度以及海拔高度中确定出通讯热点区域。
在本实施例中,在5G毫米波覆盖区中多个终端设备接入时,通过每个终端设备开机定位和移动中位置跟踪,通过终端设备的位置与基站天线位置之间的角度,终端设备位置与基站天线位置之间的距离转换成经度(Latitude),纬度(Longitude)和海拔高度(elevation),通过User Location Information上报给核心网,核心网上报图形显示监控软件,实现多个UE雷达的图形实时位置显示,排查出通讯热点精确区域。
综上所述,利用波束管理过程中终端设备上报给基站的最佳波束以及基站测量到的TA值,实现对5G终端设备进行精确定位。
下面结合具体实施例对本发明进行说明:
本实施例终端设备以UE为例进行说明,图3是本实施例中的角度位置定位的流程图,如图3所示,包括以下步骤:
S301:毫米波段的5G通信***使用多个波束,每个波束覆盖一个很窄角度范围的扇区。每个UE在接入前,扫描基站下发的多个波束的信号强度。
S302:UE采用信号最佳的波束进行随机接入。
S303:基站通过UE所使用的接入所使用的时频资源获取到使用的波束ID,
S304:从波束ID获取到UE位置的所处的角度。接着基站进一步通过媒体接入控制(Medium Access  Control,简称为MAC)层的控制信道下发测量请求,请求UE对UE位置附近更窄,更精细的波束,即覆盖角度更窄的波束进行信号强度的测量。
S305:UE将测量结果上报基站。
S306:基站通过测量报告进一步精确的定位UE的相对于基站的角度位置。
图4是本实施例中的角度位置更新的流程图,如图4所示,包括以下步骤:
S401:UE接入后,基站下通过无线资源控制(Radio Resource Control,简称为RRC)下发测量相关的配置信息。通过媒体接入控制(Medium Access Control,简称为MAC)层的控制信道下发周期性的测量请求。通过对所有宽波束,以及当前UE附加的窄,精细波束的信号强度的测量,实现UE移动时的位置角度信息跟踪。首先,基站通过RRC下发测量配置。
S402:基站通过MAC下发周期测量UE位置附近窄波束请求。
S403:UE上报测量报告。
S404:如果有新窄波束信号好于原定位窄波束,进行窄波束切换,位置更新。
S405:同时基站通过MAC下发周期测量UE位置附近宽波束请求。
S406:UE上报测量报告。
S407:如果有新宽波束信号好于原定位宽波束,进行宽波束切换。同时基站通过MAC下发周期测量所有的宽波束。
S408:UE上报测量报告。
S409:如果有新宽波束信号好于原定位宽波束,进行宽波束跳切。若无新波束信号好于原定位波束,或宽波束切换,跳切后都等待下次周期测量触发。当进入S402、S403、S404窄波束切换时,即完成角度位置的跟踪更新。
图5中是本实施例中的距离定位的流程图,如图5所示,包括以下步骤:
S501:在随机接入中,5G UE为了建立无线资源控制(Radio Resource Control,简称为RRC)连接,发送随机接入前导码preamble。
S502:Preamble的时间和频率位置由gNB侧分配,基站通过检测实际接收到的preamble时间,计算出定时提前(Timing Advance,简称为TA)量。
S503:通过时间提前量换算成距离。
S504:保存当前的TA值,接入后基站基于测量对应UE的上行传输中的SRS/DMRS信号。
S505:来确定每个UE的TA值。通过保存的初始TA值,加上累加不断更新TA值。
S506:对UE距离定位信息进行不断更新。
在对UE定位之后,可以将UE的定位位置上报。扩展5G核心网与NG-RAN之间位置上报的内容IE(information element)信息元素中的User Location Information终端设备位置信息。这个IE提供UE位置信息。扩展这个IE增加精确位置信息,精确位置信息为UE的经度(Latitude),纬度(Longitude)和海拔高度(elevation)。通过基站安装时测试天线所在的经纬度和海拔高度,和通过波束确定的角度方向信息(UE位置与基站天线位置之间的角度),TA确定的距离信息为(UE位置与基站天线位置之间的距离),换算得到UE当前位置经纬度和海拔高度。在RAN与核心网的上行消息中携带这个IE,将UE的精确位置信息上报给核心网。如表1所示的扩展User Location Information表,核心网利用RAN上报的UE的精确的位置信息,实现更全面的位置服务。
表1:
IE/Group Name Presence
CHOICE User Location Information M
>E-UTRA user location information  
>>E-UTRA CGI M
>>TAI M
>>Age of Location O
>NR user location information  
>>NR CGI M
>>TAI M
>>Age of Location O
>N3IWF user location information  
>>IP Address M
>>Port Number O
>Precise user location information  
>>Latitude O
>>Longitude O
>>Elevation O
在某些实施例中,本实施例可以应用与单个UE开机定位的场景中,具体如下:
在毫米波段的5G通信***中,基站发送的波束如图6所表示。在120°扇形小区共有53个波束,53个波束分为:8个宽波束,水平方向从-55°到55°,水平宽度从12°到21°,中间为12°,两边为21°。垂直方向为2°,垂直宽度为10°。24个窄波束,水平宽度跟对应的宽波束宽度相同,水平角度也跟宽波束相同。垂直方向有三组:0°,5°,10°。垂直宽度都是6°。窄波束在垂直方向更窄一点,方向更细化。21个精细化波束,精细化波束位于两个宽波束中间,水平宽度从12°到18°,中间为12°,两边为18°。垂直方向也分三组,0°,5°,10°垂直宽度为6°。
在本实施例中,水平分辨角度为12°~21°,垂直在覆盖范围内分辨角度为6°。
初始位置角度定位,波束捕获:每个UE在开机接入前,扫描基站下发的8个方向0~7宽波束的SSB,根据它的最佳接收方向,确定对自己而言的基站最佳发射波束,然后在该波束对应的PRACH时频资源上发MSG1。之后的接入流程(MSG1,2,3,4)都使用此宽波束。基站MAC通过接收到的MSG1来做判断,不同的宽波束UE发送MSG1使用的时频资源不一样,通过UE所使用的PRACH时频资源获取到接入过程中所使用的宽波束ID,。基站MAC接入处理模块RAC将UE接入过程中使用的,宽波束ID报给BEAM模块,BEAM模块自己存为wBeamIdInUse,并且将这个宽波束ID报给基站定位处理模块。
如表2所表示,宽波束ID为5,水平角度21°,水平带宽为13°;
表2:
Figure PCTCN2020086148-appb-000001
Figure PCTCN2020086148-appb-000002
垂直角度2°,垂直带宽为10°。即位置在水平14.5°~27.5°,垂直-3°~7°。确定角度位置如图7所示。
接着基站下发测量该宽波束ULDCI,UE解析ULDCI获取测量CSIRS的时刻和测量上报的时机,UE按照ULDCI指示测量该宽波束CSIRS,并上报RSRP。(该过程称为P3过程)。如表3所表示,宽波束5的RSRP值为80。
表3:
Figure PCTCN2020086148-appb-000003
基站收到有效的P3测量报告后,接着下发测量该宽波束邻近的5个窄波束或者精细化波束测量的ULDCI,UE解析ULDCI获取测量CSIRS的时刻和测量上报的时机,UE选择最佳的2个窄波束,上报2个RSRP,基站将该测量报告中的最大RSRP对应的窄波束存为nBeamldInUse[0],并记录nBeamRsrpInUse[0]。另一较小的上报值也按位置记录在表中,表格依次记录[0:自己],[1:上],[2:下],[3:左],[4:右]。
窄波束角度定位:
如表4所表示,最佳窄波束ID为33,水平角度21°,水平带宽为13°;垂直角度5°,垂直带宽为6°。即位置在水平14.5°~27.5°,垂直2°~8°。基站MAC模块上报最终确定的波束ID 33给基站定位模块。基站定位模块确定UE角度位置为:即位置在水平14.5°~27.5°,垂直2°~8°,如图8所示。
表4:
Figure PCTCN2020086148-appb-000004
精细化束角度定位:
另一种情况如表5所表示,最佳精细化波束ID为34,水平角度28°,水平带宽为14°;垂直角度5°,垂直带宽为6°。即位置在水平21°~35°,垂直2°~8°。
表5:
Figure PCTCN2020086148-appb-000005
Figure PCTCN2020086148-appb-000006
基站MAC模块上报最终确定的波束ID 34给基站定位模块。基站定位模块确定UE角度位置为:即位置在水平21°~35°,垂直2°~8°。如图9所示。
UE距离定位信息确定:
5G UE随机接入中,gNB通过检测实际接收到的preamble时间,计算出初始定时提前(Timing Advance,TA)量。如:TA=10,那么N_TA=10*16Ts,表征的距离为160*0.61m=97.6m,如图10所示。
单个UE移动位置跟踪:
定位位置角度跟踪,波束维护:
UE接入后,在随机接入过程中,基站通过RRC Setup(MSG4)消息将周期地把P-CSIRS配置信息和测量上报的配置信息下发给UE。
P2过程波束切换,UE的定位角度位置更新。
基站周期下发测量使用宽波束邻近的5个窄波束或者精细化波束测量配置(P2过程)。UE执行P2过程,进行窄波束或者精细化波束测量。该过程(P2)可能会触发波束切换,UE的定位角度位置更新。
P2窄波束切换引起角度位置更新。
UE收到P2测量报告,如表6所示。
表6:
Figure PCTCN2020086148-appb-000007
33和48都是宽波束5附加的窄波束,表格波束和角度位置都进行更新。如表7所示,定位角度位置由H:14.5°~27.5°V:2°~7°更新为H:14.5°~27.5°V:7°~13°,如图11所示。
表7:
Figure PCTCN2020086148-appb-000008
P2宽窄波束切换引起角度位置更新。
收到P2测量结果如表8所示。
表8:
Figure PCTCN2020086148-appb-000009
因为波束35不使用宽波束5,所以此时会引发宽波束的切换,从宽波束5切换到宽波束6,表格更新,触发宽波束6P3测量,更新波束6Rsrp值,如表9所示。
表9:
Figure PCTCN2020086148-appb-000010
基站MAC模块通过MACCE通知UE,UE回应ACK后,用下面的ToSwitch值替换上面的InUse值。UE角度定位信息进行更新。H:21°~35°V:2°~8°更新为H:28°~44°V:2°~11°,如图12所示。
P3过程波束切换,UE的定位角度位置无需更新。
基站侧周期触发(P3过程)测量,当nBeamIdInUse[0]是精细化波束的时候,要测量2个宽波束的P3。此时会收到2个RSRP,会维护2个宽波束。当wBeamRsrpNgb>wBeamRsrpInUse+门限,引发切换。从wBeamIdInUse切换到wBeamIdNgb,如表10所示。
表10:
Figure PCTCN2020086148-appb-000011
Figure PCTCN2020086148-appb-000012
基站MAC模块通过MACCE通知UE切换宽波束,收到UE的ACK应答后用下表的ToSwitch值替换上面的InUse值。因UE实际角度位置定位的精细化波束没有改变,UE角度定位信息进行无需更新。如表11所示。
表11:
Figure PCTCN2020086148-appb-000013
P1过程波束切换,UE的定位角度位置更新。
UE根据配置信息测量8个宽波束,通过PUCCH CSI上报两个最好的宽波束RSRP和ID。(P1过程)。
wBeamRsrpNgb<wBeamRsrpInUse加上相应门限时,切换到P1过程中上报的最优波束。如表12所示当前宽波束和邻近宽波束RSRP值。表13所示P1过程中的最优波束RSRP值。
表12:
Figure PCTCN2020086148-appb-000014
Figure PCTCN2020086148-appb-000015
表13:
index wBeamld wBeamRsrp Count
0 0 82 0
1 2 80 1
选择P1过程中的最优波束0,然后触发波束0的P3和P2测报一次。如表14所示。定位角度位置由H:21°~35°V:2°~8更新为H:-65.5°~-44.5°V:2°~7°如图13所示。
表14:
Figure PCTCN2020086148-appb-000016
UE移动中距离定位信息确定:
基站测量对应UE的上行传输中的SRS/DMRS信号,确定UE的TA值。通过保存的初始TA值,加上累加不断更新TA值,UE定位的距离信息进行不断更新。
UE雷达:5G毫米波覆盖区多个UE实时位置显示;排查出通讯热点区域。
5G毫米波覆盖区多个UE接入时,通过每个UE开机定位和移动中位置跟踪,通过UE位置与基站天线位置之间的角度,UE位置与基站天线位置之间的距离转换成经度(Latitude),纬度(Longitude)和海拔高度(elevation),通过User Location Information上报给核心网,核心网上报图形显示监控软件,实现多个UE雷达的图形实时位置显示,排查出通讯热点精确区域。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
在本实施例中还提供了一种终端设备的定位装置,该装置用于实现上述实施例及某些实施例,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图14是根据本发明实施例的终端设备的定位装置的结构框图,如图14所示,该装置包括:第一确定模块1402、第二确定模块1404、第三确定模块1406、定位模块1408,下面对该装置进行说明:
第一确定模块1402,用于从终端设备接入的波束中确定终端设备相对于基站的第一角度;
第二确定模块1404,用于确定出终端设备接入波束时的定时提前量TA值;
第三确定模块1406,用于基于TA值对应的距离确定终端设备相对于基站的第一距离;
定位模块1408,用于利用第一角度和第一距离定位终端设备。
通过本发明实施例,采用基站从终端设备接入的波束中确定终端设备相对于基站的第一角度;并确定出终端设备接入波束时的定时提前量TA值;基于TA值对应的距离确定终端设备相对于基站的第一距离;基站利用第一角度和第一距离定位终端设备。可以实现基站从终端设备接入的波束中确定出终端设备的位置。从而可以精确的定位终端设备。因此,可以提供对5G终端设备进行定位,达到精确定位终端设备的效果。
在某些实施例中,上述步骤的执行主体可以为基站等,但不限于此。
在某些实施例中,本实施例可以应用于5G场景下对终端设备进行定位的场景,在该场景中,终端设备包括但不限于手机、电脑、车载设备等等。
在某些实施例中,在本实施例中,对终端设备的定位可以是获取终端设备在空间中的位置。空间的位置可由终端设备到基站的第一距离和第一角度确定。
在某些实施例中,毫米波段的5G通信***,高达几十分贝dB的信号衰减可能会导致通信***无法正常工作。在这种情况下,5G的波束成形可以有效对抗路损。5G基站可以支持大规模天线阵列,可配置的天线数量甚至可以达到1024根。5G的波束成形技术,通过调节各天线的相位使信号进行有效叠加,产生更强的信号增益来克服路损,从而为5G无线信号的传输质量提供了强有力的保障。波束成形技术会对无线信号产生聚焦,形成一个指向性波束Beam。通常波束越窄,信号增益越大。
采用波束成形技术之后,5G基站必须使用多个不同指向的波束才能完全覆盖小区。在下行过程中,基站一次使用不同指向的波束发射无线信号,该过程被称作波束扫描(Beam sweeping);与此同时,终 端设备测量不同的波束发射出的无线信号(Beam measurement),并向基站报告相关信息(Beam Reporting);基站根据终端设备报告确定对准该终端设备的最近发射波束(Beam determination)。
5G通信中采取了分级扫描策略,即由宽到窄扫描。第一阶段为粗扫描,基站使用少量的宽波束覆盖整个小区,并依此扫描各宽波束对准的方向。第二阶段为细扫描,基站利用多个窄波束逐一扫描已在第一阶段中被宽波束覆盖的方向。最后考虑到终端设备可能移动,为了更好的跟踪终端设备(Beam tracking),分级扫描可以根据每个终端设备的需要随时展开,不断切换最佳波束,为终端设备提供无线覆盖。
在某些实施例中,上行传输的一个重要特征是不同终端设备在时频上正交多址接入,即来自同一小区的不同终端设备的上行传输之间互不干扰。为了保证上行传输的正交性,避免小区内干扰,基站gNB要求来自同一子帧但不同频域资源的不同终端设备的信号到达gNB的时间基本上是对齐的。gNB只要在循环前缀(Cyclic Prefix,简称为CP)范围内接收到终端设备所发送的上行数据,就能够正确地解码上行数据,因此,上行同步要求来自同一子帧的不同终端设备的信号到达gNB的时间都落在CP之内。
在某些实施例中,在终端设备侧看来,定时提前(Timing Advance,简称为TA)本质上是接收到下行子帧的起始时间与传输上行子帧的时间之间的一个负偏移(negative offset)。gNB通过适当地控制每个终端设备的偏移,可以控制来自不同终端设备的上行信号到达gNB的时间。对于离gNB较远的终端设备,由于有较大的传输延迟,就要比离gNB较近的终端设备提前发送上行数据。
毫米波段的5G通信***采用的子载波间隔更大,快速傅氏变换(Fast Fourier Transformation,简称为FFT)点数更多,每Ts时间更短,通过TA值表征的距离长度更短,位置精度更高。TA值对应的距离是参照1Ts来计算的。含义就是距离=传播速度(光速)*1Ts/2(上下行路径和)。例如子载波间隔120kHz,FFT大小为4096,1Ts对应的时间提前量距离等于:(3*10^8*1/(120000*4096))/2=0.61m。
在终端设备随机接入过程中,TA值上报的范围在0~1282之间,根据TA值,终端设备调整上行发射时间N_TA=TA*16Ts,值恒为正。例如:TA=1,那么N_TA=1*16Ts,表示的距离为16*0.61m=9.76m,同时可以计算得到在初始接入阶段,终端设备与网络的最大接入距离=1282*9.76m=12.51km。在本实施例中毫米波段的5G通信***对终端设备的定位距离为12.51km。
在某些实施例中,通过以下方式从终端设备接入的波束中确定终端设备相对于基站的第一角度:
S1,向终端设备发送第一测量请求,其中,第一测量请求用于请求获取终端设备所接入的第一宽波束的第一参考信号接收功率RSRP值;
S2,接收终端设备发送的第一RSRP值;
S3,基于第一RSRP值确定出终端设备相对于基站的第一角度。
在某些实施例中,在本实施例中,基站向终端设备发送的第一测量请求是用于测量宽波束的,终端设备解析第一测量请求获取到测量第一宽波束CSIRS的时刻和测量上报的时机,终端设备按照第一测量请求的指示测量CSIRS,并上报第一RSRP值。
在某些实施例中,在接收终端设备发送的第一RSRP值之后,上述装置还用于:
S1,向终端设备发送第二测量请求,其中,第二测量请求用于请求终端设备所接入的第一窄波束的第二RSRP值,其中,第一窄波束邻近第一宽波束;
S2,接收终端设备发送的第二RSRP值;
S3,基于第二RSRP值确定出终端设备相对于基站的第一角度。
在某些实施例中,在本实施例中,基站在接收到终端设备发送的第一RSRP值之后,接着向终端设备下发测量与第一宽波束邻近的窄波束或者精细化波束的第二测量请求,终端设备解析第二测量请求获 取测量第一窄波束的时刻和测量上报的时机。例如,终端设备选择最佳的2个窄波束,上报2个RSRP值,基站将最大RSRP值对应的窄波束确定为第一窄波束。
在某些实施例中,通过以下方式基于第二RSRP值确定出终端设备相对于基站的第一角度:
S1,从第二RSRP值中确定出第一窄波束的ID;
S2,利用第一窄波束的ID确定出终端设备相对于基站的水平角度以及终端设备相对于基站的垂直角度;
S3,将水平角度和垂直角度确定为终端设备相对于基站的第一角度。
在某些实施例中,例如第一窄波束的ID为33,则33对应的水平角度是21°,水平带宽是13°;垂直角度是5°,垂直带宽是6°。则基站确定的终端设备的位置在水平14.5°~27.5°,垂直2°~8°。
如果终端设备所在的精细化波束ID为34,则水平角度是28°,水平带宽为是14°;垂直角度是5°,垂直带宽为是6°。则终端设备的位置在水平21°~35°,垂直2°~8°。
通过本实施例,可以精确的确定终端设备的空间位置。
在某些实施例中,在基于第一RSRP值确定出终端设备相对于基站的第一角度之前,上述装置还用于:
S1,从终端设备发送的信令消息MSG中确定宽波束标识ID;
S2,将宽波束标识ID所对应的宽波束确定为终端设备接入的第一宽波束。
在某些实施例中,每个终端设备在开机接入前,会扫描基站下发的8个方向0~7SSB,根据它的最佳接收方向,确定对终端设备而言的基站最佳发射波束,然后在该波束对应的物理随机接入信道(Physical Random Access Channel,简称为PRACH)时频资源上发MSG1。之后的接入流程(MSG1,2,3,4)都使用此宽波束。基站中的媒体接入控制(Multiple Access Channel,简称为MAC)、接入处理模块随机接入控制(Random Access Control,简称为RAC)通过接收到的MSG1来做判断,不同的宽波束终端设备发送MSG1使用的时频资源不一样,通过终端设备所使用的PRACH时频资源获取到接入过程中所使用的宽波束ID。基站MAC接入处理模块RAC将UE接入过程中使用的宽波束ID报给BEAM模块,BEAM模块自己存为wBeamIdInUse,并且将这个宽波束ID报给基站定位处理模块。例如,第一宽波束ID为5,则水平角度是21°,水平带宽是13°;垂直角度2°,垂直带宽为10°。则终端设备的位置在水平14.5°~27.5°,垂直-3°~7°。
在某些实施例中,从终端设备接入的波束中确定终端设备相对于基站的第一角度之后,上述装置还用于:
S1,通过媒体接入控制MAC周期性的向终端设备发送第三测量请求,其中,第三测量请求用于请求测量与终端设备所接入的窄波束邻近的第二窄波束的信号;
S2,接收终端设备发送的第一测量报告,其中,第一测量报告中包括第二窄波束的信号;
S3,在第二窄波束的信号大于终端设备接入的窄波束的信号的情况下,指示终端设备切换至第二窄波束进行接入;
S4,将第二窄波束所对应的角度确定为终端设备相对于基站的第二角度。
在某些实施例中,在本实施例中,例如,基站周期下发测量使用第一宽波束邻近的5个窄波束或者精细化波束测量配置。终端设备进行窄波束或者精细化波束测量。该过程可能会触发窄波束切换,UE的定位角度位置会更新。
例如,33和48都是第一宽波束5附加的窄波束,表格波束和角度位置都进行更新。定位角度位置由H:14.5°~27.5°V:2°~7°更新为H:14.5°~27.5°V:7°~13°。
通过本实施例,可以实现在终端设备移动的过程中对终端设备进行实时定位。
在某些实施例中,在通过MAC周期性的向终端设备发送第四测量请求之前,上述装置还用于:
S1,通过无线资源控制RRC向终端设备发送第四测量请求,其中,第四测量请求用于请求测量终端设备的接入配置,其中,接入配置用于触发向终端设备发送第四测量请求。
在本实施例中,终端设备接入基站之后,在随机接入过程中,基站通过第三测量请求将周期地把窄波束的配置信息和测量上报的配置信息下发给终端设备。
在某些实施例中,从终端设备接入的波束中确定终端设备相对于基站的第一角度之后,上述装置还用于:
S1,通过MAC周期性的向终端设备发送第五测量请求,其中,第五测量请求用于请求测量与终端设备所接入的宽波束邻近的第二宽波束的信号;
S2,接收终端设备发送的第二测量报告,其中,第二测量报告中包括第二宽波束的信号;
S3,在第二宽波束的信号大于终端设备接入的宽波束的信号的情况下,指示终端设备切换至第二宽波束进行接入;
S4,将第二宽波束所对应的角度确定为终端设备相对于基站的第三角度。
在某些实施例中,在本实施例中,终端设备在接入第一宽波束之后,如果出现邻近宽波束的RSRP值大于第一RSRP值,则将终端设备切换至邻近宽波束。
在某些实施例中,将第二宽波束所对应的角度确定为终端设备相对于基站的第三角度之后,上述装置还用于:
S1,通过MAC周期性的向终端设备发送第六测量请求,其中,第六测量请求用于请求测量与终端设备对应的所有宽波束的信号;
S2,在所有宽波束的信号中存在大于第二宽波束的信号的情况下,指示终端设备跳切至信号大于第二宽波束的信号的第三宽波束中;
S3,将第三宽波束所对应的角度确定为终端设备相对于基站的第四角度;
S4,继续测量第三宽波束中终端设备所接入的窄波束。
在本实施例中,终端设备在接入第一宽波束之后,如果出现不是邻近宽波束的第三宽波束的RSRP值大于第一RSRP值,则将终端设备切换至第三宽波束。
在某些实施例中,通过以下方式确定出终端设备接入波束时的定时提前量TA值:
S1,从接收的终端设备发送的随机接入前导码的时间中确定出终端设备的初始TA值;
S2,测量终端设备上行传输中的信道探测参考信号SRS或者解调参考信号DMRS;
S3,SRS或者DMRS中确定出终端设备的当前TA值;
S4,将初始TA值和当前TA值进行累加,得到TA值。
在某些实施例中,终端设备在开机确定的TA值即是初始TA值。例如,终端设备在随机接入中,gNB通过检测实际接收到的preamble时间,计算出初始TA值。如:TA=10,那么N_TA=10*16Ts,表征的距离为160*0.61m=97.6m。
在某些实施例中,通过以下方式确定与TA值对应的距离,得到终端设备相对于基站的第一距离:
S1,利用TA与上行发送时间的对应关系确定出终端设备在波束上发送的上行发送时间;
S2,将与上行发送时间所表示的距离确定为第一距离。
在某些实施例中,在本实施例中,例如TA=10,上行发送时间N_TA=10*16Ts,表征的距离为 160*0.61m=97.6m。
在某些实施例中,通过以下方式利用第一角度和第一距离定位终端设备:
S1,利用第一角度和第一距离确定终端设备的坐标位置,其中,坐标位置包括终端设备所在通过角度位置与距离位置转换后的的经度、纬度以及海拔高度;
S2,利用坐标位置定位终端设备。
在某些实施例中,对终端设备的定位是空间位置的定位。
在某些实施例中,在利用第一角度和第一距离中确定终端设备的坐标位置之后,上述装置还用于:
S1,将终端设备所在的经度、纬度以及海拔高度发送给核心网,以指示核心网从终端设备所在的经度、纬度以及海拔高度中确定出通讯热点区域。
在本实施例中,在5G毫米波覆盖区中多个终端设备接入时,通过每个终端设备开机定位和移动中位置跟踪,通过终端设备的位置与基站天线位置之间的角度,终端设备位置与基站天线位置之间的距离转换成经度(Latitude),纬度(Longitude)和海拔高度(elevation),通过User Location Information上报给核心网,核心网上报图形显示监控软件,实现多个UE雷达的图形实时位置显示,排查出通讯热点精确区域。
综上所述,利用波束管理过程中终端设备上报给基站的最佳波束以及基站测量到的TA值,实现对5G终端设备进行精确定位。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
本发明的实施例还提供了一种存储介质,该存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
在某些实施例中,在本实施例中,上述存储介质可以被设置为存储用于执行以上各步骤的计算机程序。
在某些实施例中,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本发明的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
在某些实施例中,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
在某些实施例中,在本实施例中,上述处理器可以被设置为通过计算机程序执行以上各步骤。
在某些实施例中,本实施例中的具体示例可以参考上述实施例及某些实施例中所描述的示例,本实施例在此不再赘述。
通过本发明实施例,由于基站从终端设备接入的波束中确定终端设备相对于基站的第一角度;并确定出终端设备接入波束时的定时提前量TA值;基于TA值对应的距离确定终端设备相对于基站的第一距离;基站利用第一角度和第一距离定位终端设备。可以实现基站从终端设备接入的波束中确定出终端设备的位置。从而可以精确的定位终端设备。因此,可以提供对5G终端设备进行定位,达到精确定位终端设备的效果。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现, 它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,在某些实施例中,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的若干实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (16)

  1. 一种终端设备的定位方法,包括:
    从终端设备接入的波束中确定所述终端设备相对于基站的第一角度;
    确定出所述终端设备接入所述波束时的定时提前量TA值;
    基于所述TA值对应的距离确定所述终端设备相对于所述基站的第一距离;
    利用所述第一角度和所述第一距离定位所述终端设备。
  2. 根据权利要求1所述的方法,其中,从所述终端设备接入的波束中确定所述终端设备相对于所述基站的所述第一角度包括:
    向所述终端设备发送第一测量请求,其中,所述第一测量请求用于请求获取所述终端设备所接入的第一宽波束的第一参考信号接收功率RSRP值;
    接收所述终端设备发送的所述第一RSRP值;
    基于所述第一RSRP值确定出所述终端设备相对于所述基站的所述第一角度。
  3. 根据权利要求2所述的方法,在接收所述终端设备发送的所述第一RSRP值之后,还包括:
    向所述终端设备发送第二测量请求,其中,所述第二测量请求用于请求所述终端设备所接入的第一窄波束的第二RSRP值,其中,所述第一窄波束邻近所述第一宽波束;
    接收所述终端设备发送的所述第二RSRP值;
    基于所述第二RSRP值确定出所述终端设备相对于所述基站的所述第一角度。
  4. 根据权利要求3所述的方法,其中,基于所述第二RSRP值确定出所述终端设备相对于所述基站的所述第一角度包括:
    从所述第二RSRP值中确定出所述第一窄波束的ID;
    利用所述第一窄波束的ID确定出所述终端设备相对于所述基站的水平角度以及所述终端设备相对于所述基站的垂直角度;
    将所述水平角度和所述垂直角度确定为所述终端设备相对于所述基站的所述第一角度。
  5. 根据权利要求1所述的方法,在基于所述第一RSRP值确定出所述终端设备相对于所述基站的所述第一角度之前,还包括:
    从所述终端设备发送的信令消息MSG中确定宽波束标识ID;
    将所述宽波束标识ID所对应的宽波束确定为所述终端设备接入的第一宽波束。
  6. 根据权利要求1所述的方法,从所述终端设备接入的波束中确定所述终端设备相对于所述基站的第一角度之后,还包括:
    通过媒体接入控制MAC周期性的向所述终端设备发送第三测量请求,其中,所述第三测量请求用于请求测量与所述终端设备所接入的窄波束邻近的第二窄波束的信号;
    接收所述终端设备发送的第一测量报告,其中,所述第一测量报告中包括所述第二窄波束的信号;
    在所述第二窄波束的信号大于所述终端设备接入的窄波束的信号的情况下,指示所述终端设备切换至所述第二窄波束进行接入;
    将所述第二窄波束所对应的角度确定为所述终端设备相对于所述基站的第二角度。
  7. 根据权利要求6所述的方法,在通过所述MAC周期性的向所述终端设备发送所述第三测量请求之前,还包括:
    通过无线资源控制RRC向所述终端设备发送第四测量请求,其中,所述第四测量请求用于请求测量 所述终端设备的接入配置,其中,所述接入配置用于触发向所述终端设备发送所述第四测量请求。
  8. 根据权利要求1所述的方法,从所述终端设备接入的波束中确定所述终端设备相对于所述基站的第一角度之后,还包括:
    通过MAC周期性的向所述终端设备发送第五测量请求,其中,所述第五测量请求用于请求测量与所述终端设备所接入的宽波束邻近的第二宽波束的信号;
    接收所述终端设备发送的第二测量报告,其中,所述第二测量报告中包括所述第二宽波束的信号;
    在所述第二宽波束的信号大于所述终端设备接入的宽波束的信号的情况下,指示所述终端设备切换至所述第二宽波束进行接入;
    将所述第二宽波束所对应的角度确定为所述终端设备相对于所述基站的第三角度。
  9. 根据权利要求8所述的方法,将所述第二宽波束所对应的角度确定为所述终端设备相对于所述基站的所述第三角度之后,还包括:
    通过所述MAC周期性的向所述终端设备发送第六测量请求,其中,所述第六测量请求用于请求测量与所述终端设备对应的所有宽波束的信号;
    在所述所有宽波束的信号中存在大于所述第二宽波束的信号的情况下,指示所述终端设备跳切至信号大于所述第二宽波束的信号的第三宽波束中;
    将所述第三宽波束所对应的角度确定为所述终端设备相对于所述基站的第四角度;
    继续测量所述第三宽波束中所述终端设备所接入的窄波束。
  10. 根据权利要求1所述的方法,其中,确定出所述终端设备接入所述波束时的定时提前量TA值,包括:
    从接收的所述终端设备发送的随机接入前导码的时间中确定出所述终端设备的初始TA值;
    测量所述终端设备上行传输中的信道探测参考信号SRS或者解调参考信号DMRS;
    从所述SRS或者DMRS中确定出所述终端设备的当前TA值;
    将所述初始TA值和所述当前TA值进行累加,得到所述TA值。
  11. 根据权利要求1所述的方法,其中,确定与所述TA值对应的距离,得到所述终端设备相对于所述基站的第一距离包括:
    利用所述TA值与上行发送时间的对应关系确定出所述终端设备在所述波束上发送的上行发送时间;
    将与所述上行发送时间所表示的距离确定为所述第一距离。
  12. 根据权利要求1所述的方法,其中,利用所述第一角度和所述第一距离定位所述终端设备包括:
    利用所述第一角度和所述第一距离确定所述终端设备的坐标位置,其中,所述坐标位置包括所述终端设备所在通过角度位置与距离位置转换后的经度、纬度以及海拔高度;
    利用所述坐标位置定位所述终端设备。
  13. 根据权利要求12所述的方法,其中,在利用所述第一角度和所述第一距离中确定所述终端设备的坐标位置之后,
    将所述终端设备所在的经度、纬度以及海拔高度发送给核心网,以指示所述核心网从所述终端设备所在的经度、纬度以及海拔高度中确定出通讯热点区域。
  14. 一种终端设备的定位装置,其特征在于,包括:
    第一确定模块,用于从终端设备接入的波束中确定所述终端设备相对于基站的第一角度;
    第二确定模块,用于确定出所述终端设备接入所述波束时的定时提前量TA值;
    第三确定模块,用于基于所述TA值对应的距离确定所述终端设备相对于所述基站的第一距离;
    定位模块,用于利用所述第一角度和所述第一距离定位所述终端设备。
  15. 一种存储介质,存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至13任一项中所述的方法。
  16. 一种电子装置,包括存储器和处理器,其中,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至13任一项中所述的方法。
PCT/CN2020/086148 2019-06-20 2020-04-22 终端设备的定位方法及装置、存储介质、电子装置 WO2020253359A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910538898.0A CN112203214A (zh) 2019-06-20 2019-06-20 终端设备的定位方法及装置、存储介质、电子装置
CN201910538898.0 2019-06-20

Publications (1)

Publication Number Publication Date
WO2020253359A1 true WO2020253359A1 (zh) 2020-12-24

Family

ID=74004643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086148 WO2020253359A1 (zh) 2019-06-20 2020-04-22 终端设备的定位方法及装置、存储介质、电子装置

Country Status (2)

Country Link
CN (1) CN112203214A (zh)
WO (1) WO2020253359A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113795036A (zh) * 2021-06-07 2021-12-14 王霞 一种5g通信侦控定位方法及***
CN115102638B (zh) * 2022-07-20 2024-04-30 上海移远通信技术股份有限公司 信息获取方法、装置、电子设备及存储介质
CN115866528A (zh) * 2022-12-22 2023-03-28 上海移远通信技术股份有限公司 测距方法及测距装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018112693A1 (zh) * 2016-12-19 2018-06-28 深圳前海达闼云端智能科技有限公司 终端定位的方法和装置
CN108242949A (zh) * 2016-12-27 2018-07-03 中国电信股份有限公司 基站和终端及其组成的多用户传输***和多用户传输方法
CN109195097A (zh) * 2018-10-26 2019-01-11 Oppo广东移动通信有限公司 定位方法、装置、终端及存储介质
CN109327248A (zh) * 2017-07-31 2019-02-12 ***通信集团广东有限公司 一种广播波束赋形方法及基站

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105578404B (zh) * 2014-10-17 2021-05-11 中兴通讯股份有限公司 一种定位方法及相应的终端、***
CN107645767A (zh) * 2016-07-20 2018-01-30 中兴通讯股份有限公司 时间提前量的测量方法及装置
CN106851570B (zh) * 2017-01-19 2020-03-17 ***通信集团江苏有限公司 基于mr对移动终端进行定位的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018112693A1 (zh) * 2016-12-19 2018-06-28 深圳前海达闼云端智能科技有限公司 终端定位的方法和装置
CN108242949A (zh) * 2016-12-27 2018-07-03 中国电信股份有限公司 基站和终端及其组成的多用户传输***和多用户传输方法
CN109327248A (zh) * 2017-07-31 2019-02-12 ***通信集团广东有限公司 一种广播波束赋形方法及基站
CN109195097A (zh) * 2018-10-26 2019-01-11 Oppo广东移动通信有限公司 定位方法、装置、终端及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI; HISILICON: "Physical layer procedure for NR positioning", 3GPP DRAFT; R1-1904006, vol. RAN WG1, 2 April 2019 (2019-04-02), Xi’an, China, pages 1 - 11, XP051707082 *

Also Published As

Publication number Publication date
CN112203214A (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
US11937203B2 (en) Signal transmission method and apparatus
US10959205B2 (en) Methods of positioning in a system comprising measuring nodes with multiple receiving points
CN111314952B (zh) 一种测量上报的方法及装置
US11588538B2 (en) Positioning beam information obtaining method and apparatus
US20220015060A1 (en) Positioning method and apparatus
US20220141797A1 (en) Positioning method and communication apparatus
US9829563B2 (en) Positioning method and apparatus
WO2020253359A1 (zh) 终端设备的定位方法及装置、存储介质、电子装置
US20230362867A1 (en) Measurement method and apparatus for positioning, and storage medium
JP7382487B2 (ja) オンデマンド位置決め関連アプリケーションデータのための方法及びデバイス
US20230006795A1 (en) Method of fast beam refinement and tracking for high mobility wireless communication device
US10649062B2 (en) Terminal positioning method and apparatus
EP4181596A1 (en) Communication method, apparatus, and system
WO2017070956A1 (zh) 一种数据传输方法及装置
KR20210147023A (ko) 포지셔닝 측정치를 결정하기 위한 방법 및 장치
US20240023058A1 (en) Communication method and apparatus
US20230388074A1 (en) Communication method based on reference signal, and related apparatus
US20240077571A1 (en) Positioning processing method, terminal and network side device
WO2023037323A1 (en) Apparatus and method for user equipment positioning measurements
CN116017688A (zh) 定位方法及定位装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20826603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20826603

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/05/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20826603

Country of ref document: EP

Kind code of ref document: A1