WO2020244050A1 - 激光投影设备 - Google Patents

激光投影设备 Download PDF

Info

Publication number
WO2020244050A1
WO2020244050A1 PCT/CN2019/099851 CN2019099851W WO2020244050A1 WO 2020244050 A1 WO2020244050 A1 WO 2020244050A1 CN 2019099851 W CN2019099851 W CN 2019099851W WO 2020244050 A1 WO2020244050 A1 WO 2020244050A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
light
housing
reflector
assembly
Prior art date
Application number
PCT/CN2019/099851
Other languages
English (en)
French (fr)
Inventor
曹秀燕
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Publication of WO2020244050A1 publication Critical patent/WO2020244050A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • G03B21/008Projectors using an electronic spatial light modulator but not peculiar thereto using micromirror devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]

Definitions

  • the present disclosure relates to the field of projection technology, and in particular to a laser projection device.
  • the laser projection device is a display device used to generate projection images.
  • laser projection equipment mainly includes a light source system, an optomechanical system and a lens.
  • the light source system is used to provide a light beam for the optomechanical system
  • the optomechanical system is used to modulate the light beam provided by the light source system, and emit the modulated beam to the lens. Get the projection screen.
  • the size of the optomechanical system largely determines the size of the laser projection equipment. Therefore, the structure of the optomechanical system needs to be adjusted to reduce the size of the optomechanical system. The size of the case reduces the size of the laser projection device.
  • the present disclosure provides a laser projection device, which can solve the problem of large size of the laser projection device.
  • the technical solution is as follows:
  • the present disclosure provides a laser projection device.
  • the laser projection device includes: a light source system, an optomechanical system, and a lens.
  • the optomechanical system includes an optomechanical housing, a DMD (Digital Micromirror Device, digital micromirror device). ), lens components, first reflector and RTIR (Refraction Total Internal Reflection) components;
  • the light source system is connected to the first open end of the optical engine housing, the lens is connected to the second open end of the optical engine housing, and the first open end and the second open end are perpendicular to each other Or parallel
  • the DMD is arranged on the top surface of the optical engine housing and is perpendicular to the second open end, the lens assembly and the first reflector are both fixed on the bottom surface of the optical engine housing, so
  • the RTIR assembly is fixed on the top surface of the optical engine housing, the light incident side of the lens assembly faces the first opening end, the first reflector is located below the RTIR assembly, and the RTIR assembly is located Below the DMD, the light exit side of the RTIR component faces the second opening end, and the included angle between the first reflector and the bottom surface of the optical engine housing is adjustable;
  • the light beam emitted by the light source system is transmitted to the first reflector through the lens assembly, the transmitted light beam is reflected to the RTIR assembly by the first reflector, and the reflected light beam is refracted to the RTIR assembly by the RTIR assembly
  • the refracted light beam is rotated and reflected by the DMD to the RTIR component, and the rotated and reflected light beam is totally reflected by the RTIR component to the lens.
  • an optical engine including: a light source system and an optical machine system, the optical machine system including an optical machine housing, a DMD, a lens assembly, a first reflector, and an RTIR assembly;
  • the light source system is connected to the first open end of the optical engine housing, and the lens is connected to the second open end of the optical engine housing;
  • the DMD is arranged on the top surface of the optomechanical housing and is perpendicular to the second opening end of the optomechanical housing.
  • the lens assembly and the first reflector are both fixed on the optomechanical housing.
  • the RTIR assembly is fixed on the top surface of the opto-mechanical housing, the light incident side of the lens assembly faces the first opening end, and the first reflector is located below the RTIR assembly.
  • the RTIR component is located below the DMD, the light exit side of the RTIR component faces the second opening end, and the included angle between the first reflector and the bottom surface of the optical engine housing is adjustable;
  • the light beam emitted by the light source system is transmitted to the first reflector through the lens assembly, the transmitted light beam is reflected to the RTIR assembly by the first reflector, and the reflected light beam is refracted to the RTIR assembly by the RTIR assembly
  • the refracted light beam is rotated and reflected by the DMD to the RTIR component, and the rotated and reflected light beam is totally reflected by the RTIR component to the second open end.
  • FIG. 1 is a schematic structural diagram of a laser projection device provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic cross-sectional structure diagram of an optical-mechanical system provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a light source system provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a fixing bracket provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of an optical-mechanical system provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of an exploded structure for fixing a second reflector provided by an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of a first light blocking sheet provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of an exploded structure of an optical-mechanical system provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another optical-mechanical system provided by an embodiment of the present disclosure.
  • FIG. 10 is a pixel distribution diagram of a projection screen provided by an embodiment of the present disclosure.
  • FIG. 11 is a pixel distribution diagram of another projection screen provided by an embodiment of the present disclosure.
  • FIG. 12 is a pixel distribution diagram of another projection screen provided by an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a galvanometer provided by an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of another galvanometer provided by an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a bracket provided by an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of a second baffle provided by an embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram of an optical engine provided by an embodiment of the present disclosure.
  • 201 Optical machine housing; 202: DMD; 203: lens assembly; 2031: first lens; 2032: second lens; 204: first mirror; 205: RTIR assembly; 2051: wedge prism; 2052: plano-convex lens; 206: second reflector; 207: first light barrier; 208: fixed bracket; 209: light guide rod; 210: galvanometer; 211: second light barrier.
  • FIG. 1 illustrates a schematic structural diagram of a laser projection device according to an embodiment of the present disclosure
  • FIG. 2 illustrates a schematic cross-sectional structure diagram of an optical-mechanical system according to an embodiment of the present disclosure
  • the laser projection equipment includes: a light source system 1, an optical machine system 2, and a lens 3.
  • the optical machine system 2 includes an optical machine housing 201, a DMD 202, a lens assembly 203, a first mirror 204, and an RTIR
  • the light source system 1 is connected to the first open end of the optical engine housing 201
  • the lens 3 is connected to the second open end of the optical engine housing 201
  • the first open end and the second open end are perpendicular or parallel to each other.
  • the DMD202 is arranged on the top surface of the optomechanical housing 201 and is perpendicular to the second open end.
  • the lens assembly 203 and the first reflector 204 are both fixed on the bottom surface of the optomechanical housing 201, and the RTIR assembly 205 is fixed on the optomechanical housing.
  • the light entrance side of the lens assembly 203 faces the first opening end
  • the first reflector 204 is located below the RTIR assembly 205
  • the RTIR assembly 205 is located below the DMD202
  • the light exit side of the RTIR assembly 205 faces the second opening end.
  • the included angle between the first reflector 204 and the bottom surface of the optical machine housing 201 is adjustable.
  • the light beam emitted from the light source system 1 is transmitted to the first reflector 204 through the lens assembly 203, the transmitted light beam is reflected to the RTIR assembly 205 through the first reflector 204, and the reflected light beam is refracted to the DMD 202 through the RTIR assembly 205.
  • the refracted light beam The DMD202 rotates and reflects to the RTIR assembly 205, and the light beam after rotating reflection is totally reflected to the lens 3 by the RTIR assembly 205.
  • the RTIR assembly 205 has the advantage of small size, after the optical engine housing 201, the lens assembly 203, the RTIR assembly 205 and the DMD 202 are assembled to obtain the optical engine system 2, the optical engine system 2 can be The structure is more simplified and the volume is more compact. In this way, the light source system 1 is connected to the first open end of the optical mechanical system 2 and the lens 3 is connected to the second open end of the optical mechanical system 2 to make the volume of the laser projection device more compact, thereby facilitating the miniaturization of the laser projection device .
  • the included angle between the first reflector 204 and the bottom surface of the optical machine housing 201 is adjustable, the position of the first reflector 204 is adjusted to ensure the light spot formed by the light beam refracted by the RTIR component 205 It can completely cover the working area of DMD202.
  • the light source system 1 is a three-color laser system.
  • the three-color laser system may include a green laser, a red laser, and a blue laser. In this way, the three lasers can directly emit red, green and blue light beams.
  • the three-color laser system may be a three-color MCL (Multi-Chip Laser) laser, which specifically includes a green laser located in the first row and a blue laser located in the second row. Lasers, and red lasers located in the third and fourth rows respectively.
  • the lens 3 may be composed of a series of lenses to ensure the projection effect of the light beam on the screen after the light beam emitted by the optical machine system 2 is transmitted through the lens 3.
  • the optomechanical housing 201 includes an open housing obtained by mold forming, and a cover plate for sealing the open housing. After the lens assembly 203 and the first mirror 204 are fixedly assembled on the bottom surface of the open housing, and the DMD 202 and the RTIR assembly 205 are fixed on the cover plate, that is, fixed on the top surface of the optical machine housing 201, pass the cover The plate seals the open shell to obtain the optical mechanical system 2.
  • the optical machine housing 201 can also be obtained in other ways, as long as the lens assembly 203, the RTIR assembly 205 and the DMD 202 components can be fixedly assembled, which is not limited in the embodiment of the present disclosure.
  • a light transmission port needs to be provided on the top surface of the optical machine housing 201 to ensure that the DMD202 is in contact with the optical machine housing 201.
  • the outer wall faces the inside of the optical engine housing 201.
  • the light-transmitting port may be formed on the cover plate of the optical engine housing 201 by mold molding, so as to ensure the accuracy of the position of the light-transmitting port, thereby improving the assembly accuracy of the DMD202 when assembling the DMD202. Avoid the deviation of the light-transmitting port caused by processing errors when processing the light-transmitting port separately in the subsequent processing, thereby causing the installation error of the DMD202.
  • the DMD202 rotates and reflects The rear beam can be totally reflected by the RTIR component 205 and then exit to the lens 3.
  • the angle between the micro-mirror included in the DMD202 and the bottom surface of the opto-mechanical housing is the second rotation angle, the beam rotated and reflected by the DMD202 cannot exit the lens 3.
  • first rotation angle and the second rotation angle can be set in advance, for example, the first rotation angle can be 10 degrees, the second rotation angle can be -10 degrees, or the first rotation angle can be 12 degrees and the second rotation angle The angle can be -12 degrees and so on.
  • the optical machine system 2 may further include a fixing bracket 208, the lens assembly 203 is fixed on the fixing bracket 208, and the fixing bracket 208 is fixed on the bottom surface of the optical machine housing 201.
  • the lens assembly 203 can be fixed to the optical-mechanical housing 201 as a whole through the fixing bracket 208, thereby reducing the number of components assembled with the optical-mechanical housing 201. The number, thereby reducing the cumulative error in the assembly process, to ensure that the spot formed by the beam can completely cover the working area of the DMD202.
  • the lens assembly 203 is integrally fixed by the fixing bracket 208. In this way, when the lens assembly 203 needs to be adjusted, only the fixing bracket 208 needs to be replaced, which avoids the replacement of the optical machine housing 201, which is beneficial to the light Generalization of the housing 201.
  • the optical-mechanical system 2 may also include at least one elastic member and three first fixing members.
  • the first end of the at least one elastic member is connected to the first reflector 204, and the second end of the at least one elastic member is connected to the The bottom surface of the optical machine housing 201 is connected, one end of the three first fixing members passes through the bottom surface of the optical machine housing 201 to contact the first reflector 204, and the three first fixing members are distributed in a triangle shape. Any of the first fixing members can adjust the distance between the first reflector 204 and the bottom surface of the optical machine housing 201.
  • the length of any one of the three first fixing members that protrudes from the bottom surface of the optical engine housing 201 can be adjusted.
  • the first reflector 204 can be located at the other two first fixing members.
  • the straight line of is the rotation axis to rotate to adjust the angle between the first reflector 204 and the bottom surface of the optical machine housing 201, and then adjust the distance between the first reflector 204 and the bottom surface of the optical machine housing 201.
  • At least one elastic member located between the first reflector 204 and the bottom surface of the optical machine housing 201 is in a compressed state, so that the first reflector 204 can realize the first reflection based on the thrust of the three first fixing members. Fixation between the mirror 204 and the bottom surface of the optical engine housing 201.
  • the three first fixing members include one shoulder screw and two adjusting screws, and the three first fixing members are distributed in a right triangle, and the shoulder screws may be distributed at the intersection of the right angle sides.
  • Three elastic pieces can be arranged between the first reflector 204 and the bottom surface of the optical engine housing 201, and the three elastic pieces are all springs, and the three springs can be respectively sleeved on the shoulder screw and the adjusting screw.
  • any one of the two adjustment screws can be adjusted to increase or decrease the distance between the first reflector 204 and the bottom surface of the optical machine housing 201, and then the first reflector can be placed on any one of the Under the tension of the spring on the adjusting screw, the straight line where one shoulder screw and the other adjusting screw are used as the rotation axis is rotated, so as to realize the clamping between the first reflector 204 and the bottom surface of the optical engine housing 201.
  • Angle adjustment since the first reflector 204 and the bottom surface of the optical machine housing 201 are tensioned by three springs, the stability of the first reflector 204 can be ensured after the first reflector 204 is adjusted.
  • the optical machine system 2 may further include a second reflector 206.
  • the lens assembly 203 includes a first lens 2031 and a second lens 2032.
  • the first lens 2031 is a meniscus lens.
  • the second lens 2032 is a biconvex lens, the concave surface of the first lens 2031 faces the first opening end, the first lens 2031 is located between the second mirror 206 and the first opening end, and the second lens 2032 is located between the second mirror 206 and the first opening end.
  • the second mirror 206 is fixed on the inner wall of the optical machine housing 201.
  • the light beam emitted by the light source system 1 can be transmitted to the second mirror 206 through the first lens 2031, and the light beam transmitted by the first lens 2031 can be reflected to the second lens 2032 by the second mirror 206, and the second mirror 206 reflects The latter light beam can be transmitted to the RTIR assembly 205 through the second lens 2032.
  • the light spot formed by the light beam emitted by the light source system 1 may be small.
  • the output light beam of the light source system 1 can be diffused through the first lens 2031 to expand the beam formation The spot area.
  • the second lens 2032 can be used to diffuse the light.
  • the latter beams are condensed to prevent part of the beam from hitting other places of the machine housing 201 or hitting the non-working area of the DMD 202, which can improve the transmission efficiency of the beam and also avoid the local temperature of the machine housing 201 Elevated, causing malfunction of laser projection equipment.
  • the first lens 2031 may be a positive lens or a negative lens, as long as the light beam emitted by the light source system 1 can be diffused, which is not limited in the embodiment of the present disclosure.
  • the fixing bracket 208 is provided with a groove matching the first lens 2031 and the second lens 2032, and the first lens 2031 and the second lens 2032 After being installed in the corresponding grooves, the first lens 2031 and the second lens 2032 can be fixed by means of a cover and rubber above the upper part. Since the upper cover applies pressure to the first lens 2031 and the second lens 2032 respectively through rubber, the stability of the assembly of the first lens 2031 and the second lens 2032 can be ensured.
  • the optical machine system 2 includes the fixing bracket 208, since the first reflector 204 is fixed on the bottom surface of the optical machine housing 201, it is difficult to control the fixing and adjustment of the first reflector 204.
  • the second reflector 206 is adjustable and fixed on the inner wall of the optical machine housing 201, so that the adjustment of the second reflector 206 can be substituted for the adjustment of the first reflector.
  • the first reflector 204 can be fixed on the fixed bracket 208, so that the lens assembly 203 and the first reflector 204 can be fixed on the fixed bracket 208 as a whole, thereby further interacting with the optical machine.
  • the second reflector 206 and the inner wall of the optical machine housing 201 can be fixed in accordance with the fixing method between the first reflector 204 and the bottom surface of the optical machine housing 201.
  • the examples are not repeated here.
  • the optical machine system 2 may further include a first light blocking sheet 207, the first light blocking sheet 207 is fixed on the bottom surface of the optical machine housing 201, and the first light blocking sheet 207 is located on the second reflector 206 Between the second lens 2032 and the second lens 2032, there is an overlap area between the orthographic projection of the first light blocking plate 207 on the second lens 2032 and the second lens 2032.
  • the temperature drift refers to the phenomenon of image displacement in the horizontal or vertical direction of the display screen.
  • the first light blocking sheet 207 can block part of the light beam hitting the lower part of the second lens 2032 to avoid hitting the lower part of the second lens 2032 Part of the light beams are converged and hit on the pressing ring of the lens 3, and then the heat generated by the light beam hitting the first light barrier 207 will be transferred to the optical engine housing 201, thereby avoiding the problem of temperature drift of the lens 3.
  • the first light blocking sheet 207 may be a light blocking sheet provided with an elliptical hole, and when the first light blocking sheet 207 is installed and fixed, the long axis of the elliptical hole may be parallel to the bottom surface of the optical engine housing 201 . Since the outer contour of the second lens 2032 is generally circular, the orthographic projection of the first light blocking sheet 207 on the second lens 2032 can be located at the lower part of the second lens 2032, so that the first light blocking sheet 207 can block the projection. Part of the beam at the lower part of the second lens 2032.
  • the upper part of the first light barrier 207 can be After cutting, the structure of the first light blocking sheet 207 after cutting may be as shown in FIG. 7.
  • first light blocking plate 207 can be placed between the second reflector 206 and the second lens 2032, but can also be placed at other positions, as long as it can prevent part of the light beam from being converged by the second lens 2032 from hitting the lens 3. Just press the ring.
  • first light blocking sheet 207 may be disposed on the side of the second lens 2032 away from the second reflector 206, which is not limited in the embodiment of the present disclosure.
  • the RTIR component 205 may include a wedge-shaped prism 2051 and a plano-convex lens 2052.
  • the wedge-shaped prism 2051 is located between the plano-convex lens 2052 and the DMD202.
  • the first side of the wedge-shaped prism 2051 is parallel to the DMD202.
  • the wedge-shaped prism 2051 The second side surface of the wedge prism 2051 is parallel to the second opening end, and the third side surface of the wedge prism 2051 is glued to the plane of the plano-convex lens 2052.
  • the light beam transmitted by the lens assembly 203 can enter the plano-convex lens 2052 along the convex surface of the plano-convex lens 2052, then be refracted on the convex surface of the plano-convex lens 2052, and exit to the DMD 202 along the first side of the wedge prism 2051.
  • the DMD202 rotates and reflects the refracted beam, and the part of the beam after the rotating reflection is incident on the wedge prism 2051 along the first side of the third wedge prism 2051, and then is totally reflected on the third side of the wedge prism 2051 and follows the wedge shape.
  • the second side of the prism 2051 emits to the lens 3.
  • a first bearing surface, a second bearing surface, and a third bearing surface may be provided on the top surface of the optical machine housing 201, and a wedge prism 2051
  • the second side surface, the first bottom surface and the second bottom surface respectively bear on the first bearing surface, the second bearing surface and the third bearing surface respectively.
  • the third side surface of the wedge prism 2051 is fixed by at least two second The component is fixed on the top surface of the optical engine housing 201.
  • the first bearing surface, the second bearing surface and the third bearing surface may be bearing surfaces arranged along the depth direction of the optical engine housing 201.
  • the second fixing member may be a pressing sheet including two bending surfaces. In this way, the first bending surface of the pressing sheet can be pressed against the third side surface of the wedge prism 2051, and the second bending surface of the pressing sheet can be It is fixedly connected with the bottom surface of the optical engine housing 201, so as to realize the fixing of the wedge prism 2051 by the pressing sheet.
  • the second fixing member may also be other members, as long as the wedge prism 2051 can be fixed on the bottom surface of the optical engine housing 201, which is not limited in the embodiment of the present disclosure.
  • the optical machine system 2 may further include a light guide rod 209, which is fixed on the bottom surface of the optical machine housing 201, and one end of the light guide rod 209 faces the light source system 1. The other end of the light guide rod 209 faces the light incident side of the lens assembly 203.
  • the light guide rod 209 can perform homogenization processing on the light beam emitted by the light source system 1.
  • the light guide rod 209 may be a rectangular light guide rod or a circular light guide rod, that is, the cross section of the channel of the light guide rod 209 may be rectangular or circular. Since the light spot formed by the light beam emitted by the light source system 1 is rectangular, in order to avoid the position of the light guide rod 209 from changing, which will have a greater impact on the light spot formed by the light beam, the light guide rod 209 can be fixedly arranged in the light machine housing 201 Underside.
  • the light guide rod 209 can be fixed with a fixed rear end, that is, for light guide The end of the rod 209 facing the lens assembly 203 is fixed.
  • a fourth bearing surface and a fifth bearing surface can be provided on the bottom surface of the optical engine housing 201, and then the side surfaces of the light guide rod 209 are supported against the bottom surface and the fourth bearing surface of the optical engine housing 201, The end of the light guide rod 209 facing the light incident side of the lens assembly 203 is supported on the fifth bearing surface, and then glue is dispensed between the bottom surface of the optical machine housing 201 and the light guide rod 209, and passes through the first
  • the two fixing members fixedly connect the light guide rod 209 with the bottom surface of the light machine housing 201, so as to realize the fixation of the light guide rod 209.
  • a third light blocking can be provided at the front end of the light guide rod 209, that is, the end of the light guide rod 209 facing the first opening end.
  • the ineffective part of the front end of the light guide rod 209 can be shielded by the third shielding sheet, ensuring that only the inner diameter of the front end of the light guide rod 209 is effective, so that all the light emitted by the light source system 1 can pass through the light guide rod 209 , It can prevent the stray light of the external environment from entering the light guide rod 209 through the invalid part of the light guide rod 209, thereby improving the homogenization effect of the light beam.
  • the size of the cross-section of the channel of the light guide rod 209 can be in a preset ratio to the size of the working area of the DMD202, so as to ensure that the light beam transmitted by the lens assembly 203 can exactly cover the working area of the DMD202, thereby ensuring the The imaging effect of the laser projection equipment, while avoiding the light beam hitting the non-working area of DMD202, causing the temperature of the non-working area of DMD202 to rise.
  • the optomechanical system 2 may further include a galvanometer 210.
  • the galvanometer 210 is fixed on the bottom surface of the optomechanical housing 201 and is located at the second part of the RTIR assembly 205 and the optomechanical housing 201. Between the open ends, the galvanometer 210 is parallel to the second open end of the optical engine housing 201.
  • the galvanometer 210 can make the projected picture achieve 4k resolution.
  • the pixel arrangement of the projection screen realized by the DMD202 can be as shown in FIG. 10, and the galvanometer 210 can deflect the pixel points of the projection screen of the DMD202 by a certain angle through vibration, as shown in FIG. 11. After the two are superimposed, the arrangement of the pixels of the picture presented on the image can be as shown in FIG. 12, so as to realize the 4K resolution of the projection picture.
  • the galvanometer 210 since the galvanometer 210 is provided with two shorter ear plates and two longer ear plates along a direction perpendicular to the mirror surface, the four ear plates are all provided with Therefore, two positioning posts corresponding to the two shorter ear plates one-to-one and two threaded holes corresponding to the two longer ear plates one-to-one can be arranged along the depth direction in the optical machine housing 201, In this way, the two shorter ear plates on the galvanometer 210 can be correspondingly sleeved on the two positioning posts, and the two longer ear plates can be fixedly connected to the corresponding two threaded holes through the positioning piece, so as to realize the depth of the galvanometer 210.
  • the fixation of the direction can avoid the mechanical vibration of the opto-mechanical housing 201 caused by vibration, at the same time reduce the fixing process of the galvanometer 210, and improve the fixing efficiency of the galvanometer 210.
  • the optical engine system 2 may also include In the galvanometer bracket shown in 15, the galvanometer bracket is provided with a through hole that matches the lens of the galvanometer 210, and the galvanometer 210 and the galvanometer bracket are fixed by four through holes on the galvanometer 210, and then the galvanometer The bracket is fixed to the bottom surface of the optical engine housing 201 to realize the fixing of the galvanometer 210 along the depth direction of the optical engine housing 201.
  • the optical machine system 2 may further include a second light blocking sheet 211, and the second light blocking sheet 211 is fixed on the optical engine.
  • the second light blocking sheet 211 is located between the galvanometer 210 and the RTIR assembly 205, and the second light blocking sheet 211 is used to block the light beam that cannot be emitted to the lens 3 after the DMD 202 is rotated and reflected.
  • the part of the light beam that cannot be emitted to the lens 3 can hit the second light blocking sheet 211, so that the heat generated by this part of the light beam is absorbed by the second light blocking sheet 211, and the generated heat is transferred to the optical machine housing 201.
  • the temperature rise that may occur in the galvanometer 210 is avoided.
  • the structure diagram of the second light blocking sheet 211 may be an L-shaped structure as shown in FIG. 16.
  • the bent portion of the short side of the second light blocking sheet 211 is fixed to the optical engine housing 201, and the second light blocking sheet 211 Both the short side and the long side can be attached to the galvanometer 210 to block the light beam that cannot be emitted to the light outlet of the optical engine housing 201 after the DMD 202 is rotated and reflected.
  • the second light blocking sheet 211 may also have other structures, which are not limited in the embodiment of the present disclosure.
  • orientation nouns involved in the embodiments of the present disclosure are based on the orientations shown in the corresponding drawings in FIG. 1, FIG. 2, FIG. 5, FIG. 8 and FIG. 10. They are only used to explain the laser projection equipment. The structure does not have a limited meaning.
  • the structure of the optical machine system can be simplified after the optical machine system is assembled by the optical machine housing, lens assembly, RTIR component, and DMD.
  • the volume is more compact.
  • the light source system is connected to the first open end of the optical mechanical system, and the lens is connected to the second open end of the optical mechanical system, so that the volume of the laser projection device can be made more compact, thereby facilitating the miniaturization of the laser projection device.
  • the lens assembly and the reflector included in the optomechanical system are fixed in the optomechanical housing through the fixing bracket, it can be ensured that the lens assembly and the reflector are fixed to the optomechanical housing as a whole, reducing the number of components fixed to the optomechanical housing.
  • the quantity ensures the accuracy of the optical machine system assembly.
  • the optomechanical system needs to be optimized, only the structure of the fixed bracket needs to be replaced and optimized, and the entire optomechanical housing does not need to be replaced, which is beneficial to the generalization of the optomechanical housing.
  • FIG. 17 illustrates a schematic structural diagram of an optical engine according to an embodiment of the present disclosure
  • FIG. 2 illustrates a schematic sectional structure diagram of an optical engine system according to an embodiment of the present disclosure
  • the optical engine may include: a light source system 1 and an optical engine system 2.
  • the optical engine system 2 includes an optical engine housing 201, a digital micromirror device DMD202, a lens assembly 203, a first mirror 204, and a refraction
  • the total reflection RTIR component 205, the light source system 1 is a three-color laser system, and the light source system 1 is connected to the first open end of the optomechanical housing 201, and the DMD 202 is arranged on the top surface of the optomechanical housing 201 and is connected to the optomechanical housing
  • the second open end of 201 is vertical
  • the lens assembly 203 and the first reflector 204 are both fixed on the bottom surface of the optical machine housing 201
  • the RTIR assembly 205 is fixed on the top surface of the optical machine housing 201
  • the light entrance side of the lens assembly 203 Towards the first open end, the first reflector 204 is located under the RTIR assembly 205, the RTIR assembly 205 is located under the DMD202, the light exit side of the RTIR assembly 205 faces the second open end,
  • the light beam emitted from the light source system 1 is transmitted to the first reflector 204 through the lens assembly 203, the transmitted light beam is reflected to the RTIR assembly 205 through the first reflector 204, and the reflected light beam is refracted to the DMD 202 through the RTIR assembly 205.
  • the refracted light beam The DMD202 is rotated and reflected to the RTIR assembly 205, and the beam after the rotation and reflection is totally reflected by the RTIR assembly 205 to the second open end.
  • the structure of the light source system 1 and the opto-mechanical system 2 may be the same as or similar to those described in the above-mentioned embodiments, and the description of the embodiments of the present disclosure will not be repeated here.
  • the RTIR component has the advantage of small size
  • the structure of the optical machine system can be simplified after the optical machine system is assembled by the optical machine housing, lens assembly, RTIR component, and DMD.
  • the volume is more compact.
  • the included angle between the first reflector and the bottom surface of the opto-mechanical housing is adjustable, the position of the first reflector is adjusted to ensure that the light spot formed by the beam refracted by the RTIR component can completely cover the DMD Workspace.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

一种激光投影设备包括:光源***(1)、光机***(2)和镜头(3),光机***(2)包括光机壳体(201)、DMD(202)、透镜组件(203)、第一反射镜(204)和RTIR组件(205),光源***(1)与光机壳体(201)的第一开口端连接,镜头(3)与所述光机壳体(201)的第二开口端连接,第一反射镜(204)与光机壳体(201)的底面之间的夹角可调。

Description

激光投影设备
相关申请的交叉引用
本申请要求2019年06月03日提交中国专利局、申请号为201910477469.7、申请名称为“激光投影设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及投影技术领域,特别涉及一种激光投影设备。
背景技术
激光投影设备为一种用以产生投影画面的显示设备。目前激光投影设备中主要包括光源***、光机***和镜头,光源***用于为光机***提供光束,光机***用于对光源***提供的光束进行调制,将调制后的光束出射至镜头以得到投影画面。
由于光机***是激光投影设备的核心部件,所以光机***的尺寸大小很大程度上决定着激光投影设备的尺寸大小,因此需要对光机***的结构进行调整,进而在减小光机***的尺寸的情况下减小激光投影设备的尺寸。
发明内容
本公开提供了一种激光投影设备,可以解决激光投影设备尺寸较大的问题。所述技术方案如下:
一方面,本公开提供了一种激光投影设备,所述激光投影设备包括:光源***、光机***和镜头,所述光机***包括光机壳体、DMD(Digital Micromirror Device,数字微镜器件)、透镜组件、第一反射镜和折射全反射RTIR(Refraction Total Internal Reflection,折射全反射)组件;
所述光源***与所述光机壳体的第一开口端连接,所述镜头与所述光机壳体的第二开口端连接,所述第一开口端与所述第二开口端相互垂直或平行;
所述DMD设置在所述光机壳体的顶面,且与所述第二开口端垂直,所述 透镜组件和所述第一反射镜均固定在所述光机壳体的底面上,所述RTIR组件固定在所述光机壳体的顶面,所述透镜组件的入光侧朝向所述第一开口端,所述第一反射镜位于所述RTIR组件的下方,所述RTIR组件位于所述DMD的下方,所述RTIR组件的出光侧朝向所述第二开口端,且所述第一反射镜与所述光机壳体的底面之间的夹角可调;
所述光源***出射的光束经所述透镜组件透射至所述第一反射镜,透射后的光束经所述第一反射镜反射至所述RTIR组件,反射后的光束经所述RTIR组件折射至所述DMD,折射后的光束经所述DMD旋转反射至所述RTIR组件,旋转反射后的光束经所述RTIR组件全反射至所述镜头。
另一方面,本公开提供了一种光学引擎,所述光学引擎包括:光源***和光机***,所述光机***包括光机壳体、DMD、透镜组件、第一反射镜和RTIR组件;
所述光源***与所述光机壳体的第一开口端连接,所述镜头与所述光机壳体的第二开口端连接;
所述DMD设置在所述光机壳体的顶面,且与所述光机壳体第二开口端垂直,所述透镜组件和所述第一反射镜均固定在所述光机壳体的底面上,所述RTIR组件固定在所述光机壳体的顶面,所述透镜组件的入光侧朝向所述第一开口端,所述第一反射镜位于所述RTIR组件的下方,所述RTIR组件位于所述DMD的下方,所述RTIR组件的出光侧朝向所述第二开口端,且所述第一反射镜与所述光机壳体的底面之间的夹角可调;
所述光源***出射的光束经所述透镜组件透射至所述第一反射镜,透射后的光束经所述第一反射镜反射至所述RTIR组件,反射后的光束经所述RTIR组件折射至所述DMD,折射后的光束经所述DMD旋转反射至所述RTIR组件,旋转反射后的光束经所述RTIR组件全反射至所述第二开口端。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的一种激光投影设备的结构示意图;
图2是本公开实施例提供的一种光机***的剖面结构示意图;
图3是本公开实施例提供的一种光源***的结构示意图;
图4是本公开实施例提供的一种固定支架的结构示意图;
图5是本公开实施例提供的一种光机***的结构示意图;
图6是本公开实施例提供的一种第二反射镜固定的***结构示意图;
图7是本公开实施例提供的一种第一挡光片的结构示意图;
图8是本公开实施例提供的一种光机***的***结构示意图;
图9是本公开实施例提供的另一种光机***的结构示意图;
图10是本公开实施例提供的一种投影画面的像素分布图;
图11是本公开实施例提供的另一种投影画面的像素分布图;
图12是本公开实施例提供的又一种投影画面的像素分布图;
图13是本公开实施例提供的一种振镜的结构示意图;
图14是本公开实施例提供的另一种振镜的结构示意图;
图15是本公开实施例提供的一种支架的结构示意图;
图16是本公开实施例提供的一种第二挡片的结构示意图;
图17是本公开实施例提供的一种光学引擎的结构示意图。
附图标记:
1:光源***;2:光机***;3:镜头;
201:光机壳体;202:DMD;203:透镜组件;2031:第一透镜;2032:第二透镜;204:第一反射镜;205:RTIR组件;2051:楔形棱镜;2052:平凸透镜;206:第二反射镜;207:第一挡光片;208:固定支架;209:导光棒;210:振镜;211:第二挡光片。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
图1示例了本公开实施例的一种激光投影设备的结构示意图,图2示例了本公开实施例的一种光机***的剖面结构示意图。如图1和图2所示,激光投影设备包括:光源***1、光机***2和镜头3,光机***2包括光机壳体201、DMD202、透镜组件203、第一反射镜204和RTIR组件205,光源***1与光机壳体201的第一开口端连接,镜头3与光机壳体201的第二开口 端连接,第一开口端与第二开口端相互垂直或平行。
DMD202设置在光机壳体201的顶面,且与第二开口端垂直,透镜组件203和第一反射镜204均固定在光机壳体201的底面上,RTIR组件205固定在光机壳体201的顶面,透镜组件203的入光侧朝向第一开口端,第一反射镜204位于RTIR组件205的下方,RTIR组件205位于DMD202的下方,RTIR组件205的出光侧朝向第二开口端,且第一反射镜204与光机壳体201的底面之间的夹角可调。光源***1出射的光束经透镜组件203透射至第一反射镜204,透射后的光束经第一反射镜204反射至RTIR组件205,反射后的光束经RTIR组件205折射至DMD202,折射后的光束经DMD202旋转反射至RTIR组件205,旋转反射后的光束经RTIR组件205全反射至镜头3。
本公开实施例中,由于RTIR组件205具有体积小的优点,因此,在通过光机壳体201、透镜组件203、RTIR组件205和DMD202装配得到光机***2后,能够使得光机***2的结构更为简化,体积更为紧凑。这样,在光机***2的第一开口端连接光源***1,在光机***2的第二开口端连接镜头3后能够使得激光投影设备的体积更为紧凑,进而利于激光投影设备的小型化。另外,由于第一反射镜204与光机壳体201的底面之间的夹角可调,这样,对第一反射镜204的位置进行调整,以保证经RTIR组件205折射后的光束形成的光斑能够完全覆盖DMD202的工作区。
其中,光源***1为三色激光***,作为一种示例,三色激光***可以包括绿色激光器、红色激光器和蓝色激光器,这样,可以直接通过这三个激光器出射红绿蓝三色的光束。在一些实施例中,如图3所示,三色激光***可以为三色MCL(Multi-Chip Laser,多芯片激光)激光器,具体包括位于第一行的绿色激光器、位于第二行的蓝色激光器、以及分别位于第三行和第四行的红色激光器。镜头3可以由一系列的透镜组成,以保证光机***2出射的光束在经镜头3进行透射后,光束在屏幕上的投影效果。
本公开实施例中,光机壳体201包括通过模具成型的方式得到的开口壳体,以及对开口壳体进行密封的盖板。在将透镜组件203和第一反射镜204固定装配在开口壳体的底面,且将DMD202和RTIR组件205固定在盖板上,也即是固定在光机壳体201的顶面后,通过盖板对开口壳体进行密封,以得到光机***2。当然,光机壳体201也可以通过其他方式得到,只要能够实现透镜组件203、RTIR组件205和DMD202构件的固定装配即可,本公开实施 例对此不做限定。
本公开实施例中,如图2所示,DMD202设置在光机壳体201的顶面时,需要在光机壳体201的顶面设置透光口,以保证DMD202在与光机壳体201的外壁连接后朝向光机壳体201的内部。在一些实施例中,可以通过模具成型的方式在光机壳体201的盖板上形成透光口,从而能够保证透光口的位置的准确度,进而在装配DMD202时提高DMD202的装配精度,避免后续单独对透光口加工时,因加工误差造成的透光口的偏差,从而造成DMD202的安装误差。
在通过DMD202对RTIR组件205折射后的光束进行旋转反射时,在一些实施例中,DMD202包括的微反射镜与光机壳体的底面之间的夹角为第一旋转角度时,DMD202旋转反射后的光束可以经RTIR组件205全反射后出射至镜头3,DMD202包括的微反射镜与光机壳体的底面之间的夹角为第二旋转角度时,DMD202旋转反射的光束不能出射至镜头3。
其中,第一旋转角度和第二旋转角度可以预先进行设置,比如,第一旋转角度可以为10度,第二旋转角度可以为-10度,或者第一旋转角度可以为12度,第二旋转角度可以为-12度等。
本公开实施例中,如图4和图5所示,光机***2还可以包括固定支架208,透镜组件203固定在固定支架208上,固定支架208固定在光机壳体201的底面上。
在装配光机壳体上装配构件时,不可避免地会出现装配误差,尤其是光机***包括的构件较多时,很容易因为误差的累积而造成使光机***的光路产生偏差,进而造成光束形成的光斑不能完全覆盖DMD202的工作区域。因此,本公开实施例中,在光机***在装配过程,可以通过固定支架208将透镜组件203作为一个整体与光机壳体201进行固定,从而减少与光机壳体201之间装配的构件数量,进而降低了装配过程中的累积误差,保证光束形成的光斑能够完全覆盖DMD202的工作区。
另外,透镜组件203通过固定支架208进行整体固定,这样,在需要对透镜组件203进行调整时,只需要对固定支架208进行更换即可,避免了对光机壳体201的更换,有利于光机壳体201的通用化。
在一些实施例中,光机***2还可以包括至少一个弹性件和三个第一固定构件,至少一个弹性件的第一端与第一反射镜204连接,至少一个弹性件 的第二端与光机壳体201的底面连接,三个第一固定构件的一端穿过光机壳体201的底面与第一反射镜204接触,三个第一固定构件呈三角形分布,三个第一固定构件中的任一第一固定构件能够调整第一反射镜204与光机壳体201的底面之间的距离。
也即是,可以对三个第一固定构件中的任一第一固定构件伸出光机壳体201的底面的长度进行调整,此时第一反射镜204可以以另外两个第一固定构件所在的直线为旋转轴进行旋转,从而调整第一反射镜204与光机壳体201的底面之间的夹角,进而调整第一反射镜204与光机壳体201的底面之间的距离。
其中,位于第一反射镜204与光机壳体201的底面之间的至少一个弹性件均处于压缩状态,这样第一反射镜204可以基于三个第一固定构件的推力作用下实现第一反射镜204与光机壳体201的底面之间的固定。
作为一种示例,三个第一固定构件包括一个轴肩螺钉和两个调节螺钉,且三个第一固定构件呈直角三角形分布,轴肩螺钉可以分布在直角边的交点。第一反射镜204与光机壳体201的底面之间可以设置三个弹性件,这三个弹性件均为弹簧,且这三个弹簧可以分别套在轴肩螺钉和调节螺钉上,这样,可以对两个调节螺钉中的任一调节螺钉进行调整,以增大或缩小第一反射镜204与光机壳体201的底面之间的距离,之后第一反射镜可以在套在该任一调节螺钉上的弹簧的拉紧作用下,以一个轴肩螺钉和另一个调节螺钉所在的直线为旋转轴进行旋转,从而实现对第一反射镜204与光机壳体201的底面之间的夹角的调整。另外,由于第一反射镜204与光机壳体201的底面之间通过三个弹簧拉紧,从而能够在对第一反射镜204进行调整后,保证第一反射镜204的稳定性。
本公开实施例中,如图4和图5所示,光机***2还可以包括第二反射镜206,透镜组件203包括第一透镜2031和第二透镜2032,第一透镜2031为凹凸透镜,第二透镜2032为双凸透镜,第一透镜2031的凹面朝向第一开口端,第一透镜2031位于第二反射镜206和第一开口端之间,第二透镜2032位于第二反射镜206和第一反射镜204之间,第二反射镜206固定在光机壳体201的内壁。这样,光源***1出射的光束经第一透镜2031可以透射至第二反射镜206,第一透镜2031透射后的光束经第二反射镜206可以反射至第二透镜2032,第二反射镜206反射后的光束经第二透镜2032可以透射至RTIR 组件205。
其中,光源***1出射的光束形成的光斑可能较小,为了保证光束形成的光斑能够完全覆盖DMD202的工作区域,可以通过第一透镜2031对光源***1的出射光束进行扩散处理,以扩大光束形成的光斑面积。第一透镜2031对光源***1出射的光束进行扩散处理后,为了避免光束形成的光斑面积过大,导致光束形成的光斑覆盖在DMD202的非工作区域,此时可以通过第二透镜2032对扩散处理后的光束进行汇聚处理,以避免部分光束打在光机壳体201的其他地方,或者打在DMD202的非工作区域,从而能够提高光束的传递效率,还可以避免光机壳体201局部温度的升高,造成激光投影设备发生的故障。
其中,第一透镜2031可以为正透镜,也可以为负透镜,只要可以对光源***1出射的光束实现扩散处理即可,本公开实施例对此不做限定。在固定支架208上固定第一透镜2031和第二透镜2032时,固定支架208上设置有与第一透镜2031和第二透镜2032相匹配的凹槽,在将第一透镜2031和第二透镜2032分别安装在对应的凹槽后,可以在第一透镜2031和第二透镜2032的上部以上盖和橡胶的方式实现固定。由于上盖通过橡胶分别对第一透镜2031和第二透镜2032施加压力,从而能够保证第一透镜2031和第二透镜2032装配的稳固性。
需要说明的是,当光机***2包括固定支架208时,由于第一反射镜204固定在光机壳体201的底面,导致对第一反射镜204的固定及调节不易控制。在一些实施例中,第二反射镜206可调整的固定在光机壳体201的内壁,这样,可以通过对第二反射镜206的调整,替代对第一反射镜的调整。
在通过对第二反射镜206调整时,第一反射镜204可以固定在固定支架208上,这样可以将透镜组件203和第一反射镜204作为整体固定在固定支架208上,从而进一步与光机壳体201装配的构件的数量。
其中,如图6所示,第二反射镜206与光机壳体201的内壁之间,可以按照第一反射镜204与光机壳体201的底面之间的固定方式进行固定,本公开实施例在此不再赘述。
需要说明的是,在通过第二透镜2032对扩散处理后的光束进行汇聚处理后,依旧有部分光束可能会打在镜头3的压环上,从而可能会引起镜头3的温度过高,进而造成镜头3发生温漂的问题。因此,如图5所示,光机***2 还可以包括第一挡光片207,第一挡光片207固定在光机壳体201的底面,第一挡光片207位于第二反射镜206和第二透镜2032之间,第一挡光片207在第二透镜2032上的正投影与第二透镜2032存在重叠区域。其中,温漂是指显示画面在水平或垂直方向上存在图像移位的现象。
在第一透镜2031和第二透镜2032之间设置第一挡光片207后,可以通过第一挡光片207遮挡打在第二透镜2032下部的部分光束,从而避免打在第二透镜2032下部的部分光束进行汇聚后打在镜头3的压环上,之后打在第一挡光片207上的光束产生的热量会传递至光机壳体201,从而避免镜头3发生温漂的问题。
在一些实施例中,第一挡光片207可以为设置有椭圆孔的挡光片,且在安装固定第一挡光片207时,椭圆孔的长轴可以与光机壳体201的底面平行。由于第二透镜2032的外轮廓一般为圆形,这样,第一挡光片207在第二透镜2032上的正投影可以位于第二透镜2032的下部,从而可以通过第一挡光片207遮挡打在第二透镜2032的下部的部分光束。
需要说明的是,在安装固定第一挡光片207时,由于光机壳体201的顶部需要设置盖板,为了避免第一挡光片207的限制,可以对第一挡光片207的上部进行切除,切除后的第一挡光片207的结构可以如图7所示。
另外,第一挡光片207除了可以设置在第二反射镜206和第二透镜2032之间,还可以设置在其他位置,只要能够避免经第二透镜2032汇聚处理后的部分光束打在镜头3压环上即可。比如,第一挡光片207可以设置在第二透镜2032上远离第二反射镜206的一侧,本公开实施例对此不做限定。
本公开实施例中,如图8所示,RTIR组件205可以包括楔形棱镜2051和平凸透镜2052,楔形棱镜2051位于平凸透镜2052与DMD202之间,楔形棱镜2051的第一侧面与DMD202平行,楔形棱镜2051的第二侧面与第二开口端平行,楔形棱镜2051的第三侧面与平凸透镜2052的平面胶合。
这样,经透镜组件203透射后的光束可以沿平凸透镜2052的凸面入射至平凸透镜2052,之后在平凸透镜2052的凸面进行折射,并沿楔形棱镜2051的第一侧面出射至DMD202。DMD202对折射后的光束进行旋转反射,并将旋转反射后的部分光束沿第三楔形棱镜2051的第一侧面入射至楔形棱镜2051,之后在楔形棱镜2051的第三侧面发生全反射,并沿楔形棱镜2051的第二侧面出射至镜头3。
其中,为了保证RTIR组件205的安装精度,在一些实施例中,光机壳体201的顶面上可以设置有第一承靠面、第二承靠面和第三承靠面,楔形棱镜2051的第二侧面、第一底面和第二底面分别对应承靠在第一承靠面、第二承靠面和第三承靠面上,楔形棱镜2051的第三侧面通过至少两个第二固定构件固定在光机壳体201的顶面。
其中,第一承靠面、第二承靠面和第三承靠面可以为沿光机壳体201的深度方向设置的承靠面。第二固定构件可以为包括有两个弯折面的压紧片,这样,压紧片的第一弯折面可以压在楔形棱镜2051的第三侧面,压紧片的第二弯折面可以与光机壳体201的底面固定连接,从而实现压紧片对楔形棱镜2051的固定。当然,第二固定构件也可以为其他构件,只要可以将楔形棱镜2051固定在光机壳体201的底面即可,本公开实施例对此不做限定。
本公开实施例中,如图5或图8所示,光机***2还可以包括导光棒209,导光棒209固定在光机壳体201的底面,导光棒209的一端朝向光源***1,导光棒209的另一端朝向透镜组件203的入光侧。
其中,导光棒209可以对光源***1出射的光束进行匀光处理。导光棒209可以为矩形导光棒或者圆形导光棒,也即是导光棒209的通道的截面可以为矩形或者圆形。由于光源***1出射的光束形成的光斑为矩形状,这样,为了避免导光棒209位置变动,对光束形成的光斑造成较大的影响,导光棒209可以固定设置在光机壳体201的底面。在一些实施例中,由于导光棒209上朝向透镜组件203的一端对匀光后出射的光束更为敏感,因此导光棒209可以采用后端固定的方式进行固定,也即是针对导光棒209上朝向透镜组件203的一端进行固定。比如,可以在光机壳体201的底面设置第四承靠面和第五承靠面,之后将导光棒209的侧面承靠在光机壳体201的底面和第四承靠面上,并将导光棒209上朝向透镜组件203的入光侧的一端承靠在第五承靠面上,之后,在光机壳体201的底面与导光棒209之间点胶,并通过第二固定构件将导光棒209与光机壳体201的底面固定连接,从而实现导光棒209的固定。
进一步地,在通过导光棒209对光源***1出射的光束进行匀光处理时,可以在导光棒209的前端,也即是导光棒209上朝向第一开口端的一端设置第三挡光片,从而可以通过第三遮挡片遮挡导光棒209的前端的无效部分,保证仅导光棒209的前端的内口径起作用,这样既能使光源***1发出的光 全部通过导光棒209,又能防止外界环境的杂散光通过导光棒209的无效部位进入导光棒209,从而提高光束的匀化效果。
需要说明的是,导光棒209的通道的截面的尺寸可以和DMD202的工作区域的尺寸呈预设比例,以保证经透镜组件203透射后的光束正好能够覆盖DMD202的工作区域,从而能够保证该激光投影设备的成像效果,同时避免因光束打在DMD202的非工作区域,造成DMD202的非工作区域的温度的升高。
本公开实施例中,如图9所示,光机***2还可以包括振镜210,振镜210固定在光机壳体201的底面,且位于RTIR组件205与光机壳体201的第二开口端之间,振镜210与光机壳体201的第二开口端平行。
其中,振镜210可以使得投影的画面实现4k分辨率。在一些实施例中,通过DMD202实现的投影画面的像素点排布可以如图10所示,振镜210可以通过振动将DMD202投影画面的像素点偏转一定角度,如图11所示,这样,在两者进行叠加后,在图像上呈现的画面的像素点的排布可以如图12所示,从而实现投影画面的4K分辨率。
在一些实施例中,如图13所示,由于振镜210沿与镜面垂直的方向设置有两个较短的耳板和两个较长的耳板,这四个耳板上均设置有通孔,因此可以在光机壳体201内沿深度方向设置与两个较短的耳板一一对应的两个定位柱,以及与两个较长的耳板一一对应的两个螺纹孔,这样振镜210上两个较短的耳板可以对应套在两个定位柱上,较长的两个耳板可以通过定位件与对应的两个螺纹孔固定连接,以实现振镜210沿深度方向的固定,从而能够避免在振动时引起的光机壳体201的机振,同时减少了振镜210的固定工序,提高了振镜210的固定效率。
在另一些实施例中,如图14所示,振镜210上设置有四个贯穿孔,为了实现振镜210沿光机壳体201的深度方向的固定,光机***2还可以包括如图15所示的振镜支架,振镜支架上设置有与振镜210的镜片匹配的通孔,通过振镜210上的四个贯穿孔实现振镜210与振镜支架的固定,之后将振镜支架与光机壳体201的底面固定,实现振镜210沿光机壳体201的深度方向的固定。这样,在需要更换振镜210时,仅需要将振镜支架和振镜210作为整体进行更换即可,不需要对光机壳体201进行更换,从而有利于光机壳体201的通用化。
需要说明的是,由于DMD202在位于第二旋转角度时,经DMD202旋转反射后的光束不能出射至镜头3,此时该部分光束可能会打在振镜上,从而很容易造成振镜210温度升高,从而影响振镜210的可靠性,降低投影画面的4K效果,因此,如图9所示,光机***2还可以包括第二挡光片211,第二挡光片211固定在光机壳体201的底面,第二挡光片211位于振镜210与RTIR组件205之间,第二挡光片211用于遮挡DMD202旋转反射后不能出射至镜头3的光束。
不能出射至镜头3的这部分光束可以打在第二挡光片211上,以使这部分光束产生的热量被第二挡光片211吸收,进而将产生的热量传递至光机壳体201,避免了振镜210可能发生的温度升高现象。
其中,第二挡光片211的结构图可以如图16所示L形结构,第二挡光片211的短边的弯折部分与光机壳体201固定,且第二挡光片211的短边和长边均可以贴合在振镜210上,以遮挡DMD202旋转反射后不能出射至光机壳体201的出光口的光束。当然,第二挡光片211还可以为其他结构,本公开实施例对不做限定。
需要说明的是,本公开实施例中所涉及的方位名词以图1、图2、图5、图8和图10中对应附图所示的方位为准,仅仅是用来解释激光投影设备的结构,并不具有限定的含义。
本公开实施例中,由于RTIR组件具有体积小的优点,因此,在通过光机壳体、透镜组件、RTIR组件和DMD装配得到的光机***后,能够使得光机***的结构更为简化,体积更为紧凑。这样,在光机***的第一开口端连接光源***,在光机***的第二开口端连接镜头后能够使得激光投影设备的体积更为紧凑,进而利于激光投影设备的小型化。由于光机***包括的透镜组件和反射镜通过固定支架固定在光机壳体内,从而可以保证透镜组件和反射镜作为一个整体与光机壳体固定,减少了与光机壳体固定的构件的数量,保证了光机***装配的准确性。另外,在需要对光机***进行优化时,只需要对固定支架这一结构进行更换优化即可,不需要对整个光机壳体进行更换,从而有利于光机壳体的通用化。
图17示例了本公开实施例的一种光学引擎的结构示意图,图2示例了本公开实施例的一种光机***的剖面结构示意图。如图2和图17所示,光学引擎可以包括:光源***1和光机***2,光机***2包括光机壳体201、数字 微镜器件DMD202、透镜组件203、第一反射镜204和折射全反射RTIR组件205,光源***1为三色激光***,且光源***1与光机壳体201的第一开口端连接,DMD202设置在光机壳体201的顶面,且与光机壳体201的第二开口端垂直,透镜组件203和第一反射镜204均固定在光机壳体201的底面上,RTIR组件205固定在光机壳体201的顶面,透镜组件203的入光侧朝向第一开口端,第一反射镜204位于RTIR组件205的下方,RTIR组件205位于DMD202的下方,RTIR组件205的出光侧朝向第二开口端,且第一反射镜204与光机壳体201的底面之间的夹角可调。光源***1出射的光束经透镜组件203透射至第一反射镜204,透射后的光束经第一反射镜204反射至RTIR组件205,反射后的光束经RTIR组件205折射至DMD202,折射后的光束经DMD202旋转反射至RTIR组件205,旋转反射后的光束经RTIR组件205全反射至第二开口端。
需要说明的是,光源***1,以及光机***2的结构可以和上述实施例所述的相同或相似,本公开实施例在此不再赘述。
本公开实施例中,由于RTIR组件具有体积小的优点,因此,在通过光机壳体、透镜组件、RTIR组件和DMD装配得到的光机***后,能够使得光机***的结构更为简化,体积更为紧凑。这样,在光机***的第一开口端连接光源***后能够使得光学引擎的体积更为紧凑,进而利于光学引擎的小型化。另外,由于第一反射镜与光机壳体的底面之间的夹角可调,这样,对第一反射镜的位置进行调整,以保证经RTIR组件折射后的光束形成的光斑能够完全覆盖DMD的工作区。
以上所述仅为本公开的说明性实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (10)

  1. 一种激光投影设备,包括:光源***、光机***和镜头,所述光机***包括光机壳体、数字微镜器件DMD、透镜组件、第一反射镜和折射全反射RTIR组件;
    所述光源***与所述光机壳体的第一开口端连接,所述镜头与所述光机壳体的第二开口端连接,所述第一开口端与所述第二开口端相互垂直或平行;
    所述DMD设置在所述光机壳体的顶面,且与所述第二开口端垂直,所述透镜组件和所述第一反射镜均固定在所述光机壳体的底面上,所述RTIR组件固定在所述光机壳体的顶面,所述透镜组件的入光侧朝向所述第一开口端,所述第一反射镜位于所述RTIR组件的下方,所述RTIR组件位于所述DMD的下方,所述RTIR组件的出光侧朝向所述第二开口端,且所述第一反射镜与所述光机壳体的底面之间的夹角可调。
  2. 如权利要求1所述的激光投影设备,所述光机***还包括第二反射镜,所述透镜组件包括第一透镜和第二透镜;
    所述第一透镜为凹凸透镜,所述第二透镜为双凸透镜,所述第一透镜的凹面朝向所述第一开口端,所述第一透镜位于所述第二反射镜和所述第一开口端之间,所述第二透镜位于所述第二反射镜和所述第一反射镜之间,所述第二反射镜固定在所述光机壳体的内壁;
    所述光源***出射的光束经所述第一透镜透射至所述第二反射镜,所述第一透镜透射后的光束经所述第二反射镜反射至所述第二透镜,所述第二反射镜反射后的光束经所述第二透镜透射至所述RTIR组件。
  3. 如权利要求2所述的激光投影设备,所述光机***还包括第一挡光片,所述第一挡光片固定在所述光机壳体的底面,所述第一挡光片位于所述第二反射镜和所述第二透镜之间,所述第一挡光片在所述第二透镜上的正投影与所述第二透镜存在重叠区域。
  4. 如权利要求1所述的激光投影设备,所述光机***还包括至少一个弹性件和三个第一固定构件;
    所述至少一个弹性件的第一端与所述第一反射镜连接,所述至少一个弹性件的第二端与所述光机壳体的底面连接,所述三个第一固定构件的一端穿过所述光机壳体的底面与所述第一反射镜接触,所述三个第一固定构件呈三角形分布,所述三个第一固定构件中的任一第一固定构件能够调整所述第一 反射镜与所述光机壳体的底面之间的距离。
  5. 如权利要求1-4任一所述的激光投影设备,所述RTIR组件包括楔形棱镜和平凸透镜;
    所述楔形棱镜位于所述平凸透镜与所述DMD之间,所述楔形棱镜的第一侧面与所述DMD平行,所述楔形棱镜的第二侧面与所述第二开口端平行,所述楔形棱镜的第三侧面与所述平凸透镜的平面胶合。
  6. 如权利要求5所述的激光投影设备,所述光机壳体的顶面上设置有第一承靠面、第二承靠面和第三承靠面,所述楔形棱镜的第二侧面、第一底面和第二底面分别对应承靠在所述第一承靠面、所述第二承靠面和所述第三承靠面上,所述楔形棱镜的第三侧面通过至少两个第二固定构件固定在所述光机壳体的顶面。
  7. 如权利要求1所述的激光投影设备,所述光机***还包括固定支架,所述透镜组件固定在所述固定支架上,所述固定支架固定在所述光机壳体的底面上。
  8. 如权利要求1所述的激光投影设备,所述光机***还包括导光棒,所述导光棒固定在所述光机壳体的底面,所述导光棒的一端朝向所述光源***,所述导光棒的另一端朝向所述透镜组件的入光侧。
  9. 如权利要求1所述的激光投影设备,所述光机***还包括振镜,所述振镜固定在所述光机壳体的底面,且位于所述RTIR组件与所述光机壳体的第二开口端之间,所述振镜与所述光机壳体的第二开口端平行。
  10. 如权利要求9所述的激光投影设备,所述光机***还包括第二挡光片,所述第二挡光片固定在所述光机壳体的底面,所述第二挡光片位于所述振镜与所述RTIR组件之间,所述第二挡光片用于遮挡所述DMD旋转反射后不能出射至所述镜头的光束。
PCT/CN2019/099851 2019-06-03 2019-08-08 激光投影设备 WO2020244050A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910477469.7 2019-06-03
CN201910477469.7A CN112034669A (zh) 2019-06-03 2019-06-03 激光投影设备

Publications (1)

Publication Number Publication Date
WO2020244050A1 true WO2020244050A1 (zh) 2020-12-10

Family

ID=73576170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099851 WO2020244050A1 (zh) 2019-06-03 2019-08-08 激光投影设备

Country Status (2)

Country Link
CN (1) CN112034669A (zh)
WO (1) WO2020244050A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113075850B (zh) * 2020-12-23 2022-07-15 深圳市安华光电技术有限公司 一种反射镜调节机构、投影光机以及投影仪
CN114721207B (zh) * 2021-12-15 2024-04-26 深圳市安华光电技术股份有限公司 一种投影设备及其光机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200815905A (en) * 2006-09-22 2008-04-01 Coretronic Corp Optical projection apparatus and total internal reflection prism thereof
CN101726979A (zh) * 2008-10-24 2010-06-09 鸿富锦精密工业(深圳)有限公司 投影机
CN202853571U (zh) * 2012-09-04 2013-04-03 上海产联电气科技有限公司 三维坐标测量装置
CN103048862A (zh) * 2011-10-14 2013-04-17 广景科技有限公司 Dlp微型摄影机及其投影方法
CN205388665U (zh) * 2011-11-25 2016-07-20 利达光电股份有限公司 照明光学***模组
CN107664823A (zh) * 2017-10-23 2018-02-06 中山联合光电科技股份有限公司 一种超小体积4k分辨率的超短焦投影光学***
CN208110241U (zh) * 2018-04-27 2018-11-16 深圳市安华光电技术有限公司 一种带空气间隙的粘合棱镜组件和投影光机

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3757221B2 (ja) * 2003-08-14 2006-03-22 Necビューテクノロジー株式会社 投写型表示装置
KR101351351B1 (ko) * 2012-01-02 2014-01-15 주식회사 세코닉스 피코 프로젝터의 광학 시스템
CN102566235B (zh) * 2012-02-06 2014-10-29 海信集团有限公司 光源装置、光源产生方法及包含光源装置的激光投影机
JP6699358B2 (ja) * 2016-05-31 2020-05-27 セイコーエプソン株式会社 投射光学系およびプロジェクター
CN106292146A (zh) * 2016-09-14 2017-01-04 海信集团有限公司 光机照明***
CN106990658B (zh) * 2017-04-26 2019-06-04 海信集团有限公司 照明装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200815905A (en) * 2006-09-22 2008-04-01 Coretronic Corp Optical projection apparatus and total internal reflection prism thereof
CN101726979A (zh) * 2008-10-24 2010-06-09 鸿富锦精密工业(深圳)有限公司 投影机
CN103048862A (zh) * 2011-10-14 2013-04-17 广景科技有限公司 Dlp微型摄影机及其投影方法
CN205388665U (zh) * 2011-11-25 2016-07-20 利达光电股份有限公司 照明光学***模组
CN202853571U (zh) * 2012-09-04 2013-04-03 上海产联电气科技有限公司 三维坐标测量装置
CN107664823A (zh) * 2017-10-23 2018-02-06 中山联合光电科技股份有限公司 一种超小体积4k分辨率的超短焦投影光学***
CN208110241U (zh) * 2018-04-27 2018-11-16 深圳市安华光电技术有限公司 一种带空气间隙的粘合棱镜组件和投影光机

Also Published As

Publication number Publication date
CN112034669A (zh) 2020-12-04

Similar Documents

Publication Publication Date Title
WO2020244051A1 (zh) 激光投影设备
WO2020244378A1 (zh) 激光投影设备
CN110515261B (zh) 投影设备
US11630288B2 (en) Image projection apparatus
JPWO2006112245A1 (ja) 投写型表示装置
WO2020244050A1 (zh) 激光投影设备
WO2016121299A1 (ja) 投写光学装置およびプロジェクター
US20050030481A1 (en) Digital light processing projection system and projection method of the same
WO2020228595A1 (zh) 投影镜头及激光投影设备
US20130222875A1 (en) Projection display apparatus
TWI700544B (zh) 投影裝置
JP4613581B2 (ja) 画像表示装置、それに用いられる透過型スクリーン及び反射ミラー
JP2004177654A (ja) 投写型画像表示装置
JP2016018208A (ja) イルミネーションシステム
US8052290B2 (en) Rear-projection-type display apparatus
JPH0628458B2 (ja) 背面投射式テレビジョン表示装置
US20230350280A1 (en) Projection apparatus
CN111736437A (zh) 直接成像***
CN113641066A (zh) 照明***和激光投影设备
TWI782314B (zh) 雷射光學投影模組及包含其之穿戴裝置
JP6578892B2 (ja) 投写光学装置、およびプロジェクター
JP4635490B2 (ja) 光学システム及び背面投射型ディスプレイ装置
CN113960862A (zh) 投影设备
CN113641068A (zh) 照明装置和激光投影设备
JP6623693B2 (ja) 投写光学装置、およびプロジェクター

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19931995

Country of ref document: EP

Kind code of ref document: A1