WO2020244378A1 - 激光投影设备 - Google Patents

激光投影设备 Download PDF

Info

Publication number
WO2020244378A1
WO2020244378A1 PCT/CN2020/090963 CN2020090963W WO2020244378A1 WO 2020244378 A1 WO2020244378 A1 WO 2020244378A1 CN 2020090963 W CN2020090963 W CN 2020090963W WO 2020244378 A1 WO2020244378 A1 WO 2020244378A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lens
optical engine
rtir
housing
Prior art date
Application number
PCT/CN2020/090963
Other languages
English (en)
French (fr)
Inventor
曹秀燕
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Publication of WO2020244378A1 publication Critical patent/WO2020244378A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • G03B21/008Projectors using an electronic spatial light modulator but not peculiar thereto using micromirror devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/28Reflectors in projection beam

Definitions

  • the laser projection device is a display device used to generate projection images.
  • the current laser projection equipment mainly includes a light source, an optical machine, and a lens.
  • the light source is used to provide a light beam for the optical machine, and the optical machine is used to modulate the light beam provided by the light source, and emit the modulated beam to the lens to obtain a projection image.
  • the optical machine includes an optical machine housing, a light homogenizer, a digital micromirror device DMD, a refraction total reflection RTIR component;
  • the first open end is connected, the rectangular light spot emitted by the light source enters the light homogenizing member, the light homogenizing member outputs the rectangular light spot, and is fixed on the bottom surface of the optical engine housing;
  • the lens is connected to the second open end of the optical engine housing, and the first open end It is perpendicular or parallel to the second open end;
  • the DMD is arranged on the top surface of the optical engine housing and is perpendicular to the second open end;
  • the RTIR assembly is fixed on the top surface of the optical engine housing, and the RTIR assembly is located below the DMD.
  • Fig. 3 is a schematic structural diagram of a light source provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a fixing bracket provided by an embodiment of the present application.
  • FIG. 5C is a schematic diagram of a partially exploded structure in FIG. 5B;
  • FIG. 7 is a schematic structural diagram of a third light blocking sheet provided by an embodiment of the present application.
  • FIG. 10 is a pixel distribution diagram of a projection screen provided by an embodiment of the present application.
  • FIG. 12 is a pixel distribution diagram of another projection screen provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a bracket provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a second light blocking sheet provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of an optical engine provided by an embodiment of the present application.
  • 201 Optical machine housing; 202: DMD; 203: lens assembly; 2031: first lens; 2032: second lens; 204: first mirror; 205: RTIR assembly; 2051: wedge prism; 2052: plano-convex lens; 206: second mirror; 207: third light barrier; 208: fixed bracket; 209: light guide rod; 2091: first light barrier; 2092: fixed shrapnel; 210: galvanometer; 211: second light barrier sheet.
  • the DMD202 is arranged on the top surface of the optomechanical housing 201 and is perpendicular to the second open end.
  • the lens assembly 203 and the first reflector 204 are both fixed on the bottom surface of the optomechanical housing 201, and the RTIR assembly 205 is fixed on the optomechanical housing.
  • the light entrance side of the lens assembly 203 faces the first opening end
  • the first reflector 204 is located below the RTIR assembly 205
  • the RTIR assembly 205 is located below the DMD202
  • the light exit side of the RTIR assembly 205 faces the second opening end.
  • the included angle between the first reflector 204 and the bottom surface of the optical machine housing 201 is adjustable.
  • the RTIR component 205 since the RTIR component 205 has the advantage of small size, after the optical machine housing 201, the lens component 203, the RTIR component 205 and the DMD 202 are assembled to obtain the optical machine 2, the structure of the optical machine 2 can be made more For simplicity, the volume is more compact. In this way, the light source 1 is connected to the first open end of the optical engine 2 and the lens 3 is connected to the second open end of the optical engine 2 to make the volume of the laser projection device more compact, thereby facilitating the miniaturization of the laser projection device.
  • the included angle between the first reflector 204 and the bottom surface of the optical machine housing 201 is adjustable, the position of the first reflector 204 is adjusted to ensure the light spot formed by the light beam refracted by the RTIR component 205 It can completely cover the working area of DMD202.
  • the opto-mechanical housing 201 includes an open housing obtained by molding and a cover plate for sealing the open housing. After the lens assembly 203 and the first mirror 204 are fixedly assembled on the bottom surface of the open housing, and the DMD 202 and the RTIR assembly 205 are fixed on the cover plate, that is, fixed on the top surface of the optical machine housing 201, pass the cover The plate seals the open shell to obtain the optical engine 2.
  • the opto-mechanical housing 201 can also be obtained in other ways, as long as the lens assembly 203, the RTIR assembly 205 and the DMD 202 components can be fixedly assembled, which is not limited in the embodiment of the present application.
  • the light-transmitting port may be formed on the cover plate of the optical engine housing 201 by mold molding, so as to ensure the accuracy of the position of the light-transmitting port, thereby improving the assembly accuracy of the DMD202 when assembling the DMD202. Avoid the deviation of the light-transmitting port caused by processing errors when processing the light-transmitting port separately in the subsequent processing, thereby causing the installation error of the DMD202.
  • the DMD202 rotates and reflects The rear beam can be totally reflected by the RTIR component 205 and then exit to the lens 3.
  • the angle between the micro-mirror included in the DMD202 and the bottom surface of the opto-mechanical housing is the second rotation angle, the beam rotated and reflected by the DMD202 cannot exit the lens 3.
  • the first rotation angle and the second rotation angle can be set in advance.
  • the first rotation angle can be 10 degrees
  • the second rotation angle can be -10 degrees
  • the first rotation angle can be 12 degrees
  • the second rotation angle can be 12 degrees.
  • the angle can be -12 degrees and so on.
  • the optical engine 2 may further include a fixed bracket 208, the lens assembly 203 is fixed on the fixed bracket 208, and the fixed bracket 208 is fixed on the bottom surface of the optical engine housing 201.
  • the lens assembly 203 can be fixed to the optical machine housing 201 as a whole through the fixing bracket 208, thereby reducing the number of components assembled with the optical machine housing 201 , Thereby reducing the cumulative error in the assembly process, ensuring that the spot formed by the beam can completely cover the working area of the DMD202.
  • the lens assembly 203 is integrally fixed by the fixing bracket 208. In this way, when the lens assembly 203 needs to be adjusted, only the fixing bracket 208 needs to be replaced, which avoids the replacement of the optical machine housing 201, which is beneficial to the light Generalization of the housing 201.
  • the optical engine 2 may further include at least one elastic member and three first fixing members.
  • the first end of the at least one elastic member is connected to the first reflector 204, and the second end of the at least one elastic member is connected to the light
  • the bottom surface of the machine housing 201 is connected.
  • One ends of the three first fixing members pass through the bottom surface of the optical machine housing 201 to contact the first reflector 204.
  • the three first fixing members are distributed in a triangle shape. Any one of the first fixing members can adjust the distance between the first reflector 204 and the bottom surface of the optical machine housing 201.
  • the length of any one of the three first fixing members that protrudes from the bottom surface of the optical engine housing 201 can be adjusted.
  • the first reflector 204 can be located at the other two first fixing members.
  • the straight line of is the rotation axis to rotate to adjust the angle between the first reflector 204 and the bottom surface of the optical machine housing 201, and then adjust the distance between the first reflector 204 and the bottom surface of the optical machine housing 201.
  • At least one elastic member located between the first reflector 204 and the bottom surface of the optical machine housing 201 is in a compressed state, so that the first reflector 204 can realize the first reflection based on the thrust of the three first fixing members. Fixation between the mirror 204 and the bottom surface of the optical engine housing 201.
  • the three first fixing members include one shoulder screw and two adjusting screws, and the three first fixing members are distributed in a right triangle, and the shoulder screws may be distributed at the intersection of the right angle sides.
  • Three elastic pieces can be arranged between the first reflector 204 and the bottom surface of the optical engine housing 201, and the three elastic pieces are all springs, and the three springs can be respectively sleeved on the shoulder screw and the adjusting screw.
  • any one of the two adjustment screws can be adjusted to increase or decrease the distance between the first reflector 204 and the bottom surface of the optical machine housing 201, and then the first reflector can be placed on any one of the Under the tension of the spring on the adjusting screw, the straight line where one shoulder screw and the other adjusting screw are used as the rotation axis is rotated, so as to realize the clamping between the first reflector 204 and the bottom surface of the optical engine housing 201.
  • Angle adjustment since the first reflector 204 and the bottom surface of the optical machine housing 201 are tensioned by three springs, the stability of the first reflector 204 can be ensured after the first reflector 204 is adjusted.
  • the optical engine 2 may further include a second reflector 206
  • the lens assembly 203 includes a first lens 2031 and a second lens 2032
  • the first lens 2031 is a meniscus lens
  • the second lens 2032 is a double convex lens
  • the concave surface of the first lens 2031 faces the first opening end
  • the first lens 2031 is located between the second mirror 206 and the first opening end
  • the second lens 2032 is located between the second mirror 206 and the first opening end.
  • the second reflecting mirror 206 is fixed on the inner wall of the optical machine housing 201.
  • the light beam emitted by the light source 1 can be transmitted to the second mirror 206 through the first lens 2031, and the light beam transmitted by the first lens 2031 can be reflected to the second lens 2032 by the second mirror 206, and after being reflected by the second mirror 206
  • the light beam of ⁇ can be transmitted to the RTIR component 205 through the second lens 2032.
  • the light spot formed by the light beam emitted by the light source 1 may be small.
  • the output light beam of the light source 1 can be diffused through the first lens 2031 to enlarge the light spot formed by the light beam area.
  • the second lens 2032 can be used to diffuse the light Convergence processing of the light beam to avoid part of the light beam hitting other places of the machine housing 201, or hitting the non-working area of the DMD 202, which can improve the transmission efficiency of the light beam and also avoid the local temperature rise of the machine housing 201 High, causing malfunction of laser projection equipment.
  • the first lens 2031 may be a positive lens or a negative lens, as long as the light beam emitted by the light source 1 can be diffused, which is not limited in the embodiment of the present application.
  • the fixing bracket 208 is provided with a groove matching the first lens 2031 and the second lens 2032, and the first lens 2031 and the second lens 2032 After being installed in the corresponding grooves, the first lens 2031 and the second lens 2032 can be fixed by means of a cover and rubber above the upper part. Since the upper cover applies pressure to the first lens 2031 and the second lens 2032 respectively through rubber, the stability of the assembly of the first lens 2031 and the second lens 2032 can be ensured.
  • the second reflector 206 and the inner wall of the opto-mechanical housing 201 can be fixed according to the fixing method between the first reflector 204 and the bottom surface of the opto-mechanical housing 201.
  • the implementation of this application The examples are not repeated here.
  • the third light barrier 207 when the third light barrier 207 is installed and fixed, since the top of the optical engine housing 201 needs to be provided with a cover, in order to avoid the restriction of the third light barrier 207, the upper part of the third light barrier 207 can be After cutting, the structure of the third light blocking sheet 207 after the cutting may be as shown in FIG. 7.
  • the third light blocking plate 207 can be placed between the second mirror 206 and the second lens 2032, but can also be placed at other positions, as long as it can prevent the partial light beam after the second lens 2032 from being condensed from hitting the lens 3. Just press the ring.
  • the third light blocking sheet 207 may be disposed on the side of the second lens 2032 away from the second reflector 206, which is not limited in the embodiment of the present application.
  • the RTIR component 205 may include a wedge-shaped prism 2051 and a plano-convex lens 2052.
  • the wedge-shaped prism 2051 is located between the plano-convex lens 2052 and the DMD202.
  • the first side of the wedge-shaped prism 2051 is parallel to the DMD202.
  • the wedge-shaped prism 2051 The second side surface of the wedge prism 2051 is parallel to the second opening end, and the third side surface of the wedge prism 2051 is glued to the plane of the plano-convex lens 2052.
  • the first bearing surface, the second bearing surface and the third bearing surface may be bearing surfaces arranged along the depth direction of the optical engine housing 201.
  • the second fixing member may be a pressing sheet including two bending surfaces. In this way, the first bending surface of the pressing sheet can be pressed against the third side surface of the wedge prism 2051, and the second bending surface of the pressing sheet can be It is fixedly connected with the bottom surface of the optical engine housing 201, so as to realize the fixing of the wedge prism 2051 by the pressing sheet.
  • the second fixing member may also be other members, as long as the wedge prism 2051 can be fixed on the bottom surface of the optical engine housing 201, which is not limited in the embodiment of the present application.
  • the light guide rod is improved.
  • the light collection efficiency is also reduced, and the influence of stray light is also reduced, which is also conducive to improving the homogenization effect of the beam.
  • the DMD202 has a rectangular light-receiving surface, and the size of the cross section of the light guide rod 209 can be a preset ratio to the size of the working area of the DMD202, so as to ensure that the light beam transmitted by the lens assembly 203 can just cover the DMD202
  • the working area can ensure the imaging effect of the laser projection device, and at the same time avoid the temperature increase of the non-working area of the DMD 202 caused by the light beam hitting the non-working area of the DMD 202.
  • the optical engine 2 may further include: In the galvanometer bracket shown, the galvanometer bracket is provided with a through hole that matches the lens of the galvanometer 210, and the galvanometer 210 is fixed to the galvanometer bracket through the four through holes on the galvanometer 210, and then the galvanometer bracket It is fixed to the bottom surface of the optomechanical housing 201 to realize the fixing of the galvanometer 210 along the depth direction of the optomechanical housing 201.
  • the structure diagram of the second light blocking sheet 211 may be an L-shaped structure as shown in FIG. 16.
  • the bent portion of the short side of the second light blocking sheet 211 is fixed to the optical engine housing 201, and the second light blocking sheet 211 Both the short side and the long side can be attached to the galvanometer 210 to block the light beam that cannot be emitted to the light outlet of the optical engine housing 201 after the DMD 202 is rotated and reflected.
  • the second light blocking sheet 211 may have other structures, which is not limited in the embodiment of the present application.
  • orientation nouns involved in the embodiments of the present application are based on the orientation shown in the corresponding drawings in Figure 1, Figure 2, Figure 5, Figure 8 and Figure 10, and are only used to explain the laser projection equipment. The structure does not have a limited meaning.
  • part of the lens of the lens can extend into the inside of the optical engine housing, as shown in Figure 18.
  • Part of the lenses behind the lens 3 can extend into the interior of the optical engine 2 and be wrapped by the optical engine housing 201, which is beneficial to the compactness of the entire machine.
  • FIG. 17 illustrates a schematic structural diagram of an optical engine according to an embodiment of the present application
  • FIG. 2 illustrates a schematic cross-sectional structure diagram of an optical engine according to an embodiment of the present application.
  • the optical engine may include: a light source 1 and an optical engine 2.
  • the optical engine 2 includes an optical engine housing 201, a digital micromirror device DMD202, a lens assembly 203, a first reflector 204, and a refractive total reflection RTIR Component 205, the light source 1 is a three-color laser system, and the light source 1 is connected to the first opening end of the opto-mechanical housing 201, and the DMD 202 is arranged on the top surface of the opto-mechanical housing 201 and is connected to the second opening of the opto-mechanical housing 201
  • the lens assembly 203 and the first reflector 204 are both fixed on the bottom surface of the optical engine housing 201
  • the RTIR assembly 205 is fixed on the top surface of the optical engine housing 201
  • the light incident side of the lens assembly 203 faces the first opening end.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)

Abstract

一种激光投影设备,属于投影技术领域,包括:光源(1)、光机(2)和镜头(3),光源(1)与光机壳体(201)的第一开口端连接,光源(1)发出的矩形光斑入射匀光件(209);镜头(3)与光机壳体(201)的第二开口端连接,第一开口端与第二开口端相互垂直或平行;DMD(202)设置在光机壳体(201)的顶面,且与第二开口端垂直;RTIR组件(205)固定在光机壳体(201)的顶面,RTIR组件(205)位于DMD(202)的下方,RTIR组件(205)接收经匀光件(209)输出的矩形光斑折射至DMD(202),DMD(202)的受光面为矩形,折射后的光束经DMD(202)反射至RTIR组件(205),RTIR组件(205)的出光侧朝向第二开口端,反射后的光束经RTIR组件(205)全反射至镜头(3)。激光投影设备具有较高的光利用率,光效提高。

Description

激光投影设备
本申请要求于2019年6月3日提交中国专利局、申请号为201910478601.6,申请名称为“激光投影设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及投影技术领域,特别涉及一种激光投影设备。
背景技术
激光投影设备为一种用以产生投影画面的显示设备。目前激光投影设备中主要包括光源、光机和镜头,光源用于为光机提供光束,光机用于对光源提供的光束进行调制,将调制后的光束出射至镜头以得到投影画面。
由于光机是激光投影设备的核心部件,所以光机的尺寸大小很大程度上决定着激光投影设备的尺寸大小,因此需要对光机的结构进行调整,进而在减小光机的尺寸的情况下减小激光投影设备的尺寸。
发明内容
本申请提供了一种激光投影设备,包括:光源、光机和镜头,光机包括光机壳体、匀光件、数字微镜器件DMD、折射全反射RTIR组件;光源与光机壳体的第一开口端连接,光源发出的矩形光斑入射匀光件,匀光件输出矩形光斑,且固定在光机壳体的底面;镜头与光机壳体的第二开口端连接,第一开口端与第二开口端相互垂直或平行;DMD设置在光机壳体的顶面,且与第二开口端垂直; RTIR组件固定在光机壳体的顶面,RTIR组件位于DMD的下方,RTIR组件接收经匀光件输出的矩形光斑折射至DMD,DMD的受光面为矩形,折射后的光束经DMD反射至RTIR组件,RTIR组件的出光侧朝向第二开口端,反射后的光束经RTIR组件全反射至镜头。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种激光投影设备的结构示意图;
图2是本申请实施例提供的一种光机的剖面结构示意图;
图3是本申请实施例提供的一种光源的结构示意图;
图4是本申请实施例提供的一种固定支架的结构示意图;
图5A是本申请实施例提供的一种光机的结构示意图;
图5B是本申请实施例提供的一种光机的立体结构示意图;
图5C是图5B中部分分解结构示意图;
图6是本申请实施例提供的一种第二反射镜固定的***结构示意图;
图7是本申请实施例提供的一种第三挡光片的结构示意图;
图8是本申请实施例提供的一种光机的***结构示意图;
图9是本申请实施例提供的另一种光机的结构示意图;
图10是本申请实施例提供的一种投影画面的像素分布图;
图11是本申请实施例提供的另一种投影画面的像素分布图;
图12是本申请实施例提供的又一种投影画面的像素分布图;
图13是本申请实施例提供的一种振镜的结构示意图;
图14是本申请实施例提供的另一种振镜的结构示意图;
图15是本申请实施例提供的一种支架的结构示意图;
图16是本申请实施例提供的一种第二挡光片的结构示意图;
图17是本申请实施例提供的一种光学引擎的结构示意图。
图18为本申请实施例提供的一种激光投影设备的部分剖面示意图;
附图标记:
1:光源;2:光机;3:镜头;
201:光机壳体;202:DMD;203:透镜组件;2031:第一透镜;2032:第二透镜;204:第一反射镜;205:RTIR组件;2051:楔形棱镜;2052:平凸透镜;206:第二反射镜;207:第三挡光片;208:固定支架;209:导光棒;2091:第一挡光片;2092:固定弹片;210:振镜;211:第二挡光片。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
图1示例了本申请实施例的一种激光投影设备的结构示意图,图2示例了本申请实施例的一种光机的剖面结构示意图。如图1和图2所示,激光投影设备包括:光源1、光机2和镜头3,光机2包括光机壳体201、DMD202、透镜组件203、第一反射镜204和RTIR组件205,光源1与光机壳体201的第一开口端连 接,镜头3与光机壳体201的第二开口端连接,第一开口端与第二开口端相互垂直或平行。
DMD202设置在光机壳体201的顶面,且与第二开口端垂直,透镜组件203和第一反射镜204均固定在光机壳体201的底面上,RTIR组件205固定在光机壳体201的顶面,透镜组件203的入光侧朝向第一开口端,第一反射镜204位于RTIR组件205的下方,RTIR组件205位于DMD202的下方,RTIR组件205的出光侧朝向第二开口端,且第一反射镜204与光机壳体201的底面之间的夹角可调。光源1出射的光束经透镜组件203透射至第一反射镜204,透射后的光束经第一反射镜204反射至RTIR组件205,反射后的光束经RTIR组件205折射至DMD202,折射后的光束经DMD202旋转反射至RTIR组件205,旋转反射后的光束经RTIR组件205全反射至镜头3。
本申请实施例中,由于RTIR组件205具有体积小的优点,因此,在通过光机壳体201、透镜组件203、RTIR组件205和DMD202装配得到光机2后,能够使得光机2的结构更为简化,体积更为紧凑。这样,在光机2的第一开口端连接光源1,在光机2的第二开口端连接镜头3后能够使得激光投影设备的体积更为紧凑,进而利于激光投影设备的小型化。另外,由于第一反射镜204与光机壳体201的底面之间的夹角可调,这样,对第一反射镜204的位置进行调整,以保证经RTIR组件205折射后的光束形成的光斑能够完全覆盖DMD202的工作区。
其中,光源1为三色激光***,作为一种示例,三色激光***可以包括绿色激光器、红色激光器和蓝色激光器,这样,可以直接通过这三个激光器出射红绿蓝三色的光束。在一些实施例中,如图3所示,三色激光***可以为三色MCL 激光器,具体包括位于第一行的绿色激光器、位于第二行的蓝色激光器、以及分别位于第三行和第四行的红色激光器。镜头3可以由一系列的透镜组成,以保证光机2出射的光束在经镜头3进行透射后,光束在屏幕上的投影效果。
本申请实施例中,光机壳体201包括通过模具成型的方式得到的开口壳体,以及对开口壳体进行密封的盖板。在将透镜组件203和第一反射镜204固定装配在开口壳体的底面,且将DMD202和RTIR组件205固定在盖板上,也即是固定在光机壳体201的顶面后,通过盖板对开口壳体进行密封,以得到光机2。当然,光机壳体201也可以通过其他方式得到,只要能够实现透镜组件203、RTIR组件205和DMD202构件的固定装配即可,本申请实施例对此不做限定。
本申请实施例中,如图2所示,DMD202设置在光机壳体201的顶面时,需要在光机壳体201的顶面设置透光口,以保证DMD202在与光机壳体201的外壁连接后朝向光机壳体201的内部。在一些实施例中,可以通过模具成型的方式在光机壳体201的盖板上形成透光口,从而能够保证透光口的位置的准确度,进而在装配DMD202时提高DMD202的装配精度,避免后续单独对透光口加工时,因加工误差造成的透光口的偏差,从而造成DMD202的安装误差。
在通过DMD202对RTIR组件205折射后的光束进行旋转反射时,在一些实施例中,DMD202包括的微反射镜与光机壳体的底面之间的夹角为第一旋转角度时,DMD202旋转反射后的光束可以经RTIR组件205全反射后出射至镜头3,DMD202包括的微反射镜与光机壳体的底面之间的夹角为第二旋转角度时,DMD202旋转反射的光束不能出射至镜头3。
其中,第一旋转角度和第二旋转角度可以预先进行设置,比如,第一旋转角度可以为10度,第二旋转角度可以为-10度,或者第一旋转角度可以为12度, 第二旋转角度可以为-12度等。
本申请实施例中,如图4和图5所示,光机2还可以包括固定支架208,透镜组件203固定在固定支架208上,固定支架208固定在光机壳体201的底面上。
在装配光机壳体上装配构件时,不可避免地会出现装配误差,尤其是光机包括的构件较多时,很容易因为误差的累积而造成使光机的光路产生偏差,进而造成光束形成的光斑不能完全覆盖DMD202的工作区域。因此,本申请实施例中,在光机在装配过程,可以通过固定支架208将透镜组件203作为一个整体与光机壳体201进行固定,从而减少与光机壳体201之间装配的构件数量,进而降低了装配过程中的累积误差,保证光束形成的光斑能够完全覆盖DMD202的工作区。
另外,透镜组件203通过固定支架208进行整体固定,这样,在需要对透镜组件203进行调整时,只需要对固定支架208进行更换即可,避免了对光机壳体201的更换,有利于光机壳体201的通用化。
在一些实施例中,光机2还可以包括至少一个弹性件和三个第一固定构件,至少一个弹性件的第一端与第一反射镜204连接,至少一个弹性件的第二端与光机壳体201的底面连接,三个第一固定构件的一端穿过光机壳体201的底面与第一反射镜204接触,三个第一固定构件呈三角形分布,三个第一固定构件中的任一第一固定构件能够调整第一反射镜204与光机壳体201的底面之间的距离。
也即是,可以对三个第一固定构件中的任一第一固定构件伸出光机壳体201的底面的长度进行调整,此时第一反射镜204可以以另外两个第一固定构件所 在的直线为旋转轴进行旋转,从而调整第一反射镜204与光机壳体201的底面之间的夹角,进而调整第一反射镜204与光机壳体201的底面之间的距离。
其中,位于第一反射镜204与光机壳体201的底面之间的至少一个弹性件均处于压缩状态,这样第一反射镜204可以基于三个第一固定构件的推力作用下实现第一反射镜204与光机壳体201的底面之间的固定。
作为一种示例,三个第一固定构件包括一个轴肩螺钉和两个调节螺钉,且三个第一固定构件呈直角三角形分布,轴肩螺钉可以分布在直角边的交点。第一反射镜204与光机壳体201的底面之间可以设置三个弹性件,这三个弹性件均为弹簧,且这三个弹簧可以分别套在轴肩螺钉和调节螺钉上,这样,可以对两个调节螺钉中的任一调节螺钉进行调整,以增大或缩小第一反射镜204与光机壳体201的底面之间的距离,之后第一反射镜可以在套在该任一调节螺钉上的弹簧的拉紧作用下,以一个轴肩螺钉和另一个调节螺钉所在的直线为旋转轴进行旋转,从而实现对第一反射镜204与光机壳体201的底面之间的夹角的调整。另外,由于第一反射镜204与光机壳体201的底面之间通过三个弹簧拉紧,从而能够在对第一反射镜204进行调整后,保证第一反射镜204的稳定性。
本申请实施例中,如图4和图5所示,光机2还可以包括第二反射镜206,透镜组件203包括第一透镜2031和第二透镜2032,第一透镜2031为凹凸透镜,第二透镜2032为双凸透镜,第一透镜2031的凹面朝向第一开口端,第一透镜2031位于第二反射镜206和第一开口端之间,第二透镜2032位于第二反射镜206和第一反射镜204之间,第二反射镜206固定在光机壳体201的内壁。这样,光源1出射的光束经第一透镜2031可以透射至第二反射镜206,第一透镜2031透射后的光束经第二反射镜206可以反射至第二透镜2032,第二反射镜206反射 后的光束经第二透镜2032可以透射至RTIR组件205。
其中,光源1出射的光束形成的光斑可能较小,为了保证光束形成的光斑能够完全覆盖DMD202的工作区域,可以通过第一透镜2031对光源1的出射光束进行扩散处理,以扩大光束形成的光斑面积。第一透镜2031对光源1出射的光束进行扩散处理后,为了避免光束形成的光斑面积过大,导致光束形成的光斑覆盖在DMD202的非工作区域,此时可以通过第二透镜2032对扩散处理后的光束进行汇聚处理,以避免部分光束打在光机壳体201的其他地方,或者打在DMD202的非工作区域,从而能够提高光束的传递效率,还可以避免光机壳体201局部温度的升高,造成激光投影设备发生的故障。
其中,第一透镜2031可以为正透镜,也可以为负透镜,只要可以对光源1出射的光束实现扩散处理即可,本申请实施例对此不做限定。在固定支架208上固定第一透镜2031和第二透镜2032时,固定支架208上设置有与第一透镜2031和第二透镜2032相匹配的凹槽,在将第一透镜2031和第二透镜2032分别安装在对应的凹槽后,可以在第一透镜2031和第二透镜2032的上部以上盖和橡胶的方式实现固定。由于上盖通过橡胶分别对第一透镜2031和第二透镜2032施加压力,从而能够保证第一透镜2031和第二透镜2032装配的稳固性。
需要说明的是,当光机2包括固定支架208时,由于第一反射镜204固定在光机壳体201的底面,导致对第一反射镜204的固定及调节不易控制。在一些实施例中,第二反射镜206可调整的固定在光机壳体201的内壁,这样,可以通过对第二反射镜206的调整,替代对第一反射镜的调整。在通过对第二反射镜206调整时,第一反射镜204可以固定在固定支架208上,这样可以将透镜组件203和第一反射镜204作为整体固定在固定支架208上,从而进一步与光机壳体 201装配的构件的数量。
其中,如图6所示,第二反射镜206与光机壳体201的内壁之间,可以按照第一反射镜204与光机壳体201的底面之间的固定方式进行固定,本申请实施例在此不再赘述。
需要说明的是,在通过第二透镜2032对扩散处理后的光束进行汇聚处理后,依旧有部分光束可能会打在镜头3的压环上,从而可能会引起镜头3的温度过高,进而造成镜头3发生温漂的问题。因此,如图5所示,光机2还可以包括第三挡光片207,第三挡光片207固定在光机壳体201的底面,第三挡光片207位于第二反射镜206和第二透镜2032之间,第三挡光片207在第二透镜2032上的正投影与第二透镜2032存在重叠区域。其中,温漂是指显示画面在水平或垂直方向上存在图像移位的现象。
在第一透镜2031和第二透镜2032之间设置第三挡光片207后,可以通过第三挡光片207遮挡打在第二透镜2032下部的部分光束,从而避免打在第二透镜2032下部的部分光束进行汇聚后打在镜头3的压环上,之后打在第三挡光片207上的光束产生的热量会传递至光机壳体201,从而避免镜头3发生温漂的问题。在一些实施例中,第三挡光片207可以为设置有椭圆孔的挡光片,且在安装固定第三挡光片207时,椭圆孔的长轴可以与光机壳体201的底面平行。由于第二透镜2032的外轮廓一般为圆形,这样,第三挡光片207在第二透镜2032上的正投影可以位于第二透镜2032的下部,从而可以通过第三挡光片207遮挡打在第二透镜2032的下部的部分光束。
需要说明的是,在安装固定第三挡光片207时,由于光机壳体201的顶部需要设置盖板,为了避免第三挡光片207的限制,可以对第三挡光片207的上部 进行切除,切除后的第三挡光片207的结构可以如图7所示。
另外,第三挡光片207除了可以设置在第二反射镜206和第二透镜2032之间,还可以设置在其他位置,只要能够避免经第二透镜2032汇聚处理后的部分光束打在镜头3压环上即可。比如,第三挡光片207可以设置在第二透镜2032上远离第二反射镜206的一侧,本申请实施例对此不做限定。
本申请实施例中,如图8所示,RTIR组件205可以包括楔形棱镜2051和平凸透镜2052,楔形棱镜2051位于平凸透镜2052与DMD202之间,楔形棱镜2051的第一侧面与DMD202平行,楔形棱镜2051的第二侧面与第二开口端平行,楔形棱镜2051的第三侧面与平凸透镜2052的平面胶合。
这样,经透镜组件203透射后的光束可以沿平凸透镜2052的凸面入射至平凸透镜2052,之后在平凸透镜2052的凸面进行折射,并沿楔形棱镜2051的第一侧面出射至DMD202。DMD202对折射后的光束进行旋转反射,并将旋转反射后的部分光束沿第三楔形棱镜2051的第一侧面入射至楔形棱镜2051,之后在楔形棱镜2051的第三侧面发生全反射,并沿楔形棱镜2051的第二侧面出射至镜头3。其中,为了保证RTIR组件205的安装精度,在一些实施例中,光机壳体201的顶面上可以设置有第一承靠面、第二承靠面和第三承靠面,楔形棱镜2051的第二侧面、第一底面和第二底面分别对应承靠在第一承靠面、第二承靠面和第三承靠面上,楔形棱镜2051的第三侧面通过至少两个第二固定构件固定在光机壳体201的顶面。
其中,第一承靠面、第二承靠面和第三承靠面可以为沿光机壳体201的深度方向设置的承靠面。第二固定构件可以为包括有两个弯折面的压紧片,这样,压紧片的第一弯折面可以压在楔形棱镜2051的第三侧面,压紧片的第二弯折面 可以与光机壳体201的底面固定连接,从而实现压紧片对楔形棱镜2051的固定。当然,第二固定构件也可以为其他构件,只要可以将楔形棱镜2051固定在光机壳体201的底面即可,本申请实施例对此不做限定。
本发明实施例还提供了一种激光投影设备,外观整体可参见图1,包括光源1、光机2和镜头3。
如图5A所示,光机包括光机壳体201、匀光件209、数字微镜器件DMD202、折射全反射RTIR组件205。光源1与光机壳体201的第一开口端连接。在本实例中,光源1为MCL激光器,具有行列排列的发光芯片,具有矩形的发光面,其发出的矩形光斑入射匀光件209,匀光件209输出矩形光斑,且固定在光机壳体201的底面。镜头3与光机壳体201的第二开口端连接,第一开口端与第二开口端相互垂直或平行;DMD202设置在光机壳体201的顶面,且与第二开口端垂直;RTIR组件205固定在光机壳体的顶面,RTIR组件205位于DMD202的下方,RTIR组件205接收经匀光件209输出的矩形光斑折射至DMD202,DMD202的受光面为矩形,折射后的光束经DMD202反射至RTIR组件205,RTIR组件205的出光侧朝向第二开口端,反射后的光束经RTIR组件全反射至镜头。
本实例中,匀光件209为导光棒,在其他实施例方式中,匀光件也可以采用复眼透镜。
如图5B,5C所示,导光棒209固定在光机壳体201的底面,导光棒209的一端朝向光源1,导光棒209的另一端朝向透镜组件203的入光侧。
其中,导光棒209可以对光源1出射的光束进行匀光处理。导光棒209可以为矩形导光棒或者圆形导光棒,也即是导光棒209的通道的截面可以为矩形。由于光源1出射的光束形成的光斑为矩形状,这样,为了避免导光棒209位置变 动,对光束形成的光斑造成较大的影响,导光棒209可以固定设置在光机壳体201的底面。更为具体地,导光棒209平行设置于光机壳体201的底面,对应光源1出射的矩形光斑的形状和入射方向,可以更加准确的接收的光源入射的矩形光斑。
在一些实施例中,由于导光棒209上朝向透镜组件203的一端对匀光后出射的光束更为敏感,因此导光棒209可以采用后端固定的方式进行固定,也即是针对导光棒209上朝向透镜组件203的一端进行固定。比如,可以在光机壳体201的侧面分别设置第四承靠面和第五承靠面,之后将导光棒209的侧面承靠在光机壳体201的底面和第四承靠面上,并将导光棒209上朝向透镜组件203的入光侧的一端承靠在第五承靠面上,之后,在光机壳体201的底面与导光棒209之间点胶,并通过固定弹片2092将导光棒209与光机壳体201的底面固定连接,从而实现导光棒209的固定。
进一步地,在通过导光棒209对光源1出射的光束进行进行匀光处理时,可以在导光棒209的前端,也即是导光棒209上朝向第一开口端的一端设置第一挡光片2019,从而可以通过第一挡光片遮挡导光棒209的前端的无效部分,保证仅导光棒209的前端的内口径起作用,这样既能使光源1发出的能量较高部分的、且符合导光棒收集范围的角度的光尽可能多的通过导光棒209,又能防止外界环境的杂散光通过导光棒209的无效部位进入导光棒209,一方面提高了导光棒的收光效率,同时还减轻了杂散光的影响,也利于提高光束的匀化效果。需要说明的是,DMD202具有矩形的受光面,导光棒209的通道的截面的尺寸可以和DMD202的工作区域的尺寸呈预设比例,以保证经透镜组件203透射后的光束正好能够覆盖DMD202的工作区域,从而能够保证该激光投影设备的成像效果, 同时避免因光束打在DMD202的非工作区域,造成DMD202的非工作区域的温度的升高。
本申请实施例中,如图9所示,光机2还可以包括振镜210,振镜210固定在光机壳体201的底面,且位于RTIR组件205与光机壳体201的第二开口端之间,振镜210与光机壳体201的第二开口端平行。
其中,振镜210可以使得投影的画面实现4k分辨率。在一些实施例中,通过DMD202实现的投影画面的像素点排布可以如图10所示,振镜210可以通过振动将DMD202投影画面的像素点偏转一定角度,如图11所示,这样,在两者进行叠加后,在图像上呈现的画面的像素点的排布可以如图12所示,从而实现投影画面的4K分辨率。
在一些实施例中,如图13所示,由于振镜210沿与镜面垂直的方向设置有两个较短的耳板和两个较长的耳板,这四个耳板上均设置有通孔,因此可以在光机壳体201内沿深度方向设置与两个较短的耳板一一对应的两个定位柱,以及与两个较长的耳板一一对应的两个螺纹孔,这样振镜210上两个较短的耳板可以对应套在两个定位柱上,较长的两个耳板可以通过定位件与对应的两个螺纹孔固定连接,以实现振镜210沿深度方向的固定,从而能够避免在振动时引起的光机壳体201的机振,同时减少了振镜210的固定工序,提高了振镜210的固定效率。
在另一些实施例中,如图14所示,振镜210上设置有四个贯穿孔,为了实现振镜210沿光机壳体201的深度方向的固定,光机2还可以包括如图15所示的振镜支架,振镜支架上设置有与振镜210的镜片匹配的通孔,通过振镜210上的四个贯穿孔实现振镜210与振镜支架的固定,之后将振镜支架与光机壳体 201的底面固定,实现振镜210沿光机壳体201的深度方向的固定。这样,在需要更换振镜210时,仅需要将振镜支架和振镜210作为整体进行更换即可,不需要对光机壳体201进行更换,从而从而有利于光机壳体201的通用化。
需要说明的是,由于DMD202在位于第二旋转角度时,经DMD202旋转反射后的光束不能出射至镜头3,此时该部分光束可能会打在振镜上,从而很容易造成振镜210温度升高,从而影响振镜210的可靠性,降低投影画面的4K效果,因此,如图9所示,光机2还可以包括第二挡光片211,第二挡光片211固定在光机壳体201的底面,第二挡光片211位于振镜210与RTIR组件205之间,第二挡光片211用于遮挡DMD202旋转反射后不能出射至镜头3的光束。
不能出射至镜头3的这部分光束可以打在第二挡光片211上,以使这部分光束产生的热量被第二挡光片211吸收,进而将产生的热量传递至光机壳体201,避免了振镜210可能发生的温度升高现象。
其中,第二挡光片211的结构图可以如图16所示L形结构,第二挡光片211的短边的弯折部分与光机壳体201固定,且第二挡光片211的短边和长边均可以贴合在振镜210上,以遮挡DMD202旋转反射后不能出射至光机壳体201的出光口的光束。当然,第二挡光片211哈可以为其他结构,本申请实施例对不做限定。
需要说明的是,本申请实施例中所涉及的方位名词以图1、图2、图5、图8和图10中对应附图所示的方位为准,仅仅是用来解释激光投影设备的结构,并不具有限定的含义。
本申请实施例中,由于RTIR组件具有体积小的优点,因此,在通过光机壳体、透镜组件、RTIR组件和DMD装配得到的光机后,能够使得光机的结构更为 简化,体积更为紧凑。这样,在光机的第一开口端连接光源,在光机的第二开口端连接镜头后能够使得激光投影设备的体积更为紧凑,进而利于激光投影设备的小型化。由于光机包括的透镜组件和反射镜通过固定支架固定在光机壳体内,从而可以保证透镜组件和反射镜作为一个整体与光机壳体固定,减少了与光机壳体固定的构件的数量,保证了光机装配的准确性。另外,在需要对光机进行优化时,只需要对固定支架这一结构进行更换优化即可,不需要对整个光机壳体进行更换,从而有利于光机壳体的通用化。
以及,在上述示例中,导光棒矩形的入光面对应收集光源发出的矩形光斑,可以尽最大效率的实现光的收集,提高光传输效率,同时,DMD的受光面也为矩形,在从光源经过导光棒匀光件,经过透镜,最后经RTIR组件入射至DMD表面时,光束的传输减少了因为光斑整形而产生的损失,有利于提高光效。
在上述示例中,由于采用的透镜组件数量小,采用了反射镜来压缩空间光路,进行光路折叠和光束入射角度的改变,使得光机壳体内部的空间较大效率的利用,RTIR组件的体积也相对于传统的TIR棱镜减小很多,从而整个光机壳体内部的空间可以减小。
同时,镜头的部分镜片可以伸入光机壳体内部,如图18所示。镜头3后群部分镜片可以伸入光机2的内部,被光机壳体201包裹,这样利于整机体积的紧凑性。
图17示例了本申请实施例的一种光学引擎的结构示意图,图2示例了本申请实施例的一种光机的剖面结构示意图。如图2和图17所示,光学引擎可以包括:光源1和光机2,光机2包括光机壳体201、数字微镜器件DMD202、透镜组件203、第一反射镜204和折射全反射RTIR组件205,光源1为三色激光***, 且光源1与光机壳体201的第一开口端连接,DMD202设置在光机壳体201的顶面,且与光机壳体201的第二开口端垂直,透镜组件203和第一反射镜204均固定在光机壳体201的底面上,RTIR组件205固定在光机壳体201的顶面,透镜组件203的入光侧朝向第一开口端,第一反射镜204位于RTIR组件205的下方,RTIR组件205位于DMD202的下方,RTIR组件205的出光侧朝向第二开口端,且第一反射镜204与光机壳体201的底面之间的夹角可调。光源1出射的光束经透镜组件203透射至第一反射镜204,透射后的光束经第一反射镜204反射至RTIR组件205,反射后的光束经RTIR组件205折射至DMD202,折射后的光束经DMD202旋转反射至RTIR组件205,旋转反射后的光束经RTIR组件205全反射至第二开口端。
需要说明的是,光源1,以及光机2的结构可以和上述实施例所述的相同或相似,本申请实施例在此不再赘述。
本申请实施例中,由于RTIR组件具有体积小的优点,因此,在通过光机壳体、透镜组件、RTIR组件和DMD装配得到的光机后,能够使得光机的结构更为简化,体积更为紧凑。这样,在光机的第一开口端连接光源后能够使得光学引擎的体积更为紧凑,进而利于光学引擎的小型化。另外,由于第一反射镜与光机壳体的底面之间的夹角可调,这样,对第一反射镜的位置进行调整,以保证经RTIR组件折射后的光束形成的光斑能够完全覆盖DMD的工作区。
并且,上述第二反射镜也可以设置为可调。当第一反射镜或第二反射镜可调时,可以减轻对导光棒的调节工作,使得通过对反射镜的调节来校正光束的角度,而导光棒可以调整到最佳角度实现光源光束的收集,从而提高***光利用率。以上所述仅为本申请的说明性实施例,并不用以限制本申请,凡在本申请的精 神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种激光投影设备,其特征在于,所述激光投影设备包括:光源、光机和镜头,所述光机包括光机壳体、匀光件、数字微镜器件DMD、折射全反射RTIR组件;
    所述光源与所述光机壳体的第一开口端连接,所述光源发出的矩形光斑入射所述匀光件,所述匀光件输出矩形光斑,且固定在所述光机壳体的底面;
    所述镜头与所述光机壳体的第二开口端连接,所述第一开口端与所述第二开口端相互垂直或平行;
    所述DMD设置在所述光机壳体的顶面,且与所述第二开口端垂直;
    所述RTIR组件固定在所述光机壳体的顶面,所述RTIR组件位于所述DMD的下方,所述RTIR组件接收经所述匀光件输出的矩形光斑折射至所述DMD,所述DMD的受光面为矩形,折射后的光束经所述DMD反射至所述RTIR组件,所述RTIR组件的出光侧朝向所述第二开口端,反射后的光束经所述RTIR组件全反射至所述镜头。
  2. 如权1所述的激光投影设备,其特征在于,所述光机壳体内还依次设置有透镜组件和第一反射镜;
    所述透镜组件的入光侧朝向所述第一开口端,并接收所述匀光件的输出光,所述第一反射镜位于所述RTIR组件的下方,所述第一反射镜将光束反射所述RTIR组件;
    所述透镜组件和所述第一反射镜均固定在所述光机壳体的底面上。
  3. 如权1所述的激光投影设备,其特征在于,所述第一反射镜与所述光机 壳体的底面之间的夹角可调。
  4. 如权1所述的激光投影设备,其特征在于,所述匀光件为导光棒;所述导光棒平行设置于所述光机壳体的底面。
  5. 如权4所述的激光投影设备,其特征在于,所述导光棒后端通过固定弹片抵靠在侧面和底面承靠面上。
  6. 如权4所述的激光投影设备,其特征在于,所述导光棒入光面设置有第一挡光片。
  7. 如权利要求1‐6任一所述的激光投影设备,其特征在于,所述RTIR组件包括楔形棱镜和平凸透镜;
    所述楔形棱镜位于所述平凸透镜与所述DMD之间,所述楔形棱镜的第一侧面与所述DMD平行,所述楔形棱镜的第二侧面与所述第二开口端平行,所述楔形棱镜的第三侧面与所述平凸透镜的平面胶合。
  8. 如权利要求7所述的激光投影设备,其特征在于,所述光机壳体的顶面上设置有第一承靠面、第二承靠面和第三承靠面,所述楔形棱镜的第二侧面、第一底面和第二底面分别对应承靠在所述第一承靠面、所述第二承靠面和所述第三承靠面上,所述楔形棱镜的第三侧面通过至少两个第二固定构件固定在所述光机壳体的顶面。
  9. 如权利要求1‐6任一所述的激光投影设备,其特征在于,所述光机还包括振镜,所述振镜固定在所述光机壳体的底面,且位于所述RTIR组件与所述光机壳体的第二开口端之间,所述振镜与所述光机壳体的第二开口端平行。
  10. 如权利要求9所述的激光投影设备,其特征在于,所述光机还包括第二挡光片,所述第二挡光片固定在所述光机壳体的底面,所述第二挡光片位于 所述振镜与所述RTIR组件之间,所述第二挡光片用于遮挡所述DMD旋转反射后不能出射至所述镜头的光束。
PCT/CN2020/090963 2019-06-03 2020-05-19 激光投影设备 WO2020244378A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910478601.6 2019-06-03
CN201910478601.6A CN112034670A (zh) 2019-06-03 2019-06-03 激光投影设备

Publications (1)

Publication Number Publication Date
WO2020244378A1 true WO2020244378A1 (zh) 2020-12-10

Family

ID=73576516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090963 WO2020244378A1 (zh) 2019-06-03 2020-05-19 激光投影设备

Country Status (2)

Country Link
CN (1) CN112034670A (zh)
WO (1) WO2020244378A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113075843B (zh) * 2020-12-23 2022-12-27 深圳市安华光电技术有限公司 一种投影光机及投影仪
CN113075840B (zh) * 2020-12-23 2022-07-15 深圳市安华光电技术有限公司 一种投影光机
CN113075839B (zh) * 2020-12-23 2022-03-29 深圳市安华光电技术有限公司 一种投影光机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6880935B1 (en) * 2003-12-18 2005-04-19 Texas Instruments Incorporated TIR prism arrangement and optics for providing an undistorted illumination image
CN1779551A (zh) * 2004-11-23 2006-05-31 普立尔科技股份有限公司 光学引擎及具有该光学引擎的投影装置
JP2010197951A (ja) * 2009-02-27 2010-09-09 Topcon Corp 投影装置
CN105629482A (zh) * 2016-03-21 2016-06-01 海信集团有限公司 一种匀光装置和激光投影设备
CN106324968A (zh) * 2016-11-28 2017-01-11 四川长虹电器股份有限公司 一种基于纯激光光学引擎的微投影机
CN206755073U (zh) * 2017-04-17 2017-12-15 海伯森技术(深圳)有限公司 一种基于led或vcsel光源生成矩形光斑的tir组合透镜
CN207557635U (zh) * 2017-12-27 2018-06-29 浙江浚泽光电科技有限公司 Led光源投影装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3757221B2 (ja) * 2003-08-14 2006-03-22 Necビューテクノロジー株式会社 投写型表示装置
CN102654645A (zh) * 2011-03-03 2012-09-05 上海三鑫科技发展有限公司 一种投影光学***
CN104090454A (zh) * 2014-08-06 2014-10-08 *** 一种投影光学引擎
CN104880898A (zh) * 2015-05-13 2015-09-02 深圳市帅映科技有限公司 一种基于激光光源的dlp投影装置
CN106292146A (zh) * 2016-09-14 2017-01-04 海信集团有限公司 光机照明***

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6880935B1 (en) * 2003-12-18 2005-04-19 Texas Instruments Incorporated TIR prism arrangement and optics for providing an undistorted illumination image
CN1779551A (zh) * 2004-11-23 2006-05-31 普立尔科技股份有限公司 光学引擎及具有该光学引擎的投影装置
JP2010197951A (ja) * 2009-02-27 2010-09-09 Topcon Corp 投影装置
CN105629482A (zh) * 2016-03-21 2016-06-01 海信集团有限公司 一种匀光装置和激光投影设备
CN106324968A (zh) * 2016-11-28 2017-01-11 四川长虹电器股份有限公司 一种基于纯激光光学引擎的微投影机
CN206755073U (zh) * 2017-04-17 2017-12-15 海伯森技术(深圳)有限公司 一种基于led或vcsel光源生成矩形光斑的tir组合透镜
CN207557635U (zh) * 2017-12-27 2018-06-29 浙江浚泽光电科技有限公司 Led光源投影装置

Also Published As

Publication number Publication date
CN112034670A (zh) 2020-12-04

Similar Documents

Publication Publication Date Title
WO2020244378A1 (zh) 激光投影设备
WO2020244051A1 (zh) 激光投影设备
JP2013061554A (ja) 画像形成装置、画像形成装置を搭載した車両
JPH046315B2 (zh)
US20060285087A1 (en) Dual lamp system for projector system with L-type optical engine
WO2020244050A1 (zh) 激光投影设备
WO2020228595A1 (zh) 投影镜头及激光投影设备
CN110320735B (zh) 投影装置
JP6258234B2 (ja) イルミネーションシステム
JP6797049B2 (ja) 画像形成装置、画像形成装置を搭載した車両
JP2004177654A (ja) 投写型画像表示装置
JPH0628458B2 (ja) 背面投射式テレビジョン表示装置
US8052290B2 (en) Rear-projection-type display apparatus
WO2022199549A1 (zh) 投影主机
CN110456491B (zh) 投影成像***及激光投影装置
WO2022218228A1 (zh) 光学***和可穿戴设备
JP6107996B2 (ja) 画像形成装置、画像形成装置を搭載した車両
TWI782314B (zh) 雷射光學投影模組及包含其之穿戴裝置
JP4635490B2 (ja) 光学システム及び背面投射型ディスプレイ装置
CN113126460A (zh) 一种激光扫描单元
CN113960862A (zh) 投影设备
JP6623693B2 (ja) 投写光学装置、およびプロジェクター
CN220438740U (zh) 激光投影设备
CN216133290U (zh) 一种小型单lcd投影机匀光光路
US20240012318A1 (en) Light source and laser projection apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20819235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20819235

Country of ref document: EP

Kind code of ref document: A1